Science.gov

Sample records for populus tremuloides cell

  1. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides).

    PubMed

    Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Fedak, Halina; Sidoruk, Natalia; Dąbrowska-Bronk, Joanna; Witoń, Damian; Rusaczonek, Anna; Antczak, Andrzej; Drożdżek, Michał; Karpińska, Barbara; Karpiński, Stanisław

    2015-07-01

    The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development.

  2. Association of Pinus banksiana Lamb. and Populus tremuloides Michx. seedling fine roots with Sistotrema brinkmannii (Bres.) J. Erikss. (Basidiomycotina).

    PubMed

    Potvin, Lynette R; Richter, Dana L; Jurgensen, Martin F; Dumroese, R Kasten

    2012-11-01

    Sistotrema brinkmannii (Bres.) J. Erikss. (Basidiomycotina, Hydanaceae), commonly regarded as a wood decay fungus, was consistently isolated from bareroot nursery Pinus banksiana Lamb. seedlings. S. brinkmannii was found in ectomycorrhizae formed by Thelephora terrestris Ehrh., Laccaria laccata (Scop.) Cooke, and Suillus luteus (L.) Roussel. In pure culture combinations with sterile P. banksiana and Populus tremuloides Michx. seedlings, S. brinkmannii colonized root cortical cells while not killing seedlings. Colonization by S. brinkmannii appeared to be intracellular but typical endo- or ectomycorrhizae were not formed. The fungus did not decay roots, although it was shown to produce cellulase in enzyme tests. Results suggest a unique association between S. brinkmannii and seedling roots that is neither mycorrhizal nor detrimental; its exact function remains to be elucidated.

  3. Differences in leaf characteristics between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula x Populus tremuloides) clones.

    PubMed

    Häikiö, Elina; Freiwald, Vera; Julkunen-Tiitto, Riitta; Beuker, Egbert; Holopainen, Toini; Oksanen, Elina

    2009-01-01

    The authors analyzed a suite of leaf characteristics that might help to explain the difference between ozone-sensitive and ozone-tolerant hybrid aspen (Populus tremula L. x Populus tremuloides Michx.) clones. An open-field experiment comprising ambient ozone and 1.5x ambient ozone concentration (about 35 ppb) and two soil nitrogen regimes (60 and 140 kg N ha(-1) year(-1)) was conducted over two growing seasons on potted plants of eight hybrid aspen clones. Four of the clones had previously been determined to be ozone sensitive based on impaired growth in response to elevated ozone concentration. Photosynthetic rate, chlorophyll fluorescence, and concentrations of chlorophyll, protein and carbohydrates were analyzed three times during the second growing season, and foliar phenolic concentrations were measured at the end of the second growing season. Nitrogen amendment counteracted the effects of ozone, but had no effect on growth-related ozone sensitivity of the clones. Ozone-sensitive clones had higher photosynthetic capacity and higher concentrations of Rubisco and phenolics than ozone-tolerant clones, but the effects of ozone were similar in the sensitive and tolerant groups. Nitrogen addition had no effect on phenolic concentration, but elevated ozone concentration increased the concentrations of chlorogenic acid and (+)-catechin. This study suggests that condensed tannins and catechin, but not salicylates or flavonol glycosides, play a role in the ozone tolerance of hybrid aspen.

  4. Gender-specific and intraspecific responses of trembling aspen (Populus tremuloides) to elevated atmospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wang, Xianzhong

    I studied gender-specific and intraspecific variations in the physiological responses of Populus tremuloides to elevated CO2 as affected by soil N availability. I also synthesized leaf dark respiration data from independent studies using meta-analysis. Net CO2 assimilation rate (A) of male P. tremuloides was 17.8 and 26.2 μmol m-2 s-1 at ambient and elevated CO2, significantly higher than A of females of 15.6 and 21.0 μmol m-2 s-1 . Male trembling aspen had a higher maximum rate of CO2 fixation by Rubisco and area-based leaf dark respiration (Rda). Mass-based leaf Rd (Rdm), however, was unaffected by gender and CO2 concentration, although the results of meta-analysis on 44 independent observations showed that Rdm was reduced 18.4% by elevated CO2. We found a positive correlation between Rd a and leaf starch content, which was higher at elevated CO2, but no correlation between Rda and leaf N content was observed, suggesting the importance of starch content in determining the magnitude of respiration. Total biomass accumulation of female P. tremuloides was higher than that of males in low-N soil and at ambient CO2, but not in other treatments. Elevated CO2, on the other hand, significantly increased total biomass of both male and female trees in low- and high-N soil, with the increase ranging from 22-70% for female and 58-66% for male trees. There was a significant CO2 x genotype interaction in photosynthetic responses to CO2 enrichment, wherein A was significantly enhanced by elevated CO2 for five genotypes in high-N soil and for four genotypes in low-N soil. Enhancement of A by elevated CO2 ranged from 14% to 68%. We found a correlation between the degree of A enhancement to elevated CO2 and stomatal sensitivity to CO2. Stomatal conductance and A of different genotypes also responded differentially to drought stress. Our results suggest that P. tremuloides genotypes and genders respond differentially in A and Rd to rising atmospheric CO2 , with the degree of

  5. Genotypic variation in physiological and growth responses of Populus tremuloides to elevated atmospheric CO2 concentration.

    PubMed

    Wang, X; Curtis, P S; Pregitzer, K S; Zak, D R

    2000-09-01

    Physiological and biomass responses of six genotypes of Populus tremuloides Michx., grown in ambient t (357 micromol mol(-1)) or twice ambient (707 micromol mol(-1)) CO2 concentration ([CO2]) and in low-N or high-N soils, were studied in 1995 and 1996 in northern Lower Michigan, USA. There was a significant CO2 x genotype interaction in photosynthetic responses. Net CO2 assimilation (A) was significantly enhanced by elevated [CO2] for five genotypes in high-N soil and for four genotypes in low-N soil. Enhancement of A by elevated [CO2] ranged from 14 to 68%. Genotypes also differed in their biomass responses to elevated [CO2], but biomass responses were poorly correlated with A responses. There was a correlation between magnitude of A enhancement by elevated [CO2] and stomatal sensitivity to CO2. Genotypes with low stomatal sensitivity to CO2 had a significantly higher A at elevated [CO2] than at ambient [CO2], but elevated [CO2] did not affect the ratio of intercellular [CO2] to leaf surface [CO2]. Stomatal conductance and A of different genotypes responded differentially to recovery from drought stress. Photosynthetic quantum yield and light compensation point were unaffected by elevated [CO2]. We conclude that P. tremuloides genotypes will respond differentially to rising atmospheric [CO2], with the degree of response dependent on other abiotic factors, such as soil N and water availability. The observed genotypic variation in growth could result in altered genotypic representation within natural populations and could affect the composition and structure of plant communities in a higher [CO2] environment in the future.

  6. Stomatal Conductance and Sulfur Uptake of Five Clones of Populus tremuloides Exposed to Sulfur Dioxide 1

    PubMed Central

    Kimmerer, Thomas W.; Kozlowski, T. T.

    1981-01-01

    Plants of five clones of Populus tremuloides Michx. were exposed to 0, 0.2 or 0.5 microliter per liter SO2 for 8 hours in controlled environment chambers. In the absence of the pollutant, two pollution-resistant clones maintained consistently lower daytime diffusive conductance (LDC) than did a highly susceptible clone or two moderately resistant clones. Differences in LDC among the latter three clones were not significant. At 0.2 microliter per liter SO2, LDC decreased in the susceptible clone after 8 hours fumigation while the LDC of the other clones was not affected. Fumigation with 0.5 microliter per liter SO2 decreased LDC of all five clones during the fumigation. Rates of recovery following fumigation varied with the clone, but the LDC of all clones had returned to control values by the beginning of the night following fumigation. Night LDC was higher in the susceptible clone than in the other clones. Fumigation for 16 hours (14 hours day + 2 hours night) with 0.4 microliter per liter SO2 decreased night LDC by half. Sulfur uptake studies generally confirmed the results of the conductance measurements. The results show that stomatal conductance is important in determining relative susceptibility of the clones to pollution stress. PMID:16661807

  7. Phenology and climate relationships in aspen (Populus tremuloides Michx.) forest and woodland communities of southwestern Colorado

    USGS Publications Warehouse

    Meier, Gretchen A.; Brown, Jesslyn F.; Evelsizer, Ross J.; Vogelmann, James E.

    2014-01-01

    Trembling aspen (Populus tremuloides Michx.) occurs over wide geographical, latitudinal, elevational, and environmental gradients, making it a favorable candidate for a study of phenology and climate relationships. Aspen forests and woodlands provide numerous ecosystem services, such as high primary productivity and biodiversity, retention and storage of environmental variables (precipitation, temperature, snow–water equivalent) that affect the spring and fall phenology of the aspen woodland communities of southwestern Colorado. We assessed the land surface phenology of aspen woodlands using two phenology indices, start of season time (SOST) and end of season time (EOST), from the U.S. Geological Survey (USGS) database of conterminous U.S. phenological indicators over an 11-year time period (2001–2011). These indicators were developed with 250 m resolution remotely sensed data from the Moderate Resolution Imaging Spectroradiometer processed to highlight vegetation response. We compiled data on SOST, EOST, elevation, precipitation, air temperature, and snow water equivalent (SWE) for selected sites having more than 80% cover by aspen woodland communities. In the 11-year time frame of our study, EOST had significant positive correlation with minimum fall temperature and significant negative correlation with fall precipitation. SOST had a significant positive correlation with spring SWE and spring maximum temperature.

  8. Inhibitor studies of leaf lamina hydraulic conductance in trembling aspen (Populus tremuloides Michx.) leaves.

    PubMed

    Voicu, Mihaela C; Zwiazek, Janusz J

    2010-02-01

    The present study investigated leaf water transport properties in trembling aspen (Populus tremuloides) leaves. Leaf lamina hydraulic conductance (K(lam)) and stomatal conductance (g(s)) were drastically suppressed by NaF (a general metabolic inhibitor). In leaves treated with 0.2 mM HgCl(2) (an aquaporin blocker), K(lam) declined by 22% when the leaves were sampled in June but the decline was not significant when the leaves were sampled in August. The leaves sampled in June that transpired 30 mM beta-mercaptoethanol following mercury application showed similar K(lam) as those in control leaves transpiring distilled water. When leaves were pressure-infiltrated with 0.1 mM HgCl(2), K(lam) significantly declined by 25%. Atrazine (a photosystem II inhibitor) drastically reduced leaf net CO(2) uptake by the leaves from seedlings and mature trees but did not have any effect on K(lam) regardless of the irradiance at the leaf level during the K(lam) measurements. When PTS(3) (trisodium 3-hydroxy-5,8,10-pyrenetrisulphonate) apoplastic tracer was pressure-infiltrated inside the leaves, its concentration in the leaf exudates did not change from ambient light to high irradiance treatment and declined in the presence of HgCl(2) in the treatment solution. Trembling aspen K(lam) appears to be linked to leaf metabolism and is uncoupled from the short-term variations in photosynthesis. Aquaporin-mediated water transport does not appear to constitute the dominant pathway for the pressure-driven water flow in the leaves of trembling aspen trees.

  9. Scale dependence of disease impacts on quaking aspen (Populus tremuloides) mortality in the southwestern United States.

    PubMed

    Bell, David M; Bradford, John B; Lauenroth, William K

    2015-07-01

    Depending on how disease impacts tree exposure to risk, both the prevalence of disease and disease effects on survival may contribute to patterns of mortality risk across a species' range. Disease may accelerate tree species' declines in response to global change factors, such as drought, biotic interactions, such as competition, or functional traits, such as allometry. To assess the role of disease in mediating mortality risk in quaking aspen (Populus tremuloides), we developed hierarchical Bayesian models for both disease prevalence in live aspen stems and the resulting survival rates of healthy and diseased aspen near the species' southern range limit using 5088 individual trees on 281 United States Forest Service Forest Inventory and Analysis plots in the southwestern United States. We found that disease prevalence depended primarily on tree size, tree allometry, and spatial variation in precipitation, while mortality depended on tree size, allometry, competition, spatial variation in summer temperature, and both temporal and spatial variation in summer precipitation. Disease prevalence was highest in large trees with low slenderness found on dry sites. For healthy trees, mortality decreased with diameter, slenderness, and temporal variation in summer precipitation, but increased with competition and spatial variation in summer temperature. Mortality of diseased trees decreased with diameter and aspen relative basal area and increased with mean summer temperature and precipitation. Disease infection increased aspen mortality, especially in trees of intermediate size and trees on plots at climatic extremes (i.e., cool, wet and warm, dry climates). By examining variation in disease prevalence, mortality of healthy trees, and mortality of diseased trees, we showed that the role of disease in aspen tree mortality depended on the scale of inference. For variation among individuals in diameter, disease tended to expose intermediate-size trees experiencing moderate

  10. Elevated Rocky Mountain elk numbers prevent positive effects of fire on quaking aspen (Populus tremuloides) recruitment

    USGS Publications Warehouse

    Smith, David Solance; Fettig, Stephen M.; Bowker, Matthew A.

    2016-01-01

    Quaking aspen (Populus tremuloides) is the most widespread tree species in North America and has supported a unique ecosystem for tens of thousands of years, yet is currently threatened by dramatic loss and possible local extinctions. While multiple factors such as climate change and fire suppression are thought to contribute to aspen’s decline, increased browsing by elk (Cervus elaphus), which have experienced dramatic population increases in the last ∼80 years, may severely inhibit aspen growth and regeneration. Fires are known to favor aspen recovery, but in the last several decades the spatial scale and intensity of wildfires has greatly increased, with poorly understood ramifications for aspen growth. Here, focusing on the 2000 Cerro Grande fire in central New Mexico – one of the earliest fires described as a “mega-fire” - we use three methods to examine the impact of elk browsing on aspen regeneration after a mega-fire. First, we use an exclosure experiment to show that aspen growing in the absence of elk were 3× taller than trees growing in the presence of elk. Further, aspen that were both protected from elk and experienced burning were 8.5× taller than unburned trees growing in the presence of elk, suggesting that the combination of release from herbivores and stimulation from fire creates the largest aspen growth rates. Second, using surveys at the landscape level, we found a correlation between elk browsing intensity and aspen height, such that where elk browsing was highest, aspen were shortest. This relationship between elk browsing intensity and aspen height was stronger in burned (r = −0.53) compared to unburned (r = −0.24) areas. Third, in conjunction with the landscape-level surveys, we identified possible natural refugia, microsites containing downed logs, shrubs etc. that may inhibit elk browsing by physically blocking aspen from elk or by impeding elk’s ability to move through the forest patch. We did not find any

  11. Growth and photosynthesis of plants in response to environmental stress. [Raphanus sativus; Glycine max; Salix nigra; Alnus serrulata; Populus tremuloides

    SciTech Connect

    Greitner, C.S.

    1991-01-01

    Environmental stresses generally decrease photosynthetic rates and growth of plants, and alter biomass partitioning. Nutrient deficiency and drought cause root:shoot ratios to increase, whereas the air pollutant ozone (O[sub 3]) causes an opposite shift in carbon allocation. Plants in nature usually grow under suboptimal conditions; therefore plants were raised with O[sub 3] combined with other stresses to analyze the mechanisms whereby multiple stresses influence gas exchange and growth. Physiological and growth responses to stress were determined for radish (raphanus sativus), soybean (Glycine max) willow (Salix nigra), alder (Alnus serrulata) and aspen (Populus tremuloides) in laboratory and field trials. In willow, high-nutrient status plants had more visible injury, but a smaller decline in leaf area with O[sub 3] than did low-nutrient plants. Ultrastructure of host plant cells in alder root nodules was disrupted by O[sub 3], suggesting that this air pollutant can affect the ability of plants to acquire nutrients via symbiosis. Biomass and root:shoot ratios decreased with O[sub 3] in radish and soy-bean. Shifts in stable carbon isotope ratios were caused by O[sub 3], and this technique was used to integrate the effects of O[sub 3] on gas exchange over time. In aspen, O[sub 3] enhanced photosynthesis and foliar areas in young leaves of well-watered aspen, partially compensating for declines in older leaves. This effect was more pronounced in plants raised at a high nitrogen level than in N-deficient plants. Carboxylation efficiency decreased in older, but increased in younger leaves with O[sub 3]. Prior exposure to drought reduced effects of O[sub 3] on photosynthesis and leaf area.

  12. Characterizing recent phenological and climate relationships in trembling aspen (Populus tremuloides)

    NASA Astrophysics Data System (ADS)

    Meier, G.; Brown, J. F.; Vogelmann, J. E.; Evelsizer, R.

    2012-12-01

    Trembling aspen (Populus tremuloides, referred hereafter as Aspen) has an especially wide geographical distribution in North America, extending from Alaska across the Canadian provinces, the U.S., and south into Mexico. This deciduous species is successional, shade intolerant, and often exists as a dominant among other species at mid-elevations. Aspen occupies wide latitudinal, elevational, and environmental gradients making it a favorable candidate for a study of phenology and climate relationships. The phenological characterization in our Aspen study is derived from a database of conterminous U.S. phenological indicators hosted by the U.S. Geological Survey (http://phenology.cr.usgs.gov/index.php). Nine satellite-derived phenological indicators are calculated from 250m resolution Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI). From this database, we selected start of season (SOST), end of season (EOST), maximum NDVI (MaxN) and time integrated NDVI (TIN) to characterize and analyze the seasonal patterns of Aspen over a 10-year time period (2001-2010). Areas of continuous Aspen cover (≥ 80% Aspen cover type) derived from the LANDFIRE project were then used to extract elevation, precipitation, temperature, and snow water equivalent data. In the Rocky Mountains, Aspen recently suffered from multi-year drought stress accompanied by insect and disease infestations. Numerous studies have documented the existence of Sudden Aspen Decline (SAD) in Montana, Utah, Arizona, and Colorado, indicating that Aspen may be on the edge of its environmental tolerances in some areas. The satellite-derived phenology metrics, and climate and biogeographical indicators were the basis for characterizing Aspen seasonality and assessing the environmental context of SAD. Between several Aspen study areas, there was reasonably consistent progression in the SOST timing from low elevations to higher elevations. A less obvious progression was

  13. Stockability, growth, and yield of the circumboreal aspens (`populus tremuloides` michx., `p. tremula` l.). Forest Service research paper

    SciTech Connect

    Perala, D.A.; Leary, R.A.; Cieszewski, C.J.

    1995-01-10

    The authors show elsewhere that quaking aspen (Populus tremuloides Michx.) and its Eurasian counterpart, P. tremula L., form a single circumpolar superspecies when viewed from the standpoint of self-thinning rates and stockability. Here the authors expand their examination to the d.b.h.-age relationships and to growth series measurements from permanent plots of aspen stands of varying densities reported in the literature. They also attempt to account for the curvilinear trend in the self-thinning relationship they detected in young stands that forced them in their first analysis to truncate their usable data set to older stands. The resulting equations satisfy the need for a framework to study variation in aspen stockability. The equations can give useful regional estimates as well, but will need refitting to local data to satisfy needs for finer resolution.

  14. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    PubMed

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production.

  15. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    USGS Publications Warehouse

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.; Fraver, Shawn

    2014-01-01

    Contemporary forest harvesting practices, specifically harvesting woody biomass as a source of bioenergy feedstock, may remove more woody debris from a site than conventional harvesting. Woody debris, particularly smaller diameter woody debris, plays a key role in maintaining ecosystem nutrient stores following disturbance. Understanding nutrient concentrations within woody debris is necessary for assessing the long-term nutrient balance consequences of altered woody debris retention, particularly in forests slated for use as bioenergy feedstocks. Nutrient concentrations in downed woody debris of various sizes, decay classes, and species were characterized within one such forest type, Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Nutrient concentrations differed significantly between size and decay classes and generally increased as decay progressed. Fine woody debris (≤ 7.5 cm diameter) had higher nutrient concentrations than coarse woody debris (> 7.5 cm diameter) for all nutrients examined except Na and Mn, and nutrient concentrations varied among species. Concentrations of N, Mn, Al, Fe, and Zn in coarse woody debris increased between one and three orders of magnitude, while K decreased by an order of magnitude with progressing decay. The variations in nutrient concentrations observed here underscore the complexity of woody debris nutrient stores in forested ecosystems and suggest that retaining fine woody debris at harvest may provide a potentially important source of nutrients following intensive removals of bioenergy feedstocks.

  16. Molecular analysis of herbivore-induced condensed tannin synthesis: cloning and expression of dihydroflavonol reductase from trembling aspen (Populus tremuloides).

    PubMed

    Peters, Darren J; Constabel, C Peter

    2002-12-01

    In order to study condensed tannin synthesis and its induction by herbivory, a dihydroflavonol reductase (DFR) cDNA was isolated from trembling aspen (Populus tremuloides). Bacterial overexpression demonstrated that this cDNA encodes a functional DFR enzyme, and Southern analysis revealed that DFR likely is a single-copy gene in the aspen genome. Aspen plants that were mechanically wounded showed a dramatic increase in DFR expression after 24 h in both wounded leaves and unwounded leaves on wounded trees. Feeding by forest tent caterpillar (Malacosoma disstria) and satin moth (Leucoma salicis) larvae, and treatment with methyl jasmonate, all strongly induced DFR expression. DFR enzyme activity was also induced in wounded aspen leaves, and phytochemical assays revealed that condensed tannin concentrations significantly increased in wounded and systemic leaves. The expression of other genes involved in the phenylpropanoid pathway were also induced by wounding. Our findings suggest that the induction of condensed tannins, compounds known to be important for defense against herbivores, is mediated by increased expression of DFR and other phenylpropanoid genes.

  17. Polyphenol oxidase and herbivore defense in trembling aspen (Populus tremuloides): cDNA cloning, expression, and potential substrates.

    PubMed

    Haruta, Miyoshi; Pedersen, Jens A.; Constabel, C. Peter

    2001-08-01

    The biochemical anti-herbivore defense of trembling aspen (Populus tremuloides Michx.) was investigated in a molecular analysis of polyphenol oxidase (PPO; EC 1.10.3.2). A PPO cDNA was isolated from a trembling aspen wounded leaf cDNA library and its nucleotide sequence determined. Southern analysis indicated the presence of two PPO genes in the trembling aspen genome. Expression of PPO was found to be induced after herbivory by forest tent caterpillar, by wounding, and by methyl jasmonate treatment. Wound induction was systemic, and occurred in unwounded leaves on wounded plants. This pattern of expression is consistent with a role of this enzyme in insect defense. A search for potential PPO substrates in ethanolic aspen leaf extracts using electron spin resonance (ESR) found no pre-existing diphenolic compounds. However, following a brief delay and several additions of oxygen, an ESR signal specific for catechol was detected. The source of this catechol was most likely the aspen phenolic glycosides tremulacin or salicortin which decomposed during ESR experiments. This was subsequently confirmed in experiments using pure salicortin.

  18. Factors affecting fall down rates of dead aspen (Populus tremuloides) biomass following severe drought in west-central Canada.

    PubMed

    Ted Hogg, Edward H; Michaelian, Michael

    2015-05-01

    Increases in mortality of trembling aspen (Populus tremuloides Michx.) have been recorded across large areas of western North America following recent periods of exceptionally severe drought. The resultant increase in standing, dead tree biomass represents a significant potential source of carbon emissions to the atmosphere, but the timing of emissions is partially driven by dead-wood dynamics which include the fall down and breakage of dead aspen stems. The rate at which dead trees fall to the ground also strongly influences the period over which forest dieback episodes can be detected by aerial surveys or satellite remote sensing observations. Over a 12-year period (2000-2012), we monitored the annual status of 1010 aspen trees that died during and following a severe regional drought within 25 study areas across west-central Canada. Observations of stem fall down and breakage (snapping) were used to estimate woody biomass transfer from standing to downed dead wood as a function of years since tree death. For the region as a whole, we estimated that >80% of standing dead aspen biomass had fallen after 10 years. Overall, the rate of fall down was minimal during the year following stem death, but thereafter fall rates followed a negative exponential equation with k = 0.20 per year. However, there was high between-site variation in the rate of fall down (k = 0.08-0.37 per year). The analysis showed that fall down rates were positively correlated with stand age, site windiness, and the incidence of decay fungi (Phellinus tremulae (Bond.) Bond. and Boris.) and wood-boring insects. These factors are thus likely to influence the rate of carbon emissions from dead trees following periods of climate-related forest die-off episodes.

  19. Plant Signals Disrupt (regulate?) Arbuscular Mycorrhizal Fungal Growth Under Enhanced Ozone and CO2 Growing Conditions for Populus tremuloides

    NASA Astrophysics Data System (ADS)

    Miller, R. M.; Podila, G. K.

    2008-12-01

    An understanding of the genetic determinants of keystone symbiotic relationships is essential to elucidating adaptive mechanisms influencing higher-order processes, including shifts in community composition following environmental perturbations. The Aspen FACE project offers a unique opportunity to address adaptive processes with an imposed three way interaction experiment composed of the atmospheric pollutant ozone (eO3), elevated CO2 (eCO2) fumigations, five Populus tremuloides (aspen) genotypes, and both arbuscular mycorrhizal and ectomycorrhizal fungal interactions. The 10 year time span of this experiment has allowed for a realistic and mechanistic understanding of above ground responses of the aspen genotypes to eCO2, eO3 and the interaction effects of eCO2 and eO3. Even so, treatment influences to the below ground, including carbon allocation to roots and associated mycorrhizal symbionts, and rhizosphere dynamics are just beginning to be understood. We hypothesized that mycorrhizal fungal responses to eCO2, eO3, and the interaction effects of eCO2+eO3 are conditioned by the degree of response of their aspen hosts. We intend to describe the molecular mechanisms of an important critical interaction between host and fungus using microarray analysis of expression profiles, as well as metabolic profiling of aspen roots and their associated mycorrhizal partner, the arbuscular mycorrhizal fungus (AMF) Glomus intraradices, under eCO2, eO3 and eCO2+eO3. We present evidence that host-derived factors, expressed in response to eCO2+eO3, trigger responses in Glomus leading to the partitioning or metabolic shift in lipid biosynthesis that is associated with reduced extraradical hyphae growth and altered lipid metabolism. We then scale these lower-level responses to give better insight to fungal intraradical and extraradical allocation of biomass and fungal and root lipid and carbohydrate content in association with aspen genotype responses to the imposed treatments. By

  20. The influence of phosphorus availability and Laccaria bicolor symbiosis on phosphate acquisition, antioxidant enzyme activity, and rhizospheric carbon flux in Populus tremuloides.

    PubMed

    Desai, Shalaka; Naik, Dhiraj; Cumming, Jonathan R

    2014-07-01

    Many forest tree species are dependent on their symbiotic interaction with ectomycorrhizal (ECM) fungi for phosphorus (P) uptake from forest soils where P availability is often limited. The ECM fungal association benefits the host plant under P limitation through enhanced soil exploration and increased P acquisition by mycorrhizas. To study the P starvation response (PSR) and its modification by ECM fungi in Populus tremuloides, a comparison was made between nonmycorrhizal (NM) and mycorrhizal with Laccaria bicolor (Myc) seedlings grown under different concentrations of phosphate (Pi) in sand culture. Although differences in growth between NM and Myc plants were small, Myc plants were more effective at acquiring P from low Pi treatments, with significantly lower k m values for root and leaf P accumulation. Pi limitation significantly increased the activity of catalase, ascorbate peroxidase, and guaiacol-dependent peroxidase in leaves and roots to greater extents in NM than Myc P. tremuloides. Phosphoenolpyruvate carboxylase activity also increased in NM plants under P limitation, but was unchanged in Myc plants. Formate, citrate, malonate, lactate, malate, and oxalate and total organic carbon exudation by roots was stimulated by P limitation to a greater extent in NM than Myc plants. Colonization by L. bicolor reduced the solution Pi concentration thresholds where PSR physiological changes occurred, indicating that enhanced Pi acquisition by P. tremuloides colonized by L. bicolor altered host P homeostasis and plant stress responses to P limitation. Understanding these plant-symbiont interactions facilitates the selection of more P-efficient forest trees and strategies for tree plantation production on marginal soils.

  1. Impacts of greenhouse gases on epicuticular waxes of Populus tremuloides Michx.: results from an open-air exposure and a natural O3 gradient.

    PubMed

    Mankovská, B; Percy, K E; Karnosky, D F

    2005-10-01

    Epicuticular waxes of three trembling aspen (Populus tremuloides Michx.) clones differing in O3 tolerance were examined over six growing seasons (1998-2003) at three bioindicator sites in the Lake States region of the USA and at FACTS II (Aspen FACE) site in Rhinelander, WI. Differences in epicuticular wax structure were determined by scanning electron microscopy and quantified by a coefficient of occlusion. Statistically significant increases in stomatal occlusion occurred for the three O3 bioindicator sites, with the higher O3 sites having the most affected stomata for all three clones as well as for all treatments including elevated CO2, elevated O3, and elevated CO2 + O3. We recorded statistically significant differences between aspen clones and between sampling period (spring, summer, fall). We found no statistically significant differences between treatments or aspen clones in stomatal frequency.

  2. Intraspecific variation in root and leaf traits and leaf-root trait linkages in eight aspen demes (Populus tremula and P. tremuloides)

    PubMed Central

    Hajek, Peter; Hertel, Dietrich; Leuschner, Christoph

    2013-01-01

    Leaf and fine root morphology and physiology have been found to vary considerably among tree species, but not much is known about intraspecific variation in root traits and their relatedness to leaf traits. Various aspen progenies (Populus tremula and P. tremuloides) with different growth performance are used in short-rotation forestry. Hence, a better understanding of the link between root trait syndromes and the adaptation of a deme to a particular environment is essential in order to improve the match between planted varieties and their growth conditions. We examined the between-deme (genetic) and within-deme (mostly environmental) variation in important fine root traits [mean root diameter, specific root area (SRA) and specific root length (SRL), root tissue density (RTD), root tip abundance, root N concentration] and their co-variation with leaf traits [specific leaf area (SLA), leaf size, leaf N concentration] in eight genetically distinct P. tremula and P. tremuloides demes. Five of the six root traits varied significantly between the demes with largest genotypic variation in root tip abundance and lowest in mean root diameter and RTD (no significant difference). Within-deme variation in root morphology was as large as between-deme variation suggesting a relatively low genetic control. Significant relationships existed neither between SLA and SRA nor between leaf N and root N concentration in a plant. Contrary to expectation, high aboveground relative growth rates (RGR) were associated with large, and not small, fine root diameters with low SRA and SRL. Compared to leaf traits, the influence of root traits on RGR was generally low. We conclude that aspen exhibits large intraspecific variation in leaf and also in root morphological traits which is only partly explained by genetic distances. A root order-related analysis might give deeper insights into intraspecific root trait variation. PMID:24155751

  3. Impacts of post-harvest slash and live-tree retention on biomass and nutrient stocks in Populus tremuloides Michx.-dominated forests, northern Minnesota, USA

    USGS Publications Warehouse

    Klockow, Paul A.; D'Amato, Anthony W.; Bradford, John B.

    2013-01-01

    Globally, there is widespread interest in using forest-derived biomass as a source of bioenergy. While conventional timber harvesting generally removes only merchantable tree boles, harvesting biomass feedstock can remove all forms of woody biomass (i.e., live and dead standing woody vegetation, downed woody debris, and stumps) resulting in a greater loss of biomass and nutrients as well as more severe habitat alteration. To investigate the potential impacts of this practice, this study examined the initial impacts (pre- and post-harvest) of various levels of slash and live-tree retention on biomass and nutrient stocks, including carbon (C), nitrogen (N), calcium (Ca), potassium (K), and phosphorus (P), in Populus tremuloides Michx.-dominated forests of northern Minnesota, USA. Treatments examined included three levels of slash retention, whole-tree harvest (WTH), 20% slash retention (20SR), and stem-only harvest (SOH), factored with three levels of green-tree retention, no trees retained (NONE), dispersed retention (DISP), and aggregate retention (AGR). Slash retention was the primary factor affecting post-harvest biomass and nutrient stocks, including woody debris pools. Compared to the unharvested control, stocks of biomass, carbon, and nutrients, including N, Ca, K, and P, in woody debris were higher in all treatments. Stem-only harvests typically contained greater biomass and nutrient stocks than WTH, although biomass and nutrients within 20SR, a level recommended by biomass harvesting guidelines in the US and worldwide, generally did not differ from WTH or SOH. Biomass in smaller-diameter slash material (typically 2.5-22.5 cm in diameter) dominated the woody debris pool following harvest regardless of slash retention level. Trends among treatments in this diameter range were generally similar to those in the total woody debris pool. Specifically, SOH contained significantly greater amounts of biomass than WTH while 20SR was not different from either WTH or

  4. Influence of over-expression of the Flowering Promoting Factor 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.).

    PubMed

    Hoenicka, Hans; Lautner, Silke; Klingberg, Andreas; Koch, Gerald; El-Sherif, Fadia; Lehnhardt, Denise; Zhang, Bo; Burgert, Ingo; Odermatt, Jürgen; Melzer, Siegbert; Fromm, Jörg; Fladung, Matthias

    2012-02-01

    Constitutive expression of the FPF1 gene in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) showed a strong effect on wood formation but no effect on flowering time. Gene expression studies showed that activity of flowering time genes PtFT1, PtCO2, and PtFUL was not increased in FPF1 transgenic plants. However, the SOC1/TM3 class gene PTM5, which has been related to wood formation and flowering time, showed a strong activity in stems of all transgenic lines studied. Wood density was lower in transgenic plants, despite significantly reduced vessel frequency which was overcompensated by thinner fibre cell walls. Chemical screening of the wood by pyrolysis GC/MS showed that FPF1 transgenics have higher fractions of cellulose and glucomannan products as well as lower lignin content. The latter observation was confirmed by UV microspectrophotometry on a cellular level. Topochemical lignin distribution revealed a slower increase of lignin incorporation in the developing xylem of the transgenics when compared with the wild-type plants. In line with the reduced wood density, micromechanical wood properties such as stiffness and ultimate stress were also significantly reduced in all transgenic lines. Thus, we provide evidence that FPF1 class genes may play a regulatory role in both wood formation and flowering in poplar.

  5. Will changes in root-zone temperature in boreal spring affect recovery of photosynthesis in Picea mariana and Populus tremuloides in a future climate?

    PubMed

    Fréchette, Emmanuelle; Ensminger, Ingo; Bergeron, Yves; Gessler, Arthur; Berninger, Frank

    2011-11-01

    Future climate will alter the soil cover of mosses and snow depths in the boreal forests of eastern Canada. In field manipulation experiments, we assessed the effects of varying moss and snow depths on the physiology of black spruce (Picea -mariana (Mill.) B.S.P.) and trembling aspen (Populus tremuloides Michx.) in the boreal black spruce forest of western Québec. For 1 year, naturally regenerated 10-year-old spruce and aspen were grown with one of the following treatments: additional N fertilization, addition of sphagnum moss cover, removal of mosses, delayed soil thawing through snow and hay addition, or accelerated soil thawing through springtime snow removal. Treatments that involved the addition of insulating moss or snow in the spring caused lower soil temperature, while removing moss and snow in the spring caused elevated soil temperature and thus had a warming effect. Soil warming treatments were associated with greater temperature variability. Additional soil cover, whether moss or snow, increased the rate of photosynthetic recovery in the spring. Moss and snow removal, on the other hand, had the opposite effect and lowered photosynthetic activity, especially in spruce. Maximal electron transport rate (ETR(max)) was, for spruce, 39.5% lower after moss removal than with moss addition, and 16.3% lower with accelerated thawing than with delayed thawing. Impaired photosynthetic recovery in the absence of insulating moss or snow covers was associated with lower foliar N concentrations. Both species were affected in that way, but trembling aspen generally reacted less strongly to all treatments. Our results indicate that a clear negative response of black spruce to changes in root-zone temperature should be anticipated in a future climate. Reduced moss cover and snow depth could adversely affect the photosynthetic capacities of black spruce, while having only minor effects on trembling aspen.

  6. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration.

    PubMed

    McGrath, Justin M; Karnosky, David F; Ainsworth, Elizabeth A

    2010-04-01

    Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO(2)]) and elevated ozone concentration ([O(3)]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO(2)] and [O(3)] predicted for approximately 2050. The responses of two clones were compared during the first month of spring leaf out when CO(2) fumigation had begun, but O(3) fumigation had not. Trees in elevated [CO(2)] plots showed a stimulation of leaf area index (36%), while trees in elevated [O(3)] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO(2)], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO(2)]; however, the two clones responded differently to long-term growth at elevated [O(3)]. The O(3)-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O(3)] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O(3)] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O(3)], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions.

  7. The responses of Vitreoscilla hemoglobin-expressing hybrid aspen (Populus tremula × tremuloides) exposed to 24-h herbivory: expression of hemoglobin and stress-related genes in exposed and nonorthostichous leaves.

    PubMed

    Sutela, Suvi; Ylioja, Tiina; Jokipii-Lukkari, Soile; Anttila, Anna-Kaisa; Julkunen-Tiitto, Riitta; Niemi, Karoliina; Mölläri, Tiina; Kallio, Pauli T; Häggman, Hely

    2013-11-01

    The responses of transcriptome and phenolic compounds were determined with Populus tremula L. × Populus tremuloides Michx. expressing the hemoglobin (Hb) of Vitreoscilla (VHb) and non-transformant (wt) line. After 24-h exposure of leaves to Conistra vaccinii L., the transcript levels of endogenous non-symbiotic class 1 Hb (PttHb1) and truncated Hb (PttTrHb) genes were modestly reduced and increased, respectively, in both wt and VHb-expressing line. Besides the herbivory exposed leaves showing the most significant transcriptome changes, alterations were also detected in the transcriptome of nonorthostichous leaves positioned directly above the exposed leaves. Both wt and VHb-expressing line displayed similar herbivory-induced effects on gene expression, although the extent of responses was more pronounced in the wt than in the VHb-expressing line. The contents of phenolic compounds were not altered due to herbivory and they were alike in the wt and VHb-expressing line. In addition, we determined the relative growth rates (RGRs) of Orthosia gothica L., Ectropis crepuscularia Denis & Schiff. and Orgyia antiqua L. larvae, and found no variation in the RGRs between the lines. Thus, VHb-expressing P. tremula × tremuloides lines showed to be comparable with wt in regards to the food quality of leaves.

  8. Pre- and Post-Harvest Carbon Dioxide Fluxes from an Upland Boreal Aspen (Populus tremuloides) Forest in Western Boreal Plain, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Giroux, Kayla

    The Utikuma Region Study Area (URSA) is located in north-central Alberta, Canada, in a region where aspen (Populus tremuloides) dominate the upland vegetation of the Western Boreal Plain Due to the heterogeneity of the surficial geology as well as the sub-humid climate where the water balance is dominated by evapotranspiration, the carbon balance across this landscape is highly variable. Moreover, the upland aspen regions represent significant stores of carbon. More recently, aspen stands have become valuable commercial resources for pulp and paper processing. These stands are harvested through a clear cutting process and are generally left to regenerate on their own, a process which occurs rapidly in clonal species like aspen. Since clonal species establish very quickly following harvest, information on the key ecohydrological controls on stand carbon dioxide (CO2) exchange from the years immediately following harvest are essential to understand the successional trajectory. However, most information currently available on these interactions are obtained several years following a disturbance. Thus, to determine the effects of harvest on aspen regeneration and productivity, ecosystem level fluxes of CO2 three years before and three years after timber harvest were analyzed. Prior to harvest, the ecosystem sequestered 1216 to 1286 g CO2 m-2period-1 over the growing season. Immediately after harvest, the ecosystem became a significant source of CO2 ranging from -874 to -1183 g CO2 m -2period-1, while the second growing season ranged from -233 to -577 g CO2 m-2period-1. The third growing season resulted in a net sink (76 g CO2 m -2period-1) over the same period, but if extrapolated over the whole year, the ecosystem would remain a source of carbon. The magnitude of Gross Ecosystem Productivity (GEP) returned pre-harvest range within two growing seasons. Ecosystem respiration (RE), on the other hand, increased year over year after harvest had taken place

  9. Comparative leaf growth strategies in response to low-water and low-light availability: variation in leaf physiology underlies variation in leaf mass per area in Populus tremuloides.

    PubMed

    Baird, Alec S; Anderegg, Leander D L; Lacey, Melissa E; HilleRisLambers, Janneke; Van Volkenburgh, Elizabeth

    2017-04-04

    Developmental phenotypic plasticity can allow plants to buffer the effects of abiotic and biotic environmental stressors. Therefore, it is vital to improve our understanding of how phenotypic plasticity in ecological functional traits is coordinated with variation in physiological performance in plants. To identify coordinated leaf responses to low-water (LW) versus low-light (LL) availability, we measured leaf mass per area (LMA), leaf anatomical characteristics and leaf gas exchange of juvenile Populus tremuloides Michx. trees. Spongy mesophyll tissue surface area (Asmes/A) was correlated with intrinsic water-use efficiency (WUEi: photosynthesis, (Aarea)/stomatal conductance (gs)). Under LW availability, these changes occurred at the cost of greater leaf tissue density and reduced expansive growth, as leaves were denser but were only 20% the final area of control leaves, resulting in elevated LMA and elevated WUEi. Low light resulted in reduced palisade mesophyll surface area (Apmes/A) while spongy mesophyll surface area was maintained (Asmes/A), with no changes to WUEi. These leaf morphological changes may be a plastic strategy to increase laminar light capture while maintaining WUEi. With reduced density and thickness, however, leaves were 50% the area of control leaves, ultimately resulting in reduced LMA. Our results illustrate that P. tremuloides saplings partially maintain physiological function in response to water and light limitation by inducing developmental plasticity in LMA with underlying anatomical changes. We discuss additional implications of these results in the context of developmental plasticity, growth trade-offs and the ecological impacts of climate change.

  10. Genetic variation in natural populations of Populus tremuloide

    SciTech Connect

    Cheliak, W.M.

    1980-01-01

    Vegetative reproduction results in a mosaic of clones throughout the extensive natural range of this species. An electrophoretic survey of 26 loci in 222 trees from seven natural populations in Alberta demonstrated great variability. Average observed population heterozygosity was 0.52 with an average of 2.3 alleles per locus; 84% of the loci were polymorphic. A model (for a finite population with neutral alleles) was developed to investigate the effects of partial vegetative reproduction on the amount of variation in a population. Results of the survey conformed to those predicted by the model for a population with a rate of sexual establishment greater than 1/N, where N is the population size. The model states that under these conditions, vegetative reproduction has no effect on the population. Therefore, the high level of observed variation is not an artifact of the mode of natural reproduction. These results support conclusions about high population variability based on phenotypic measurements and also suggest a genetic basis for this variation, rather than simply phenotypic plasticity.

  11. Knockdown of a laccase in Populus deltoides confers altered cell wall chemistry and increased sugar release.

    PubMed

    Bryan, Anthony C; Jawdy, Sara; Gunter, Lee; Gjersing, Erica; Sykes, Robert; Hinchee, Maud A W; Winkeler, Kimberly A; Collins, Cassandra M; Engle, Nancy; Tschaplinski, Timothy J; Yang, Xiaohan; Tuskan, Gerald A; Muchero, Wellington; Chen, Jin-Gui

    2016-10-01

    Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand-full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.

  12. Microsatellite primer resource for Populus developed from

    SciTech Connect

    Yin, Tongming; Yang, Xiaohan; Gunter, Lee E; Tuskan, Gerald A; Wullschleger, Stan D; Huang, Prof. Minren; Li, Shuxian; Zhang, Xinye

    2008-01-01

    In this study, 148 428 simple sequence repeat (SSR) primer pairs were designed from the unambiguously mapped sequence scaffolds of the Nisqually-1 genome. The physical position of the priming sites were identified along each of the 19 Populus chromosomes, and it was specified whether the priming sequences belong to intronic, intergenic, exonic or UTR regions. A subset of 150 SSR loci were amplified and a high amplification success rate (72%) was obtained in P. tremuloides, which belongs to a divergent subgenus of Populus relative to Nisqually-1. PCR reactions showed that the amplification success rate of exonic primer pairs was much higher than that of the intronic/intergenic primer pairs. Applying ANOVA and regression analyses to the flanking sequences of microsatellites, the repeat lengths, the GC contents of the repeats, the repeat motif numbers, the repeat motif length and the base composition of the repeat motif, it was determined that only the base composition of the repeat motif and the repeat motif length significantly affect the microsatellite variability in P. tremuloides samples. The SSR primer resource developed in this study provides a database for selecting highly transferable SSR markers with known physical position in the Populus genome and provides a comprehensive genetic tool to extend the genome sequence of Nisqually-1 to genetic studies in different Populus species.

  13. Rapid Activation of Phenylpropanoid Metabolism in Elicitor-Treated Hybrid Poplar (Populus trichocarpa Torr. & Gray × Populus deltoides Marsh) Suspension-Cultured Cells 1

    PubMed Central

    de Sá, Mário Moniz; Subramaniam, Rajgopal; Williams, Frank E.; Douglas, Carl J.

    1992-01-01

    Elicitor induction of phenylpropanoid metabolism was investigated in suspension-cultured cells of the fast-growing poplar hybrid (Populus trichocarpa Torr. & Gray × Populus deltoides Marsh) H11-11. Treatment of cells with polygalacturonic acid lyase or two fungal elicitors resulted in rapid and transient increases in extractable l-phenylalanine ammonia lyase and 4-coumarate:coenzyme A ligase enzyme activities. The substrate specificity of the inducible 4-coumarate:coenzyme A ligase enzyme activity appeared to differ from substrate specificity of 4-coumarate:coenzyme A ligase enzyme activity in untreated control cells. Large and transient increases in the accumulation of l-phenylalanine ammonia-lyase and 4-coumarate:coenzyme A ligase mRNAs preceded the increases in enzyme activities and were detectable by 30 minutes after the start of elicitor treatment. Chalcone synthase, cinnamyl alcohol dehydrogenase, and coniferin β-glucosidase enzyme activities were unaffected by the elicitors, but a large and transient increase in β-glucosidase activity capable of hydrolyzing 4-nitrophenyl-β-glucoside was observed. Subsequent to increases in l-phenylalanine ammonialyase and 4-coumarate:coenzyme A ligase enzyme activities, cell wall-bound thioglycolic acid-extractable compounds accumulated in elicitor-treated cultures, and these cells exhibited strong staining with phloroglucinol, suggesting the accumulation of wall-bound phenolic compounds. ImagesFigure 7Figure 9 PMID:16668702

  14. Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis

    SciTech Connect

    Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Jr., Michael S.; Yang, Zamin Koo; Klingeman, Dawn Marie; Land, Miriam L.; Allman, Steve L.; Lu, Tse-Yuan S.; Brown, Steven D.; Schadt, Christopher Warren; Podar, Mircea; Doktycz, Mitchel J.; Pelletier, Dale A.

    2016-07-15

    Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. In this paper, we present a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from the plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Finally, comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria.

  15. Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis

    DOE PAGES

    Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Jr., Michael S.; ...

    2016-07-15

    Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. In this paper, we present a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from themore » plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Finally, comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria.« less

  16. Enrichment of Root Endophytic Bacteria from Populus deltoides and Single-Cell-Genomics Analysis

    PubMed Central

    Utturkar, Sagar M.; Cude, W. Nathan; Robeson, Michael S.; Yang, Zamin K.; Klingeman, Dawn M.; Land, Miriam L.; Allman, Steve L.; Lu, Tse-Yuan S.; Brown, Steven D.; Schadt, Christopher W.; Podar, Mircea; Doktycz, Mitchel J.

    2016-01-01

    ABSTRACT Bacterial endophytes that colonize Populus trees contribute to nutrient acquisition, prime immunity responses, and directly or indirectly increase both above- and below-ground biomasses. Endophytes are embedded within plant material, so physical separation and isolation are difficult tasks. Application of culture-independent methods, such as metagenome or bacterial transcriptome sequencing, has been limited due to the predominance of DNA from the plant biomass. Here, we describe a modified differential and density gradient centrifugation-based protocol for the separation of endophytic bacteria from Populus roots. This protocol achieved substantial reduction in contaminating plant DNA, allowed enrichment of endophytic bacteria away from the plant material, and enabled single-cell genomics analysis. Four single-cell genomes were selected for whole-genome amplification based on their rarity in the microbiome (potentially uncultured taxa) as well as their inferred abilities to form associations with plants. Bioinformatics analyses, including assembly, contamination removal, and completeness estimation, were performed to obtain single-amplified genomes (SAGs) of organisms from the phyla Armatimonadetes, Verrucomicrobia, and Planctomycetes, which were unrepresented in our previous cultivation efforts. Comparative genomic analysis revealed unique characteristics of each SAG that could facilitate future cultivation efforts for these bacteria. IMPORTANCE Plant roots harbor a diverse collection of microbes that live within host tissues. To gain a comprehensive understanding of microbial adaptations to this endophytic lifestyle from strains that cannot be cultivated, it is necessary to separate bacterial cells from the predominance of plant tissue. This study provides a valuable approach for the separation and isolation of endophytic bacteria from plant root tissue. Isolated live bacteria provide material for microbiome sequencing, single-cell genomics, and analyses

  17. Genome-Scale Discovery of Cell Wall Biosynthesis Genes in Populus (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Muchero, Wellington [Oak Ridge National Laboratory

    2016-07-12

    Wellington Muchero from Oak Ridge National Laboratory gives a talk titled "Discovery of Cell Wall Biosynthesis Genes in Populus" at the JGI 7th Annual Users Meeting: Genomics of Energy & Environment Meeting on March 22, 2012 in Walnut Creek, California.

  18. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    PubMed Central

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J.; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E.; Zhu, Yingying; Peter, Gary F.; Hahn, Michael G.; Mansfield, Shawn D.; Harding, Scott A.; Tsai, Chung-Jui

    2015-01-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis. PMID:26246616

  19. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    DOE PAGES

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; ...

    2015-08-05

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues duringmore » regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. In conclusion, taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.« less

  20. Bioinformatics-Based Identification of Candidate Genes from QTLs Associated with Cell Wall Traits in Populus

    SciTech Connect

    Ranjan, Priya; Yin, Tongming; Zhang, Xinye; Kalluri, Udaya C; Yang, Xiaohan; Jawdy, Sara; Tuskan, Gerald A

    2009-11-01

    Quantitative trait locus (QTL) studies are an integral part of plant research and are used to characterize the genetic basis of phenotypic variation observed in structured populations and inform marker-assisted breeding efforts. These QTL intervals can span large physical regions on a chromosome comprising hundreds of genes, thereby hampering candidate gene identification. Genome history, evolution, and expression evidence can be used to narrow the genes in the interval to a smaller list that is manageable for detailed downstream functional genomics characterization. Our primary motivation for the present study was to address the need for a research methodology that identifies candidate genes within a broad QTL interval. Here we present a bioinformatics-based approach for subdividing candidate genes within QTL intervals into alternate groups of high probability candidates. Application of this approach in the context of studying cell wall traits, specifically lignin content and S/G ratios of stem and root in Populus plants, resulted in manageable sets of genes of both known and putative cell wall biosynthetic function. These results provide a roadmap for future experimental work leading to identification of new genes controlling cell wall recalcitrance and, ultimately, in the utility of plant biomass as an energy feedstock.

  1. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus

    SciTech Connect

    Muchero, Wellington; Guo, Jianjun; Difazio, Stephen P.; Chen, Jay; Ranjan, Priya; Slavov, Gancho; Gunter, Lee E.; Jawdy, Sara; Bryan, Anthony C.; Sykes, Robert; Ziebell, Angela L.; Klapste, Jaroslav; Porth, Ilga; Skyba, Oleksandr; Unda, Faride; El-Kassaby, Yousry; Douglas, Carl; Mansfield, Shawn; Martin, Joel; Schackwitz, Wendy; Evans, Luke M.; Czarnecki, Olaf; Tuskan, Gerald A.

    2015-01-23

    We report the identification of six genetic loci and the allelic-variants associated with Populus cell wall phenotypes determined independently using pyrolysis Molecular Beam Mass Spectrometry (pyMBMS), saccharification assay and wet chemistry in two partially overlapping populations of P. trichocarpa genotypes sampled from multiple environments in the Pacific Northwest of North America. All 6 variants co-located with a quantitative trait locus (QTL) hotspot on chromosome XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6- carbon sugars identified in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree. Genomic intervals containing an amino acid transporter, a MYB transcription factor, an angustifolia CtBP transcription factor, a copper transport protein ATOX1-related, a Ca2+ transporting ATPase and a protein kinase were identified within 5 QTL regions. Each interval contained single nucleotide polymorphisms (SNPs) that were significantly associated to cell-wall phenotypes, with associations exceeding the chromosome-wise Bonferroni-adjusted p-values in at least one environment. cDNA sequencing for allelic variants of 3 of the 6 genes identified polymorphisms leading to premature stop codons in the MYB transcription factor and protein kinase. On the other hand, variants of the Angustifolia CtBP transcription factor exhibited a polyglutamine (PolyQ) length polymorphism. Results from transient protoplast assays suggested that each of the polymorphisms conferred allelic differences in activation of cellulose, hemicelluloses and lignin pathway marker genes, with truncated and short PolyQ alleles exhibiting significantly reduced marker gene activation. Genes identified in this study represent novel targets for reducing cell wall recalcitrance for lignocellulosic biofuels production using plant biomass.

  2. High-resolution genetic mapping of allelic variants associated with cell wall chemistry in Populus

    DOE PAGES

    Muchero, Wellington; Guo, Jianjun; Difazio, Stephen P.; ...

    2015-01-23

    We report the identification of six genetic loci and the allelic-variants associated with Populus cell wall phenotypes determined independently using pyrolysis Molecular Beam Mass Spectrometry (pyMBMS), saccharification assay and wet chemistry in two partially overlapping populations of P. trichocarpa genotypes sampled from multiple environments in the Pacific Northwest of North America. All 6 variants co-located with a quantitative trait locus (QTL) hotspot on chromosome XIV for lignin content, syringyl to guaiacyl (S/G) ratio, 5- and 6- carbon sugars identified in an interspecific P. trichocarpa x P. deltoides pseudo-backcross mapping pedigree. Genomic intervals containing an amino acid transporter, a MYB transcriptionmore » factor, an angustifolia CtBP transcription factor, a copper transport protein ATOX1-related, a Ca2+ transporting ATPase and a protein kinase were identified within 5 QTL regions. Each interval contained single nucleotide polymorphisms (SNPs) that were significantly associated to cell-wall phenotypes, with associations exceeding the chromosome-wise Bonferroni-adjusted p-values in at least one environment. cDNA sequencing for allelic variants of 3 of the 6 genes identified polymorphisms leading to premature stop codons in the MYB transcription factor and protein kinase. On the other hand, variants of the Angustifolia CtBP transcription factor exhibited a polyglutamine (PolyQ) length polymorphism. Results from transient protoplast assays suggested that each of the polymorphisms conferred allelic differences in activation of cellulose, hemicelluloses and lignin pathway marker genes, with truncated and short PolyQ alleles exhibiting significantly reduced marker gene activation. Genes identified in this study represent novel targets for reducing cell wall recalcitrance for lignocellulosic biofuels production using plant biomass.« less

  3. Somatic embryogenesis and plant regeneration from cell suspension and tissue cultures of mature himalayan poplar (Populus ciliata).

    PubMed

    Cheema, G S

    1989-02-01

    Somatic embryogenesis and plantlet formation were obtained from callus and cell suspension cultures of 40-year- old Himalayan Poplar (Populus ciliata Wall ex Royle). Callus and cell suspensions were obtained by transfer of inoculum of semiorganized leaf cultures, which were maintained on Murashige and Skoog (MS) medium supplemented with benzylaminopurine (BAP), to MS with 2,4-dichlorophenoxyacetic acid (2,4-D). Reduction of 2,4-D concentration during subsequent subculture of cell suspensions resulted in the formation of embryoids. These embryoids developed further only after being transferred to agar-based MS medium supplemented with BAP and naphthalene acetic acid. Loss of embryogenic potential was observed in cell suspensions after 6 subcultures. However, callus cultures retained the embryogenic potential even after repeated subcultures for more than a year. Plantlets could be successfully hardened and grown in natural outdoor conditions.

  4. Determining the syringyl/guaiacyl lignin ratio in the vessel and fiber cell walls of transgenic Populus plants

    DOE PAGES

    Tolbert, Allison K.; Ma, Tao; Kalluri, Udaya C.; ...

    2016-06-20

    Observation of the spatial lignin distribution throughout the plant cell wall provides insight into the physicochemical characteristics of lignocellulosic biomass. The distribution of syringyl (S) and guaiacyl (G) lignin in cell walls of a genetically modified Populus deltoides and its corresponding empty vector control were analyzed with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and then mapped to determine the S/G lignin ratio of the sample surface and specific regions of interest (ROIs). The surface characterizations of transgenic cross-sections within 1 cm vertical distance of each other on the stem possess similar S/G lignin ratios. Furthermore, the analysis of the ROIsmore » determined that there was a 50% decrease in the S/G lignin ratio of the transgenic xylem fiber cell walls.« less

  5. Identification of candidate genes in Arabidopsis and Populus cell wall biosynthesis using text-mining, co-expression network analysis and comparative genomics.

    PubMed

    Yang, Xiaohan; Ye, Chu-Yu; Bisaria, Anjali; Tuskan, Gerald A; Kalluri, Udaya C

    2011-12-01

    Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of biofuels from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidence supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database, and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional characterization in relation to cell wall biosynthesis.

  6. Microarray and suppression subtractive hybridization analyses of gene expression in hybrid poplar (Populus alba × Populus tremula var. glandulosa) cell suspension cultures after exposure to NaCl.

    PubMed

    Bae, Eun-Kyung; Lee, Hyoshin; Lee, Jae-Soon; Noh, Eun-Woon; Choi, Young-Im; Lee, Byung-Hyun; Choi, Dong-Woog

    2012-09-01

    The gene expression profiles of hybrid poplar (Populus alba × Populus tremula var. glandulosa) cells in suspension culture after exposure to salinity (NaCl) induced stress were examined by constructing two suppression subtractive hybridization (SSH) libraries. cDNA from non-treated cells was used as a driver and cDNA samples from cell suspension cultures exposed to 150 mM NaCl for 2 or 10 h were used as testers. Randomly selected clones from each SSH library were sequenced and 727 high-quality expressed sequence tags (ESTs) were obtained and analyzed. Four novel ESTs were identified. Between the two libraries, 542 unique SSH clones were selected for placement on a cDNA microarray. In total, 18 differentially expressed genes were identified with 4 and 12 genes being significantly differentially expressed 2 and 10 h after the treatment, respectively. Genes related to metabolism and protein synthesis and several genes whose protein products are implicated in salt or other abiotic stress-related responses were expressed in the salt-stressed cells.

  7. Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations.

    PubMed

    Porth, Ilga; Klápště, Jaroslav; Skyba, Oleksandr; Lai, Ben S K; Geraldes, Armando; Muchero, Wellington; Tuskan, Gerald A; Douglas, Carl J; El-Kassaby, Yousry A; Mansfield, Shawn D

    2013-02-01

    The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood quality traits for traditional forestry activities as well as the emerging bioenergy sector. A realized kinship matrix based on informative, high-density, biallelic single nucleotide polymorphism (SNP) genetic markers was constructed to estimate trait variance components, heritabilities, and genetic and phenotypic correlations. Seventeen traits related to wood chemistry and ultrastructure were examined in 334 9-yr-old Populus trichocarpa grown in a common-garden plot representing populations spanning the latitudinal range 44° to 58.6°. In these individuals, 9342 SNPs that conformed to Hardy-Weinberg expectations were employed to assess the genomic pair-wise kinship to estimate narrow-sense heritabilities and genetic correlations among traits. The range-wide phenotypic variation in all traits was substantial and several trait heritabilities were > 0.6. In total, 61 significant genetic and phenotypic correlations and a network of highly interrelated traits were identified. The high trait variation, the evidence for moderate to high heritabilities and the identification of advantageous trait combinations of industrially important characteristics should aid in providing the foundation for the enhancement of poplar tree breeding strategies for modern industrial use.

  8. Growth and mortality of trembling aspen (Populus tremuloides) in response to artificial defoliation

    NASA Astrophysics Data System (ADS)

    Moulinier, Julien; Lorenzetti, François; Bergeron, Yves

    2014-02-01

    To simulate the effects of forest tent caterpillar (FTC) defoliation on trembling aspen growth and mortality, an artificial defoliation experiment was performed over three years in young aspen stands of northwestern Quebec. Defoliation plots of 15 × 15 m were established on three sites, together with associated control stands of pure trembling aspen. In 2007, root collar diameters were measured and positions of all trees were mapped prior defoliation. Severe FTC defoliation was simulated for three successive years (2007-2009) by manually removing all leaves from all but 7-10% of the trees present in the defoliation plots. Yearly surveys of growth and mortality were conducted until 2010 to evaluate defoliation effects on defoliated as well as surrounding undefoliated trees. In absence of other factors, growth and mortality of trembling aspen decreased and increased, respectively, after defoliation. Our study further revealed that small diameter trees died after one year of artificial defoliation, while larger-diameter trees died after repeated defoliations. Distributions of tree mortality tended to be aggregated at small scales (<5 m), corroborating gap patterns observed in mature stands following FTC outbreaks. This experiment revealed that trembling aspen mortality can be directly attributed solely to defoliation. Repeated defoliations during FTC outbreaks have the potential to profoundly modify stand productivity and structure by reducing tree growth and increasing tree mortality in the absence of predisposing factors.

  9. Can elevated CO2 and ozone shift the genetic composition of aspen (Populus tremuloides) stands?

    PubMed

    Moran, Emily V; Kubiske, Mark E

    2013-04-01

    The world's forests are currently exposed to increasing concentrations of carbon dioxide (CO2) and ozone (O3). Both pollutants can potentially exert a selective effect on plant populations. This, in turn, may lead to changes in ecosystem properties, such as carbon sequestration. Here, we report how elevated CO2 and O3 affect the genetic composition of a woody plant population via altered survival. Using data from the Aspen free-air CO2 enrichment (FACE) experiment (in which aspen clones were grown in factorial combinations of CO2 and O3), we develop a hierarchical Bayesian model of survival. We also examine how survival differences between clones could affect pollutant responses in the next generation. Our model predicts that the relative abundance of the tested clones, given equal initial abundance, would shift under either elevated CO2 or O3 as a result of changing survival rates. Survival was strongly affected by between-clone differences in growth responses. Selection could noticeably decrease O3 sensitivity in the next generation, depending on the heritability of growth responses and the distribution of seed production. The response to selection by CO2, however, is likely to be small. Our results suggest that the changing atmospheric composition could shift the genotypic composition and average pollutant responses of tree populations over moderate timescales.

  10. Scale dependence of disease impacts on quaking aspen (Populus tremuloides) mortality in the southwestern United States

    USGS Publications Warehouse

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2015-01-01

    By examining variation in disease prevalence, mortality of healthy trees, and mortality of diseased trees, we showed that the role of disease in aspen tree mortality depended on the scale of inference. For variation among individuals in diameter, disease tended to expose intermediate-size trees experiencing moderate risk to greater risk. For spatial variation in summer temperature, disease exposed lower risk populations to greater mortality probabilities, but the magnitude of this exposure depended on summer precipitation. Furthermore, the importance of diameter and slenderness in mediating responses to climate supports the increasing emphasis on trait variation in studies of ecological responses to global change.

  11. PtrCel9A6, an endo-1,4-β-glucanase, is required for cell wall formation during xylem differentiation in populus.

    PubMed

    Yu, Liangliang; Sun, Jiayan; Li, Laigeng

    2013-11-01

    Endo-1,4-β-glucanases (EGases) are involved in many aspects of plant growth. Our previous study found that an EGase, PtrCel9A6, is specifically expressed in differentiating xylem cells during Populus secondary growth. In this study, the xylem-specific PtrCel9A6 was characterized for its role in xylem differentiation. The EGase is localized on the plasma membrane with catalytic domain toward the outside cell wall, hydrolyzing amorphous cellulose. Suppression of PtrCel9A6 expression caused secondary cell wall defects in xylem cells and significant cellulose reduction in Populus. Heterologous expression of PtrCel9A6 in Arabidopsis enhanced plant growth as well as increased fiber cell length. In addition, introduction of PtrCel9A6 into Arabidopsis resulted in male sterility due to defects in anther dehiscence. Together, these results demonstrate that PtrCel9A6 plays a critical role in remodeling the 1,4-β-glucan chains in the wall matrix and is required for cell wall thickening during Populus xylem differentiation.

  12. The Populus Class III HD ZIP transcription factor POPCORONA affects cell differentiation during secondary growth of woody stems.

    PubMed

    Du, Juan; Miura, Eriko; Robischon, Marcel; Martinez, Ciera; Groover, Andrew

    2011-02-28

    The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA, during secondary growth of woody stems. Transgenic Populus (poplar) trees expressing either a miRNA-resistant POPCORONA or a synthetic miRNA targeting POPCORONA were used to infer function of POPCORONA during secondary growth. Whole plant, histological, and gene expression changes were compared for transgenic and wild-type control plants. Synthetic miRNA knock down of POPCORONA results in abnormal lignification in cells of the pith, while overexpression of a miRNA-resistant POPCORONA results in delayed lignification of xylem and phloem fibers during secondary growth. POPCORONA misexpression also results in coordinated changes in expression of genes within a previously described transcriptional network regulating cell differentiation and cell wall biosynthesis, and hormone-related genes associated with fiber differentiation. POPCORONA illustrates another function of Class III HD ZIPs: regulating cell differentiation during secondary growth.

  13. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    SciTech Connect

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J.; Xiao, Hui; Xue, Liang -Jiao; Chung, Jeng -Der; Johnson, Virgil E.; Zhu, Yingying; Peter, Gary F.; Hahn, Michael G.; Mansfield, Shawn D.; Harding, Scott A.; Tsai, Chung -Jui

    2015-08-05

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. In conclusion, taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.

  14. Altering carbon allocation in hybrid poplar (Populus alba × grandidentata) impacts cell wall growth and development.

    PubMed

    Unda, Faride; Kim, Hoon; Hefer, Charles; Ralph, John; Mansfield, Shawn D

    2016-12-20

    Galactinol synthase is a pivotal enzyme involved in the synthesis of the raffinose family of oligosaccharides (RFOs) that function as transport carbohydrates in the phloem, as storage compounds in sink tissues and as soluble metabolites that combat both abiotic and biotic stress in several plant species. Hybrid poplar (Populus alba × grandidentata) overexpressing the Arabidopsis thaliana GolS3 (AtGolS3) gene showed clear effects on development; the extreme overexpressing lines were stunted and had cell wall traits characteristic of tension wood, whereas lines with only moderate up-regulation grew normally and had moderately altered secondary cell wall composition and ultrastructure. Stem cross-sections of the developing xylem revealed a significant increase in the number of vessels, as well as the clear presence of a G-layer in the fibres. Furthermore, AtGolS3-OE lines possessed higher cellulose and lower lignin contents, an increase in cellulose crystallinity, and significantly altered hemicellulose-derived carbohydrates, notably manifested by their mannose and xylose contents. In addition, the transgenic plants displayed elevated xylem starch content. Transcriptome interrogation of the transgenic plants showed a significant up-regulation of genes involved in the synthesis of myo-inositol, along with genes involved in sucrose degradation. The results suggest that the overexpression of GolS and its product galactinol may serve as a molecular signal that initiates metabolic changes, culminating in a change in cell wall development and potentially the formation of tension wood.

  15. Wood properties of Populus and Betula in long-term exposure to elevated CO₂ and O₃.

    PubMed

    Kostiainen, Katri; Saranpää, Pekka; Lundqvist, Sven-Olof; Kubiske, Mark E; Vapaavuori, Elina

    2014-06-01

    We studied the interactive effects of elevated concentrations of CO2 and O3 on radial growth and wood properties of four trembling aspen (Populus tremuloides Michx.) clones and paper birch (Betula papyrifera Marsh.) saplings. The material for the study was collected from the Aspen FACE (free-air CO2 enrichment) experiment in Rhinelander (WI, USA). Trees had been exposed to four treatments [control, elevated CO2 (560 ppm), elevated O3 (1.5 times ambient) and combined CO2 + O3 ] during growing seasons 1998-2008. Most treatment responses were observed in the early phase of experiment. Our results show that the CO2- and O3-exposed aspen trees displayed a differential balance between efficiency and safety of water transport. Under elevated CO2, radial growth was enhanced and the trees had fewer but hydraulically more efficient larger diameter vessels. In contrast, elevated O3 decreased radial growth and the diameters of vessels and fibres. Clone-specific decrease in wood density and cell wall thickness was observed under elevated CO2 . In birch, the treatments had no major impacts on wood anatomy or wood density. Our study indicates that short-term impact studies conducted with young seedlings may not give a realistic view of long-term ecosystem responses.

  16. Intron-mediated alternative splicing of WOOD-ASSOCIATED NAC TRANSCRIPTION FACTOR1B regulates cell wall thickening during fiber development in Populus species.

    PubMed

    Zhao, Yunjun; Sun, Jiayan; Xu, Peng; Zhang, Rui; Li, Laigeng

    2014-02-01

    Alternative splicing is an important mechanism involved in regulating the development of multicellular organisms. Although many genes in plants undergo alternative splicing, little is understood of its significance in regulating plant growth and development. In this study, alternative splicing of black cottonwood (Populus trichocarpa) wood-associated NAC domain transcription factor (PtrWNDs), PtrWND1B, is shown to occur exclusively in secondary xylem fiber cells. PtrWND1B is expressed with a normal short-transcript PtrWND1B-s as well as its alternative long-transcript PtrWND1B-l. The intron 2 structure of the PtrWND1B gene was identified as a critical sequence that causes PtrWND1B alternative splicing. Suppression of PtrWND1B expression specifically inhibited fiber cell wall thickening. The two PtrWND1B isoforms play antagonistic roles in regulating cell wall thickening during fiber cell differentiation in Populus spp. PtrWND1B-s overexpression enhanced fiber cell wall thickening, while overexpression of PtrWND1B-l repressed fiber cell wall thickening. Alternative splicing may enable more specific regulation of processes such as fiber cell wall thickening during wood formation.

  17. A cell wall-bound anionic peroxidase, PtrPO21, is involved in lignin polymerization in Populus trichocarpa

    SciTech Connect

    Lin, Chien-Yuan; Li, Quanzi; Tunlaya-Anukit, Sermsawat; Shi, Rui; Sun, Ying-Hsuan; Wang, Jack P.; Liu, Jie; Loziuk, Philip; Edmunds, Charles W.; Miller, Zachary D.; Peszlen, Ilona; Muddiman, David C.; Sederoff, Ronald R.; Chiang, Vincent L.

    2016-03-11

    Class III peroxidases are members of a large plant-specific sequence-heterogeneous protein family. Several sequence-conserved homologs have been associated with lignin polymerization in Arabidopsis thaliana, Oryza sativa, Nicotiana tabacum, Zinnia elegans, Picea abies, and Pinus sylvestris. In Populus trichocarpa, a model species for studies of wood formation, the peroxidases involved in lignin biosynthesis have not yet been identified. To do this, we retrieved sequences of all PtrPOs from Peroxibase and conducted RNA-seq to identify candidates. Transcripts from 42 PtrPOs were detected in stem differentiating xylem (SDX) and four of them are the most xylem-abundant (PtrPO12, PtrPO21, PtrPO42, and PtrPO64). PtrPO21 shows xylem-specific expression similar to that of genes encoding the monolignol biosynthetic enzymes. Using protein cleavage-isotope dilution mass spectrometry, PtrPO21 is detected only in the cell wall fraction and not in the soluble fraction. Downregulated transgenics of PtrPO21 have a lignin reduction of ~20% with subunit composition (S/G ratio) similar to wild type. The transgenics show a growth reduction and reddish color of stem wood. The modulus of elasticity (MOE) of the stems of the downregulated PtrPO21-line 8 can be reduced to ~60% of wild type. Differentially expressed gene (DEG) analysis of PtrPO21 downregulated transgenics identified a significant overexpression of PtPrx35, suggesting a compensatory effect within the peroxidase family. No significant changes in the expression of the 49 P. trichocarpa laccases (PtrLACs) were observed.

  18. Assessment of Populus wood chemistry following the introduction of a Bt toxin gene

    SciTech Connect

    Tschaplinski, Timothy J; Davis, M F; Tuskan, Gerald A; Payne, M M; Meilan, R

    2006-01-01

    Unintended changes in plant physiology, anatomy and metabolism as a result of genetic engineering are a concern as more transgenic plants are commercially deployed in the ecosystem. We compared the cell wall chemical composition of three Populus lines (Populus trichocarpa Torr. & A. Gray x Populus trichocarpa Bartr. ex Marsh., Populus trichocarpa x Populus nigra L. and Populus deltoides x Populus nigra) genetically modified to express the Cry3A or Cry3B2 protein of Bacillus thuringiensis (Bt) with the cell wall chemistry of non-transformed isogenic control lines. Three genetically modified clones, each represented by 10 independent transgenic lines, were analyzed by pyrolysis molecular beam mass spectrometry, gas chromatography/mass spectrometry and traditional wet chemical analytical methods to assess changes in cell wall composition. Based on the outcome of these techniques, there were no comprehensive differences in chemical composition between the transgenic and control lines for any of the studied clones.

  19. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus).

    PubMed

    Geraldes, A; Hefer, C A; Capron, A; Kolosova, N; Martinez-Nuñez, F; Soolanayakanahally, R Y; Stanton, B; Guy, R D; Mansfield, S D; Douglas, C J; Cronk, Q C B

    2015-07-01

    All species of the genus Populus (poplar, aspen) are dioecious, suggesting an ancient origin of this trait. Despite some empirical counter examples, theory suggests that nonrecombining sex-linked regions should quickly spread, eventually becoming heteromorphic chromosomes. In contrast, we show using whole-genome scans that the sex-associated region in Populus trichocarpa is small and much younger than the age of the genus. This indicates that sex determination is highly labile in poplar, consistent with recent evidence of 'turnover' of sex-determination regions in animals. We performed whole-genome resequencing of 52 P. trichocarpa (black cottonwood) and 34 Populus balsamifera (balsam poplar) individuals of known sex. Genomewide association studies in these unstructured populations identified 650 SNPs significantly associated with sex. We estimate the size of the sex-linked region to be ~100 kbp. All SNPs significantly associated with sex were in strong linkage disequilibrium despite the fact that they were mapped to six different chromosomes (plus 3 unmapped scaffolds) in version 2.2 of the reference genome. We show that this is likely due to genome misassembly. The segregation pattern of sex-associated SNPs revealed this to be an XY sex-determining system. Estimated divergence times of X and Y haplotype sequences (6-7 Ma) are much more recent than the divergence of P. trichocarpa (poplar) and Populus tremuloides (aspen). Consistent with this, in P. tremuloides, we found no XY haplotype divergence within the P. trichocarpa sex-determining region. These two species therefore have a different genomic architecture of sex, suggestive of at least one turnover event in the recent past.

  20. Determining the syringyl/guaiacyl lignin ratio in the vessel and fiber cell walls of transgenic Populus plants

    SciTech Connect

    Tolbert, Allison K.; Ma, Tao; Kalluri, Udaya C.; Ragauskas, Arthur J.

    2016-06-20

    Observation of the spatial lignin distribution throughout the plant cell wall provides insight into the physicochemical characteristics of lignocellulosic biomass. The distribution of syringyl (S) and guaiacyl (G) lignin in cell walls of a genetically modified Populus deltoides and its corresponding empty vector control were analyzed with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and then mapped to determine the S/G lignin ratio of the sample surface and specific regions of interest (ROIs). The surface characterizations of transgenic cross-sections within 1 cm vertical distance of each other on the stem possess similar S/G lignin ratios. Furthermore, the analysis of the ROIs determined that there was a 50% decrease in the S/G lignin ratio of the transgenic xylem fiber cell walls.

  1. Assessment of Populus Wood Chemistry Following the Introduction of a Bt Toxin Gene

    SciTech Connect

    Davis, M. F.; Tuskan, G. A.; Payne, P.; Tschaplinski, T. J.; Meilan, R.

    2006-01-01

    Unintended changes in plant physiology, anatomy and metabolism as a result of genetic engineering are a concern as more transgenic plants are commercially deployed in the ecosystem. We compared the cell wall chemical composition of three Populus lines (Populus trichocarpa Torr. and A. Gray x Populus deltoides Bartr. ex Marsh., Populus trichocarpa x Populus nigra L. and Populus deltoides x Populus nigra) genetically modified to express the Cry3A or Cry3B2 protein of Bacillus thuringiensis (Bt) with the cellwall chemistry of non-transformed isogenic control lines. Three genetically modified clones, each represented by 10 independent transgenic lines, were analyzed by pyrolysis molecular beam mass spectrometry, gas chromatography/mass spectrometry and traditional wet chemical analytical methods to assess changes in cell wall composition. Based on the outcome of these techniques, there were no comprehensive differences in chemical composition between the transgenic and control lines for any of the studied clones.

  2. Population genetics of Chrysomela tremulae: a first step towards management of transgenic Bacillus thuringiensis poplars Populus tremula x .P. tremuloides.

    PubMed

    Génissel, A; Viard, F; Bourguet, D

    2000-01-01

    Many strategies have been proposed for delaying the development of insect resistance to Bacillus thuringiensis (Bt). The current paradigm for Bt resistance management is the high dose-refuge strategy. For this strategy to be successful: (i) heterozygotes must be killed in treated areas, (ii) resistant alleles must be rare (frequency < 10-3), and (iii) there must be a high level of gene flow between populations to ensure random mating. We studied gene flow within and between populations with a view to managing the resistance of Chrysomela tremulae (Coleoptera: Chrysomelidae) to new transgenic, highly toxic poplars expressing a synthetic Bt gene. In this study, we assessed the extent of gene flow in C. tremulae within and between 16 sites in France and Belgium, using allozyme markers. We found a high level of genetic variability in C. tremulae, with a mean of 0.206 +/- 0.16. There were no obvious limitations to gene flow between populations of C. tremulae over large geographical distances (several hundreds of kilometres). Nevertheless, a very low level of genetic differentiation was observed between a site located in the south of France and the sampled sites from the Centre region.

  3. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    PubMed

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species.

  4. Kinetic analysis using low-molecular mass xyloglucan oligosaccharides defines the catalytic mechanism of a Populus xyloglucan endotransglycosylase

    PubMed Central

    Saura-Valls, Marc; Fauré, Régis; Ragàs, Sergi; Piens, Kathleen; Brumer, Harry; Teeri, Tuula T.; Cottaz, Sylvain; Driguez, Hugues; Planas, Antoni

    2005-01-01

    Plant XETs [XG (xyloglucan) endotransglycosylases] catalyse the transglycosylation from a XG donor to a XG or low-molecular-mass XG fragment as the acceptor, and are thought to be important enzymes in the formation and remodelling of the cellulose-XG three-dimensional network in the primary plant cell wall. Current methods to assay XET activity use the XG polysaccharide as the donor substrate, and present limitations for kinetic and mechanistic studies of XET action due to the polymeric and polydisperse nature of the substrate. A novel activity assay based on HPCE (high performance capillary electrophoresis), in conjunction with a defined low-molecular-mass XGO {XG oligosaccharide; (XXXGXXXG, where G=Glcβ1,4- and X=[Xylα1,6]Glcβ1,4-)} as the glycosyl donor and a heptasaccharide derivatized with ANTS [8-aminonaphthalene-1,3,6-trisulphonic acid; (XXXG-ANTS)] as the acceptor substrate was developed and validated. The recombinant enzyme PttXET16A from Populus tremula x tremuloides (hybrid aspen) was characterized using the donor/acceptor pair indicated above, for which preparative scale syntheses have been optimized. The low-molecular-mass donor underwent a single transglycosylation reaction to the acceptor substrate under initial-rate conditions, with a pH optimum at 5.0 and maximal activity between 30 and 40 °C. Kinetic data are best explained by a ping-pong bi-bi mechanism with substrate inhibition by both donor and acceptor. This is the first assay for XETs using a donor substrate other than polymeric XG, enabling quantitative kinetic analysis of different XGO donors for specificity, and subsite mapping studies of XET enzymes. PMID:16356166

  5. Extracellular ATP signaling is mediated by H₂O₂ and cytosolic Ca²⁺ in the salt response of Populus euphratica cells.

    PubMed

    Sun, Jian; Zhang, Xuan; Deng, Shurong; Zhang, Chunlan; Wang, Meijuan; Ding, Mingquan; Zhao, Rui; Shen, Xin; Zhou, Xiaoyang; Lu, Cunfu; Chen, Shaoliang

    2012-01-01

    Extracellular ATP (eATP) has been implicated in mediating plant growth and antioxidant defense; however, it is largely unknown whether eATP might mediate salinity tolerance. We used confocal microscopy, a non-invasive vibrating ion-selective microelectrode, and quantitative real time PCR analysis to evaluate the physiological significance of eATP in the salt resistance of cell cultures derived from a salt-tolerant woody species, Populus euphratica. Application of NaCl (200 mM) shock induced a transient elevation in [eATP]. We investigated the effects of eATP by blocking P2 receptors with suramin and PPADS and applying an ATP trap system of hexokinase-glucose. We found that eATP regulated a wide range of cellular processes required for salt adaptation, including vacuolar Na⁺ compartmentation, Na⁺/H⁺ exchange across the plasma membrane (PM), K⁺ homeostasis, reactive oxygen species regulation, and salt-responsive expression of genes related to Na⁺/H⁺ homeostasis and PM repair. Furthermore, we found that the eATP signaling was mediated by H₂O₂ and cytosolic Ca²⁺ released in response to high salt in P. euphratica cells. We concluded that salt-induced eATP was sensed by purinoceptors in the PM, and this led to the induction of downstream signals, like H₂O₂ and cytosolic Ca²⁺, which are required for the up-regulation of genes linked to Na⁺/H⁺ homeostasis and PM repair. Consequently, the viability of P. euphratica cells was maintained during a prolonged period of salt stress.

  6. Expression of a fungal glucuronoyl esterase in Populus: effects on wood properties and saccharification efficiency.

    PubMed

    Latha Gandla, Madhavi; Derba-Maceluch, Marta; Liu, Xiaokun; Gerber, Lorenz; Master, Emma R; Mellerowicz, Ewa J; Jönsson, Leif J

    2015-04-01

    The secondary walls of angiosperms contain large amounts of glucuronoxylan that is thought to be covalently linked to lignin via ester bonds between 4-O-methyl-α-D-glucuronic acid (4-O-Me-GlcA) moieties in glucuronoxylan and alcohol groups in lignin. This linkage is proposed to be hydrolysed by glucuronoyl esterases (GCEs) secreted by wood-degrading fungi. We report effects of overexpression of a GCE from the white-rot basidiomycete Phanerochaete carnosa, PcGCE, in hybrid aspen (Populus tremula L. x tremuloides Michx.) on the wood composition and the saccharification efficiency. The recombinant enzyme, which was targeted to the plant cell wall using the signal peptide from hybrid aspen cellulase PttCel9B3, was constitutively expressed resulting in the appearance of GCE activity in protein extracts from developing wood. Diffuse reflectance FT-IR spectroscopy and pyrolysis-GC/MS analyses showed significant alternation in wood chemistry of transgenic plants including an increase in lignin content and S/G ratio, and a decrease in carbohydrate content. Sequential wood extractions confirmed a massive (+43%) increase of Klason lignin, which was accompanied by a ca. 5% decrease in cellulose, and ca. 20% decrease in wood extractives. Analysis of the monosaccharide composition using methanolysis showed a reduction of 4-O-Me-GlcA content without a change in Xyl contents in transgenic lines, suggesting that the covalent links between 4-O-Me-GlcA moieties and lignin protect these moieties from degradation. Enzymatic saccharification without pretreatment resulted in significant decreases of the yields of Gal, Glc, Xyl and Man in transgenic lines, consistent with their increased recalcitrance caused by the increased lignin content. In contrast, the enzymatic saccharification after acid pretreatment resulted in Glc yields similar to wild-type despite of their lower cellulose content. These data indicate that whereas PcGCE expression in hybrid aspen increases lignin deposition

  7. Tissue- and Cell-Specific Cytokinin Activity in Populus × canescens Monitored by ARR5::GUS Reporter Lines in Summer and Winter

    PubMed Central

    Paul, Shanty; Wildhagen, Henning; Janz, Dennis; Teichmann, Thomas; Hänsch, Robert; Polle, Andrea

    2016-01-01

    Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed between summer and winter. An ARR5::GUS reporter construct was used to monitor distribution of active cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested under outdoor conditions showed no influence of ARR5::GUS reporter construct on the growth performance compared with the wild-type, but one line lost the reporter activity. ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS activity, which was present in the root tips in the growing season, disappeared in winter. In the stem apex ground tissue, ARR5::GUS activity was higher in winter than in summer. Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity. Leaf primordia in summer showed ARR5::GUS activity, but not the expanded leaves of outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in the dormant than in growth phase. The pith and the ray cells adjacent to the vessels also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression patterns of the whole PtRR type-A family of poplar showed that PtRR10, the closest ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in all tissues. In conclusion, gene expression and tissue-localization indicate high activity of cytokinins not only in summer, but

  8. Proteomics of Leaf Tissues from Populus

    SciTech Connect

    Hurst, Gregory {Greg} B; Yang, Xiaohan; Tschaplinski, Timothy J; Tuskan, Gerald A; Lankford, Patricia K; Shah, Manesh B; Jawdy, Sara; Gunter, Lee E; Engle, Nancy L

    2010-01-01

    Trees of the genus Populus are farmed commercially for wood and fiber, and are a potential bioenergy crop. As a scientific model organism, P. trichocarpa was the first forest tree for which the genome sequence has been determined. Knowledge of the Populus proteome will provide a deeper understanding of gene expression patterns in various tissues of the plant. To build on our previous profile of the proteome of xylem tissue in Populus (Kalluri et al., Proteomics 2009, 9, 4871), we are currently developing methods for studying the proteome of Populus leaves.

  9. Clone history shapes Populus drought responses.

    PubMed

    Raj, Sherosha; Bräutigam, Katharina; Hamanishi, Erin T; Wilkins, Olivia; Thomas, Barb R; Schroeder, William; Mansfield, Shawn D; Plant, Aine L; Campbell, Malcolm M

    2011-07-26

    Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes-DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]-derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids.

  10. Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.

    PubMed

    Hajek, Peter; Leuschner, Christoph; Hertel, Dietrich; Delzon, Sylvain; Schuldt, Bernhard

    2014-07-01

    Trees face the dilemma that achieving high plant productivity is accompanied by a risk of drought-induced hydraulic failure due to a trade-off in the trees' vascular system between hydraulic efficiency and safety. By investigating the xylem anatomy of branches and coarse roots, and measuring branch axial hydraulic conductivity and vulnerability to cavitation in 4-year-old field-grown aspen plants of five demes (Populus tremula L. and Populus tremuloides Michx.) differing in growth rate, we tested the hypotheses that (i) demes differ in wood anatomical and hydraulic properties, (ii) hydraulic efficiency and safety are related to xylem anatomical traits, and (iii) aboveground productivity and hydraulic efficiency are negatively correlated to cavitation resistance. Significant deme differences existed in seven of the nine investigated branch-related anatomical and hydraulic traits but only in one of the four coarse-root-related anatomical traits; this likely is a consequence of high intra-plant variation in root morphology and the occurrence of a few 'high-conductivity roots'. Growth rate was positively related to branch hydraulic efficiency (xylem-specific conductivity) but not to cavitation resistance; this indicates that no marked trade-off exists between cavitation resistance and growth. Both branch hydraulic safety and hydraulic efficiency significantly depended on vessel size and were related to the genetic distance between the demes, while the xylem pressure causing 88% loss of hydraulic conductivity (P88 value) was more closely related to hydraulic efficiency than the commonly used P50 value. Deme-specific variation in the pit membrane structure may explain why vessel size was not directly linked to growth rate. We conclude that branch hydraulic efficiency is an important growth-influencing trait in aspen, while the assumed trade-off between productivity and hydraulic safety is weak.

  11. Shotgun proteome profile of Populus developing xylem.

    PubMed

    Kalluri, Udaya C; Hurst, Gregory B; Lankford, Patricia K; Ranjan, Priya; Pelletier, Dale A

    2009-11-01

    Understanding the molecular pathways of plant cell wall biosynthesis and remodeling is central to interpreting biological mechanisms underlying plant growth and adaptation as well as leveraging that knowledge towards development of improved bioenergy feedstocks. Here, we report the application of shotgun MS/MS profiling to the proteome of Populus developing xylem. Nearly 6000 different proteins were identified from the xylem proteome. To identify low-abundance DNA-regulatory proteins from the developing xylem, a selective nuclear proteome profiling method was developed. Several putative transcription factors and chromatin remodeling proteins were identified using this method, such as NAC domain, CtCP-like and CHB3-SWI/SNF-related proteins. Public databases were mined to obtain information in support of subcellular localization, transcript-level expression and functional categorization of identified proteins. In addition to finding protein-level evidence of candidate cell wall biosynthesis genes from xylem (wood) tissue such as cellulose synthase, sucrose synthase and polygalacturonase, several other potentially new candidate genes in the cell wall biosynthesis pathway were discovered. Further application of such proteomics methods will aid in plant systems biology modeling efforts by enhancing the understanding not only of cell wall biosynthesis but also of other plant developmental and physiological pathways.

  12. Using Populus as a lignocellulosic feedstock for bioethanol.

    PubMed

    Porth, Ilga; El-Kassaby, Yousry A

    2015-04-01

    Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome.

  13. Shotgun proteome profile of Populus developing xylem

    SciTech Connect

    Kalluri, Udaya C; Hurst, Gregory {Greg} B; Lankford, Patricia K; Ranjan, Priya; Pelletier, Dale A

    2009-01-01

    Understanding the molecular pathways of plant cell wall biosynthesis and remodeling is central to interpreting biological mechanisms underlying plant growth and adaptation as well as leveraging that knowledge towards development of improved bioenergy feedstocks. Here we report the application of shotgun tandem mass spectrometry profiling to the proteome of Populus developing xylem. Additionally, we mined public databases to obtain information in support of subcellular localization, transcript-level expression, and functional categorization of these proteins. Nearly 6000 different proteins were identified from the xylem proteome, with over 4400 proteins identified from one or more unique peptides. In addition to finding protein-level evidence of candidate wall biosynthesis genes from xylem (wood) tissue such as cellulose synthase, phenylalanine ammonia-lyase, and 4-coumarate:CoA ligase, several other potentially new candidate genes in the pathway were discovered. In order to identify low-abundance DNA-regulatory proteins from the developing xylem, a selective nuclear proteome profiling method was developed. Several putative transcription factor and chromatin remodeling proteins were identified using this method, such as LIM and NAC domain transcription factors and CHB3-SWI/SNF-related proteins. Further application of these proteomics methods will enhance understanding not only of cell wall biosynthesis in system biology modeling, but also other plant developmental and physiological pathways.

  14. Clone history shapes Populus drought responses

    PubMed Central

    Raj, Sherosha; Bräutigam, Katharina; Hamanishi, Erin T.; Wilkins, Olivia; Thomas, Barb R.; Schroeder, William; Mansfield, Shawn D.; Plant, Aine L.; Campbell, Malcolm M.

    2011-01-01

    Just as animal monozygotic twins can experience different environmental conditions by being reared apart, individual genetically identical trees of the genus Populus can also be exposed to contrasting environmental conditions by being grown in different locations. As such, clonally propagated Populus trees provide an opportunity to interrogate the impact of individual environmental history on current response to environmental stimuli. To test the hypothesis that current responses to an environmental stimulus, drought, are contingent on environmental history, the transcriptome- level drought responses of three economically important hybrid genotypes—DN34 (Populus deltoides × Populus nigra), Walker [P. deltoides var. occidentalis × (Populus laurifolia × P. nigra)], and Okanese [Walker × (P. laurifolia × P. nigra)]—derived from two different locations were compared. Strikingly, differences in transcript abundance patterns in response to drought were based on differences in geographic origin of clones for two of the three genotypes. This observation was most pronounced for the genotypes with the longest time since establishment and last common propagation. Differences in genome-wide DNA methylation paralleled the transcriptome level trends, whereby the clones with the most divergent transcriptomes and clone history had the most marked differences in the extent of total DNA methylation, suggesting an epigenomic basis for the clone history-dependent transcriptome divergence. The data provide insights into the interplay between genotype and environment in the ecologically and economically important Populus genus, with implications for the industrial application of Populus trees and the evolution and persistence of these important tree species and their associated hybrids. PMID:21746919

  15. Water relations of populus clones

    SciTech Connect

    Pallardy, S.G.; Kozlowski, T.T.

    1981-02-01

    Stomatal aperture and water balance in the field of eight Populus clones varying in growth rate were closely related to environmental factors and clonal differences were clearly expressed. Leaf water potential (psi) was influenced by solar radiation, leaf conductance, evaporative demand, and soil moisture content. The effects of soil moisture on psi were greatly modified by atmospheric conditions and stomatal conductance. Several slow-growing clones exhibited extended periods of psi below that of rapidly growing clones, despite high evaporative demand and the much greater transpiring surfaces of the fast-growing clones. Stomata of all clones responded to changes in light intensity and vapor pressure gradient (VPG). Pronounced stomatal sensitivity to VPG of two rapidly growing clones of common parentage, and the resultant capacity of these clones to moderate water deficits under high evaporative demand, were associated with drought resistance in one of the parents. Seasonal maximum leaf conductance was positively related to growth in several clones, suggesting that rapidly growing clones possess the capacity to carry on higher rates of gas exchange under favorable conditions. Analysis of changes in psi with changes in transpirational flux density (TFD) showed that for four clones, psi change per unit change in TFD decreased as TFD increased, indicating plant adaptation for prevention of damaging psi even at high TFD. More rapidly growing clones exhibited a larger initial rate of decline in psi with TFD, but reduced the rate of decline more than slow-growing clones as TFD increased. (Refs. 41).

  16. Metabolomics study of Populus type propolis.

    PubMed

    Anđelković, Boban; Vujisić, Ljubodrag; Vučković, Ivan; Tešević, Vele; Vajs, Vlatka; Gođevac, Dejan

    2017-02-20

    Herein, we propose rapid and simple spectroscopic methods to determine the chemical composition of propolis derived from various Populus species using a metabolomics approach. In order to correlate variability in Populus type propolis composition with the altitude of its collection, NMR, IR, and UV spectroscopy followed by OPLS was conducted. The botanical origin of propolis was established by comparing propolis spectral data to those of buds of various Populus species. An O2PLS method was utilized to integrate two blocks of data. According to OPLS and O2PLS, the major compounds in propolis samples, collected from temperate continental climate above 500m, were phenolic glycerides originating from P. tremula buds. Flavonoids were predominant in propolis samples collected below 400m, originating from P. nigra and P. x euramericana buds. Samples collected at 400-500m were of mixed origin, with variable amounts of all detected metabolites.

  17. Epigenomics of Development in Populus

    SciTech Connect

    Strauss, Steve; Freitag, Michael; Mockler, Todd

    2013-01-10

    We conducted research to determine the role of epigenetic modifications during tree development using poplar (Populus trichocarpa), a model woody feedstock species. Using methylated DNA immunoprecipitation (MeDIP) or chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing, we are analyzed DNA and histone methylation patterns in the P. trichocarpa genome in relation to four biological processes: bud dormancy and release, mature organ maintenance, in vitro organogenesis, and methylation suppression. Our project is now completed. We have 1) produced 22 transgenic events for a gene involved in DNA methylation suppression and studied its phenotypic consequences; 2) completed sequencing of methylated DNA from eleven target tissues in wildtype P. trichocarpa; 3) updated our customized poplar genome browser using the open-source software tools (2.13) and (V2.2) of the P. trichocarpa genome; 4) produced summary data for genome methylation in P. trichocarpa, including distribution of methylation across chromosomes and in and around genes; 5) employed bioinformatic and statistical methods to analyze differences in methylation patterns among tissue types; and 6) used bisulfite sequencing of selected target genes to confirm bioinformatics and sequencing results, and gain a higher-resolution view of methylation at selected genes 7) compared methylation patterns to expression using available microarray data. Our main findings of biological significance are the identification of extensive regions of the genome that display developmental variation in DNA methylation; highly distinctive gene-associated methylation profiles in reproductive tissues, particularly male catkins; a strong whole genome/all tissue inverse association of methylation at gene bodies and promoters with gene expression; a lack of evidence that tissue specificity of gene expression is associated with gene methylation; and evidence that genome methylation is a significant impediment to tissue

  18. The glutamine synthetase gene family in Populus

    PubMed Central

    2011-01-01

    Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1) and 1 which codes for the choroplastic GS isoform (GS2). Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types. PMID:21867507

  19. The genome of black cottonwood, Populus trichocarpa (Torr.&Gray)

    SciTech Connect

    Tuskan, G.A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev,I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R.R.; Bhalerao, R.P.; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Carlson, J.; Chalot, M.; Chapman, J.; Chen, G.-L.; Cooper, D.; Coutinho,P.M.; Couturier, J.; Covert, S.; Cronk, Q.; Cunningham, R.; Davis, J.; Degroeve, S.; Dejardin, A.; dePamphillis, C.; Detter, J.; Dirks, B.; Dubchak, I.; Duplessis, S.; Ehiting, J.; Ellis, B.; Gendler, K.; Goodstein, D.; Gribskov, M.; Grimwood, J.; Groover, A.; Gunter, L.; Hamberger, B.; Heinze, B.; Helariutta, Y.; Henrissat, B.; Holligan, D.; Holt, R.; Huang, W.; Islam-Faridi, N.; Jones, S.; Jones-Rhoades, M.; Jorgensen, R.; Joshi, C.; Kangasjarvi, J.; Karlsson, J.; Kelleher, C.; Kirkpatrick, R.; Kirst, M.; Kohler, A.; Kalluri, U.; Larimer, F.; Leebens-Mack, J.; Leple, J.-C.; Locascio, P.; Lou, Y.; Lucas, S.; Martin,F.; Montanini, B.; Napoli, C.; Nelson, D.R.; Nelson, D.; Nieminen, K.; Nilsson, O.; Peter, G.; Philippe, R.; Pilate, G.; Poliakov, A.; Razumovskaya, J.; Richardson, P.; Rinaldi, C.; Ritland, K.; Rouze, P.; Ryaboy, D.; Schmutz, J.; Schrader, J.; Segerman, B.; Shin, H.; Siddiqui,A.; Sterky, F.; Terry, A.; Tsai, C.; Uberbacher, E.; Unneberg, P.; Vahala, J.; Wall, K.; Wessler, S.; Yang, G.; Yin, T.; Douglas, C.; Marra,M.; Sandberg, G.; Van der Peer, Y.; Rokhsar, D.

    2006-09-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. Over 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event, with approximately 8,000 pairs of duplicated genes from that event surviving in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication and gross chromosomal rearrangement appear to proceed substantially slower in Populus relative to Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average between 1.4-1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with disease resistance, meristem development, metabolite transport and lignocellulosic wall biosynthesis.

  20. The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray)

    NASA Astrophysics Data System (ADS)

    Tuskan, G. A.; DiFazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A.; Schein, J.; Sterck, L.; Aerts, A.; Bhalerao, R. R.; Bhalerao, R. P.; Blaudez, D.; Boerjan, W.; Brun, A.; Brunner, A.; Busov, V.; Campbell, M.; Carlson, J.; Chalot, M.; Chapman, J.; Chen, G.-L.; Cooper, D.; Coutinho, P. M.; Couturier, J.; Covert, S.; Cronk, Q.; Cunningham, R.; Davis, J.; Degroeve, S.; Déjardin, A.; dePamphilis, C.; Detter, J.; Dirks, B.; Dubchak, I.; Duplessis, S.; Ehlting, J.; Ellis, B.; Gendler, K.; Goodstein, D.; Gribskov, M.; Grimwood, J.; Groover, A.; Gunter, L.; Hamberger, B.; Heinze, B.; Helariutta, Y.; Henrissat, B.; Holligan, D.; Holt, R.; Huang, W.; Islam-Faridi, N.; Jones, S.; Jones-Rhoades, M.; Jorgensen, R.; Joshi, C.; Kangasjärvi, J.; Karlsson, J.; Kelleher, C.; Kirkpatrick, R.; Kirst, M.; Kohler, A.; Kalluri, U.; Larimer, F.; Leebens-Mack, J.; Leplé, J.-C.; Locascio, P.; Lou, Y.; Lucas, S.; Martin, F.; Montanini, B.; Napoli, C.; Nelson, D. R.; Nelson, C.; Nieminen, K.; Nilsson, O.; Pereda, V.; Peter, G.; Philippe, R.; Pilate, G.; Poliakov, A.; Razumovskaya, J.; Richardson, P.; Rinaldi, C.; Ritland, K.; Rouzé, P.; Ryaboy, D.; Schmutz, J.; Schrader, J.; Segerman, B.; Shin, H.; Siddiqui, A.; Sterky, F.; Terry, A.; Tsai, C.-J.; Uberbacher, E.; Unneberg, P.; Vahala, J.; Wall, K.; Wessler, S.; Yang, G.; Yin, T.; Douglas, C.; Marra, M.; Sandberg, G.; Van de Peer, Y.; Rokhsar, D.

    2006-09-01

    We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.

  1. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding.

    PubMed

    Kersten, Birgit; Faivre Rampant, Patricia; Mader, Malte; Le Paslier, Marie-Christine; Bounon, Rémi; Berard, Aurélie; Vettori, Cristina; Schroeder, Hilke; Leplé, Jean-Charles; Fladung, Matthias

    2016-01-01

    Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future.

  2. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding

    PubMed Central

    Mader, Malte; Le Paslier, Marie-Christine; Bounon, Rémi; Berard, Aurélie; Vettori, Cristina; Schroeder, Hilke; Leplé, Jean-Charles; Fladung, Matthias

    2016-01-01

    Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future. PMID:26800039

  3. Terra Populus and DataNet Collaboration

    NASA Astrophysics Data System (ADS)

    Kugler, T.; Ruggles, S.; Fitch, C. A.; Clark, P. D.; Sobek, M.; Van Riper, D.

    2012-12-01

    Terra Populus, part of NSF's new DataNet initiative, is developing organizational and technical infrastructure to integrate, preserve, and disseminate data describing changes in the human population and environment over time. Terra Populus will incorporate large microdata and aggregate census datasets from the United States and around the world, as well as land use, land cover, climate and other environmental datasets. These data are widely dispersed, exist in a variety of data structures, have incompatible or inadequate metadata, and have incompatible geographic identifiers. Terra Populus is developing methods of integrating data from different domains and translating across data structures based on spatio-temporal linkages among data contents. The new infrastructure will enable researchers to identify and merge data from heterogeneous sources to study the relationships between human behavior and the natural world. Terra Populus will partner with data archives, data producers, and data users to create a sustainable international organization that will guarantee preservation and access over multiple decades. Terra Populus is also collaborating with the other projects in the DataNet initiative - DataONE, the DataNet Federation Consortium (DFC) and Sustainable Environment-Actionable Data (SEAD). Taken together, the four projects address aspects of the entire data lifecycle, including planning, collection, documentation, discovery, integration, curation, preservation, and collaboration; and encompass a wide range of disciplines including earth sciences, ecology, social sciences, hydrology, oceanography, and engineering. The four projects are pursuing activities to share data, tools, and expertise between pairs of projects as well as collaborating across the DataNet program on issues of cyberinfrastructure and community engagement. Topics to be addressed through program-wide collaboration include technical, organizational, and financial sustainability; semantic

  4. PtoMYB92 is a Transcriptional Activator of the Lignin Biosynthetic Pathway During Secondary Cell Wall Formation in Populus tomentosa.

    PubMed

    Li, Chaofeng; Wang, Xianqiang; Ran, Lingyu; Tian, Qiaoyan; Fan, Di; Luo, Keming

    2015-12-01

    Wood is the most abundant biomass in perennial woody plants and is mainly made up of secondary cell wall. R2R3-MYB transcription factors are important regulators of secondary wall biosynthesis in plants. In this study, we describe the identification and characterization of a poplar MYB transcription factor PtoMYB92, a homolog of Arabidopsis MYB42 and MYB85, which is involved in the regulation of secondary cell wall biosynthesis. PtoMYB92 is specifically expressed in xylem tissue in poplar. Subcellular localization and transcriptional activation analysis suggest that PtoMYB92 is a nuclear-localized transcriptional activator. Overexpression of PtoMYB92 in poplar resulted in an increase in secondary cell wall thickness in stems and ectopic deposition of lignin in leaves. Quantitative real-time PCR showed that PtoMYB92 specifically activated the expression of lignin biosynthetic genes. Furthermore, transient expression assays using a β-glucuronidase (GUS) reporter gene revealed that PtoMYB92 is an activator in the lignin biosynthetic pathway during secondary cell wall formation. Taken together, our results suggest that PtoMYB92 is involved in the regulation of secondary cell wall formation in poplar by controlling the biosynthesis of monolignols.

  5. Transcriptomic analysis of Clostridium thermocellum Populus hydrolysate-tolerant mutant strain shows increased cellular efficiency in response to Populus hydrolysate compared to the wild type strain

    PubMed Central

    2014-01-01

    Background The thermophilic, anaerobic bacterium, Clostridium thermocellum is a model organism for consolidated processing due to its efficient fermentation of cellulose. Constituents of dilute acid pretreatment hydrolysate are known to inhibit C. thermocellum and other microorganisms. To evaluate the biological impact of this type of hydrolysate, a transcriptomic analysis of growth in hydrolysate-containing medium was conducted on 17.5% v/v Populus hydrolysate-tolerant mutant (PM) and wild type (WT) strains of C. thermocellum. Results In two levels of Populus hydrolysate medium (0% and 10% v/v), the PM showed both gene specific increases and decreases of gene expression compared to the wild-type strain. The PM had increased expression of genes in energy production and conversion, and amino acid transport and metabolism in both standard and 10% v/v Populus hydrolysate media. In particular, expression of the histidine metabolism increased up to 100 fold. In contrast, the PM decreased gene expression in cell division and sporulation (standard medium only), cell defense mechanisms, cell envelope, cell motility, and cellulosome in both media. The PM downregulated inorganic ion transport and metabolism in standard medium but upregulated it in the hydrolysate media when compared to the WT. The WT differentially expressed 1072 genes in response to the hydrolysate medium which included increased transcription of cell defense mechanisms, cell motility, and cellulosome, and decreased expression in cell envelope, amino acid transport and metabolism, inorganic ion transport and metabolism, and lipid metabolism, while the PM only differentially expressed 92 genes. The PM tolerates up to 17.5% v/v Populus hydrolysate and growth in it elicited 489 genes with differential expression, which included increased expression in energy production and conversion, cellulosome production, and inorganic ion transport and metabolism and decreased expression in transcription and cell

  6. [Application of Populus Nigra preparations at experimental parodontitis].

    PubMed

    Kipiani, N V; Kuchukhidze, Dzh K; Chichua, Z Dzh; Kipiani, V A; Datunashvili, I V

    2007-09-01

    Severe oxidative stress, developed under experimental periodontitis is accompanied by disturbances in mitochondrial respiration in tissue cells of gingiva, membrane damage and release of Fe(2+) and Mn(2+), leading to the worsening of inflammation process and gingival tissue necrosis. Reduction of free nitric oxide in gingival tissue appeared to be characteristic for experimental parodontitis: decreases local immunity, antimicrobial resistance, and tissue regeneration, disturbs blood supply and tissue trophism, which forwards important role in deepening of inflammation process and wasting of gingival tissue. Application of preparations derived from black poplar (Populus Nigra) gemma standardizes mitochondrial respiration, reduces presentation of inflammation, and considerably improves EPR-spectrum of gingival tissue. Though the complete normalization is not achieved--hazard of peroxidation still remains, the applied preparations, due to their strong anti- oxidative and anti-inflammatory activities is as an effective and rehabilitative means to tackle gingivitis and peiodontitis.

  7. Functional Characterization and Subcellular Localization of Poplar (Populus trichocarpa × Populus deltoides) Cinnamate 4-Hydroxylase1

    PubMed Central

    Ro, Dae Kyun; Mah, Nancy; Ellis, Brian E.; Douglas, Carl J.

    2001-01-01

    Cinnamic acid 4-hydroxylase (C4H), a member of the cytochrome P450 monooxygenase superfamily, plays a central role in phenylpropanoid metabolism and lignin biosynthesis and possibly anchors a phenylpropanoid enzyme complex to the endoplasmic reticulum (ER). A full-length cDNA encoding C4H was isolated from a hybrid poplar (Populus trichocarpa × P. deltoides) young leaf cDNA library. RNA-blot analysis detected C4H transcripts in all organs tested, but the gene was most highly expressed in developing xylem. C4H expression was also strongly induced by elicitor-treatment in poplar cell cultures. To verify the catalytic activity of the putative C4H cDNA, two constructs, C4H and C4H fused to the FLAG epitope (C4H::FLAG), were expressed in yeast. Immunoblot analysis showed that C4H was present in the microsomal fraction and microsomal preparations from strains expressing both enzymes efficiently converted cinnamic acid to p-coumaric acid with high specific activities. To investigate the subcellular localization of C4H in vivo, a chimeric C4H-green fluorescent protein (GFP) gene was engineered and stably expressed in Arabidopsis. Confocal laser microscopy analysis clearly showed that in Arabidopsis the C4H::GFP chimeric enzyme was localized to the ER. When expressed in yeast, the C4H::GFP fusion enzyme was also active but displayed significantly lower specific activity than either C4H or C4H::FLAG in in vitro and in vivo enzyme assays. These data definitively show that C4H is localized to the ER in planta. PMID:11351095

  8. Xylan hydrolysis in Populus trichocarpa × P. deltoides and model substrates during hydrothermal pretreatment.

    PubMed

    Trajano, Heather L; Pattathil, Sivakumar; Tomkins, Bruce A; Tschaplinski, Timothy J; Hahn, Michael G; Van Berkel, Gary J; Wyman, Charles E

    2015-03-01

    Previous studies defined easy and difficult to hydrolyze fractions of hemicellulose that may result from bonds among cellulose, hemicellulose, and lignin. To understand how such bonds affect hydrolysis, Populus trichocarpa × Populus deltoides, holocellulose isolated from P. trichocarpa × P. deltoides and birchwood xylan were subjected to hydrothermal flow-through pretreatment. Samples were characterized by glycome profiling, HPLC, and UPLC-MS. Glycome profiling revealed steady fragmentation and removal of glycans from solids during hydrolysis. The extent of polysaccharide fragmentation, hydrolysis rate, and total xylose yield were lowest for P. trichocarpa × P. deltoides and greatest for birchwood xylan. Comparison of results from P. trichocarpa × P. deltoides and holocellulose suggested that lignin-carbohydrate complexes reduce hydrolysis rates and limit release of large xylooligomers. Smaller differences between results with holocellulose and birchwood xylan suggest xylan-cellulose hydrogen bonds limited hydrolysis, but to a lesser extent. These findings imply cell wall structure strongly influences hydrolysis.

  9. Genome-Wide Identification of the Invertase Gene Family in Populus.

    PubMed

    Chen, Zhong; Gao, Kai; Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials.

  10. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus

    SciTech Connect

    Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; Sykes, Robert; Tuskan, Gerald A.; Kalluri, Udaya C.

    2014-10-07

    Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations in primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.

  11. Metabolic profiling reveals altered sugar and secondary metabolism in response to UGPase overexpression in Populus

    DOE PAGES

    Payyavula, Raja S.; Tschaplinski, Timothy J.; Jawdy, Sara; ...

    2014-10-07

    Background: UDP-glucose pyrophopharylase (UGPase) is a sugar metabolizing enzyme (E.C. 2.7.7.9) that catalyzes a reversible reaction of UDP-glucose and pyrophosphate from glucose-1-phosphate and uridine triphosphate glucose. UDP-glucose is a key intermediate sugar that is channeled to multiple metabolic pathways. The functional role of UGPase in woody plants such as Populus is poorly understood. Results: We characterized the functional role of UGPase in Populus deltoides by overexpressing a native gene. Overexpression of the native gene resulted in increased leaf area and leaf-to-shoot biomass ratio but decreased shoot and root growth. Metabolomic analyses showed that manipulation of UGPase results in perturbations inmore » primary as well as secondary metabolism resulting in reduced sugar and starch levels and increased phenolics such as caffeoyl- and feruloyl conjugates. While cellulose and lignin levels in the cell walls were not significantly altered, the syringyl-to-guaiacyl ratio was significantly reduced. Conclusions: These results demonstrate that UGPase plays a key role in the tightly coupled primary and secondary metabolic pathways and perturbation in its function results in pronounced effects on growth and metabolism outside of cell wall biosynthesis of Populus.« less

  12. Genome-Wide Identification of the Invertase Gene Family in Populus

    PubMed Central

    Su, Xiaoxing; Rao, Pian; An, Xinmin

    2015-01-01

    Invertase plays a crucial role in carbohydrate partitioning and plant development as it catalyses the irreversible hydrolysis of sucrose into glucose and fructose. The invertase family in plants is composed of two sub-families: acid invertases, which are targeted to the cell wall and vacuole; and neutral/alkaline invertases, which function in the cytosol. In this study, 5 cell wall invertase genes (PtCWINV1-5), 3 vacuolar invertase genes (PtVINV1-3) and 16 neutral/alkaline invertase genes (PtNINV1-16) were identified in the Populus genome and found to be distributed on 14 chromosomes. A comprehensive analysis of poplar invertase genes was performed, including structures, chromosome location, phylogeny, evolutionary pattern and expression profiles. Phylogenetic analysis indicated that the two sub-families were both divided into two clades. Segmental duplication is contributed to neutral/alkaline sub-family expansion. Furthermore, the Populus invertase genes displayed differential expression in roots, stems, leaves, leaf buds and in response to salt/cold stress and pathogen infection. In addition, the analysis of enzyme activity and sugar content revealed that invertase genes play key roles in the sucrose metabolism of various tissues and organs in poplar. This work lays the foundation for future functional analysis of the invertase genes in Populus and other woody perennials. PMID:26393355

  13. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    SciTech Connect

    Labbe, Jessy L.; Weston, David J.; Dunkirk, Nora; Pelletier, Dale A.; Tuskan, Gerald A.

    2014-10-24

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite trophic interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two other Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were also included as reference in the screening process. We analyzed Laccaria bicolor S238N growth rate, mycelial architecture and transcriptional changes induced by the contrasting Pseudomonas strains (i.e., inhibitory, neutral and beneficial). We characterized 17 out of the 21 Pseudomonas strains from the Populus rhizosphere with positive effects on L. bicolor S238N growth, as well as on Populus root architecture and colonization by L. bicolor S238N across three Populus species. Four of seven reporter genes, Tra1, Tectonin2, Gcn5 and Cipc1, thought to be specific to the interaction with strain BBc6R8, were induced or repressed while interacting with six (i.e., GM17, GM33, GM41, GM48, Pf-5 and BBc6R8) of the tested Pseudomonas strains. GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise, poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve roots colonization. This tripartite relationship could be exploited in nursery production for target Populus species/genotypes as a means of improving establishment and survival in marginal lands.

  14. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    DOE PAGES

    Labbe, Jessy L.; Weston, David J.; Dunkirk, Nora; ...

    2014-10-24

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite trophic interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two other Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were also included as reference in the screening process. We analyzed Laccaria bicolor S238N growth rate, mycelial architecture and transcriptional changes induced by the contrasting Pseudomonas strains (i.e., inhibitory, neutral and beneficial).more » We characterized 17 out of the 21 Pseudomonas strains from the Populus rhizosphere with positive effects on L. bicolor S238N growth, as well as on Populus root architecture and colonization by L. bicolor S238N across three Populus species. Four of seven reporter genes, Tra1, Tectonin2, Gcn5 and Cipc1, thought to be specific to the interaction with strain BBc6R8, were induced or repressed while interacting with six (i.e., GM17, GM33, GM41, GM48, Pf-5 and BBc6R8) of the tested Pseudomonas strains. GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise, poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve roots colonization. This tripartite relationship could be exploited in nursery production for target Populus species/genotypes as a means of improving establishment and survival in marginal lands.« less

  15. Anthocyanins of the anthers as chemotaxonomic markers in the genus Populus L.. Differentiation between Populus nigra, Populus alba and Populus tremula.

    PubMed

    Alcalde-Eon, Cristina; García-Estévez, Ignacio; Rivas-Gonzalo, Julián C; Rodríguez de la Cruz, David; Escribano-Bailón, María Teresa

    2016-08-01

    Three main species of Popululs L. (Salicaceae) have been reported to occur in the Iberian Peninsula: Populus nigra L., Populus alba L. and Populus tremula L. The degree of pilosity of the bracts of the male catkins is a key character for their differentiation. The anthers of these poplar species possess anthocyanins that provide them a red colouration. Since these poplars are wind-pollinated and, consequently, do not need to attract pollinators, anthocyanins in the anthers might be acting as photoprotectors, shielding pollen grains from excessive sunlight. In order to verify this hypothesis, the first objective of this study was to establish if there is any relationship between the degree of pilosity of the bracts (related to the physical shading of the pollen grains) and the levels and types of anthocyanins in the anthers of these three species. This study also aimed to check the usefulness of the anthocyanins of the anthers as chemotaxonomic markers, through the study of the differences in the anthocyanin composition between these poplar species. Anthocyanins were identified from the data supplied by HPLC-DAD-MS(n) analyses. Seventeen different compounds, including mono-, di- and triglycosides and anthocyanin-derived pigments (F-A(+) dimers) have been identified. Cyanidin 3-O-glucoside was the major compound in all the samples (>60% of the total content), which may be in accordance with the photoprotective role proposed for them. However, qualitative and quantitative differences were detected among samples. Cyanidin and delphinidin 3-O-sambubiosides have been detected only in the anthers of P. tremula as well as cyanidin 3-O-(2″-O-xyloxyl)rutinoside, making them valuable chemotaxonomic markers for this species. Hierarchical Cluster and Principal Components Analyses (HCA and PCA) carried out with the anthocyanin percent composition data have allowed a separation of the samples that is in accordance with the initial classification of the samples made from the

  16. Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of Populus tremula x Populus alba and the implications for transfer processes in ectomycorrhizal associations.

    PubMed

    Bücking, H; Heyser, W

    2001-02-01

    Microautoradiographic studies were carried out to examine the distribution and exchange of phosphate and labeled carbohydrates in mycorrhizal roots of Populus tremula x Populus alba L. following application of 33P-orthophosphate (Pi) and 14CO2. Labeled Pi was not homogeneously distributed along the mycorrhizal longitudinal axis. The fungal sheath and the Hartig net contained more 33Pi in the median parts of the root than in the apical or basal root zones, indicating that uptake and transfer of Pi to the host plant was localized mainly in this area. The Pi was translocated by the Hartig net and the interfacial apoplast to the host plant. It was distributed by way of the stele within the plant. Young leaves and meristematic tissue in the shoot tip were the main sinks for Pi. In plants that were left in the dark for 5 days before 33Pi application, the reduced carbohydrate supply caused a decrease in Pi absorption by mycorrhizal roots. Microautoradiography of mycorrhizal roots after assimilation of 14CO2 revealed that: (1) the fungal partner had a high capacity to attract photosynthates; (2) the main transfer of carbohydrates was localized in the median zone of a mycorrhizal root; (3) carbohydrates that were absorbed by the mycorrhizal fungus were translocated to the fungal sheath and were homogeneously distributed; and (4) in the main exchange zone, cortical cell nuclei showed a high sink capacity, indicating increased metabolic activity in these cells. We postulate that (1) the phosphate demand of the host plant regulates absorption of Pi by the fungus, and (2) a bidirectional transfer of carbohydrates and Pi occurs across the same interface structure in ectomycorrhizal roots of Populus.

  17. Chemical responses to modified lignin composition in tension wood of hybrid poplar (Populus tremula x Populus alba).

    PubMed

    Al-Haddad, Jameel M; Kang, Kyu-Young; Mansfield, Shawn D; Telewski, Frank W

    2013-04-01

    The effect of altering the expression level of the F5H gene was investigated in three wood tissues (normal, opposite and tension wood) in 1-year-old hybrid poplar clone 717 (Populus tremula × Populus alba L.), containing the F5H gene under the control of the C4H promoter. Elevated expression of the F5H gene in poplar has been previously reported to increase the percent syringyl content of lignin. The wild-type and three transgenic lines were inclined 45° for 3 months to induce tension wood formation. Tension and opposite wood from inclined trees, along with normal wood from control trees, were analyzed separately for carbohydrates, lignin, cellulose crystallinity and microfibril angle (MFA). In the wild-type poplar, the lignin in tension wood contained a significantly higher percentage of syringyl than normal wood or opposite wood. However, there was no significant difference in the percent syringyl content of the three wood types within each of the transgenic lines. Increasing the F5H gene expression caused an increase in the percent syringyl content and a slight decrease in the total lignin in normal wood. In tension wood, the addition of a gelatinous layer in the fiber walls resulted in a consistently lower percentage of total lignin in the tissue. Acid-soluble lignin was observed to increase by up to 2.3-fold in the transgenic lines. Compared with normal wood and opposite wood, cell wall crystallinity in tension wood was higher and the MFA was smaller, as expected, with no evidence of an effect from modifying the syringyl monomer ratio. Tension wood in all the lines contained consistently higher total sugar and glucose percentages when compared with normal wood within the respective lines. However, both sugar and glucose percentages were lower in the tension wood of transgenic lines when compared with the tension wood of wild-type trees. Evaluating the response of trees with altered syringyl content to gravity will improve our understanding of the changes

  18. Revisiting the sequencing of the first tree genome: Populus trichocarpa.

    PubMed

    Wullschleger, Stan D; Weston, D J; DiFazio, S P; Tuskan, G A

    2013-04-01

    Ten years ago, it was announced that the Joint Genome Institute with funds provided by the Department of Energy, Office of Science, Biological and Environmental Research would sequence the black cottonwood (Populus trichocarpa Torr. & Gray) genome. This landmark decision was the culmination of work by the forest science community to develop Populus as a model system. Since its public release in late 2006, the availability of the Populus genome has spawned research in plant biology, morphology, genetics and ecology. Here we address how the tree physiologist has used this resource. More specifically, we revisit our earlier contention that the rewards of sequencing the Populus genome would depend on how quickly scientists working with woody perennials could adopt molecular approaches to investigate the mechanistic underpinnings of basic physiological processes. Several examples illustrate the integration of functional and comparative genomics into the forest sciences, especially in areas that target improved understanding of the developmental differences between woody perennials and herbaceous annuals (e.g., phase transitions). Sequencing the Populus genome and the availability of genetic and genomic resources has also been instrumental in identifying candidate genes that underlie physiological and morphological traits of interest. Genome-enabled research has advanced our understanding of how phenotype and genotype are related and provided insights into the genetic mechanisms whereby woody perennials adapt to environmental stress. In the future, we anticipate that low-cost, high-throughput sequencing will continue to facilitate research in tree physiology and enhance our understanding at scales of individual organisms and populations. A challenge remains, however, as to how genomic resources, including the Populus genome, can be used to understand ecosystem function. Although examples are limited, progress in this area is encouraging and will undoubtedly improve as

  19. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    PubMed Central

    Labbé, Jessy L.; Weston, David J.; Dunkirk, Nora; Pelletier, Dale A.; Tuskan, Gerald A.

    2014-01-01

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two additional Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were included for comparative purposes. We analyzed the effect of co-cultivation of these 23 individual Pseudomonas strains on Laccaria bicolor “S238N” growth rate, mycelial architecture and transcriptional changes. Nineteen of the 23 Pseudomonas strains tested had positive effects on L. bicolor S238N growth, as well as on mycelial architecture, with strains GM41 and GM18 having the most significant effect. Four of seven L. bicolor reporter genes, Tra1, Tectonin2, Gcn5, and Cipc1, thought to be regulated during the interaction with MHB strain BBc6R8, were induced or repressed, while interacting with Pseudomonas strains GM17, GM33, GM41, GM48, Pf-5, and BBc6R8. Strain GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve L. bicolor root colonization on Populus. This tripartite relationship could be exploited for Populus species/genotypes nursery production as a means of improving establishment and survival in marginal lands. PMID:25386184

  20. The SHORT-ROOT-like gene PtSHR2B is involved in Populus phellogen activity.

    PubMed

    Miguel, Andreia; Milhinhos, Ana; Novák, Ondřej; Jones, Brian; Miguel, Célia M

    2016-03-01

    SHORT-ROOT (SHR) is a GRAS transcription factor first characterized for its role in the specification of the stem cell niche and radial patterning in Arabidopsis thaliana (At) roots. Three SHR-like genes have been identified in Populus trichocarpa (Pt). PtSHR1 shares high similarity with AtSHR over the entire length of the coding sequence. The two other Populus SHR-like genes, PtSHR2A and PtSHR2B, are shorter in their 5' ends when compared with AtSHR. Unlike PtSHR1, that is expressed throughout the cambial zone of greenhouse-grown Populus trees, PtSHR2Bprom:uidA expression was detected in the phellogen. Additionally, PtSHR1 and PtSHR2B expression patterns markedly differ in the shoot apex and roots of in vitro plants. Transgenic hybrid aspen expressing PtSHR2B under the 35S constitutive promoter showed overall reduced tree growth while the proportion of bark increased relative to the wood. Reverse transcription-quantitative PCR (RT-qPCR) revealed increased transcript levels of cytokinin metabolism and response-related genes in the transgenic plants consistent with an increase of total cytokinin levels. This was confirmed by cytokinin quantification by LC-MS/MS. Our results indicate that PtSHR2B appears to function in the phellogen and therefore in the regulation of phellem and periderm formation, possibly acting through modulation of cytokinin homeostasis. Furthermore, this work points to a functional diversification of SHR after the divergence of the Populus and Arabidopsis lineages. This finding may contribute to selection and breeding strategies of cork oak in which, unlike Populus, the phellogen is active throughout the entire tree lifespan, being at the basis of a highly profitable cork industry.

  1. Molecular evolution and expression divergence of the Populus polygalacturonase supergene family shed light on the evolution of increasingly complex organs in plants.

    PubMed

    Yang, Zhi-Ling; Liu, Hai-Jing; Wang, Xiao-Ru; Zeng, Qing-Yin

    2013-03-01

    Plant polygalacturonases (PGs) are involved in cell separation processes during many stages of plant development. Investigation into the diversification of this large gene family in land plants could shed light on the evolution of structural development. We conducted whole-genome annotation, molecular evolution and gene expression analyses of PG genes in five species of land plant: Populus, Arabidopsis, rice, Selaginella and Physcomitrella. We identified 75, 44, 16 and 11 PG genes from Populus, rice, Selaginella and Physcomitrella genomes, respectively, which were divided into three classes. We inferred rapid expansion of class I PG genes in Populus, Arabidopsis and rice, while copy numbers of classes II and III PG genes were relatively conserved in all five species. Populus, Arabidopsis and rice class I PG genes were under more relaxed selection constraints than class II PG genes, while this selective pressure divergence was not observed in Selaginella and Physcomitrella PG families. In addition, class I PG genes underwent marked expression divergence in Populus, rice and Selaginella. Our results suggest that PG gene expansion occurred after the divergence of the lycophytes and euphyllophytes, and this expansion was likely paralleled by the evolution of increasingly complex organs in land plants.

  2. Conservation and divergence of microRNAs in Populus

    PubMed Central

    Barakat, Abdelali; Wall, Phillip K; DiLoreto, Scott; dePamphilis, Claude W; Carlson, John E

    2007-01-01

    Background MicroRNAs (miRNAs) are small RNAs (sRNA) ~21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. miRNAs have been extensively analyzed in Arabidopsis and rice and partially investigated in other non-model plant species. To date, 109 and 62 miRNA families have been identified in Arabidopsis and rice respectively. However, only 33 miRNAs have been identified from the genome of the model tree species (Populus trichocarpa), of which 11 are Populus specific. The low number of miRNA families previously identified in Populus, compared with the number of families identified in Arabidopsis and rice, suggests that many miRNAs still remain to be discovered in Populus. In this study, we analyzed expressed small RNAs from leaves and vegetative buds of Populus using high throughput pyrosequencing. Results Analysis of almost eighty thousand small RNA reads allowed us to identify 123 new sequences belonging to previously identified miRNA families as well as 48 new miRNA families that could be Populus-specific. Comparison of the organization of miRNA families in Populus, Arabidopsis and rice showed that miRNA family sizes were generally expanded in Populus. The putative targets of non-conserved miRNA include both previously identified targets as well as several new putative target genes involved in development, resistance to stress, and other cellular processes. Moreover, almost half of the genes predicted to be targeted by non-conserved miRNAs appear to be Populus-specific. Comparative analyses showed that genes targeted by conserved and non-conserved miRNAs are biased mainly towards development, electron transport and signal transduction processes. Similar results were found for non-conserved miRNAs from Arabidopsis. Conclusion Our results suggest that while there is a conserved set of miRNAs among plant species, a large fraction of miRNAs vary among species. The non-conserved miRNAs may

  3. Characterization of DWARF14 Genes in Populus

    PubMed Central

    Zheng, Kaijie; Wang, Xiaoping; Weighill, Deborah A.; Guo, Hao-Bo; Xie, Meng; Yang, Yongil; Yang, Jun; Wang, Shucai; Jacobson, Daniel A.; Guo, Hong; Muchero, Wellington; Tuskan, Gerald A.; Chen, Jin-Gui

    2016-01-01

    Strigolactones are a new class of plant hormones regulating shoot branching and symbiotic interactions with arbuscular mycorrhizal fungi. Studies of branching mutants in herbaceous plants have identified several key genes involved in strigolactone biosynthesis or signaling. The strigolactone signal is perceived by a member of the α/β-fold hydrolase superfamily, known as DWARF14 (D14). However, little is known about D14 genes in the woody perennial plants. Here we report the identification of D14 homologs in the model woody plant Populus trichocarpa. We showed that there are two D14 homologs in P. trichocarpa, designated as PtD14a and PtD14b that are over 95% similar at the amino acid level. Expression analysis indicated that the transcript level of PtD14a is generally more abundant than that of PtD14b. However, only PtD14a was able to complement Arabidopsis d14 mutants, suggesting that PtD14a is the functional D14 ortholog. Amino acid alignment and structural modeling revealed substitutions of several highly conserved amino acids in the PtD14b protein including a phenylalanine near the catalytic triad of D14 proteins. This study lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants. PMID:26875827

  4. Characterization of DWARF14 Genes in Populus

    SciTech Connect

    Zheng, Kaijie; Wang, Xiaoping; Weighill, Deborah A.; Guo, Hao-Bo; Xie, Meng; Yang, Yongil; Yang, Jun; Wang, Shucai; Jacobson, Daniel A.; Guo, Hong; Muchero, Wellington; Tuskan, Gerald A.; Chen, Jin-Gui

    2016-02-15

    Strigolactones are a new class of plant hormones regulating shoot branching and symbiotic interactions with arbuscular mycorrhizal fungi. Studies of branching mutants in herbaceous plants have identified several key genes involved in strigolactone biosynthesis or signaling. The strigolactone signal is perceived by a member of the α/β-fold hydrolase superfamily, known as DWARF14 (D14). However, little is known about D14 genes in the woody perennial plants. Here we report the identification of D14 homologs in the model woody plant Populus trichocarpa. We showed that there are two D14 homologs in P. trichocarpa, designated as PtD14a and PtD14b that are over 95% similar at the amino acid level. Expression analysis indicated that the transcript level of PtD14a is generally more abundant than that of PtD14b. However, only PtD14a was able to complement Arabidopsis d14 mutants, suggesting that PtD14a is the functional D14 ortholog. Amino acid alignment and structural modeling revealed substitutions of several highly conserved amino acids in the PtD14b protein including a phenylalanine near the catalytic triad of D14 proteins. Ultimately, we find this study lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.

  5. Variable Nitrogen Fixation in Wild Populus

    PubMed Central

    Doty, Sharon L.; Sher, Andrew W.; Fleck, Neil D.; Khorasani, Mahsa; Bumgarner, Roger E.; Khan, Zareen; Ko, Andrew W. K.; Kim, Soo-Hyung; DeLuca, Thomas H.

    2016-01-01

    The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N) is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees. PMID:27196608

  6. Characterization of DWARF14 Genes in Populus

    DOE PAGES

    Zheng, Kaijie; Wang, Xiaoping; Weighill, Deborah A.; ...

    2016-02-15

    Strigolactones are a new class of plant hormones regulating shoot branching and symbiotic interactions with arbuscular mycorrhizal fungi. Studies of branching mutants in herbaceous plants have identified several key genes involved in strigolactone biosynthesis or signaling. The strigolactone signal is perceived by a member of the α/β-fold hydrolase superfamily, known as DWARF14 (D14). However, little is known about D14 genes in the woody perennial plants. Here we report the identification of D14 homologs in the model woody plant Populus trichocarpa. We showed that there are two D14 homologs in P. trichocarpa, designated as PtD14a and PtD14b that are over 95%more » similar at the amino acid level. Expression analysis indicated that the transcript level of PtD14a is generally more abundant than that of PtD14b. However, only PtD14a was able to complement Arabidopsis d14 mutants, suggesting that PtD14a is the functional D14 ortholog. Amino acid alignment and structural modeling revealed substitutions of several highly conserved amino acids in the PtD14b protein including a phenylalanine near the catalytic triad of D14 proteins. Ultimately, we find this study lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.« less

  7. Defining hybrid poplar (Populus deltoides x Populus trichocarpa) tolerance to ozone: identifying key parameters.

    PubMed

    Ryan, A; Cojocariu, C; Possell, M; Davies, W J; Hewitt, C N

    2009-01-01

    This study examined whether two genotypes of hybrid poplar (Populus deltoides x Populus trichocarpa), previously classified as ozone tolerant and ozone sensitive, had differing physiological and biochemical responses when fumigated with 120 nL L(-1) ozone for 6 h per day for eight consecutive days. Isoprene emission rate, ozone uptake and a number of physiological and biochemical parameters were investigated before, during and after fumigation with ozone. Previous studies have shown that isoprene protects plants against oxidative stress. Therefore, it was hypothesized that these two genotypes would differ in either their basal isoprene emission rates or in the response of isoprene to fumigation by ozone. Our results showed that the basal emission rates of isoprene, physiological responses and ozone uptake rates were all similar. However, significant differences were found in visible damage, carotenoids, hydrogen peroxide (H(2)O(2)), thiobarbituric acid reactions (TBARS) and post-fumigation isoprene emission rates. It is shown that, although the classification of ozone tolerance or sensitivity had been previously clearly and carefully defined using one particular set of parameters, assessment of other key variables does not necessarily lead to the same conclusions. Thus, it may be necessary to reconsider the way in which plants are classified as ozone tolerant or sensitive.

  8. Agrobacterium-Mediated Stable Genetic Transformation of Populus angustifolia and Populus balsamifera

    PubMed Central

    Maheshwari, Priti; Kovalchuk, Igor

    2016-01-01

    The present study demonstrates Agrobacterium tumefaciens-mediated stable genetic transformation of two species of poplar – Populus angustifolia and Populus balsamifera. The binary vector pCAMBIA-Npro-long-Luc containing the luciferase reporter gene was used to transform stem internode and axillary bud explants. Putative transformants were regenerated on selection-free medium using our previously established in vitro regeneration method. Explant type, genotype, effect of pre-culture, Agrobacterium concentration, a time period of infection and varying periods of co-culture with bacteria were tested for the transformation frequency. The highest frequency of transformation was obtained with stem internode explants pre-cultured for 2 days, infected with Agrobacterium culture at the concentration of OD600 = 0.5 for 10 min and co-cultivated with Agrobacterium for 48 h. Out of the two genotypes tested, P. balsamifera exhibited a higher transformation rate in comparison to P. angustifolia. The primary transformants that exhibited luciferase activity in a bioluminescence assay under the CCD camera when subjected to polymerase chain reaction and Southern blot analysis revealed a stable single-copy integration of luc in their genomes. The reported protocol is highly reproducible and can be applied to other species of poplar; it will also be useful for future genetic engineering of one of the most important families of woody plants for sustainable development. PMID:27014319

  9. [Morphological analysis of transgenic tobacco plants expressing the PnEXPA3 gene of black poplar (Populus nigra)].

    PubMed

    Kuluev, B R; Safiullina, M G; Kniazev, A V; Chemeris, A V

    2013-01-01

    Transgenic tobacco plants overexpressing the PnEXPA3 gene of black poplar (Populus nigra), which encodes alpha-expansin, were obtained. The transgenic plants were characterized by increased size of epidermic and mesophyll cells of leaves. However, the size of leaves remained normal. Overexpression of the PnEXPA3 gene provided stimulatory effect only on the stem length. Other morphological traits of the transgenic plants remained unchanged.

  10. Molecular linkage maps of the Populus genome.

    PubMed

    Yin, Tongming; Zhang, Xinye; Huang, Minren; Wang, Minxiu; Zhuge, Qiang; Tu, Shengming; Zhu, Li-Huang; Wu, Rongling

    2002-06-01

    We report molecular genetic linkage maps for an interspecific hybrid population of Populus, a model system in forest-tree biology. The hybrids were produced by crosses between P. deltoides (mother) and P. euramericana (father), which is a natural hybrid of P. deltoides (grandmother) and P. nigra (grandfather). Linkage analysis from 93 of the 450 backcross progeny grown in the field for 15 years was performed using random amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), and inter-simple sequence repeats (ISSRs). Of a total of 839 polymorphic markers identified, 560 (67%) were testcross markers heterozygous in one parent but null in the other (segregating 1:1), 206 (25%) were intercross dominant markers heterozygous in both parents (segregating 3:1), and the remaining 73 (9%) were 19 non-parental RAPD markers (segregating 1:1) and 54 codominant AFLP markers (segregating 1:1:1:1). A mixed set of the testcross markers, non-parental RAPD markers, and codominant AFLP markers was used to construct two linkage maps, one based on the P. deltoides (D) genome and the other based on P. euramericana (E). The two maps showed nearly complete coverage of the genome, spanning 3801 and 3452 cM, respectively. The availability of non-parental RAPD and codominant AFLP markers as orthologous genes allowed for a direct comparison of the rate of meiotic recombination between the two different parental species. Generally, the rate of meiotic recombination was greater for males than females in our interspecific poplar hybrids. The confounded effect of sexes and species causes the mean recombination distance of orthologous markers to be 11% longer for the father (P. euramericana; interspecific hybrid) than for the mother (P. deltoides; pure species). The linkage maps constructed and the interspecific poplar hybrid population in which clonal replicates for individual genotypes are available present a comprehensive foundation for future genomic studies and

  11. Evolutionary Quantitative Genomics of Populus trichocarpa.

    PubMed

    Porth, Ilga; Klápště, Jaroslav; McKown, Athena D; La Mantia, Jonathan; Guy, Robert D; Ingvarsson, Pär K; Hamelin, Richard; Mansfield, Shawn D; Ehlting, Jürgen; Douglas, Carl J; El-Kassaby, Yousry A

    2015-01-01

    Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing QST-FST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant QST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to climate

  12. Evolutionary Quantitative Genomics of Populus trichocarpa

    PubMed Central

    McKown, Athena D.; La Mantia, Jonathan; Guy, Robert D.; Ingvarsson, Pär K.; Hamelin, Richard; Mansfield, Shawn D.; Ehlting, Jürgen; Douglas, Carl J.; El-Kassaby, Yousry A.

    2015-01-01

    Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing QST -FST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant QST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to

  13. Salt stress induces the formation of a novel type of 'pressure wood' in two Populus species.

    PubMed

    Janz, Dennis; Lautner, Silke; Wildhagen, Henning; Behnke, Katja; Schnitzler, Jörg-Peter; Rennenberg, Heinz; Fromm, Jörg; Polle, Andrea

    2012-04-01

    • Salinity causes osmotic stress and limits biomass production of plants. The goal of this study was to investigate mechanisms underlying hydraulic adaptation to salinity. • Anatomical, ecophysiological and transcriptional responses to salinity were investigated in the xylem of a salt-sensitive (Populus × canescens) and a salt-tolerant species (Populus euphratica). • Moderate salt stress, which suppressed but did not abolish photosynthesis and radial growth in P. × canescens, resulted in hydraulic adaptation by increased vessel frequencies and decreased vessel lumina. Transcript abundances of a suite of genes (FLA, COB-like, BAM, XET, etc.) previously shown to be activated during tension wood formation, were collectively suppressed in developing xylem, whereas those for stress and defense-related genes increased. A subset of cell wall-related genes was also suppressed in salt-exposed P. euphratica, although this species largely excluded sodium and showed no anatomical alterations. Salt exposure influenced cell wall composition involving increases in the lignin : carbohydrate ratio in both species. • In conclusion, hydraulic stress adaptation involves cell wall modifications reciprocal to tension wood formation that result in the formation of a novel type of reaction wood in upright stems named 'pressure wood'. Our data suggest that transcriptional co-regulation of a core set of genes determines reaction wood composition.

  14. Genomics of Secondary Metabolism in Populus: Interactions with Biotic and Abiotic Environments

    SciTech Connect

    Chen, F.; Liu, C.; Tschaplinski, T. J.; Zhao, N.

    2009-09-01

    Populus trees face constant challenges from the environment during their life cycle. To ensure their survival and reproduction, Populus trees deploy various types of defenses, one of which is the production of a myriad of secondary metabolites. Compounds derived from the shikimate-phenylpropanoid pathway are the most abundant class of secondary metabolites synthesized in Populus. Among other major classes of secondary metabolites in Populus are terpenoids and fatty acid-derivatives. Some of the secondary metabolites made by Populus trees have been functionally characterized. Some others have been associated with certain biological/ecological processes, such as defense against insects and microbial pathogens or acclimation or adaptation to abiotic stresses. Functions of many Populus secondary metabolites remain unclear. The advent of various novel genomic tools will enable us to explore in greater detail the complexity of secondary metabolism in Populus. Detailed data mining of the Populus genome sequence can unveil candidate genes of secondary metabolism. Metabolomic analysis will continue to identify new metabolites synthesized in Populus. Integrated genomics that combines various 'omics' tools will prove to be the most powerful approach in revealing the molecular and biochemical basis underlying the biosynthesis of secondary metabolites in Populus. Characterization of the biological/ecological functions of secondary metabolites as well as their biosynthesis will provide knowledge and tools for genetically engineering the production of seconday metabolites that can lead to the generation of novel, improved Populus varieties.

  15. Comparative interrogation of the developing xylem transcriptomes of two wood-forming species: Populus trichocarpa and Eucalyptus grandis.

    PubMed

    Hefer, Charles A; Mizrachi, Eshchar; Myburg, Alexander A; Douglas, Carl J; Mansfield, Shawn D

    2015-06-01

    Wood formation is a complex developmental process governed by genetic and environmental stimuli. Populus and Eucalyptus are fast-growing, high-yielding tree genera that represent ecologically and economically important species suitable for generating significant lignocellulosic biomass. Comparative analysis of the developing xylem and leaf transcriptomes of Populus trichocarpa and Eucalyptus grandis together with phylogenetic analyses identified clusters of homologous genes preferentially expressed during xylem formation in both species. A conserved set of 336 single gene pairs showed highly similar xylem preferential expression patterns, as well as evidence of high functional constraint. Individual members of multi-gene orthologous clusters known to be involved in secondary cell wall biosynthesis also showed conserved xylem expression profiles. However, species-specific expression as well as opposite (xylem versus leaf) expression patterns observed for a subset of genes suggest subtle differences in the transcriptional regulation important for xylem development in each species. Using sequence similarity and gene expression status, we identified functional homologs likely to be involved in xylem developmental and biosynthetic processes in Populus and Eucalyptus. Our study suggests that, while genes involved in secondary cell wall biosynthesis show high levels of gene expression conservation, differential regulation of some xylem development genes may give rise to unique xylem properties.

  16. Suppression of PtrDUF579-3 Expression Causes Structural Changes of the Glucuronoxylan in Populus

    PubMed Central

    Song, Dongliang; Gui, Jinshan; Liu, Chenchen; Sun, Jiayan; Li, Laigeng

    2016-01-01

    DUF579 (domain unknown function 579) genes have been reported to play diverse roles in cell wall biosynthesis, such as in glucuronoxylan (GX) synthesis. As GX is a major type of hemicelluloses in hard wood species, how DUF579 genes function in wood formation remains to be demonstrated in planta. This study reports a Populus DUF579 gene, PtrDUF579-3, which is characterized for its function in wood cell wall formation. PtrDUF579-3 is localized in Golgi apparatus and catalyzes methylation of the glucuronic acid (GlcA) in GX biosynthesis. Suppression of PtrDUF579-3 expression in Populus caused a reduction in both the GlcA side chain number and GlcA side chain methylation on the GX backbone. The modified GX polymer through PtrDUF579-3 suppression was more susceptible to acid treatment and the PtrDUF579-3 suppressed plants displayed enhanced cellulose digestibility. These results suggest that PtrDUF579-3 is involved in GX biosynthesis and GX structure can be modified through PtrDUF579-3 suppression in Populus. PMID:27148318

  17. Drought induces alterations in the stomatal development program in Populus.

    PubMed

    Hamanishi, Erin T; Thomas, Barb R; Campbell, Malcolm M

    2012-08-01

    Much is known about the physiological control of stomatal aperture as a means by which plants adjust to water availability. By contrast, the role played by the modulation of stomatal development to limit water loss has received much less attention. The control of stomatal development in response to water deprivation in the genus Populus is explored here. Drought induced declines in stomatal conductance as well as an alteration in stomatal development in two genotypes of Populus balsamifera. Leaves that developed under water-deficit conditions had lower stomatal indices than leaves that developed under well-watered conditions. Transcript abundance of genes that could hypothetically underpin drought-responsive changes in stomatal development was examined, in two genotypes, across six time points, under two conditions, well-watered and with water deficit. Populus homologues of STOMAGEN, ERECTA (ER), STOMATA DENSITY AND DISTRIBUTION 1 (SDD1), and FAMA had variable transcript abundance patterns congruent with their role in the modulation of stomatal development in response to drought. Conversely, there was no significant variation in transcript abundance between genotypes or treatments for the Populus homologues of YODA (YDA) and TOO MANY MOUTHS (TMM). The findings highlight the role that could be played by stomatal development during leaf expansion as a longer term means by which to limit water loss from leaves. Moreover, the results point to the key roles played by the regulation of the homologues of STOMAGEN, ER, SDD1, and FAMA in the control of this response in poplar.

  18. Genome structure and primitive sex chromosome revealed in Populus

    SciTech Connect

    Tuskan, Gerald A; Yin, Tongming; Gunter, Lee E; Blaudez, D

    2008-01-01

    We constructed a comprehensive genetic map for Populus and ordered 332 Mb of sequence scaffolds along the 19 haploid chromosomes in order to compare chromosomal regions among diverse members of the genus. These efforts lead us to conclude that chromosome XIX in Populus is evolving into a sex chromosome. Consistent segregation distortion in favor of the sub-genera Tacamahaca alleles provided evidence of divergent selection among species, particularly at the proximal end of chromosome XIX. A large microsatellite marker (SSR) cluster was detected in the distorted region even though the genome-wide distribute SSR sites was uniform across the physical map. The differences between the genetic map and physical sequence data suggested recombination suppression was occurring in the distorted region. A gender-determination locus and an overabundance of NBS-LRR genes were also co-located to the distorted region and were put forth as the cause for divergent selection and recombination suppression. This hypothesis was verified by using fine-scale mapping of an integrated scaffold in the vicinity of the gender-determination locus. As such it appears that chromosome XIX in Populus is in the process of evolving from an autosome into a sex chromosome and that NBS-LRR genes may play important role in the chromosomal diversification process in Populus.

  19. Differential Detection of Genetic Loci Underlying Stem and Root Lignin Content in Populus

    SciTech Connect

    Yin, Tongming; Zhang, Xinye; Gunter, Lee E; Ranjan, Priya; Sykes, Robert; Davis, Dr. Mark F.; Wullschleger, Stan D; Tuskan, Gerald A

    2010-01-01

    In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration.

  20. Differential detection of genetic loci underlying stem and root lignin content in Populus

    SciTech Connect

    Tuskan, Gerald A; Yin, Tongming; Zhang, Xinye; Gunter, Lee E; Ranjan, Priya; Sykes, Robert; Davis, Dr. Mark F.; Wullschleger, Stan D

    2010-11-01

    For simultaneous applications directed towards improved pulp yields, enhanced bioethanol production and increased carbon sequestration, it would be desirable to reduce lignin in the harvested stem while increasing the lignin content in nonharvested roots. In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration.

  1. Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy.

    PubMed

    Olsson, Anne-Mari; Bjurhager, Ingela; Gerber, Lorenz; Sundberg, Björn; Salmén, Lennart

    2011-06-01

    Polarisation Fourier transform infra-red (FTIR) microspectroscopy was used to characterize the organisation and orientation of wood polymers in normal wood and tension wood from hybrid aspen (Populus tremula × Populus tremuloides). It is shown that both xylan and lignin in normal wood are highly oriented in the fibre wall. Their orientation is parallel with the cellulose microfibrils and hence in the direction of the fibre axis. In tension wood a similar orientation of lignin was found. However, in tension wood absorption peaks normally assigned to xylan exhibited a 90° change in the orientation dependence of the vibrations as compared with normal wood. The molecular origin of these vibrations are not known, but they are abundant enough to mask the orientation dependence of the xylan signal from the S₂ layer in tension wood and could possibly come from other pentose sugars present in, or associated with, the gelatinous layer of tension wood fibres.

  2. Isolation and expression analysis of low temperature-induced genes in white poplar (Populus alba).

    PubMed

    Maestrini, Pierluigi; Cavallini, Andrea; Rizzo, Milena; Giordani, Tommaso; Bernardi, Rodolfo; Durante, Mauro; Natali, Lucia

    2009-09-15

    Poplar is an important crop and a model system to understand molecular processes of growth, development and responses to environmental stimuli in trees. In this study, we analyzed gene expression in white poplar (Populus alba) plants subjected to chilling. Two forward suppression-subtractive-hybridization libraries were constructed from P. alba plants exposed to low non-freezing temperature for 6 or 48h. Hundred and sixty-two cDNAs, 54 from the 6-h library and 108 from the 48-h library, were obtained. Isolated genes belonged to six categories of genes, specifically those that: (i) encode stress and defense proteins; (ii) are involved in signal transduction; (iii) are related to regulation of gene expression; (iv) encode proteins involved in cell cycle and DNA processing; (v) encode proteins involved in metabolism and energetic processes; and (vi) are involved in protein fate. Different expression patterns at 3, 6, 12, 24, 48h at 4 degrees C and after a recovery of 24h at 20 degrees C were observed for isolated genes, as expected according to the class in which the gene putatively belongs. Forty-four of 162 genes contained DRE/LTRE cis-elements in the 5' proximal promoter of their orthologs in Populus trichocarpa, suggesting that they putatively belong to the CBF regulon. The results contribute new data to the list of possible candidate genes involved in cold response in poplar.

  3. Fractionation of alkali-solubilized hemicelluloses from delignified Populus gansuensis: structure and properties.

    PubMed

    Peng, Feng; Ren, Jun-Li; Xu, Feng; Bian, Jing; Peng, Pai; Sun, Run-Cang

    2010-05-12

    The dewaxed cell walls of Populus gansuensis were delignified with NaClO(2) and then sequentially extracted with 0.25, 0.5, and 1.0 M KOH under a solid to liquid ratio of 1: 25 (g mL(-1)) at 25 degrees C for 10 h. The successive treatments together resulted in the dissolution of 83.7% of original hemicelluloses. The solubilized hemicellulosic fractions were further fractionated into six hemicellulosic subfractions by an iodine-complex precipitation technique. Their chemical and physical characteristics were determined by HPAEC, GPC, FT-IR, and (1)H and (13)C NMR spectroscopy. Neutral sugar composition and molecular weight analysis showed that, for each extract, the hemicellulosic subfractions that precipitated with aqueous potassium iodide-iodine had lower overall uronic acid/xylose (Uro/Xyl) ratios and higher molecular weights (M(w)) than those remaining in the solution. FT-IR, (1)H, and (13)C NMR spectroscopy analysis indicated that the alkali-soluble hemicelluloses of Populus gansuensis had a structure composed of the (1 --> 4)-linked beta-D-xylopyranosyl backbone with 4-O-methyl-alpha-D-glucuronic acid attached to O-2 of the xylose residues.

  4. Methylation of miRNA genes in the response to temperature stress in Populus simonii

    PubMed Central

    Ci, Dong; Song, Yuepeng; Tian, Min; Zhang, Deqiang

    2015-01-01

    DNA methylation and miRNAs provide crucial regulation of the transcriptional and post-transcriptional responses to abiotic stress. In this study, we used methylation-sensitive amplification polymorphisms to identify 1066 sites that were differentially methylated in response to temperature stress in Populus simonii. Among these loci, BLAST searches of miRBase identified seven miRNA genes. Expression analysis by quantitative real-time PCR suggested that the methylation pattern of these miRNA genes probably influences their expression. Annotation of these miRNA genes in the sequenced genome of Populus trichocarpa found three target genes (Potri.007G090400, Potri.014G042200, and Potri.010G176000) for the miRNAs produced from five genes (Ptc-MIR396e and g, Ptc-MIR156i and j, and Ptc-MIR390c) respectively. The products of these target genes function in lipid metabolism to deplete lipid peroxide. We also constructed a network based on the interactions between DNA methylation and miRNAs, miRNAs and target genes, and the products of target genes and the metabolic factors that they affect, including H2O2, malondialdehyde, catalase (CAT), and superoxide dismutase. Our results suggested that DNA methylation probably regulates the expression of miRNA genes, thus affecting expression of their target genes, likely through the gene-silencing function of miRNAs, to maintain cell survival under abiotic stress conditions. PMID:26579167

  5. Increasing the productivity of short-rotation Populus plantations. Final report

    SciTech Connect

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.; Radwan, M.A.; Zasada, J.C.

    1997-12-31

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. Seven research papers are included which provide detailed methods, results, and interpretations on these topics.

  6. Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa.

    PubMed

    Yang, X H; Li, X G; Li, B L; Zhang, D Q

    2014-11-11

    Wood formation occurs via cell division, primary cell wall and secondary wall formation, and programmed cell death in the vascular cambium. Transcriptional profiling of secondary xylem differentiation is essential for understanding the molecular mechanisms underlying wood formation. Differential gene expression in secondary xylem differentiation of Populus has been previously investigated using cDNA microarray analysis. However, little is known about the molecular mechanisms from a genome-wide perspective. In this study, the Affymetrix poplar genome chips containing 61,413 probes were used to investigate the changes in the transcriptome during secondary xylem differentiation in Chinese white poplar (Populus tomentosa). Two xylem tissues (newly formed and lignified) were sampled for genome-wide transcriptional profiling. In total, 6843 genes (~11%) were identified with differential expression in the two xylem tissues. Many genes involved in cell division, primary wall modification, and cellulose synthesis were preferentially expressed in the newly formed xylem. In contrast, many genes, including 4-coumarate:cinnamate-4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and caffeoyl CoA 3-O-methyltransferase (CCoAOMT), associated with lignin biosynthesis were more transcribed in the lignified xylem. The two xylem tissues also showed differential expression of genes related to various hormones; thus, the secondary xylem differentiation could be regulated by hormone signaling. Furthermore, many transcription factor genes were preferentially expressed in the lignified xylem, suggesting that wood lignification involves extensive transcription regulation. The genome-wide transcriptional profiling of secondary xylem differentiation could provide additional insights into the molecular basis of wood formation in poplar species.

  7. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration.

    PubMed

    McCown, B H; McCabe, D E; Russell, D R; Robison, D J; Barton, K A; Raffa, K F

    1991-02-01

    Three different target tissues (protoplast-derived cells, nodules, and stems) and two unrelated hybrid genotypes of Populus (P. alba x P. grandidentata 'Crandon' and P. nigra 'Betulifolia' x P. trichocarpa) have been stably transformed by electric discharge particle acceleration using a 18.7 kb plasmid containing NOS-NPT, CaMV 35S-GUS, and CaMV 35S-BT. Four transformed plants of one hybrid genotype, NC5339, containing all 3 genes were recovered and analyzed. Two expressed GUS and one was highly resistant to feeding by 2 lepidopteran pests (the forest tent caterpillar, Malacosoma disstria, and the gypsy moth, Lymantria dispar.) Pretreatment of the target tissues, fine-tuning of the bombardment parameters, and the use of a selection technique employing flooding of the target tissues were important for reliable recovery of transformed plants.

  8. Antisense expression of the fasciclin-like arabinogalactan protein FLA6 gene in Populus inhibits expression of its homologous genes and alters stem biomechanics and cell wall composition in transgenic trees.

    PubMed

    Wang, Haihai; Jiang, Chunmei; Wang, Cuiting; Yang, Yang; Yang, Lei; Gao, Xiaoyan; Zhang, Hongxia

    2015-03-01

    Fasciclin-like arabinogalactan proteins (FLAs) play important roles in the growth and development of roots, stems, and seeds in Arabidopsis. However, their biological functions in woody plants are largely unknown. In this work, we investigated the possible function of PtFLA6 in poplar. Quantitative real-time PCR, PtFLA6-yellow fluorescent protein (YFP) fusion protein subcellular localization, Western blotting, and immunohistochemical analyses demonstrated that the PtFLA6 gene was expressed specifically in the xylem of mature stem, and PtFLA6 protein was distributed ubiquitous in plant cells and accumulated predominantly in stem xylem fibres. Antisense expression of PtFLA6 in the aspen hybrid clone Poplar davidiana×Poplar bolleana reduced the transcripts of PtFLA6 and its homologous genes. Transgenic plants that showed a significant reduction in the transcripts of PtFLAs accumulated fewer PtFLA6 and arabinogalactan proteins than did the non-transgenic plants, leading to reduced stem flexural strength and stiffness. Further studies revealed that the altered stem biomechanics of transgenic plants could be attributed to the decreased cellulose and lignin composition in the xylem. In addition expression of some xylem-specific genes involved in cell wall biosynthesis was downregulated in these transgenic plants. All these results suggest that engineering the expression of PtFLA6 and its homologues could modulate stem mechanical properties by affecting cell wall composition in trees.

  9. Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in Populus and Arabidopsis

    PubMed Central

    Yuan, Yinan; Chung, Jeng-Der; Fu, Xueyan; Johnson, Virgil E.; Ranjan, Priya; Booth, Sarah L.; Harding, Scott A.; Tsai, Chung-Jui

    2009-01-01

    Isochorismate synthase (ICS) converts chorismate to isochorismate for the biosynthesis of phylloquinone, an essential cofactor for photosynthetic electron transport. ICS is also required for salicylic acid (SA) synthesis during Arabidopsis defense. In several other species, including Populus, SA is derived primarily from the phenylpropanoid pathway. We therefore sought to investigate ICS regulation in Populus to learn the extent of ICS involvement in SA synthesis and defense. Arabidopsis harbors duplicated AtICS genes that differ in their exon-intron structure, basal expression, and stress inducibility. In contrast, we found a single ICS gene in Populus and six other sequenced plant genomes, pointing to the AtICS duplication as a lineage-specific event. The Populus ICS encodes a functional plastidic enzyme, and was not responsive to stresses that stimulated phenylpropanoid accumulation. Populus ICS underwent extensive alternative splicing that was rare for the duplicated AtICSs. Sequencing of 184 RT-PCR Populus clones revealed 37 alternative splice variants, with normal transcripts representing ≈50% of the population. When expressed in Arabidopsis, Populus ICS again underwent alternative splicing, but did not produce normal transcripts to complement AtICS1 function. The splice-site sequences of Populus ICS are unusual, suggesting a causal link between junction sequence, alternative splicing, and ICS function. We propose that gene duplication and alternative splicing of ICS evolved independently in Arabidopsis and Populus in accordance with their distinct defense strategies. AtICS1 represents a divergent isoform for inducible SA synthesis during defense. Populus ICS primarily functions in phylloquinone biosynthesis, a process that can be sustained at low ICS transcript levels. PMID:19996170

  10. The complete chloroplast genome sequence of desert poplar (Populus euphratica).

    PubMed

    Zhang, Qun-jie; Gao, Li-zhi

    2016-01-01

    The complete chloroplast sequence of the desert poplar (Populus euphratica), a plant well-adapted to salt stress, was determined in this study. The genome consists of 156,766 bp containing a pair of inverted repeats (IRs) of 16,591 bp separated by a large single-copy region and a small single-copy region of 84,888 bp and 27,646 bp, respectively. The chloroplast genome contains 130 known genes, including 89 protein-coding genes, 8 ribosomal RNA genes, and 37 tRNA genes; 18 of these are located in the inverted repeat region.

  11. Water use sources of desert riparian Populus euphratica forests.

    PubMed

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  12. Nucleotide diversity and linkage disequilibrium in balsam poplar (Populus balsamifera).

    PubMed

    Olson, Matthew S; Robertson, Amanda L; Takebayashi, Naoki; Silim, Salim; Schroeder, William R; Tiffin, Peter

    2010-04-01

    *Current perceptions that poplars have high levels of nucleotide variation, large effective population sizes, and rapid decay of linkage disequilibrium are based primarily on studies from one poplar species, Populus tremula. *We analysed 590 gene fragments (average length 565 bp) from each of 15 individuals from different populations from throughout the range of Populus balsamifera. *Nucleotide diversity (theta(total) = 0.0028, pi = 0.0027) was low compared with other trees and model agricultural systems. Patterns of nucleotide diversity and site frequency spectra were consistent with purifying selection on replacement and intron sites. When averaged across all loci we found no evidence for decay of linkage disequilibrium across 750 bp, consistent with the low estimates of the scaled recombination parameter, rho = 0.0092. *Compared with P. tremula, a well studied congener with a similar distribution, P. balsamifera has low diversity and low effective recombination, both of which indicate a lower effective population size in P. balsamifera. Patterns of diversity and linkage indicate that there is considerable variation in population genomic patterns among poplar species and unlike P. tremula, association mapping techniques in balsam poplar should consider sampling single nucleotide polymorphisms (SNPs) at well-spaced intervals.

  13. Comparative “Golgi” Proteome Study of Lolium multiflorum and Populus trichocarpa

    PubMed Central

    Ford, Kristina L.; Chin, Tony; Srivastava, Vaibhav; Zeng, Wei; Doblin, Monika S.; Bulone, Vincent; Bacic, Antony

    2016-01-01

    The Golgi apparatus (GA) is a crucial organelle in the biosynthesis of non-cellulosic polysaccharides, glycoproteins and proteoglycans that are primarily destined for secretion to the cell surface (plasma membrane, cell wall and apoplast). Only a small proportion of the proteins involved in these processes have been identified in plants, with the majority of their functions still unknown. The availability of a GA proteome would greatly assist plant biochemists, cell and molecular biologists in determining the precise function of the cell wall-related proteins. There has been some progress towards defining the GA proteome in the model plant system Arabidopsis thaliana, yet in commercially important species, such as either the cereals or woody species there has been relatively less progress. In this study, we applied discontinuous sucrose gradient centrifugation to partially enrich GA from suspension cell cultures (SCCs) and combined this with stable isotope labelling (iTRAQ) to determine protein sub-cellular locations. Results from a representative grass species, Italian ryegrass (Lolium multiflorum) and a dicot species, black cottonwood (Populus trichocarpa) are compared. The results confirm that membrane fractionation approaches that provide effective GA-enriched fractions for proteomic analyses in Arabidopsis are much less effective in the species examined here and highlight the complexity of the GA, both within and between species. PMID:28248233

  14. Foliar pathogens of Populus angustifolia are consistent with a hypothesis of Beringian migration into North America.

    PubMed

    Busby, Posy E; Aime, M Catherine; Newcombe, George

    2012-07-01

    Populus angustifolia, the narrowleaf cottonwood, is considered one of two native species of Populus section Tacamahaca restricted to western North America. Efforts to construct a definitive phylogeny of Populus spp. are complicated by ancient hybridization, but some phylogenetic analyses suggest P. angustifolia is more closely related to Asian congeners than to Populus trichocarpa, the other species of Populus section Tacamahaca in western North America. Because hosts and their obligate symbionts can display parallel phylogeographic patterns, we evaluated the possibility of a Beringian migration into North America by an Asian ancestor of P. angustifolia by determining the distributions, host preferences, and, in some cases, closest phylogenetic relatives of fungal leaf pathogens of P. angustifolia. Phyllactinia populi, a common foliar pathogen on Populus spp. in Asia but unknown on P. trichocarpa, was found on P. angustifolia in multiple sites. Mycosphaerella angustifoliorum, also unknown on P. trichocarpa, was commonly collected on P. angustifolia. Conversely, many common foliar pathogens of P. trichocarpa in western North America were not found on P. angustifolia; only Melampsora×columbiana and Drepanopeziza populi were common to both Populus species. Phylogenetic analyses revealed that M. angustifoliorum was not part of the diversification of Mycosphaerella on Populus that includes all other Mycosphaerella species on Populus in North America: Mycosphaerella populicola, Mycosphaerella populorum, M. sp. 1, and M. sp. 2. The latter two undescribed species represent a newly discovered diversification of M. populorum in western North America. Overall, the leaf pathogen community of P. angustifolia is consistent with a Beringian migration into North America by the ancestor of P. angustifolia.

  15. Comparative analysis of GT14/GT14-like family genes in Arabidopsis, Oryza, Populus, Sorghum and Vitis

    SciTech Connect

    Ye, Chuyu; Li, Ting; Tuskan, Gerald A; Tschaplinski, Timothy J; Yang, Xiaohan

    2011-01-01

    Glycosyltransferase family14 (GT14) belongs to the glycosyltransferase (GT) superfamily that plays important roles in the biosynthesis of cell walls, the most abundant source of cellulosic biomass for bioethanol production. It has been hypothesized that DUF266 proteins are a new class of GTs related to GT14. In this study, we identified 62 GT14 and 106 DUF266 genes (named GT14-like herein) in Arabidopsis, Oryza, Populus, Sorghum and Vitis. Our phylogenetic analysis separated GT14 and GT14-like genes into two distinct clades, which were further divided into eight and five groups, respectively. Similarities in protein domain, 3D structure and gene expression were uncovered between the two phylogenetic clades, supporting the hypothesis that GT14 and GT14-like genes belong to one family. Therefore, we proposed a new family name, GT14/GT14-like family that combines both subfamilies. Variation in gene expression and protein subcellular localization within the GT14-like subfamily were greater than those within the GT14 subfamily. One-half of the Arabidopsis and Populus GT14/GT14-like genes were found to be preferentially expressed in stem/xylem, indicating that they are likely involved in cell wall biosynthesis. This study provided new insights into the evolution and functional diversification of the GT14/GT14-like family genes.

  16. Tubulin C-terminal Post-translational Modifications Do Not Occur in Wood Forming Tissue of Populus

    PubMed Central

    Hu, Hao; Gu, Xi; Xue, Liang-Jiao; Swamy, Prashant S.; Harding, Scott A.; Tsai, Chung-Jui

    2016-01-01

    Cortical microtubules (MTs) are evolutionarily conserved cytoskeletal components with specialized roles in plants, including regulation of cell wall biogenesis. MT functions and dynamics are dictated by the composition of their monomeric subunits, α- (TUA) and β-tubulins (TUB), which in animals and protists are subject to both transcriptional regulation and post-translational modifications (PTM). While spatiotemporal regulation of tubulin gene expression has been reported in plants, whether and to what extent tubulin PTMs occur in these species remain poorly understood. We chose the woody perennial Populus for investigation of tubulin PTMs in this study, with a particular focus on developing xylem where high tubulin transcript levels support MT-dependent secondary cell wall deposition. Mass spectrometry and immunodetection concurred that detyrosination, non-tyrosination and glutamylation were essentially absent in tubulins isolated from wood-forming tissues of P. deltoides and P. tremula ×alba. Label-free quantification of tubulin isotypes and RNA-Seq estimation of tubulin transcript abundance were largely consistent with transcriptional regulation. However, two TUB isotypes were detected at noticeably lower levels than expected based on RNA-Seq transcript abundance in both Populus species. These findings led us to conclude that MT composition during wood formation depends exclusively on transcriptional and, to a lesser extent, translational regulation of tubulin isotypes. PMID:27790223

  17. Genome Analyses and Supplement Data from the International Populus Genome Consortium (IPGC)

    DOE Data Explorer

    International Populus Genome Consortium (IPGC)

    The sequencing of the first tree genome, that of Populus, was a project initiated by the Office of Biological and Environmental Research in DOE’s Office of Science. The International Populus Genome Consortium (IPGC) was formed to help develop and guide post-sequence activities. The IPGC website, hosted at the Oak Ridge National Laboratory, provides draft sequence data as it is made available from DOE Joint Genome Institute, genome analyses for Populus, lists of related publications and resources, and the science plan. The data are available at http://www.ornl.gov/sci/ipgc/ssr_resource.htm.

  18. Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock

    DOE PAGES

    Biswal, Ajaya K.; Hao, Zhangying; Pattathil, Sivakumar; ...

    2015-03-12

    The inherent recalcitrance of woody bioenergy feedstocks is a major challenge for their use as a source of second-generation biofuel. Secondary cell walls that constitute the majority of hardwood biomass are rich in cellulose, xylan, and lignin. The interactions among these polymers prevent facile accessibility and deconstruction by enzymes and chemicals. Plant biomass that can with minimal pretreatment be degraded into sugars is required to produce renewable biofuels in a cost-effective manner. The following are the results: GAUT12/IRX8 is a putative glycosyltransferase proposed to be involved in secondary cell wall glucuronoxylan and/or pectin biosynthesis based on concomitant reductions of bothmore » xylan and the pectin homogalacturonan (HG) in Arabidopsis irx8 mutants. Two GAUT12 homologs exist in Populus trichocarpa, PtGAUT12.1 and PtGAUT12.2. Knockdown expression of both genes simultaneously has been shown to reduce xylan content in Populus wood. We tested the proposition that RNA interference (RNAi) downregulation of GAUT12.1 alone would lead to increased sugar release in Populus wood, that is, reduced recalcitrance, based on the hypothesis that GAUT12 synthesizes a wall structure required for deposition of xylan and that cell walls with less xylan and/or modified cell wall architecture would have reduced recalcitrance. Using an RNAi approach, we generated 11 Populus deltoides transgenic lines with 50 to 67% reduced PdGAUT12.1 transcript expression compared to wild type (WT) and vector controls. Ten of the eleven RNAi lines yielded 4 to 8% greater glucose release upon enzymatic saccharification than the controls. The PdGAUT12.1 knockdown (PdGAUT12.1-KD) lines also displayed 12 to 52% and 12 to 44% increased plant height and radial stem diameter, respectively, compared to the controls. Knockdown of PdGAUT12.1 resulted in a 25 to 47% reduction in galacturonic acid and 17 to 30% reduction in xylose without affecting total lignin content, revealing that in

  19. Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes

    DOE PAGES

    Bali, Garima; Khunsupat, Ratayakorn; Akinosho, Hannah; ...

    2016-09-10

    Here, the recalcitrant nature of lignocellulosic biomass is a combined effect of several factors such as high crystallinity and high degree of polymerization of cellulose, lignin content and structure, and the available surface area for enzymatic degradation (i.e., accessibility). Genetic improvement of feedstock cell wall properties is a path to reducing recalcitrance of lignocellulosic biomass and improving conversion to various biofuels. An advanced understanding of the cellulose biosynthesis pathway is essential to precisely modify cellulose properties of plant cell walls. Here we report on the impact of modified expression of candidate cellulose biosynthesis pathway genes on the ultra-structure of cellulose,more » a key carbohydrate polymer of Populus cell wall using advanced nuclear magnetic resonance approaches. Noteworthy changes were observed in the cell wall characteristics of downregulated KORRIGAN 1 (KOR) and KOR 2 transgenic plants in comparison to the wild-type control. It was observed that all of the transgenic lines showed variation in cellulose ultrastructure, increase in cellulose crystallinity and decrease in the cellulose degree of polymerization. Additionally, the properties of cellulose allomorph abundance and accessibility were found to be variable. Application of such cellulose characterization techniques beyond the traditional measurement of cellulose abundance to comprehensive studies of cellulose properties in larger transgenic and naturally variable populations is expected to provide deeper insights into the complex nature of lignocellulosic material, which can significantly contribute to the development of precisely tailored plants for enhanced biofuels production.« less

  20. Characterization of cellulose structure of Populus plants modified in candidate cellulose biosynthesis genes

    SciTech Connect

    Bali, Garima; Khunsupat, Ratayakorn; Akinosho, Hannah; Payyavula, Raja S.; Samuel, Reichel; Tuskan, Gerald A.; Kalluri, Udaya C.; Ragauskas, Arthur J.

    2016-09-10

    Here, the recalcitrant nature of lignocellulosic biomass is a combined effect of several factors such as high crystallinity and high degree of polymerization of cellulose, lignin content and structure, and the available surface area for enzymatic degradation (i.e., accessibility). Genetic improvement of feedstock cell wall properties is a path to reducing recalcitrance of lignocellulosic biomass and improving conversion to various biofuels. An advanced understanding of the cellulose biosynthesis pathway is essential to precisely modify cellulose properties of plant cell walls. Here we report on the impact of modified expression of candidate cellulose biosynthesis pathway genes on the ultra-structure of cellulose, a key carbohydrate polymer of Populus cell wall using advanced nuclear magnetic resonance approaches. Noteworthy changes were observed in the cell wall characteristics of downregulated KORRIGAN 1 (KOR) and KOR 2 transgenic plants in comparison to the wild-type control. It was observed that all of the transgenic lines showed variation in cellulose ultrastructure, increase in cellulose crystallinity and decrease in the cellulose degree of polymerization. Additionally, the properties of cellulose allomorph abundance and accessibility were found to be variable. Application of such cellulose characterization techniques beyond the traditional measurement of cellulose abundance to comprehensive studies of cellulose properties in larger transgenic and naturally variable populations is expected to provide deeper insights into the complex nature of lignocellulosic material, which can significantly contribute to the development of precisely tailored plants for enhanced biofuels production.

  1. PtaRHE1, a Populus tremula × Populus alba RING-H2 protein of the ATL family, has a regulatory role in secondary phloem fibre development.

    PubMed

    Baldacci-Cresp, Fabien; Moussawi, Jihad; Leplé, Jean-Charles; Van Acker, Rebecca; Kohler, Annegret; Candiracci, Julie; Twyffels, Laure; Spokevicius, Antanas V; Bossinger, Gerd; Laurans, Françoise; Brunel, Nicole; Vermeersch, Marjorie; Boerjan, Wout; El Jaziri, Mondher; Baucher, Marie

    2015-06-01

    REALLY INTERESTING NEW GENE (RING) proteins play important roles in the regulation of many processes by recognizing target proteins for ubiquitination. Previously, we have shown that the expression of PtaRHE1, encoding a Populus tremula × Populus alba RING-H2 protein with E3 ubiquitin ligase activity, is associated with tissues undergoing secondary growth. To further elucidate the role of PtaRHE1 in vascular tissues, we have undertaken a reverse genetic analysis in poplar. Within stem secondary vascular tissues, PtaRHE1 and its corresponding protein are expressed predominantly in the phloem. The downregulation of PtaRHE1 in poplar by artificial miRNA triggers alterations in phloem fibre patterning, characterized by an increased portion of secondary phloem fibres that have a reduced cell wall thickness and a change in lignin composition, with lower levels of syringyl units as compared with wild-type plants. Following an RNA-seq analysis, a biological network involving hormone stress signalling, as well as developmental processes, could be delineated. Several candidate genes possibly associated with the altered phloem fibre phenotype observed in amiRPtaRHE1 poplar were identified. Altogether, our data suggest a regulatory role for PtaRHE1 in secondary phloem fibre development.

  2. Highly efficient CRISPR/Cas9-mediated targeted mutagenesis of multiple genes in Populus.

    PubMed

    Tingting, Liu; Di, Fan; Lingyu, Ran; Yuanzhong, Jiang; Rui, Liu; Keming, Luo

    2015-10-01

    The typeⅡCRISPR/Cas9 system (Clustered regularly interspaced short palindromic repeats /CRISPR-associated 9) has been widely used in bacteria, yeast, animals and plants as a targeted genome editing technique. In previous work, we have successfully knocked out the endogenous phytoene dehydrogenase (PDS) gene in Populus tomentosa Carr. using this system. To study the effect of target design on the efficiency of CRISPR/Cas9-mediated gene knockout in Populus, we analyzed the efficiency of mutagenesis using different single-guide RNA (sgRNA) that target PDS DNA sequence. We found that mismatches between the sgRNA and the target DNA resulted in decreased efficiency of mutagenesis and even failed mutagenesis. Moreover, complementarity between the 3' end nucleotide of sgRNA and target DNA is especially crucial for efficient mutagenesis. Further sequencing analysis showed that two PDS homologs in Populus, PtPDS1 and PtPDS2, could be knocked out simultaneously using this system with 86.4% and 50% efficiency, respectively. These results indicated the possibility of introducing mutations in two or more endogenous genes efficiently and obtaining multi-mutant strains of Populus using this system. We have indeed generated several knockout mutants of transcription factors and structural genes in Populus, which establishes a foundation for future studies of gene function and genetic improvement of Populus.

  3. Association Genetics of Populus trichocarpa or Resequencing in Populus: Towards Genome Wide Association Genetics (2011 JGI User Meeting)

    SciTech Connect

    Tuskan, Gerry

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on "Resequencing in Populus: Towards Genome Wide Association Genetics" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  4. Association Genetics of Populus trichocarpa or Resequencing in Populus: Towards Genome Wide Association Genetics (2011 JGI User Meeting)

    ScienceCinema

    Tuskan, Gerry

    2016-07-12

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gerry Tuskan of Oak Ridge National Laboratory on "Resequencing in Populus: Towards Genome Wide Association Genetics" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

  5. Epidermal Micromorphology and Mesophyll Structure of Populus euphratica Heteromorphic Leaves at Different Development Stages

    PubMed Central

    Liu, Yubing; Li, Xinrong; Chen, Guoxiong; Li, Mengmeng; Liu, Meiling; Liu, Dan

    2015-01-01

    Leaf epidermal micromorphology and mesophyll structure during the development of Populus euphratica heteromorphic leaves, including linear, lanceolate, ovate, dentate ovate, dentate rhombic, dentate broad-ovate and dentate fan-shaped leaves, were studied by using electron and light microscopy. During development of heteromorphic leaves, epidermal appendages (wax crystals and trichomes) and special cells (mucilage cells and crystal idioblasts) increased in all leaf types while chloroplast ultrastructure and stomatal characters show maximum photosynthetic activity in dentate ovate and rhombic leaves. Also, functional analysis by subordinate function values shows that the maximum adaptability to adverse stress was exhibited in the broad type of mature leaves. The 12 heteromorphic leaf types are classified into three major groups by hierarchical cluster analysis: young, developing and mature leaves. Mature leaves can effectively obtain the highest stress resistance by combining the protection of xerophytic anatomy from drought stress, regulation of water uptake in micro-environment by mucilage and crystal idioblasts, and assistant defense of transpiration reduction through leaf epidermal appendages, which improves photosynthetic activity under arid desert conditions. Our data confirms that the main leaf function is differentiated during the developing process of heteromorphic leaves. PMID:26356300

  6. Differential transcriptome analysis between Populus and its synthesized allotriploids driven by second-division restitution.

    PubMed

    Cheng, Shiping; Huang, Zhen; Li, Yun; Liao, Ting; Suo, Yujing; Zhang, Pingdong; Wang, Jun; Kang, Xiangyang

    2015-12-01

    In this report, we compared transcriptomic differences between a synthetic Populus section Tacamahaca triploid driven by second-division restitution and its parents using a high-throughput RNA-seq method. A total of 4,080 genes were differentially expressed between the high-growth vigor allotriploids (SDR-H) and their parents, and 719 genes were non-additively expressed in SDR-H. Differences in gene expression between the allotriploid and male parent were more significant than those between the allotriploid and female parent, which may be caused by maternal effects. We observed 3,559 differentially expressed genes (DEGs) between the SDR-H and male parent. Notably, the genes were mainly involved in metabolic process, cell proliferation, DNA methylation, cell division, and meristem and developmental growth. Among the 1,056 DEGs between SDR-H and female parent, many genes were associated with metabolic process and carbon utilization. In addition, 1,789 DEGs between high- and low-growth vigor allotriploid were mainly associated with metabolic process, auxin poplar transport, and regulation of meristem growth. Our results indicated that the higher poplar ploidy level can generate extensive transcriptomic diversity compared with its parents. Overall, these results increased our understanding of the driving force for phenotypic variation and adaptation in allopolyploids driven by second-division restitution.

  7. Digital Gene Expression Analysis of Populus simonii × P. nigra Pollen Germination and Tube Growth

    PubMed Central

    Zhao, Li-Juan; Yuan, Hong-Mei; Guo, Wen-Dong; Yang, Chuan-Ping

    2016-01-01

    Pollen tubes are an ideal model for the study of cell growth and morphogenesis because of their extreme elongation without cell division; however, the genetic basis of pollen germination and tube growth remains largely unknown. Using the Illumina/Solexa digital gene expression system, we identified 13,017 genes (representing 28.3% of the unigenes on the reference genes) at three stages, including mature pollen, hydrated pollen, and pollen tubes of Populus simonii × P. nigra. Comprehensive analysis of P. simonii × P. nigra pollen revealed dynamic changes in the transcriptome during pollen germination and pollen tube growth (PTG). Gene ontology analysis of differentially expressed genes showed that genes involved in functional categories such as catalytic activity, binding, transporter activity, and enzyme regulator activity were overrepresented during pollen germination and PTG. Some highly dynamic genes involved in pollen germination and PTG were detected by clustering analysis. Genes related to some key pathways such as the mitogen-activated protein kinase signaling pathway, regulation of the actin cytoskeleton, calcium signaling, and ubiquitin-mediated proteolysis were significantly changed during pollen germination and PTG. These data provide comprehensive molecular information toward further understanding molecular mechanisms underlying pollen germination and PTG. PMID:27379121

  8. Transcriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus[OPEN

    PubMed Central

    Gerttula, Suzanne; Zinkgraf, Matthew; Lewis, Daniel R.; Brumer, Harry; Hart, Foster; Filkov, Vladimir

    2015-01-01

    Angiosperm trees reorient their woody stems by asymmetrically producing a specialized xylem tissue, tension wood, which exerts a strong contractile force resulting in negative gravitropism of the stem. Here, we show, in Populus trees, that initial gravity perception and response occurs in specialized cells through sedimentation of starch-filled amyloplasts and relocalization of the auxin transport protein, PIN3. Gibberellic acid treatment stimulates the rate of tension wood formation and gravibending and enhances tissue-specific expression of an auxin-responsive reporter. Gravibending, maturation of contractile fibers, and gibberellic acid (GA) stimulation of tension wood formation are all sensitive to transcript levels of the Class I KNOX homeodomain transcription factor-encoding gene ARBORKNOX2 (ARK2). We generated genome-wide transcriptomes for trees in which gene expression was perturbed by gravistimulation, GA treatment, and modulation of ARK2 expression. These data were employed in computational analyses to model the transcriptional networks underlying wood formation, including identification and dissection of gene coexpression modules associated with wood phenotypes, GA response, and ARK2 binding to genes within modules. We propose a model for gravitropism in the woody stem in which the peripheral location of PIN3-expressing cells relative to the cambium results in auxin transport toward the cambium in the top of the stem, triggering tension wood formation, while transport away from the cambium in the bottom of the stem triggers opposite wood formation. PMID:26410302

  9. Comparative expression analysis of resistant and susceptible Populus clones inoculated with Septoria musiva.

    PubMed

    Liang, Haiying; Staton, Margaret; Xu, Yi; Xu, Tao; Leboldus, Jared

    2014-06-01

    Septoria musiva is a major pathogen of Populus and can cause leaf spots and stem cankers in susceptible clones. In order to investigate defense mechanisms of Populus in response to S. musiva, differential gene expression in leaf tissues of two resistant (DN34, P. deltoides×nigra; NM6, P. nigra×maximowiczii) and two susceptible clones (DN164, P. deltoides×nigra; NC11505, P. maximowiczii×trichocarpa) was analyzed by RNA-Seq. Of the 511 million reads obtained, 78% and 0.01% were successfully aligned to the genomes of P. trichocarpa and S. musiva, respectively. Functional annotation of differentially expressed genes based on comparisons between resistant and susceptible clones revealed that there were significant differences in the expression of genes involved in disease/stress resistance and oxidation-reduction in mock-inoculated leaves. Four days post inoculation with S. musiva, 36 differentially expressed genes were found to be regulated in the same direction in both resistant clones. The 22 up-regulated loci in resistant clones included genes involved in protein fate, cell wall structure, and responsiveness to various biotic and abiotic stresses. In particular, Potri.008G187100 locus encodes a putative multi antimicrobial extrusion protein and Potri.006G272600 encodes a family1 glycosyltransferase required for pathogen resistance. The differentially expressed loci with increased expression in the susceptible clones corresponded to NB-ARC domain-containing disease resistance protein, phospholipase A 2A, MutT/nudix family protein, and an elicitor-activated gene 3-1 product. The results from this study indicate that strong defense mechanisms involved in oxidation-reduction, protein fate, secondary metabolism, and accumulation of defense-related gene products may contribute to Septoria resistance in DN34 and NM6, while increased expression of hypersensitive response-loci, particularly those encoding NB-ARC domain-containing disease resistance proteins, may

  10. Chemical, ultrastructural and supramolecular analysis of tension wood in Populus tremula x alba as a model substrate for reduced recalcitrance

    SciTech Connect

    Foston, Marcus B; Hubbell, Christopher A; Samuel, Reichel; Jung, Seung-Yong; Ding, Shi-You; Zeng, Yining; Jawdy, Sara; Sykes, Virginia R; Tuskan, Gerald A; Kalluri, Udaya C; Ragauskas, Arthur J

    2011-01-01

    Biomass is one of the most abundant potential sustainable sources for fuel and material production, however to fully realize this potential an improved understanding of lignocellulosic recalcitrance must be developed. In an effort to appreciate the underlying phenotypic, biochemical and morphological properties associated with the reduced recalcitrance observed in tension stress-induced reaction wood, we report the increased enzymatic sugar yield and corresponding chemical and ultrastructural properties of Populus tension wood. Populus tremula x alba (PTA) was grown under tension and stem segments containing three different wood types: normal wood (NW), tension wood (TW) from the elongated stem side and opposite wood (OW) from the compressed stem side were collected. A variety of analytical techniques were used to describe changes occurring as a result of the tension stress-induced formation of a gelatinous cell wall layer (G-layer). For example, gel permeation chromatography (GPC) and 13C solid-state nuclear magnetic resonance (NMR) revealed that the molecular weight and crystallinity of cellulose in TW is greater than that of cellulose acquired from NW. Whole cell ionic liquid and other solid-state NMR analysis detailed the structure of lignin and hemicellulose in the samples, detecting the presence of variations in lignin and hemicellulose sub-units, linkages and semi-quantitatively estimating the relative amounts of syringyl (S), guaiacyl (G) and p-hydroxybenzoate (PB) monolignol units. It was confirmed that TW displayed an increase in PB or H-like lignin and S to G ratio from 1.25 to 1.50 when compared to the NW sample. Scanning electron microscopy (SEM) and coherent anti-Stokes Raman scattering (CARS) were also used to evaluate the morphology and corresponding spatial distribution of the major lignocellulosic components. We found changes in a combination of cell wall properties appear to influence recalcitrance more than any single factor alone.

  11. Comprehensive analysis of trihelix genes and their expression under biotic and abiotic stresses in Populus trichocarpa

    PubMed Central

    Wang, Zhanchao; Liu, Quangang; Wang, Hanzeng; Zhang, Haizhen; Xu, Xuemei; Li, Chenghao; Yang, Chuanping

    2016-01-01

    Trihelix genes play important roles in plant growth and development and responses to biotic and abiotic stresses. Here, we identified 56 full-length trihelix genes in Populus trichocarpa and classified them into five groups. Most genes within a given group had similar gene structures and conserved motifs. The trihelix genes were unequally distributed across 19 different linkage groups. Fifteen paralogous pairs were identified, 14 of which have undergone segmental duplication events. Promoter cis-element analysis indicated that most trihelix genes contain stress- or phytohormone-related cis-elements. The expression profiles of the trihelix genes suggest that they are primarily expressed in leaves and roots. Quantitative real-time reverse transcription polymerase chain reaction analysis indicated that members of the trihelix gene family are significantly induced in response to osmotic, abscisic acid, salicylic acid, methyl jasmonate and pathogen infection. PtrGT10 was identified as a target gene of miR172d, which is involved in the osmotic response. Repression of PtrGT10 could increase reactive oxygen species scavenging ability and decrease cell death. This study provides novel insights into the phylogenetic relationships and functions of the P. trichocarpa trihelix genes, which will aid future functional studies investigating the divergent roles of trihelix genes belonging to other species. PMID:27782188

  12. Sex-related adaptive responses to interaction of drought and salinity in Populus yunnanensis.

    PubMed

    Chen, Lianghua; Zhang, Sheng; Zhao, Hongxia; Korpelainen, Helena; Li, Chunyang

    2010-10-01

    We used Populus yunnanensis Dode., a native dioecious species in southwestern China, as a model species to study morphological, physiological, biochemical and ultrastructural responses to drought, salinity and their combination. Females exhibited more growth inhibition, gas exchange rate depression and reactive oxygen species (ROS) accumulation; higher lipid peroxide levels, lower osmotic adjustment capacity and ascorbate-glutathione cycle enzyme activities; and more damage to cell organelles than did males under drought, salinity and especially under their combination. In addition, we found sex-specific responses in total chlorophyll content (TC), carotenoid concentration and carbon isotope composition under different osmotic stresses. Our results indicated that: (1) females are more sensitive and suffer from greater negative effects than do males under drought, salinity and especially under their combination; (2) sexual differences in adaptive responses to drought, salinity and their combination are context dependent; and (3) sex-specific reactions under a combination of stresses are distinct from single-stress responses. Thus, these results provide evidence for adaptive differentiation between sexes in responses to osmotic stresses and in the sensitivity to environmental change.

  13. Diurnal regulation of plastid genes in Populus deltoides.

    PubMed

    Reddy, M S; Naithani, S; Tuli, R; Sane, P V

    2000-12-01

    Light regulates leaf and chloroplast development, together with overall chloroplast gene expression at various levels. Plants respond to diurnal and seasonal changes in light by changing expression of photosynthesis genes and metabolism. In Populus deltoides, a deciduous tree species, leaf development begins in the month of March and leaf maturation is attained by summer, which is subsequently followed by autumnal senescence and fall. In the present study, diurnal changes in the steady state transcript levels of plastid genes were examined in the fully developed leaves during summer season. Our results show that steady state level of the psaA/B, psbA, psbEFLJ and petA transcripts showed differential accumulation during diurnal cycle in summer. However, there was no significant change in the pigment composition during the day/night cycle. Our studies suggest that the diurnal regulation of steady state mRNA accumulation may play a crucial role during daily adjustments in plants life with rapidly changing light irradiance and temperature.

  14. Spatiotemporal distribution of essential elements through Populus leaf ontogeny

    PubMed Central

    Carvalho, Mónica R.; Woll, Arthur; Niklas, Karl J.

    2016-01-01

    We examined the spatiotemporal distribution and accumulation of calcium (Ca), potassium (K), and zinc (Zn) during the growth and maturation of grey poplar (Populus tremula × alba) leaves covering plastochrons 01 through 10. This period spans the sugar sink-to-source transition and requires coordinated changes of multiple core metabolic processes that likely involve alterations in essential and non-essential element distributions as tissues mature and effect a reversal in phloem flow direction. Whole-leaf elemental maps were obtained from dried specimens using micro X-ray fluorescence spectroscopy. Additional cross-sections of fresh leaves were scanned to check for tissue specificity in element accumulation. The anatomical distribution of Zn and K remains relatively consistent throughout leaf development; Ca accumulation varied across leaf developmental stages. The basipetal allocation of Ca to the leaf mesophyll matched spatially and temporally the sequence of phloem maturation, positive carbon balance, and sugar export from leaves. The accumulation of Ca likely reflects the maturation of xylem in minor veins and the enhancement of the transpiration stream. Our results independently confirm that xylem and phloem maturation are spatially and temporally coordinated with the onset of sugar export in leaves. PMID:26985054

  15. Rhizobacteria of Populus euphratica Promoting Plant Growth Against Heavy Metals.

    PubMed

    Zhu, Donglin; Ouyang, Liming; Xu, Zhaohui; Zhang, Lili

    2015-01-01

    The heavy metal-resistant bacteria from rhizospheric soils of wild Populus euphratica forest growing in arid and saline area of northwestern China were investigated by cultivation-dependent methods. After screening on medium sparked with zinc, copper, nickel and lead, 146 bacteria strains with different morphology were isolated and most of them were found to be resistant to at least two kinds of heavy metals. Significant increase in fresh weight and leaf surface area of Arabidopsis thaliana seedlings under metal stress were noticed after inoculated with strains especially those having multiple-resistance to heavy metals such as Phyllobacterium sp. strain C65. Investigation on relationship between auxin production and exogenous zinc concentration revealed that Phyllobacterium sp. strain C65 produced auxin, and production decreased as the concentration of zinc in medium increased. For wheat seedlings treated with zinc of 2 mM, zinc contents in roots of inoculated plants decreased by 27% (P < 0.05) compared to the uninoculated control. Meanwhile, zinc accumulation in the above-ground tissues increased by 22% (P < 0.05). The translocation of zinc from root to above-ground tissues induced by Phyllobacterium sp. strain C65 helped host plants extract zinc from contaminated environments more efficiently thus alleviated the growth inhibition caused by heavy metals.

  16. A survey of Populus PIN-FORMED family genes reveals their diversified expression patterns.

    PubMed

    Liu, Bobin; Zhang, Jin; Wang, Lin; Li, Jianbo; Zheng, Huanquan; Chen, Jun; Lu, Mengzhu

    2014-06-01

    The plant hormone auxin is a key regulator of plant development, and its uneven distribution maintained by polar intercellular auxin transport in plant tissues can trigger a wide range of developmental processes. Although the roles of PIN-FORMED (PIN) proteins in intercellular auxin flow have been extensively characterized in Arabidopsis, their roles in woody plants remain unclear. Here, a comprehensive analysis of PIN proteins in Populus is presented. Fifteen PINs are encoded in the genome of Populus, including four PIN1s, one PIN2, two PIN3s, three PIN5s, three PIN6s, and two PIN8s. Similar to Arabidopsis AtPIN proteins, PtPINs share conserved topology and transmembrane domains, and are either plasma membrane- or endoplasmic reticulum-localized. The more diversified expansion of the PIN family in Populus, comparing to that in Arabidopsis, indicates that some auxin-regulated developmental processes, such as secondary growth, may exhibit unique features in trees. More importantly, different sets of PtoPINs have been found to be strongly expressed in the roots, leaves, and cambium in Populus; the dynamic expression patterns of selected PtoPINs were further examined during the regeneration of shoots and roots. This genome-wide analysis of the Populus PIN family provides important cues for their potential roles in tree growth and development.

  17. Nucleotide diversity among natural populations of a North American poplar (Populus balsamifera, Salicaceae).

    PubMed

    Breen, Amy L; Glenn, Elise; Yeager, Adam; Olson, Matthew S

    2009-01-01

    Poplars (Populus spp.) comprise an important component of circumpolar boreal forest ecosystems and are the model species for tree genomics. In this study, we surveyed genetic variation and population differentiation in three nuclear genes among populations of balsam poplar (Populus balsamifera) in North America. We examined nucleotide sequence variation in alcohol dehydrogenase 1 (Adh1) and glyceraldehyde 3-phosphate dehydrogenase (G3pdh), two well-studied nuclear loci in plants, and abscisic acid insensitivity 1B (ABI1B), a locus coincident with timing of seasonal dormancy in quantitative trait locus (QTL) studies of hybrid poplars. We compared estimates of baseline population genetic parameters for these loci with those obtained in studies of other poplar species, particularly European aspen (Populus tremula). Average pairwise nucleotide diversity (pi(tot) = 0.00216-0.00353) was equivalent to that in Populus trichocarpa, but markedly less than that in P. tremula. Elevated levels of population structure were observed in ABI1B between the northern and southern regions (F(CT) = 0.184, P < 0.001) and among populations (F(ST) = 0.256, P < 0.001). These results suggest that geographic or taxonomic factors are important for understanding patterns of variation throughout the genus Populus. Our findings have the potential to aid in the design of sampling regimes for conservation and breeding stock and contribute to historical inferences regarding the factors that shaped the genetic diversity of boreal plant species.

  18. Adaptive evolution and functional innovation of Populus-specific recently evolved microRNAs.

    PubMed

    Xie, Jianbo; Yang, Xiaohui; Song, Yuepeng; Du, Qingzhang; Li, Ying; Chen, Jinhui; Zhang, Deqiang

    2017-01-01

    Lineage-specific microRNAs (miRNAs) undergo rapid turnover during evolution; however, their origin and functional importance have remained controversial. Here, we examine the origin, evolution, and potential roles in local adaptation of Populus-specific miRNAs, which originated after the recent salicoid-specific, whole-genome duplication. RNA sequencing was used to generate extensive, comparable miRNA and gene expression data for six tissues. A natural population of Populus trichocarpa and closely related species were used to study the divergence rates, evolution, and adaptive variation of miRNAs. MiRNAs that originated in 5' untranslated regions had higher expression levels and their expression showed high correlation with their host genes. Compared with conserved miRNAs, a significantly higher proportion of Populus-specific miRNAs appear to target genes that were duplicated in salicoids. Examination of single nucleotide polymorphisms in Populus-specific miRNA precursors showed high amounts of population differentiation. We also characterized the newly emerged MIR6445 family, which could trigger the production of phased small interfering RNAs from NAC mRNAs, which encode a transcription factor with primary roles in a variety of plant developmental processes. Together, these observations provide evolutionary insights into the birth and potential roles of Populus-specific miRNAs in genome maintenance, local adaptation, and functional innovation.

  19. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus

    SciTech Connect

    Yang, Xiaohan; Jawdy, Sara; Tschaplinski, Timothy J; Tuskan, Gerald A

    2009-01-01

    Protein sequences were compared among Arabidopsis, Oryza and Populus to identify differential gene (DG) sets that are in one but not the other two genomes. The DG sets were screened against a plant transcript database, the NR protein database and six newly-sequenced genomes (Carica, Glycine, Medicago, Sorghum, Vitis and Zea) to identify a set of species-specific genes (SS). Gene expression, protein motif and intron number were examined. 192, 641 and 109 SS genes were identified in Arabidopsis, Oryza and Populus, respectively. Some SS genes were preferentially expressed in flowers, roots, xylem and cambium or up-regulated by stress. Six conserved motifs in Arabidopsis and Oryza SS proteins were found in other distant lineages. The SS gene sets were enriched with intronless genes. The results reflect functional and/or anatomical differences between monocots and eudicots or between herbaceous and woody plants. The Populus-specific genes are candidates for carbon sequestration and biofuel research.

  20. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa

    SciTech Connect

    Kalluri, Udaya C; DiFazio, Stephen P; Brunner, A.; Tuskan, Gerald A

    2007-01-01

    Auxin/Indole-3-Acetic Acid (Aux/IAA) and Auxin Response Factor (ARF) transcription factors are key regulators of auxin responses in plants. A total of 35 Aux/IAA and 39 ARF genes were identified in the Populus genome. Comparative phylogenetic analysis revealed that the subgroups PoptrARF2, 6, 9 and 16 and PoptrIAA3, 16, 27 and 29 have differentially expanded in Populus relative to Arabidopsis. Activator ARFs were found to be two fold-overrepresented in the Populus genome. PoptrIAA and PoptrARF gene families appear to have expanded due to high segmental and low tandem duplication events. Furthermore, expression studies showed that genes in the expanded PoptrIAA3 subgroup display differential expression. The gene-family analysis reported here will be useful in conducting future functional genomics studies to understand how the molecular roles of these large gene families translate into a diversity of biologically meaningful auxin effects.

  1. Auxin gradients are associated with polarity changes in trees.

    PubMed

    Kramer, Eric M; Lewandowski, Michael; Beri, Satvik; Bernard, Jessica; Borkowski, Matthew; Borkowski, Michael H; Burchfield, Laura Ann; Mathisen, Brenda; Normanly, Jennifer

    2008-06-20

    Models of plant growth and development propose that changes in cell polarity are mediated by gradients of the plant hormone auxin. With use of gas chromatography-mass spectrometry, we measured the redistribution of endogenous auxin in stems of quaking aspen trees (Populus tremuloides) after wounding. Persistent (lasting at least 24 hours) auxin gradients were observed in the region of the cambium where cell polarity was changing. A computer model of the auxin redistribution shows agreement with measured concentrations.

  2. Establishment of Populus deltoides under simulated alluvial groundwater declines

    USGS Publications Warehouse

    Segelquist, Charles A.; Scott, Michael L.; Auble, Gregor T.

    1993-01-01

    Establishment, growth, and survival of seedlings of Populus deltoides subsp. monilifera (plains cottonwood) were examined in an experimental facility simulating five rates of declining alluvial groundwater. The treatments were permanent saturation, drawdown rates of 0.4, 0.7, 2.9 cm/d and immediate drainage. The experiment was conducted outdoors in planters near Fort Collins, Colorado. Seedling survival was highest under the two slowest drawdown rates and declined significantly with faster drawdown rates. The highest growth rate was associated with the drawdown rate of 0.4 cm/d, in which mean shoot height was 2.4 cm and mean root length was 39 am 98 days after planting. Growth of shoots and roots was reduced both by saturated conditions and by the more rapid drawdown rates of 0.7 and 2.9 cm/d. No establishment was observed in the immediate drawdown treatment. Whereas maximum biomass accumulation is associated with the most gradual drawdown or saturated conditions, seedling establishing naturally under such conditions are also most likely to be removed by ice or subsequent flooding. Seedlings establishing in higher topographic positions, in contrast, are subject to increased mortality and reduced shoot growth, resulting from reduced soil moisture. Rapid root extension following establishment allows P. deltoides seedlings to grow across a wide range of groundwater drawdown rates, and thus a variety of positions across a gradient of riparian soil moisture. Our results indicate that in coarse alluvial sands of low fertility, 47% of germinating P. deltoides seeds were able to survive in associated with a drawdown rate of 2.9 cm/d and a final water table depth of 80 cm.

  3. Soil plant interactions of Populus alba in contrasting environments.

    PubMed

    Ciadamidaro, Lisa; Madejón, Engracia; Robinson, Brett; Madejón, Paula

    2014-01-01

    The effects of the Populus alba tree on different biochemical soil properties, growing in a contaminated area, were studied for two years under field conditions. Two types of trace element contaminated soils were studied: a neutral contaminated soil (NC) and an acid contaminated soil (AC). One neutral non-contaminated area was studied as control. Soil samples were collected at depths of 0-20 cm and 20-40 cm. Leaves and litter samples were analysed. The addition of organic matter, through root exudates and litter, contributed to an increase in soil pH, especially in acid soil. Microbial Biomass Carbon (MBC) was significantly increased by the presence of the trees in all studied areas, especially in the upper soil layer. Similar results were also observed for protease activity. Both MBC and Protease activity were more sensitive to contamination than β-glucosidase activity. These changes resulted in a decrease of available trace element concentrations in soil and in an improvement of soil quality after a 2-year study. The total concentration of Cd and Zn in soil did not increase over time due to litter deposition. Analysis of P. alba leaves did not show a significant nutritional imbalance and trace element concentrations were normal for plants, except for Cd and Zn. These results indicate that P. alba is suitable for the improvement of soil quality in riparian contaminated areas. However, due to the high Cd and Zn concentrations in leaves, further monitoring of this area is required.

  4. Stress-responsive microRNAs in Populus.

    PubMed

    Lu, Shanfa; Sun, Ying-Hsuan; Chiang, Vincent L

    2008-07-01

    MicroRNAs (miRNAs), a group of small non-coding RNAs, have recently become the subject of intense study. They are a class of post-transcriptional negative regulators playing vital roles in plant development and growth. However, little is known about their regulatory roles in the responses of trees to the stressful environments incurred over their long-term growth. Here, we report the cloning of small RNAs from abiotic stressed tissues of Populus trichocarpa (Ptc) and the identification of 68 putative miRNA sequences that can be classified into 27 families based on sequence homology. Among them, nine families are novel, increasing the number of the known Ptc-miRNA families from 33 to 42. A total of 346 targets was predicted for the cloned Ptc-miRNAs using penalty scores of

  5. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs.

    PubMed

    McKown, Athena D; Guy, Robert D; Quamme, Linda; Klápště, Jaroslav; La Mantia, Jonathan; Constabel, C P; El-Kassaby, Yousry A; Hamelin, Richard C; Zifkin, Michael; Azam, M S

    2014-12-01

    Stomata are essential for diffusive entry of gases to support photosynthesis, but may also expose internal leaf tissues to pathogens. To uncover trade-offs in range-wide adaptation relating to stomata, we investigated the underlying genetics of stomatal traits and linked variability in these traits with geoclimate, ecophysiology, condensed foliar tannins and pathogen susceptibility in black cottonwood (Populus trichocarpa). Upper (adaxial) and lower (abaxial) leaf stomatal traits were measured from 454 accessions collected throughout much of the species range. We calculated broad-sense heritability (H(2) ) of stomatal traits and, using SNP data from a 34K Populus SNP array, performed a genome-wide association studies (GWAS) to uncover genes underlying stomatal trait variation. H(2) values for stomatal traits were moderate (average H(2) = 0.33). GWAS identified genes associated primarily with adaxial stomata, including polarity genes (PHABULOSA), stomatal development genes (BRASSINOSTEROID-INSENSITIVE 2) and disease/wound-response genes (GLUTAMATE-CYSTEINE LIGASE). Stomatal traits correlated with latitude, gas exchange, condensed tannins and leaf rust (Melampsora) infection. Latitudinal trends of greater adaxial stomata numbers and guard cell pore size corresponded with higher stomatal conductance (gs ) and photosynthesis (Amax ), faster shoot elongation, lower foliar tannins and greater Melampsora susceptibility. This suggests an evolutionary trade-off related to differing selection pressures across the species range. In northern environments, more adaxial stomata and larger pore sizes reflect selection for rapid carbon gain and growth. By contrast, southern genotypes have fewer adaxial stomata, smaller pore sizes and higher levels of condensed tannins, possibly linked to greater pressure from natural leaf pathogens, which are less significant in northern ecosystems.

  6. The Cytokinin Type-B Response Regulator PtRR13 Is a Negative Regulator of Adventitious Root Development in Populus1[C][W][OA

    PubMed Central

    Ramírez-Carvajal, Gustavo A.; Morse, Alison M.; Dervinis, Christopher; Davis, John M.

    2009-01-01

    Adventitious root formation at the base of plant cuttings is an innate de novo organogenesis process that allows massive vegetative propagation of many economically and ecologically important species. The early molecular events following shoot excision are not well understood. Using whole-genome microarrays, we detected significant transcriptome remodeling during 48 h following shoot removal in Populus tremula × Populus alba softwood cuttings in the absence of exogenous auxin, with 27% and 36% of the gene models showing differential abundance between 0 and 6 h and between 6 and 24 h, respectively. During these two time intervals, gene networks involved in protein turnover, protein phosphorylation, molecular transport, and translation were among the most significantly regulated. Transgenic lines expressing a constitutively active form of the Populus type-B cytokinin response regulator PtRR13 (ΔDDKPtRR13) have a delayed rooting phenotype and cause misregulation of CONTINUOUS VASCULAR RING1, a negative regulator of vascularization; PLEIOTROPIC DRUG RESISTANCE TRANSPORTER9, an auxin efflux transporter; and two APETALA2/ETHYLENE RESPONSE FACTOR genes with sequence similarity to TINY. Inappropriate cytokinin action via ΔDDKPtRR13 expression appeared to disrupt adventitious root development 24 h after shoot excision, when root founder cells are hypothesized to be sensitive to the negative effects of cytokinin. Our results are consistent with PtRR13 acting downstream of cytokinin to repress adventitious root formation in intact plants, and that reduced cytokinin signaling after shoot excision enables coordinated expression of ethylene, auxin, and vascularization pathways leading to adventitious root development. PMID:19395410

  7. Response to drought and salt stress in leaves of poplar (Populus alba × Populus glandulosa): expression profiling by oligonucleotide microarray analysis.

    PubMed

    Yoon, Seo-Kyung; Park, Eung-Jun; Choi, Young-Im; Bae, Eun-Kyung; Kim, Joon-Hyeok; Park, So-Young; Kang, Kyu-Suk; Lee, Hyoshin

    2014-11-01

    Drought and salt stresses are major environmental constraints on forest productivity. To identify genes responsible for stress tolerance, we conducted a genome-wide analysis in poplar (Populus alba × Populus glandulosa) leaves exposed to drought and salt (NaCl) stresses. We investigated gene expression at the mRNA level using oligonucleotide microarrays containing 44,718 genes from Populus trichocarpa. A total of 1604 and 1042 genes were up-regulated (≥2-fold; P value < 0.05) by drought and salt stresses, respectively, and 765 genes were up-regulated by both stresses. In addition, 2742 and 1685 genes were down-regulated by drought and salt stresses, respectively, and 1564 genes were down-regulated by both stresses. The large number of genes regulated by both stresses suggests that crosstalk occurs between the drought and salt stress responses. Most up-regulated genes were involved in functions such as subcellular localization, signal transduction, metabolism, and transcription. Among the up-regulated genes, we identified 47 signaling proteins, 65 transcription factors, and 43 abiotic stress-related genes. Several genes were modulated by only one of the two stresses. About 25% of the genes significantly regulated by these stresses are of unknown function, suggesting that poplar may provide an opportunity to discover novel stress-related genes.

  8. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers.

    PubMed Central

    Cervera, M T; Storme, V; Ivens, B; Gusmão, J; Liu, B H; Hostyn, V; Van Slycken, J; Van Montagu, M; Boerjan, W

    2001-01-01

    Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome. PMID:11404342

  9. The obscure events contributing to the evolution of an incipient sex chromosome in Populus A retrospective working hypothesis.

    SciTech Connect

    Tuskan, Gerald A; Tschaplinski, Timothy J; Chen, Jay; Labbe, Jessy L; Ranjan, Priya; DiFazio, Steven P; Slavov, Goncho T.; Yin, Tongming

    2012-01-01

    Genetic determination of gender is a fundamental developmental and evolutionary process in plants. Although it appears that dioecy in Populus is partially genetically controlled, the precise gender-determining systems remain unclear. The recently-released second draft assembly and annotated gene set of the Populus genome provided an opportunity to re-visit this topic. We hypothesized that over evolutionary time, selective pressure has reformed the genome structure and gene composition in the peritelomeric region of the chromosome XIX which has resulted in a distinctive genome structure and cluster of genes contributing to gender determination in Populus. Multiple lines of evidence support this working hypothesis. First, the peritelomeric region of the chromosome XIX contains significantly fewer single nucleotide polymorphisms than the rest of Populus genome and has a distinct evolutionary history. Second, the peritelomeric end of chromosome XIX contains the largest cluster of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of disease resistances genes in the entire Populus genome. Third, there is a high occurrence of small microRNAs on chromosome XIX coincident to the region containing the putative gender-determining locus and the major cluster of NBS-LRR genes. Further, by analyzing the metabolomic profiles of floral bud in male and female Populus trees using a gas chromatography-mass spectrometry, we found there are gender-specific accumulations of phenolic glycosides. Taken together, these findings provide new insights into the genetic control of gender determination in Populus.

  10. Seedling competition between native Populus deltoides (Salicaceae) and exotic Tamarix ramosissima (Tamaricaceae) across water regimes and substrate types.

    PubMed

    Sher, Anna A; Marshall, Diane L

    2003-03-01

    Populus deltoides subsp. wislizinii (Salicaceae), a cottonwood native to the Middle Rio Grande of New Mexico, must potentially compete against exotic Tamarix ramosissima (Tamaricaceae) during establishment after flooding. We investigated competitive interactions between seedlings of Tamarix and Populus in two substrates representing field textures and declining (i.e., draw-down) or stagnant water tables. The experiment was performed using a full-additive series design and interpreted with response surface models for each species. As reflected in both aboveground mass and height, Populus suppressed aboveground growth of Tamarix across all treatments, whereas competitive effects of Tamarix against Populus could only be seen at low Populus densities. Clay substrates with draw-down stimulated the greatest growth and created the most intense competitive environment for both species. Tamarix was competitively suppressed in every substrate tested, with the weakest response in sand with no draw-down, where growth of Populus was poorest. These results suggest that stream flow management that promotes Populus establishment could also aid in controlling Tamarix invasion across a range of substrates.

  11. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance.

    PubMed

    Shen, Zedan; Yao, Jun; Sun, Jian; Chang, Liwei; Wang, Shaojie; Ding, Mingquan; Qian, Zeyong; Zhang, Huilong; Zhao, Nan; Sa, Gang; Hou, Peichen; Lang, Tao; Wang, Feifei; Zhao, Rui; Shen, Xin; Chen, Shaoliang

    2015-06-01

    Poplar species increase expressions of transcription factors to deal with salt environments. We assessed the salt-induced transcriptional responses of heat-shock transcription factor (HSF) and WRKY1 in Populus euphratica, and their roles in salt tolerance. High NaCl (200mM) induced PeHSF and PeWRKY1 expressions in P. euphratica, with a rapid rise in roots than in leaves. Moreover, the salt-elicited PeHSF reached its peak level 6h earlier than PeWRKY1 in leaves. PeWRKY1 was down-regulated in salinized P. euphratica when PeHSF was silenced by tobacco rattle virus-based gene silencing. Subcellular assays in onion epidermal cells and Arabidopsis protoplasts revealed that PeHSF and PeWRKY1 were restricted to the nucleus. Transgenic tobacco plants overexpressing PeWRKY1 showed improved salt tolerance in terms of survival rate, root growth, photosynthesis, and ion fluxes. We further isolated an 1182-bp promoter fragment upstream of the translational start of PeWRKY1 from P. euphratica. Promoter sequence analysis revealed that PeWRKY1 harbours four tandem repeats of heat shock element (HSE) in the upstream regulatory region. Yeast one-hybrid assay showed that PeHSF directly binds the cis-acting HSE. To determine whether the HSE cluster was important for salt-induced PeWRKY1 expression, the promoter-reporter construct PeWRKY1-pro::GUS was transferred to tobacco plants. β-glucuronidase activities increased in root, leaf, and stem tissues under salt stress. Therefore, we conclude that salinity increased PeHSF transcription in P. euphratica, and that PeHSF binds the cis-acting HSE of the PeWRKY1 promoter, thus activating PeWRKY1 expression.

  12. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees.

    PubMed

    Jin, Yan-Li; Tang, Ren-Jie; Wang, Hai-Hai; Jiang, Chun-Mei; Bao, Yan; Yang, Yang; Liang, Mei-Xia; Kong, Fanjing; Li, Bei; Zhang, Hong-Xia

    2017-03-04

    Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyze the conversion of castasterone (CS) to brassinolide (BL), a final rate-limiting step in the BR biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato d(x) mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type (WT), plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggest that PtCYP85A3 could be used as a potential candidate gene for engineering fast growing trees with improved wood production. This article is protected by copyright. All rights reserved.

  13. Flavitalea populi gen. nov., sp. nov., isolated from soil of a Euphrates poplar (Populus euphratica) forest.

    PubMed

    Wang, Yang; Cai, Feng; Tang, Yali; Dai, Jun; Qi, Huan; Rahman, Erkin; Peng, Fang; Fang, Chengxiang

    2011-07-01

    A novel strain, designated HY-50R(T), isolated from soil of a Euphrates poplar (Populus euphratica) forest in Xinjiang, China, was characterized using a polyphasic taxonomic approach. Cells of the isolate were gram-reaction-negative, strictly aerobic, rod-shaped, non-motile, oxidase-negative and catalase-positive. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate was a member of the phylum Bacteroidetes, its closest relatives being Niastella populi THYL-44(T) (93.6 % similarity), Flavisolibacter ginsengisoli Gsoil 643(T) (93.5 %), Terrimonas ferruginea IAM 15098(T) (93.3 %) and Flavisolibacter ginsengiterrae Gsoil 492(T) (93.2 %). The major fatty acids were iso-C(15 : 1) G (11.7 %), iso-C(15 : 0) (19.6 %) and iso-C(17 : 0) 3-OH (19.3 %). The predominant menaquinone of strain HY-50R(T) was MK-7 and the genomic DNA G+C content was 46.8 mol%. Flexirubin-type pigments were not produced. Based on phylogenetic evidence and the results of phenotypic, genotypic and chemotaxonomic analysis, strain HY-50R(T) represents a novel species of a novel genus, for which the name Flavitalea populi gen. nov., sp. nov. is proposed. The type strain is HY-50R(T) ( = CCTCC AB 208255(T)  = NRRL B-59222(T)).

  14. Draft genome sequences of four Streptomyces isolates from the Populus trichocarpa root endosphere and rhizosphere

    DOE PAGES

    Klingeman, Dawn M.; Utturkar, Sagar; Lu, Tse -Yuan S.; ...

    2015-11-12

    Draft genome sequences for four Actinobacteria from the genus Streptomyces are presented. Streptomyces is a metabolically diverse genus that is abundant in soils and has been reported in association with plants. The strains described in this study were isolated from the Populus trichocarpa endosphere and rhizosphere.

  15. Environmental Influences on Wood Chemistry and Density of Populus and Loblolly Pine

    SciTech Connect

    Tuskan, G.A.

    2006-08-11

    The objectives of the study are to: (1) determine the degree to which physical and chemical wood properties vary in association with environmental and silvicultural practices in Populus and loblolly pine and (2) develop and verify species-specific empirical models in an effort to create a framework for understanding environmental influences on wood quality.

  16. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus

    SciTech Connect

    Tschaplinski, Timothy J; Tsai, Chung-Jui; Harding, Scott A; Lindroth, richard L; Yuan, Yinan

    2006-01-01

    Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expanded hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.

  17. Populus seed fibers as a natural source for production of oil super absorbents.

    PubMed

    Likon, Marko; Remškar, Maja; Ducman, Vilma; Švegl, Franc

    2013-01-15

    The genus Populus, which includes poplars, cottonwoods and aspen trees, represents a huge natural source of fibers with exceptional physical properties. In this study, the oil absorption properties of poplar seed hair fibers obtained from Populus nigra italica when tested with high-density motor oil and diesel fuel are reported. Poplar seed hair fibers are hollow hydrophobic microtubes with an external diameter between 3 and 12 μm, an average length of 4±1 mm and average tube wall thickness of 400±100 nm. The solid skeleton of the hollow fibers consists of lignocellulosic material coated by a hydrophobic waxy coating. The exceptional chemical, physical and microstructural properties of poplar seed hair fibers enable super-absorbent behavior with high absorption capacity for heavy motor oil and diesel fuel. The absorption values of 182-211 g heavy oil/g fiber and 55-60 g heavy oil/g fiber for packing densities of 0.005 g/cm(3) and 0.02 g/cm(3), respectively, surpass all known natural absorbents. Thus, poplar seed hair fibers obtained from Populus nigra italica and other trees of the genus Populus are an extremely promising natural source for the production of oil super absorbents.

  18. Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus

    SciTech Connect

    Induri, Brahma R; Ellis, Danielle R; Slavov, Goncho T.; Yin, Tongming; Zhang, Xinye; Tuskan, Gerald A; DiFazio, Steven P

    2012-01-01

    Understanding genetic variation for the response of Populus to heavy metals like cadmium (Cd) is an important step in elucidating the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa Torr. & Gray and Populus deltoides Bart. was characterized for growth and performance traits after Cd exposure. A total of 16 quantitative trait loci (QTL) at logarithm of odds (LOD) ratio 2.5 were detected for total dry weight, its components and root volume. Major QTL for Cd responses were mapped to two different linkage groups and the relative allelic effects were in opposing directions on the two chromosomes, suggesting differential mechanisms at these two loci. The phenotypic variance explained by Cd QTL ranged from 5.9 to 11.6% and averaged 8.2% across all QTL. A whole-genome microarray study led to the identification of nine Cd-responsive genes from these QTL. Promising candidates for Cd tolerance include an NHL repeat membrane-spanning protein, a metal transporter and a putative transcription factor. Additional candidates in the QTL intervals include a putative homolog of a glutamate cysteine ligase, and a glutathione-S-transferase. Functional characterization of these candidate genes should enhance our understanding of Cd metabolism and transport and phytoremediation capabilities of Populus.

  19. Draft Genome Sequence of the Growth-Promoting Endophyte Paenibacillus sp. P22, Isolated from Populus

    PubMed Central

    Hanak, Anne M.; Nagler, Matthias; Weinmaier, Thomas; Sun, Xiaoliang; Fragner, Lena; Schwab, Clarissa; Rattei, Thomas; Ulrich, Kristina; Ewald, Dietrich; Engel, Marion; Schloter, Michael; Bittner, Romana; Schleper, Christa

    2014-01-01

    Paenibacillus sp. P22 is a Gram-negative facultative anaerobic endospore-forming bacterium isolated from poplar hybrid 741 (♀[Populus alba × (P. davidiana + P. simonii) × P. tomentosa]). This bacterium shows strong similarities to Paenibacillus humicus, and important growth-promoting effects on in vitro grown explants of poplar hybrid 741 have been described. PMID:24723717

  20. Characterization of Dof Transcription Factors and Their Responses to Osmotic Stress in Poplar (Populus trichocarpa).

    PubMed

    Wang, Han; Zhao, Shicheng; Gao, Yuchi; Yang, Jingli

    2017-01-01

    The DNA-binding One Zinc Finger (Dof) genes are ubiquitous in many plant species and are especial transcription regulators that participate in plant growth, development and various procedures, including biotic and abiotic stress reactions. In this study, we identified 41 PtrDof members from Populus trichocarpa genomes and classified them into four groups. The conserved motifs and gene structures of some PtrDof genes belonging to the same subgroup were almost the same. The 41 PtrDof genes were dispersed on 18 of the 19 Populus chromosomes. Many key stress- or phytohormone-related cis-elements were discovered in the PtrDof gene promoter regions. Consequently, we undertook expression profiling of the PtrDof genes in leaves and roots in response to osmotic stress and abscisic acid. A total of seven genes (PtrDof14, 16, 25, 27, 28, 37 and 39) in the Populus Dof gene family were consistently upregulated at point in all time in the leaves and roots under osmotic and abscisic acid (ABA) stress. We observed that 12 PtrDof genes could be targeted by 15 miRNAs. Moreover, we mapped the cleavage site in PtrDof30 using the 5'RLM-RACE. The results showed that PtrDofs may have a role in resistance to abiotic stress in Populus trichocarpa.

  1. Characterization of Dof Transcription Factors and Their Responses to Osmotic Stress in Poplar (Populus trichocarpa)

    PubMed Central

    Wang, Han; Zhao, Shicheng; Gao, Yuchi; Yang, Jingli

    2017-01-01

    The DNA-binding One Zinc Finger (Dof) genes are ubiquitous in many plant species and are especial transcription regulators that participate in plant growth, development and various procedures, including biotic and abiotic stress reactions. In this study, we identified 41 PtrDof members from Populus trichocarpa genomes and classified them into four groups. The conserved motifs and gene structures of some PtrDof genes belonging to the same subgroup were almost the same. The 41 PtrDof genes were dispersed on 18 of the 19 Populus chromosomes. Many key stress- or phytohormone-related cis-elements were discovered in the PtrDof gene promoter regions. Consequently, we undertook expression profiling of the PtrDof genes in leaves and roots in response to osmotic stress and abscisic acid. A total of seven genes (PtrDof14, 16, 25, 27, 28, 37 and 39) in the Populus Dof gene family were consistently upregulated at point in all time in the leaves and roots under osmotic and abscisic acid (ABA) stress. We observed that 12 PtrDof genes could be targeted by 15 miRNAs. Moreover, we mapped the cleavage site in PtrDof30 using the 5’RLM-RACE. The results showed that PtrDofs may have a role in resistance to abiotic stress in Populus trichocarpa. PMID:28095469

  2. RepPop: A Database for Repetitive Elements in Populus Trichocarpa

    DOE Data Explorer

    Zhou, Fengfeng; Xu, Ying

    The populus was selected as the first tree with the genome to be sequenced, mainly due to its small genome size, the wide deployment worldwide (30+ species), and its short juvenile period. Its rich content of cellulose, which is one of the most important source for biofuel. A female clone of P. trichocarpa was chosen to be sequenced. The current assembly of Populus genome is release 1.0, whose small insert end-sequence coverage is 7.5X, and it was released in June 2004. It consists of 22,012 sequences (including the 19 chromosomes) and the total length is 485,510,911 bps. The data was downloaded from the offical site of the Populus trichocarpa genome sequencing project. The latest version of the genome can be found at the Poplar Genome Project at JGI Eukaryotic Genomics. Duplication regions introduce significant difficulties into the correct assemblying of sequence contigs. We identified all the repetitive elements in the populus genome. We further assign each of them as different classes of repetitive elements, including DNA transposons, RNA retrotransposons, Miniature Inverted-repeat Transposable Elements (MITE), Simple Sequence Repeats (SSR), and Segmental Duplications (SD), etc. We organized the annotations into this easily browsable, searchable, and blastable database, RepPop, for the whole community.[From website for RepPop at http://csbl.bmb.uga.edu/~ffzhou/RepPop/

  3. Genome structure and emerging evidence of an incipient sex chromosome in Populus

    SciTech Connect

    Yin, Tongming; DiFazio, Stephen P; Gunter, Lee E; Zhang, Xinye; Sewell, Mitchell; Woolbright, Dr. Scott; Allan, Dr. Gery; Kelleher, Colin; Douglas, Carl; Wang, Prof. Mingxiu; Tuskan, Gerald A

    2008-01-01

    The genus Populus consists of dioecious woody species with largely unknown genetic mechanisms for gender determination. We have discovered genetic and genomic features in the peritelomeric region of chromosome XIX that suggest this region of the Populus genome is in the process of developing characteristics of a sex chromosome. We have identified a gender-associated locus that consistently maps to this region. Furthermore, comparison of genetic maps across multiple Populus families reveals consistently distorted segregation within this region. We have intensively characterized this region using an F1 interspecific cross involving the female genotype that was used for genome sequencing. This region shows suppressed recombination and high divergence between the alternate haplotypes, as revealed by dense map-based genome assembly using microsatellite markers. The suppressed recombination, distorted segregation, and haplotype divergence were observed only for the maternal parent in this cross. Furthermore, the progeny of this cross showed a strongly male-biased sex ratio, in agreement with Haldane's rule that postulates that the heterogametic sex is more likely to be absent, rare, or sterile in interspecific crosses. Together, these results support the role of chromosome XIX in sex determination and suggest that sex determination in Populus occurs through a ZW system in which the female is the heterogametic gender.

  4. The response of Populus spp. to cadmium stress: chemical, morphological and proteomics study.

    PubMed

    Marmiroli, Marta; Imperiale, Davide; Maestri, Elena; Marmiroli, Nelson

    2013-10-01

    Poplar (Populus) species are seen as candidates for removing heavy metal contamination from polluted soil. A bottom-up multidisciplinary approach was utilized to compare the performances of clones 58-861 and Poli (Populus nigra) and A4A, a Populus nigra × Populus deltoides hybrid to Cd toxicity. Qualitative and quantitative differences in their tolerance to Cd exposure and the uptake, accumulation and translocation of Cd were noted following the hydroponic exposure of rooted cuttings to 20 μM CdSO₄ for either 48 h or 14 d. Cadmium was less toxic for the hybrid clone A4A as compared to Poli and 58-861. Cd uptake and root to shoot translocation were determined by AAS, and its compartmentation was analyzed using SEM/EDX. A comparative proteomic approach was utilized to identify changes in proteins expression according to dose and time of exposure. Toxicity to Cd mainly influenced proteins related to general defense, stress response and carbohydrate metabolism.

  5. Cryopreservation of Populus trichocarpa and Salix using dormant buds with recovery by grafting or direct rooting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Populus trichocarpa and Salix can be successfully cryopreserved by using dormant scions as the source explants. These scions (either at their original moisture content of 48 to 60% or dried to 30%) were slowly cooled to –35 degree Celsius, transferred to the vapor phase of liquid nitrogen (LNV,-160...

  6. Genome-Wide Analysis of the Fasciclin-Like Arabinogalactan Protein Gene Family Reveals Differential Expression Patterns, Localization, and Salt Stress Response in Populus

    PubMed Central

    Zang, Lina; Zheng, Tangchun; Chu, Yanguang; Ding, Changjun; Zhang, Weixi; Huang, Qinjun; Su, Xiaohua

    2015-01-01

    Fasciclin-like arabinogalactan proteins (FLAs) are a subclass of arabinogalactan proteins (AGPs) involved in plant growth, development and response to abiotic stress. Although many studies have been performed to identify molecular functions of individual family members, little information is available on genome-wide identification and characterization of FLAs in the genus Populus. Based on genome-wide analysis, we have identified 35 Populus FLAs which were distributed on 16 chromosomes and phylogenetically clustered into four major groups. Gene structure and motif composition were relatively conserved in each group. All the members contained N-terminal signal peptide, 23 of which included predicted glycosylphosphatidylinositol (GPI) modification sites and were anchored to plasma membranes. Subcellular localization analysis showed that PtrFLA2/20/26 were localized in cell membrane and cytoplasm of protoplasts from Populus stem-differentiating xylem. The Ka/Ks ratios showed that purifying selection has played a leading role in the long-term evolutionary period which greatly maintained the function of this family. The expression profiles showed that 32 PtrFLAs were differentially expressed in four tissues at four seasons based on publicly available microarray data. 18 FLAs were further verified with qRT-PCR in different tissues, which indicated that PtrFLA1/2/3/7/11/12/20/21/22/24/26/30 were significantly expressed in male and female flowers, suggesting close correlations with the reproductive development. In addition, PtrFLA1/9/10/11/17/21/23/24/26/28 were highly expressed in the stems and differentiating xylem, which may be involved in stem development. To determine salt response of FLAs, qRT-PCR was performed to analyze the expression of 18 genes under salinity stress across two time points. Results demonstrated that all the 18 FLAs were expressed in root tissues; especially, PtrFLA2/12/20/21/24/30 were significantly induced at different time points. In summary

  7. Downregulation of GAUT12 in Populus deltoides by RNA silencing results in reduced recalcitrance, increased growth and reduced xylan and pectin in a woody biofuel feedstock

    SciTech Connect

    Biswal, Ajaya K.; Hao, Zhangying; Pattathil, Sivakumar; Yang, Xiaohan; Winkeler, Kim; Collins, Cassandra; Mohanty, Sushree S.; Richardson, Elizabeth A.; Gelineo-Albersheim, Ivana; Hunt, Kimberly; Ryno, David; Sykes, Robert W.; Turner, Geoffrey B.; Ziebell, Angela; Gjersing, Erica; Lukowitz, Wolfgang; Davis, Mark F.; Decker, Stephen R.; Hahn, Michael G.; Mohnen, Debra

    2015-03-12

    The inherent recalcitrance of woody bioenergy feedstocks is a major challenge for their use as a source of second-generation biofuel. Secondary cell walls that constitute the majority of hardwood biomass are rich in cellulose, xylan, and lignin. The interactions among these polymers prevent facile accessibility and deconstruction by enzymes and chemicals. Plant biomass that can with minimal pretreatment be degraded into sugars is required to produce renewable biofuels in a cost-effective manner. The following are the results: GAUT12/IRX8 is a putative glycosyltransferase proposed to be involved in secondary cell wall glucuronoxylan and/or pectin biosynthesis based on concomitant reductions of both xylan and the pectin homogalacturonan (HG) in Arabidopsis irx8 mutants. Two GAUT12 homologs exist in Populus trichocarpa, PtGAUT12.1 and PtGAUT12.2. Knockdown expression of both genes simultaneously has been shown to reduce xylan content in Populus wood. We tested the proposition that RNA interference (RNAi) downregulation of GAUT12.1 alone would lead to increased sugar release in Populus wood, that is, reduced recalcitrance, based on the hypothesis that GAUT12 synthesizes a wall structure required for deposition of xylan and that cell walls with less xylan and/or modified cell wall architecture would have reduced recalcitrance. Using an RNAi approach, we generated 11 Populus deltoides transgenic lines with 50 to 67% reduced PdGAUT12.1 transcript expression compared to wild type (WT) and vector controls. Ten of the eleven RNAi lines yielded 4 to 8% greater glucose release upon enzymatic saccharification than the controls. The PdGAUT12.1 knockdown (PdGAUT12.1-KD) lines also displayed 12 to 52% and 12 to 44% increased plant height and radial stem diameter, respectively, compared to the controls. Knockdown of PdGAUT12.1 resulted in a 25 to 47% reduction in galacturonic acid and 17 to 30% reduction in xylose without affecting total lignin content, revealing that in Populus

  8. Identification of Quantitative Trait Loci (QTL) and Candidate Genes for Cadmium Tolerance in Populus

    SciTech Connect

    Induri, Brahma R; Ellis, Danielle R; Slavov, Gancho; Yin, Tongming; Muchero, Wellington; Tuskan, Gerald A; DiFazio, Stephen P

    2012-01-01

    Knowledge of genetic variation in response of Populus to heavy metals like cadmium (Cd) is an important step in understanding the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa and Populus deltoides was characterized for Cd exposure. The pedigree showed significant variation for Cd tolerance thus enabling the identification of relatively tolerant and susceptible genotypes for intensive characterization. A total of 16 QTLs at logarithm of odds (LOD) ratio > 2.5, were found to be associated with total dry weight, its components, and root volume. Four major QTLs for total dry weight were mapped to different linkage groups in control (LG III) and Cd conditions (LG XVI) and had opposite allelic effects on Cd tolerance, suggesting that these genomic regions were differentially controlled. The phenotypic variation explained by Cd QTL for all traits under study varied from 5.9% to 11.6% and averaged 8.2% across all QTL. Leaf Cd contents also showed significant variation suggesting the phytoextraction potential of Populus genotypes, though heritability of this trait was low (0.22). A whole-genome microarray study was conducted by using two genotypes with extreme responses for Cd tolerance in the above study and differentially expressed genes were identified. Candidate genes including CAD2 (CADMIUM SENSITIVE 2), HMA5 (HEAVY METAL ATPase5), ATGTST1 (Arabidopsis thaliana Glutathione S-Transferase1), ATGPX6 (Glutathione peroxidase 6), and ATMRP 14 (Arabidopsis thaliana Multidrug Resistance associated Protein 14) were identified from QTL intervals and microarray study. Functional characterization of these candidate genes could enhance phytoremediation capabilities of Populus.

  9. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    PubMed

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  10. Genome-wide association implicates numerous genes and pleiotropy underlying ecological trait variation in natural populations of Populus trichocarpa

    SciTech Connect

    McKown, Athena; Klapste, Jaroslav; Guy, Robert; Geraldes, Armando; Porth, Ilga; Hannemann, Jan; Friedmann, Michael; Muchero, Wellington; Tuskan, Gerald A; Ehlting, Juergen; Cronk, Quentin; El-Kassaby, Yousry; Mansfield, Shawn; Douglas, Carl

    2014-01-01

    To uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa Torr. & Gray) from natural populations throughout western North America. Extensive information from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34K Populus SNP array) of all accessions were used for gene discovery in a genome-wide association study (GWAS).

  11. Genome resequencing in Populus: Revealing large-scale genome variation and implications on specialized-trait genomics

    SciTech Connect

    Muchero, Wellington; Labbe, Jessy L; Priya, Ranjan; DiFazio, Steven P; Tuskan, Gerald A

    2014-01-01

    To date, Populus ranks among a few plant species with a complete genome sequence and other highly developed genomic resources. With the first genome sequence among all tree species, Populus has been adopted as a suitable model organism for genomic studies in trees. However, far from being just a model species, Populus is a key renewable economic resource that plays a significant role in providing raw materials for the biofuel and pulp and paper industries. Therefore, aside from leading frontiers of basic tree molecular biology and ecological research, Populus leads frontiers in addressing global economic challenges related to fuel and fiber production. The latter fact suggests that research aimed at improving quality and quantity of Populus as a raw material will likely drive the pursuit of more targeted and deeper research in order to unlock the economic potential tied in molecular biology processes that drive this tree species. Advances in genome sequence-driven technologies, such as resequencing individual genotypes, which in turn facilitates large scale SNP discovery and identification of large scale polymorphisms are key determinants of future success in these initiatives. In this treatise we discuss implications of genome sequence-enable technologies on Populus genomic and genetic studies of complex and specialized-traits.

  12. Productivity, water-use efficiency and tolerance to moderate water deficit correlate in 33 poplar genotypes from a Populus deltoides x Populus trichocarpa F1 progeny.

    PubMed

    Monclus, R; Villar, M; Barbaroux, C; Bastien, C; Fichot, R; Delmotte, F M; Delay, D; Petit, J-M; Bréchet, C; Dreyer, E; Brignolas, F

    2009-11-01

    Genotypic variability for productivity, water-use efficiency and leaf traits in 33 genotypes selected from an F1 progeny of Populus deltoides Bartr. ex Marsh x Populus trichocarpa L. was explored under optimal and moderate water-deficit conditions. Saplings of the 33 genotypes were grown in a two-plot open field at INRA Orléans (France) and coppiced every year. A moderate water deficit was induced during two successive years on one plot by withholding irrigation, while the second one remained irrigated (control). Stem biomass and leaf structure (e.g., specific leaf area and leaf area) were measured in 2004 and 2005 and functional leaf traits (e.g., carbon isotope discrimination, Delta) were measured only in 2004. Tolerance to water deficit was estimated at genotype level as the ability to limit losses in biomass production in water deficit versus control trees. Stem biomass, leaf structure and Delta displayed a significant genotypic variability whatever the irrigation regime. For all traits, genotype ranks remained stable across years for similar irrigation conditions. Carbon isotope discrimination scaled negatively with productivity and leaf nitrogen content in controls. The most productive genotypes were the least tolerant to moderate water deficit. No relationship was evidenced between Delta and the level of tolerance to water deficit. The relationships between traits evidenced in this collection of P. deltoides x P. trichocarpa F1 genotypes contrast with the ones that were previously detected in a collection of P. deltoides x Populus nigra L. cultivars tested in the same field trial.

  13. Auxin is a long-range signal that acts independently of ethylene signaling on leaf abscission in Populus

    PubMed Central

    Jin, Xu; Zimmermann, Jorma; Polle, Andrea; Fischer, Urs

    2015-01-01

    Timing of leaf abscission is an important trait for biomass production and seasonal acclimation in deciduous trees. The signaling leading to organ separation, from the external cue (decreasing photoperiod) to ethylene-regulated hydrolysis of the middle lamellae in the abscission zone, is only poorly understood. Data from annual species indicate that the formation of an auxin gradient spanning the abscission zone regulates the timing of abscission. We established an experimental system in Populus to induce leaf shedding synchronously under controlled greenhouse conditions in order to test the function of auxin in leaf abscission. Here, we show that exogenous auxin delayed abscission of dark-induced leaves over short and long distances and that a new auxin response maximum preceded the formation of an abscission zone. Several auxin transporters were down-regulated during abscission and inhibition of polar auxin transport delayed leaf shedding. Ethylene signaling was not involved in the regulation of these auxin transporters and in the formation of an abscission zone, but was required for the expression of hydrolytic enzymes associated with cell separation. Since exogenous auxin delayed abscission in absence of ethylene signaling auxin likely acts independently of ethylene signaling on cell separation. PMID:26322071

  14. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    SciTech Connect

    Tschaplinski, T.J.; Tuskan, G.A.; Wierman, C.

    1997-04-01

    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  15. Cytogenetic Analysis of Populus trichocarpa - Ribosomal DNA, Telomere Repeat Sequence, and Marker-selected BACs

    SciTech Connect

    Tuskan, Gerald A; Gunter, Lee E; DiFazio, Stephen P

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis -type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  16. Cytogenetic analysis of Populus trichocarpa--ribosomal DNA, telomere repeat sequence, and marker-selected BACs.

    PubMed

    Islam-Faridi, M N; Nelson, C D; DiFazio, S P; Gunter, L E; Tuskan, G A

    2009-01-01

    The 18S-28S rDNA and 5S rDNA loci in Populus trichocarpa were localized using fluorescent in situ hybridization (FISH). Two 18S-28S rDNA sites and one 5S rDNA site were identified and located at the ends of 3 different chromosomes. FISH signals from the Arabidopsis-type telomere repeat sequence were observed at the distal ends of each chromosome. Six BAC clones selected from 2 linkage groups based on genome sequence assembly (LG-I and LG-VI) were localized on 2 chromosomes, as expected. BACs from LG-I hybridized to the longest chromosome in the complement. All BAC positions were found to be concordant with sequence assembly positions. BAC-FISH will be useful for delineating each of the Populus trichocarpa chromosomes and improving the sequence assembly of this model angiosperm tree species.

  17. Isolating a functionally relevant guild of fungi from the root microbiome of Populus

    SciTech Connect

    Bonito, Gregory; Hameed, Khalid; Ventura, Rafael; Krishnan, Jay; Schadt, Christopher W.; Vilgalys, Rytas

    2016-05-27

    Plant roots interact with a bewilderingly complex community of microbes, including root-associated fungi that are essential for maintaining plant health. To improve understanding of the diversity of fungi in the rhizobiome of Populus deltoides, Populus trichocarpa and co-occurring plant hosts Quercus alba and Pinus taeda, we conducted field and greenhouse studies and sampled, isolated, and characterized the diversity of culturable root-associated fungi on these hosts. Using both general and selective isolation media we obtained more than 1800 fungal isolates from individual surface sterilized root tips. Sequences from the ITS and/or D1– D2 regions of the LSU rDNA were obtained from 1042 of the >1800 pure culture isolates and were compared to accessions in the NCBI nucleotide database and analyzed through phylogenetics for preliminary taxonomic identification. Sequences from these isolates were also compared to 454 sequence datasets obtained directly from the Populus rhizosphere and endosphere. Although most of the ectomycorrhizal taxa known to associate with Populus evaded isolation, many of the abundant sequence types from rhizosphere and endosphere 454 datasets were isolated, including novel species belonging to the Atractiellales. Isolation and identification of key endorrhizal fungi will enable more targeted study of plant-fungal interactions. Genome sequencing is currently underway for a subset of our culture library with the aim of understanding the mechanisms involved in host-endophyte establishment and function. As a result, this diverse culture library of fungal root associates will be a valuable resource for metagenomic research, experimentation and further studies on plant-fungal interactions.

  18. Isolating a functionally relevant guild of fungi from the root microbiome of Populus

    DOE PAGES

    Bonito, Gregory; Hameed, Khalid; Ventura, Rafael; ...

    2016-05-27

    Plant roots interact with a bewilderingly complex community of microbes, including root-associated fungi that are essential for maintaining plant health. To improve understanding of the diversity of fungi in the rhizobiome of Populus deltoides, Populus trichocarpa and co-occurring plant hosts Quercus alba and Pinus taeda, we conducted field and greenhouse studies and sampled, isolated, and characterized the diversity of culturable root-associated fungi on these hosts. Using both general and selective isolation media we obtained more than 1800 fungal isolates from individual surface sterilized root tips. Sequences from the ITS and/or D1– D2 regions of the LSU rDNA were obtained frommore » 1042 of the >1800 pure culture isolates and were compared to accessions in the NCBI nucleotide database and analyzed through phylogenetics for preliminary taxonomic identification. Sequences from these isolates were also compared to 454 sequence datasets obtained directly from the Populus rhizosphere and endosphere. Although most of the ectomycorrhizal taxa known to associate with Populus evaded isolation, many of the abundant sequence types from rhizosphere and endosphere 454 datasets were isolated, including novel species belonging to the Atractiellales. Isolation and identification of key endorrhizal fungi will enable more targeted study of plant-fungal interactions. Genome sequencing is currently underway for a subset of our culture library with the aim of understanding the mechanisms involved in host-endophyte establishment and function. As a result, this diverse culture library of fungal root associates will be a valuable resource for metagenomic research, experimentation and further studies on plant-fungal interactions.« less

  19. Polyphenol oxidase overexpression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria).

    PubMed

    Wang, Jiehua; Constabel, C Peter

    2004-11-01

    In order to functionally analyze the predicted defensive role of leaf polyphenol oxidase (PPO; EC 1.10.3.1) in Populus, transgenic hybrid aspen (Populus tremula x P. alba) plants overexpressing a hybrid poplar (Populus trichocarpa x P. deltoides) PtdPPO1 gene were constructed. Regenerated transgenic plants showed high PPO enzyme activity, PtdPPO1 mRNA levels and PPO protein accumulation. In leaf disk bioassays, forest tent caterpillar (Malacosoma disstria) larvae feeding on PPO-overexpressing transgenics experienced significantly higher mortality and reduced average weight gain compared to larvae feeding on control leaves. However, this effect was observed only when older egg masses were used and the resulting larvae showed reduced growth and vigor. In choice tests, no effect of PPO overexpression was detected. Although PPO in poplar leaves is latent and requires activation with detergents or trypsin for full enzymatic activity, in caterpillar frass the enzyme was extracted in the fully activated form. This activation correlated with partial proteolytic cleavage, suggesting that PPO latency and activation during digestion could be an adaptive and defense-related feature of poplar PPO.

  20. Plants remember past weather: a study for atmospheric pollen concentrations of Ambrosia, Poaceae and Populus

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Sümeghy, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Tusnády, Gábor

    2015-10-01

    After extreme dry (wet) summers or years, pollen production of different taxa may decrease (increase) substantially. Accordingly, studying effects of current and past meteorological conditions on current pollen concentrations for different taxa have of major importance. The purpose of this study is separating the weight of current and past weather conditions influencing current pollen productions of three taxa. Two procedures, namely multiple correlations and factor analysis with special transformation are used. The 11-year (1997-2007) data sets include daily pollen counts of Ambrosia (ragweed), Poaceae (grasses) and Populus (poplar), as well as daily values of four climate variables (temperature, relative humidity, global solar flux and precipitation). Multiple correlations of daily pollen counts with simultaneous values of daily meteorological variables do not show annual course for Ambrosia, but do show definite trends for Populus and Poaceae. Results received using the two methods revealed characteristic similarities. For all the three taxa, the continental rainfall peak and additional local showers in the growing season can strengthen the weight of the current meteorological elements. However, due to the precipitation, big amount of water can be stored in the soil contributing to the effect of the past climate elements during dry periods. Higher climate sensitivity (especially water sensitivity) of the herbaceous taxa ( Ambrosia and Poaceae) can be definitely established compared to the arboreal Populus. Separation of the weight of the current and past weather conditions for different taxa involves practical importance both for health care and agricultural production.

  1. Dendrochronological and palynological observations on Populus balsamifera in northern Alaska, USA

    SciTech Connect

    Edwards, M.E.; Dunwiddie, P.W.

    1985-01-01

    Sexual and clonal reproduction is occurring in a stand of Populus balsamifera on the Alaskan North Slope. Both even-aged and gradually expanding clones were observed. Trees attain ages in excess of 230 yr, but are slender due to slow diametrical growth (1.4 to 2.5 mm yr/sup -1/). A tree-ring chronology developed using 16 trees exhibited higher mean sensitivity (0.48) and lower first-order autocorrelation (0.43) than other high-latitude chronologies. Ring-width indices were most highly correlated with June temperature (r = 0.50). This species may be useful in expanding the array of climatically sensitive tree-ring sites in the Arctic. Moss polster samples in the vicinity of the stand indicate that although abundant Populus pollen is produced, little is found in surface samples > 30 m from the trees. It is suggested that Populus balsamifera was considerably more abundant in Beringia during the early Holocene due to warm early summer temperatures and widespread substrates favorable for its growth.

  2. [Effects of cadmium stress on the microbial biodiversity in purple soil and alluvial soil potted with a poplar (Populus deltoides x Populus nigra)].

    PubMed

    Wang, Ao; Wu, Fu-Zhong; Yang, Wan-Qin; Zhou, Li-Qiang; Wang, Xu-Xi; Han, Yu

    2011-07-01

    Effects of current Cd contamination levels on microbial biodiversity were studied under the typical Cd contaminated soils in the Yangtze Basin. Purple soil and alluvial soil potted with a poplar (Populus deltoides x Populus nigra) were selected, and the culturable soil microbial amounts by flat method, microbial biomass and bacterial community structure by PCR-DGGE were investigated. Cd supplies significantly increased the culturable amounts of bacteria and actinomyces in purple soil, but decreased the culturable amounts of fungi and the content of microbial biomass N. Fingerprint of DGGE also showed that bacterial community structure have obviously changed under different Cd supplies. In contrast, the lower Cd supplies slightly increased the culturable amounts of bacteria and fungi in alluvial soil, but higher Cd supply treatment decreased the culturable amounts of bacteria, actinomyces and fungi, and the content of microbial biomass N. However, only a slight change was observed under different Cd supplies by DGGE fingerprint. Additionally, there were few effects of Cd supplies on the content of microbial biomass C in both purple soil and alluvial soil. The results provided basic data to understand the effects of present Cd contamination levels on soil microbial characteristics.

  3. Populus euphratica XTH overexpression enhances salinity tolerance by the development of leaf succulence in transgenic tobacco plants.

    PubMed

    Han, Yansha; Wang, Wei; Sun, Jian; Ding, Mingquan; Zhao, Rui; Deng, Shurong; Wang, Feifei; Hu, Yue; Wang, Yang; Lu, Yanjun; Du, Liping; Hu, Zanmin; Diekmann, Heike; Shen, Xin; Polle, Andrea; Chen, Shaoliang

    2013-11-01

    Populus euphratica is a salt-tolerant tree species that develops leaf succulence after a prolonged period of salinity stress. In the present study, a putative xyloglucan endotransglucosylase/hydrolase gene (PeXTH) from P. euphratica was isolated and transferred to tobacco plants. PeXTH localized exclusively to the endoplasmic reticulum and cell wall. Plants overexpressing PeXTH were more salt tolerant than wild-type tobacco with respect to root and leaf growth, and survival. The increased capacity for salt tolerance was due mainly to the anatomical and physiological alterations caused by PeXTH overexpression. Compared with the wild type, PeXTH-transgenic plants contained 36% higher water content per unit area and 39% higher ratio of fresh weight to dry weight, a hallmark of leaf succulence. However, the increased water storage in the leaves in PeXTH-transgenic plants was not accompanied by greater leaf thickness but was due to highly packed palisade parenchyma cells and fewer intercellular air spaces between mesophyll cells. In addition to the salt dilution effect in response to NaCl, these anatomical changes increased leaf water-retaining capacity, which lowered the increase of salt concentration in the succulent tissues and mesophyll cells. Moreover, the increased number of mesophyll cells reduced the intercellular air space, which improved carbon economy and resulted in a 47-78% greater net photosynthesis under control and salt treatments (100-150 mM NaCl). Taken together, the results indicate that PeXTH overexpression enhanced salt tolerance by the development of succulent leaves in tobacco plants without swelling.

  4. Identifying gene coexpression networks underlying the dynamic regulation of wood-forming tissues in Populus under diverse environmental conditions.

    PubMed

    Zinkgraf, Matthew; Liu, Lijun; Groover, Andrew; Filkov, Vladimir

    2017-03-01

    Trees modify wood formation through integration of environmental and developmental signals in complex but poorly defined transcriptional networks, allowing trees to produce woody tissues appropriate to diverse environmental conditions. In order to identify relationships among genes expressed during wood formation, we integrated data from new and publically available datasets in Populus. These datasets were generated from woody tissue and include transcriptome profiling, transcription factor binding, DNA accessibility and genome-wide association mapping experiments. Coexpression modules were calculated, each of which contains genes showing similar expression patterns across experimental conditions, genotypes and treatments. Conserved gene coexpression modules (four modules totaling 8398 genes) were identified that were highly preserved across diverse environmental conditions and genetic backgrounds. Functional annotations as well as correlations with specific experimental treatments associated individual conserved modules with distinct biological processes underlying wood formation, such as cell-wall biosynthesis, meristem development and epigenetic pathways. Module genes were also enriched for DNase I hypersensitivity footprints and binding from four transcription factors associated with wood formation. The conserved modules are excellent candidates for modeling core developmental pathways common to wood formation in diverse environments and genotypes, and serve as testbeds for hypothesis generation and testing for future studies.

  5. Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis)

    PubMed Central

    Yang, Shihai; Zhou, Yanli; Dong, Chao; Ren, Jian; Sun, Xudong; Yang, Yongping

    2015-01-01

    Excess amounts of heavy metals are important environmental pollutants with significant ecological and nutritional effects. Cdmium (Cd) is of particular concern because of its widespread occurrence and high toxicity. We conducted physiological and proteomic analyses to improve our understanding of the responses of Populus yunnanensis to Cd stress. The plantlets experienced two apparent stages in their response to Cd stress. During the first stage, transiently induced defense-response molecules, photosynthesis- and energy-associated proteins, antioxidant enzymes and heat shock proteins (HSPs) accumulated to enhance protein stability and establish a new cellular homeostasis. This activity explains why plant photosynthetic capability during this period barely changed. During the second stage, a decline of ribulose-1, 5-bisphosphate carboxylase (RuBisCO) and HSP levels led to imbalance of the plant photosynthetic system. Additionally, the expression of Mitogen-activated protein kinase 3 (MPK3), Mitogen-activated protein kinase 6 (MPK6) and a homeobox-leucine zipper protein was higher in the second stage. Higher expression of caffeoyl-CoA O-methyltransferase (CCoAOMT) may regulate plant cell wall synthesis for greater Cd storage. These genes may be candidates for further research and use in genetic manipulation of poplar tolerance to Cd stress. PMID:26349064

  6. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    PubMed

    Laur, Joan; Hacke, Uwe G

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  7. The Role of Water Channel Proteins in Facilitating Recovery of Leaf Hydraulic Conductance from Water Stress in Populus trichocarpa

    PubMed Central

    Laur, Joan; Hacke, Uwe G.

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf. PMID:25406088

  8. Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis).

    PubMed

    Yang, Yunqiang; Li, Xiong; Yang, Shihai; Zhou, Yanli; Dong, Chao; Ren, Jian; Sun, Xudong; Yang, Yongping

    2015-01-01

    Excess amounts of heavy metals are important environmental pollutants with significant ecological and nutritional effects. Cdmium (Cd) is of particular concern because of its widespread occurrence and high toxicity. We conducted physiological and proteomic analyses to improve our understanding of the responses of Populus yunnanensis to Cd stress. The plantlets experienced two apparent stages in their response to Cd stress. During the first stage, transiently induced defense-response molecules, photosynthesis- and energy-associated proteins, antioxidant enzymes and heat shock proteins (HSPs) accumulated to enhance protein stability and establish a new cellular homeostasis. This activity explains why plant photosynthetic capability during this period barely changed. During the second stage, a decline of ribulose-1, 5-bisphosphate carboxylase (RuBisCO) and HSP levels led to imbalance of the plant photosynthetic system. Additionally, the expression of Mitogen-activated protein kinase 3 (MPK3), Mitogen-activated protein kinase 6 (MPK6) and a homeobox-leucine zipper protein was higher in the second stage. Higher expression of caffeoyl-CoA O-methyltransferase (CCoAOMT) may regulate plant cell wall synthesis for greater Cd storage. These genes may be candidates for further research and use in genetic manipulation of poplar tolerance to Cd stress.

  9. Identification of microRNAs Involved in Regeneration of the Secondary Vascular System in Populus tomentosa Carr

    PubMed Central

    Tang, Fang; Wei, Hairong; Zhao, Shutang; Wang, Lijuan; Zheng, Huanquan; Lu, Mengzhu

    2016-01-01

    Wood formation is a complex developmental process primarily controlled by a regulatory transcription network. MicroRNAs (miRNAs) can modulate the expression of target genes involved in plant growth and development by inducing mRNA degradation and translational repression. In this study, we used a model of secondary vascular system regeneration established in Populus tomentosa to harvest differentiating xylem tissues over time for high-throughput sequencing of small RNAs. Analysis of the sequencing data identified 209 known and 187 novel miRNAs during this regeneration process. Degradome sequencing analysis was then performed, revealing 157 and 75 genes targeted by 21 known and 30 novel miRNA families, respectively. Gene ontology enrichment of these target genes revealed that the targets of 15 miRNAs were enriched in the auxin signaling pathway, cell differentiation, meristem development, and pattern specification process. The major biological events during regeneration of the secondary vascular system included the sequential stages of vascular cambium initiation, formation, and differentiation stages in sequence. This study provides the basis for further analysis of these miRNAs to gain greater insight into their regulatory roles in wood development in trees. PMID:27303419

  10. A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in Populus × canescens1[C][W

    PubMed Central

    He, Jiali; Li, Hong; Luo, Jie; Ma, Chaofeng; Li, Shaojun; Qu, Long; Gai, Ying; Jiang, Xiangning; Janz, Dennis; Polle, Andrea; Tyree, Melvin; Luo, Zhi-Bin

    2013-01-01

    Bark tissue of Populus × canescens can hyperaccumulate cadmium, but microstructural, transcriptomic, and physiological response mechanisms are poorly understood. Histochemical assays, transmission electron microscopic observations, energy-dispersive x-ray microanalysis, and transcriptomic and physiological analyses have been performed to enhance our understanding of cadmium accumulation and detoxification in P. × canescens. Cadmium was allocated to the phloem of the bark, and subcellular cadmium compartmentalization occurred mainly in vacuoles of phloem cells. Transcripts involved in microstructural alteration, changes in nutrition and primary metabolism, and stimulation of stress responses showed significantly differential expression in the bark of P. × canescens exposed to cadmium. About 48% of the differentially regulated transcripts formed a coregulation network in which 43 hub genes played a central role both in cross talk among distinct biological processes and in coordinating the transcriptomic regulation in the bark of P. × canescens in response to cadmium. The cadmium transcriptome in the bark of P. × canescens was mirrored by physiological readouts. Cadmium accumulation led to decreased total nitrogen, phosphorus, and calcium and increased sulfur in the bark. Cadmium inhibited photosynthesis, resulting in decreased carbohydrate levels. Cadmium induced oxidative stress and antioxidants, including free proline, soluble phenolics, ascorbate, and thiol compounds. These results suggest that orchestrated microstructural, transcriptomic, and physiological regulation may sustain cadmium hyperaccumulation in P. × canescens bark and provide new insights into engineering woody plants for phytoremediation. PMID:23530184

  11. Elucidating the evolutionary history and expression patterns of nucleoside phosphorylase paralogs (vegetative storage proteins) in Populus and the plant kingdom

    PubMed Central

    2013-01-01

    Background Nucleoside phosphorylases (NPs) have been extensively investigated in human and bacterial systems for their role in metabolic nucleotide salvaging and links to oncogenesis. In plants, NP-like proteins have not been comprehensively studied, likely because there is no evidence of a metabolic function in nucleoside salvage. However, in the forest trees genus Populus a family of NP-like proteins function as an important ecophysiological adaptation for inter- and intra-seasonal nitrogen storage and cycling. Results We conducted phylogenetic analyses to determine the distribution and evolution of NP-like proteins in plants. These analyses revealed two major clusters of NP-like proteins in plants. Group I proteins were encoded by genes across a wide range of plant taxa while proteins encoded by Group II genes were dominated by species belonging to the order Malpighiales and included the Populus Bark Storage Protein (BSP) and WIN4-like proteins. Additionally, we evaluated the NP-like genes in Populus by examining the transcript abundance of the 13 NP-like genes found in the Populus genome in various tissues of plants exposed to long-day (LD) and short-day (SD) photoperiods. We found that all 13 of the Populus NP-like genes belonging to either Group I or II are expressed in various tissues in both LD and SD conditions. Tests of natural selection and expression evolution analysis of the Populus genes suggests that divergence in gene expression may have occurred recently during the evolution of Populus, which supports the adaptive maintenance models. Lastly, in silico analysis of cis-regulatory elements in the promoters of the 13 NP-like genes in Populus revealed common regulatory elements known to be involved in light regulation, stress/pathogenesis and phytohormone responses. Conclusion In Populus, the evolution of the NP-like protein and gene family has been shaped by duplication events and natural selection. Expression data suggest that previously

  12. Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa).

    PubMed

    Zuo, Ran; Hu, Ruibo; Chai, Guohua; Xu, Meiling; Qi, Guang; Kong, Yingzhen; Zhou, Gongke

    2013-03-01

    Calcium-dependent protein kinases (CDPKs) are Ca(2+)-binding proteins known to play crucial roles in Ca(2+) signal transduction pathways which have been identified throughout plant kingdom and in certain types of protists. Genome-wide analysis of CDPKs have been carried out in Arabidopsis, rice and wheat, and quite a few of CDPKs were proved to play crucial roles in plant stress responsive signature pathways. In this study, a comprehensive analysis of Populus CDPK and its closely related gene families was performed, including phylogeny, chromosome locations, gene structures, and expression profiles. Thirty Populus CDPK genes and twenty closely related kinase genes were identified, which were phylogenetically clustered into eight distinct subfamilies and predominately distributed across fifteen linkage groups (LG). Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus CDPK gene family. Furthermore, microarray analysis showed that a number of Populus CDPK and its closely related genes differentially expressed across disparate tissues and under various stresses. The expression profiles of paralogous pairs were also investigated to reveal their evolution fates. In addition, quantitative real-time RT-PCR was performed on nine selected CDPK genes to confirm their responses to drought stress treatment. These observations may lay the foundation for future functional analysis of Populus CDPK and its closely related gene families to unravel their biological roles.

  13. Differentiation of Populus species using chloroplast single nucleotide polymorphism (SNP) markers--essential for comprehensible and reliable poplar breeding.

    PubMed

    Schroeder, H; Hoeltken, A M; Fladung, M

    2012-03-01

    Within the genus Populus several species belonging to different sections are cross-compatible. Hence, high numbers of interspecies hybrids occur naturally and, additionally, have been artificially produced in huge breeding programmes during the last 100 years. Therefore, determination of a single poplar species, used for the production of 'multi-species hybrids' is often difficult, and represents a great challenge for the use of molecular markers in species identification. Within this study, over 20 chloroplast regions, both intergenic spacers and coding regions, have been tested for their ability to differentiate different poplar species using 23 already published barcoding primer combinations and 17 newly designed primer combinations. About half of the published barcoding primers yielded amplification products, whereas the new primers designed on the basis of the total sequenced cpDNA genome of Populus trichocarpa Torr. & Gray yielded much higher amplification success. Intergenic spacers were found to be more variable than coding regions within the genus Populus. The highest discrimination power of Populus species was found in the combination of two intergenic spacers (trnG-psbK, psbK-psbl) and the coding region rpoC. In barcoding projects, the coding regions matK and rbcL are often recommended, but within the genus Populus they only show moderate variability and are not efficient in species discrimination.

  14. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    SciTech Connect

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn Marie; Johnson, Courtney M; Martin, Stanton; Land, Miriam L; Lu, Tse-Yuan; Schadt, Christopher Warren; Doktycz, Mitchel John; Pelletier, Dale A

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  15. Contrasting responses in the growth and energy utilization properties of sympatric Populus and Salix to different altitudes: implications for sexual dimorphism in Salicaceae.

    PubMed

    Lei, Yanbao; Chen, Ke; Jiang, Hao; Yu, Lei; Duan, Baoli

    2017-01-01

    An interesting ecological and evolutionary puzzle arises from the observations of male-biased sex ratios in genus Populus, whereas in the taxonomically related Salix, females are generally more dominant. In the present study, we combined results from a field investigation into the sex ratios of the Salicaceous species along an altitudinal gradient on Gongga Mountain, and a pot experiment by monitoring growth and energy utilization properties to elucidate the mechanisms governing sexual dimorphism. At middle altitudes 2000 and 2300 m, the sex ratios were consistent with a 1:1 equilibrium in sympatric Populus purdomii and Salix magnifica. However, at the lower and higher ends of the altitudinal gradient, skewed sex ratios were observed. For example, the male:female ratios were 1.33 and 2.36 in P. purdomii at 1700 and 2600 m respectively; for S. magnifica the ratio was 0.62 at 2600 m. At 2300 m, the pot-grown seedlings of both species exhibited the highest biomass accumulation and total leaf area, simultaneously with the balanced sex ratios in the field. At 3300 m, the specific leaf area in male P. purdomii was 23.9% higher than that of females, which may be the morphological cause for the observed 19.3% higher nitrogen allocation to Rubisco, and 20.6% lower allocation to cell walls. As such, male P. purdomii showed a 32.9% higher foliar photosynthetic capacity, concomitant with a 12.0% lower construction cost. These properties resulted in higher photosynthetic nitrogen- and energy-use efficiencies, and shorter payback time (24.4 vs 40.1 days), the time span that a leaf must photosynthesize to amortize the carbon investment. Our results thus suggested that male P. purdomii evolved a quicker energy-return strategy. Consequently, these superior energy gain-cost related traits and the higher total leaf area contributed to the higher growth rate and tolerance in stress-prone environments, which might, in part, shed new light on the male-biased sex ratios in

  16. Diversification and Expression of the PIN, AUX/LAX, and ABCB Families of Putative Auxin Transporters in Populus

    PubMed Central

    Carraro, Nicola; Tisdale-Orr, Tracy Eizabeth; Clouse, Ronald Matthew; Knöller, Anne Sophie; Spicer, Rachel

    2012-01-01

    Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history, including both tandem and whole genome duplication as well as probable gene loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of genes involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ localization. PMID:22645571

  17. Compositional characterization and imaging of "Wall-bound" acylesters of Populus trichocarpa Reveal Differential Accumulation of acyl Molecules in Normal and Reactive Woods

    SciTech Connect

    Guo, J.; Park, S; Yu, X; Liu, C

    2008-01-01

    Acylesterification is one of the common modifications of cell wall non-cellulosic polysaccharides and/or lignin primarily in monocot plants. We analyzed the cell-wall acylesters of black cottonwood (Populus trichocarpa Torr. & Gray) with liquid chromatography-mass spectrometry (LC-MS), Fourier transform-infrared (FT-IR) microspectroscopy, and synchrotron infrared (IR) imaging facility. The results revealed that the cell wall of dicotyledonous poplar, as the walls of many monocot grasses, contains a considerable amount of acylesters, primarily acetyl and p-hydroxycinnamoyl molecules. The 'wall-bound' acetate and phenolics display a distinct tissue specific-, bending stress responsible- and developmental-accumulation pattern. The 'wall-bound' p-coumarate predominantly accumulated in young leaves and decreased in mature leaves, whereas acetate and ferulate mostly amassed in the cell wall of stems. Along the development of stem, the level of the 'wall-bound' ferulate gradually increased, while the basal level of p-coumarate further decreased. Induction of tension wood decreased the accumulation of the 'wall-bound' phenolics while the level of acetate remained constant. Synchrotron IR-mediated chemical compositional imaging revealed a close spatial distribution of acylesters with cell wall polysaccharides in poplar stem. These results indicate that different 'wall-bound' acylesters play distinct roles in poplar cell wall structural construction and/or metabolism of cell wall matrix components.

  18. Interaction of nitrogen nutrition and salinity in Grey poplar (Populus tremula x alba).

    PubMed

    Ehlting, B; Dluzniewska, P; Dietrich, H; Selle, A; Teuber, M; Hänsch, R; Nehls, U; Polle, A; Schnitzler, J-P; Rennenberg, H; Gessler, A

    2007-07-01

    Salinity represents an increasing environmental problem in managed ecosystems. Populus spp. is widely used for wood production by short-rotation forestry in fertilized plantations and can be grown on saline soil. Because N fertilization plays an important role in salt tolerance, we analysed Grey poplar (Populus tremula x alba, syn. Populus canescens) grown with either 1 mM nitrate or ammonium subjected to moderate 75 mM NaCl. The impact of N nutrition on amelioration of salt tolerance was analysed on different levels of N metabolism such as N uptake, assimilation and N (total N, proteins and amino compounds) accumulation. Na concentration increased in all tissues over time of salt exposure. The N nutrition-dependent effects of salt exposure were more intensive in roots than in leaves. Application of salt reduced root increment as well as stem height increase and, at the same time, increased the concentration of total amino compounds more intensively in roots of ammonium-fed plants. In leaves, salt treatment increased concentrations of total N more intensively in nitrate-fed plants and concentrations of amino compounds independently of N nutrition. The major changes in N metabolism of Grey poplar exposed to moderate salt concentrations were detected in the significant increase of amino acid concentrations. The present results indicate that N metabolism of Grey poplar exposed to salt performed better when the plants were fed with nitrate instead of ammonium as sole N source. Therefore, nitrate fertilization of poplar plantations grown on saline soil should be preferred.

  19. Diversity of Pseudomonas Genomes, Including Populus-Associated Isolates, as Revealed by Comparative Genome Analysis.

    PubMed

    Jun, Se-Ran; Wassenaar, Trudy M; Nookaew, Intawat; Hauser, Loren; Wanchai, Visanu; Land, Miriam; Timm, Collin M; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A; Ussery, David W

    2015-10-30

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches, including the rhizosphere and endosphere of many plants. Their diversity influences the phylogenetic diversity and heterogeneity of these communities. On the basis of average amino acid identity, comparative genome analysis of >1,000 Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides (eastern cottonwood) trees resulted in consistent and robust genomic clusters with phylogenetic homogeneity. All Pseudomonas aeruginosa genomes clustered together, and these were clearly distinct from other Pseudomonas species groups on the basis of pangenome and core genome analyses. In contrast, the genomes of Pseudomonas fluorescens were organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. Most of our 21 Populus-associated isolates formed three distinct subgroups within the major P. fluorescens group, supported by pathway profile analysis, while two isolates were more closely related to Pseudomonas chlororaphis and Pseudomonas putida. Genes specific to Populus-associated subgroups were identified. Genes specific to subgroup 1 include several sensory systems that act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor. Genes specific to subgroup 2 contain hypothetical genes, and genes specific to subgroup 3 were annotated with hydrolase activity. This study justifies the need to sequence multiple isolates, especially from P. fluorescens, which displays the most genetic variation, in order to study functional capabilities from a pangenomic perspective. This information will prove useful when choosing Pseudomonas strains for use to promote growth and increase disease resistance in plants.

  20. Towards a map of the Populus biomass protein-protein interaction network

    SciTech Connect

    Beers, Eric; Brunner, Amy; Helm, Richard; Dickerman, Allan

    2015-07-31

    Biofuels can be produced from a variety of plant feedstocks. The value of a particular feedstock for biofuels production depends in part on the degree of difficulty associated with the extraction of fermentable sugars from the plant biomass. The wood of trees is potentially a rich source fermentable sugars. However, the sugars in wood exist in a tightly cross-linked matrix of cellulose, hemicellulose, and lignin, making them largely recalcitrant to release and fermentation for biofuels production. Before breeders and genetic engineers can effectively develop plants with reduced recalcitrance to fermentation, it is necessary to gain a better understanding of the fundamental biology of the mechanisms responsible for wood formation. Regulatory, structural, and enzymatic proteins are required for the complicated process of wood formation. To function properly, proteins must interact with other proteins. Yet, very few of the protein-protein interactions necessary for wood formation are known. The main objectives of this project were to 1) identify new protein-protein interactions relevant to wood formation, and 2) perform in-depth characterizations of selected protein-protein interactions. To identify relevant protein-protein interactions, we cloned a set of approximately 400 genes that were highly expressed in the wood-forming tissue (known as secondary xylem) of poplar (Populus trichocarpa). We tested whether the proteins encoded by these biomass genes interacted with each other in a binary matrix design using the yeast two-hybrid (Y2H) method for protein-protein interaction discovery. We also tested a subset of the 400 biomass proteins for interactions with all proteins present in wood-forming tissue of poplar in a biomass library screen design using Y2H. Together, these two Y2H screens yielded over 270 interactions involving over 75 biomass proteins. For the second main objective we selected several interacting pairs or groups of interacting proteins for in

  1. Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates

    DOE PAGES

    Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat; ...

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The speciesmore » P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but

  2. Comparative genome analysis of Pseudomonas genomes including Populus-associated isolates

    SciTech Connect

    Jun, Se Ran; Wassenaar, Trudy; Nookaew, Intawat; Hauser, Loren John; Wanchai, Visanu; Land, Miriam L.; Timm, Collin M.; Lu, Tse-Yuan S.; Schadt, Christopher Warren; Doktycz, Mitchel John; Pelletier, Dale A; Ussery, David W

    2016-01-01

    The Pseudomonas genus contains a metabolically versatile group of organisms that are known to occupy numerous ecological niches including the rhizosphere and endosphere of many plants influencing phylogenetic diversity and heterogeneity. In this study, comparative genome analysis was performed on over one thousand Pseudomonas genomes, including 21 Pseudomonas strains isolated from the roots of native Populus deltoides. Based on average amino acid identity, genomic clusters were identified within the Pseudomonas genus, which showed agreements with clades by NCBI and cliques by IMG. The P. fluorescens group was organized into 20 distinct genomic clusters, representing enormous diversity and heterogeneity. The species P. aeruginosa showed clear distinction in their genomic relatedness compared to other Pseudomonas species groups based on the pan and core genome analysis. The 19 isolates of our 21 Populus-associated isolates formed three distinct subgroups within the P. fluorescens major group, supported by pathway profiles analysis, while two isolates were more closely related to P. chlororaphis and P. putida. The specific genes to Populus-associated subgroups were identified where genes specific to subgroup 1 include several sensory systems such as proteins which act in two-component signal transduction, a TonB-dependent receptor, and a phosphorelay sensor; specific genes to subgroup 2 contain unique hypothetical genes; and genes specific to subgroup 3 organisms have a different hydrolase activity. IMPORTANCE The comparative genome analyses of the genus Pseudomonas that included Populus-associated isolates resulted in novel insights into high diversity of Pseudomonas. Consistent and robust genomic clusters with phylogenetic homogeneity were identified, which resolved species-clades that are not clearly defined by 16S rRNA gene sequence analysis alone. The genomic clusters may be reflective of distinct ecological niches to which the organisms have adapted, but this

  3. Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure

    SciTech Connect

    Dumitrache, Alexandru; Akinosho, Hannah; Rodriguez, Miguel; Meng, Xianzhi; Yoo, Chang Geun; Natzke, Jace; Engle, Nancy L.; Sykes, Robert W.; Tschaplinski, Timothy J.; Muchero, Wellington; Ragauskas, Arthur J.; Davison, Brian H.; Brown, Steven D.

    2016-02-04

    Background: Higher ratios of syringyl-to-guaiacyl (S/G) lignin components of Populus were shown to improve sugar release by enzymatic hydrolysis using commercial blends. Cellulolytic microbes are often robust biomass hydrolyzers and may offer cost advantages; however, it is unknown whether their activity can also be significantly influenced by the ratio of different monolignol types in Populus biomass. Hydrolysis and fermentation of autoclaved, but otherwise not pretreated Populus trichocarpa by Clostridium thermocellum ATCC 27405 was compared using feedstocks that had similar carbohydrate and total lignin contents but differed in S/G ratios. Results: Populus with an S/G ratio of 2.1 was converted more rapidly and to a greater extent compared to similar biomass that had a ratio of 1.2. For either microbes or commercial enzymes, an approximate 50% relative difference in total solids solubilization was measured for both biomasses, which suggests that the differences and limitations in the microbial breakdown of lignocellulose may be largely from the enzymatic hydrolytic process. Unexpectedly, the reduction in glucan content per gram solid in the residual microbially processed biomass was similar (17–18%) irrespective of S/G ratio, pointing to a similar mechanism of solubilization that proceeded at different rates. Fermentation metabolome testing did not reveal the release of known biomass-derived alcohol and aldehyde inhibitors that could explain observed differences in microbial hydrolytic activity. Biomass-derived p-hydroxybenzoic acid was up to ninefold higher in low S/G ratio biomass fermentations, but was not found to be inhibitory in subsequent test fermentations. Cellulose crystallinity and degree of polymerization did not vary between Populus lines and had minor changes after fermentation. However, lignin molecular weights and cellulose accessibility determined by Simons’ staining were positively correlated to the S/G content. Conclusions: Higher S

  4. Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure

    DOE PAGES

    Dumitrache, Alexandru; Akinosho, Hannah; Rodriguez, Miguel; ...

    2016-02-04

    Background: Higher ratios of syringyl-to-guaiacyl (S/G) lignin components of Populus were shown to improve sugar release by enzymatic hydrolysis using commercial blends. Cellulolytic microbes are often robust biomass hydrolyzers and may offer cost advantages; however, it is unknown whether their activity can also be significantly influenced by the ratio of different monolignol types in Populus biomass. Hydrolysis and fermentation of autoclaved, but otherwise not pretreated Populus trichocarpa by Clostridium thermocellum ATCC 27405 was compared using feedstocks that had similar carbohydrate and total lignin contents but differed in S/G ratios. Results: Populus with an S/G ratio of 2.1 was converted moremore » rapidly and to a greater extent compared to similar biomass that had a ratio of 1.2. For either microbes or commercial enzymes, an approximate 50% relative difference in total solids solubilization was measured for both biomasses, which suggests that the differences and limitations in the microbial breakdown of lignocellulose may be largely from the enzymatic hydrolytic process. Unexpectedly, the reduction in glucan content per gram solid in the residual microbially processed biomass was similar (17–18%) irrespective of S/G ratio, pointing to a similar mechanism of solubilization that proceeded at different rates. Fermentation metabolome testing did not reveal the release of known biomass-derived alcohol and aldehyde inhibitors that could explain observed differences in microbial hydrolytic activity. Biomass-derived p-hydroxybenzoic acid was up to ninefold higher in low S/G ratio biomass fermentations, but was not found to be inhibitory in subsequent test fermentations. Cellulose crystallinity and degree of polymerization did not vary between Populus lines and had minor changes after fermentation. However, lignin molecular weights and cellulose accessibility determined by Simons’ staining were positively correlated to the S/G content. Conclusions: Higher

  5. Prevalence of LuxR- and LuxI-type quorum sensing circuits in members of the Populus deltoides microbiome

    SciTech Connect

    Schaefer, Amy L; Lappala, Colin; Morlen, Ryan; Pelletier, Dale A; Lu, Tse-Yuan; Lankford, Patricia K; Harwood, Caroline S; Greenberg, E. Peter

    2013-01-01

    We are interested in the root microbiome of the fast-growing Eastern cottonwood tree, Populus 25 deltoides. There is a large bank of bacterial isolates from P. deltoides and there are 44 draft 26 genomes of bacterial endophyte and rhizosphere isolates. As a first step in efforts to understand 27 the roles of bacterial communication and plant-bacterial signaling in P. deltoides we focused on 28 the prevalence of acyl-homoserine lactone (AHL) quorum sensing signal production and 29 reception in members of the P. deltoides microbiome. We screened 129 bacterial isolates for 30 AHL production using a broad-spectrum bioassay that responds to many but not all AHLs, and 31 we queried the available genome sequences of microbiome isolates for homologs of AHL 32 synthase and receptor genes. AHL signal production was detected in 40% of 129 strains tested. 33 Positive isolates included -, - and -Proteobacteria. Members of the luxI family of AHL 34 synthases were identified in 18 of 39 Proteobacteria genomes including genomes of some 35 isolates that tested negative in the bioassay. Members of the luxR family of transcription factors, 36 that include AHL-responsive factors, were more abundant than luxI homologs. There were 72 in 37 the 39 Proteobacteria genomes. Some of the luxR homologs appear to be members of a 38 subfamily of LuxRs that respond to as yet unknown plant signals rather than bacterial AHLs. 39 Apparently, there is a substantial capacity for AHL cell-to-cell communication in Proteobacteria 40 of the P. deltoides microbiota and there are also Proteobacteria with LuxR homologs of the type 41 hypothesized to respond to plant signals or cues.

  6. Phenolic composition and antioxidant properties of poplar bud (Populus nigra) extract: individual antioxidant contribution of phenolics and transcriptional effect on skin aging.

    PubMed

    Dudonné, Stéphanie; Poupard, Pascal; Coutière, Philippe; Woillez, Marion; Richard, Tristan; Mérillon, Jean-Michel; Vitrac, Xavier

    2011-05-11

    The Populus species possess great potential for therapeutical applications, especially for their known anti-inflammatory properties. The antioxidant properties of propolis, a hive product collected by honey bees mainly from poplar bud exudates, suggest that poplar buds also possess antioxidant properties. Here is reported the characterization of the antioxidant properties of an aqueous poplar bud (Populus nigra) extract. It presented a high total phenolic content, and moderate antioxidant properties as determined by ORAC assay. The main phenolic compounds identified were phenolic acids and flavonoid aglycons. These phenolic compounds were analyzed by ORAC assay for their individual antioxidant activity, in order to determine the major contributors to the total antioxidant activity of the extract. Thanks to their high antioxidant activity, caffeic and p-coumaric acids were identified as the major antioxidant components. Representing only 3.5% of its dry weight, these compounds represented together about 50% of the total antioxidant activity of the extract. The antioxidant properties of poplar bud extract and the phenolic compounds identified were also analyzed by cellular antioxidant activity assay (CAA), which was weakly correlated with ORAC assay. The transcriptional effect of poplar bud extract on skin aging was evaluated in vitro on a replicative senescence model of normal human dermal fibroblasts, using a customized DNA macroarray specifically designed to investigate skin aging markers. Among the detected genes, poplar bud extract significantly regulated genes involved in antioxidant defenses, inflammatory response and cell renewal. The collective antioxidant properties and transcriptional effect of this extract suggest potential antiaging properties which could be utilized in cosmetic and nutraceutical formulations.

  7. Down-Regulation of KORRIGAN-Like Endo-β-1,4-Glucanase Genes Impacts Carbon Partitioning, Mycorrhizal Colonization and Biomass Production in Populus

    PubMed Central

    Kalluri, Udaya C.; Payyavula, Raja S.; Labbé, Jessy L.; Engle, Nancy; Bali, Garima; Jawdy, Sara S.; Sykes, Robert W.; Davis, Mark; Ragauskas, Arthur; Tuskan, Gerald A.; Tschaplinski, Timothy J.

    2016-01-01

    A greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristics of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts. PMID:27757116

  8. Down-regulation of KORRIGAN-like endo-β-1,4-glucanase genes impacts carbon partitioning, mycorrhizal colonization and biomass production in Populus

    DOE PAGES

    Kalluri, Udaya C; Engle, Nancy L.; Bali, Garima; ...

    2016-10-04

    Here, a greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristicsmore » of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts.« less

  9. Extensive allelic variation in gene expression in populus F1 hybrids.

    PubMed

    Zhuang, Yan; Adams, Keith L

    2007-12-01

    Hybridization between plant species can induce speciation as well as phenotypic novelty and heterosis. Hybrids also can show genome rearrangements and gene expression changes compared with their parents. Here we determined the allelic variation in gene expression in Populus trichocarpa x Populus deltoides F(1) hybrids. Among 30 genes analyzed in four independently formed hybrids, 17 showed >1.5-fold expression biases for one of the two alleles, and there was monoallelic expression of one gene. Expression ratios of the alleles differed between leaves and stems for 10 genes. The results suggest differential regulation of the two parental alleles in the hybrids. To determine if the allelic expression biases were caused by hybridization we compared the ratios of species-specific transcripts between an F(1) hybrid and its parents. Thirteen of 19 genes showed allelic expression ratios in the hybrid that were significantly different from the ratios of the parental species. The P. deltoides allele of one gene was silenced in the hybrid. Modes of gene regulation were inferred from the hybrid-parent comparisons. Cis-regulation was inferred for 6 genes, trans-regulation for 1 gene, and combined cis- and trans-regulation for 9 genes. The results from this study indicate that hybridization between plant species can have extensive effects on allelic expression patterns, some of which might lead to phenotypic changes.

  10. Transport and use of CO sub 2 in the xylem sap of Populus deltoides

    SciTech Connect

    Stringer, J.W.; Kimmerer, T.W. )

    1990-05-01

    Results of recent experiments indicate an internal cycling of respiratory CO{sub 2} in woody plants. The CO{sub 2} concentration of xylem sap expressed from the twigs of field grown Populus deltoides ranged from .14 to .50 mM. The pH of the xylem sap was 5.7 to 6.7, providing a significant bicarbonate concentration in many samples. Total dissolved inorganic carbon (DIC = CO{sub 2} + H{sub 2}CO{sub 3} + HCO{sub 3}{sup {minus}}) was 0.5 mM to 1.3 mM. Results from the analysis of xylem sap of 10 other species of woody plants were similar. To determine the fate of DIC delivered to the leaves of Populus deltoides, excised leaves were fed 1mM NaHCO{sub 3} (2 {mu}Ci NaH{sup 14}CO{sub 3} ml{sup {minus}1}). Less than 0.4% of the label escaped from the leaves, and {ge}93% was fixed. Of the carbon fixed 56% of the {sup 14}C was found in the petiole and midrib, and 14% was in the major veins, with the remaining 30% in the minor veins and lamina. Shading of the peptiole and midrib of leaves decreased the amount of fixed carbon in these tissues to 38% and increased the amount in the lamina to 55%.

  11. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence

    SciTech Connect

    Tallis, M.J.; Rogers, A.; Lin, Y.; Zhang, J.; Street, N. R.; Miglietta, F.; Karnosky, D. F.; Angelis, P. D.; Calfapietra, C.; Taylor, G.

    2010-03-01

    The delay in autumnal senescence that has occurred in recent decades has been linked to rising temperatures. Here, we suggest that increasing atmospheric CO{sub 2} may partly account for delayed autumnal senescence and for the first time, through transcriptome analysis, identify gene expression changes associated with this delay. Using a plantation of Populus x euramericana grown in elevated [CO{sub 2}] (e[CO{sub 2}]) with free-air CO{sub 2} enrichment (FACE) technology, we investigated the molecular and biochemical basis of this response. A Populus cDNA microarray was used to identify genes representing multiple biochemical pathways influenced by e[CO{sub 2}] during senescence. Gene expression changes were confirmed through real-time quantitative PCR, and leaf biochemical assays. Pathways for secondary metabolism and glycolysis were significantly up-regulated by e[CO{sub 2}] during senescence, in particular, those related to anthocyanin biosynthesis. Expressed sequence tags (ESTs) representing the two most significantly up-regulated transcripts in e[CO{sub 2}], LDOX (leucoanthocyanidin dioxgenase) and DFR (dihydroflavonol reductase), gave (e[CO{sub 2}]/ambient CO{sub 2} (a[CO{sub 2}])) expression ratios of 39.6 and 19.3, respectively. We showed that in e[CO{sub 2}] there was increased autumnal leaf sugar accumulation and up-regulation of genes determining anthocyanin biosynthesis which, we propose, prolongs leaf longevity during natural autumnal senescence.

  12. Arbuscular mycorrhizal fungi associated with Populus-Salix stands in a semiarid riparian ecosystem

    USGS Publications Warehouse

    Beauchamp, Vanessa B.; Stromberg, J.C.; Stutz, J.C.

    2006-01-01

    ??? This study examined the activity, species richness, and species composition of the arbuscular mycorrhizal fungal (AMF) community of Populus-Salix stands on the Verde River (Arizona, USA), quantified patterns of AMF richness and colonization along complex floodplain gradients, and identified environmental variables responsible for structuring the AMF community. ??? Samples from 61 Populus-Salix stands were analyzed for AMF and herbaceous composition, AMF colonization, gravimetric soil moisture, soil texture, per cent organic matter, pH, and concentrations of nitrate, bicarbonate phosphorus and exchangeable potassium. ??? AMF species richness declined with stand age and distance from and elevation above the channel and was positively related to perennial species cover and richness and gravimetric soil moisture. Distance from and elevation above the active channel, forest age, annual species cover, perennial species richness, and exchangeable potassium concentration all played a role in structuring the AMF community in this riparian area. ??? Most AMF species were found across a wide range of soil conditions, but a subset of species tended to occur more often in hydric areas. This group of riparian affiliate AMF species includes several not previously encountered in the surrounding Sonoran desert. ?? New Phytologist (2006).

  13. Different autosomes evolved into sex chromosomes in the sister genera of Salix and Populus.

    PubMed

    Hou, Jing; Ye, Ning; Zhang, Defang; Chen, Yingnan; Fang, Lecheng; Dai, Xiaogang; Yin, Tongming

    2015-03-13

    Willows (Salix) and poplars (Populus) are dioecious plants in Salicaceae family. Sex chromosome in poplar genome was consistently reported to be associated with chromosome XIX. In contrast to poplar, this study revealed that chromosome XV was sex chromosome in willow. Previous studies revealed that both ZZ/ZW and XX/XY sex-determining systems could be present in some species of Populus. In this study, sex of S. suchowensis was found to be determined by the ZW system in which the female was the heterogametic gender. Gene syntenic and collinear comparisons revealed macrosynteny between sex chromosomes and the corresponding autosomes between these two lineages. By contrast, no syntenic segments were found to be shared between poplar's and willow's sex chromosomes. Syntenic analysis also revealed substantial chromosome rearrangements between willow's alternate sex chromatids. Since willow and poplar originate from a common ancestor, we proposed that evolution of autosomes into sex chromosomes in these two lineages occurred after their divergence. Results of this study indicate that sex chromosomes in Salicaceae are still at the early stage of evolutionary divergence. Additionally, this study provided valuable information for better understanding the genetics and evolution of sex chromosome in dioecious plants.

  14. Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra).

    PubMed

    Balan, Venkatesh; Sousa, Leonardo da Costa; Chundawat, Shishir P S; Marshall, Derek; Sharma, Lekh N; Chambliss, C Kevin; Dale, Bruce E

    2009-01-01

    There is a growing need to find alternatives to crude oil as the primary feed stock for the chemicals and fuel industry and ethanol has been demonstrated to be a viable alternative. Among the various feed stocks for producing ethanol, poplar (Populus nigra x Populus maximowiczii) is considered to have great potential as a biorefinery feedstock in the United States, due to their widespread availability and good productivity in several parts of the country. We have optimized AFEX pretreatment conditions (180 degrees C, 2:1 ammonia to biomass loading, 233% moisture, 30 minutes residence time) and by using various combinations of enzymes (commercical celluloses and xylanases) to achieve high glucan and xylan conversion (93 and 65%, respectively). We have also identified and quantified several important degradation products formed during AFEX using liquid chromatography followed by mass spectrometry (LC-MS/MS). As a part of degradation product analysis, we have also quantified oligosaccharides in the AFEX water wash extracts by acid hydrolysis. It is interesting to note that corn stover (C4 grass) can be pretreated effectively using mild AFEX pretreatment conditions, while on the other hand hardwood poplar requires much harsher AFEX conditions to obtain equivalent sugar yields upon enzymatic hydrolysis. Comparing corn stover and poplar, we conclude that pretreatment severity and enzymatic hydrolysis efficiency are dictated to a large extent by lignin carbohydrate complexes and arabinoxylan cross-linkages for AFEX.

  15. How to Regenerate and Protect Desert Riparian Populus euphratica Forest in Arid Areas

    PubMed Central

    Ling, Hongbo; Zhang, Pei; Xu, Hailiang; Zhao, Xinfeng

    2015-01-01

    We found that the most suitable flooding disturbance model for regenerating Populus euphratica forest was two to three times per year with a duration of 15–20 days and an intensity of 25–30 m3/s. The flooding should take place during the seed emergence to young tree growth stages, and should be based on flooding experiments and data from vegetation quadrats and ecological water conveyance. Furthermore, we found that tree-ring width index for P. euphratica declined as the groundwater depth increased, and ascertained that the minimum groundwater depths for young trees, near-mature trees, mature trees and over-mature trees were 4.0 m, 5.0–5.4 m, 6.9 m and 7.8 m, respectively. These were derived from a quantitative relationship model between groundwater depth and tree-ring width index. The range for ecological water conveyance volume was 311–320 million m3 in the lower reaches of the Tarim River. This study not only provides a technical basis for sustainable ecological water conveyance in the Tarim River Basin, but also offers a theoretical guide and scientific information that could be used in similar areas to regenerate and protect Populus euphratica around the world. PMID:26481290

  16. Artificial defoliation effect on Populus growth, biomass production, and total nonstructural carbohydrate concentration

    SciTech Connect

    Reichenbacker, R.R.; Hart, E.R.; Schultz, R.C.

    1996-06-01

    The impact of artificial defoliation on Populus growth, biomass production, and total nonstructural carbohydrate concentration was examined. Four Populus clones were field planted and artificially defoliated. Assigned defoliation levels (0, 25, 50, or 75%) were applied to leaves of leaf plastochron index 0 through 8 during a 6-d period in a 3-step incremental manner to simulate cottonwood leaf beetle, Chrysomela scripta F., larval feeding patterns. Artificial defoliations were timed to coincide with the outbreaks of natural beetle populations in adjacent areas. After 2 growing seasons, trees were measured for height, diameter, and biomass accumulation. Root samples were collected from 0 and 75% defoliation treatments for each clone. Biomass was reduced an average of 33% as defoliation level increased from 0 to 75%. As defoliation level increased from 0 to 75%, a consistent allocation ratio of biomass to 2/3 above and 1/3 below ground components continued in all clones. An overcompensation response occurred in above ground biomass when a defoliation level of 25% was applied. Between 25 and 75% a strong linear trend of decreasing biomass as defoliation increased was indicated. Vitality of the tree, as indicated by total nonstructural carbohydrate content, was affected only slightly by increasing defoliation. 26 refs., 1 fig., 6 tabs.

  17. Fermentation of dilute acid pretreated Populus by Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis

    DOE PAGES

    Yee, Kelsey L.; Rodriguez, Jr., Miguel; Hamilton, Choo Yieng; ...

    2015-07-25

    Consolidated bioprocessing (CBP), which merges enzyme production, biomass hydrolysis, and fermentation into a single step, has the potential to become an efficient and economic strategy for the bioconversion of lignocellulosic feedstocks to transportation fuels or chemicals. In this study, we evaluated Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis, three , thermophilic,cellulolytic, mixed-acid fermenting candidate CBP microorganisms, for their fermentation capabilities using dilute acid pretreated Populus as a model biomass feedstock. Under pH controlled, anaerobic fermentation conditions, each candidate successfully digested a minimum of 75% of the cellulose from dilute acid pretreated Populus, as indicated by an increase in planktonic cellsmore » and end-product metabolites and a concurrent decrease in glucan content. C. thermocellum, which employs a cellulosomal approach to biomass degradation, required 120 hours to achieve 75% cellulose utilization. In contrast, the non-cellulosomal, secreted hydrolytic enzyme system of the Caldicellulosiruptor sp. required 300 hours to achieve similar results. End-point fermentation conversions for C. thermocellum, C. bescii, and C. obsidiansis were determined to be 0.29, 0.34, and 0.38 grams of total metabolites per gram of loaded glucan, respectively. This data provide a starting point for future strain engineering efforts that can serve to improve the biomass fermentation capabilities of these three promising candidate CBP platforms.« less

  18. Emissions of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature.

    PubMed

    Hartikainen, Kaisa; Nerg, Anne-Marja; Kivimäenpää, Minna; Kontunen-Soppela, Sari; Mäenpää, Maarit; Oksanen, Elina; Rousi, Matti; Holopainen, Toini

    2009-09-01

    Northern forest trees are challenged to adapt to changing climate, including global warming and increasing tropospheric ozone (O(3)) concentrations. Both elevated O(3) and temperature can cause significant changes in volatile organic compound (VOC) emissions as well as in leaf anatomy that can be related to adaptation or increased stress tolerance, or are signs of damage. Impacts of moderately elevated O(3) (1.3x ambient) and temperature (ambient + 1 degrees C), alone and in combination, on VOC emissions and leaf structure of two genotypes (2.2 and 5.2) of European aspen (Populus tremula L.) were studied in an open-field experiment in summer 2007. The impact of O(3) on measured variables was minor, but elevated temperature significantly increased emissions of total monoterpenes and green leaf volatiles. Genotypic differences in the responses to warming treatment were also observed. alpha-Pinene emission, which has been suggested to protect plants from elevated temperature, increased from genotype 5.2 only. Isoprene emission from genotype 2.2 decreased, whereas genotype 5.2 was able to retain high isoprene emission level also under elevated temperature. Elevated temperature also caused formation of thinner leaves, which was related to thinning of epidermis, palisade and spongy layers as well as reduced area of palisade cells. We consider aspen genotype 5.2 to have better potential for adaptation to increasing temperature because of thicker photosynthetic active palisade layer and higher isoprene and alpha-pinene emission levels compared to genotype 2.2. Our results show that even a moderate elevation in temperature is efficient enough to cause notable changes in VOC emissions and leaf structure of these aspen genotypes, possibly indicating the effort of the saplings to adapt to changing climate.

  19. Uptake, translocation, and transformation of quantum dots with cationic versus anionic coatings by Populus deltoides × nigra cuttings.

    PubMed

    Wang, Jing; Yang, Yu; Zhu, Huiguang; Braam, Janet; Schnoor, Jerald L; Alvarez, Pedro J J

    2014-06-17

    Manipulation of the organic coatings of nanoparticles such as quantum dots (QDs) to enhance specific applications may also affect their interaction and uptake by different organisms. In this study, poplar trees (Populus deltoides × nigra) were exposed hydroponically to 50-nM CdSe/CdZnS QDs coated with cationic polyethylenimine (PEI) (35.3 ± 6.6 nm) or poly(ethylene glycol) of anionic poly(acrylic acid) (PAA-EG) (19.5 ± 7.2 nm) to discern how coating charge affects nanoparticle uptake, translocation, and transformation within woody plants. Uptake of cationic PEI-QDs was 10 times faster despite their larger hydrodynamic size and higher extent of aggregation (17 times larger than PAA-EG-QDs after 11-day incubation in the hydroponic medium), possibly due to electrostatic attraction to the negatively charged root cell wall. QDs cores aggregated upon root uptake, and their translocation to poplar shoots (negligible for PAA-EG-QDs and 0.7 ng Cd/mg stem for PEI-QDs) was likely limited by the endodermis. After 2-day exposure, PEI and PAA-EG coatings were likely degraded from the internalized QDs inside the plant, leading to the aggregation of the metallic cores and a "red-shift" of fluorescence. The fluorescence of PEI-QD aggregates was stable inside the roots through the 11-day exposure period. In contrast, the PAA-EG-QD aggregates lost fluorescence inside the plant after 11 days probably due to destabilization of the coating, even though these QDs were stable in the hydroponic solution. Overall, these results highlight the importance of coating properties in the rate and extent to which nanoparticles are assimilated by plants and potentially introduced into food webs.

  20. Drought-Induced Xylem Dysfunction in Petioles, Branches, and Roots of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn.

    PubMed Central

    Hacke, U.; Sauter, J. J.

    1996-01-01

    Variation in vulnerability to xylem cavitation was measured within individual organs of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Cavitation was quantified by three different techniques: (a) measuring acoustic emissions, (b) measuring loss of hydraulic conductance while air-dehydrating a branch, and (c) measuring loss of hydraulic conductance as a function of positive air pressure injected into the xylem. All of these techniques gave similar results. In Populus, petioles were more resistant than branches, and branches were more resistant than roots. This corresponded to the pattern of vessel width: maximum vessel diameter in 1- to 2-year-old roots was 140 [mu]m, compared to 65 and 45 [mu]m in rapidly growing 1-year-old shoots and petioles, respectively. Cavitation in Populus petioles started at a threshold water potential of -1.1 MPa. The lowest leaf water potential observed was -0.9 MPa. In Alnus, there was no relationship between vessel diameter and the cavitation response of a plant organ. Although conduits were narrower in petioles than in branches, petioles were more vulnerable to cavitation. Cavitation in petioles was detected when water potential fell below -1.2 MPa. This value equaled midday leaf water potential in late June. As in Populus, roots were the most vulnerable organ. The significance of different cavitation thresholds in individual plant organs is discussed. PMID:12226296

  1. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens.

    PubMed

    Soolanayakanahally, Raju Y; Guy, Robert D; Street, Nathaniel R; Robinson, Kathryn M; Silim, Salim N; Albrectsen, Benedicte R; Jansson, Stefan

    2015-01-01

    Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both Populus tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A), whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06). Stomatal conductance (g s) and chlorophyll content index (CCI) follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ(13)C) were observed for both species; but, intrinsic water-use efficiency (WUEi) was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED), which was well approximated by the number of days available for free growth between bud flush and bud set. We highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects.

  2. Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus[C][W

    PubMed Central

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O.; Nyamdari, Batbayar; Wilson, Mark C.; Frost, Christopher J.; Chen, Han-Yi; Babst, Benjamin A.; Harding, Scott A.; Tsai, Chung-Jui

    2013-01-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained. PMID:23903318

  3. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens

    PubMed Central

    Soolanayakanahally, Raju Y.; Guy, Robert D.; Street, Nathaniel R.; Robinson, Kathryn M.; Silim, Salim N.; Albrectsen, Benedicte R.; Jansson, Stefan

    2015-01-01

    Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both Populus tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A), whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06). Stomatal conductance (gs) and chlorophyll content index (CCI) follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ13C) were observed for both species; but, intrinsic water-use efficiency (WUEi) was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED), which was well approximated by the number of days available for free growth between bud flush and bud set. We highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects. PMID:26236324

  4. PtrWRKY19, a novel WRKY transcription factor, contributes to the regulation of pith secondary wall formation in Populus trichocarpa.

    PubMed

    Yang, Li; Zhao, Xin; Yang, Fan; Fan, Di; Jiang, Yuanzhong; Luo, Keming

    2016-01-28

    WRKY proteins are one of the largest transcription factor families in higher plants and play diverse roles in various biological processes. Previous studies have shown that some WRKY members act as negative regulators of secondary cell wall formation in pith parenchyma cells. However, the regulatory mechanism of pith secondary wall formation in tree species remains largely unknown. In this study, PtrWRKY19 encoding a homolog of Arabidopsis WRKY12 was isolated from Populus trichocarpa. PtrWRKY19 was expressed in all tissues tested, with highest expression in stems, especially in pith. PtrWRKY19 was located in the nucleus and functioned as a transcriptional repressor. Ectopic expression of PtrWRKY19 in an atwrky12 mutant successfully rescued the phenotype in pith cell walls caused by the defect of AtWRKY12, suggesting that PtrWRKY19 had conserved functions for homologous AtWRKY12. Overexpression of PtrWRKY19 in poplar plants led to a significant increase in the number of pith parenchyma cells. qRT-PCR analysis showed that lignin biosynthesis-related genes were repressed in transgenic plants. In transcient reporter assays, PtrWRKY19 was identified to repress transcription from the PtoC4H2 promoter containing the conserved W-box elements. These results indicated that PtrWRKY19 may function as a negative regulator of pith secondary wall formation in poplar.

  5. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species.

    PubMed

    Geraldes, A; Difazio, S P; Slavov, G T; Ranjan, P; Muchero, W; Hannemann, J; Gunter, L E; Wymore, A M; Grassa, C J; Farzaneh, N; Porth, I; McKown, A D; Skyba, O; Li, E; Fujita, M; Klápště, J; Martin, J; Schackwitz, W; Pennacchio, C; Rokhsar, D; Friedmann, M C; Wasteneys, G O; Guy, R D; El-Kassaby, Y A; Mansfield, S D; Cronk, Q C B; Ehlting, J; Douglas, C J; Tuskan, G A

    2013-03-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids.

  6. On the irrigation requirements of cottonwood (Populus fremontii and Populus deltoides var. wislizenii) and willow (Salix gooddingii) grown in a desert environment

    USGS Publications Warehouse

    Hartwell, S.; Morino, K.; Nagler, P.L.; Glenn, E.P.

    2010-01-01

    Native tree plots have been established in river irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the effective irrigation requirements of the target species. Cottonwood (Populus spp.) and willow (Salix gooddingii) trees were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three daily summer irrigation schedules of 6.20??mm??d-1; 8.26??mm??d-1 and 15.7??mm??d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, while willows suffered considerable die-back on this rate in years six and seven. These irrigation rates were applied April 15-September 15, but only 0.88??mm??d-1 was applied during the dormant period of the year. Expressed as a fraction of reference crop evapotranspiration (ETo), recommended annual water applications plus precipitation (and including some deep drainage) were 0.83 ETo for cottonwood and 1.01 ETo for willow. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use. ?? 2010 Elsevier Ltd.

  7. High rates of virus-induced gene silencing by tobacco rattle virus in Populus.

    PubMed

    Shen, Zedan; Sun, Jian; Yao, Jun; Wang, Shaojie; Ding, Mingquan; Zhang, Huilong; Qian, Zeyong; Zhao, Nan; Sa, Gang; Zhao, Rui; Shen, Xin; Polle, Andrea; Chen, Shaoliang

    2015-09-01

    Virus-induced gene silencing (VIGS) has been shown to be an effective tool for investigating gene functions in herbaceous plant species, but has rarely been tested in trees. The establishment of a fast and reliable transformation system is especially important for woody plants, many of which are recalcitrant to transformation. In this study, we established a tobacco rattle virus (TRV)-based VIGS system for two Populus species, Populus euphratica and P. × canescens. Here, TRV constructs carrying a 266 bp or a 558 bp fragment of the phytoene desaturase (PDS) gene were Agrobacterium-infiltrated into leaves of the two poplar species. Agrobacterium-mediated delivery of the shorter insert, TRV2-PePDS266, into the host poplars resulted in expected photobleaching in both tree species, but not the longer insert, PePDS558. The efficiency of VIGS was temperature-dependent, increasing by raising the temperature from 18 to 28 °C. The optimized TRV-VIGS system at 28 °C resulted in a high silencing frequency and efficiency up to 65-73 and 83-94%, respectively, in the two tested poplars. Moreover, syringe inoculation of Agrobacterium in 100 mM acetosyringone induced a more efficient silencing in the two poplar species, compared with other agroinfiltration methods, e.g., direct injection, misting and agrodrench. There were plant species-related differences in the response to VIGS because the photobleaching symptoms were more severe in P. × canescens than in P. euphratica. Furthermore, VIGS-treated P. euphratica exhibited a higher recovery rate (50%) after several weeks of the virus infection, compared with TRV-infected P. × canescens plants (20%). Expression stability of reference genes was screened to assess the relative abundance of PePDS mRNA in VIGS-treated P. euphratica and P. × canescens. PeACT7 was stably expressed in P. euphratica and UBQ-L was selected as the most suitable reference gene for P. × canescens using three different

  8. Investigating the Relationship Between Liquid Water and Leaf Area in Clonal Populus

    NASA Technical Reports Server (NTRS)

    Roberts, Dar; Brown, K.; Green, R.; Ustin, S.; Hinckley, T.

    1998-01-01

    to increase following a gradient of increasing LAI ranging from grasslands to coniferous forests. In that study, it was observed that forests, which showed little variation in NDVI, showed significant variation in liquid water. In order to test this hypothesis, we analyzed field spectra measured over Populus resprouts of known LAI and monitored changes in liquid water in young Populus stands as they aged over a 4-year time span. The study was conducted in south-central Washington, in a clonal Populus fiber farm owned and operated by Boise-Cascade near the town of Wallula.

  9. Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses.

    PubMed

    Zhao, Hui; Jiang, Jing; Li, Kailong; Liu, Guifeng; Tsai, Chung-Jui

    2017-03-22

    WRKY transcription factors (TFs) are important regulators in the complex stress response signaling networks in plants, but the detailed mechanisms underlying these regulatory networks have not been fully characterized. In the present study, we identified a Group III WRKY gene (PsnWRKY70, Potri.016G137900) from Populussimonii × Populusnigra and explored its function under salt and pathogen stresses. The promoter sequence that is located 2471-bp upstream from the start codon (SC) of PsnWRKY70 contained many stress-responsive cis-elements. Yeast one-hybrid assay suggested the upstream regulators, PsnWRKY70, PsnNAM (Potri.009G141600), PsnMYB (Potri.006G000800) and PsnGT1 (Potri.010G055000), probably modulate the expression of the PsnWRKY70 gene by specifically binding to the W-box or GT1GMSCAM4 (GT1) element. Yeast two-hybrid assay and transcriptome analysis revealed that HP1 (Potri.004G092100), RRM (Potri.008G146700), Ulp1 (Potri.002G105700) and some mitogen-activated protein kinase cascade members probably interact with PsnWRKY70 TF to response to salt stress. Compared with non-transgenic (NT) plants, PsnWRKY70-overexpressing (OEX) plants exhibited improved leaf blight disease resistance, while PsnWRKY70-repressing (REX) plants displayed enhanced salt stress tolerance. PsnWRKY70, PsnNAM, PsnMYB and PsnGT1 exhibited similar expression patterns in NT under salt and leaf blight disease stresses. The differentially expressed genes (DEGs) from NT vs OEX1 and the DEGs from NT vs REX1 exhibited considerable diversification. Most of the DEGs between NT and OEX1 were involved in aromatic amino acid biosynthesis, secondary metabolism, programmed cell death, peroxisomes and disease resistance. Most of the DEGs between NT and REX1 were related to desiccation response, urea transmembrane transport, abscisic acid response, calcium ion transport and hydrogen peroxide transmembrane transport. Our findings not only revealed the salt stress response signal transduction pathway of Psn

  10. Expression of chloroplastic genes during autumnal senescence in a deciduous tree Populus deltiodes.

    PubMed

    Reddy, M S; Trivedi, P K; Tuli, R; Sane, P V

    1997-10-01

    In Populus deltoides, a deciduous tree, the development on new leaves starts in the month of March, the leaves reach maturity by October and fall by December. Changes in the composition and function of the photosynthetic apparatus were analysed during autumnal senescence. With the progress of senescence, there was an initial increase followed by a decrease in the steady state levels of psbA, psbD/C and psaA/B gene transcripts. Decrease in the steady state level of D1 protein was faster than that of Cytochrome f. The decline in LHCP level was seen only during late senescence. Although the leaves continue to look green and healthy till late November, the electron transport driven by individual photosystems started declining by October end suggesting the onset of senescence.

  11. Towards a holistic understanding of the beneficial interactions across the Populus microbiome

    SciTech Connect

    Hacquard, Stéphane; Schadt, Christopher W.

    2014-11-24

    Interactions between trees and microorganisms are extremely complex and the multispecies networks resulting from these associations have consequences for plant growth and productivity. However, a more holistic view is needed to better understand trees as ecosystems and superorganisms, where many interacting species contribute to the overall stability of the system. While much progress has been made on microbial communities associated with individual tree niches and the molecular interactions between model symbiotic partners, there is still a lack of knowledge of the multi-component interactions necessary for holistic ecosystem-level understanding. Finally, we review recent studies in Populus to emphasize the importance of such holistic efforts across the leaf, stem and rooting zones, and discuss prospects for future research in these important ecosystems.

  12. Biochemical and physiological studies on the effects of senescence leaves of Populus deltoides on Triticum vulgare.

    PubMed

    Khaket, Tejinder Pal; Kumar, Viney; Singh, Jasbir; Dhanda, Suman

    2014-01-01

    Triticum vulgare (Wheat) based products are the major dietary source of food in developing countries. In India, it grows in association with boundary plantations of Populus deltoids (poplar). During winter, poplar enters in dormancy which cause a heavy leaf fall at the time of wheat seed germination. Large number of poplar senescence leaves may adversely affect the wheat. Therefore, the present study was performed to examine the effect of senescence poplar leaves on wheat germ and some other biochemical parameters. Seed's germination rate was determined by measuring root and shoot lengths, percent germination, germination index, and inhibition percentage. Biochemical parameters, namely, pigment, carbohydrate, protein, and phenol content, were estimated. Activities of catalase and polyphenol oxidase which are stress marker enzymes were also measured. Results revealed that germination and other biochemical parameters of wheat were severely affected by senescence poplar leaves even at very low concentration. So, intercropping of poplar along with wheat may be chosen carefully as wheat is the major dietary staple.

  13. Towards a holistic understanding of the beneficial interactions across the Populus microbiome

    DOE PAGES

    Hacquard, Stéphane; Schadt, Christopher W.

    2014-11-24

    Interactions between trees and microorganisms are extremely complex and the multispecies networks resulting from these associations have consequences for plant growth and productivity. However, a more holistic view is needed to better understand trees as ecosystems and superorganisms, where many interacting species contribute to the overall stability of the system. While much progress has been made on microbial communities associated with individual tree niches and the molecular interactions between model symbiotic partners, there is still a lack of knowledge of the multi-component interactions necessary for holistic ecosystem-level understanding. Finally, we review recent studies in Populus to emphasize the importance ofmore » such holistic efforts across the leaf, stem and rooting zones, and discuss prospects for future research in these important ecosystems.« less

  14. Within tree variability of lignin composition in Populus

    SciTech Connect

    Sykes, Robert; Kodrzycki, Bob; Tuskan, Gerald A; Foutz, Kirk; Davis, M F

    2008-01-01

    Clonal variability among trees has been studied and found to have profound effects on nearly all measured phenotypes. However, when estimating wood properties it is important to consider variability within the tree. The position in which a tree is sampled could have a large influence on biomass characterization. We looked at variability in lignin content as height increases and as the number of rings from the pith increase in Populus species. Seven trees were destructively sampled; subsamples were obtained along a 2.4 m length of each stem and across increment rings. All samples were analyzed by pyrolysis molecular beam mass spectroscopy to map the variability across sampling heights and/or ring positions inlignin content. The results of this study indicate that when sampling a tree, there is more variability from ring to ring than at different heights going up the stem.

  15. Biodegradation of naphthalene and anthracene by chemo-tactically active rhizobacteria of populus deltoides

    PubMed Central

    Bisht, Sandeep; Pandey, Piyush; Sood, Anchal; Sharma, Shivesh; Bisht, N. S.

    2010-01-01

    Several naphthalene and anthracene degrading bacteria were isolated from rhizosphere of Populus deltoides, which were growing in non-contaminated soil. Among these, four isolates, i.e. Kurthia sp., Micrococcus varians, Deinococcus radiodurans and Bacillus circulans utilized chrysene, benzene, toluene and xylene, in addition to anthracene and naphthalene. Kurthia sp and B. circulans showed positive chemotactic response for naphthalene and anthracene. The mean growth rate constant (K) of isolates were found to increase with successive increase in substrate concentration (0.5 to 1.0 mg/50ml). B. circulans SBA12 and Kurthia SBA4 degraded 87.5% and 86.6% of anthracene while, Kurthia sp. SBA4, B. circulans SBA12, and M. varians SBA8 degraded 85.3 %, 95.8 % and 86.8 % of naphthalene respectively after 6 days of incubation as determined by HPLC analysis. PMID:24031572

  16. Climate, migration, and the local food security context: Introducing Terra Populus

    PubMed Central

    Schlak, Allison M.; Kugler, Tracy A.

    2016-01-01

    Studies investigating the connection between environmental factors and migration are difficult to execute because they require the integration of microdata and spatial information. In this article, we introduce the novel, publically available data extraction system Terra Populus (TerraPop), which was designed to facilitate population-environment studies. We showcase the use of TerraPop by exploring variations in the climate-migration association in Burkina Faso and Senegal based on differences in the local food security context. Food security was approximated using anthropometric indicators of child stunting and wasting derived from Demographic and Health Surveys (DHS) and linked to the TerraPop extract of climate and migration information. We find that an increase in heat waves was associated with a decrease in international migration from Burkina Faso, while excessive precipitation increased international moves from Senegal. Significant interactions reveal that the adverse effects of heat waves and droughts are strongly amplified in highly food insecure Senegalese departments. PMID:27974863

  17. A Putative PP2C-Encoding Gene Negatively Regulates ABA Signaling in Populus euphratica.

    PubMed

    Chen, Jinhuan; Zhang, Dongzhi; Zhang, Chong; Xia, Xinli; Yin, Weilun; Tian, Qianqian

    2015-01-01

    A PP2C homolog gene was cloned from the drought-treated cDNA library of Populus euphratica. Multiple sequence alignment analysis suggested that the gene is a potential ortholog of HAB1. The expression of this HAB1 ortholog (PeHAB1) was markedly induced by drought and moderately induced by ABA. To characterize its function in ABA signaling, we generated transgenic Arabidopsis thaliana plants overexpressing this gene. Transgenic lines exhibited reduced responses to exogenous ABA and reduced tolerance to drought compared to wide-type lines. Yeast two-hybrid analyses indicated that PeHAB1 could interact with the ABA receptor PYL4 in an ABA-independent manner. Taken together; these results indicated that PeHAB1 is a new negative regulator of ABA responses in poplar.

  18. Genotypic variation in a foundation tree (Populus tremula L.) explains community structure of associated epiphytes.

    PubMed

    Davies, Chantel; Ellis, Christopher J; Iason, Glenn R; Ennos, Richard A

    2014-01-01

    Community genetics hypothesizes that within a foundation species, the genotype of an individual significantly influences the assemblage of dependent organisms. To assess whether these intra-specific genetic effects are ecologically important, it is required to compare their impact on dependent organisms with that attributable to environmental variation experienced over relevant spatial scales. We assessed bark epiphytes on 27 aspen (Populus tremula L.) genotypes grown in a randomized experimental array at two contrasting sites spanning the environmental conditions from which the aspen genotypes were collected. We found that variation in aspen genotype significantly influenced bark epiphyte community composition, and to the same degree as environmental variation between the test sites. We conclude that maintaining genotypic diversity of foundation species may be crucial for conservation of associated biodiversity.

  19. In-situ reduced silver nanoparticles on populus fiber and the catalytic application

    NASA Astrophysics Data System (ADS)

    Li, Miaomiao; Gong, Yumei; Wang, Wenheng; Xu, Guangpeng; Liu, Yuanfa; Guo, Jing

    2017-02-01

    One kind of composites involved in silver nanoparticles (AgNPs) loading in-situ on natural populus fiber (PF) matrix was prepared by polyamidoxime (PAO) functionalized the cellulose fiber. In which PAO worked as trapping and stabilizing agents chelating silver ions and made it reduced in-situ to obtain AgNPs by borohydride at room temperature. The synthesized composites were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Moreover, the composites showed significant catalytic activity 1.87 s-1 g-1 and repeated usability more than 7 cycles in reducing 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) detected by UV-vis spectrophotometer in aqueous solution due to the surface-enhanced immobility and large amount of AgNPs. The natural cellulose fiber provides a green platform to react and support other noble metals for wide catalytic reactions.

  20. Climate, migration, and the local food security context: Introducing Terra Populus.

    PubMed

    Nawrotzki, Raphael J; Schlak, Allison M; Kugler, Tracy A

    2016-12-01

    Studies investigating the connection between environmental factors and migration are difficult to execute because they require the integration of microdata and spatial information. In this article, we introduce the novel, publically available data extraction system Terra Populus (TerraPop), which was designed to facilitate population-environment studies. We showcase the use of TerraPop by exploring variations in the climate-migration association in Burkina Faso and Senegal based on differences in the local food security context. Food security was approximated using anthropometric indicators of child stunting and wasting derived from Demographic and Health Surveys (DHS) and linked to the TerraPop extract of climate and migration information. We find that an increase in heat waves was associated with a decrease in international migration from Burkina Faso, while excessive precipitation increased international moves from Senegal. Significant interactions reveal that the adverse effects of heat waves and droughts are strongly amplified in highly food insecure Senegalese departments.

  1. Population genomics of Populus trichocarpa identifies signatures of selection and adaptive trait associations

    SciTech Connect

    Evans, Luke M; Slavov, Gancho; Rodgers-Melnick, Eli; Martin, Joel; Ranjan, Priya; Muchero, Wellington; Brunner, Amy M.; Schackwitz, Wendy; Gunter, Lee E; Chen, Jay; Tuskan, Gerald A; Difazio, Stephen P.

    2014-01-01

    Forest trees are dominant components of terrestrial ecosystems that have global ecological and economic importance. Despite distributions that span wide environmental gradients, many tree populations are locally adapted, and mechanisms underlying this adaptation are poorly understood. Here we use a combination of whole-genome selection scans and association analyses of 544 Populus trichocarpa trees to reveal genomic bases of adaptive variation across a wide latitudinal range. Three hundred ninety-seven genomic regions showed evidence of recent positive and/or divergent selection and enrichment for associations with adaptive traits that also displayed patterns consistent with natural selection. These regions also provide unexpected insights into the evolutionary dynamics of duplicated genes and their roles in adaptive trait variation.

  2. Stem injection of Populus nigra with EDU to study ozone effects under field conditions.

    PubMed

    Bortier, K; Dekelver, G; De Temmerman, L; Ceulemans, R

    2001-01-01

    EDU or ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea) has been used in experiments to assess ozone effects on vegetation under field conditions because it provides protection against oxidative damage. Tests have mainly been conducted on crop plants, but for woody species only few reports have provided evidence that it can be used in long-term experiments. In this study we tested the technique of stem injection of EDU to study the effects of ozone exposure on Populus nigra cv. Wolterson over one growing season. Cuttings of Populus nigra were grown in pots in the field and between mid-July and early September plants were repeatedly injected with EDU solution (5 mg/plant) or with water at 14-day intervals. Significant differences were found between EDU- and water-injected plants: water-treated plants had more foliar injury, more chlorotic leaves, and shedding of leaves started earlier, suggesting EDU was effective in preventing visible ozone injury and acceleration of senescence. Photosynthetic rates, measured for one leaf age, showed no differences but were mostly higher for the EDU-treated plants. At the end of the growing season diameter increment was 16% higher and there was a non-significant trend for above-ground biomass to be increased by 9% for the EDU-treated plants. This experiment has provided evidence that for this clone serious ozone damage occurs at relatively low concentrations and that EDU can provide protection against visible injury, as well as against longer term growth reductions.

  3. Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types.

    SciTech Connect

    Gottel, Neil R; Castro Gonzalez, Hector F; Kerley, Marilyn K; Yang, Zamin; Pelletier, Dale A; Podar, Mircea; Karpinets, Tatiana V; Uberbacher, Edward C; Tuskan, Gerald A; Vilgalys, Rytas; Doktycz, Mitchel John; Schadt, Christopher Warren

    2011-01-01

    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere.

  4. Molecular Population Genetics of Elicitor-Induced Resistance Genes in European Aspen (Populus tremula L., Salicaceae)

    PubMed Central

    Bernhardsson, Carolina; Ingvarsson, Pär K.

    2011-01-01

    Owing to their long life span and ecological dominance in many communities, forest trees are subject to attack from a diverse array of herbivores throughout their range, and have therefore developed a large number of both constitutive and inducible defenses. We used molecular population genetics methods to examine the evolution of eight genes in European aspen, Populus tremula, that are all associated with defensive responses against pests and/or pathogens, and have earlier been shown to become strongly up-regulated in poplars as a response to wounding and insect herbivory. Our results show that the majority of these defense genes show patterns of intraspecific polymorphism and site-frequency spectra that are consistent with a neutral model of evolution. However, two of the genes, both belonging to a small gene family of polyphenol oxidases, show multiple deviations from the neutral model. The gene PPO1 has a 600 bp region with a highly elevated KA/KS ratio and reduced synonymous diversity. PPO1 also shows a skew toward intermediate frequency variants in the SFS, and a pronounced fixation of non-synonymous mutations, all pointing to the fact that PPO1 has been subjected to recurrent selective sweeps. The gene PPO2 shows a marked excess of high frequency, derived variants and shows many of the same trends as PPO1 does, even though the pattern is less pronounced, suggesting that PPO2 might have been the target of a recent selective sweep. Our results supports data from both Populus and other species which have found that the the majority of defense-associated genes show few signs of selection but that a number of genes involved in mediating defense against herbivores show signs of adaptive evolution. PMID:21949772

  5. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.

    PubMed

    Samuelson, Lisa J; Stokes, Thomas A; Coleman, Mark D

    2007-05-01

    Long-term hydraulic acclimation to resource availability was explored in 3-year-old Populus deltoides Bartr. ex Marsh. clones by examining transpiration, leaf-specific hydraulic conductance (G(L)), canopy stomatal conductance (G(S)) and leaf to sapwood area ratio (A(L):A(S)) in response to irrigation (13 and 551 mm year(-1) in addition to ambient precipitation) and fertilization (0 and 120 kg N ha(-1) year(-1)). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than irrigation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day(-1), and increased 66% and 90% in response to irrigation and fertilization, respectively. Increases in G(L), G(S) at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf area in response to increases in resource availability were associated with reductions in A(L):A(S) and consequently a minimal change in the water potential gradient from soil to leaf. Irrigation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m(2) ha(-1) by irrigation and from 3.7 to 6.7 m(2) ha(-1) by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.

  6. Determination of the relative uptake of ground vs. surface water by Populus deltoides during phytoremediation

    USGS Publications Warehouse

    Clinton, B.D.; Vose, J.M.; Vroblesky, D.A.; Harvey, G.J.

    2004-01-01

    The use of plants to remediate polluted groundwater is becoming an attractive alternative to more expensive traditional techniques. In order to adequately assess the effectiveness of the phytoremediation treatment, a clear understanding of water-use habits by the selected plant species is essential. We examined the relative uptake of surface water (i.e., precipitation) vs. groundwater by mature Populus deltoides by applying irrigation water at a rate equivalent to a 5-cm rain event. We used stable isotopes of hydrogen (D) and oxygen (18O) to identify groundwater and surface water (irrigation water) in the xylem sap water. Pretreatment isotopic ratios of both deuterium and 18O, ranked from heaviest to lightest, were irrigation water > groundwater > xylem sap. The discrepancy in preirrigation isotopic signatures between groundwater and xylem sap suggests that in the absence of a surface source of water (i.e., between rain events) there is an unknown amount of water being extracted from sources other than groundwater (i.e., soil surface water). We examined changes in volumetric soil water content (%), total hourly sapflux rates, and trichloroethene (TCE) concentrations. Following the irrigation treatment, volumetric soil water increased by 86% and sapflux increased by as much as 61%. Isotopic signatures of the xylem sap became substantially heavier following irrigation, suggesting that the applied irrigation water was quickly taken up by the plants. TCE concentrations in the xylem sap were diluted by an average of 21% following irrigation; however, dilution was low relative to the increase in sapflux. Our results show that water use by Populus deltoides is variable. Hence, studies addressing phytoremediation effectiveness must account for the relative proportion of surface vs. groundwater uptake.

  7. Influence of irrigation and fertilization on transpiration and hydraulic properties of Populus deltoides.

    SciTech Connect

    Samuelson, Lisa, J.; Stokes, Thomas, A.; Coleman, Mark, D.

    2007-02-01

    Summary Long-term hydraulic acclimation to resource availability was explored in 3-year-bld Populus deltoides Bartr. ex Marsh. clones by examining transpiration. leaf-specific hydraulic conductance (GL), canopy stomatal conductance (Gs) and leaf to sapwood area ratio (AL:Asi)n response to imgation (13 and 551 mm year in addition to ambient precipitation) and fertilization (0 and 120 kg N ha-' year-'). Sap flow was measured continuously over one growing season with thermal dissipation probes. Fertilization had a greater effect on growth and hydraulic properties than imgation, and fertilization effects were independent of irrigation treatment. Transpiration on a ground area basis (E) ranged between 0.3 and 1.8 mm day-', and increased 66% and 90% in response to imgation and fertilization, respectively. Increases in GL, Gs at a reference vapor pressure deficit of 1 kPa, and transpiration per unit leaf areain response to increases in resource availability were associated with reductions in AL:As and consequently a minimal change in the water potential gradient from soil to leaf. Imgation and fertilization increased leaf area index similarly, from an average 1.16 in control stands to 1.45, but sapwood area was increased from 4.0 to 6.3 m ha-' by irrigation and from 3.7 to 6.7 m2 ha-' by fertilization. The balance between leaf area and sapwood area was important in understanding long-term hydraulic acclimation to resource availability and mechanisms controlling maximum productivity in Populus deltoides.

  8. Elevated CO2 differentially affects photosynthetic induction response in two Populus species with different stomatal behavior.

    PubMed

    Tomimatsu, Hajime; Tang, Yanhong

    2012-08-01

    To understand dynamic photosynthetic characteristics in response to fluctuating light under a high CO(2) environment, we examined photosynthetic induction in two poplar genotypes from two species, Populus koreana 9 trichocarpa cv. Peace and Populus euramericana cv. I-55, respectively. Stomata of cv. Peace barely respond to changes in photosynthetic photon flux density (PFD), whereas those of cv. I-55 show a normal response to variations in PFD at ambient CO(2). The plants were grown under three CO2 regimes (380, 700, and 1,020 μmol CO(2) mol(-1) in air) for approximately 2 months. CO2 gas exchange was measured in situ in the three CO2 regimes under a sudden PFD increase from 20 to 800 μmol m(-2) s(-1). In both genotypes, plants grown under higher CO(2) conditions had a higher photosynthetic induction state, shorter induction time, and reduced induction limitation to photosynthetic carbon gain. Plants of cv. I-55 showed a much larger increase in induction state and decrease in induction time under high CO(2) regimes than did plants of cv. Peace. These showed that, throughout the whole induction process, genotype cv. I-55 had a much smaller reduction of leaf carbon gain under the two high CO(2) regimes than under the ambient CO(2) regime, while the high CO(2) effect was smaller in genotype cv. Peace. The results suggest that a high CO(2) environment can reduce both biochemical and stomatal limitations of leaf carbon gain during the photosynthetic induction process, and that a rapid stomatal response can further enhance the high CO(2) effect.

  9. A 34K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species

    SciTech Connect

    Geraldes, Armando; Hannemann, Jan; Grassa, Chris; Farzaneh, Nima; Porth, Ilga; McKown, Athena; Skyba, Oleksandr; Li, Eryang; Mike, Fujita; Friedmann, Michael; Wasteneys, Geoffrey; Guy, Robert; El-Kassaby, Yousry; Mansfield, Shawn; Cronk, Quentin; Ehlting, Juergen; Douglas, Carl; DiFazio, Stephen P; Slavov, Gancho; Ranjan, Priya; Muchero, Wellington; Gunter, Lee E; Wymore, Ann; Tuskan, Gerald A; Martin, Joel; Schackwitz, Wendy; Pennacchio, Christa; Rokhsar, Daniel

    2013-01-01

    Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. Despite the declining costs of genotyping by sequencing, for most studies, the use of large SNP genotyping arrays still offers the most cost-effective solution for large-scale targeted genotyping. Here we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species range. Due to the rapid decay of linkage disequilibrium in P. trichocarpa we adopted a candidate gene approach to the array design that resulted in the selection of 34,131 SNPs, the majority of which are located in, or within 2 kb, of 3,543 candidate genes. A subset of the SNPs (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%, indicating that high-quality data are generated with this array. We demonstrate that even among small numbers of samples (n=10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that due to ascertainment bias the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca (P. balsamifera and P. angustifolia). Finally, we provide evidence for the utility of the array for intraspecific studies of genetic differentiation and for species assignment and the detection of natural hybrids.

  10. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function.

    PubMed

    Tosens, Tiina; Niinemets, Ulo; Vislap, Vivian; Eichelmann, Hillar; Castro Díez, Pilar

    2012-05-01

    Finite mesophyll diffusion conductance (g(m) ) significantly constrains net assimilation rate (A(n) ), but g(m) variations and variation sources in response to environmental stresses during leaf development are imperfectly known. The combined effects of light and water limitations on g(m) and diffusion limitations of photosynthesis were studied in saplings of Populus tremula L. An one-dimensional diffusion model was used to gain insight into the importance of key anatomical traits in determining g(m) . Leaf development was associated with increases in dry mass per unit area, thickness, density, exposed mesophyll (S(mes) /S) and chloroplast (S(c) /S) to leaf area ratio, internal air space (f(ias) ), cell wall thickness and chloroplast dimensions. Development of S(mes) /S and S(c) /S was delayed under low light. Reduction in light availability was associated with lower S(c) /S, but with larger f(ias) and chloroplast thickness. Water stress reduced S(c) /S and increased cell wall thickness under high light. In all treatments, g(m) and A(n) increased and CO(2) drawdown because of g(m) , C(i) -C(c) , decreased with increasing leaf age. Low light and drought resulted in reduced g(m) and A(n) and increased C(i) -C(c) . These results emphasize the importance of g(m) and its components in determining A(n) variations during leaf development and in response to stress.

  11. Drought, salt and wounding stress induce the expression of the plasma membrane intrinsic protein 1 gene in poplar (Populus alba×P. tremula var. glandulosa).

    PubMed

    Bae, Eun-Kyung; Lee, Hyoshin; Lee, Jae-Soon; Noh, Eun-Woon

    2011-09-01

    Water uptake across cell membranes is a principal requirement for plant growth at both the cellular and whole-plant levels; water movement through plant membranes is regulated by aquaporins (AQPs) or major intrinsic proteins (MIPs). We examined the expression characteristics of the poplar plasma membrane intrinsic protein 1 gene (PatPIP1), a type of MIP, which was isolated from a suspension cell cDNA library of Populus alba×P. tremula var. glandulosa. Examination of protoplasts expressing the p35S-PatPIP1::sGFP fusion protein revealed that the protein was localized in the plasma membrane. Northern blot analysis revealed that the gene was strongly expressed in poplar roots and leaves. Gene expression was inducible by abiotic factors including drought, salinity, cold temperatures and wounding, and also by plant hormones including gibberellic acid, jasmonic acid and salicylic acid. Since we found that the PatPIP1 gene was strongly expressed in response to mannitol, NaCl, jasmonic acid and wounding, we propose that PatPIP1 plays an essential role in the defense of plants against water stress.

  12. Enhancing a Pathway-Genome Database (PGDB) to Capture Subcellular Localization of Metabolites and Enzymes: The Nucleotide-Sugar Biosynthetic Pathways of Populus trichocarpa

    SciTech Connect

    Nag, A.; Karpinets, T. V.; Chang, C. H.; Bar-Peled, M.

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s).

  13. Characterization of the orf31-petG gene cluster from the plastid genome of Populus deltoides.

    PubMed

    Naithani, S; Trivedi, P K; Sane, P V

    1997-10-01

    The orf31-petG gene cluster is located approximately 1.2 kb away from the psbEFLJ operon in the chloroplast genome of Populus deltoides. The orf31 (ycf7) encodes an unidentified polypeptide while the petG gene encodes subunit V of an important component, cytochrome b6/f complex, involved in photosynthetic electron transport. We have determined the nucleotide sequence of the orf31-petG gene cluster from the plastid genome of a tree, Populus deltoides. Our sequence analysis suggests that these genes possess high homology with the published sequences of these genes from other plants. Northern analysis suggests development dependent transcription of the orf31-petG cluster in leaves.

  14. Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate.

    PubMed

    Zalesny, Jill A; Zalesny, Ronald S; Wiese, Adam H; Sexton, Bart; Hall, Richard B

    2008-09-01

    The response of Populus to irrigation sources containing elevated levels of sodium (Na(+)) and chloride (Cl(-)) is poorly understood. We irrigated eight Populus clones with fertilized well water (control) (N, P, K) or municipal solid waste landfill leachate weekly during 2005 and 2006 in Rhinelander, Wisconsin, USA (45.6 degrees N, 89.4 degrees W). During August 2006, we tested for differences in total Na(+) and Cl(-) concentration in preplanting and harvest soils, and in leaf, woody (stems+branches), and root tissue. The leachate-irrigated soils at harvest had the greatest Na(+) and Cl(-) levels. Genotypes exhibited elevated total tree Cl(-) concentration and increased biomass (clones NC14104, NM2, NM6), elevated Cl(-) and decreased biomass (NC14018, NC14106, DM115), or mid levels of Cl(-) and biomass (NC13460, DN5). Leachate tissue concentrations were 17 (Na(+)) and four (Cl(-)) times greater than water. Sodium and Cl(-) levels were greatest in roots and leaves, respectively.

  15. A Populus TIR1 gene family survey reveals differential expression patterns and responses to 1-naphthaleneacetic acid and stress treatments

    PubMed Central

    Shu, Wenbo; Liu, Yingli; Guo, Yinghua; Zhou, Houjun; Zhang, Jin; Zhao, Shutang; Lu, Mengzhu

    2015-01-01

    The plant hormone auxin is a central regulator of plant growth. TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFB) is a component of the E3 ubiquitin ligase complex SCFTIR1/AFB and acts as an auxin co-receptor for nuclear auxin signaling. The SCFTIR1/AFB-proteasome machinery plays a central regulatory role in development-related gene transcription. Populus trichocarpa, as a model tree, has a unique fast-growth trait to which auxin signaling may contribute. However, no systematic analyses of the genome organization, gene structure, and expression of TIR1-like genes have been undertaken in this woody model plant. In this study, we identified a total of eight TIR1 genes in the Populus genome that are phylogenetically clustered into four subgroups, PtrFBL1/PtrFBL2, PtrFBL3/PtrFBL4, PtrFBL5/PtrFBL6, and PtrFBL7/PtrFBL8, representing four paralogous pairs. In addition, the gene structure and motif composition were relatively conserved in each paralogous pair and all of the PtrFBL members were localized in the nucleus. Different sets of PtrFBLs were strongly expressed in the leaves, stems, roots, cambial zones, and immature xylem of Populus. Interestingly, PtrFBL1 and 7 were expressed mainly in vascular and cambial tissues, respectively, indicating their potential but different roles in wood formation. Furthermore, Populus FBLs responded differentially upon exposure to various stresses. Finally, over-expression studies indicated a role of FBL1 in poplar stem growth and response to drought stress. Collectively, these observations lay the foundation for further investigations into the potential roles of PtrFBL genes in tree growth and development. PMID:26442033

  16. First Record of the Genus Zygina from a Neotropical Region on Populus spp.: Taxonomic and Biological Characteristics

    PubMed Central

    Catalano, M.I.; Brentassi, M.E.; Paradell, S. L.; Remes de Lenicov, A.M.M.

    2011-01-01

    The typhlocybine, Zygina nivea Mulsant & Rey 1855, was found in urban areas of Argentina colonizing trees of poplar (Populus alba L. and P. nigra L.). This is the first mention of the genus Zygina Fieber from the Neotropical region. In this paper redescription of the male, description of the female, distributional and host plant data, and behavioural observations of this species are given. PMID:21870983

  17. A physical map of the highly heterozygous Populus genome: integration with the genome sequence and genetic map

    SciTech Connect

    Kelleher, Colin; CHIU, Dr. R.; Shin, Dr. H.; Krywinski, Martin; Fjell, Chris; Wilkin, Jennifer; Yin, Tongming; Difazio, Stephen P.

    2007-01-01

    As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 {+-} 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa, version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.

  18. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    PubMed

    Ariani, Andrea; Di Baccio, Daniela; Romeo, Stefania; Lombardi, Lara; Andreucci, Andrea; Lux, Alexander; Horner, David Stephen; Sebastiani, Luca

    2015-01-01

    Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE) genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated) and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO) terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1) probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS) that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  19. Characterization of cytokinin signaling and homeostasis gene families in two hardwood tree species: Populus trichocarpa and Prunus persica

    PubMed Central

    2013-01-01

    Background Through the diversity of cytokinin regulated processes, this phytohormone has a profound impact on plant growth and development. Cytokinin signaling is involved in the control of apical and lateral meristem activity, branching pattern of the shoot, and leaf senescence. These processes influence several traits, including the stem diameter, shoot architecture, and perennial life cycle, which define the development of woody plants. To facilitate research about the role of cytokinin in regulation of woody plant development, we have identified genes associated with cytokinin signaling and homeostasis pathways from two hardwood tree species. Results Taking advantage of the sequenced black cottonwood (Populus trichocarpa) and peach (Prunus persica) genomes, we have compiled a comprehensive list of genes involved in these pathways. We identified genes belonging to the six families of cytokinin oxidases (CKXs), isopentenyl transferases (IPTs), LONELY GUY genes (LOGs), two-component receptors, histidine containing phosphotransmitters (HPts), and response regulators (RRs). All together 85 Populus and 45 Prunus genes were identified, and compared to their Arabidopsis orthologs through phylogenetic analyses. Conclusions In general, when compared to Arabidopsis, differences in gene family structure were often seen in only one of the two tree species. However, one class of genes associated with cytokinin signal transduction, the CKI1-like family of two-component histidine kinases, was larger in both Populus and Prunus than in Arabidopsis. PMID:24341635

  20. Effects of fragment traits, burial orientation and nutrient supply on survival and growth in Populus deltoides × P. simonii.

    PubMed

    Zhang, Ping; Su, Zhi-Qin; Xu, Lie; Shi, Xue-Ping; Du, Ke-Bing; Zheng, Bo; Wang, Yong-Jian

    2016-02-15

    Clonal propagations of shoot or root fragments play pivotal roles in adaptation of clonal trees to environmental heterogeneity, i.e. soil nutrient heterogeneity and burials after disturbance. However, little is known about whether burial orientation and nutrient supply can alter the effects of fragment traits in Populus. Shoot and root fragments of Populus deltoides × P. simonii were subjected to burials in two different fragment diameters (0.5 and 2.0 cm), two fragment lengths (5 and 15 cm) and three burial orientations (horizontal, upward and downward). For the shoot fragments, survival and growth were significantly higher in the larger pieces (either in length or diameter) and the horizontal/upward burial position. On the contrary, the effect of burial position was reversed for the root fragments. Shoot/root fragments of 15 cm in length in horizontal burial position were then subjected to two different fragment diameters (0.5 and 2.0 cm) and four types of nutrient supplies (without nutrient, low frequency, high frequency and patchy). Growth of shoot fragments of 2.0 cm in diameter significantly increased in high frequency and patchy nutrient supplies than that of without nutrient treatment. These results suggest that burial orientation and nutrient supply could be employed in clonal propagations of cuttings, afforestation or regeneration in Populus.

  1. Defining the boundaries and characterizing the landscape of functional genome expression in vascular tissues of Populus using shotgun proteomics.

    PubMed

    Abraham, Paul; Adams, Rachel; Giannone, Richard J; Kalluri, Udaya; Ranjan, Priya; Erickson, Brian; Shah, Manesh; Tuskan, Gerald A; Hettich, Robert L

    2012-01-01

    Current state-of-the-art experimental and computational proteomic approaches were integrated to obtain a comprehensive protein profile of Populus vascular tissue. This featured: (1) a large sample set consisting of two genotypes grown under normal and tension stress conditions, (2) bioinformatics clustering to effectively handle gene duplication, and (3) an informatics approach to track and identify single amino acid polymorphisms (SAAPs). By applying a clustering algorithm to the Populus database, the number of protein entries decreased from 64,689 proteins to a total of 43,069 protein groups, thereby reducing 7505 identified proteins to a total of 4226 protein groups, in which 2016 were singletons. This reduction implies that ∼50% of the measured proteins shared extensive sequence homology. Using conservative search criteria, we were able to identify 1354 peptides containing a SAAP and 201 peptides that become tryptic due to a K or R substitution. These newly identified peptides correspond to 502 proteins, including 97 previously unidentified proteins. In total, the integration of deep proteome measurements on an extensive sample set with protein clustering and peptide sequence variants provided an exceptional level of proteome characterization for Populus, allowing us to spatially resolve the vascular tissue proteome.

  2. Changes in sulphur metabolism of grey poplar (Populus x canescens) leaves during salt stress: a metabolic link to photorespiration.

    PubMed

    Herschbach, Cornelia; Teuber, Markus; Eiblmeier, Monika; Ehlting, Barbara; Ache, Peter; Polle, Andrea; Schnitzler, Jörg-Peter; Rennenberg, Heinz

    2010-09-01

    The poplar hybrid Populus x canescens (syn. Populus tremula x Populus alba) was subjected to salt stress by applying 75 mM NaCl for 2 weeks in hydroponic cultures. Decreasing maximum quantum yield (Fv/Fm) indicated damage of photosystem II (PS II), which was more pronounced under nitrate compared with ammonium nutrition. In vivo staining with diaminobenzidine showed no accumulation of H(2)O(2) in the leaf lamina; moreover, staining intensity even decreased. But at the leaf margins, development of necrotic tissue was associated with a strong accumulation of H(2)O(2). Glutathione (GSH) contents increased in response to NaCl stress in leaves but not in roots, the primary site of salt exposure. The increasing leaf GSH concentrations correlated with stress-induced decreases in transpiration and net CO(2) assimilation rates at light saturation. Enhanced rates of photorespiration could also be involved in preventing reactive oxygen species formation in chloroplasts and, thus, in protecting PS II from damage. Accumulation of Gly and Ser in leaves indeed indicates increasing rates of photorespiration. Since Ser and Gly are both immediate precursors of GSH that can limit GSH synthesis, it is concluded that the salt-induced accumulation of leaf GSH results from enhanced photorespiration and is thus probably restricted to the cytosol.

  3. Development and application of microsatellites in candidate genes related to wood properties in the Chinese white poplar (Populus tomentosa Carr.).

    PubMed

    Du, Qingzhang; Gong, Chenrui; Pan, Wei; Zhang, Deqiang

    2013-02-01

    Gene-derived simple sequence repeats (genic SSRs), also known as functional markers, are often preferred over random genomic markers because they represent variation in gene coding and/or regulatory regions. We characterized 544 genic SSR loci derived from 138 candidate genes involved in wood formation, distributed throughout the genome of Populus tomentosa, a key ecological and cultivated wood production species. Of these SSRs, three-quarters were located in the promoter or intron regions, and dinucleotide (59.7%) and trinucleotide repeat motifs (26.5%) predominated. By screening 15 wild P. tomentosa ecotypes, we identified 188 polymorphic genic SSRs with 861 alleles, 2-7 alleles for each marker. Transferability analysis of 30 random genic SSRs, testing whether these SSRs work in 26 genotypes of five genus Populus sections (outgroup, Salix matsudana), showed that 72% of the SSRs could be amplified in Turanga and 100% could be amplified in Leuce. Based on genotyping of these 26 genotypes, a neighbour-joining analysis showed the expected six phylogenetic groupings. In silico analysis of SSR variation in 220 sequences that are homologous between P. tomentosa and Populus trichocarpa suggested that genic SSR variations between relatives were predominantly affected by repeat motif variations or flanking sequence mutations. Inheritance tests and single-marker associations demonstrated the power of genic SSRs in family-based linkage mapping and candidate gene-based association studies, as well as marker-assisted selection and comparative genomic studies of P. tomentosa and related species.

  4. Expression of glutathione S-transferases in poplar trees (Populus trichocarpa) exposed to 2,4,6-trinitrotoluene (TNT).

    PubMed

    Brentner, Laura B; Mukherji, Sachiyo T; Merchie, Kate M; Yoon, Jong Moon; Schnoor, Jerald L; Van Aken, Benoit

    2008-10-01

    Twelve Populus genes were identified from Arabidopsis thaliana sequences previously shown to be induced by exposure to 2,4,6-trinitrotoluene (TNT). Using the resources of the Poplar Genome Project and National Center for Biotechnology Information databases, Populus conserved domains were identified and used to design gene specific primers. RNA extracted from root tissues of TNT-exposed hydroponic poplar plants was used to quantify the expression of genes by reverse-transcriptase real-time polymerase chain reaction. Cyclophilin and 18S ribosomal DNA genes were used as internal standards. Exposure to TNT resulted in a significant increase of gene expression of two glutathione S-transferases (GST), peaking at levels of 25.0 +/- 13.1 and 10 +/- 0.7 fold the expression level of non-exposed plants after 24 h for each of the GST genes, respectively. This paper demonstrates the use of functional genomics information from the model plant species, Arabidopsis, to identify genes which may be important in detoxification of TNT in the model phytoremediation species, Populus trichocarpa.

  5. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry.

    PubMed

    Yevtushenko, Dmytro P; Misra, Santosh

    2010-03-01

    Many economically important species of Populus, especially those in sections Aigeiros and Tacamahaca, remain recalcitrant to genetic transformation. In this study, a simple and reliable protocol was developed for the efficient Agrobacterium-mediated transformation of a difficult-to-transform, but commercially viable, hybrid poplar Populus nigra L. x P. maximowiczii A. Henry (NM6). A plant transformation vector designed to express the beta-glucuronidase (GUS) gene was used to detect transformation events at early stages of plant regeneration and to optimize parameters affecting poplar transformation. The use of zeatin riboside in shoot-induction medium, regeneration of shoots via indirect organogenesis, and early selection pressure were the major modifications that drastically improved the efficiency of poplar transformation and minimized the number of untransformed regenerants. Transgenic shoots were routinely obtained 4-10 weeks after co-culture with A. tumefaciens, with a greater than 90% rate of plant recovery. Stable transgene integration, ranging from a single insertion to ten copies per genome, was confirmed by Southern blot analysis. The mean transformation frequency was 36.3% and about two-thirds of the lines had 1-2 transgene copies. Among the explants, petioles and leaves had a higher transformation frequency than did stem segments. Growth characteristics and the morphology of transgenic poplar plants were identical to untransformed controls. These findings will accelerate the development of P. nigra x P. maximowiczii plants with novel traits, and may also be useful to improve transformation procedures for other Populus species.

  6. F-box gene family is expanded in herbaceous annual plants Arabidopsis and rice relative to woody perennial plant Populus

    SciTech Connect

    Yang, Xiaohan; Kalluri, Udaya C; Jawdy, Sara; Gunter, Lee E; Yin, Tongming; Tschaplinski, Timothy J; Weston, David; Ranjan, Priya; Tuskan, Gerald A

    2008-01-01

    F-box proteins are generally responsible for substrate recognition in the Skp1-Cullin-F-box complexes that are involved in protein degradation via the ubiquitin-26S proteosome pathway. In plants, F-box genes influence a variety of biological processes such as leaf senescence, branching, self-incompatibility and responses to biotic and abiotic stresses. The number of F-box genes in Populus (~320) is less than half that found in Arabidopsis (~660) or rice (~680), even though the total number of genes in Populus is equivalent to that in rice and 1.5 times that in Arabidopsis. We performed comparative genomic analysis between the woody perennial plant Populus and the herbaceous annual plants Arabidopsis and rice in order to explicate the functional implications of this large gene family. Our analyses reveal interspecific differences in genomic distribution, orthologous relationship, intron evolution, protein domain structure and gene expression. The set of F-box genes shared by these three species appear to be involved in core biological processes essential for plant growth and development; lineage-specific differences primarily occurred because of an expansion of the F-box genes via tandem duplications in Arabidopsis and rice. The present study provides insights into the relationship between the structure and composition of the F-box gene family in herbaceous and woody species and their associated developmental and physiological features.

  7. Defining the Boundaries and Characterizing the Landscape of Genome Expression in Vascular Tissues of Populus using Shotgun Proteomics

    SciTech Connect

    Abraham, Paul E; Adams, Rachel M; Giannone, Richard J; Kalluri, Udaya C; Ranjan, Priya; Erickson, Brian K; Shah, Manesh B; Tuskan, Gerald A; Hettich, Robert {Bob} L

    2012-01-01

    Current state-of-the-art experimental and computational proteomic approaches were integrated to obtain a comprehensive protein profile of Populus vascular tissue. This featured: 1) a large sample set consisting of two genotypes grown under normal and tension stress conditions, 2) bioinformatics clustering to effectively handle gene duplication, and 3) an informatics approach to track and identify single amino acid polymorphisms (SAAPs). By applying a clustering algorithm to the Populus database, the number of protein entries decreased from 64,689 proteins to a total of 43,069 protein groups, thereby reducing 7,505 identified proteins to a total of 4,226 protein groups, in which 2,016 were singletons. This reduction implies that ~50% of the measured proteins were clustered into groups that shared extensive sequence homology. Using conservative search criteria, we were able to identify 1,354 peptides containing a SAAP and 201 peptides that become tryptic due to a K or R substitution. These newly identified peptides correspond to 502 proteins, including 97 proteins that were not previously identified. In total, the integration of deep proteome measurements on an extensive sample set with protein clustering and peptide sequence variants provided an unprecedented level of proteome characterization for Populus, allowing us to spatially resolve the vascular tissue proteome.

  8. Phylogenetic and Taxonomic Status Analyses of the Abaso Section from Multiple Nuclear Genes and Plastid Fragments Reveal New Insights into the North America Origin of Populus (Salicaceae)

    PubMed Central

    Liu, Xia; Wang, Zhaoshan; Shao, Wenhao; Ye, Zhanyang; Zhang, Jianguo

    2017-01-01

    Although, the Abaso section is widely accepted as an independent section, the taxonomic status of Populus mexicana (section Abaso) has not yet been resolved due to the limited availability markers and/or the lack of P. mexicana specimens in previous studies. Thirty-one poplar species that represent six sections of the Populus genus were sampled, and 23 single-copy nuclear DNA and 34 chloroplast fragments were sequenced. The present study obtained two updated phylogenies of Populus. We found that monophyly of the genus Populus is strongly supported by nuclear and plastid gene, which is consistent with previous studies. P. mexicana, diverged first in the nuclear DNA tree, which occupied the basal position, implying that the section Abaso may be the most ancestral lineage in extant populous species. Given that the short branches and low statistical support for the divergence of sections Abaso and Turanga, this observation probably indicated that a rapid radiation evolution following the early split of the genus Populus. In the plastid tree, P. mexicana clustered with modern-day species of section Tacamahaca in the plastid tree. Based on cytoplasmic and single-copy nuclear marker sequences, we hypothesized that chloroplast capture resulted in the inconsistent position of P. mexicana between the phylogenetic trees. Given the first unequivocal records of poplar fossils from the Eocene with similar leaf morphology to the extant P. mexicana and the phylogenetic positions of P. mexicana in our study, we support the hypothesis that the Populus genus originated in North America, which will provide new insights to the development of the origin of Populus species. PMID:28101098

  9. Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus

    PubMed Central

    Howe, Glenn T.; Horvath, David P.; Dharmawardhana, Palitha; Priest, Henry D.; Mockler, Todd C.; Strauss, Steven H.

    2015-01-01

    To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1%) were differentially expressed among the three dormancy states, and 429 (1.0%) were differentially expressed during only one of the two dormancy transitions (FDR p-value < 0.05). Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in genes associated with DNA methylation (via RNA-directed DNA methylation) and histone modifications (via Polycomb Repressive Complex 2), confirming and extending knowledge of chromatin modifications as major features of dormancy transitions. Among the chromatin-associated genes, two genes similar to SPT (SUPPRESSOR OF TY) were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3), ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP), ETHYLENE RESPONSE FACTOR (ERF), ZINC FINGER PROTEIN 10 (ZAT10), ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little evidence for important changes in genes associated with

  10. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus

    DOE PAGES

    Ribeiro, Cintia L.; Silva, Cynthia M.; Drost, Derek R.; ...

    2016-03-16

    In this study, adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. As a result, parental individuals andmore » progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. In conclusion, this study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of

  11. Integration of genetic, genomic and transcriptomic information identifies putative regulators of adventitious root formation in Populus

    SciTech Connect

    Ribeiro, Cintia L.; Silva, Cynthia M.; Drost, Derek R.; Novaes, Evandro; Novaes, Carolina R. D. B.; Dervinis, Christopher; Kirst, Matias

    2016-03-16

    In this study, adventitious roots (AR) develop from tissues other than the primary root, in a process physiologically regulated by phytohormones. Adventitious roots provide structural support and contribute to water and nutrient absorption, and are critical for commercial vegetative propagation of several crops. Here we quantified the number of AR, root architectural traits and root biomass in cuttings from a pseudo-backcross population of Populus deltoides and Populus trichocarpa. Quantitative trait loci (QTL) mapping and whole-transcriptome analysis of individuals with alternative QTL alleles for AR number were used to identify putative regulators of AR development. As a result, parental individuals and progeny showed extensive segregation for AR developmental traits. Quantitative trait loci for number of AR mapped consistently in the same interval of linkage group (LG) II and LG XIV, explaining 7–10 % of the phenotypic variation. A time series transcriptome analysis identified 26,121 genes differentially expressed during AR development, particularly during the first 24 h after cuttings were harvested. Of those, 1929 genes were differentially regulated between individuals carrying alternative alleles for the two QTL for number of AR, in one or more time point. Eighty-one of these genes were physically located within the QTL intervals for number of AR, including putative homologs of the Arabidopsis genes SUPERROOT2 (SUR2) and TRYPTOPHAN SYNTHASE ALPHA CHAIN (TSA1), both of which are involved in the auxin indole-3-acetic acid (IAA) biosynthesis pathway. In conclusion, this study suggests the involvement of two genes of the tryptophan-dependent auxin biosynthesis pathway, SUR2 and TSA1, in the regulation of a critical trait for the clonal propagation of woody species. A possible model for this regulation is that poplar individuals that have poor AR formation synthesize auxin indole-3-acetic acid (IAA) primarily through the tryptophan (Trp) pathway. Much of the Trp

  12. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers.

    PubMed

    Merritt, David M; Poff, N LeRoy

    2010-01-01

    Tamarix ramosissima is a naturalized, nonnative plant species which has become widespread along riparian corridors throughout the western United States. We test the hypothesis that the distribution and success of Tamarix result from human modification of river-flow regimes. We conducted a natural experiment in eight ecoregions in arid and semiarid portions of the western United States, measuring Tamarix and native Populus recruitment and abundance at 64 sites along 13 perennial rivers spanning a range of altered flow regimes. We quantified biologically relevant attributes of flow alteration as an integrated measure (the index of flow modification, IFM), which was then used to explain between-site variation in abundance and recruitment of native and nonnative riparian plant species. We found the likelihood of successful recruitment of Tamarix to be highest along unregulated river reaches and to remain high across a gradient of regulated flows. Recruitment probability for Populus, in contrast, was highest under free-flowing conditions and declined abruptly under even slight flow modification (IFM > 0.1). Adult Tamarix was most abundant at intermediate levels of IFM. Populus abundance declined sharply with modest flow regulation (IFM > 0.2) and was not present at the most flow-regulated sites. Dominance of Tamarix was highest along rivers with the most altered flow regimes. At the 16 least regulated sites, Tamarix and Populus were equally abundant. Given observed patterns of Tamarix recruitment and abundance, we infer that Tamarix would likely have naturalized, spread, and established widely in riparian communities in the absence of dam construction, diversions, and flow regulation in western North America. However, Tamarix dominance over native species would likely be less extensive in the absence of human alteration of river-flow regimes. Restoration that combines active mechanical removal of established stands of Tamarix with a program of flow releases conducive to

  13. Stress hardening under long-term cadmium treatment is correlated with the activation of antioxidative defence and iron acquisition of chloroplasts in Populus.

    PubMed

    Solti, Ádám; Sárvári, Éva; Szöllősi, Erzsébet; Tóth, Brigitta; Mészáros, Ilona; Fodor, Ferenc; Szigeti, Zoltán

    2016-09-01

    Cadmium (Cd), a highly toxic heavy metal affects growth and metabolic pathways in plants, including photosynthesis. Though Cd is a transition metal with no redox capacity, it generates reactive oxygen species (ROS) indirectly and causes oxidative stress. Nevertheless, the mechanisms involved in long-term Cd tolerance of poplar, candidate for Cd phytoremediation, are not well known. Hydroponically cultured poplar (Populus jacquemontiana var. glauca cv. 'Kopeczkii') plants were treated with 10 μM Cd for 4 weeks. Following a period of functional decline, the plants performed acclimation to the Cd induced oxidative stress as indicated by the decreased leaf malondialdehyde (MDA) content and the recovery of most photosynthetic parameters. The increased activity of peroxidases (PODs) could have a great impact on the elimination of hydrogen peroxide, and thus the recovery of photosynthesis, while the function of superoxide dismutase (SOD) isoforms seemed to be less important. Re-distribution of the iron content of leaf mesophyll cells into the chloroplasts contributed to the biosynthesis of the photosynthetic apparatus and some antioxidative enzymes. The delayed increase in photosynthetic activity in relation to the decline in the level of lipid peroxidation indicates that elimination of oxidative stress damage by acclimation mechanisms is required for the restoration of the photosynthetic apparatus during long-term Cd treatment.

  14. Lignin and lignans in plant defence: insight from expression profiling of cinnamyl alcohol dehydrogenase genes during development and following fungal infection in Populus.

    PubMed

    Bagniewska-Zadworna, Agnieszka; Barakat, Abdelali; Lakomy, Piotr; Smoliński, Dariusz J; Zadworny, Marcin

    2014-12-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyses the final step in the biosynthesis of monolignol, the main component of lignin. Lignins, deposited in the secondary cell wall, play a role in plant defence against pathogens. We re-analysed the phylogeny of CAD/CAD-like genes using sequences from recently sequenced genomes, and analysed the temporal and spatial expression profiles of CAD/CAD-like genes in Populus trichocarpa healthy and infected plants. Three fungal pathogens (Rhizoctonia solani, Fusarium oxysporum, and Cytospora sp.), varying in lifestyle and pathogenicity, were used for plant infection. Phylogenetic analyses showed that CAD/CAD-like genes were distributed in classes represented by all members from angiosperm lineages including basal angiosperms and Selaginella. The analysed genes showed different expression profiles during development and demonstrated that three genes were involved in primary xylem maturation while five may function in secondary xylem formation. Expression analysis following inoculation with fungal pathogens, showed that five genes were induced in either stem or leaves. These results add further evidence that CAD/CAD-like genes have evolved specialised functions in plant development and defence against various pest and pathogens. Two genes (PoptrCAD11 and PoptrCAD15), which were induced under various stresses, could be treated as universal markers of plant defence using lignification or lignan biosynthesis.

  15. Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula X alba) (717-1B4).

    PubMed

    Coleman, Heather D; Cánovas, Francisco M; Man, Huimin; Kirby, Edward G; Mansfield, Shawn D

    2012-09-01

    Hybrid poplar (Populus tremula X P. alba) genetically engineered to express the pine cytosolic glutamine synthetase gene (GS1a) has been previously shown to display desirable field performance characteristics, including enhancements in growth and nitrogen use efficiency. Analysis of wood samples from a 3-year-old field trial of three independently transformed GS1a transgenic hybrid poplar lines revealed that, when compared with wild-type controls, ectopic expression of GS1a resulted in alterations in wood properties and wood chemistry. Included were significant enhancements in wood fibre length, wood density, microfibre angle, per cent syringyl lignin and elevated concentrations of wood sugars, specifically glucose, galactose, mannose and xylose. Total extractive content and acid-insoluble lignin were significantly reduced in wood of GS1a transgenics when compared with wild-type trees. Together, these cell wall characteristics resulted in improved wood pulping attributes, including improved lignin solubilization with no concurrent decrease in yield. Trees with increased GS1a expression have improved characteristics for pulp and paper production and hold potential as a feedstock for biofuels production.

  16. Key gene regulating cell wall biosynthesis and recalcitrance in Populus, gene Y

    SciTech Connect

    Chen, Jay; Engle, Nancy; Gunter, Lee E.; Jawdy, Sara; Tschaplinski, Timothy J.; Tuskan, Gerald A.

    2015-12-08

    This disclosure provides methods and transgenic plants for improved production of renewable biofuels and other plant-derived biomaterials by altering the expression and/or activity of Gene Y, an O-acetyltransferase. This disclosure also provides expression vectors containing a nucleic acid (Gene Y) which encodes the polypeptide of SEQ ID NO: 1 and is operably linked to a heterologous promoter.

  17. Organization and post-transcriptional processing of the psb B operon from chloroplasts of Populus deltoides.

    PubMed

    Dixit, R; Trivedi, P K; Nath, P; Sane, P V

    1999-09-01

    Chloroplast genes are typically organized into polycistronic transcription units that give rise to complex sets of mono- and oligo-cistronic overlapping RNAs through a series of processing steps. The psbB operon contains genes for the PSII (psbB, psbT, psbH) and cytochrome b(6)f (petB and petD) complexes which are needed in different amounts during chloroplast biogenesis. The functional significance of gene organization in this polycistronic unit, containing information for two different complexes, is not known and is of interest. To determine the organization and expression of these complexes, studies have been carried out on crop plants by different groups, but not much information is known about trees. We present the nucleotide sequences of PSII genes and RNA profiles of the genes located in the psbB operon from Populus deltoides, a tree species. Although the gene organization of this operon in P. deltoides is similar to that in other species, a few variations have been observed in the processing scheme.

  18. Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations.

    PubMed

    Lei, Yanbao; Korpelainen, Helena; Li, Chunyang

    2007-06-01

    We exposed the cuttings of Populus cathayana to Hoagland's solution containing four different manganese (Mn) concentrations (0, 0.1, 0.5 and 1mM) in a greenhouse to characterize the physiological and biochemical basis of Mn resistance in woody plants. Two contrasting populations of P. cathayana were used in our study, which were from the wet and dry climate regions in western China, respectively. The results showed that Mn treatments significantly decreased chlorophyll content and growth characteristics, including shoot height, basal diameter, biomass accumulation and total leaf area in the two populations. Mn treatments also significantly increased the levels of abscisic acid (ABA), polyamines and free amino acids especially proline (Pro), histidine (His) and phenylalanine (Phe) available for cellular signaling and heavy metal chelation. In addition, high Mn concentrations also caused oxidative stress indicated as the accumulation of hydrogen peroxide (H(2)O(2)) and malondialdehyde (MDA) contents. On the other hand, there were different responses to Mn stress between the two contrasting populations. Compared with the dry climate population, the wet climate population accumulated more Mn in plant tissues especially in leaves; it showed lower tolerance index and more pronounced decrease in growth and chlorophyll contents. The wet climate population not only accumulated less ABA, putrescine and free amino acids, but also exhibited lower activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), thus suffering from more serious oxidative damage. Therefore, our results showed that the wet climate population was more susceptible to Mn stress than the dry climate population.

  19. Significant Difference in Hydrogen Isotope Composition Between Xylem and Tissue Water in Populus Euphratica.

    PubMed

    Zhao, Liangju; Wang, Lixin; Cernusak, Lucas A; Liu, Xiaohong; Xiao, Honglang; Zhou, Maoxian; Zhang, Shiqiang

    2016-08-01

    Deuterium depletions between stem water and source water have been observed in coastal halophyte plants and in multiple species under greenhouse conditions. However, the location(s) of the isotope fractionation is not clear yet and it is uncertain whether deuterium fractionation appears in other natural environments. In this study, through two extensive field campaigns utilizing a common dryland riparian tree species Populus euphratica Oliv., we showed that no significant δ(18) O differences were found between water source and various plant components, in accord with previous studies. We also found that no deuterium fractionation occurred during P. euphratica water uptake by comparing the deuterium composition (δD) of groundwater and xylem sap. However, remarkable δD differences (up to 26.4‰) between xylem sap and twig water, root water and core water provided direct evidence that deuterium fractionation occurred between xylem sap and root or stem tissue water. This study indicates that deuterium fractionation could be a common phenomenon in drylands, which has important implications in plant water source identification, palaeoclimate reconstruction based on wood cellulose and evapotranspiration partitioning using δD of stem water.

  20. In vitro tetraploid induction from leaf explants of Populus pseudo-simonii Kitag.

    PubMed

    Cai, Xiao; Kang, Xiang-Yang

    2011-09-01

    Tetraploid plants were produced from leaf explants of diploid Populus pseudo-simonii by treating the leaves with colchicine. Leaf explants were cultured on MS basal medium containing 1.78 μM BA and 1.08 μM NAA for 0, 6 and 12 days, and then transferred to the same MS liquid medium with colchicine at concentrations of 25, 50 and 75 μM for 1, 2 and 3 days. The highest efficiency of tetraploid induction was 14.6% by treating leaf explants that were pre-cultured for 6 days and then cultured in liquid MS with 50 μM colchicine for 3 days. Flow cytometric analysis was used to screen the tetraploids out from the regenerated plants and chromosome number counting was employed to confirm the polyploidy level. Size and frequency of leaf stomata between diploid and tetraploid plants were demonstrated to have significant differences.

  1. Quantitative Genetic Analysis of Biomass and Wood Chemistry of Populus under Different Nitrogen Levels

    SciTech Connect

    Novaes, E.; Osorio, L.; Drost, D. R.; Miles, B. L.; Boaventura-Novaes, C. R. D.; Benedict, C.; Dervinis, C.; Yu, Q.; Sykes, R.; Davis, M.; Martin, T. A.; Peter, G. F.; Kirst, M.

    2009-01-01

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration, biofuels and other wood-based industries. It is also unclear how environmental cues, such as nitrogen availability, impact the genes that regulate growth, biomass allocation and wood composition in trees. We phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above- and below-ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Sixty-three quantitative trait loci were identified for the 20 traits analyzed. The majority of quantitative trait loci are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and quantitative trait loci co-localization identified the genomic position of potential pleiotropic regulators. Pleiotropic loci linking higher growth rates to wood with less lignin are excellent targets to engineer tree germplasm improved for pulp, paper and cellulosic ethanol production. The causative genes are being identified with a genetical genomics approach.

  2. Allergic contact dermatitis from salicyl alcohol and salicylaldehyde in aspen bark (Populus tremula).

    PubMed

    Aalto-Korte, Kristiina; Välimaa, Jarmo; Henriks-Eckerman, Maj-Len; Jolanki, Riitta

    2005-02-01

    Salicyl alcohol or 2-methylolphenol is a well-known allergen in phenol-formaldehyde resins and a strong sensitizer in guinea pigs. There is 1 previous report of allergic contact dermatitis from salicyl alcohol in aspen bark. We describe a second case with concomitant allergy to salicylaldehyde. An elk researcher who had handled leaves from various trees presented with eczema of the hands, face, flexures, trunk and extremities. Patch testing showed sensitivity to salicyl alcohol, salicylaldehyde, balsam of Peru (Myroxylon pereirae resin), aspen wood dust and an extract prepared from the bark of aspen (Populus tremula). Weaker reactions were observed to bark extracts of rowan (Sorbus aucuparia), tea-leaved willow (Salix phylicifolia) and goat willow (Salix caprea). We analysed salicyl alcohol and salicylaldehyde in the bark extracts and found the 2 chemicals in equal amounts, about 0.9 microg/mg in aspen bark and in lower concentrations in rowan and the willows. We did not find either of the chemicals in the test substance of balsam of Peru (Myroxylon pereirae). Besides salicyl alcohol, salicylaldehyde is also recommended to be used to screen for contact allergy to aspen. Both of these chemicals should be tested in forest workers in areas where aspen is growing.

  3. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    PubMed Central

    Timm, Collin M.; Campbell, Alisha G.; Utturkar, Sagar M.; Jun, Se-Ran; Parales, Rebecca E.; Tan, Watumesa A.; Robeson, Michael S.; Lu, Tse-Yuan S.; Jawdy, Sara; Brown, Steven D.; Ussery, David W.; Schadt, Christopher W.; Tuskan, Gerald A.; Doktycz, Mitchel J.; Weston, David J.; Pelletier, Dale A.

    2015-01-01

    The bacterial microbiota of plants is diverse, with 1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work, we used phenotypic analysis, comparative genomics, and metabolic models to investigate the differences between 19 sequenced Pseudomonas fluorescens strains. These isolates represent a single OTU and were collected from the rhizosphere and endosphere of Populus deltoides. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for plant-bacterial interactions are enriched in endosphere isolate genomes. Further, growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased toward endosphere isolates. Endosphere isolates have significantly more metabolic pathways for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways representative of plant-bacterial interactions but show metabolic bias toward chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria and are enriched among closely related isolates. PMID:26528266

  4. Flow regime effects on mature Populus fremontii (Fremont cottonwood) productivity on two contrasting dryland river floodplains

    USGS Publications Warehouse

    Andersen, Douglas C.

    2016-01-01

    I compared riparian cottonwood (Populus fremontii) productivity-discharge relationships in a relictual stand along the highly regulated Green River and in a naturally functioning stand along the unregulated Yampa River in semiarid northwest Colorado. I used multiple regression to model flow effects on annual basal area increment (BAI) from 1982 to 2011, after removing any autocorrelation present. Each BAI series was developed from 20 trees whose mean size (67 cm diameter at breast height [DBH]) was equivalent in the two stands. BAI was larger in the Yampa River stand except in 2 y when defoliating leaf beetles were present there. I found no evidence for a Yampa flood-magnitude threshold above which BAI declined. Flow variables explained ∼45% of residual BAI variability, with most explained by current-year maximum 90-d discharge (QM90) in the Yampa River stand and by a measure of the year-to-year change in QM90 in the Green River stand. The latter reflects a management-imposed ceiling on flood magnitude—Flaming Gorge Dam power plant capacity—infrequently exceeded during the study period. BAI in the relictual stand began to trend upward in 1992 when flows started to mimic a natural flow regime. Mature Fremont cottonwoods appear to be ecologically resilient. Their productivity along regulated rivers might be optimized using multiyear environmental flow designs.

  5. The adaptive potential of Populus balsamifera L. to phenology requirements in a warmer global climate.

    PubMed

    Olson, Matthew S; Levsen, Nicholas; Soolanayakanahally, Raju Y; Guy, Robert D; Schroeder, William R; Keller, Stephen R; Tiffin, Peter

    2013-03-01

    The manner in which organisms adapt to climate change informs a broader understanding of the evolution of biodiversity as well as conservation and mitigation plans. We apply common garden and association mapping approaches to quantify genetic variance and identify loci affecting bud flush and bud set, traits that define a tree's season for height growth, in the boreal forest tree Populus balsamifera L. (balsam poplar). Using data from 478 genotypes grown in each of two common gardens, one near the southern edge and another near the northern edge of P. balsamifera's range, we found that broad-sense heritability for bud flush and bud set was generally high (H(2) > 0.5 in most cases), suggesting that abundant genetic variation exists for phenological response to changes in the length of the growing season. To identify the molecular genetic basis of this variation, we genotyped trees for 346 candidate single nucleotide polymorphisms (SNPs) from 27 candidate genes for the CO/FT pathway in poplar. Mixed-model analyses of variance identified SNPs in 10 genes to be associated with variation in either bud flush or bud set. Multiple SNPs within FRIGIDA were associated with bud flush, whereas multiple SNPs in LEAFY and GIGANTEA 5 were associated with bud set. Although there was strong population structure in stem phenology, the geographic distribution of multilocus association SNP genotypes was widespread except at the most northern populations, indicating that geographic regions may harbour sufficient diversity in functional genes to facilitate adaption to future climatic conditions in many sites.

  6. [Simulation of soil water dynamics in triploid Populus tomentosa root zone under subsurface drip irrigation].

    PubMed

    Xi, Ben-Ye; Jia, Li-Ming; Wang, Ye; Li, Guang-De

    2011-01-01

    Based on the observed data of triploid Populus tomentosa root distribution, a one-dimensional root water uptake model was proposed. Taking the root water uptake into account, the soil water dynamics in triploid P. tomentosa root zone under subsurface drip irrigation was simulated by using HYDRUS model, and the results were validated with field experiment. Besides, the HYDRUS model was used to study the effects of various irrigation technique parameters on soil wetting patterns. The RMAE for the simulated soil water content by the end of irrigation and approximately 24 h later was 7.8% and 6.0%, and the RMSE was 0.036 and 0.026 cm3 x cm(-3), respectively, illustrating that the HYDRUS model performed well in simulating the short-term soil water dynamics in triploid P. tomentosa root zone under drip irrigation, and the root water uptake model was reasonable. Comparing with 2 and 4 L x h(-1) of drip discharge and continuous irrigation, both the 1 L x h(-1) of drip discharge and the pulsed irrigation with water applied intermittently in 30 min periods could increase the volume of wetted soil and reduce deep percolation. It was concluded that the combination of 1 L x h(-1) of drip discharge and pulsed irrigation should be the first choice when applying drip irrigation to triploid P. tomentosa root zone at the experiment site.

  7. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests.

    PubMed

    Madejón, Paula; Marañón, Teodoro; Murillo, José M; Robinson, Brett

    2004-11-01

    Trees can be used to monitor the level of pollution of trace elements in the soil and atmosphere. In this paper, we surveyed the content of eight trace elements (As, Cd, Cu, Fe, Mn, Ni, Pb and Zn) in leaves and stems of white poplar (Populus alba) trees. We selected 25 trees in the riparian forest of the Guadiamar River (S. Spain), one year after this area was contaminated by a mine spill, and 10 trees in non-affected sites. The spill-affected soils had significantly higher levels of available cadmium (mean of 1.25 mg kg(-1)), zinc (117 mg kg(-1)), lead (63.3 mg kg(-1)), copper (58.0 mg kg(-1)) and arsenic (1.70 mg kg(-1)), than non-affected sites. The concentration of trace element in poplar leaves was positively and significantly correlated with the soil availability for cadmium and zinc, and to a lesser extent for arsenic (log-log relationship). Thus, poplar leaves could be used as biomonitors for soil pollution of Cd and Zn, and moderately for As.

  8. Linking Populus euphratica Hydraulic Redistribution to Diversity Assembly in the Arid Desert Zone of Xinjiang, China

    PubMed Central

    Yang, Xiao-Dong; Zhang, Xue-Ni; Lv, Guang-Hui; Ali, Arshad

    2014-01-01

    The hydraulic redistribution (HR) of deep-rooted plants significantly improves the survival of shallow-rooted shrubs and herbs in arid deserts, which subsequently maintain species diversity. This study was conducted in the Ebinur desert located in the western margin of the Gurbantonggut Desert. Isotope tracing, community investigation and comparison analysis were employed to validate the HR of Populus euphratica and to explore its effects on species richness and abundance. The results showed that, P. euphratica has HR. Shrubs and herbs that grew under the P. euphratica canopy (under community: UC) showed better growth than the ones growing outside (Outside community: OC), exhibiting significantly higher species richness and abundance in UC than OC (p<0.05) along the plant growing season. Species richness and abundance were significantly logarithmically correlated with the P. euphratica crown area in UC (R2 = 0.51 and 0.84, p<0.001). In conclusion, P. euphratica HR significantly ameliorates the water conditions of the shallow soil, which then influences the diversity assembly in arid desert communities. PMID:25275494

  9. The effects of exogenous putrescine on sex-specific responses of Populus cathayana to copper stress.

    PubMed

    Chen, Lianghua; Wang, Ling; Chen, Fugui; Korpelainen, Helena; Li, Chunyang

    2013-11-01

    We used the dioecious tree, Populus cathayana, as a model species to study plants' physiological and biochemical responses to copper (Cu) stress, exogenous putrescine (Put) treatment and their interaction. Although males accumulated higher Cu concentrations in leaves than did females under Cu stress, they did not suffer more damage than females, as reflected by changes in gas exchange, pigment contents, membrane lipid peroxidation (thiobarbituric acid reactive substances, TBARS) and protein oxidation (carbonyl). Higher Cu tolerance of males was correlated with a higher H2O2 scavenging ability and proline responses, and a better maintenance of non-protein thiols (NP-SHs) and spermine (Spm) contents. We also discovered that mitigation effects of exogenous Put on Cu stress occurred, as visible as a recovery of the total chlorophyll content, and lower TBARS and carbonyl under interaction treatment when compared to Cu stress alone. Exogenous Put decreased the Cu concentration in leaves of both sexes, but to different degrees. Such effects of exogenous Put suggested that Put may play important roles in the stabilization of membrane integrity and protein structures, and it may modulate the uptake and transportation of Cu. Our results indicated that (1) males are more tolerant to Cu stress than females; (2) Put could mitigate Cu toxicity in P. cathayana, but to a different degree in males and females; (3) males are better candidates than females for Cu extraction and phytoremediation.

  10. Dendroclimatic potential of plains cottonwood (Populus deltoides subsp. monilifera) from the Northern Great Plains, USA

    USGS Publications Warehouse

    Edmonson, Jesse; Friedman, Jonathan; Meko, David; Touchan, Ramzi; Scott, Julian; Edmonson, Alan

    2014-01-01

    A new 368-year tree-ring chronology (A.D. 1643–2010) has been developed in western North Dakota using plains cottonwood (Populus deltoides subsp. monilifera) growing on the relatively undisturbed floodplain of the Little Missouri River in the North Unit of Theodore Roosevelt National Park. We document many slow-growing living trees between 150–370 years old that contradict the common understanding that cottonwoods grow fast and die young. In this northern location, cottonwood produces distinct annual rings with dramatic interannual variability that strongly crossdate. The detrended tree-ring chronology is significantly positively correlated with local growing season precipitation and soil moisture conditions (r  =  0.69). This time series shows periods of prolonged low radial tree growth during the known droughts of the instrumental record (e.g. 1931–1939 and 1980–1981) and also during prehistory (e.g. 1816–1823 and 1856–1865) when other paleoclimate studies have documented droughts in this region. Tree rings of cottonwood will be a useful tool to help reconstruct climate, streamflow, and the floodplain history of the Little Missouri River and other northern river systems.

  11. Sexually different physiological responses of Populus cathayana to nitrogen and phosphorus deficiencies.

    PubMed

    Zhang, Sheng; Jiang, Hao; Zhao, Hongxia; Korpelainen, Helena; Li, Chunyang

    2014-04-01

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder under stressful conditions. However, little is known about sex-specific differences in responses to nutrient deficiencies. In this study, the effects of nitrogen (N) and phosphorus (P) deficiencies on the morphological, physiological and chloroplast ultrastructural traits of P. cathayana males and females were investigated. The results showed that N and P deficiencies significantly decreased plant growth, foliar N and P contents, chlorophyll content, photosynthesis, and instantaneous photosynthetic N- and P-use efficiencies (PNUE and PPUE) in both sexes. Males had higher photosynthesis, higher PNUE and PPUE rates, and a lower accumulation of plastoglobules in chloroplasts than did females when exposed to N- and P-deficiency conditions. Nitrogen-deficient males had higher glutamate dehydrogenase and peroxidase activities, and a more intact chloroplast ultrastructure, but less starch accumulation than did N-deficient females. Phosphorus-deficient males had higher nitrate reductase, glutamine synthetase and acid phosphatase activities, but a lower foliar N : P ratio and less PSII damage than did P-deficient females. These results suggest that N and P deficiencies cause greater negative effects on females than on males, and that the different sexes of P. cathayana may employ different strategies to cope with N and P deficiencies.

  12. Water stress induces changes in polyphenol profile and antioxidant capacity in poplar plants (Populus spp.).

    PubMed

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tumbas-Šaponjac, V; Čanadanović-Brunet, J; Orlović, S

    2016-08-01

    This paper is aimed to characterize young poplar plants under the influence of water stress provoked by polyethileneglycol 6000 (PEG 6000). Three polar genotypes (M1, B229, and PE19/66) were grown in hydroponics and subjected to 100 and 200 mOsm PEG 6000 during six days. Polyphenol characterization, two enzymatic markers and antioxidant capacity in leaves and roots were investigated in stressed plants. Total phenol content, ferric reducing antioxidant capacity (FRAP) and DPPH antiradical power (DPPH ARP) were determined for estimating total antioxidant capacity. Polyphenol oxidase (PPO) and phenylalanine ammonia lyase (PAL) were determined as enzymatic markers. Polyphenol characterization of poplar samples was performed by HPLC-PDA analysis. All results were subjected to correlation analysis and principal component analysis (PCA). Inspite of the decrease of total phenol content in investigated genotypes, as well as total antioxidant capacity, some of polyphenols were affected by stress like flavonoids chrysin, myricetine, kaempferol and isoferulic acid in roots of B229 genotype (Populus deltoides). Genotype B229 also showed the increase of antioxidant capacity and PAL activity in root and leaves under stress what could be the indicator of the adaptability of poplar plants to water stress. Significant positive correlations were obtained between PAL, antioxidant capacity as well as phenolic acids among themselves. Chemometric evaluation showed close interdependence between flavonoids, FRAP, DPPH antiradical power and both investigated enzymes of polyphenol metabolism, PAL and PPO.

  13. Latitudinal variation in cold hardiness in introduced Tamarix and native Populus

    PubMed Central

    Friedman, Jonathan M; Roelle, James E; Gaskin, John F; Pepper, Alan E; Manhart, James R

    2008-01-01

    To investigate the evolution of clinal variation in an invasive plant, we compared cold hardiness in the introduced saltcedar (Tamarix ramosissima, Tamarix chinensis, and hybrids) and the native plains cottonwood (Populus deltoides subsp. monilifera). In a shadehouse in Colorado (41°N), we grew plants collected along a latitudinal gradient in the central United States (29–48°N). On 17 occasions between September 2005 and June 2006, we determined killing temperatures using freeze-induced electrolyte leakage and direct observation. In midwinter, cottonwood survived cooling to −70°C, while saltcedar was killed at −33 to −47°C. Frost sensitivity, therefore, may limit northward expansion of saltcedar in North America. Both species demonstrated inherited latitudinal variation in cold hardiness. For example, from September through January killing temperatures for saltcedar from 29.18°N were 5–21°C higher than those for saltcedar from 47.60°N, and on September 26 and October 11, killing temperatures for cottonwood from 33.06°N were >43°C higher than those for cottonwood from 47.60°N. Analysis of nine microsatellite loci showed that southern saltcedars are more closely related to T. chinensis while northern plants are more closely related to T. ramosissima. Hybridization may have introduced the genetic variability necessary for rapid evolution of the cline in saltcedar cold hardiness. PMID:25567800

  14. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    SciTech Connect

    Timm, Collin M.; Campbell, Alicia G.; Utturkar, Sagar M.; Jun, Se Ran; Parales, Rebecca E.; Tan, Mesa; Robeson, Michael S.; Lu, Tse-Yuan S.; Jawdy, Sara; Schadt, Christopher Warren; Doktycz, Mitchel John; Weston, David; Pelletier, Dale A.

    2015-10-14

    The bacterial microbiota of plants is diverse, with ~1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work we investigate how 19 sequenced Pseudomonas fluorescens strains representing a single OTU isolated from Populus deltoides rhizosphere and endosphere differ using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for bacterial-plant interactions are enriched in endosphere isolate genomes and growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have more metabolic pathways for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways important for bacterial-plant interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria that are enriched in event he most closely related isolates.

  15. Dynamic changes in the transcriptome of Populus hopeiensis in response to abscisic acid

    PubMed Central

    Chen, Zhong; Ji, Lexiang; Wang, Jia; Jin, Jinpu; Yang, Xiaoyu; Rao, Pian; Gao, Kai; Liao, Weihua; Ye, Meixia; An, Xinmin

    2017-01-01

    Abscisic acid (ABA) plays a fundamental role in plant response and adaptation to abiotic stresses, such as drought, high salinity and low temperature. Populus hopeiensis exhibits exceptional tolerance to water-deficit environments and is therefore an excellent choice for studying drought tolerance in trees. This study provides a global view of transcriptome dynamics in P. hopeiensis in response to exogenous ABA using Illumina RNA-sequencing. Endogenous ABA content increased and reached a peak at 8 h after ABA treatment and then significantly decreased at latter time points. Differential expression analysis and Gene ontology enrichment revealed that the number of transcripts exhibited significant increase during the first 8 hours after ABA treatment, which then significantly decreased at 12 and 24 h. Transcription factors (TFs) analysis showed that six different patterns were observed based on the expression of the six TFs families (AP2/ERF, NAC, MYB, MYB-related, bZIP and WRKY) and the majority of differentially expressed TFs increased rapidly after ABA treatment. This study provides a robust resource for investigating the functions of genes induced by ABA and will help to develop a better understanding of the molecular regulatory mechanism in response to drought in poplar. PMID:28198429

  16. Degradation of exogenous caffeine by Populus alba and its effects on endogenous caffeine metabolism.

    PubMed

    Pierattini, Erika C; Francini, Alessandra; Raffaelli, Andrea; Sebastiani, Luca

    2016-04-01

    This is the first study reporting the presence of endogenous caffeine, theobromine, and theophylline in all organs of poplar plants. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used in order to evaluate the uptake, translocation, and metabolism of caffeine-(trimethyl-(13)C) in Populus alba L. Villafranca clone grown in hydroponic conditions. We investigated the remediation of caffeine since it is one of the most widely consumed drugs and it is frequently detected in wastewater treatment plant effluents, surface water, and groundwater worldwide. Our results demonstrated that poplar can absorb and degrade exogenous caffeine without negative effects on plant health. Data showed that concentrations of all endogenous compounds varied depending on caffeine-(trimethyl-(13)C) treatments. In particular, in control conditions, endogenous caffeine, theobromine, and theophylline were mainly distributed in roots. On the other hand, once caffeine-(trimethyl-(13)C) was provided, this compound and its dimethy-(13)C metabolites are mainly localized at leaf level. In conclusion, our results support the possible use of Villafranca clone in association with other water treatment systems in order to complete the process of caffeine remediation.

  17. Latitudinal variation in cold hardiness in introduced Tamarix and native Populus

    USGS Publications Warehouse

    Friedman, Jonathan M.; Roelle, James E.; Gaskin, John F.; Pepper, Alan E.; Manhart, James R.

    2008-01-01

    To investigate the evolution of clinal variation in an invasive plant, we compared cold hardiness in the introduced saltcedar (Tamarix ramosissima, Tamarix chinensis, and hybrids) and the native plains cottonwood (Populus deltoidessubsp. monilifera). In a shadehouse in Colorado (41°N), we grew plants collected along a latitudinal gradient in the central United States (29–48°N). On 17 occasions between September 2005 and June 2006, we determined killing temperatures using freeze-induced electrolyte leakage and direct observation. In midwinter, cottonwood survived cooling to −70°C, while saltcedar was killed at −33 to −47°C. Frost sensitivity, therefore, may limit northward expansion of saltcedar in North America. Both species demonstrated inherited latitudinal variation in cold hardiness. For example, from September through January killing temperatures for saltcedar from 29.18°N were 5–21°C higher than those for saltcedar from 47.60°N, and on September 26 and October 11, killing temperatures for cottonwood from 33.06°N were >43°C higher than those for cottonwood from 47.60°N. Analysis of nine microsatellite loci showed that southern saltcedars are more closely related to T. chinensis while northern plants are more closely related to T. ramosissima. Hybridization may have introduced the genetic variability necessary for rapid evolution of the cline in saltcedar cold hardiness.

  18. Growth and development during the establishment year of two Populus clones with contrasting morphology and phenology.

    PubMed

    Michael, D A; Isebrands, J G; Dickmann, D I; Nelson, N D

    1988-06-01

    Weekly morphological measurements of trees in permanent growth plots and periodic destructive sampling were used to monitor growth and development of two Populus clones with contrasting morphology and phenology during the establishment year in a short-rotation, intensive-culture system. Tristis (P. tristis Fisch. x P. balsamifera L.) grew rapidly for 48 days before setting bud in July. By contrast, Eugenei (P. x euramericana (Dode) Guinier) grew at a slower rate than Tristis, but maintained this rate for 75 days before setting bud in September. By early October, the total leaf area and dry weight of Eugenei exceeded that of Tristis by 39 and 11%, respectively. In addition, Eugenei had a greater harvest index than Tristis throughout most of the growing season because a larger proportion of photosynthate produced was directed to shoot growth; however, a high shoot/root ratio in Eugenei predisposed it to water stress. Differences in aboveground biomass between clones were largely attributable to clonal differences in seasonal leaf area development.

  19. Effects of Elevated CO2 Concentration on Photosynthesis and Respiration of Populus Deltodies

    NASA Technical Reports Server (NTRS)

    Anderson, Angela M.

    1998-01-01

    To determine how increased atmospheric CO2 will affect the physiology of cottonwood trees, cuttings of the cloned Populus deltodies [cottonwood] were grown in open-top chambers containing ambient or elevated CO2 concentration. The control treatment was maintained at ambient Biosphere 2 atmospheric CO2 (c. 450 +/- 50 micro l/l), and elevated CO2 treatment was maintained at approximately double ambient Biosphere 2 atmospheric CO2 (c. 1000 +/- 50 micro l/l). The effects of elevated CO2 on leaf photosynthesis, and stomatal conductance were measured. The cottonwoods exposed to CO2 enrichment showed no significant indication of photosynthetic down-regulation. There was no significant difference in the maximum assimilation rate between the treatment and the control (P less than 0.24). The CO2 enriched treatment showed a decreased stomatal conductance of 15% (P less than 0.03). The elevated CO2 concentrated atmosphere had an effect on the respiration rates of the plants; the compensation point of the treatment was on average 13% higher than the control (P less than 0.01).

  20. Comparative physiological and proteomic analyses of poplar (Populus yunnanensis) plantlets exposed to high temperature and drought.

    PubMed

    Li, Xiong; Yang, Yunqiang; Sun, Xudong; Lin, Huaming; Chen, Jinhui; Ren, Jian; Hu, Xiangyang; Yang, Yongping

    2014-01-01

    Plantlets of Populus yunnanensis Dode were examined in a greenhouse for 48 h to analyze their physiological and proteomic responses to sustained heat, drought, and combined heat and drought. Compared with the application of a single stress, simultaneous treatment with both stresses damaged the plantlets more heavily. The plantlets experienced two apparent response stages under sustained heat and drought. During the first stage, malondialdehyde and reactive oxygen species (ROS) contents were induced by heat, but many protective substances, including antioxidant enzymes, proline, abscisic acid (ABA), dehydrin, and small heat shock proteins (sHSPs), were also stimulated. The plants thus actively defended themselves against stress and exhibited few pathological morphological features, most likely because a new cellular homeostasis was established through the collaborative operation of physiological and proteomic responses. During the second stage, ROS homeostasis was overwhelmed by substantial ROS production and a sharp decline in antioxidant enzyme activities, while the synthesis of some protective elements, such as proline and ABA, was suppressed. As a result, photosynthetic levels in P. yunnanensis decreased sharply and buds began to die, despite continued accumulation of sHSPs and dehydrin. This study supplies important information about the effects of extreme abiotic environments on woody plants.

  1. Boron accumulation and toxicity in hybrid poplar (Populus nigra × euramericana).

    PubMed

    Rees, Rainer; Robinson, Brett H; Menon, Manoj; Lehmann, Eberhard; Günthardt-Goerg, Madeleine S; Schulin, Rainer

    2011-12-15

    Poplars accumulate high B concentrations and are thus used for the phytomanagement of B contaminated soils. Here, we performed pot experiments in which Populus nigra × euramericana were grown on a substrate with B concentrations ranging from 13 to 280 mg kg(-1) as H(3)BO(3). Salix viminalis, Brassica juncea, and Lupinus albus were grown under some growing conditions for comparison. Poplar growth was unaffected at soil B treatment levels up to 93 mg kg(-1). Growth was progressively reduced at levels of 168 and 280 mg kg(-1). None of the other species survived at these substrate B levels. At leaf B concentrations <900 mg kg(-1) only <10% of the poplar leaf area showed signs of toxicity. Neutron radiography revealed that chlorotic leaf tissues had B concentrations of 1000-2000 mg kg(-1), while necrotic tissues had >2000 mg kg(-1). Average B concentrations of up to 3500 mg kg(-1) were found in leaves, while spots within leaves had concentrations >7000 mg kg(-1), showing that B accumulation in leaf tissue continued even after the onset of necrosis. The B accumulation ability of P. nigra × euramericana is associated with B hypertolerance in the living tissue and storage of B in dead leaf tissue.

  2. Genome-scale transcriptome analysis of the desert poplar, Populus euphratica.

    PubMed

    Qiu, Qiang; Ma, Tao; Hu, Quanjun; Liu, Bingbing; Wu, Yuxia; Zhou, Haihong; Wang, Qian; Wang, Juan; Liu, Jianquan

    2011-04-01

    Populus euphratica is well-adapted to extreme desert environments and is an important model species for studying the effects of abiotic stresses on trees. Here we present the first deep transcriptomic analysis of this species. To maximize representation of conditional transcripts, mRNA was obtained from living tissues of desert-grown trees and two types of callus (salt-stressed and unstressed). De novo assembly generated 86,777 Unigenes using Solexa sequence data. These sequences covered 92% of previously reported P. euphratica expressed sequence tags (ESTs) and 90% of the TIGR poplar ESTs, and a total of 58,499 high-quality unique sequences were annotated by BLAST similarity searches against public databases. We found that 27% of the total Unigenes were differentially expressed (up- or down-regulated) in response to salt stress in P. euphratica callus. These differentially expressed genes are mainly involved in transport, transcription, cellular communication and metabolism. In addition, we found that numerous putative genes involved in ABA regulation and biosynthesis were also differentially regulated. This study represents the deepest transcriptomic and gene-annotation analysis of P. euphratica to date. The genetic knowledge acquired should be very useful for future studies of the molecular adaptation of this tree species to abiotic stress and facilitate genetic manipulation of other poplar species.

  3. Molecular Responses to Climate and Resource Availability: Emerging Evidence from Systems Biology Research in Populus.

    SciTech Connect

    Wullschleger, Stan D; Weston, David; Davis, John M

    2009-01-01

    The emergence of Populus as a model system for tree biology continues to be driven by a community of scientists dedicated to developing the resources needed to undertake genetic and functional genomic studies in this genus. As a result, understanding the molecular processes that underpin the growth and development of cottonwood, aspen, and hybrid poplar has steadily increased over the last several decades. Recently, our ability to examine the basic mechanisms whereby trees respond to a changing climate and resource limitations has benefitted greatly from the sequencing of the P. trichocarpa genome. This landmark event has laid a solid foundation upon which tree biologists can now explore the genome-wide effects of temperature, water and nutrient limitations on processes that govern the growth and development of some of the longest living and tallest growing organisms on Earth. Although the challenges likely to be encountered by scientists who work with trees are many, recent literature provides a number of examples whereby a systems approach, one that focuses on transcriptomic, proteomic, and metabolomic analyses is beginning to provide insights into the molecular-scale response of poplars to their climatic and edaphic environment.

  4. Two highly validated SSR multiplexes (8-plex) for Euphrates' poplar, Populus euphratica (Salicaceae).

    PubMed

    Xu, Fang; Feng, Sisi; Wu, Rongling; Du, Fang K

    2013-01-01

    Multiplex PCR amplification of microsatellites has significantly increased the throughput and decreased the costs of genotyping. We have developed two highly polymorphic microsatellite multiplexes for Populus euphratica, the only tree species found in desert regions of Western China and adjacent Central Asian countries. The first of these multiplex kits comprises an eight-Plex of genomic SSRs (gSSRs) obtained from published databases. The second comprises an eight-plex of newly designed EST-SSRs (eSSRs) based on expressed sequence tags for P. euphratica. Both kits were tested on a sample of 170 individuals from four populations. The gSSRs exhibited slightly more polymorphism than the eSSRs. The new multiplex protocols yielded consistent results in the hands of multiple researchers, demonstrating their robustness. The 16 loci used in the kits exhibited a high transferability rate (82.0%) in eight other poplar species belonging to five different sections of the genus. Both kits should therefore be useful for further investigations of population genetics in P. euphratica and related species. Our results indicate that it is essential to follow recently established recommendations when developing microsatellite markers, including verifying the amplification efficiency, detecting null alleles and carefully measuring error rates.

  5. In silico identification and characterization of N-Terminal acetyltransferase genes of poplar (Populus trichocarpa).

    PubMed

    Zhu, Hang-Yong; Li, Chun-Ming; Wang, Li-Feng; Bai, Hui; Li, Yan-Ping; Yu, Wen-Xi; Xia, De-An; Liu, Chang-Cai

    2014-01-27

    N-terminal acetyltransferase (Nats) complex is responsible for protein N-terminal acetylation (Nα-acetylation), which is one of the most common covalent modifications of eukaryotic proteins. Although genome-wide investigation and characterization of Nat catalytic subunits (CS) and auxiliary subunits (AS) have been conducted in yeast and humans they remain unexplored in plants. Here we report on the identification of eleven genes encoding eleven putative Nat CS polypeptides, and five genes encoding five putative Nat AS polypeptides in Populus. We document that the expansion of Nat CS genes occurs as duplicated blocks distributed across 10 of the 19 poplar chromosomes, likely only as a result of segmental duplication events. Based on phylogenetic analysis, poplar Nat CS were assigned to six subgroups, which corresponded well to the Nat CS types (CS of Nat A-F), being consistent with previous reports in humans and yeast. In silico analysis of microarray data showed that in the process of normal development of the poplar, their Nat CS and AS genes are commonly expressed at one relatively low level but share distinct tissue-specific expression patterns. This exhaustive survey of Nat genes in poplar provides important information to assist future studies on their functional role in poplar.

  6. Genomic diversity, population structure, and migration following rapid range expansion in the Balsam poplar, Populus balsamifera.

    PubMed

    Keller, Stephen R; Olson, Matthew S; Silim, Salim; Schroeder, William; Tiffin, Peter

    2010-03-01

    Rapid range expansions can cause pervasive changes in the genetic diversity and structure of populations. The postglacial history of the Balsam Poplar, Populus balsamifera, involved the colonization of most of northern North America, an area largely covered by continental ice sheets during the last glacial maximum. To characterize how this expansion shaped genomic diversity within and among populations, we developed 412 SNP markers that we assayed for a range-wide sample of 474 individuals sampled from 34 populations. We complemented the SNP data set with DNA sequence data from 11 nuclear loci from 94 individuals, and used coalescent analyses to estimate historical population size, demographic growth, and patterns of migration. Bayesian clustering identified three geographically separated demes found in the Northern, Central, and Eastern portions of the species' range. These demes varied significantly in nucleotide diversity, the abundance of private polymorphisms, and population substructure. Most measures supported the Central deme as descended from the primary refuge of diversity. Both SNPs and sequence data suggested recent population growth, and coalescent analyses of historical migration suggested a massive expansion from the Centre to the North and East. Collectively, these data demonstrate the strong influence that range expansions exert on genomic diversity, both within local populations and across the range. Our results suggest that an in-depth knowledge of nucleotide diversity following expansion requires sampling within multiple populations, and highlight the utility of combining insights from different data types in population genomic studies.

  7. Genetic diversity and population structure of Chinese White poplar (Populus tomentosa) revealed by SSR markers.

    PubMed

    Du, Qingzhang; Wang, Bowen; Wei, Zunzheng; Zhang, Deqiang; Li, Bailian

    2012-01-01

    An understanding of allelic diversity and population structure is important in developing association studies and constructing core collections for tree breeding. We examined population genetic differentiation in the native Populus tomentosa by genotyping 460 unrelated individuals using 20 species-specific microsatellite markers. We identified 99 alleles with a mean of 4.95 observed alleles per locus, indicating a moderate level of polymorphism across all individuals. A model-based population structure analysis divided P. tomentosa into 11 subpopulations (K = 11). The pattern of individual assignments into the subsets (K = 3) provided reasonable evidence for treating climatic zones as genetic regions for population genetics. The highest level of genetic variation was found in the southern region (i.e., N = 93, N (P) = 11, H (E) = 0.445, F = -0.102), followed by the northeastern and northwestern regions. Thus, the southern region is probably the center of the current species distribution. No correlation was found between population genetic distance and geographic distance (r = 0.0855, P = 0.3140), indicating that geographical distance was not the principal factor influencing genetic differentiation in P. tomentosa. These data provide a starting point for conserving valuable natural resources and optimizing breeding programs.

  8. Association genetics of chemical wood properties in black poplar (Populus nigra).

    PubMed

    Guerra, Fernando P; Wegrzyn, Jill L; Sykes, Robert; Davis, Mark F; Stanton, Brian J; Neale, David B

    2013-01-01

    Black poplar (Populus nigra) is a potential feedstock for cellulosic ethanol production, although breeding for this specific end use is required. Our goal was to identify associations between single nucleotide polymorphism (SNP) markers within candidate genes encoding cellulose and lignin biosynthetic enzymes, with chemical wood property phenotypic traits, toward the aim of developing genomics-based breeding technologies for bioethanol production. Pyrolysis molecular beam mass spectrometry was used to determine contents of five- and six-carbon sugars, lignin, and syringyl : guaiacyl ratio. The association population included 599 clones from 17 half-sib families, which were successfully genotyped using 433 SNPs from 39 candidate genes. Statistical analyses were performed to estimate genetic parameters, linkage disequilibrium (LD), and single marker and haplotype-based associations. A moderate to high heritability was observed for all traits. The LD, across all candidate genes, showed a rapid decay with physical distance. Analysis of single marker-phenotype associations identified six significant marker-trait pairs, whereas nearly 280 haplotypes were associated with phenotypic traits, in both an individual and multiple trait-specific manner. The rapid decay of LD within candidate genes in this population and the genetic associations identified suggest a close relationship between the associated SNPs and the causative polymorphisms underlying the genetic variation of lignocellulosic traits in black poplar.

  9. Local selection across a latitudinal gradient shapes nucleotide diversity in balsam poplar, Populus balsamifera L.

    PubMed

    Keller, Stephen R; Levsen, Nicholas; Ingvarsson, Pär K; Olson, Matthew S; Tiffin, Peter

    2011-08-01

    Molecular studies of adaptive evolution often focus on detecting selective sweeps driven by positive selection on a species-wide scale; however, much adaptation is local, particularly of ecologically important traits. Here, we look for evidence of range-wide and local adaptation at candidate genes for adaptive phenology in balsam poplar, Populus balsamifera, a widespread forest tree whose range extends across environmental gradients of photoperiod and growing season length. We examined nucleotide diversity of 27 poplar homologs of the flowering-time network-a group of genes that control plant developmental phenology through interactions with environmental cues such as photoperiod and temperature. Only one gene, ZTL2, showed evidence of reduced diversity and an excess of fixed replacement sites, consistent with a species-wide selective sweep. Two other genes, LFY and FRI, harbored high levels of nucleotide diversity and exhibited elevated differentiation between northern and southern accessions, suggesting local adaptation along a latitudinal gradient. Interestingly, FRI has also been identified as a target of local selection between northern and southern accessions of Arabidopsis thaliana, indicating that this gene may be commonly involved in ecological adaptation in distantly related species. Our findings suggest an important role for local selection shaping molecular diversity and reveal limitations of inferring molecular adaptation from analyses designed only to detect species-wide selective sweeps.

  10. Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.).

    PubMed

    Vickers, Claudia E; Possell, Malcolm; Nicholas Hewitt, C; Mullineaux, Philip M

    2010-07-01

    Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-D: -erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.

  11. Different Proteome Profiles between Male and Female Populus cathayana Exposed to UV-B Radiation

    PubMed Central

    Zhang, Yunxiang; Feng, Lihua; Jiang, Hao; Zhang, Yuanbin; Zhang, Sheng

    2017-01-01

    With increasing altitude, solar UV-B radiation is enhanced. Based on the phenomenon of male-biased sex ratio of Populus cathayana Rehder in high altitude alpine area, we hypothesized that males have a faster and more sophisticated responsive mechanism to high UV-B radiation than that of females. Our previous studies have shown sexually different responses to high UV-B radiation were existed in P. cathayana at the morphological, physiological, and transcriptomic levels. However, the responses at the proteomic level remain unclear. In this study, an isobaric tag for relative and absolute quantification (iTRAQ)-based quantitative proteome analysis was performed in P. cathayana females and males. A total of 2,405 proteins were identified, with 331 proteins defined as differentially expressed proteins (DEPs). Among of these, 79 and 138 DEPs were decreased and 47 and 107 DEPs were increased under high solar UV-B radiation in females and males, respectively. A bioinformatics analysis categorized the common responsive proteins in the sexes as related to carbohydrate and energy metabolism, translation/transcription/post-transcriptional modification, photosynthesis, and redox reactions. The responsive proteins that showed differences in sex were mainly those involved in amino acid metabolism, stress response, and translation/transcription/post-transcriptional modification. This study provides proteomic profiles that poplars responding to solar UV-B radiation, and it also provides new insights into differentially sex-related responses to UV-B radiation. PMID:28326097

  12. Population genetics of freeze tolerance among natural populations of Populus balsamifera across the growing season.

    PubMed

    Menon, Mitra; Barnes, William J; Olson, Matthew S

    2015-08-01

    Protection against freeze damage during the growing season influences the northern range limits of plants. Freeze tolerance and freeze avoidance are the two major freeze resistance strategies. Winter survival strategies have been extensively studied in perennials, but few have addressed them and their genetic basis during the growing season. We examined intraspecific phenotypic variation in freeze resistance of Populus balsamifera across latitude and the growing season. To investigate the molecular basis of this variation, we surveyed nucleotide diversity and examined patterns of gene expression in the poplar C-repeat binding factor (CBF) gene family. Foliar freeze tolerance exhibited latitudinal and seasonal variation indicative of natural genotypic variation. CBF6 showed signatures of recent selective sweep. Of the 46 SNPs surveyed across the six CBF homologs, only CBF2_619 exhibited latitudinal differences consistent with increased freeze tolerance in the north. All six CBF genes were cold inducible, but showed varying patterns of expression across the growing season. Some Poplar CBF homologs exhibited patterns consistent with historical selection and clinal variation in freeze tolerance documented here. However, the CBF genes accounted for only a small amount of the variation, indicating that other genes in this and other molecular pathways likely play significant roles in nature.

  13. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides

    DOE PAGES

    Fahrenkrog, Annette M.; Neves, Leandro G.; Resende, Jr., Marcio F. R.; ...

    2016-09-06

    Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genesmore » in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. Lastly, these polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.« less

  14. Phyllotactic transitions in the vascular system of Populus deltoides bartr. as determined by (14)C labeling.

    PubMed

    Larson, P R

    1977-01-01

    Populus deltoides seedlings progress through 2/5, 3/8, and 5/13 orders of phyllotaxis in attaining Plastochron Index 16 (PI 16). The manner in which the vascular system was reoriented during these phyllotactic transitions was determined by anatomical analysis of serial microsections, whereas the positions of the transitions were determined by (14)C labeling. The midvein at the tip of leaves representing plants of different PI and leaves of different Leaf Plastochron Index (LPI) was fed (14)CO2 photosynthetically, and primordia LPI 0 through LPI-9 were dissected from the buds and analyzed for (14)C. By combining the labeling data with the anatomical observations it was possible to reconstruct the vascular system of a plant of PI 16 and to locate the phyllotactic transitions. Both the anatomical and the labeling data showed a high degree of reproducibility among plants suggesting that the phyllotactic pattern to which the vascular system conforms may be programmed in the plant and transmitted acropetally through the developing leaves and procambial strands. The origin of new primordia and the concepts of orthostichy, ontogenetic helix, and Fibonacci sequence are discussed as they apply to the vascular system of P. deltoides.

  15. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment

    DOE PAGES

    Timm, Collin M.; Campbell, Alicia G.; Utturkar, Sagar M.; ...

    2015-10-14

    The bacterial microbiota of plants is diverse, with ~1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work we investigate how 19 sequenced Pseudomonas fluorescens strains representing a single OTU isolated from Populus deltoides rhizosphere and endosphere differ using phenotypic analysis, comparative genomics, and metabolic models. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for bacterial-plant interactions are enriched in endosphere isolate genomes and growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased towards endosphere isolates. Endosphere isolates have more metabolic pathwaysmore » for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways important for bacterial-plant interactions but show metabolic bias towards chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria that are enriched in event he most closely related isolates.« less

  16. Description of Acinetobacter populi sp. nov. isolated from symptomatic bark of Populus x euramericana canker.

    PubMed

    Li, Yong; Chang, Jupu; Guo, Li-min; Wang, Hai-Ming; Xie, Shou-jiang; Piao, Chun-gen; He, Wei

    2015-12-01

    Five Gram-negative, non-motile, rod-shaped bacterial strains were isolated from cankers of Populus x euramericana collected from different locations in Puyang city, Henan Province, China. The five strains were characterized by nutritional and physiological testing and DNA sequence analysis. Haemolysis was not observed on agar media supplemented with sheep erythrocytes. The strains could be distinguished from members of most species of the genus Acinetobacter by their inability to assimilate L-arginine and benzoate. The five strains formed a single branch in phylogenetic trees based on 16S rRNA, gyrB and rpoB individual gene sequence analysis,indicating that they all belonged to a single taxon within the genus Acinetobacter. DNA-DNA hybridization results indicated that the five isolates represented to a single species that was separate from Acinetobacter puyangensis. On the basis of the phenotypic, genotypic and phylogenetic characteristics, the five strains are considered to represent a novel species of the genus Acinetobacter, for which the name Acinetobacter populi sp. nov. is proposed. The typestrain of A. populi sp. nov. is PBJ7T (CFCC 11170T=KCTC 42272T).

  17. Expression Pattern of ERF Gene Family under Multiple Abiotic Stresses in Populus simonii × P. nigra.

    PubMed

    Yao, Wenjing; Zhang, Xuemei; Zhou, Boru; Zhao, Kai; Li, Renhua; Jiang, Tingbo

    2017-01-01

    Identification of gene expression patterns of key genes across multiple abiotic stresses is critical for mechanistic understanding of stress resistance in plant. In the present study, we identified differentially expressed genes (DEGs) in di-haploid Populus simonii × P. nigra under respective stresses of NaCl, KCl, CdCl2, and PEG. On the basis of RNA-Seq, we detected 247 DEGs that are shared by the four stresses in wild type poplar, and mRNA abundance of the DEGs were validated in transgenic poplar overexpressing ERF76 gene by RNA-Seq and RT-qPCR. Results from gene ontology analysis indicated that these genes are enriched in significant pathways, such as phenylpropanoid biosynthesis, phenylalanine metabolism, starch and sucrose metabolism, and plant hormone signal transduction. Ethylene response factor (ERF) gene family plays significant role in plant abiotic stress responses. We also investigated expression pattern of ERF gene family under the four stresses. The ERFs and DEGs share similar expression pattern across the four stresses. The transgenic poplar is superior to WT in morphologic, physiological and biochemical traits, which demonstrated the ERF76 gene plays a significant role in stress resistance. These studies will give a rise in understanding the stress response mechanisms in poplar.

  18. Adaptive mechanisms and genomic plasticity for drought tolerance identified in European black poplar (Populus nigra L.)

    PubMed Central

    Viger, Maud; Smith, Hazel K.; Cohen, David; Dewoody, Jennifer; Trewin, Harriet; Steenackers, Marijke; Bastien, Catherine; Taylor, Gail

    2016-01-01

    Summer droughts are likely to increase in frequency and intensity across Europe, yet long-lived trees may have a limited ability to tolerate drought. It is therefore critical that we improve our understanding of phenotypic plasticity to drought in natural populations for ecologically and economically important trees such as Populus nigra L. A common garden experiment was conducted using ∼500 wild P. nigra trees, collected from 11 river populations across Europe. Phenotypic variation was found across the collection, with southern genotypes from Spain and France characterized by small leaves and limited biomass production. To examine the relationship between phenotypic variation and drought tolerance, six genotypes with contrasting leaf morphologies were subjected to a water deficit experiment. ‘North eastern’ genotypes were collected at wet sites and responded to water deficit with reduced biomass growth, slow stomatal closure and reduced water use efficiency (WUE) assessed by Δ13C. In contrast, ‘southern’ genotypes originating from arid sites showed rapid stomatal closure, improved WUE and limited leaf loss. Transcriptome analyses of a genotype from Spain (Sp2, originating from an arid site) and another from northern Italy (Ita, originating from a wet site) revealed dramatic differences in gene expression response to water deficit. Transcripts controlling leaf development and stomatal patterning, including SPCH, ANT, ER, AS1, AS2, PHB, CLV1, ERL1–3 and TMM, were down-regulated in Ita but not in Sp2 in response to drought. PMID:27174702

  19. Expression Pattern of ERF Gene Family under Multiple Abiotic Stresses in Populus simonii × P. nigra

    PubMed Central

    Yao, Wenjing; Zhang, Xuemei; Zhou, Boru; Zhao, Kai; Li, Renhua; Jiang, Tingbo

    2017-01-01

    Identification of gene expression patterns of key genes across multiple abiotic stresses is critical for mechanistic understanding of stress resistance in plant. In the present study, we identified differentially expressed genes (DEGs) in di-haploid Populus simonii × P. nigra under respective stresses of NaCl, KCl, CdCl2, and PEG. On the basis of RNA-Seq, we detected 247 DEGs that are shared by the four stresses in wild type poplar, and mRNA abundance of the DEGs were validated in transgenic poplar overexpressing ERF76 gene by RNA-Seq and RT-qPCR. Results from gene ontology analysis indicated that these genes are enriched in significant pathways, such as phenylpropanoid biosynthesis, phenylalanine metabolism, starch and sucrose metabolism, and plant hormone signal transduction. Ethylene response factor (ERF) gene family plays significant role in plant abiotic stress responses. We also investigated expression pattern of ERF gene family under the four stresses. The ERFs and DEGs share similar expression pattern across the four stresses. The transgenic poplar is superior to WT in morphologic, physiological and biochemical traits, which demonstrated the ERF76 gene plays a significant role in stress resistance. These studies will give a rise in understanding the stress response mechanisms in poplar. PMID:28265277

  20. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides.

    PubMed

    Fahrenkrog, Annette M; Neves, Leandro G; Resende, Márcio F R; Vazquez, Ana I; de Los Campos, Gustavo; Dervinis, Christopher; Sykes, Robert; Davis, Mark; Davenport, Ruth; Barbazuk, William B; Kirst, Matias

    2017-01-01

    Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. These polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.

  1. Gene expression and protein length influence codon usage and rates of sequence evolution in Populus tremula.

    PubMed

    Ingvarsson, Pär K

    2007-03-01

    Codon bias is generally thought to be determined by a balance between mutation, genetic drift, and natural selection on translational efficiency. However, natural selection on codon usage is considered to be a weak evolutionary force and selection on codon usage is expected to be strongest in species with large effective population sizes. In this paper, I study associations between codon usage, gene expression, and molecular evolution at synonymous and nonsynonymous sites in the long-lived, woody perennial plant Populus tremula (Salicaceae). Using expression data for 558 genes derived from expressed sequence tags (EST) libraries from 19 different tissues and developmental stages, I study how gene expression levels within single tissues as well as across tissues affect codon usage and rates sequence evolution at synonymous and nonsynonymous sites. I show that gene expression have direct effects on both codon usage and the level of selective constraint of proteins in P. tremula, although in different ways. Codon usage genes is primarily determined by how highly expressed a genes is, whereas rates of sequence evolution are primarily determined by how widely expressed genes are. In addition to the effects of gene expression, protein length appear to be an important factor influencing virtually all aspects of molecular evolution in P. tremula.

  2. Media formulation influences in vitro ectomycorrhizal synthesis on the European aspen Populus tremula L.

    PubMed

    Langer, Ingrid; Krpata, Doris; Peintner, Ursula; Wenzel, Walter W; Schweiger, Peter

    2008-09-01

    The effect of various media formulations on in vitro ectomycorrhizal synthesis of identified fungal strains with European aspen (Populus tremula L.) was tested in Petri dishes. Pre-grown seedlings were transferred to various nutrient media and inoculated with Paxillus involutus isolates using modified sandwich techniques. Mycorrhiza formation was evaluated macroscopically and further confirmed by microscopic examination of semi-thin sections for anatomical features of the mantle and the Hartig net. Standard media formulations did not support successful ectomycorrhiza formation because of either very poor plant survival (below 20%) or impaired fungal growth. The inclusion of micronutrients and vitamins in a Melin Norkrans (MMN)-based medium increased plant survival rate to above 60% and supported successful mycorrhizal synthesis. P. involutus isolates formed mycorrhizas with a characteristic Hartig net restricted to the epidermis. Mantle density and thickness varied depending on the isolate. In a follow-up experiment, the adapted medium supported successful ectomycorrhiza formation by various Laccaria and Hebeloma isolates. Our results show that an exogenous supply of vitamins and micronutrients in the medium was a prerequisite for successful mycorrhization of P. tremula in vitro in Petri dishes.

  3. Seasonal variation of leaf respiration and the alternative pathway in field-grown Populus × canadensis.

    PubMed

    Searle, Stephanie Y; Turnbull, Matthew H

    2011-04-01

    The temperature response of plant respiration varies between species and can acclimate to changing temperatures. Mitochondrial respiration in plants has two terminal oxidases: the cytochrome c oxidase (COX) and the cyanide-resistant alternative oxidase (AOX). In Populus × canadensis var. italica, a deciduous tree species, we investigated the temperature response of leaf respiration via the alternative and cytochrome pathways, as well as seasonal changes in these pathways, using the oxygen isotope fractionation technique. The electron partitioning through the alternative pathway (τ(a) ) increased from 0 to 30-40% with measurement temperatures from 6 to 30°C at all times measured throughout the growing season. τ(a) at the growth temperature (the average temperature during 3 days prior to sampling) increased from 12 to 29% from spring until late summer and decreased thereafter. Total respiration declined throughout the growing season by 50%, concomitantly with decreases in both AOX (64%) and COX (32%) protein abundances. Our results provide new insight into the natural variability of AOX protein abundances and alternative respiration electron partitioning over immediate and seasonal timescales.

  4. Evolutionary transfers of mitochondrial genes to the nucleus in the Populus lineage and coexpression of nuclear and mitochondrial Sdh4 genes.

    PubMed

    Choi, Catherine; Liu, Zhenlan; Adams, Keith L

    2006-01-01

    The transfer of mitochondrial genes to the nucleus is an ongoing evolutionary process in flowering plants. Evolutionarily recent gene transfers provide insights into the evolutionary dynamics of the process and the way in which transferred genes become functional in the nucleus. Genes that are present in the mitochondrion of some angiosperms but have been transferred to the nucleus in the Populus lineage were identified by searches of Populus sequence databases. Sequence analyses and expression experiments were used to characterize the transferred genes. Two succinate dehydrogenase genes and six mitochondrial ribosomal protein genes have been transferred to the nucleus in the Populus lineage and have become expressed. Three transferred genes have gained an N-terminal mitochondrial targeting presequence from other pre-existing genes and two of the transferred genes do not contain an N-terminal targeting presequence. Intact copies of the succinate dehydrogenase gene Sdh4 are present in both the mitochondrion and the nucleus. Both copies of Sdh4 are expressed in multiple organs of two Populus species and RNA editing occurs in the mitochondrial copy. These results provide a genome-wide perspective on mitochondrial genes that were transferred to the nucleus and became expressed, functional genes during the evolutionary history of Populus.

  5. Increasing the productivity of biomass plantations of Populus species and hybrids in the Pacific Northwest. Final report, September 14, 1981--December 31, 1996

    SciTech Connect

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.

    1997-08-01

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies described herein provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns thereof differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. The work was accomplished in three research plantations, all established cooperatively with the Washington State Department of Natural Resources (DNR) and located at the DNR Tree Improvement Center near Olympia. The first plantation was established in Spring 1986 to evaluate the highly touted {open_quotes}woodgrass{close_quotes} concept and compare it with more conventional short-rotation management regimes, using two Populus hybrid clones planted at five spacings. Besides providing scientific data to resolve the politicized {open_quotes}wood-grass{close_quotes} dispute, this plantation has furnished excellent data on stand dynamics and woody biomass yield. A second plantation was established at the same time; groups of trees therein received two levels of irrigation and different amounts of four fertilizer amendments, resulting in microsites with diverse moisture and nutrient conditions.

  6. Phylogeny Reconstruction and Hybrid Analysis of Populus (Salicaceae) Based on Nucleotide Sequences of Multiple Single-Copy Nuclear Genes and Plastid Fragments

    PubMed Central

    Dayanandan, Selvadurai; Wang, Dongsheng; Zeng, Yanfei; Zhang, Jianguo

    2014-01-01

    Populus (Salicaceae) is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1) the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2) three advanced sections (Populus, Aigeiros and Tacamahaca) are of hybrid origin; (3) species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4) many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments. PMID:25116432

  7. Fructokinase is required for carbon partitioning to cellulose in aspen wood.

    PubMed

    Roach, Melissa; Gerber, Lorenz; Sandquist, David; Gorzsás, András; Hedenström, Mattias; Kumar, Manoj; Steinhauser, Marie Caroline; Feil, Regina; Daniel, Geoffrey; Stitt, Mark; Sundberg, Björn; Niittylä, Totte

    2012-06-01

    Sucrose is the main transported form of carbon in several plant species, including Populus species. Sucrose metabolism in developing wood has therefore a central role in carbon partitioning to stem biomass. Half of the sucrose-derived carbon is in the form of fructose, but metabolism of fructose has received little attention as a factor in carbon partitioning to walls of wood cells. We show that RNAi-mediated reduction of FRK2 activity in developing wood of hybrid aspen (Populus tremula × tremuloides) led to the accumulation of soluble neutral sugars and a decrease in hexose phosphates and UDP-glucose, indicating that carbon flux to cell-wall polysaccharide precursors is decreased. Reduced FRK2 activity also led to thinner fiber cell walls with a reduction in the proportion of cellulose. No pleiotropic effects on stem height or diameter were observed. The results establish a central role for FRK2 activity in carbon flux to wood cellulose.

  8. A genomics investigation of partitioning into and among flavonoid-derived condensed tannins for carbon sequestration in Populus

    SciTech Connect

    Harding, Scott, A; Tsai, Chung-jui; Lindroth, Richard, L

    2013-03-24

    The project set out to use comparative (genotype and treatment) and transgenic approaches to investigate the determinants of condensed tannin (CT) accrual and chemical variability in Populus. CT type and amount are thought to effect the decomposition of plant detritus in the soil, and thereby the sequestering of carbon in the soil. The stated objectives were: 1. Genome-wide transcriptome profiling (microarrays) to analyze structural gene, transcription factor and metabolite control of CT partitioning; 2. Transcriptomic (microarray) and chemical analysis of ontogenetic effects on CT and PG partitioning; and 3. Transgenic manipulation of flavonoid biosynthetic pathway genes to modify the control of CT composition. Objective 1: A number of approaches for perturbing CT content and chemistry were tested in Objective 1, and those included nitrogen deficit, leaf wounding, drought, and salicylic acid spraying. Drought had little effect on CTs in the genotypes we used. Plants exhibited unpredictability in their response to salicylic acid spraying, leading us to abandon its use. Reduced plant nitrogen status and leaf wounding caused reproducible and magnitudinally striking increases in leaf CT content. Microarray submissions to NCBI from those experiments are the following: GSE ID 14515: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 1979. Public on Jan 04, 2010; Contributor(s) Harding SA, Tsai C GSE ID 14893: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 3200. Public on Feb 19, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16783 Wound-induced gene expression changes in Populus: 1 week; clone RM5. Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16785 Wound-induced gene expression changes in Populus: 90 hours; clone RM5 Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C Although CT amount changed in response to treatments, CT composition was essentially

  9. Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminum.

    PubMed

    Naik, Dhiraj; Smith, Ernest; Cumming, Jonathan R

    2009-03-01

    Species and hybrids in the genus Populus have become the focus of investigation for use in biofuels production and their capacity to sequester carbon (C) in the environment. The identification of species resistant to marginal edaphic sites may be important in both of these endeavors. Plant growth, total dissolved organic carbon (TOC) and low molecular weight organic acid (OA) production, antioxidative enzyme activities and mineral content were assessed in Populus tremuloides L. and Populus trichocarpa Torr. & Gray seedlings under exposure to aluminum (Al). Both species were sensitive to Al, with significant reductions in shoot and root biomass at and above 50 microM Al. Exposure to Al induced 40-fold increases in TOC deposition in P. tremuloides and 100-fold increases in P. trichocarpa. In P. tremuloides, Al treatment induced root exudation of malic and citric acids, while Al increased exudation of citrate and oxalate in P. trichocarpa. Organic acids accounted for 20-64% of total C released upon Al exposure, with the proportion of OAs increasing in P. tremuloides and decreasing in P. trichocarpa. Dose-dependent responses of catalase and ascorbate peroxidase were observed in both root and leaf tissues, indicating that Al exposure induced oxidative stress in poplar. Treatment at and above 100 microM Al reduced the concentrations of calcium (Ca) and magnesium (Mg) in roots and leaves, whereas Al at or above 50 microM reduced root and leaf phosphorous (P) concentrations. The majority of Al taken up was retained in the root system. Even with the induction of OA exudation and accumulation, P. tremuloides and P. trichocarpa remained sensitive to Al, as evidenced by elevated antioxidative enzyme activities, which may reflect inhibition of Ca or P uptake and destabilization of cell homeostasis in these poplar species. Although plants exhibited reductions in growth and evidence of oxidative and nutritional stress, total C rhizodeposition rates for both species increased with

  10. Construction of High-Density Linkage Maps of Populus deltoides × P. simonii Using Restriction-Site Associated DNA Sequencing

    PubMed Central

    Tong, Chunfa; Li, Huogen; Wang, Ying; Li, Xuran; Ou, Jiajia; Wang, Deyuan; Xu, Houxi; Ma, Chao; Lang, Xianye; Liu, Guangxin; Zhang, Bo; Shi, Jisen

    2016-01-01

    Although numerous linkage maps have been constructed in the genus Populus, they are typically sparse and thus have limited applications due to low throughput of traditional molecular markers. Restriction-site associated DNA sequencing (RADSeq) technology allows us to identify a large number of single nucleotide polymorphisms (SNP) across genomes of many individuals in a fast and cost-effective way, and makes it possible to construct high-density genetic linkage maps. We performed RADSeq for 299 progeny and their two parents in an F1 hybrid population generated by crossing the female Populus deltoides ‘I-69’ and male Populus simonii ‘L3’. A total of 2,545 high quality SNP markers were obtained and two parent-specific linkage maps were constructed. The female genetic map contained 1601 SNPs and 20 linkage groups, spanning 4,249.12 cM of the genome with an average distance of 2.69 cM between adjacent markers, while the male map consisted of 940 SNPs and also 20 linkage groups with a total length of 3,816.24 cM and an average marker interval distance of 4.15 cM. Finally, our analysis revealed that synteny and collinearity are highly conserved between the parental linkage maps and the reference genome of P. trichocarpa. We demonstrated that RAD sequencing is a powerful technique capable of rapidly generating a large number of SNPs for constructing genetic maps in outbred forest trees. The high-quality linkage maps constructed here provided reliable genetic resources to facilitate locating quantitative trait loci (QTLs) that control growth and wood quality traits in the hybrid population. PMID:26964097

  11. Construction of High-Density Linkage Maps of Populus deltoides × P. simonii Using Restriction-Site Associated DNA Sequencing.

    PubMed

    Tong, Chunfa; Li, Huogen; Wang, Ying; Li, Xuran; Ou, Jiajia; Wang, Deyuan; Xu, Houxi; Ma, Chao; Lang, Xianye; Liu, Guangxin; Zhang, Bo; Shi, Jisen

    2016-01-01

    Although numerous linkage maps have been constructed in the genus Populus, they are typically sparse and thus have limited applications due to low throughput of traditional molecular markers. Restriction-site associated DNA sequencing (RADSeq) technology allows us to identify a large number of single nucleotide polymorphisms (SNP) across genomes of many individuals in a fast and cost-effective way, and makes it possible to construct high-density genetic linkage maps. We performed RADSeq for 299 progeny and their two parents in an F1 hybrid population generated by crossing the female Populus deltoides 'I-69' and male Populus simonii 'L3'. A total of 2,545 high quality SNP markers were obtained and two parent-specific linkage maps were constructed. The female genetic map contained 1601 SNPs and 20 linkage groups, spanning 4,249.12 cM of the genome with an average distance of 2.69 cM between adjacent markers, while the male map consisted of 940 SNPs and also 20 linkage groups with a total length of 3,816.24 cM and an average marker interval distance of 4.15 cM. Finally, our analysis revealed that synteny and collinearity are highly conserved between the parental linkage maps and the reference genome of P. trichocarpa. We demonstrated that RAD sequencing is a powerful technique capable of rapidly generating a large number of SNPs for constructing genetic maps in outbred forest trees. The high-quality linkage maps constructed here provided reliable genetic resources to facilitate locating quantitative trait loci (QTLs) that control growth and wood quality traits in the hybrid population.

  12. Identification and analysis of safener-inducible expressed sequence tags in Populus using a cDNA microarray.

    PubMed

    Rishi, A S; Munir, Shirin; Kapur, Vivek; Nelson, Neil D; Goyal, Arun

    2004-12-01

    Safeners are the chemicals used to protect plants from detrimental effects of herbicides, but their mode of action at the molecular level is not well understood. As an initial step towards understanding the molecular mechanism of safener action in trees, homologous genes in hybrid poplar (Populus nigra x Populus maximowiczii) that were induced by a safener were identified. We here describe the identification of differentially expressed genes in Populus that are induced by Concep-III, a herbicide safener. Expressed sequence tags (ESTs) enriched for transcriptionally induced genes were isolated by suppressive subtractive hybridization (SSH). The SSH library cDNA inserts were used to construct a cDNA microarray for high-throughput validation of the up-regulated expression of safener-induced genes. Single-pass and partial sequences of 1,344 safener-induced ESTs were assembled into 418 singletons and 328 clusters, but the putative functions of almost 53% of the ESTs are not known. Genes encoding proteins involved in all three different phases of safener action, viz., oxidation, conjugation, and sequestration, were found in the SSH library. Almost 75% of genes that showed greater than 2-fold expression upon safener treatment were redundant in the SSH library. The expression pattern for selected genes was validated by reverse transcription-polymerase chain reaction. A few safener-induced genes that were not previously reported to be induced by safeners, but which may have a role in herbicide metabolism, were identified. The newly identified genes could have potential for application in genetic engineering of plants for herbicide detoxification and tolerance.

  13. Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes

    PubMed Central

    2013-01-01

    Background Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest group within the receptor-like kinase (RLK) superfamily in plants. This gene family plays critical and diverse roles in plant growth, development and stress response. Although the LRR-RLK families in Arabidopsis and rice have been previously analyzed, no comprehensive studies have been performed on this gene family in tree species. Results In this work, 379 LRR-RLK genes were retrieved from the Populus trichocarpa genome and further grouped into 14 subfamilies based on their structural and sequence similarities. Approximately 82% (312 out of 379) of the PtLRR-RLK genes are located in segmental duplication blocks indicating the role of duplication process in the expansion of this gene family. The conservation and variation in motif composition and intron/exon arrangement among PtLRR-RLK subfamilies were analyzed to provide additional support for their phylogenetic relationship and more importantly to indicate the potential divergence in their functions. Expression profiling of PtLRR-RLKs showed that they were differentially expressed in different organs and tissues and some PtLRR-RLKs were specifically expressed in meristem tissues, which indicated their potential involvement in tissue development and differentiation. For most AtLRR-RLKs with defined functions, Populus homologues exhibiting similar expression patterns could be identified, which might indicate the functional conservation during evolution. Among 12 types of environmental cues analyzed by the genome-wide microarray data, PtLRR-RLKs showed specific responses to shoot organogenesis, wounding, low ammonium feeding, hypoxia and seasonal dormancy, but not to drought, re-watering after drought, flooding, AlCl3 treatment and bacteria or fungi treatments. Conclusions This study provides the first comprehensive genomic analysis of the Populus LRR-RLK gene family. Segmental duplication contributes significantly to the expansion

  14. Nitrate and Ammonium Contribute to the Distinct Nitrogen Metabolism of Populus simonii during Moderate Salt Stress

    PubMed Central

    Meng, Sen; Su, Li; Li, Yiming; Wang, Yinjuan; Zhang, Chunxia; Zhao, Zhong

    2016-01-01

    Soil salinity is a major abiotic stressor affecting plant growth. Salinity affects nitrification and ammonification in the soil, however, limited information is available on the influence of different N sources on N metabolism during salt stress. To understand the N metabolism changes in response to different N sources during moderate salt stress, we investigated N uptake, assimilation and the transcript abundance of associated genes in Populus simonii seedlings treated with moderate salt stress (75mM NaCl) under hydroponic culture conditions with nitrate (NO3-) or ammonium (NH4+). Salt stress negatively affected plant growth in both NH4+-fed and NO3--fed plants. Both NH4+ uptake and the total N concentration were significantly increased in the roots of the NH4+-fed plants during salt stress. However, the NO3- uptake and nitrate reductase (NR) and nitrite reductase (NiR) activity primarily depended on the NO3- supply and was not influenced by salt stress. Salt stress decreased glutamine synthetase (GS) and glutamate synthase (GOGAT) activity in the roots and leaves. Most genes associated with NO3-uptake, reduction and N metabolism were down-regulated or remained unchanged; while two NH4+ transporter genes closely associated with NH4+ uptake (AMT1;2 and AMT1;6) were up-regulated in response to salt stress in the NH4+-fed plants. The accumulation of different amino acid compounds was observed in the NH4+- and NO3-- fed plants during salt treatment. The results suggested that N metabolism in P. simonii plants exposed to salt enhanced salt resistance in the plants that were fed with NO3- instead of NH4+ as the sole N source. PMID:26950941

  15. Evapotranspiration in a cottonwood (Populus fremontii) restoration plantation estimated by sap flow and remote sensing methods

    USGS Publications Warehouse

    Nagler, P.; Jetton, A.; Fleming, J.; Didan, K.; Glenn, E.; Erker, J.; Morino, K.; Milliken, J.; Gloss, S.

    2007-01-01

    Native tree plantations have been proposed for the restoration of wildlife habitat in human-altered riparian corridors of western U.S. rivers. Evapotranspiration (ET) by riparian vegetation is an important, but poorly quantified, term in river water budgets. Native tree restoration plots will potentially increase ET. We used sap flow sensors and satellite imagery to estimate ET in a 8 ha, cottonwood (Populus fremontii) restoration plot on the Lower Colorado River. Biometric methods were used to scale leaf area to whole trees and stands of trees. This technique was used to validate our estimates of ET obtained by scaling from branch level to stand (or plot) level measurements of ET. Cottonwood trees used 6-10 mm day-1 of water during the peak of the growing season as determined by sap flow sensors, and annual rates scaled by time-series MODIS satellite imagery were approximately 1.2 m year-1. Although irrigation was not quantified, the field had been flood irrigated at 2 week intervals during the 3 years prior to the study, receiving approximately 2 m year-1 of water. A frequency-domain electromagnetic induction survey of soil moisture content showed that the field was saturated (26-28% gravimetric water content) at the 90-150 cm soil depth under the field. Trees were apparently rooted into the saturated soil, and considerable saving of water could potentially be achieved by modifying the irrigation regime to take into account that cottonwoods are phreatophytes. The study showed that cottonwood ET can be monitored by remote sensing methods calibrated with ground measurements with an accuracy or uncertainty of 20-30% in western riparian corridors. ?? 2007 Elsevier B.V. All rights reserved.

  16. Diversification in the genetic architecture of gene expression and transcriptional networks in organ differentiation of Populus.

    PubMed

    Drost, Derek R; Benedict, Catherine I; Berg, Arthur; Novaes, Evandro; Novaes, Carolina R D B; Yu, Qibin; Dervinis, Christopher; Maia, Jessica M; Yap, John; Miles, Brianna; Kirst, Matias

    2010-05-04

    A fundamental goal of systems biology is to identify genetic elements that contribute to complex phenotypes and to understand how they interact in networks predictive of system response to genetic variation. Few studies in plants have developed such networks, and none have examined their conservation among functionally specialized organs. Here we used genetical genomics in an interspecific hybrid population of the model hardwood plant Populus to uncover transcriptional networks in xylem, leaves, and roots. Pleiotropic eQTL hotspots were detected and used to construct coexpression networks a posteriori, for which regulators were predicted based on cis-acting expression regulation. Networks were shown to be enriched for groups of genes that function in biologically coherent processes and for cis-acting promoter motifs with known roles in regulating common groups of genes. When contrasted among xylem, leaves, and roots, transcriptional networks were frequently conserved in composition, but almost invariably regulated by different loci. Similarly, the genetic architecture of gene expression regulation is highly diversified among plant organs, with less than one-third of genes with eQTL detected in two organs being regulated by the same locus. However, colocalization in eQTL position increases to 50% when they are detected in all three organs, suggesting conservation in the genetic regulation is a function of ubiquitous expression. Genes conserved in their genetic regulation among all organs are primarily cis regulated (approximately 92%), whereas genes with eQTL in only one organ are largely trans regulated. Trans-acting regulation may therefore be the primary driver of differentiation in function between plant organs.

  17. Transcript identification and profiling during salt stress and recovery of Populus euphratica.

    PubMed

    Gu, Ruisheng; Fonseca, Sandra; Puskás, László G; Hackler, László; Zvara, Agnes; Dudits, Dénes; Pais, Maria S

    2004-03-01

    Populus euphratica Oli. is a salt-tolerant species that can cope with up to 450 mM NaCl under hydroponic conditions and can tolerate high accumulations of Na+ and Cl- in roots and leaves when grown in 300 mM NaCl. Transcript responses to salt stress and recovery were monitored by microarray hybridization of 315 cDNAs preselected by suppression subtractive hybridization. Transcripts of a heat-shock protein and a hydroxyproline-rich glycoprotein accumulated 1.5 and 3 h, respectively, after adding 300 mM NaCl to the culture medium. Transcripts significantly up-regulated by salt stress included ionic and osmotic homeostasis elements such as magnesium transporter-like protein, syntaxin-like protein, seed imbibition protein and plasma membrane intrinsic protein; metabolism regulators like cytochrome P450, zinc finger protein, cleavage factor and aminotransferase; and the photosynthesis-activating enzyme Rubisco activase and photorespiration-related glycolate oxidase. Several photosynthesis-related transcripts were down-regulated in response to 72 h of salt stress but were up-regulated after long-term recovery (48 h). Sucrose synthase, ABC transporter, calmodulin, Pop3 peptide and aquaporin appeared to be actively involved in the process of plant recovery from salt stress. Several transcripts encoding proteins of unknown function were regulated by salt stress. Selected transcripts exhibiting altered transcript profiles in response to salt stress were also analyzed by real-time quantitative PCR. Transcript analysis during salt stress and recovery of this woody species revealed several genes and corresponding proteins deserving special attention in future studies of salt tolerance in woody species.

  18. Genome anchored QTLs for biomass productivity in Hybrid Populus: Heterosis and detection across Contrasting Environments.

    SciTech Connect

    Muchero, Wellington; Sewell, Mitchell; Gunter, Lee E; Tschaplinski, Timothy J; Yin, Tongming; DiFazio, Steven P; Tuskan, Gerald A

    2013-01-01

    Traits related to biomass production were analyzed for the presence of quantitative trait loci (QTLs) in an interspecific F2 population derived from an outbred Populus trichocarpa P. deltoides parental cross. Three years of phenotypic data for stem growth traits (height and diameter) were collected from two parental, two F1 and 339 F2 trees in a clonal trial replicated both within and among two environmentally contrasting sites in the North American Pacific Northwest. A genetic linkage map comprised of 841 SSR, AFLP, and RAPD markers and phenotypic data from 310 progeny were used to identify genomic regions harboring QTL using the Multiple-QTL Model (MQM) package of the statistical program MapQTL 6. A total of twelve QTLs, nine putative and three suggestive, were identified with eight of these being identified at both sites in at least one experiment. Of these, three putative QTL BM-1, BM-2, BM-7, on LGs I, II, and XIV, respectively, were identified in all three years for both height and diameter. Two QTLs BM-2 and BM-7, on LG II and XIV, respectively, exhibited significant evidence of over-dominance in all three years for both traits. Conversely a QTL on BM-6 LG XIII exhibited out-breeding depression in two years for both height and diameter. The remaining nine QTLs showed difference levels of dominance and additive effects. Seven of the nine QTL were successfully anchored and QTL peak positions were estimated for each one on the P. trichocarpa genome assembly using flanking SSR markers with known physical positions positions. QTL BM-7 on LG XIV had been anchored on the genome assembly in a previous study, therefore eight QTLs identified in this study were assigned genome assembly positions. Physical distances encompassed by each QTL regions ranged from 1.3 to 8.8 Mb.

  19. Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa)

    SciTech Connect

    Zhao, Nan; Yao, Jianzhuang; Chaiprasongsuk, Minta; Li, Guanglin; Guan, Ju; Tschaplinski, Timothy J; Guo, Hong; Chen, Feng

    2013-01-01

    Methyl jasmonate is a metabolite known to be produced by many plants and has roles in diverse biological processes. It is biosynthesized by the action of S-adenosyl-L-methionine:jasmonic acid carboxyl methyltransferase (JMT), which belongs to the SABATH family of methyltransferases. Herein is reported the isolation and biochemical characterization of a JMT gene from black cottonwood (Populus trichocarpa). The genome of P. trichocarpa contains 28 SABATH genes (PtSABATH1 to PtSABATH28). Recombinant PtSABATH3 expressed in Escherichia coli showed the highest level of activity with jasmonic acid (JA) among carboxylic acids tested. It was therefore renamed PtJMT1. PtJMT1 also displayed activity with benzoic acid (BA), with which the activity was about 22% of that with JA. PtSABATH2 and PtSABATH4 were most similar to PtJMT1 among all PtSABATHs. However, neither of them had activity with JA. The apparent Km values of PtJMT1 using JA and BA as substrate were 175 lM and 341 lM, respectively. Mutation of Ser-153 and Asn-361, two residues in the active site of PtJMT1, to Tyr and Ser respectively, led to higher specific activity with BA than with JA. Homology-based structural modeling indicated that substrate alignment, in which Asn-361 is involved, plays a role in determining the substrate specificity of PtJMT1. In the leaves of young seedlings of black cottonwood, the expression of PtJMT1 was induced by plant defense signal molecules methyl jasmonate and salicylic acid and a fungal elicitor alamethicin, suggesting that PtJMT1 may have a role in plant defense against biotic stresses. Phylogenetic analysis suggests that PtJMT1 shares a common ancestor with the Arabidopsis JMT, and functional divergence of these two apparent JMT orthologs has occurred since the split of poplar and Arabidopsis lineages.

  20. Biomass accumulation and soil nitrogen availability in an 87-year-old Populus grandidentata chronosequence

    USGS Publications Warehouse

    White, L.L.; Zak, D.R.; Barnes, B.V.

    2004-01-01

    The Upper Lake States region is marked by major disturbances of fire and logging over 100 years ago that created a landscape mosaic of early successional forests. Given the intimate link between soil N availability and forest growth in this region, it is important to understand how temporal changes in soil N constrain the rate at which forest biomass accumulates following a stand-destroying disturbance. Bigtooth aspen (Populus grandidentata Michx.) currently dominates sites where primarily old-growth pine-hemlock-oak forests once thrived, which provides an opportunity to observe nearly 100 years of succession following severe disturbance. In this study, we examine the relationship between soil N availability and biomass accrual in a series of plots undergoing secondary succession following logging and burning. Our results demonstrate that total aboveground biomass and nitrogen accrual patterns are strongly and positively related on a highly disturbed, bigtooth aspen-dominated ecosystem in northern Lower Michigan. Nitrogen mineralization and nitrification were highest immediately following disturbance, and then decreased over the next approximately 20 years of succession. Following this short-term decrease, these processes increased and attained a maximum value after 70 years of forest succession. Understory biomass accumulation showed the opposite trend of nutrient availability, with highest values during the first 20 years of succession, followed by a dramatic decrease for the next 70 years. Understory biomass began to decrease as plants grew into the overstory or died. Total aboveground biomass was correlated with N mineralization (r=0.894; P=0.041) and nitrification (r=0.782; P=0.118) and appears to be increasing steadily to some maximum that has not yet been reached. ?? 2003 Elsevier B.V. All rights reserved.

  1. Modelling the growth of Populus species using Ecosystem Demography (ED) model

    NASA Astrophysics Data System (ADS)

    Wang, D.; Lebauer, D. S.; Feng, X.; Dietze, M. C.

    2010-12-01

    Hybrid poplar plantations are an important source being evaluated for biomass production. Effective management of such plantations requires adequate growth and yield models. The Ecosystem Demography model (ED) makes predictions about the large scales of interest in above- and belowground ecosystem structure and the fluxes of carbon and water from a description of the fine-scale physiological processes. In this study, we used a workflow management tool, the Predictive Ecophysiological Carbon flux Analyzer (PECAn), to integrate literature data, field measurement and the ED model to provide predictions of ecosystem functioning. Parameters for the ED ensemble runs were sampled from the posterior distribution of ecophysiological traits of Populus species compiled from the literature using a Bayesian meta-analysis approach. Sensitivity analysis was performed to identify the parameters which contribute the most to the uncertainties of the ED model output. Model emulation techniques were used to update parameter posterior distributions using field-observed data in northern Wisconsin hybrid poplar plantations. Model results were evaluated with 5-year field-observed data in a hybrid poplar plantation at New Franklin, MO. ED was then used to predict the spatial variability of poplar yield in the coterminous United States (United States minus Alaska and Hawaii). Sensitivity analysis showed that root respiration, dark respiration, growth respiration, stomatal slope and specific leaf area contribute the most to the uncertainty, which suggests that our field measurements and data collection should focus on these parameters. The ED model successfully captured the inter-annual and spatial variability of the yield of poplar. Analyses in progress with the ED model focus on evaluating the ecosystem services of short-rotation woody plantations, such as impacts on soil carbon storage, water use, and nutrient retention.

  2. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula

    PubMed Central

    Ibrahim, Mohamed A.; Mäenpää, Maarit; Hassinen, Viivi; Kontunen-Soppela, Sari; Malec, Lukáš; Rousi, Matti; Pietikäinen, Liisa; Tervahauta, Arja; Kärenlampi, Sirpa; Holopainen, Jarmo K.; Oksanen, Elina J.

    2010-01-01

    Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 °C) while daytime temperature was kept at a constant 22 °C. VOC emissions were collected during the daytime and analysed by gas chromatography–mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and β-ocimene increased from 6 °C to 14 °C, while several other monoterpenes and the SQTs (Z,E)-α-farnesene and (E,E)-α-farnesene increased up to 18 °C. Total monoterpene and sesquiterpene emission peaked at 18 °C, whereas isoprene emissions decreased at 22 °C. Leaf area increased across the temperature range of 6–22 °C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees. PMID:20181662

  3. Growth of Populus alba and its influence on soil trace element availability.

    PubMed

    Ciadamidaro, L; Madejón, E; Puschenreiter, M; Madejón, P

    2013-06-01

    The use of fast growing trees is a common practice for phytoremediation of contaminated soils. Plant roots can change trace element bioavailability in soils. We studied the effect of Populus alba on trace element bioavailability on two contaminated soils (one with neutral pH and other with acid pH) comparing two methods (0.01 M CaCl2-extractable in soil and concentration in soil pore water SPW), trace element accumulation in leaves and plant development over 36 months. Results were compared to those obtained with a non-contaminated soil. The experiment was carried out in containers (95 L of volume and 1m height). Half of the containers for each soil were planted with P. alba saplings and the others remained without plant. In neutral soils plant growth did not influence soil pH; the greatest effect due to plant growth was found in acid soil. Values of pH obtained by SPW showed a similar trend compared to those obtained after soil KCl extraction. Bioavailability of trace elements determined by both methods followed the same behavior in the three studied soils. Both methods for determining trace element bioavailability in soil were accurate to predict plant uptake. In non-contaminated soil, plants tended to increase micronutrients (Cu, Mn and Zn) availability. However, in case of contaminated soil, the growth of P. alba did not increase trace element availability. Moreover, results on height and diameter of the trunk of the trees, during 36 months, demonstrated that the presence of total trace elements in soil did not affect plant development.

  4. Males exhibit competitive advantages over females of Populus deltoides under salinity stress.

    PubMed

    Li, Yan; Duan, Baoli; Chen, Juan; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2016-12-01

    Sexual competition among dioecious plants affects sex ratios and the spatial distribution of the sexes in different environments. At present, little is known about sexual dimorphisms induced by different competition patterns under salinity stress. We employed Populus deltoides as a model to investigate sex-related growth as well as physiological and biochemical responses to salinity stress under conditions of intrasexual and intersexual competition. Potted seedlings (two seedlings per pot; two females, two males, or one female and one male) were exposed to two salt levels (0 and 50 mM NaCl) and salinity- and competition-driven differences in growth, assimilation rate, water use, contents of leaf pigments and osmotica, hydrogen peroxide (H2O2), and antioxidant enzyme and nitrate reductase activity were examined. In the absence of salinity, no significant differences in competitive ability between males and females subjected to intrasexual competition were observed, although the growth of females was moderately greater under intersexual competition. The salinity treatment significantly increased the sex differences in competitive ability, especially under intersexual competition. Under salinity stress, males showed decreased height, but displayed greater capacity for osmotic adjustment, enhancement of long-term water-use efficiency and increase in antioxidant enzyme activities. The absolute values of these traits were greater in salt-stressed males than in females under intersexual competition. In addition, salt-stressed males accumulated less Cl(-) and had lower H2O2 contents than females. These data collectively demonstrate that the competitive advantage of females in non-stressed conditions is lost under salinity. Greater salinity resistance of males growing intermixed with females under salt stress can importantly affect the sex ratio of P. deltoides populations.

  5. Sexual dimorphism floral microRNA profiling and target gene expression in andromonoecious poplar (Populus tomentosa).

    PubMed

    Song, Yuepeng; Ma, Kaifeng; Ci, Dong; Zhang, Zhiyi; Zhang, Deqiang

    2013-01-01

    Although the molecular basis of poplar sex-specific flower development remains largely unknown, increasing evidence indicates an essential role for microRNAs (miRNAs). The specific miRNA types and precise miRNA expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. This system, combined with high-throughput sequencing and computational analysis, allowed us to characterize sex-specific miRNAomes from female and male flowers. Comparative miRNAome analysis combined with quantitative real-time PCR revealed the expression patterns of 27 miRNAs in poplar flower and showed that the targets of these miRNAs are involved in flower organogenesis, Ca(2+) transport, phytohormone synthesis and metabolism, and DNA methylation. This paper describes a complex regulatory network consisting of these miRNAs expressed in sex-specific flower development in a dioecious plant. The conserved and novel miRNA locations were annotated in the Populus trichocarpa genome. Among these, miRNA Pto-F70 and 4 targets are located in the sex-determination regions of chromosome XIX. Furthermore, two novel miRNAs, Pto-F47 and Pto-F68, were shown for the first time to be regulatory factors in phytohormone interactions. To our knowledge, this report is the first systematic investigation of sex-specific flower-related miRNAs and their targets in poplar, and it deepens our understanding of the important regulatory functions of miRNAs in female and male flower development in this dioecious plant.

  6. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L.

    PubMed

    Keller, Stephen R; Levsen, Nicholas; Olson, Matthew S; Tiffin, Peter

    2012-10-01

    Identifying the signature and targets of local adaptation is an increasingly important goal in empirical population genetics. Using data from 443 balsam poplar Populus balsamifera trees sampled from 31 populations, we tested for evidence of geographically variable selection shaping diversity at 27 homologues of the Arabidopsis flowering-time network. These genes are implicated in the control of seasonal phenology, an important determinant of fitness. Using 335 candidate and 412 reference single nucleotide polymorphisms (SNPs), we tested for evidence of local adaptation by searching for elevated population differentiation using F(ST)-based outlier analyses implemented in BayeScan or a Hierarchical Model in Arelquin and by testing for significant associations between allele frequency and environmental variables using BAYENV. A total of 46 SNPs from 14 candidate genes had signatures of local adaptation-either significantly greater population differentiation or significant covariance with one or more environmental variable relative to reference SNP distributions. Only 11 SNPs from two genes exhibited both elevated population differentiation and covariance with one or more environmental variables. Several genes including the abscisic acid gene ABI1B and the circadian clock genes ELF3 and GI5 harbored a large number of SNPs with signatures of local adaptation-with SNPs in GI5 strongly covarying with both latitude and precipitation and SNPs in ABI1B strongly covarying with temperature. In contrast to several other systems, we find little evidence that photoreceptors, including phytochromes, play an important role in local adaptation. Our results additionally show that detecting local adaptation is sensitive to the analytical approaches used and that model-based significance thresholds should be viewed with caution.

  7. Populus Responses to Edaphic and Climatic Cues: Emerging Evidence from Systems Biology Research

    SciTech Connect

    Wullschleger, Stan D; Weston, David; Davis, John M

    2009-01-01

    The emergence of Populus as a model system for tree biology continues to be driven by a community of scientists dedicated to developing the resources needed to undertake genetic and functional genomic studies in this genus. As a result, understanding the molecular processes that underpin the growth and development of cottonwood, aspen, and hybrid poplar has steadily increased over the last several decades. Recently, our ability to examine the basic mechanisms whereby trees respond to a changing climate and resource limitations has benefited greatly from the sequencing of the P. trichocarpa genome. This landmark event has laid a solid foundation upon which biologists can now quantify, in breathtaking and unprecedented detail, the diversity of genes, proteins, and metabolites that govern the growth and development of some of the longest living and tallest growing organisms on Earth. Although the challenges likely to be encountered by scientists who work with trees are many, recent literature provides a few examples where a systems approach, one that focuses on integrating transcriptomic, proteomic, and metabolomic analyses, is beginning to provide insights into the molecular-scale response of poplars to their climatic and edaphic environment. In this review, our objectives are to look at evidence from studies that examine the molecular response of poplar to edaphic and climatic cues and highlight instances where two or more omic-scale measurements confirm and hopefully expand our inferences about mechanisms contributing to observed patterns of response. Based on conclusions drawn from these studies, we propose that three requirements will be essential as systems biology in poplar moves to reveal unique insights. These include use of genetically-defined individuals (e.g., pedigrees or transgenics) in studies; incorporation of modeling as a complement to transcriptomic, proteomic and metabolomic data; and inclusion of whole-tree and stand-level phenotypes to place

  8. The applications of populus fiber in removal of Cr(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Miaomiao; Gong, Yumei; Lyu, Aichao; Liu, Yuanfa; Zhang, Hong

    2016-10-01

    The surface modification of natural materials to be applied in removal of Cr(VI) from aqueous solutions has attracted much attention. A natural sorbent for Cr(VI) based on natural populus fibers (PF) is prepared by transforming the cyano groups (AN) in polyacrylonitriles (PAN) grafted from PF into amidoxime groups (AO), which has strong ability to attract and chelate heavy metal ions. The prepared sorbent is characterized by Fourier Transform Infrared Spectra (FT-IR), thermogravimetric analysis (TGA), solid-state nuclear magnetic resonance (13C NMR) and scanning electron microscope (SEM). As potassium dichromate solution (K2Cr2O7) is used as a target solution for detecting adsorption capacity of the sorbent, the adsorption kinetics of the sorbent for chromiun is consistent with the pseudo-second-order kinetic model by analyzing the adsorption amount as a function of the sorbent dispersed duration in solution at pH = 2. The expected adsorption mechanism is that the Cr(VI) in anionic ions Cr2O72- and HCrO4- are adsorbed through electrostatic attraction but when Cr(VI) is reduced to Cr(III) by AO, the electronegative nitrogen and oxygen in AO chelate it through coordination bond. The as-prepared PF derivant with high adsorption efficiency of chromium 180.5 mg/g (3.47 mmol/g), low cost, reusability and greenly preparation process suggests that the development of natural PF as a sorbent in removal of Cr(VI) from aqueous solutions is a destined significant approach.

  9. Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability.

    PubMed

    Li, J; Yu, B; Zhao, C; Nowak, Robert S; Zhao, Z; Sheng, Y; Li, J

    2013-01-01

    Riparian plants in arid areas are subject to frequent hydrological fluctuations induced through natural flow variation and water use by humans. Although many studies have focused on the success of Tamarix ramosissima Ledeb. in its invaded ranges, its major competitor in its home range, Populus euphratica Oliv., historically has dominated riparian forests where both species occur naturally. Thus, identifying ecophysiological differences between T. ramosissima and its co-evolved competitor under varying hydrological conditions may help us understand how flow regimes affect dominance in its home range and promote invasion in new ranges. We examined ecophysiological responses of T. ramosissima and P. euphratica, which are both native to the Tarim River Basin, northwest China, to experimental alterations in groundwater. Seedlings of both species were grown in lysimeters, first under well-watered conditions and then exposed to different groundwater treatments: inundation, drought, and relatively shallow, moderate and deep groundwater. Under inundation, T. ramosissima showed little growth whereas P. euphratica died after ~45 days. Droughted seedlings of both species suffered from considerable water stress evidenced by slow growth, decreased total leaf area and specific leaf area, and decreased xylem water potential (ψ), maximum photosynthetic rate and carboxylation efficiency. Both species had better ecophysiological performances under shallow and moderate groundwater conditions. When groundwater declined below rooting depth, seedlings of both species initially experienced decreased ψ, but ψ of T. ramosissima recovered late in the experiment whereas P. euphratica maintained decreased ψ. This ability of T. ramosissima to recover from water deficit might result from its rapid root elongation and subsequent ability to acquire groundwater, which in turn likely provides ecophysiological advantages over P. euphratica. Our results suggest that recent groundwater declines

  10. Different growth sensitivity to enhanced UV-B radiation between male and female Populus cathayana.

    PubMed

    Xu, Xiao; Zhao, Hongxia; Zhang, Xiaolu; Hänninen, Heikki; Korpelainen, Helena; Li, Chunyang

    2010-12-01

    We investigated sex-related morphological and physiological responses to enhanced UV-B radiation in the dioecious species Populus cathayana Rehd. Cuttings were subjected to two UV-B radiation regimes: ambient (4.5 kJ m⁻² day⁻¹) and enhanced (12.5 kJ m⁻² day⁻¹) biologically effective UV-B radiation for one growing season. Enhanced UV-B radiation was found to significantly decrease the shoot height and basal diameter and to reduce the leaf area, dry matter accumulation, net photosynthesis rate (P(n)), chlorophyll a/b ratio (Chl a/b) and anthocyanin content. Enhanced UV-B radiation also increased chlorophyll pigment, leaf nitrogen, malondialdehyde and abscisic acid (ABA) content, superoxide dismutase and peroxidase activities and UV-B-absorbing compounds. No significant effects of enhanced UV-B radiation were found on biomass allocation, gas exchange (except for P(n)), photochemical efficiency of photosystem II or water use efficiency. Moreover, different sensitivity to enhanced UV-B radiation between males and females was detected. Under enhanced UV-B radiation, males exhibited significantly higher basal diameter and leaf nitrogen, and lower Chl a/b, ABA content, UV-B-absorbing compounds, as well as less decrement of leaf area and dry matter accumulation than did females. However, no significant sexual differences in these traits were found under ambient UV-B radiation. Our results suggest that males may possess a greater UV-B resistance than do females, with males having a more efficient antioxidant system and higher anthocyanin content to alleviate UV-B penetration stress than females.

  11. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula.

    PubMed

    Ibrahim, Mohamed A; Mäenpää, Maarit; Hassinen, Viivi; Kontunen-Soppela, Sari; Malec, Lukás; Rousi, Matti; Pietikäinen, Liisa; Tervahauta, Arja; Kärenlampi, Sirpa; Holopainen, Jarmo K; Oksanen, Elina J

    2010-06-01

    Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 degrees C) while daytime temperature was kept at a constant 22 degrees C. VOC emissions were collected during the daytime and analysed by gas chromatography-mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and beta-ocimene increased from 6 degrees C to 14 degrees C, while several other monoterpenes and the SQTs (Z,E)-alpha-farnesene and (E,E)-alpha-farnesene increased up to 18 degrees C. Total monoterpene and sesquiterpene emission peaked at 18 degrees C, whereas isoprene emissions decreased at 22 degrees C. Leaf area increased across the temperature range of 6-22 degrees C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees.

  12. Effect of sprayer settings on spray drift during pesticide application in poplar plantations (Populus spp.).

    PubMed

    Grella, Marco; Marucco, Paolo; Manzone, Marco; Gallart, Montserrat; Balsari, Paolo

    2017-02-01

    This study assessed spray drift generated by sprayer settings commonly used for pesticide application in poplar plantations (Populus spp.). Tests were conducted per the ISO 22866 methodology using a mounted air-assisted sprayer (Tifone VRP600) equipped with a swivel-cannon air conveyor (model Cannone 50S). Trials evaluated sprayer settings, combinations of nozzle types, airflow rates, and air direction in both adult and young poplar plantations. Overall, spray drift amounts registered downwind of poplar plantations were less than those obtained to derive reference drift curves during the EU Plant Protection Product registration process that used late-growth-stage fruit crops. In the adult poplar plantation, Venturi nozzles (TVI 8004 red) yielded the highest drift reductions compared to reference sprayer setting, especially at distances farthest from the sprayed area (86% between 40 and 47m). Highest total drift reductions were achieved when conventional nozzles (1.81mm ceramic disc-core) were combined with their spray direction modified for an inclined cannon spray unit. Alternatively, the young poplar plantation showed no drift reduction for distances farthest from the sprayed area, regardless of sprayer settings, which likely resulted from lower foliage density and widely-spaced rows. Yet, both Venturi nozzles combined with high fan flow rates and conventional nozzles combined with reduced fan flow rate showed total spray drift reductions of over 70% within the downwind sampling area. These experimental results represent the first set of data on spray drift amounts in poplar plantations, which is key for defining the reference curves and best practices to reduce spray drift in tall tree plantations.

  13. Structure-Function Analysis of a Broad Specificity Populus trichocarpa Endo-β-glucanase Reveals an Evolutionary Link between Bacterial Licheninases and Plant XTH Gene Products*

    PubMed Central

    Eklöf, Jens M.; Shojania, Shaheen; Okon, Mark; McIntosh, Lawrence P.; Brumer, Harry

    2013-01-01

    The large xyloglucan endotransglycosylase/hydrolase (XTH) gene family continues to be the focus of much attention in studies of plant cell wall morphogenesis due to the unique catalytic functions of the enzymes it encodes. The XTH gene products compose a subfamily of glycoside hydrolase family 16 (GH16), which also comprises a broad range of microbial endoglucanases and endogalactanases, as well as yeast cell wall chitin/β-glucan transglycosylases. Previous whole-family phylogenetic analyses have suggested that the closest relatives to the XTH gene products are the bacterial licheninases (EC 3.2.1.73), which specifically hydrolyze linear mixed linkage β(1→3)/β(1→4)-glucans. In addition to their specificity for the highly branched xyloglucan polysaccharide, XTH gene products are distinguished from the licheninases and other GH16 enzyme subfamilies by significant active site loop alterations and a large C-terminal extension. Given these differences, the molecular evolution of the XTH gene products in GH16 has remained enigmatic. Here, we present the biochemical and structural analysis of a unique, mixed function endoglucanase from black cottonwood (Populus trichocarpa), which reveals a small, newly recognized subfamily of GH16 members intermediate between the bacterial licheninases and plant XTH gene products. We postulate that this clade comprises an important link in the evolution of the large plant XTH gene families from a putative microbial ancestor. As such, this analysis provides new insights into the diversification of GH16 and further unites the apparently disparate members of this important family of proteins. PMID:23572521

  14. Fermentation of dilute acid pretreated Populus by Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis

    SciTech Connect

    Yee, Kelsey L.; Rodriguez, Jr., Miguel; Hamilton, Choo Yieng; Hamilton-Brehm, Scott D.; Thompson, Olivia A.; Elkins, James G.; Davison, Brian H.; Mielenz, Jonathan R.

    2015-07-25

    Consolidated bioprocessing (CBP), which merges enzyme production, biomass hydrolysis, and fermentation into a single step, has the potential to become an efficient and economic strategy for the bioconversion of lignocellulosic feedstocks to transportation fuels or chemicals. In this study, we evaluated Clostridium thermocellum, Caldicellulosiruptor bescii, and Caldicellulosiruptor obsidiansis, three , thermophilic,cellulolytic, mixed-acid fermenting candidate CBP microorganisms, for their fermentation capabilities using dilute acid pretreated Populus as a model biomass feedstock. Under pH controlled, anaerobic fermentation conditions, each candidate successfully digested a minimum of 75% of the cellulose from dilute acid pretreated Populus, as indicated by an increase in planktonic cells and end-product metabolites and a concurrent decrease in glucan content. C. thermocellum, which employs a cellulosomal approach to biomass degradation, required 120 hours to achieve 75% cellulose utilization. In contrast, the non-cellulosomal, secreted hydrolytic enzyme system of the Caldicellulosiruptor sp. required 300 hours to achieve similar results. End-point fermentation conversions for C. thermocellum, C. bescii, and C. obsidiansis were determined to be 0.29, 0.34, and 0.38 grams of total metabolites per gram of loaded glucan, respectively. This data provide a starting point for future strain engineering efforts that can serve to improve the biomass fermentation capabilities of these three promising candidate CBP platforms.

  15. Down-regulation of KORRIGAN-like endo-β-1,4-glucanase genes impacts carbon partitioning, mycorrhizal colonization and biomass production in Populus

    SciTech Connect

    Kalluri, Udaya C; Engle, Nancy L.; Bali, Garima; Jawdy, Sara S.; Sykes, Robert W.; Davis, Mark F.; Ragauskas, Arthur J.; Tuskan, Gerald A.; Tschaplinski, Timothy J.; Payyavula, Raja S.; Labbe, Jessy L.

    2016-10-04

    Here, a greater understanding of the genetic regulation of plant cell wall remodeling and the impact of modified cell walls on plant performance is important for the development of sustainable biofuel crops. Here, we studied the impact of down-regulating KORRIGAN-like cell wall biosynthesis genes, belonging to the endo-β-1,4-glucanase gene family, on Populus growth, metabolism and the ability to interact with symbiotic microbes. The reductions in cellulose content and lignin syringyl-to-guaiacyl unit ratio, and increase in cellulose crystallinity of cell walls of PdKOR RNAi plants corroborated the functional role of PdKOR in cell wall biosynthesis. Altered metabolism and reduced growth characteristics of RNAi plants revealed new implications on carbon allocation and partitioning. The distinctive metabolome phenotype comprised of a higher phenolic and salicylic acid content, and reduced lignin, shikimic acid and maleic acid content relative to control. Plant sustainability implications of modified cell walls on beneficial plant-microbe interactions were explored via co-culture with an ectomycorrhizal fungus, Laccaria bicolor. A significant increase in the mycorrhization rate was observed in transgenic plants, leading to measurable beneficial growth effects. These findings present new evidence for functional interconnectedness of cellulose biosynthesis pathway, metabolism and mycorrhizal association in plants, and further emphasize the consideration of the sustainability implications of plant trait improvement efforts.

  16. Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa.

    PubMed

    Gilchrist, Erin J; Haughn, George W; Ying, Cheng C; Otto, Sarah P; Zhuang, Jun; Cheung, Dorothy; Hamberger, Björn; Aboutorabi, Fariba; Kalynyak, Tatyana; Johnson, Lee; Bohlmann, Joerg; Ellis, Brian E; Douglas, Carl J; Cronk, Quentin C B

    2006-04-01

    Abstract Ecotilling was used as a simple nucleotide polymorphism (SNP) discovery tool to examine DNA variation in natural populations of the western black cottonwood, Populus trichocarpa, and was found to be more efficient than sequencing for large-scale studies of genetic variation in this tree. A publicly available, live reference collection of P. trichocarpa from the University of British Columbia Botanical Garden was used in this study to survey variation in nine different genes among individuals from 41 different populations. A large amount of genetic variation was detected, but the level of variation appears to be less than in the related species, Populus tremula, based on reported statistics for that tree. Genes examined varied considerably in their level of variation, from PoptrTB1 which had a single SNP, to PoptrLFY which had more than 23 in the 1000-bp region examined. Overall nucleotide diversity, measured as (Total), was relatively low at 0.00184. Linkage disequilibrium, on the other hand, was higher than reported for some woody plant species, with mean r2 equal to 0.34. This study reveals the potential of Ecotilling as a rapid genotype discovery method to explore and utilize the large pool of genetic variation in tree species.

  17. Moderate drought did not affect the effectiveness of ethylenediurea (EDU) in protecting Populus cathayana from ambient ozone.

    PubMed

    Xin, Yue; Yuan, Xiangyang; Shang, Bo; Manning, William J; Yang, Aizhen; Wang, Younian; Feng, Zhaozhong

    2016-11-01

    A field study was conducted to evaluate the effects of ambient ozone (O3) on an O3-sensitive poplar (Populus cathayana) by using ethylenediurea (EDU) as a chemical protectant under two soil water treatments (well-watered (WW) and moderate drought (MD, 50-60% of WW in volumetric soil water content). EDU was applied as foliar spray at 0, 300, 450, and 600ppm. Photosynthetic parameters, pigment contents, leaf nitrogen, antioxidant capacity, growth, and biomass were measured. The 8h (9:00-17:00) average ambient O3 concentration was 71.7ppb, and AOT40 was 29.2ppmh during the experimental period (9 June to 21 September), which was high enough to cause plant injury. MD had significantly negative effects on P. cathayana, as indicated by reduced photosynthesis, growth, and biomass, and higher MDA contents. On the other hand, EDU significantly increased photosynthesis rate, chlorophyll a fluorescence, Vcmax and Jmax, photosynthetic pigments, total antioxidant capacity, tree growth and biomass accumulation, and reduced lipid peroxidation, but there was no significant interaction between EDU and drought for most parameters, indicating that EDU can efficiently protect Populus cathayana against ambient O3 and the protection was not affected by soil water contents when soil water reached moderate drought level. Among all doses, EDU at 450ppm provided maximum protection. Comparison of EDU-treated and non-treated P. cathayana could be used as a biomarker system in risk assessment of the effects of ambient O3 on forest health.

  18. Expression Patterns of ERF Genes Underlying Abiotic Stresses in Di-Haploid Populus simonii × P. nigra

    PubMed Central

    Yao, Wenjing; Jiang, Tingbo; Zhou, Boru

    2014-01-01

    176 ERF genes from Populus were identified by bioinformatics analysis, 13 of these in di-haploid Populus simonii × P. nigra were investigate by real-time RT-PCR, the results demonstrated that 13 ERF genes were highly responsive to salt stress, drought stress and ABA treatment, and all were expressed in root, stem, and leaf tissues, whereas their expression levels were markedly different in the various tissues. In roots, PthERF99, 110, 119, and 168 were primarily downregulated under drought and ABA treatment but were specifically upregulated under high salt condition. Interestingly, in poplar stems, all ERF genes showed the similar trends in expression in response to NaCl stress, drought stress, and ABA treatment, indicating that they may not play either specific or unique roles in stems in abiotic stress responses. In poplar leaves, PthERF168 was highly induced by ABA treatment, but was suppressed by high salinity and drought stresses, implying that PthERF168 participated in the ABA signaling pathway. The results of this study indicated that ERF genes could play essential but distinct roles in various plant tissues in response to different environment cues and hormonal treatment. PMID:24737991

  19. Genome-Wide Analysis and Heavy Metal-Induced Expression Profiling of the HMA Gene Family in Populus trichocarpa

    PubMed Central

    Li, Dandan; Xu, Xuemei; Hu, Xiaoqing; Liu, Quangang; Wang, Zhanchao; Zhang, Haizhen; Wang, Han; Wei, Ming; Wang, Hanzeng; Liu, Haimei; Li, Chenghao

    2015-01-01

    The heavy metal ATPase (HMA) family plays an important role in transition metal transport in plants. However, this gene family has not been extensively studied in Populus trichocarpa. We identified 17 HMA genes in P. trichocarpa (PtHMAs), of which PtHMA1–PtHMA4 belonged to the zinc (Zn)/cobalt (Co)/cadmium (Cd)/lead (Pb) subgroup, and PtHMA5–PtHMA8 were members of the copper (Cu)/silver (Ag) subgroup. Most of the genes were localized to chromosomes I and III. Gene structure, gene chromosomal location, and synteny analyses of PtHMAs indicated that tandem and segmental duplications likely contributed to the expansion and evolution of the PtHMAs. Most of the HMA genes contained abiotic stress-related cis-elements. Tissue-specific expression of PtHMA genes showed that PtHMA1 and PtHMA4 had relatively high expression levels in the leaves, whereas Cu/Ag subgroup (PtHMA5.1- PtHMA8) genes were upregulated in the roots. High concentrations of Cu, Ag, Zn, Cd, Co, Pb, and Mn differentially regulated the expression of PtHMAs in various tissues. The preliminary results of the present study generated basic information on the HMA family of Populus that may serve as foundation for future functional studies. PMID:26779188

  20. Morpho-physiological response of Populus alba to erythromycin: A timeline of the health status of the plant.

    PubMed

    Pierattini, Erika Carla; Francini, Alessandra; Raffaelli, Andrea; Sebastiani, Luca

    2016-11-01

    Populus alba Villafranca clone was chosen for a proof of concept study to determine the potential uptake and accumulation of antibiotics by trees. Plants were grown hydroponically and irrigated with a recirculating Hoagland's nutrient solution (control) and Hoagland's nutrient solution fortified with erythromycin at 0.01, 0.1 and 1mgL(-1). After 3 and 28days of treatment, poplar plants were separated into roots, stem, and leaves. Plants showed good health all over the period of treatment, and no differences in poplar growth for all the concentrations of erythromycin tested were observed. Quantification of erythromycin was performed using liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS) in positive ion mode using multiple reaction ion monitoring. Erythromycin was detected in all organs analyzed. Roots showed an erythromycin concentration tenfold higher than leaves. The photochemical efficiency of photosystem II did not show a dose-dependant trend. From the quenching analysis of chlorophyll fluorescence, low nonphotochemical quenching (NPQ) and high photochemical quenching (qP) for the first week of erythromycin exposure was observed, depending on leaves position along the stem. Results suggest a short term adaptation of the photosynthetic apparatus of Populus alba in response to environmental realistic erythromycin concentrations.

  1. Genetic Map Construction and Detection of Genetic Loci Underlying Segregation Distortion in an Intraspecific Cross of Populus deltoides.

    PubMed

    Zhou, Wencai; Tang, Zaixiang; Hou, Jing; Hu, Nan; Yin, Tongming

    2015-01-01

    Based on a two-way pseudo-testcross strategy, high density and complete coverage linkage maps were constructed for the maternal and paternal parents of an intraspecific F2 pedigree of Populus deltoides. A total of 1,107 testcross markers were obtained, and the mapping population consisted of 376 progeny. Among these markers, 597 were from the mother, and were assigned into 19 linkage groups, spanning a total genetic distance of 1,940.3 cM. The remaining 519 markers were from the father, and were also were mapped into 19 linkage groups, covering 2,496.3 cM. The genome coverage of both maps was estimated as greater than 99.9% at 20 cM per marker, and the numbers of linkage groups of both maps were in accordance with the 19 haploid chromosomes in Populus. Marker segregation distortion was observed in large contiguous blocks on some of the linkage groups. Subsequently, we mapped the segregation distortion loci in this mapping pedigree. Altogether, eight segregation distortion loci with significant logarithm of odds supports were detected. Segregation distortion indicated the uneven transmission of the alternate alleles from the mapping parents. The corresponding genome regions might contain deleterious genes or be associated with hybridization incompatibility. In addition to the detection of segregation distortion loci, the established genetic maps will serve as a basic resource for mapping genetic loci controlling traits of interest in future studies.

  2. Genetic Map Construction and Detection of Genetic Loci Underlying Segregation Distortion in an Intraspecific Cross of Populus deltoides

    PubMed Central

    Hou, Jing; Hu, Nan; Yin, Tongming

    2015-01-01

    Based on a two-way pseudo-testcross strategy, high density and complete coverage linkage maps were constructed for the maternal and paternal parents of an intraspecific F2 pedigree of Populus deltoides. A total of 1,107 testcross markers were obtained, and the mapping population consisted of 376 progeny. Among these markers, 597 were from the mother, and were assigned into 19 linkage groups, spanning a total genetic distance of 1,940.3 cM. The remaining 519 markers were from the father, and were also were mapped into 19 linkage groups, covering 2,496.3 cM. The genome coverage of both maps was estimated as greater than 99.9% at 20 cM per marker, and the numbers of linkage groups of both maps were in accordance with the 19 haploid chromosomes in Populus. Marker segregation distortion was observed in large contiguous blocks on some of the linkage groups. Subsequently, we mapped the segregation distortion loci in this mapping pedigree. Altogether, eight segregation distortion loci with significant logarithm of odds supports were detected. Segregation distortion indicated the uneven transmission of the alternate alleles from the mapping parents. The corresponding genome regions might contain deleterious genes or be associated with hybridization incompatibility. In addition to the detection of segregation distortion loci, the established genetic maps will serve as a basic resource for mapping genetic loci controlling traits of interest in future studies. PMID:25942445

  3. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    SciTech Connect

    Kirst, Matias

    2015-04-15

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  4. Comparative proteomics analysis of salt response reveals sex-related photosynthetic inhibition by salinity in Populus cathayana cuttings.

    PubMed

    Chen, Fugui; Zhang, Sheng; Jiang, Hao; Ma, Wujun; Korpelainen, Helena; Li, Chunyang

    2011-09-02

    Male and female poplar ( Populus cathayana Rehd.) cuttings respond differently to salinity stress. To understand these differences better, comparative morphological, physiological, and proteomics analyses were performed. Treatments with different concentrations of NaCl applied to male and female poplar cuttings for 4 weeks showed that females reacted more negatively at the morphological and physiological levels than did males, visible as shriveled leaves, decreased growth, lowered photosynthetic capacities, and greater Na(+) accumulation. The proteome analysis identified 73 proteins from 82 sexually related salt-responsive spots. They were involved in photosynthesis, protein folding and assembly, synthesis and degradation, carbon, energy and steroid metabolism, plant stress and defense, redox homeostasis, signal transduction, and so forth. The sex-related changes of these proteins were consistent with the different morphological and physiological responses in males and females. In conclusion, the higher salt resistance of male P. cathayana cuttings is related to higher expression and lower degradation of proteins in the photosynthetic apparatus, more effective metabolic mechanism and protective system, and greater capacity of hydrogen peroxide scavenging. This research allows us to further understand the possible different management strategies of cellular activities in male and female Populus when confronted by salt stress.

  5. Genome-wide association implicates numerous genes underlying ecological trait variation in natural populations of Populus trichocarpa.

    PubMed

    McKown, Athena D; Klápště, Jaroslav; Guy, Robert D; Geraldes, Armando; Porth, Ilga; Hannemann, Jan; Friedmann, Michael; Muchero, Wellington; Tuskan, Gerald A; Ehlting, Jürgen; Cronk, Quentin C B; El-Kassaby, Yousry A; Mansfield, Shawn D; Douglas, Carl J

    2014-07-01

    In order to uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa) from much of its range in western North America. Extensive data from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34 K Populus single nucleotide polymorphism (SNP) array) of all accessions were used for gene discovery in a genome-wide association study (GWAS). We performed GWAS with 40 biomass, ecophysiology and phenology traits and 29,355 filtered SNPs representing 3518 genes. The association analyses were carried out using a Unified Mixed Model accounting for population structure effects among accessions. We uncovered 410 significant SNPs using a Bonferroni-corrected threshold (P<1.7×10(-6)). Markers were found across 19 chromosomes, explained 1-13% of trait variation, and implicated 275 unique genes in trait associations. Phenology had the largest number of associated genes (240 genes), followed by biomass (53 genes) and ecophysiology traits (25 genes). The GWAS results propose numerous loci for further investigation. Many traits had significant associations with multiple genes, underscoring their genetic complexity. Genes were also identified with multiple trait associations within and/or across trait categories. In some cases, traits were genetically correlated while in others they were not.

  6. Nucleotide Polymorphism and Linkage Disequilibrium Within and Among Natural Populations of European Aspen (Populus tremula L., Salicaceae)

    PubMed Central

    Ingvarsson, Pär K.

    2005-01-01

    Populus is an important model organism in forest biology, but levels of nucleotide polymorphisms and linkage disequilibrium have never been investigated in natural populations. Here I present a study on levels of nucleotide polymorphism, haplotype structure, and population subdivision in five nuclear genes in the European aspen Populus tremula. Results show substantial levels of genetic variation. Levels of silent site polymorphisms, πs, averaged 0.016 across the five genes. Linkage disequilibrium was generally low, extending only a few hundred base pairs, suggesting that rates of recombination are high in this obligate outcrossing species. Significant genetic differentiation was found at all five genes, with an average estimate of FST = 0.116. Levels of polymorphism in P. tremula are 2- to 10-fold higher than those in other woody, long-lived perennial plants, such as Pinus and Cryptomeria. The high levels of nucleotide polymorphism and low linkage disequilibrium suggest that it may be possible to map functional variation to very fine scales in P. tremula using association-mapping approaches. PMID:15489521

  7. Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies.

    PubMed

    Du, Qingzhang; Gong, Chenrui; Wang, Qingshi; Zhou, Daling; Yang, Haijiao; Pan, Wei; Li, Bailian; Zhang, Deqiang

    2016-02-01

    Deciphering the genetic architecture underlying polygenic traits in perennial species can inform molecular marker-assisted breeding. Recent advances in high-throughput sequencing have enabled strategies that integrate linkage-linkage disequilibrium (LD) mapping in Populus. We used an integrated method of quantitative trait locus (QTL) dissection with a high-resolution linkage map and multi-gene association mapping to decipher the nature of genetic architecture (additive, dominant, and epistatic effects) of potential QTLs for growth traits in a Populus linkage population (1200 progeny) and a natural population (435 individuals). Seventeen QTLs for tree height, diameter at breast height, and stem volume mapped to 11 linkage groups (logarithm of odds (LOD) ≥ 2.5), and explained 2.7-18.5% of the phenotypic variance. After comparative mapping and transcriptome analysis, 187 expressed genes (10 046 common single nucleotide polymorphisms (SNPs)) were selected from the segmental homology regions (SHRs) of 13 QTLs. Using multi-gene association models, we observed 202 significant SNPs in 63 promising genes from 10 QTLs (P ≤ 0.0001; FDR ≤ 0.10) that exhibited reproducible associations with additive/dominant effects, and further determined 11 top-ranked genes tightly linked to the QTLs. Epistasis analysis uncovered a uniquely interconnected gene-gene network for each trait. This study opens up opportunities to uncover the causal networks of interacting genes in plants using an integrated linkage-LD mapping approach.

  8. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    SciTech Connect

    Kirst, Matias

    2014-04-14

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  9. Auxin-responsive DR5 promoter coupled with transport assays suggest separate but linked routes of auxin transport during woody stem development in Populus.

    PubMed

    Spicer, Rachel; Tisdale-Orr, Tracy; Talavera, Christian

    2013-01-01

    Polar auxin transport (PAT) is a major determinant of plant morphology and internal anatomy with important roles in vascular patterning, tropic growth responses, apical dominance and phyllotactic arrangement. Woody plants present a highly complex system of vascular development in which isolated bundles of xylem and phloem gradually unite to form concentric rings of conductive tissue. We generated several transgenic lines of hybrid poplar (Populus tremula x alba) with the auxin-responsive DR5 promoter driving GUS expression in order to visualize an auxin response during the establishment of secondary growth. Distinct GUS expression in the cambial zone and developing xylem-side derivatives supports the current view of this tissue as a major stream of basipetal PAT. However, we also found novel sites of GUS expression in the primary xylem parenchyma lining the outer perimeter of the pith. Strands of primary xylem parenchyma depart the stem as a leaf trace, and showed GUS expression as long as the leaves to which they were connected remained attached (i.e., until just prior to leaf abscission). Tissue composed of primary xylem parenchyma strands contained measurable levels of free indole-3-acetic acid (IAA) and showed basipetal transport of radiolabeled auxin ((3)H-IAA) that was both significantly faster than diffusion and highly sensitive to the PAT inhibitor NPA. Radiolabeled auxin was also able to move between the primary xylem parenchyma in the interior of the stem and the basipetal stream in the cambial zone, an exchange that was likely mediated by ray parenchyma cells. Our results suggest that (a) channeling of leaf-derived IAA first delineates isolated strands of pre-procambial tissue but then later shifts to include basipetal transport through the rapidly expanding xylem elements, and (b) the transition from primary to secondary vascular development is gradual, with an auxin response preceding the appearance of a unified and radially-organized vascular cambium.

  10. The effects of gamma irradiation on growth and expression of genes encoding DNA repair-related proteins in Lombardy poplar (Populus nigra var. italica).

    PubMed

    Nishiguchi, Mitsuru; Nanjo, Tokihiko; Yoshida, Kazumasa

    2012-07-01

    In this study, to elucidate the mechanisms of adaptation and tolerance to ionizing radiation in woody plants, we investigated the various biological effects of γ-rays on the Lombardy poplar (Populus nigra L. var. italica Du Roi). We detected abnormal leaf shape and color, fusion, distorted venation, shortened internode, fasciation and increased axillary shoots in γ-irradiated poplar plants. Acute γ-irradiation with a dose of 100Gy greatly reduced the height, stem diameter and biomass of poplar plantlets. After receiving doses of 200 and 300Gy, all the plantlets stopped growing, and then most of them withered after 4-10 weeks of γ-irradiation. Comet assays showed that nuclear DNA in suspension-cultured poplar cells had been damaged by γ-rays. To determine whether DNA repair-related proteins are involved in the response to γ-rays in Lombardy poplars, we cloned the PnRAD51, PnLIG4, PnKU70, PnXRCC4, PnPCNA and PnOGG1 cDNAs and investigated their mRNA expression. The PnRAD51, PnLIG4, PnKU70, PnXRCC4 and PnPCNA mRNAs were increased by γ-rays, but the PnOGG1 mRNA was decreased. Moreover, the expression of PnLIG4, PnKU70 and PnRAD51 was also up-regulated by Zeocin known as a DNA cleavage agent. These observations suggest that the morphogenesis, growth and protective gene expression in Lombardy poplars are severely affected by the DNA damage and unknown cellular events caused by γ-irradiation.

  11. Ionic liquid-based vacuum microwave-assisted extraction followed by macroporous resin enrichment for the separation of the three glycosides salicin, hyperin and rutin from Populus bark.

    PubMed

    Chen, Fengli; Mo, Kailin; Liu, Zhaizhi; Yang, Fengjian; Hou, Kexin; Li, Shuangyang; Zu, Yuangang; Yang, Lei

    2014-07-07

    An effective ionic liquid vacuum microwave-assisted method was developed for extraction of the thermo- and oxygen-sensitive glycosides salicin, hyperin and rutin from Populus bark due to the strong solvating effects of ionic liquids on plant cell walls. In this study, [C4mim]BF4 solution was selected as the extracting solution for extraction of the target analytes. After optimization by single factor experiments and response surface methodology, the optimum condition parameters were achieved, which included 1.0 M [C4mim]BF4, 2 h soaking time, -0.08 MPa vacuum, 20 min microwave irradiation time, 400 W microwave irradiation power and 25 mL/g liquid/solid ratio. Under the optimum conditions, higher extraction yields of salicin (35.53 mg/g), hyperin (1.32 mg/g) and rutin (2.40 mg/g) were obtained. Compared with other extraction methods, the developed method provided higher yields of the three target components after a relatively shorter extraction time (20 min). No obvious degradation of the target analytes was observed under the optimum conditions in performed stability studies and the proposed method had a high reproducibility. Meanwhile, after adsorption and desorption on macroporous D101 resin, the target analytes can be effectively separated from the [C4mim]BF4 ionic liquid extraction solution and the yields of salicin, hyperin and rutin were 89%, 82% and 84%, respectively. The recovered [C4mim]BF4 ionic liquid presented a good extraction effect on the three analytes after recycling five times.

  12. Chilling of dormant buds hyperinduces FLOWERING LOCUS T and recruits GA-inducible 1,3-beta-glucanases to reopen signal conduits and release dormancy in Populus.

    PubMed

    Rinne, Päivi L H; Welling, Annikki; Vahala, Jorma; Ripel, Linda; Ruonala, Raili; Kangasjärvi, Jaakko; van der Schoot, Christiaan

    2011-01-01

    In trees, production of intercellular signals and accessibility of signal conduits jointly govern dormancy cycling at the shoot apex. We identified 10 putative cell wall 1,3-β-glucanase genes (glucan hydrolase family 17 [GH17]) in Populus that could turn over 1,3-β-glucan (callose) at pores and plasmodesmata (PD) and investigated their regulation in relation to FT and CENL1 expression. The 10 genes encode orthologs of Arabidopsis thaliana BG_ppap, a PD-associated glycosylphosphatidylinositol (GPI) lipid-anchored protein, the Arabidopsis PD callose binding protein PDCB, and a birch (Betula pendula) putative lipid body (LB) protein. We found that these genes were differentially regulated by photoperiod, by chilling (5°C), and by feeding of gibberellins GA(3) and GA(4). GA(3) feeding upregulated all LB-associated GH17s, whereas GA(4) upregulated most GH17s with a GPI anchor and/or callose binding motif, but only GA(4) induced true bud burst. Chilling upregulated a number of GA biosynthesis and signaling genes as well as FT, but not CENL1, while the reverse was true for both GA(3) and GA(4). Collectively, the results suggest a model for dormancy release in which chilling induces FT and both GPI lipid-anchored and GA(3)-inducible GH17s to reopen signaling conduits in the embryonic shoot. When temperatures rise, the reopened conduits enable movement of FT and CENL1 to their targets, where they drive bud burst, shoot elongation, and morphogenesis.

  13. Draft genome sequences of four Streptomyces isolates from the Populus trichocarpa root endosphere and rhizosphere

    SciTech Connect

    Klingeman, Dawn M.; Utturkar, Sagar; Lu, Tse -Yuan S.; Schadt, Christopher W.; Pelletier, Dale A.; Brown, Steve D.

    2015-11-12

    Draft genome sequences for four Actinobacteria from the genus Streptomyces are presented. Streptomyces is a metabolically diverse genus that is abundant in soils and has been reported in association with plants. The strains described in this study were isolated from the Populus trichocarpa endosphere and rhizosphere.

  14. Whole plastome sequencing reveals deep plastid divergence and cytonuclear discordance between closely related balsam poplars, Populus balsamifera and P. trichocarpa (Salicaceae).

    PubMed

    Huang, Daisie I; Hefer, Charles A; Kolosova, Natalia; Douglas, Carl J; Cronk, Quentin C B

    2014-11-01

    As molecular phylogenetic analyses incorporate ever-greater numbers of loci, cases of cytonuclear discordance - the phenomenon in which nuclear gene trees deviate significantly from organellar gene trees - are being reported more frequently. Plant examples of topological discordance, caused by recent hybridization between extant species, are well known. However, examples of branch-length discordance are less reported in plants relative to animals. We use a combination of de novo assembly and reference-based mapping using short-read shotgun sequences to construct a robust phylogeny of the plastome for multiple individuals of all the common Populus species in North America. We demonstrate a case of strikingly high plastome divergence, in contrast to little nuclear genome divergence, in two closely related balsam poplars, Populus balsamifera and Populus trichocarpa (Populus balsamifera ssp. trichocarpa). Previous studies with nuclear loci indicate that the two species (or subspecies) diverged since the late Pleistocene, whereas their plastomes indicate deep divergence, dating to at least the Pliocene (6-7 Myr ago). Our finding is in marked contrast to the estimated Pleistocene divergence of the nuclear genomes, previously calculated at 75 000 yr ago, suggesting plastid capture from a 'ghost lineage' of a now-extinct North American poplar.

  15. [Radial variation and time lag of sap flow of Populus gansuensis in Minqin Oasis, Northwest].

    PubMed

    Dang, Hong-Zhong; Yang, Wen-Bin; Li, Wei; Zhang, You-Yan; Li, Chang-Long

    2014-09-01

    Sap flow of tree trunk is very important to reflect the dynamics of physiological activities, as well as to estimate the water consumption of individual plant. In the present study, we used the thermal dissipation technique to monitor the sap flow velocity (J) at four depth loci (i. e. 2 cm, 3 cm, 5 cm, 8 cm) of three Populus gansuensis trees (30 year-old) in Minqin Oasis for two consecutive growing seasons. The results showed that there were significant differences among J values at four depth loci under tree trunk cambium. J value at the 3 cm depth locus (J3) of the tree trunk was the highest, and then in sequences, were 2 cm, 5 cm and 8 cm depth loci (J2, J5 and J8). J value (J3) on typical sunny days in June with the highest atmospheric potential evapotranspiration (ET0) was up to 28.53 g · cm(-2) · h(-1), which was 1.42, 2.74 and 4.4 times of J2, J5 and J8, respectively. In the process of diurnal variation of sap flow velocity, the peak value time of J at the four depth loci of the tree trunk was different, but the differences among them were within 20 min. Furthermore, the peak value time of sap flow velocity was very different to that of solar radiation (Rs) and air vapour pressure deficit (VPD). The time lag between J and Rs was from 55 to 88 min on typical sunny days during the main growing seasons (from June to August), and, positively related to the depth of the locus under tree trunk cambium, while the time lag between J and VPD reached 60-96 min, and was negatively related to the depth of the locus. The seasonal variation patterns of J were consistent with ET0. With the increase of tree physiological activities, there was a trend that the major water transportation layer extended to the interior sapwood. The most important meteorological factor was the solar radiation, which primarily drove sap flow at different depths of tree trunk. However, the secondary factor changed along with the depth, and VPD became increasingly important with increasing the

  16. Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica.

    PubMed

    Rozahon, Manziram; Ismayil, Nurimangul; Hamood, Buayshem; Erkin, Raziya; Abdurahman, Mehfuzem; Mamtimin, Hormathan; Abdukerim, Muhtar; Lal, Rup; Rahman, Erkin

    2014-09-01

    An endophytic bacterium, designated K-38(T), was isolated from the storage liquid in the stems of Populus euphratica trees at the ancient Ugan River in Xinjiang, PR China. Strain K-38(T) was found to be rod-shaped, Gram-stain-negative, aerobic, non-motile and non-spore-forming. Strain K-38(T) grew at temperatures of 25-37 °C (optimum, 28 °C), at pH 6.0-9.0 (optimum, pH 7.5) and in the presence of 0-3 % (w/v) NaCl with 1 % as the optimum concentration for growth. According to phylogenetic analysis based on 16S rRNA gene sequences, strain K-38(T) was assigned to the genus Rhizobium with highest 16S rRNA gene sequence similarity of 97.2 % to Rhizobium rosettiformans W3(T), followed by Rhizobium nepotum 39/7(T) (96.5 %) and Rhizobium borbori DN316(T) (96.2 %). Phylogenetic analysis of strain K-38(T) based on the protein coding genes recA, atpD and nifH confirmed (similarities were less than 90 %) it to be a representative of a distinctly delineated species of the genus Rhizobium. The DNA G+C content was determined to be 63.5 mol%. DNA-DNA relatedness between K-38(T) and R. rosettiformans W3(T) was 48.4 %, indicating genetic separation of strain K-38(T) from the latter strain. The major components of the cellular fatty acids in strain K-38(T) were revealed to be summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c; 57.2 %), C16 : 0 (13.6 %) and summed feature 2 (comprising C12 : 0 aldehyde, C14 : 0 3-OH/iso-C16 : 1 I and/or unknown ECL 10.928; 11.0 %). Polar lipids of strain K-38(T) include phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, two unidentified aminophospholipids and two unidentified phospholipids. Q-10 was the major quinone in strain K-38(T). Based on phenotypic, chemotaxonomic and phylogenetic properties, strain K-38(T) represents a novel species of the genus Rhizobium, for which the name Rhizobium populi sp. nov. is proposed

  17. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica.

    PubMed

    Zhang, Feng; Wang, Yuping; Yang, Yingli; Wu, Hao; Wang, Di; Liu, Jianquan

    2007-07-01

    Nitric oxide (NO) and hydrogen peroxide (H2O2) function as signalling molecules in plants under abiotic and biotic stresses. Calluses from Populus euphratica, which show salt tolerance, were used to study the interaction of NO and H2O2 in plant adaptation to salt resistance. The nitric oxide synthase (NOS) activity was identified in the calluses, and this activity was induced under 150 mM NaCl treatment. Under 150 mM NaCl treatment, the sodium (Na) percentage decreased, but the potassium (K) percentage and the K/Na ratio increased in P. euphratica calluses. Application of glucose/glucose oxidase (G/GO, a H2O2 donor) and sodium nitroprusside (SNP, a NO donor) revealed that both H2O2 and NO resulted in increased K/Na ratio in a concentration-dependent manner. Diphenylene iodonium (DPI, an NADPH oxidase inhibitor) counteracted H2O2 and NO effect by increasing the Na percentage, decreasing the K percentage and K/Na ratio. NG-monomethyl-L-Arg monoacetate (NMMA, an NO synthase inhibitor) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxyde (PTIO, a specific NO scavenger) only reversed NO effect, but did not block H2O2 effect. The increased activity of plasma membrane (PM) H+ -ATPase caused by salt stress was reversed by treatment with DPI and NMMA. Exogenous H2O2 increased the activity of PM H+ -ATPase, but the effect could not be diminished by NMMA and PTIO. The NO-induced increase of PM H+ -ATPase can be reversed by NMMA and PTIO, but not by DPI. Western blot analysis demonstrated that NO and H2O2 stimulated the expression of PM H+ -ATPase in P. euphratica calluses. These results indicate that NO and H2O2 served as intermediate molecules in inducing salt resistance in the calluses from P. euphratica under slat stress by increasing the K/Na ratio, which was dependent on the increased PM H+ -ATPase activity.

  18. Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra).

    PubMed

    Chu, Yanguang; Huang, Qinjun; Zhang, Bingyu; Ding, Changjun; Su, Xiaohua

    2014-01-01

    Environmental stresses such as low temperature, drought, and high salinity significantly affect plant growth and yield. As selective forces, these adverse factors play essential roles in shaping phenotypic variation in plant populations. Black poplar (Populus nigra) is an economically and ecologically important forest tree species with widely distributed populations and is thus suitable for experiments detecting evolutionary footprints left by stress. Here, we performed expression and evolutionary analysis of two duplicated DREB A1-subgroup (DREB1) genes, PnDREB68 and PnDREB69, encoding transcription factors that are involved in stress responses. The two genes showed partially overlapping but distinct expression patterns in response to stresses. These genes were strongly and rapidly induced by cold stress in leaves, stems, and roots. In leaf tissue, dehydration stress induced the expression of PnDREB68 but not PnDREB69. PnDREB69 displayed more rapid responses and longer expression durations than PnDREB68 under salt and ABA stress, respectively. Based on single nucleotide polymorphism (SNP) analysis, we found significant population genetic differentiation, with a greater FST value (0.09189) for PnDREB69 than for PnDREB68 (0.07743). Nucleotide diversity analysis revealed a two-fold higher πT for PnDREB68 than for PnDREB69 (0.00563 vs. 0.00243), reflecting strong purifying selection acting on the former. The results suggest that positive selection acted on PnDREB69, as evidenced by neutral testing using Tajima's D statistic. The distinct selective forces to which each of the genes was subjected may be associated with expression divergence. Linkage disequilibrium (LD) was low for the sequenced region, with a higher level for PnDREB68 than for PnDREB69. Additionally, analysis of the relationship among carbon isotope ratios, SNP classes and gene expression, together with motif and domain analysis, suggested that 14 polymorphisms within the two genes may be candidates

  19. Shoot structure and growth along a vertical profile within a Populus-Tilia canopy.

    PubMed

    Kull, Olevi; Tulva, Ingmar

    2002-11-01

    We investigated shoot growth patterns and their relationship to the canopy radiation environment and the distribution of leaf photosynthetic production in a 27-m-tall stand of light-demanding Populus tremula L. and shade-tolerant Tilia cordata Mill. The species formed two distinct layers in the leaf canopy and showed different responses in branch architecture to the canopy light gradient. In P. tremula, shoot bifurcation decreased rapidly with decreasing light, and leaf display allowed capture of multidirectional light. In contrast, leaf display in T. cordata was limited to efficient interception of unidirectional light, and shoot growth and branching pattern facilitated relatively rapid expansion into potentially unoccupied space even in the low light of the lower canopy. At the canopy level, T. cordata had higher photosynthetic light-use efficiency than P. tremula, whereas P. tremula had higher nitrogen-use efficiency than T. cordata. However, at the individual leaf level, both species had similar efficiencies under comparable light conditions. Production of new leaf area in the canopy followed the pattern of photosynthetic production. However, the species differed substantially in extension growth and space-filling strategy. Light-demanding P. tremula expanded into new space with a few long shoots, with shoot length strongly dependent on photosynthetic photon flux density (PPFD). Production of new leaf area and extension growth were largely uncoupled in this species because short shoots, which do not contribute to extension growth, produced many new leaves. Thus, in P. tremula, the growth pattern was strongly directed toward the top of the canopy. In contrast, in shade-tolerant T. cordata, shoot growth was weakly related to PPFD and more was invested in long shoot growth on a leaf area basis compared with P. tremula. However, this extension growth was not directed and may serve as a passive means of avoiding self-shading. This study supports the hypothesis that

  20. Spatial distribution of leaf morphological and physiological characteristics in relation to local radiation regime within the canopies of 3-year-old Populus clones in coppice culture.

    PubMed

    Casella, E; Ceulemans, R

    2002-12-01

    Spatial distributions of leaf characteristics relevant to photosynthesis were compared within high-density coppice canopies of Populus spp. of contrasting genetic origin. We studied three clones representative of the range in growth potential, leaf morphology, coppice and canopy structure: Clone Hoogvorst (Hoo) (Populus trichocarpa Torr. & Gray x Populus deltoides Bartr. & Marsh), Clone Fritzi Pauley (Fri) (Populus trichocarpa Torr. & Gray) and Clone Wolterson (Wol) (Populus nigra L.). Leaf area index ranged from 2.7 (Fri and Wol) to 3.8 (Hoo). The clones exhibited large vertical variation in leaf area density (0.02-1.42 m2 m-3). Leaf dry mass per unit leaf area (DM(A)) increased with increasing light in Clones Hoo and Fri, from about 56 g m-2 at the bottom of the canopy to 162 g m-2 at the top. In Clone Wol, DM(A) varied only from 65 to 100 g m-2, with no consistent relationship with respect to light. Conversely, nitrogen concentration on a mass basis was nearly constant (around 1.3-2.1%) within the canopies of Clones Hoo and Fri, but increased strongly with light in Clone Wol, from 1.4% at the bottom of the canopy to 4.1% at the top. As a result, nitrogen per unit leaf area (N(A)) increased with light in the canopies of all clones, from 0.9 g m-2 at the bottom to 2.9 g m-2 at the top. Although a single linear relationship described the dependence of maximum carboxylation rate (17-93 micromol CO2 m-2 s-1) or electron transport capacity (45-186 micromol electrons m-2 s-1) on N(A), for all clones, Clone Wol differed from Clones Hoo and Fri by exhibiting a higher dark respiration rate at low N(A) (1.8 versus 0.8 micromol CO2 m-2 s-1).

  1. Identification of quantitative trait loci affecting ectomycorrhizal symbiosis in an interspecific F1 poplar cross and differential expression of genes in ectomycorrhizas of the two parents: Populus deltoides and Populus trichocarpa

    SciTech Connect

    Labbe, Jessy L; Jorge, Veronique; Vion, Patrice; Marcais, Benoit; Bastien, Catherine; Tuskan, Gerald A; Martin, Francis; Le Tacon, F

    2011-01-01

    A Populus deltoides Populus trichocarpa F1 pedigree was analyzed for quantitative trait loci (QTLs) affecting ectomycorrhizal development and for microarray characterization of gene networks involved in this symbiosis. A 300 genotype progeny set was evaluated for its ability to form ectomycorrhiza with the basidiomycete Laccaria bicolor. The percentage of mycorrhizal root tips was determined on the root systems of all 300 progeny and their two parents. QTL analysis identified four significant QTLs, one on the P. deltoides and three on the P. trichocarpa genetic maps. These QTLs were aligned to the P. trichocarpa genome and each contained several megabases and encompass numerous genes. NimbleGen whole-genome microarray, using cDNA from RNA extracts of ectomycorrhizal root tips from the parental genotypes P. trichocarpa and P. deltoides, was used to narrow the candidate gene list. Among the 1,543 differentially expressed genes (p value 0.05; 5.0-fold change in transcript level) having different transcript levels in mycorrhiza of the two parents, 41 transcripts were located in the QTL intervals: 20 in Myc_d1, 14 in Myc_t1, and seven in Myc_t2, while no significant differences among transcripts were found in Myc_t3. Among these 41 transcripts, 25 were overrepresented in P. deltoides relative to P. trichocarpa; 16 were overrepresented in P. trichocarpa. The transcript showing the highest overrepresentation in P. trichocarpa mycorrhiza libraries compared to P. deltoides mycorrhiza codes for an ethylene-sensitive EREBP-4 protein which may repress defense mechanisms in P. trichocarpa while the highest overrepresented transcripts in P. deltoides code for proteins/genes typically associated with pathogen resistance.

  2. Transcriptome Analysis of Poplar during Leaf Spot Infection with Sphaerulina spp.

    PubMed Central

    Foster, Adam J.; Pelletier, Gervais; Tanguay, Philippe; Séguin, Armand

    2015-01-01

    Diseases of poplar caused by the native fungal pathogen Sphaerulina musiva and related species are of growing concern, particularly with the increasing interest in intensive poplar plantations to meet growing energy demands. Sphaerulina musiva is able to cause infection on leaves, resulting in defoliation and canker formation on stems. To gain a greater understanding of the different responses of poplar species to infection caused by the naturally co-evolved Sphaerulina species, RNA-seq was conducted on leaves of Populus deltoides, P. balsamifera and P. tremuloides infected with S. musiva, S. populicola and a new undescribed species, Ston1, respectively. The experiment was designed to contain the pathogen in a laboratory environment, while replicating disease development in commercial plantations. Following inoculation, trees were monitored for disease symptoms, pathogen growth and host responses. Genes involved in phenylpropanoid, terpenoid and flavonoid biosynthesis were generally upregulated in P. balsamifera and P. tremuloides, while cell wall modification appears to play an important role in the defense of P. deltoides. Poplar defensive genes were expressed early in P. balsamifera and P. tremuloides, but their expression was delayed in P. deltoides, which correlated with the rate of disease symptoms development. Also, severe infection in P. balsamifera led to leaf abscission. This data gives an insight into the large differences in timing and expression of genes between poplar species being attacked by their associated Sphaerulina pathogen. PMID:26378446

  3. Transcriptome Analysis of Poplar during Leaf Spot Infection with Sphaerulina spp.

    PubMed

    Foster, Adam J; Pelletier, Gervais; Tanguay, Philippe; Séguin, Armand

    2015-01-01

    Diseases of poplar caused by the native fungal pathogen Sphaerulina musiva and related species are of growing concern, particularly with the increasing interest in intensive poplar plantations to meet growing energy demands. Sphaerulina musiva is able to cause infection on leaves, resulting in defoliation and canker formation on stems. To gain a greater understanding of the different responses of poplar species to infection caused by the naturally co-evolved Sphaerulina species, RNA-seq was conducted on leaves of Populus deltoides, P. balsamifera and P. tremuloides infected with S. musiva, S. populicola and a new undescribed species, Ston1, respectively. The experiment was designed to contain the pathogen in a laboratory environment, while replicating disease development in commercial plantations. Following inoculation, trees were monitored for disease symptoms, pathogen growth and host responses. Genes involved in phenylpropanoid, terpenoid and flavonoid biosynthesis were generally upregulated in P. balsamifera and P. tremuloides, while cell wall modification appears to play an important role in the defense of P. deltoides. Poplar defensive genes were expressed early in P. balsamifera and P. tremuloides, but their expression was delayed in P. deltoides, which correlated with the rate of disease symptoms development. Also, severe infection in P. balsamifera led to leaf abscission. This data gives an insight into the large differences in timing and expression of genes between poplar species being attacked by their associated Sphaerulina pathogen.

  4. Effects of in vitro ozone treatment on proteolysis of purified rubisco from two hybrid poplar clones. [Populus maximowizii x trichocarpa

    SciTech Connect

    Landry, L.G.; Pell, E.J. )

    1989-04-01

    Plants exposed to ozone (O{sub 3}) exhibited symptoms of premature senescence, including early decline in quantity of rubisco. O{sub 3}-induced oxidation may cause changes in protein conformation of rubisco, resulting in enhanced proteolysis. To test this hypothesis, rubisco was purified from two hybrid clones of Populus maximowizii x trichocarpa, clones 388 and 245, and treated in vitro with O{sub 3} or air. Rubisco was then challenged with bromelain, papain, chymotrypsin, carboxypeptidase A, or endoproteinase Glu-C and percent degradation measured by SDS-PAGE and densitometric scanning of the gels. Degree of rubisco sensitivity to oxidation may be related to available sulfhydryl (SH) groups on the protein. The number of SH groups in native and denatured rubisco was measured for purified rubisco of both clones by DTNB titration method. The relationship between sensitivity to proteolysis and number and availability of SH groups is discussed.

  5. A ThCAP gene from Tamarix hispida confers cold tolerance in transgenic Populus (P. davidiana x P. bolleana).

    PubMed

    Guo, Xiao-Hong; Jiang, Jing; Lin, Shi-Jie; Wang, Bai-Chen; Wang, Yu-Cheng; Liu, Gui-Feng; Yang, Chuan-Ping

    2009-07-01

    The ThCAP gene, which encodes a cold acclimation protein, was isolated from a Tamarix hispida NaCl-stress root cDNA library; its expression patterns were then assayed by qRT-PCR in different T. hispida tissues treated with low temperature (4 degrees C), salt (400 mM NaCl), drought (20% PEG6000) and exogenous abscisic acid (100 microM). Induction of ThCAP gene was not only responsive to different stress conditions but was also organ specific. When transgenic Populus (P. davidiana x P. bolleana) plants were generated, expressing ThCAP under regulation of the cauliflower mosaic virus CaMV 35S promoter, they had a greater resistance to low temperature than non-transgenic seedlings, suggesting that ThCAP might play an important role in cold tolerance.

  6. Improvement of enzymatic saccharification of Populus and switchgrass by combined pretreatment with steam and wet disk milling

    DOE PAGES

    Kumagai, Akio; Wu, Long; Iwamoto, Shinichiro; ...

    2014-12-15

    In this study, to reduce the recalcitrance of lignocellulosic biomass for subsequent biological processing, we pretreated energy crop feedstocks with mild steam treatment (ST; 130 and 150 °C for 60 min) and wet disk milling (WDM). We tested two phylogenetically different, but typical energy crop feedstocks: Populus trichocarpa and switchgrass (Panicum virgatum). WDM after ST facilitated the fibrillation of both types of biomass, resulting in an increase of specific surface area, improved enzymatic saccharification yield, and decrease in cellulose crystallinity. Lastly, after steam treatment at 150 °C followed by 17 cycles of WDM, enzymatic hydrolysis resulted in almost complete glucanmore » to glucose conversion in both feedstocks.« less

  7. Pretreatment of Populus tomentosa with Trametes velutina supplemented with inorganic salts enhances enzymatic hydrolysis for ethanol production.

    PubMed

    Wang, Wei; Yuan, Tongqi; Cui, Baokai; Dai, Yucheng

    2012-12-01

    Different nutrients were added into the solid fermentation of woody biomass, Populus tomentosa, to improve pretreatment by a white rot fungus, Trametes velutina. Fungal pretreatment supplemented with trace elements resulted in large amount of lignin loss but low degradation of carbohydrate. Only 12.6 % of Klason lignin was left in the residues pretreated by T. velutina for 8 weeks supplemented with 1 % trace elements (TE group). When fungal-pretreated residues were subjected to enzymatic hydrolysis for 96 h, a maximum reducing sugar yield of 44 % was obtained from the TE group at the 8th week, 2.3 times higher than that of untreated samples. In addition, the highest ethanol yield of 22 % was observed by the fermentation of 8-week pretreated residues from the basic medium plus trace element group, which was five times more than that of untreated samples.

  8. Improvement of enzymatic saccharification of Populus and switchgrass by combined pretreatment with steam and wet disk milling

    SciTech Connect

    Kumagai, Akio; Wu, Long; Iwamoto, Shinichiro; Lee, Seung-Hwan; Endo, Takashi; Rodriguez, Miguel; Mielenz, Jonathan R.

    2014-12-15

    In this study, to reduce the recalcitrance of lignocellulosic biomass for subsequent biological processing, we pretreated energy crop feedstocks with mild steam treatment (ST; 130 and 150 °C for 60 min) and wet disk milling (WDM). We tested two phylogenetically different, but typical energy crop feedstocks: Populus trichocarpa and switchgrass (Panicum virgatum). WDM after ST facilitated the fibrillation of both types of biomass, resulting in an increase of specific surface area, improved enzymatic saccharification yield, and decrease in cellulose crystallinity. Lastly, after steam treatment at 150 °C followed by 17 cycles of WDM, enzymatic hydrolysis resulted in almost complete glucan to glucose conversion in both feedstocks.

  9. Underground riparian wood: Buried stem and coarse root structures of Black Poplar (Populus nigra L.)

    NASA Astrophysics Data System (ADS)

    Holloway, James V.; Rillig, Matthias C.; Gurnell, Angela M.

    2017-02-01

    Despite the potential importance of tree species in influencing the processes of wood recruitment, transport, retention, and decay that control river wood budgets, focus has been relatively limited on this theme within fluvial wood research. Furthermore, one of the least investigated topics is the belowground living wood component of riparian trees. This paper presents observations of the morphology and age of buried stem and coarse root structures of eight Populus nigra individuals located in the riparian woodland of two sites on the middle to lower Tagliamento River, Italy. This species was selected because of its wide distribution along European rivers and its frequent dominance of riparian woodland. Each tree was excavated by hand to expose a minimum of half of the root system with complete exposure of the main axis. Smaller roots were then removed and larger protruding roots cut back to permit access to the main axis. The excavated structures were photographed from multiple angles for photogrammetric modelling; the structure and character of the exposed sediments around the tree's main axis were recorded; and wood samples were taken from the main aboveground stem(s), sections of the main buried axis, and major roots for dendrochronological analysis. Results from these field observations and laboratory dating of the wood samples were combined to describe the belowground morphology of each tree and to draw inferences concerning the impact of fluvial disturbances. Common features of these excavated structures included: (i) rooting depths to below the bar surface where the original tree established, with many young roots also existing at depth; (ii) translocation of the main buried axis in a downstream direction; (iii) a main buried axis comprised mainly of stems that have become buried and then generated new shoots, including multistem patches, and adventitious roots; (iv) the presence of steps and bends in the main buried axis associated with the generation of

  10. A comparative analysis of phenylpropanoid metabolism, N utilization, and carbon partitioning in fast- and slow-growing Populus hybrid clones

    PubMed Central

    Harding, Scott A.; Jarvie, Michelle M.; Lindroth, Richard L.; Tsai, Chung-Jui

    2009-01-01

    The biosynthetic costs of phenylpropanoid-derived condensed tannins (CTs) and phenolic glycosides (PGs) are substantial. However, despite reports of negative correlations between leaf phenolic content and growth of Populus, it remains unclear whether or how foliar biosynthesis of CT/PG interferes with tree growth. A comparison was made of carbon partitioning and N content in developmentally staged leaves, stems, and roots of two closely related Populus hybrid genotypes. The genotypes were selected as two of the most phytochemically divergent from a series of seven previously analysed clones that exhibit a range of height growth rates and foliar amino acid, CT, and PG concentrations. The objective was to analyse the relationship between leaf phenolic content and plant growth, using whole-plant carbon partitioning and N distribution data from the two divergent clones. Total N as a percentage of tissue dry mass was comparatively low, and CT and PG accrual comparatively high in leaves of the slow-growing clone. Phenylpropanoid accrual and N content were comparatively high in stems of the slow-growing clone. Carbon partitioning within phenylpropanoid and carbohydrate networks in developing stems differed sharply between clones. The results did not support the idea that foliar production of phenylpropanoid defence chemicals was the primary cause of reduced plant growth in the slow-growing clone. The findings are discussed in the context of metabolic mechanism(s) which may contribute to reduced N delivery from roots to leaves, thereby compromising tree growth and promoting leaf phenolic accrual in the slow-growing clone. PMID:19516073

  11. Genome-Wide Analysis of MicroRNA Responses to the Phytohormone Abscisic Acid in Populus euphratica

    PubMed Central

    Duan, Hui; Lu, Xin; Lian, Conglong; An, Yi; Xia, Xinli; Yin, Weilun

    2016-01-01

    MicroRNA (miRNA) is a type of non-coding small RNA with a regulatory function at the posttranscriptional level in plant growth development and in response to abiotic stress. Previous studies have not reported on miRNAs responses to the phytohormone abscisic acid (ABA) at a genome-wide level in Populus euphratica, a model tree for studying abiotic stress responses in woody plants. Here we analyzed the miRNA response to ABA at a genome-wide level in P. euphratica utilizing high-throughput sequencing. To systematically perform a genome-wide analysis of ABA-responsive miRNAs in P. euphratica, nine sRNA libraries derived from three groups (control, treated with ABA for 1 day and treated with ABA for 4 days) were constructed. Each group included three libraries from three individual plantlets as biological replicate. In total, 151 unique mature sequences belonging to 75 conserved miRNA families were identified, and 94 unique sequences were determined to be novel miRNAs, including 56 miRNAs with miRNA* sequences. In all, 31 conserved miRNAs and 31 novel miRNAs response to ABA significantly differed among the groups. In addition, 4132 target genes were predicted for the conserved and novel miRNAs. Confirmed by real-time qPCR, expression changes of miRNAs were inversely correlated with the expression profiles of their putative targets. The Populus special or novel miRNA-target interactions were predicted might be involved in some biological process related stress tolerance. Our analysis provides a comprehensive view of how P. euphratica miRNA respond to ABA, and moreover, different temporal dynamics were observed in different ABA-treated libraries. PMID:27582743

  12. In vitro adventitious shoot regeneration via indirect organogenesis from inflorescence explants and peroxidase involvement in morphogenesis of Populus euphratica Olivier.

    PubMed

    Zhou, Yan; Gao, Ziyang; Gao, Shumin; Sun, Fangfang; Cheng, Pengjun; Li, Fenglan

    2012-12-01

    The inflorescences as explants for rapid propagation in vitro remained unknown in Populus euphratica Olivier. Here, we reported that multiple shoots were initiation from calli of both male and female inflorescences. The optimum medium for shoot induction from male inflorescences was lactose sulfite medium containing 1.0 mg L(-1) 6-benzylaminopurine (BA) and 0.5 mg L(-1) α-naphthalene acetic acid (NAA) or Murashige and Skoog (MS) medium containing 0.5 mg L(-1) BA and 0.2 mg L(-1) NAA. The optimum medium of shoot induction from female inflorescence calli was the MS medium containing 0.5 mg L(-1) BA and 0.2 mg L(-1) NAA. Rooting of regenerated shoots was obtained on 1/2 MS medium supplemented with 0.5∼1.0 mg L(-1) indole-3-butyric acid (IBA) and the highest frequency rooting was on medium containing 0.5 mg L(-1) IBA. No shoots were obtained on medium without BA and NAA. Peroxidase (POD) activity was measured by polyacrylamide gel electrophoresis during shoot induction and differentiation stages. The results showed that two bands of POD (2a and 2b) activity appeared lowest during the early 8 days at the dedifferentiation phase of leaves inducing calli, whereas POD 2a, 2b activity appeared to be increasing at the homeochronous dedifferentiation phase of inflorescence. Five most intensive bands, POD 1a, 1b, 1c, 2a, and ab, appeared in 8th and 28th days at the redifferentiation phase during shoot morphogenesis. These results demonstrated that the POD was involved in shoot morphogenesis from both leaf and inflorescence explants of Populus euphratica.

  13. Allelic variation in PtoPsbW associated with photosynthesis, growth, and wood properties in Populus tomentosa.

    PubMed

    Wang, Longxin; Wang, Bowen; Du, Qingzhang; Chen, Jinhui; Tian, Jiaxing; Yang, Xiaohui; Zhang, Deqiang

    2017-02-01

    Photosynthesis is one of the most important reactions on earth. PsbW, a nuclear-encoded subunit of photosystem II (PSII), stabilizes PSII structure and plays an important role in photosynthesis. Here, we used candidate gene-based linkage disequilibrium (LD) mapping to detect significant associations between allelic variations of PtoPsbW and traits related to photosynthesis, growth, and wood properties in Populus tomentosa. PtoPsbW showed the highest expression in leaves and it increased during the development of these leaves, suggesting that PtoPsbW may play an important role in plant growth and development. Analysis of nucleotide diversity and LD revealed that PtoPsbW has low single-nucleotide polymorphism (SNP) diversity (π tot = 0.0048 and θ w = 0.0050) and relatively low average value of LD (0.1500), indicating that PtoPsbW is conserved due to its indispensable function. Using single-SNP associations in an association population of 435 individuals, we identified five significant associations at the threshold of P ≤ 0.05, explaining 3.28-15.98 % of the phenotypic variation. Haplotype-based association analyses indicated that 13 haplotypes (P ≤ 0.05) from six blocks were associated with photosynthesis, growth, and wood properties. Our work shows that identifying allelic variation and LD can help to decipher the genetic basis of photosynthesis and could potentially be applied for molecular marker-assisted selection in Populus.

  14. Effect of environmental stress factors on ecophysiological traits and susceptibility to pathogens of five Populus clones throughout the growing season.

    PubMed

    Fernàndez-Martínez, Jordi; Zacchini, Massimo; Elena, Georgina; Fernández-Marín, Beatriz; Fleck, Isabel

    2013-06-01

    The variability of ecophysiological traits associated with productivity (e.g., water relations, leaf structure, photosynthesis and nitrogen (N) content) and susceptibility to fungal and insect infection were investigated in five poplar clones (Populus deltoides Batr.-Lux clone; Populus nigra L.-58-861 clone and Populus × canadensis Mönch.-Luisa Avanzo, I-214 and Adige clones) during their growing season. The objective of the study was to determine their physiological responses under summer constraints (characteristic of the Mediterranean climate) and to propose clone candidates for environmental restoration activities such as phytoremediation. Relative water content, the radiometric water index and (13)C isotope discrimination (Δ(13)C) results reflected improved water relations in Adige and Lux during summer drought. Leaf structural parameters such as leaf area, leaf mass per area, density (D) and thickness (T) indicated poorer structural adaptations to summer drought in clone 58-861. Nitrogen content and Δ(13)C results pointed to a stomatal component as the main limitant of photosynthesis in all clones. Adige and Lux showed enhanced photoprotection as indicated by the size and the de-epoxidation index of the xanthophyll-cycle pool, and also improved antioxidant defence displayed by higher ascorbate, reduced glutathione, total phenolics and α-tocopherol levels. Photoprotective and antioxidative responses allowed all clones to maintain a high maximum quantum yield of PSII (Fv/Fm) with the exception of Luisa Avanzo and 58-861 which experienced slight photoinhibition in late spring. The study of susceptibility to rust (Melampsora sp.) and lace bug (Monosteira unicostata Muls. and Rey) infections showed Adige and Lux to be the most tolerant. Overall, these two clones presented high adaptability to summer conditions and improved resistance to abiotic and biotic stress, thereby making them highly commendable clones for use in environmental remediation programmes.

  15. Distinct Microbial Communities within the Endosphere and Rhizosphere of Populus deltoides Roots across Contrasting Soil Types ▿†

    PubMed Central

    Gottel, Neil R.; Castro, Hector F.; Kerley, Marilyn; Yang, Zamin; Pelletier, Dale A.; Podar, Mircea; Karpinets, Tatiana; Uberbacher, Ed; Tuskan, Gerald A.; Vilgalys, Rytas; Doktycz, Mitchel J.; Schadt, Christopher W.

    2011-01-01

    The root-rhizosphere interface of Populus is the nexus of a variety of associations between bacteria, fungi, and the host plant and an ideal model for studying interactions between plants and microorganisms. However, such studies have generally been confined to greenhouse and plantation systems. Here we analyze microbial communities from the root endophytic and rhizospheric habitats of Populus deltoides in mature natural trees from both upland and bottomland sites in central Tennessee. Community profiling utilized 454 pyrosequencing with separate primers targeting the V4 region for bacterial 16S rRNA and the D1/D2 region for fungal 28S rRNA genes. Rhizosphere bacteria were dominated by Acidobacteria (31%) and Alphaproteobacteria (30%), whereas most endophytes were from the Gammaproteobacteria (54%) as well as Alphaproteobacteria (23%). A single Pseudomonas-like operational taxonomic unit (OTU) accounted for 34% of endophytic bacterial sequences. Endophytic bacterial richness was also highly variable and 10-fold lower than in rhizosphere samples originating from the same roots. Fungal rhizosphere and endophyte samples had approximately equal amounts of the Pezizomycotina (40%), while the Agaricomycotina were more abundant in the rhizosphere (34%) than endosphere (17%). Both fungal and bacterial rhizosphere samples were highly clustered compared to the more variable endophyte samples in a UniFrac principal coordinates analysis, regardless of upland or bottomland site origin. Hierarchical clustering of OTU relative abundance patterns also showed that the most abundant bacterial and fungal OTUs tended to be dominant in either the endophyte or rhizosphere samples but not both. Together, these findings demonstrate that root endophytic communities are distinct assemblages rather than opportunistic subsets of the rhizosphere. PMID:21764952

  16. Putting the Pieces Together: High-performance LC-MS/MS Provides Network-, Pathway-, and Protein-level Perspectives in Populus

    SciTech Connect

    Abraham, Paul E; Giannone, Richard J; Adams, Rachel M; Kalluri, Udaya C; Tuskan, Gerald A; Hettich, Robert {Bob} L

    2013-01-01

    High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: 1) network-wide, 2) pathway-specific, and 3) protein-level viewpoints. Together, enhanced protein retrieval through a detergent-based lysis approach and maximized peptide sampling via the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 63,056 tryptic peptides. The technological advancements, specifically spectral- acquisition and sequencing speed, afforded the deepest look into the Populus proteome, with peptide abundances spanning 6 orders of magnitude and mapping to~25% of the predicted proteome space. In total, tryptic peptides mapped to 13,574 protein assignments across four organ-types: mature (fully expanded, leaf plastichronic index (LPI) 10-12) leaf, young (juvenile, LPI 4-6) leaf, root, and stem. To resolve protein ambiguity, identified proteins were grouped by sequence similarity ( 90%), thereby reducing the protein assignments into 7,538 protein groups. In addition, this large-scale data set features the first systems-wide survey of protein expression across different Populus organs. As a demonstration of the precision and comprehensiveness of the semi-quantitative analysis, we were able to contrast two stages of leaf development, mature versus young leaf. Statistical comparison through ANOVA analysis revealed 1,432 protein groups that exhibited statistically significant (p 0.01) differences in protein abundance. Experimental validation of the metabolic circuitry expected in mature leaf (characterized by photosynthesis and carbon fixation) compared to young leaf (characterized by rapid growth and moderate photosynthetic

  17. Putting the Pieces Together: High-performance LC-MS/MS Provides Network-, Pathway-, and Protein-level Perspectives in Populus*

    PubMed Central

    Abraham, Paul; Giannone, Richard J.; Adams, Rachel M.; Kalluri, Udaya; Tuskan, Gerald A.; Hettich, Robert L.

    2013-01-01

    High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval through a detergent-based lysis approach and maximized peptide sampling via the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 63,056 tryptic peptides. The technological advancements, specifically spectral-acquisition and sequencing speed, afforded the deepest look into the Populus proteome, with peptide abundances spanning 6 orders of magnitude and mapping to ∼25% of the predicted proteome space. In total, tryptic peptides mapped to 11,689 protein assignments across four organ-types: mature (fully expanded, leaf plastichronic index (LPI) 10–12) leaf, young (juvenile, LPI 4–6) leaf, root, and stem. To resolve protein ambiguity, identified proteins were grouped by sequence similarity (≥ 90%), thereby reducing the protein assignments into 7538 protein groups. In addition, this large-scale data set features the first systems-wide survey of protein expression across different Populus organs. As a demonstration of the precision and comprehensiveness of the semiquantitative analysis, we were able to contrast two stages of leaf development, mature versus young leaf. Statistical comparison through ANOVA analysis revealed 1432 protein groups that exhibited statistically significant (p ≤ 0.01) differences in protein abundance. Experimental validation of the metabolic circuitry expected in mature leaf (characterized by photosynthesis and carbon fixation) compared with young leaf (characterized by rapid growth and moderate

  18. Alternative Splicing Studies of the Reactive Oxygen Species Gene Network in Populus Reveal Two Isoforms of High-Isoelectric-Point Superoxide Dismutase1[C][W

    PubMed Central

    Srivastava, Vaibhav; Srivastava, Manoj Kumar; Chibani, Kamel; Nilsson, Robert; Rouhier, Nicolas; Melzer, Michael; Wingsle, Gunnar

    2009-01-01

    Recent evidence has shown that alternative splicing (AS) is widely involved in the regulation of gene expression, substantially extending the diversity of numerous proteins. In this study, a subset of expressed sequence tags representing members of the reactive oxygen species gene network was selected from the PopulusDB database to investigate AS mechanisms in Populus. Examples of all known types of AS were detected, but intron retention was the most common. Interestingly, the closest Arabidopsis (Arabidopsis thaliana) homologs of half of the AS genes identified in Populus are not reportedly alternatively spliced. Two genes encoding the protein of most interest in our study (high-isoelectric-point superoxide dismutase [hipI-SOD]) have been found in black cottonwood (Populus trichocarpa), designated PthipI-SODC1 and PthipI-SODC2. Analysis of the expressed sequence tag libraries has indicated the presence of two transcripts of PthipI-SODC1 (hipI-SODC1b and hipI-SODC1s). Alignment of these sequences with the PthipI-SODC1 gene showed that hipI-SODC1b was 69 bp longer than hipI-SODC1s due to an AS event involving the use of an alternative donor splice site in the sixth intron. Transcript analysis showed that the splice variant hipI-SODC1b was differentially expressed, being clearly expressed in cambial and xylem, but not phloem, regions. In addition, immunolocalization and mass spectrometric data confirmed the presence of hipI-SOD proteins in vascular tissue. The functionalities of the spliced gene products were assessed by expressing recombinant hipI-SOD proteins and in vitro SOD activity assays. PMID:19176719

  19. Moving Away from the Reference Genome: Evaluating a Peptide Sequencing Tagging Approach for Single Amino Acid Polymorphism Identifications in the Genus Populus

    SciTech Connect

    Abraham, Paul E; Adams, Rachel M; Tuskan, Gerald A; Hettich, Robert {Bob} L

    2013-01-01

    The genetic diversity across natural populations of the model organism, Populus, is extensive, containing a single nucleotide polymorphism roughly every 200 base pairs. When deviations from the reference genome occur in coding regions, they can impact protein sequences. Rather than relying on a static reference database to profile protein expression, we employed a peptide sequence tagging (PST) approach capable of decoding the plasticity of the Populus proteome. Using shotgun proteomics data from two genotypes of P. trichocarpa, a tag-based approach enabled the detection of 6,653 unexpected sequence variants. Through manual validation, our study investigated how the most abundant chemical modification (methionine oxidation) could masquerade as a sequence variant (AlaSer) when few site-determining ions existed. In fact, precise localization of an oxidation site for peptides with more than one potential placement was indeterminate for 70% of the MS/MS spectra. We demonstrate that additional fragment ions made available by high energy collisional dissociation enhances the robustness of the peptide sequence tagging approach (81% of oxidation events could be exclusively localized to a methionine). We are confident that augmenting fragmentation processes for a PST approach will further improve the identification of single amino acid polymorphism in Populus and potentially other species as well.

  20. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO(2) and elevated temperature.

    PubMed

    Zhao, Hongxia; Li, Yongping; Zhang, Xiaolu; Korpelainen, Helena; Li, Chunyang

    2012-11-01

    Dioecious plants, which comprise more than 14,620 species, account for an important component of terrestrial ecosystems. Hence, understanding the sexually dimorphic responses in balancing carbon (C) supply and demand under elevated CO(2) is important for understanding leaf sink-to-source transitions. Here we investigate sex-related responses of the dioecious Populus cathayana Rehd. to elevated CO(2) and elevated temperature. The plants were grown in environmentally controlled growth chambers at two CO(2) enrichment regimes (350 ± 20 and 700 ± 20 μmol mol(-1)) with two temperature levels, elevated by 0 and 2 ± 0.2 °C (compared with the out-of-chamber environment). Plant growth characteristics, carbohydrate accumulation, C and nitrogen (N) allocation, photosynthetic capacity, N use efficiency and the morphology of mesophyll cells were investigated in the developing leaves (DLs) and expanded leaves (ELs) of both males and females. Elevated CO(2) enhanced plant growth and photosynthetic capacity in DLs of both males and females, and induced the male ELs to have a greater leaf mass production, net photosynthesis rate (P(n)), chlorophyll a/b ratio (Chl a/b), soluble protein level (SP), photosynthetic N use efficiency and soluble sugar level compared with females at the same leaf stage. Elevated temperature enhanced source activities and N uptake status during CO(2) enrichment, and the combined treatment induced males to be more responsive than females in sink capacities, especially in ELs, probably due to greater N acquisition from other plant parts. Our findings showed that elevated CO(2) increases the sink capacities of P. cathayana seedlings, and elevated temperature enhances the stimulation effect of elevated CO(2) on plant growth. Male ELs were found to play an important role in N acquisition from roots and stems under decreasing N in total leaves under elevated CO(2). Knowledge of the sex-specific leaf adaptability to warming climate can help us

  1. Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass

    SciTech Connect

    Wilson, Charlotte M; Rodriguez Jr, Miguel; Johnson, Courtney M; Martin, S L.; Chu, Tzu Ming; Wolfinger, Russ; Hauser, Loren John; Land, Miriam L; Klingeman, Dawn Marie; Tschaplinski, Timothy J; Mielenz, Jonathan R; Brown, Steven D

    2013-01-01

    Background The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP) biocatalyst for cellulosic ethanol production. The aim of this study was to investigate C. thermocellum genes required to ferment biomass substrates and to conduct a robust comparison of DNA microarray and RNA sequencing (RNA-seq) analytical platforms. Results C. thermocellum ATCC 27405 fermentations were conducted with a 5 g/L solid substrate loading of either pretreated switchgrass or Populus. Quantitative saccharification and inductively coupled plasma emission spectroscopy (ICP-ES) for elemental analysis revealed composition differences between biomass substrates, which may have influenced growth and transcriptomic profiles. High quality RNA was prepared for C. thermocellum grown on solid substrates and transcriptome profiles were obtained for two time points during active growth (12 hours and 37 hours postinoculation). A comparison of two transcriptomic analytical techniques, microarray and RNA-seq, was performed and the data analyzed for statistical significance. Large expression differences for cellulosomal genes were not observed. We updated gene predictions for the strain and a small novel gene, Cthe_3383, with a putative AgrD peptide quorum sensing function was among the most highly expressed genes. RNAseq data also supported different small regulatory RNA predictions over others. The DNA microarray gave a greater number (2,351) of significant genes relative to RNA-seq (280 genes when normalized by the kernel density mean of M component (KDMM) method) in an analysis of variance (ANOVA) testing method with a 5 % false discovery rate (FDR). When a 2-fold difference in expression threshold was applied, 73 genes were significantly differentially expressed in common between the two techniques. Sulfate and phosphate uptake/utilization genes, along with genes for a putative efflux pump system were some of the most differentially regulated transcripts

  2. Eco-physiological response of Populus euphratica Oliv. to water release of the lower reaches of the Tarim River, China

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Ruan, X.; Chen, Y. N.; Li, W. H.

    2007-10-01

    Eco-physiological and plant performance responses and acclimation of Populus euphratica Oliv. to water release of the lower reaches of Tarim River, China were investigated. Three representative areas and 15 transects were selected along the lower reaches of the Tarim River. The groundwater level and salt content as well as plant performance and the contents of proline, soluble sugar, and plant endogenous hormone (ABA, CTK) in leaves were monitored and analyzed before- and after-water release. The groundwater level was raised in different areas and transects by the water release program. The physiological stress to P. euphratica decreased after the water release. Our results suggested that the groundwater level in the studied region changed from -3.15 to -4.12 m, salt content of the groundwater from 67.15 to 72.65 mM, the proline content from 9.28 to 11.06 mM, the soluble sugar content from 224.71 to 252.16 mM, the ABA content from 3.59 to 5.01 ng/(g FW), and the CK content from 4.01 to 4.56 ng/(g FW)- for the optimum growth and recover of P. euphratica indicated by the plant performance parameters, and the efficiency of water release was the highest.

  3. Molecular evolution and expression divergence of the Populus euphratica Hsf genes provide insight into the stress acclimation of desert poplar.

    PubMed

    Zhang, Jin; Jia, Huixia; Li, Jianbo; Li, Yu; Lu, Mengzhu; Hu, Jianjun

    2016-07-18

    Heat shock transcription factor (Hsf) family is one of the most important regulators in the plant kingdom. Hsf has been demonstrated to be involved in various processes associated with plant growth, development as well as in response to hormone and abiotic stresses. In this study, we carried out a comprehensive analysis of Hsf family in desert poplar, Populus euphratica. Total of 32 genes encoding Hsf were identified and they were classified into three main classes (A, B, and C). Gene structure and conserved motif analyses indicated that the members in each class were relatively conserved. Total of 10 paralogous pairs were identified in PeuHsf family, in which nine pairs were generated by whole genome duplication events. Ka/Ks analysis showed that PeuHsfs underwent purifying selection pressure. In addition, various cis-acting elements involved in hormone and stress responses located in the promoter regions of PeuHsfs. Gene expression analysis indicated that several PeuHsfs were tissue-specific expression. Compared to Arabidopsis, more PeuHsf genes were significantly induced by heat, drought, and salt stresses (21, 19, and 22 PeuHsfs, respectively). Our findings are helpful in understanding the distinguished adaptability of P. euphratica to extreme environment and providing a basis for functional analysis of PeuHsfs in the future.

  4. Genetic structure of Populus hybrid zone along the Irtysh River provides insight into plastid-nuclear incompatibility

    PubMed Central

    Zeng, Yan-Fei; Zhang, Jian-Guo; Duan, Ai-Guo; Abuduhamiti, Bawerjan

    2016-01-01

    In plants, the maintenance of species integrity despite hybridization has often been explained by the co-adaption of nuclear gene complexes. However, the interaction between plastid and nuclear sub-genomes has been underestimated. Here, we analyzed the genetic structure of a Populus alba and P. tremula hybrid zone along the Irtysh River system in the Altai region, northwest China, using both nuclear microsatellites and plastid DNA sequences. We found high interspecific differentiation, although the hybrid P. × canescens was prevalent. Bayesian inference classified most hybrids into F1, followed by a few back-crosses to P. alba, and fewer F2 hybrids and back-crosses to P. tremula, indicating a few introgressions but preference toward P. alba. When plastid haplotypes in parental species were distinct, P. × canescens carried the haplotypes of both parents, but showed significant linkage between intraspecific haplotype and nuclear genotypes at several microsatellite loci. Selection, rather than migration and assortative mating, might have contributed to such plastid-nuclear disequilibria. By removing later-generated hybrids carrying interspecific combinations of haplotype and nuclear genotypes, plastid-nuclear incompatibility has greatly limited the gene exchange between P. alba and P. tremula via backcrossing with hybrids, demonstrating a significant association between plastid haplotype and the proportion of nuclear admixture. PMID:27306416

  5. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max.

    PubMed

    Weston, David J; Karve, Abhijit A; Gunter, Lee E; Jawdy, Sara S; Yang, Xiaohan; Allen, Sara M; Wullschleger, Stan D

    2011-09-01

    The heat shock response continues to be layered with additional complexity as interactions and crosstalk among heat shock proteins (HSPs), the reactive oxygen network and hormonal signalling are discovered. However, comparative analyses exploring variation in each of these processes among species remain relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 to 42 °C and indicated that temperature optimum of light-saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves, and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network-enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock modules relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation.

  6. Populus yunnanensis males adopt more efficient protective strategies than females to cope with excess zinc and acid rain.

    PubMed

    Jiang, Hao; Korpelainen, Helena; Li, Chunyang

    2013-05-01

    Dioecious plants show sexually different responses to environmental stresses. However, little is known about the dimorphic morphological and physiological responses to soil pollution. To investigate sex-related adaptive responses of Populus yunnanensis seedlings when exposed to excess zinc (Zn), acid rain (AR) and their combination (Zn+AR), we analyzed growth parameters, Zn accumulation and allocation, photosynthetic capacity and biochemical responses under different treatments. Results revealed that both excess Zn and Zn+AR have a negative effect on plant growth. Males have a greater potential than females to enrich Zn. The photosynthesis limitation could be attributable to a lower stomatal conductance, photosynthetic nitrogen use efficiency and nitrate reductase activity induced by Zn accumulation. Overproduction of reactive oxygen species was detected, and females showed higher levels of H2O2 and O2- than did males under excess Zn and Zn+AR. In addition, indicators related to plant injury showed expected increases and exhibited sexual differences. Males synthesized more biochemical molecules, such as proline and non-protein thiol, showing a stronger defense capacity in responses to either excess Zn or Zn+AR. Taking into account the Zn accumulation and the resulting injuries in plants, we suggest that excess Zn causes sex-related adaptive responses and males possess a more effective self-protection mechanism, Zn-stressed individuals suffering from AR did not show notable aggravation or alleviation when compared to damages induced by excess Zn alone.

  7. Comparative physiology and transcriptional networks underlying the heat shock response in Populus trichocarpa, Arabidopsis thaliana and Glycine max

    SciTech Connect

    Weston, David; Wullschleger, Stan D; Yang, Xiaohan; Karve, Abhijit A; Gunter, Lee E; Jawdy, Sara; Allen, Sara M

    2011-01-01

    The heat shock response continues to be layered with additional complexity as interactions and crosstalk among heat shock proteins (HSPs), the reactive oxygen network and hormonal signalling are discovered. However, comparative analyses exploring variation in each of these processes among species remain relatively unexplored. In controlled environment experiments, photosynthetic response curves were conducted from 22 to 42 C and indicated that temperature optimum of light-saturated photosynthesis was greater for Glycine max relative to Arabidopsis thaliana or Populus trichocarpa. Transcript profiles were taken at defined states along the temperature response curves, and inferred pathway analysis revealed species-specific variation in the abiotic stress and the minor carbohydrate raffinose/galactinol pathways. A weighted gene co-expression network approach was used to group individual genes into network modules linking biochemical measures of the antioxidant system to leaf-level photosynthesis among P. trichocarpa, G. max and A. thaliana. Network-enabled results revealed an expansion in the G. max HSP17 protein family and divergence in the regulation of the antioxidant and heat shock modules relative to P. trichocarpa and A. thaliana. These results indicate that although the heat shock response is highly conserved, there is considerable species-specific variation in its regulation.

  8. Variation in fluxes estimated from nitrogen isotope discrimination corresponds with independent measures of nitrogen flux in Populus balsamifera L.

    PubMed

    Kalcsits, Lee A; Guy, Robert D

    2016-02-01

    Acquisition of mineral nitrogen by roots from the surrounding environment is often not completely efficient, in which a variable amount of leakage (efflux) relative to gross uptake (influx) occurs. The efflux/influx ratio (E/I) is, therefore, inversely related to the efficiency of nutrient uptake at the root level. Time-integrated estimates of E/I and other nitrogen-use traits may be obtainable from variation in stable isotope ratios or through compartmental analysis of tracer efflux (CATE) using radioactive or stable isotopes. To compare these two methods, Populus balsamifera L. genotypes were selected, a priori, for high or low nitrogen isotope discrimination. Vegetative cuttings were grown hydroponically, and E/I was calculated using an isotope mass balance model (IMB) and compared to E/I calculated using (15) N CATE. Both methods indicated that plants grown with ammonium had greater E/I than nitrate-grown plants. Genotypes with high or low E/I using CATE also had similarly high or low estimates of E/I using IMB, respectively. Genotype-specific means were linearly correlated (r = 0.77; P = 0.0065). Discrepancies in E/I between methods may reflect uncertainties in discrimination factors for the assimilatory enzymes, or temporal differences in uptake patterns. By utilizing genotypes with known variation in nitrogen isotope discrimination, a relationship between nitrogen isotope discrimination and bidirectional nitrogen fluxes at the root level was observed.

  9. Importance of crown architecture for leaf area index of different Populus genotypes in a high-density plantation.

    PubMed

    Broeckx, L S; Verlinden, M S; Vangronsveld, J; Ceulemans, R

    2012-10-01

    Crown architecture is an important determinant of biomass production and yield of any bio-energy plantation since it determines leaf area display and hence light interception. Four Populus genotypes-of different species and hybrids and with contrasting productivity and leaf area-were examined in terms of their branch characteristics in relation to crown architecture during the first and second growing seasons after plantation establishment. The trees were planted at high density (8000 ha(-1)) on two different former land use types, cropland and pasture. We documented significant differences in branch architecture among the genotypes and for the first year among the former land use types. Land use effects only affected factors not related to canopy closure and wood production, and decreased after the first growing season. This suggested that both former land use types were equally suited for the establishment success of a poplar bio-energy plantation. Tree height and branch dimensions-branch diameter and branch length-were the most important determinants of wood production and maximum leaf area index. Despite the secondary importance of the number of sylleptic branches, these branches contributed significantly to the total leaf area in three out of the four studied genotypes. This indicated that enhanced syllepsis accelerates leaf area development and hence carbon assimilation, especially in the early stages of a high-density plantation with poplar.

  10. Survival of plains cottonwood (Populus deltoides subsp. monilifera) and saltcedar (Tamarix ramosissima) seedlings in response to flooding

    USGS Publications Warehouse

    Gladwin, D.N.; Roelle, J.E.

    1998-01-01

    We examined the response of first year saltcedar (Tamarix ramosissima) and plains cottonwood (Populus deltoides subsp. monilifera) seedlings to flooding in fall (25 days) and spring (28 days) using potgrown plants (12-18 individuals/26.5-liter pot). Seedlings were initially counted in all pots prior to fall treatment. Survival was calculated as the proportion of seedlings in each pot still alive following spring treatment. Mean survival rates of seedlings flooded in fall (saltcedar = 0.8%, cottonwood = 20.8%, n = 14 pots) were lower compared to the spring flooding treatment (saltcedar = 91.1%, cottonwood = 92.2%, n = 13) and control (saltcedar = 93.9%, cottonwood = 98.7%, n = 14). We used multiple response permutation procedures to detect omnibus distributional differences in survival data (total tests = 9) because assumptions of normality and equal variance were not met. Survival distributions differed between saltcedar and cottonwood fall flooding groups (P 0.07). Smaller size and consequent lack of energy reserves may account for lower survival of saltcedar compared to cottonwood in the fall treatment and for lower survival of both species in the fall treatment compared to the spring treatment. Fall flooding for controlling first year saltcedar seedlings is suggested as a potentially useful technique in riparian habitat restoration and management in the southwestern United States.

  11. Corticibacterium populi gen. nov., sp. nov., a member of the family Phyllobacteriaceae, isolated from bark of Populus × euramericana.

    PubMed

    Li, Yong; Li, Xia; Guo, Li-Min; Chang, Ju-Pu; Xie, Shou-Jiang; Piao, Chun-Gen

    2016-04-20

    Two Gram-negative, aerobic, motile, slimy, glossy bacterial strains were isolated from bark tissue of Populus × euramericana. The bacteria grew at 10-37 °C and pH 5-10, with optimal growth at 28-30 °C and pH 6.0-8.0. Both strains grew at 0-3% (w/v) NaCl. In the maximum-likelihood phylogenetic tree, the two isolates formed a distinct branch within the family Phyllobacteriaceae, and they were not closely related to any of the genera within Phyllobacteriaceae. The two novel isolates were positive for oxidase and catalase activity. The polar lipids profile revealed diphosphatidylglycerol, phosphatidylcholine, phospholipid, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, and five unknown lipids. The major fatty acids were C18:1 ω7c and C 16:0. The DNA G+C content was 56.4 mol%. On the basis of phylogenetic, chemotaxonomic and phenotypic data, two strains represent a novel species belonging to a novel genus of the family Phyllobacteriaceae, for which the name Corticibacterium populi gen. nov. sp. nov. is proposed. The type strain of the type species is 16B10-2-7T (=CFCC 12884T =KCTC 42249T).

  12. Quantitative Proteomic Analysis Reveals Populus cathayana Females Are More Sensitive and Respond More Sophisticatedly to Iron Deficiency than Males.

    PubMed

    Zhang, Sheng; Zhang, Yunxiang; Cao, Yanchun; Lei, Yanbao; Jiang, Hao

    2016-03-04

    Previous studies have shown that there are significant sexual differences in the morphological and physiological responses of Populus cathayana Rehder to nitrogen and phosphorus deficiencies, but little is known about the sex-specific differences in responses to iron deficiency. In this study, the effects of iron deficiency on the morphology, physiology, and proteome of P. cathayana males and females were investigated. The results showed that iron deficiency (25 days) significantly decreased height growth, photosynthetic rate, chlorophyll content, and tissue iron concentration in both sexes. A comparison between the sexes indicated that iron-deficient males had less height inhibition and photosynthesis system II or chloroplast ultrastructural damage than iron-deficient females. iTRAQ-based quantitative proteomic analysis revealed that 144 and 68 proteins were decreased in abundance (e.g., proteins involved in photosynthesis, carbohydrate and energy metabolism, and gene expression regulation) and 78 and 39 proteins were increased in abundance (e.g., proteins involved in amino acid metabolism and stress response) according to the criterion of ratio ≥1.5 in females and males, respectively. A comparison between the sexes indicated that iron-deficient females exhibited a greater change in the proteins involved in photosynthesis, carbon and energy metabolism, the redox system, and stress responsive proteins. This study reveals females are more sensitive and have a more sophisticated response to iron deficiency compared with males and provides new insights into differential sexual responses to nutrient deficiency.

  13. Genome-wide Identification of TCP Family Transcription Factors from Populus euphratica and Their Involvement in Leaf Shape Regulation.

    PubMed

    Ma, Xiaodong; Ma, Jianchao; Fan, Di; Li, Chaofeng; Jiang, Yuanzhong; Luo, Keming

    2016-09-08

    Higher plants have been shown to experience a juvenile vegetative phase, an adult vegetative phase, and a reproductive phase during its postembryonic development and distinct lateral organ morphologies have been observed at the different development stages. Populus euphratica, commonly known as a desert poplar, has developed heteromorphic leaves during its development. The TCP family genes encode a group of plant-specific transcription factors involved in several aspects of plant development. In particular, TCPs have been shown to influence leaf size and shape in many herbaceous plants. However, whether these functions are conserved in woody plants remains unknown. In the present study, we carried out genome-wide identification of TCP genes in P. euphratica and P. trichocarpa, and 33 and 36 genes encoding putative TCP proteins were found, respectively. Phylogenetic analysis of the poplar TCPs together with Arabidopsis TCPs indicated a biased expansion of the TCP gene family via segmental duplications. In addition, our results have also shown a correlation between different expression patterns of several P. euphratica TCP genes and leaf shape variations, indicating their involvement in the regulation of leaf shape development.

  14. Sexual competition and N supply interactively affect the dimorphism and competiveness of opposite sexes in Populus cathayana.

    PubMed

    Chen, Juan; Dong, Tingfa; Duan, Baoli; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2015-07-01

    Several important dioecious species show sexual spatial segregation (SSS) along environmental gradients that have significant ecological effect on terrestrial ecosystem. However, little attention has been paid to understanding of how males and females respond to environmental gradients and sexual competition. We compared eco-physiological parameters of males and females of Populus cathayana under different sexual competition patterns and nitrogen (N) supply levels. We found that males and females interacting with the same or opposite sex showed significant differences in biomass partition, photosynthetic capacity, carbon (C) and N metabolism, and leaf ultrastructure, and that the sexual differences to competition were importantly driven by N supply. The intersexual competition was enhanced under high N, while the intrasexual competition among females was amplified under low N. Under high N, the intersexual competition stimulated the growth of the females and negatively affected the males. In contrast, under low N, the males exposed to intrasexual competition had the highest tolerance, whereas females exposed to intrasexual competition showed the lowest adaptation among all competition patterns. Sexual competition patterns and N supply levels significantly affected the sexual dimorphism and competitiveness, which may play an important role in spatial segregation of P. cathayana populations.

  15. Transcriptional profiling analysis in Populus yunnanensis provides insights into molecular mechanisms of sexual differences in salinity tolerance

    PubMed Central

    Jiang, Hao; Peng, Shuming; Zhang, Sheng; Li, Xinguo; Korpelainen, Helena; Li, Chunyang

    2012-01-01

    Physiological responses to abiotic stress in plants exhibit sexual differences. Females usually experience greater negative effects than males; however, little is known about the molecular mechanisms of sexual differences in abiotic stress responses. In the present study, transcriptional responses to salinity treatments were compared between male and female individuals of the poplar Populus yunnanensis. It was found that several functional groups of genes involved in important pathways were differentially expressed, including photosynthesis-related genes, which were mainly up-regulated in males but down-regulated in females. This gene expression pattern is consistent with physiological observations showing that salinity inhibited photosynthetic capacity more in females than in males. Furthermore, genes located in autosomes rather than in the female-specific region of the W chromosome are the major contributors to the sexual differences in the salinity tolerance of poplars. In conclusion, this study provided molecular evidence of sexual differences in the salinity tolerance of poplars. The identified sex-related genes in salinity tolerance and their functional groups will enhance our understanding of sexual differences in salinity stress at the transcription level. PMID:22442418

  16. Comparative photochemistry activity and antioxidant responses in male and female Populus cathayana cuttings inoculated with arbuscular mycorrhizal fungi under salt

    PubMed Central

    Wu, Na; Li, Zhen; Wu, Fei; Tang, Ming

    2016-01-01

    We investigated the impact of arbuscular mycorrhizal fungi (AMF) on the morphology and physiology of two genders of the typical dioecious plant Populus cathayana under salt stress. We conducted a pot experiment containing seedlings of the two genders that were subjected to salt or non-salt and filled with soil that was either inoculated with Rhizophagus intraradices or not. The results showed that males had higher mycorrhizal dependency than females. Salt stress decreased growth, the relative water content and chlorophyll fluorescence. Meanwhile, salt increased the superoxide radical (O2−), and hydrogen peroxide (H2O2) contents and antioxidant enzyme activities. Mycorrhizal male seedlings performed better than females in shoot morphological growth under both conditions and in chlorophyll fluorescence parameters, O2− and H2O2 contents, MDA concentration, proline content and antioxidant enzymes activities under salt stress. In females, under saline conditions, a lower MDA concentration and H2O2, O2− and proline contents were observed in the leaves and roots. In addition, inoculated female plants performed better in chlorophyll fluorescence parameters than non-inoculated plants. AMF inoculation had either slight or no effects on the performance of females. These findings suggested that when subjected to stress and AMF, differences in the genders existed, followed by the alleviation of the damage to P. cathayana by AMF via improving growth and photosynthesis and antioxidant systems under salt stress. PMID:27898056

  17. Minimum Irrigation Requirements for Cottonwood (Populus fremontii and P. deltoides) and Willow (Salix gooddingii) Grown in a Desert Environment

    NASA Astrophysics Data System (ADS)

    Glenn, E. P.; Hartwell, S.; Morino, K.; Nagler, P. L.

    2009-12-01

    Native tree plots have been established in riverine irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the minimum effective irrigation requirements of the target species. We summarize preliminary (or unpublished) findings of a study or cottonwood (Populus spp.) and willow (Salix gooddingii) trees that were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona to determine plant water use. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three summer irrigation schedules: 6.2 mm d-1; 8.26 mm d-1 and 15.7 mm d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, but willows suffered partial die-back on this rate, and required 8.26 mm d-1 to maintain growth. These irrigation rates were required April 15 - September 15, but only 0.88 mm d-1 was required during the dormant periods of the year. Expressed as a fraction of reference crop evapotranspiration (ET/ETo), annual water requirements were 0.83 ETo for cottonwood and 1.01 ETo for willow, which includes irrigation plus precipitation. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use.

  18. Multiplication and growth of hybrid poplar (Populus alba × P. tremula) shoots on a hormone-free medium.

    PubMed

    Ziauka, J; Kuusienė, Sigutė

    2014-09-01

    The present study explored an alternative approach for poplar micropropagation, based on the restriction of gas exchange between inside and outside environments of culture vessel, rather than on the application of exogenous hormones. Apical and nodal stem segments (explants) excised from in vitro-developed shoots of hybrid white poplar (Populus alba L. × P. tremula L.) were incubated in either sealed (with Parafilm) or unsealed capped glass culture tubes (150 × 20 mm) on a hormone-free Woody Plant Medium. Shoot proliferation on apical explants was observed in sealed culture tubes but not in the unsealed ones; the difference between these two samples in respect of shoot number increased in the course of time and became threefold after three months of culture, with 3.2 ± 0.4 (mean ± SE) shoots per explant in the sealed tubes versus 1.1 ± 0.1 in the unsealed ones (for comparison, the mean shoot numbers on nodal explants were 2.4 ± 0.3 and 3.4 ± 0.4 in the unsealed and sealed culture tubes, respectively). Moreover, the shoots taken from the sealed culture tubes could be distinguished by superior shoot length, if compared to the shoots from the unsealed tubes, during the subsequent culture stage under uniform conditions.

  19. Precocious flowering in trees: the FLOWERING LOCUS T gene as a research and breeding tool in Populus.

    PubMed

    Zhang, Huanling; Harry, David E; Ma, Cathleen; Yuceer, Cetin; Hsu, Chuan-Yu; Vikram, Vikas; Shevchenko, Olga; Etherington, Elizabeth; Strauss, Steven H

    2010-06-01

    Expression of FLOWERING LOCUS T (FT) and its homologues has been shown to accelerate the onset of flowering in a number of plant species, including poplar (Populus spp.). The application of FT should be of particular use in forest trees, as it could greatly accelerate and enable new kinds of breeding and research. Recent evidence showing the extent to which FT is effective in promoting flowering in trees is discussed, and its effectiveness in poplar is reported. Results using one FT gene from Arabidopsis and two from poplar, all driven by a heat-inducible promoter, transformed into two poplar genotypes are also described. Substantial variation in flowering response was observed depending on the FT gene and genetic background. Heat-induced plants shorter than 30 cm failed to flower as well as taller plants. Plants exposed to daily heat treatments lasting 3 weeks tended to produce fewer abnormal flowers than those in heat treatments of shorter durations; increasing the inductive temperature from 37 degrees C to 40 degrees C produced similar benefits. Using optimal induction conditions, approximately 90% of transgenic plants could be induced to flower. When induced FT rootstocks were grafted with scions that lacked FT, flowering was only observed in rootstocks. The results suggest that a considerable amount of species- or genotype-specific adaptation will be required to develop FT into a reliable means for shortening the generation cycle for breeding in poplar.

  20. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides

    SciTech Connect

    Fahrenkrog, Annette M.; Neves, Leandro G.; Resende, Jr., Marcio F. R.; Vazquez, Ana I.; de los Campos, Gustavo; Dervinis, Christopher; Sykes, Robert; Davis, Mark; Davenport, Ruth; Barbazuk, William B.; Kirst, Matias

    2016-09-06

    Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. Lastly, these polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.

  1. Direct matrix-assisted laser desorption/ionization mass spectrometric imaging of cellulose and hemicellulose in Populus tissue.

    PubMed

    Lunsford, Kyle Ann; Peter, Gary F; Yost, Richard A

    2011-09-01

    Imaging applied toward lignocellulosic materials requires high molecular specificity to map specific compounds within intact tissue. Although secondary ionization mass spectrometry (SIMS) and matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS) with a single stage of MS have been used to image lignocellulosic biomass, the complexity of the plant tissue requires tandem MS, which limits the interpretation of simple MS. MALDI linear ion trap (LIT) tandem MS offers the high molecular specificity needed for lignocellulosic analyses. MALDI-LIT MS analyses of cellulose and xylan (hemicellulose) standards were performed to determine mass-to-charge ratios and fragmentation pathways for identification of these compounds in intact tissue. The MALDI-LIT-MS images of young Populus wood stem showed even distribution of both cellulose and hemicellulose ions; in contrast, the tandem MS images of cellulose and hemicellulose generated by plotting characteristic fragment ions resulted in drastically different images. This demonstrates that isobaric ions are present during MALDI-LIT-MS analyses of wood tissue and tandem MS is necessary to distinguish between isobaric species for selective imaging of carbohydrates in biomass.

  2. Identification of novel and conserved Populus tomentosa microRNA as components of a response to water stress.

    PubMed

    Ren, Yuanyuan; Chen, Lei; Zhang, Yiyun; Kang, Xiangyang; Zhang, Zhiyi; Wang, Yanwei

    2012-06-01

    MicroRNAs (miRNAs) are a class of small, non-coding RNAs that play important downregulation roles in plants growth, development, and stress responses. To better identify Populus tomentosa miRNAs and understand the functions of miRNAs in response to water stress (drought and flooding), 152 conserved miRNAs belonging to 36 miRNA families, 8 known but non-conserved miRNAs and 64 candidate novel miRNAs belonging to 54 miRNA families were identified and analyzed from three small RNA (sRNA) libraries (drought treatment, flooding treatment, and control) by high-throughput sequencing combined with qRT-PCR. Significant changes in the expression of 17 conserved miRNA families and nine novel miRNAs were observed in response to drought stress, and in seven conserved miRNA families and five novel miRNAs in response to flooding stress. Both miRNA and miRNA*s were involved in the regulation of plant stress responses. The annotation of the potential targets of miRNAs with differential expression indicate that many types of genes encoding transcription factors, enzymes, and signal transduction components are implicated in the abiotic stress response..

  3. Sexual epigenetics: gender-specific methylation of a gene in the sex determining region of Populus balsamifera

    PubMed Central

    Bräutigam, Katharina; Soolanayakanahally, Raju; Champigny, Marc; Mansfield, Shawn; Douglas, Carl; Campbell, Malcolm M.; Cronk, Quentin

    2017-01-01

    Methylation has frequently been implicated in gender determination in plants. The recent discovery of the sex determining region (SDR) of balsam poplar, Populus balsamifera, pinpointed 13 genes with differentiated X and Y copies. We tested these genes for differential methylation using whole methylome sequencing of xylem tissue of multiple individuals grown under field conditions in two common gardens. The only SDR gene to show a marked pattern of gender-specific methylation is PbRR9, a member of the two component response regulator (type-A) gene family, involved in cytokinin signalling. It is an ortholog of Arabidopsis genes ARR16 and ARR17. The strongest patterns of differential methylation (mostly male-biased) are found in the putative promoter and the first intron. The 4th intron is strongly methylated in both sexes and the 5th intron is unmethylated in both sexes. Using a statistical learning algorithm we find that it is possible accurately to assign trees to gender using genome-wide methylation patterns alone. The strongest predictor is the region coincident with PbRR9, showing that this gene stands out against all genes in the genome in having the strongest sex-specific methylation pattern. We propose the hypothesis that PbRR9 has a direct, epigenetically