Science.gov

Sample records for porcine enteropathogenic escherichia

  1. Association of Escherichia coli with the Small Intestinal Epithelium I. Comparison of Enteropathogenic and Nonenteropathogenic Porcine Strains in Pigs

    PubMed Central

    Bertschinger, Hans U.; Moon, Harley W.; Whipp, Shannon C.

    1972-01-01

    Two enteropathogenic strains of Escherichia coli (EEC) differed from a nonenteropathogenic strain of E. coli (NEEC) in their association with porcine small intestinal epithelium. The EEC characteristically were found along villi from tip to base and contiguous to the brush border. They were not in crypts. In contrast, the NEEC characteristically remained in the central lumen near the tips of villi and was only occasionally contiguous to the brush border. No organisms were detected within epithelial cells. The difference in distribution between EEC and NEEC was apparent in ligated jejunal loops 45 min postexposure. The association between host and bacterial cells was most consistently demonstrated on frozen sections of intestine, as other histological techniques removed many bacteria. However, cellular details of the association were best demonstrated in chemically fixed tissues. Images PMID:4564680

  2. An examination of the O and K specificity involved in the antibody-induced loss of the K88 plasmid from porcine enteropathogenic strains of Escherichia coli.

    PubMed Central

    Linggood, M A; Ellis, M L; Porter, P

    1979-01-01

    The heat-labile K88 antigen, a virulence determinant coded for by a transmissible plasmid, was eliminated from enteropathogenic strains of Escherichia coli by passage through media containing antibodies to the heat stable antigens of an Abbotstown (O149:K91,K88ac) strain. The plasmid-curing activity of O149 antisera was not O-antigen specific as O149, O45, O8 and O138 strains of E. coli could be 'cured' of their K88 plasmids by this technique. The curing activity was differentiated from the O-antibody by gel filtration, the O149 antibodies were eluted in the IgM peak while the curing activity was found in the IgG peak. In view of the lack of O-specificity and the absence of K88 antibodies it appears that antibodies to a common heat-stable antigenic determinant were involved in this phenomenon. PMID:92455

  3. Enteropathogenic Escherichia coli: foe or innocent bystander?

    PubMed

    Hu, J; Torres, A G

    2015-08-01

    Enteropathogenic Escherichia coli (EPEC) remain one the most important pathogens infecting children and they are one of the main causes of persistent diarrhoea worldwide. Historically, typical EPEC (tEPEC), defined as those isolates with the attaching and effacement (A/E) genotype (eae(+)), which possess bfpA(+) and lack the stx(-) genes are found strongly associated with diarrhoeal cases. However, occurrence of atypical EPEC (aEPEC; eae(+)bfpA(-)stx(-)) in diarrhoeal and asymptomatic hosts has made investigators question the role of these pathogens in human disease. Current epidemiological data are helping to answer the question of whether EPEC is mainly a foe or an innocent bystander during infection.

  4. A surprising sweetener from enteropathogenic Escherichia coli

    PubMed Central

    Pearson, Jaclyn S; Hartland, Elizabeth L

    2014-01-01

    Infections with enteropathogenic Escherichia coli (EPEC) are remarkably devoid of gut inflammation and necrotic damage compared to infections caused by invasive pathogens such as Salmonella and Shigella. Recently, we observed that EPEC blocks cell death using the type III secretion system (T3SS) effector NleB. NleB mediated post-translational modification of death domain containing adaptor proteins by the covalent attachment of N-acetylglucosamine (GlcNAc) to a conserved arginine in the death domain.  N-linked glycosylation of arginine has not previously been reported in mammalian cell biology and the precise biochemistry of this modification is not yet defined. Although the addition of a single GlcNAc to arginine is a seemingly slight alteration, the impact of NleB is considerable as arginine in this location is critical for death domain interactions and death receptor induced apoptosis. Hence, by blocking cell death, NleB promotes enterocyte survival and thereby prolongs EPEC attachment to the gut epithelium. PMID:25536377

  5. A surprising sweetener from enteropathogenic Escherichia coli.

    PubMed

    Pearson, Jaclyn S; Hartland, Elizabeth L

    2014-01-01

    Infections with enteropathogenic Escherichia coli (EPEC) are remarkably devoid of gut inflammation and necrotic damage compared to infections caused by invasive pathogens such as Salmonella and Shigella. Recently, we observed that EPEC blocks cell death using the type III secretion system (T3SS) effector NleB. NleB mediated post-translational modification of death domain containing adaptor proteins by the covalent attachment of N-acetylglucosamine (GlcNAc) to a conserved arginine in the death domain.  N-linked glycosylation of arginine has not previously been reported in mammalian cell biology and the precise biochemistry of this modification is not yet defined. Although the addition of a single GlcNAc to arginine is a seemingly slight alteration, the impact of NleB is considerable as arginine in this location is critical for death domain interactions and death receptor induced apoptosis. Hence, by blocking cell death, NleB promotes enterocyte survival and thereby prolongs EPEC attachment to the gut epithelium.

  6. Enteropathogenic Escherichia coli Serotypes and Endemic Diarrhea in Infants

    PubMed Central

    Toledo, M. Regina F.; Alvariza, M. do Carmo B.; Murahovschi, Jayme; Ramos, Sonia R. T. S.; Trabulsi, Luiz R.

    1983-01-01

    Enteropathogenic Escherichia coli serotypes were searched for in feces of 550 children with endemic diarrhea and in 129 controls, in São Paulo, in 1978 and 1979; serotypes O111ab:H−, O111ab:H2, and O119:H6 were significantly associated with diarrhea in children 0 to 5 months old and were the most frequent agents of diarrhea in this age group as compared with enterotoxigenic and enteroinvasive E. coli, Salmonella sp., Shigella sp., and Yersinia enterocolitica. It is concluded that various enteropathogenic E. coli serotypes may be agents of endemic infantile diarrhea. PMID:6339384

  7. Differential effects of clathrin and actin inhibitors on internalization of Escherichia coli and Salmonella choleraesuis in porcine jejunal Peyer's patches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peyer’s patches constitute both an inductive immune site and an enteropathogen invasion route. Peyer’s patch mucosae from porcine jejunum were mounted in Ussing chambers, and either Salmonella choleraesuis vaccine strain SC-54 or non-pathogenic rodent and porcine Escherichia coli strains contacted ...

  8. Enteropathogenic Escherichia coli (EPEC) infection in association with acute gastroenteritis in 7 dogs from Saskatchewan.

    PubMed

    Kjaergaard, Astrid B; Carr, Anthony P; Gaunt, M Casey

    2016-09-01

    Seven dogs diagnosed with enteropathogenic Escherichia coli (EPEC) infection in association with acute gastroenteritis are described. Disease severity ranged from mild in adults to fatal disease in young dogs. Enteropathogenic E. coli infection should be considered as a possible differential diagnosis in dogs with diarrhea. PMID:27587889

  9. Distribution of class 1 integrons among enteropathogenic Escherichia coli.

    PubMed

    Najibi, S; Bakhshi, B; Fallahzad, S; Pourshafie, M R; Katouli, M; Sattari, M; Alebouyeh, M; Tajbakhsh, M

    2012-05-01

    The aim of this study was to investigate the incidence of and resistance gene content of class 1 integrons among enteropathogenic Escherichia coli (EPEC) and non-EPEC and to investigate intraspecies genetic diversity of EPEC strains isolated from children with diarrhea in Iran. Twenty-eight EPEC and 16 non-EPEC strains isolated from children with diarrhea were tested for the presence of a class 1 integron associated integrase gene (int1). Sequence analysis was performed to identify the resistance gene content of integrons. Genetic diversity and cluster analysis of EPEC isolates were also investigated using enterobacterial repetitive intergenic concensus-polymerase chain reaction (ERIC-PCR) fingerprinting. Twenty-three (82%) EPEC isolates and 11 (68.7%) non-EPEC isolates harbored the int1 gene specific to the conserved integrase region of class 1 integrons. Sequence analysis revealed the dominance of dfrA and aadA gene cassettes among the isolates of both groups. ERIC-PCR fingerprinting of EPEC isolates revealed a high diversity among these isolates. The widespread distribution of 2 resistance gene families (dfrA and aadA) among both groups of EPEC and non-EPEC isolates indicates the significance of integrons in antibiotic resistance transfer among these bacteria. Furthermore, clonal diversity of EPEC isolates harbouring a class 1 integron also suggests the circulation of these mobile elements among a diverse population of EPEC in this country. PMID:22540184

  10. Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements.

    PubMed

    Wong, Alexander R C; Pearson, Jaclyn S; Bright, Michael D; Munera, Diana; Robinson, Keith S; Lee, Sau Fung; Frankel, Gad; Hartland, Elizabeth L

    2011-06-01

    The human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) share a unique mechanism of colonization that results from the concerted action of effector proteins translocated into the host cell by a type III secretion system (T3SS). EPEC and EHEC not only induce characteristic attaching and effacing (A/E) lesions, but also subvert multiple host cell signalling pathways during infection. Our understanding of the mechanisms by which A/E pathogens hijack host cell signalling has advanced dramatically in recent months with the identification of novel activities for many effectors. In addition to further characterization of established effectors (Tir, EspH and Map), new effectors have emerged as important mediators of virulence through activities such as mimicry of Rho guanine nucleotide exchange factors (Map and EspM), inhibition of apoptosis (NleH and NleD), interference with inflammatory signalling pathways (NleB, NleC, NleE and NleH) and phagocytosis (EspF, EspH and EspJ). The findings have highlighted the multifunctional nature of the effectors and their ability to participate in redundant, synergistic or antagonistic relationships, acting in a co-ordinated spatial and temporal manner on different host organelles and cellular pathways during infection.

  11. [Acute diarrheal disease caused by enteropathogenic Escherichia coli in Colombia].

    PubMed

    Gómez-Duarte, Oscar G

    2014-10-01

    Intestinal Escherichia coli pathogens are leading causes of acute diarrheal disease in children less than 5 years in Latin America, Africa and Asia and a leading cause of death in children living in poorest communities in Africa and South East Asia. Studies on the role of E. coli pathogens in childhood diarrhea in Colombia and other countries in Latin America are limited due to the lack of detection assays in clinical laboratories at the main urban medical centers. Recent studies report that enterotoxigenic E. coli is the most common E. coli pathogens associated with diarrhea in children less than 5 years of age. Other E. coli pathotypes have been detected in children with diarrhea including enteropathogenic, enteroaggregative, shiga-toxin producing and diffusely adherent E. coli. It was also found that meat and vegetables at retail stores are contaminated with Shiga-toxin producing E. coli and enteroaggregative E. coli, suggesting that food products are involved in transmission and infection of the susceptible host. More studies are necessary to evaluate the mechanisms of transmission, the impact on the epidemiology of diarrheal disease, and management strategies and prevention of these pathogens affecting the pediatric population in Colombia.

  12. relA Enhances the Adherence of Enteropathogenic Escherichia coli

    PubMed Central

    Spira, Beny; Ferreira, Gerson Moura; de Almeida, Luiz Gustavo

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) is a known causative agent of diarrhea in children. In the process of colonization of the small intestine, EPEC synthesizes two types of adhesins, the bundle-forming pilus (BFP) and intimin. The BFP pilus is an adhesin associated with the initial stages of adherence of EPEC to epithelial cells, while the outer membrane protein intimin carries out the intimate adherence that takes place at the third stage of infection. BFP is encoded by the bfp operon located in plasmid EAF, present only in typical EPEC isolates, while eae, the gene that encodes intimin is situated in the LEE, a chromosomal pathogenicity island. Transcription of bfp and eae is regulated by the products of the perABC operon, also present in plasmid EAF. Here we show that deletion of relA, that encodes a guanosine penta and tetraphosphate synthetase impairs EPEC adherence to epithelial cells in vitro. In the absence of relA, the transcription of the regulatory operon perABC is reduced, resulting in lower levels of BFP and intimin. Bacterial adherence, BFP and intimin synthesis and perABC expression are restored upon complementation with the wild-type relA allele. PMID:24643076

  13. Mutual Enhancement of Virulence by Enterotoxigenic and Enteropathogenic Escherichia coli

    PubMed Central

    Crane, John K.; Choudhari, Shilpa S.; Naeher, Tonniele M.; Duffey, Michael E.

    2006-01-01

    Enterotoxigenic Escherichia coli (ETEC) and enteropathogenic E. coli (EPEC) are common causes of diarrhea in children in developing countries. Dual infections with both pathogens have been noted fairly frequently in studies of diarrhea around the world. In previous laboratory work, we noted that cholera toxin and forskolin markedly potentiated EPEC-induced ATP release from the host cell, and this potentiated release was found to be mediated by the cystic fibrosis transmembrane conductance regulator. In this study, we examined whether the ETEC heat-labile toxin (LT) or the heat-stable toxin (STa, also known as ST) potentiated EPEC-induced ATP release. We found that crude ETEC culture filtrates, as well as purified ETEC toxins, did potentiate EPEC-induced ATP release in cultured T84 cells. Coinfection of T84 cells with live ETEC plus EPEC bacteria also resulted in enhanced ATP release compared to EPEC alone. In Ussing chamber studies of chloride secretion, adenine nucleotides released from the host by EPEC also significantly enhanced the chloride secretory responses that were triggered by crude ETEC filtrates, purified STa, and the peptide hormone guanylin. In addition, adenosine and LT had additive or synergistic effects in inducing vacuole formation in T84 cells. Therefore, ETEC toxins and EPEC-induced damage to the host cell both enhance the virulence of the other type of E. coli. Our in vitro data demonstrate a molecular basis for a microbial interaction, which could result in increased severity of disease in vivo in individuals who are coinfected with ETEC and EPEC. PMID:16495521

  14. Antibiotics in the treatment of gastroenteritis caused by enteropathogenic Escherichia coli.

    PubMed

    Thorén, A; Wolde-Mariam, T; Stintzing, G; Wadström, T; Habte, D

    1980-01-01

    The role of antibiotics in treating endemic infantile diarrhea caused by enteropathogenic Escherichia coli has not been determined. In a controlled study of 49 patients, one group received mecillinam and another group received trimethoprim-sulfamethoxazole. A third group served as control subjects. Serotype O111:B4 dominated. Treatment, as evaluated clinically on the third day, resulted in cure for 79% of those receiving mecillinam, 73% of those receiving trimethoprim-sulfamethoxazole, and 7% of the control subjects. Bacteriologic cure was confirmed in 53%, 53%, and 0, respectively. The statistically significant difference between antibiotic-treated patients and control subjects (P less than 0.001) indicated that antibiotics are an important supplement in the treatment of endemic severe diarrhea caused by enteropathogenic E. coli. PMID:6245145

  15. Gastroenteritis due to enteropathogenic, enterotoxigenic, and invasive Escherichia coli: A review.

    PubMed

    Pickering, L K

    1979-09-01

    Escherichia coli that produce diarrhea can be divided into three groups: 1) enteropathogenic, 2) enterotoxigenic, and 3) enteroinvasive. The mechanism of disease production by enteropathogenic E. coli is unknown, but these strains are not presently known to be inherently pathogenic, although they may be important as a cause of gastroenteritis in infants. The two known mechanisms of disease production are elaboration of enterotoxin and mucosal invasion. Heat-labile toxin-producing E. coli are the main cause of diarrhea in travelers while heat-stable toxin-producing E. coli are a cause of scours among new-born swine and cattle. Enteroinvasive E. coli have not been shown to be an important cause of diarrhea in the United States. Enteropathogenic, enterotoxigenic, and enteroinvasive E. coli that currently are associated with diarrhea worldwide may each consist of relatively few serotypes different from those associated with out-breaks of diarrhea in the past. This implies a possible new role for sero-typing of E. coli.

  16. Invasive potential of noncytotoxic enteropathogenic Escherichia coli in an in vitro Henle 407 cell model.

    PubMed Central

    Miliotis, M D; Koornhof, H J; Phillips, J I

    1989-01-01

    The invasive capacity of 13 enteropathogenic Escherichia coli strains was assessed in vitro in Henle 407 cell culture. Both fluorescent microscopy of infected monolayers stained with acridine orange and electron microscopy revealed the presence of intracellular bacteria. As shown by acridine orange-stained infected monolayers, the number of internalized bacteria increased with time. Monolayers infected for 3 h were treated with antibiotics and either [14C]glutamine or [3H]leucine and incubated for various time intervals, after which the amount of radioactivity present in the washed monolayers was measured. A significant (P less than 0.005) increase in uptake was evident for up to 4 h after the addition of radiolabeled amino acid. This finding was confirmed by an increase in bacterial number in cultured cells and in protein concentration of infected cells with time. None of the South African enteropathogenic E. coli isolates used in these studies produced Vero cytotoxin. These findings demonstrate that, in addition to adherence, cell penetration and intracellular multiplication take place in epithelial cell-derived tissue culture cells infected by enteropathogenic E. coli. Images PMID:2659527

  17. Isolation of atypical enteropathogenic Escherichia coli from chicken and chicken-derived products.

    PubMed

    Alonso, M Z; Sanz, M E; Irino, K; Krüger, A; Lucchesi, P M A; Padola, N L

    2016-04-01

    Atypical enteropathogenic Escherichia coli (EPEC) strains from chicken and chicken-derived products were isolated and characterised. The strains presented a wide variety of serotypes, some have been reported in other animal species (O2:H40, O5:H40) and in children with diarrhoea (O8:H-). Most of the strains carried intimin β. The results indicate that chicken and chicken products are important sources of atypical EPEC strains that could be associated with human disease, and highlight the need to improve hygiene practices in chicken slaughtering and meat handling. PMID:26810335

  18. Modulation of the Inflammasome Signaling Pathway by Enteropathogenic and Enterohemorrhagic Escherichia coli.

    PubMed

    Yen, Hilo; Karino, Masaki; Tobe, Toru

    2016-01-01

    Innate immunity is an essential component in the protection of a host against pathogens. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) are known to modulate the innate immune responses of infected cells. The interference is dependent on their type III secretion system (T3SS) and T3SS-dependent effector proteins. Furthermore, these cytosolically injected effectors have been demonstrated to engage multiple immune signaling pathways, including the IFN/STAT, MAPK, NF-κB, and inflammasome pathways. In this review, recent work describing the interaction between EPEC/EHEC and the inflammasome pathway will be discussed. PMID:27617233

  19. Modulation of the Inflammasome Signaling Pathway by Enteropathogenic and Enterohemorrhagic Escherichia coli

    PubMed Central

    Yen, Hilo; Karino, Masaki; Tobe, Toru

    2016-01-01

    Innate immunity is an essential component in the protection of a host against pathogens. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) are known to modulate the innate immune responses of infected cells. The interference is dependent on their type III secretion system (T3SS) and T3SS-dependent effector proteins. Furthermore, these cytosolically injected effectors have been demonstrated to engage multiple immune signaling pathways, including the IFN/STAT, MAPK, NF-κB, and inflammasome pathways. In this review, recent work describing the interaction between EPEC/EHEC and the inflammasome pathway will be discussed.

  20. Modulation of the Inflammasome Signaling Pathway by Enteropathogenic and Enterohemorrhagic Escherichia coli

    PubMed Central

    Yen, Hilo; Karino, Masaki; Tobe, Toru

    2016-01-01

    Innate immunity is an essential component in the protection of a host against pathogens. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) are known to modulate the innate immune responses of infected cells. The interference is dependent on their type III secretion system (T3SS) and T3SS-dependent effector proteins. Furthermore, these cytosolically injected effectors have been demonstrated to engage multiple immune signaling pathways, including the IFN/STAT, MAPK, NF-κB, and inflammasome pathways. In this review, recent work describing the interaction between EPEC/EHEC and the inflammasome pathway will be discussed. PMID:27617233

  1. Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes

    PubMed Central

    Kessler, Robert; Nisa, Shahista; Hazen, Tracy H.; Horneman, Amy; Amoroso, Anthony; Rasko, David A.; Donnenberg, Michael S.

    2015-01-01

    A 55-year-old man with well-controlled HIV had severe diarrhea for 3 weeks and developed multiorgan dysfunction and bacteremia due to Escherichia coli. The genome of the patient's isolate had features characteristic of extraintestinal pathogenic E. coli and genes distantly related to those defining enteropathogenic E. coli. PMID:26410828

  2. Microarray analysis of the Ler regulon in enteropathogenic and enterohaemorrhagic Escherichia coli strains.

    PubMed

    Bingle, Lewis E H; Constantinidou, Chrystala; Shaw, Robert K; Islam, Md Shahidul; Patel, Mala; Snyder, Lori A S; Lee, David J; Penn, Charles W; Busby, Stephen J W; Pallen, Mark J

    2014-01-01

    The type III protein secretion system is an important pathogenicity factor of enteropathogenic and enterohaemorrhagic Escherichia coli pathotypes. The genes encoding this apparatus are located on a pathogenicity island (the locus of enterocyte effacement) and are transcriptionally activated by the master regulator Ler. In each pathotype Ler is also known to regulate genes located elsewhere on the chromosome, but the full extent of the Ler regulon is unclear, especially for enteropathogenic E. coli. The Ler regulon was defined for two strains of E. coli: E2348/69 (enteropathogenic) and EDL933 (enterohaemorrhagic) in mid and late log phases of growth by DNA microarray analysis of the transcriptomes of wild-type and ler mutant versions of each strain. In both strains the Ler regulon is focused on the locus of enterocyte effacement - all major transcriptional units of which are activated by Ler, with the sole exception of the LEE1 operon during mid-log phase growth in E2348/69. However, the Ler regulon does extend more widely and also includes unlinked pathogenicity genes: in E2348/69 more than 50 genes outside of this locus were regulated, including a number of known or potential pathogenicity determinants; in EDL933 only 4 extra-LEE genes, again including known pathogenicity factors, were activated. In E2348/69, where the Ler regulon is clearly growth phase dependent, a number of genes including the plasmid-encoded regulator operon perABC, were found to be negatively regulated by Ler. Negative regulation by Ler of PerC, itself a positive regulator of the ler promoter, suggests a negative feedback loop involving these proteins.

  3. Properties of lactase produced by enteropathogenic Escherichia coli from diarrhoeic children.

    PubMed

    Olusanya, O; Olutiola, P O

    1989-09-01

    The quantity of lactase produced by enteropathogenic Escherichia coli (EPEC) was significantly higher (P less than 0.01) than that produced by non-EPEC. The enzyme production was induced by lactose but repressed by glucose and galactose. The lactase from EPEC which was partially purified by ammonium sulphate precipitation and gel permeation chromatography had a molecular weight of 56 kD and apparent Km of approximately 2.78 mM for lactose. The lactase exhibited optimum activity at pH 7.0 at 40 degree C and was stimulated by Mg2+, Mn2+, Na+ and inhibited by Ba2+, Ca+, Cu2+, EDTA, iodo acetic acid (IAA) and Hg2+ and U2+ ions. The higher production of lactase by EPEC may be linked to its pathogenic role in childhood diarrhoea.

  4. Role of F1C fimbriae, flagella, and secreted bacterial components in the inhibitory effect of probiotic Escherichia coli Nissle 1917 on atypical enteropathogenic E. coli infection.

    PubMed

    Kleta, Sylvia; Nordhoff, Marcel; Tedin, Karsten; Wieler, Lothar H; Kolenda, Rafal; Oswald, Sibylle; Oelschlaeger, Tobias A; Bleiss, Wilfried; Schierack, Peter

    2014-05-01

    Enteropathogenic Escherichia coli (EPEC) is recognized as an important intestinal pathogen that frequently causes acute and persistent diarrhea in humans and animals. The use of probiotic bacteria to prevent diarrhea is gaining increasing interest. The probiotic E. coli strain Nissle 1917 (EcN) is known to be effective in the treatment of several gastrointestinal disorders. While both in vitro and in vivo studies have described strong inhibitory effects of EcN on enteropathogenic bacteria, including pathogenic E. coli, the underlying molecular mechanisms remain largely unknown. In this study, we examined the inhibitory effect of EcN on infections of porcine intestinal epithelial cells with atypical enteropathogenic E. coli (aEPEC) with respect to single infection steps, including adhesion, microcolony formation, and the attaching and effacing phenotype. We show that EcN drastically reduced the infection efficiencies of aEPEC by inhibiting bacterial adhesion and growth of microcolonies, but not the attaching and effacing of adherent bacteria. The inhibitory effect correlated with EcN adhesion capacities and was predominantly mediated by F1C fimbriae, but also by H1 flagella, which served as bridges between EcN cells. Furthermore, EcN seemed to interfere with the initial adhesion of aEPEC to host cells by secretion of inhibitory components. These components do not appear to be specific to EcN, but we propose that the strong adhesion capacities enable EcN to secrete sufficient local concentrations of the inhibitory factors. The results of this study are consistent with a mode of action whereby EcN inhibits secretion of virulence-associated proteins of EPEC, but not their expression. PMID:24549324

  5. Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli.

    PubMed

    Sampaio, Suely C F; Luiz, Wilson B; Vieira, Mônica A M; Ferreira, Rita C C; Garcia, Bruna G; Sinigaglia-Coimbra, Rita; Sampaio, Jorge L M; Ferreira, Luís C S; Gomes, Tânia A T

    2016-04-01

    The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliCa nd fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of a EPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of a EPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The a EPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of a EPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process. PMID:26831466

  6. Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli

    PubMed Central

    Sampaio, Suely C. F.; Luiz, Wilson B.; Vieira, Mônica A. M.; Ferreira, Rita C. C.; Garcia, Bruna G.; Sinigaglia-Coimbra, Rita; Sampaio, Jorge L. M.; Ferreira, Luís C. S.

    2016-01-01

    The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliC and fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of aEPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of aEPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The aEPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of aEPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process. PMID:26831466

  7. Enterotoxigenic Escherichia coli and other enteropathogens in paediatric diarrhoea in Addis Ababa.

    PubMed

    Stintzing, G; Möllby, R; Habte, D

    1982-03-01

    This study was performed during two weeks among 86 paediatric outpatients of poor socio-economic background. A control group comprised 60 healthy children. Enterotoxigenic Escherichia coli (ETEC) was the most common diarrhoeal agent isolated (26%). Strains of ETEC producing heat-labile (LT) only or LT and heat-stable (ST) enterotoxin were isolated from 11% each and ETEC producing ST only from 4% of the patients. ETEC was also found not infrequently among controls (10%). ETEC with O-antigens 78, 6 and 8 were shown to harbour colonization factors. Enterotoxigenic bacteria were found as contaminants in 5 of 24 feeding bottles investigated. Enteropathogenic Escherichia coli (EPEC) and Shigella species were isolated from 8% each and rotavirus from 24% of the patients. Twelve patients infected with ETEC only were compared to 66 patients not infected with ETEC. Patients infected with ETEC had a relatively mild disease and it was not possible by clinical findings to distinguish those patients infected with ETEC, LT and/or ST producing, carrying or not carrying colonization factors from those infected with other agents. This study underlines the need for extended studies of the clinical significance of ETEC infection in developing countries. PMID:6753473

  8. Identification of potentially diarrheagenic atypical enteropathogenic Escherichia coli strains present in Canadian food animals at slaughter and in retail meats.

    PubMed

    Comery, Raven; Thanabalasuriar, Ajitha; Garneau, Philippe; Portt, Andrea; Boerlin, Patrick; Reid-Smith, Richard J; Harel, Josée; Manges, Amee R; Gruenheid, Samantha

    2013-06-01

    This study identified and characterized enteropathogenic Escherichia coli (EPEC) in the Canadian food supply. Eighteen of 450 E. coli isolates from food animal sources were identified as atypical EPEC (aEPEC). Several of the aEPEC isolates identified in this study possessed multiple virulence genes, exhibited adherence and attaching and effacing (A/E) lesion formation, disrupted tight junctions, and were coclassified with the extraintestinal pathogenic E. coli (ExPEC) and enterotoxigenic E. coli (ETEC) pathotypes. PMID:23584785

  9. Biological Activities of Uric Acid in Infection Due to Enteropathogenic and Shiga-Toxigenic Escherichia coli

    PubMed Central

    Broome, Jacqueline E.; Lis, Agnieszka

    2016-01-01

    In previous work, we identified xanthine oxidase (XO) as an important enzyme in the interaction between the host and enteropathogenic Escherichia coli (EPEC) and Shiga-toxigenic E. coli (STEC). Many of the biological effects of XO were due to the hydrogen peroxide produced by the enzyme. We wondered, however, if uric acid generated by XO also had biological effects in the gastrointestinal tract. Uric acid triggered inflammatory responses in the gut, including increased submucosal edema and release of extracellular DNA from host cells. While uric acid alone was unable to trigger a chloride secretory response in intestinal monolayers, it did potentiate the secretory response to cyclic AMP agonists. Uric acid crystals were formed in vivo in the lumen of the gut in response to EPEC and STEC infections. While trying to visualize uric acid crystals formed during EPEC and STEC infections, we noticed that uric acid crystals became enmeshed in the neutrophilic extracellular traps (NETs) produced from host cells in response to bacteria in cultured cell systems and in the intestine in vivo. Uric acid levels in the gut lumen increased in response to exogenous DNA, and these increases were enhanced by the actions of DNase I. Interestingly, addition of DNase I reduced the numbers of EPEC bacteria recovered after a 20-h infection and protected against EPEC-induced histologic damage. PMID:26787720

  10. Age-Dependent Susceptibility to Enteropathogenic Escherichia coli (EPEC) Infection in Mice

    PubMed Central

    Dupont, Aline; Sommer, Felix; Zhang, Kaiyi; Repnik, Urska; Basic, Marijana; Bleich, André; Kühnel, Mark; Bäckhed, Fredrik; Litvak, Yael; Fulde, Marcus; Rosenshine, Ilan; Hornef, Mathias W.

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) represents a major causative agent of infant diarrhea associated with significant morbidity and mortality in developing countries. Although studied extensively in vitro, the investigation of the host-pathogen interaction in vivo has been hampered by the lack of a suitable small animal model. Using RT-PCR and global transcriptome analysis, high throughput 16S rDNA sequencing as well as immunofluorescence and electron microscopy, we characterize the EPEC-host interaction following oral challenge of newborn mice. Spontaneous colonization of the small intestine and colon of neonate mice that lasted until weaning was observed. Intimate attachment to the epithelial plasma membrane and microcolony formation were visualized only in the presence of a functional bundle forming pili (BFP) and type III secretion system (T3SS). Similarly, a T3SS-dependent EPEC-induced innate immune response, mediated via MyD88, TLR5 and TLR9 led to the induction of a distinct set of genes in infected intestinal epithelial cells. Infection-induced alterations of the microbiota composition remained restricted to the postnatal period. Although EPEC colonized the adult intestine in the absence of a competing microbiota, no microcolonies were observed at the small intestinal epithelium. Here, we introduce the first suitable mouse infection model and describe an age-dependent, virulence factor-dependent attachment of EPEC to enterocytes in vivo. PMID:27159323

  11. Binding of intimin from enteropathogenic Escherichia coli to Tir and to host cells.

    PubMed

    Hartland, E L; Batchelor, M; Delahay, R M; Hale, C; Matthews, S; Dougan, G; Knutton, S; Connerton, I; Frankel, G

    1999-04-01

    Enteropathogenic Escherichia coli (EPEC) induce characteristic attaching and effacing (A/E) lesions on epithelial cells. This event is mediated, in part, by binding of the bacterial outer membrane protein, intimin, to a second EPEC protein, Tir (translocated intimin receptor), which is exported by the bacteria and integrated into the host cell plasma membrane. In this study, we have localized the intimin-binding domain of Tir to a central 107-amino-acid region, designated Tir-M. We provide evidence that both the amino- and carboxy-termini of Tir are located within the host cell. In addition, using immunogold labelling electron microscopy, we have confirmed that intimin can bind independently to host cells even in the absence of Tir. This Tir-independent interaction and the ability of EPEC to induce A/E lesions requires an intact lectin-like module residing at the carboxy-terminus of the intimin polypeptide. Using the yeast two-hybrid system and gel overlays, we show that intimin can bind both Tir and Tir-M even when the lectin-like domain is disrupted. These data provide strong evidence that intimin interacts not only with Tir but also in a lectin-like manner with a host cell intimin receptor.

  12. Adhesion and its role in the virulence of enteropathogenic Escherichia coli.

    PubMed Central

    Law, D

    1994-01-01

    Enteropathogenic Escherichia coli (EPEC) organisms are an important cause of diarrheal disease in young children. The virulence of EPEC is a multifactorial process and involves a number of distinct stages. Initial adherence to intestinal mucosa is mediated by fimbriae which bring about a distinct form of adhesion, localized adhesion. Intimate adhesion of the bacterium to the eukaryotic membrane occurs, resulting in the activation of signal transduction pathways. Microvilli are disrupted and effaced from the apical membrane which then cups around the organism to form pedestal structures, the attaching and effacing lesion. Diarrhea may be produced by alteration of the permeability of the apical membrane and also through a malabsorption mechanism. The pathways involved in the production of the attaching and effacing lesion are described. EPEC organisms were originally thought to belong to a number of distinct serogroups; it is now apparent that many isolates belonging to these serogroups are not pathogenic or belong to other pathogenic groups of E. coli. In addition, isolates falling outside of these serogroups are considered to be true EPEC. The definition of EPEC based on serotyping is inaccurate and should be replaced by methods that specifically detect the virulence properties of EPEC. Images PMID:8055465

  13. Lack of inhibition of adhesion of an enteropathogenic Escherichia coli by polycarbophil.

    PubMed

    Mack, D R; Blain-Nelson, P L; Mauger, J W

    1993-12-01

    Anionic polyacrylic acid polymers, such as polycarbophil, have a number of properties that would make them suitable carriers for sustained antibiotic release formulations in the intestinal tract. However, little is known with regards to possible microbial adhesion to polycarbophil. The aim of this study was to evaluate for such an interaction using the rabbit enteric pathogen Escherichia coli RDEC-1 (serotype O15:H-). RDEC-1 mediates attaching and effacing binding to intestinal epithelium in a manner morphologically identical to that observed in both human enteropathogenic E. coli and enterohemorrhagic E. coli infections. RDEC-1 bacteria were grown to promote the expression of the mannose-resistant AF/R1 adhesion pili. A nonpiliated mutant, strain M34, was used as a negative control. Using radioactive labeling of bacteria, we quantitated adhesion of piliated RDEC-1 in the presence of polycarbophil using an in vitro adhesion assay system. Binding of piliated RDEC-1 in the adhesion assay was greater than for nonpiliated M34 for all concentrations of bacteria greater than 10(9) (P < .05). Polycarbophil did not cause concentration-dependent inhibition of piliated RDEC-1 binding (P > .05). We conclude polycarbophil does not interfere with the AF/R1 adhesin ligand of RDEC-1. Use of this polymer as a mucoadhesive drug delivery vehicle for nonabsorbable antibiotics in the treatment of gastrointestinal infections would not be expected to interfere with the protective effects of intestinal mucins.

  14. RegR virulence regulon of rabbit-specific enteropathogenic Escherichia coli strain E22.

    PubMed

    Srikhanta, Yogitha N; Hocking, Dianna M; Praszkier, Judyta; Wakefield, Matthew J; Robins-Browne, Roy M; Yang, Ji; Tauschek, Marija

    2013-04-01

    AraC-like regulators play a key role in the expression of virulence factors in enteric pathogens, such as enteropathogenic Escherichia coli (EPEC), enterotoxigenic E. coli, enteroaggregative E. coli, and Citrobacter rodentium. Bioinformatic analysis of the genome of rabbit-specific EPEC (REPEC) strain E22 (O103:H2) revealed the presence of a gene encoding an AraC-like regulatory protein, RegR, which shares 71% identity to the global virulence regulator, RegA, of C. rodentium. Microarray analysis demonstrated that RegR exerts 25- to 400-fold activation on transcription of several genes encoding putative virulence-associated factors, including a fimbrial operon (SEF14), a serine protease, and an autotransporter adhesin. These observations were confirmed by proteomic analysis of secreted and heat-extracted surface-associated proteins. The mechanism of RegR-mediated activation was investigated by using its most highly upregulated gene target, sefA. Transcriptional analyses and electrophoretic mobility shift assays showed that RegR activates the expression of sefA by binding to a region upstream of the sefA promoter, thereby relieving gene silencing by the global regulatory protein H-NS. Moreover, RegR was found to contribute significantly to virulence in a rabbit infection experiment. Taken together, our findings indicate that RegR controls the expression of a series of accessory adhesins that significantly enhance the virulence of REPEC strain E22. PMID:23340312

  15. The cell-binding domain of intimin from enteropathogenic Escherichia coli binds to beta1 integrins.

    PubMed

    Frankel, G; Lider, O; Hershkoviz, R; Mould, A P; Kachalsky, S G; Candy, D C; Cahalon, L; Humphries, M J; Dougan, G

    1996-08-23

    Bacteria interact with mammalian cells surface molecules, such as integrins, to colonize tissues and evade immunological detection. Herein, the ability of intimin, an outer membrane protein from enteropathogenic Escherichia coli, to bind beta1 integrins was investigated. Solid-phase binding assays revealed binding of the carboxyl-terminal 280 amino acids of intimin (Int280) to alpha4beta1 and alpha5beta1 integrins. The binding required divalent ions (in particular, it was enhanced by Mn2+) and was inhibited by an RGD-containing peptide. Nonderivatized Int280, but not Int280CS (like Int280 but with Cys-937 replaced by Ser) blocked the binding of biotinylated Int280 to integrins. Int280 did not efficiently inhibit beta1 integrin binding of invasin from Yersinia pseudotuberculosis. Both intimin and invasin, immobilized on plastic surfaces, mediated adherence of resting or phorbol 12-myristate 13-acetate-activated human CD4(+) T cells, whereas fibronectin mediated the adherence of only activated T cells. T cell binding to intimin and invasin was integrin mediated because it was specifically blocked by an RGD-containing peptide and by antibodies directed against the integrin subunits beta1, alpha4, and alpha5. These results demonstrate a specific integrin binding activity for intimin that is related to, but distinct from, that of invasin. PMID:8702771

  16. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium.

    PubMed

    Walsham, Alistair D S; MacKenzie, Donald A; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains. PMID:26973622

  17. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli.

    PubMed

    Abreu, Afonso G; Abe, Cecilia M; Nunes, Kamila O; Moraes, Claudia T P; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando; Barbosa, Angela S; Piazza, Roxane M F; Elias, Waldir P

    2016-01-01

    Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system.

  18. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines.

    PubMed

    Moon, H W; Whipp, S C; Argenzio, R A; Levine, M M; Giannella, R A

    1983-09-01

    Three strains of enteropathogenic Escherichia coli (EPEC), originally isolated from humans and previously shown to cause diarrhea in human volunteers by unknown mechanisms, and one rabbit EPEC strain were shown to attach intimately to and efface microvilli and cytoplasm from intestinal epithelial cells in both the pig and rabbit intestine. The attaching and effacing activities of these EPEC were demonstrable by light microscopic examination of routine histological sections and by transmission electron microscopy. It was suggested that intact colostrum-deprived newborn pigs and ligated intestinal loops in pigs and rabbits may be useful systems to detect EPEC that have attaching and effacing activities and for studying the pathogenesis of such infections. The lesions (attachment and effacement) produced by EPEC in these systems were multifocal, with considerable animal-to-animal variation in response to the same strain of EPEC. The EPEC strains also varied in the frequency and extent of lesion production. For example, three human EPEC strains usually caused extensive lesions in rabbit intestinal loops, whereas two other human EPEC strains usually did not produce lesions in this system.

  19. Identification of enteropathogenic Escherichia coli in simian immunodeficiency virus-infected infant and adult rhesus macaques.

    PubMed

    Mansfield, K G; Lin, K C; Newman, J; Schauer, D; MacKey, J; Lackner, A A; Carville, A

    2001-03-01

    Enteropathogenic Escherichia coli (EPEC) was recognized as a common opportunistic pathogen of simian immunodeficiency virus-infected rhesus macaques (Macaca mulatta) with AIDS. Retrospective analysis revealed that 27 of 96 (28.1%) animals with AIDS had features of EPEC infection, and EPEC was the most frequent pathogen of the gastrointestinal tract identified morphologically. In 7.3% of animals dying with AIDS, EPEC represented the sole opportunistic agent of the gastrointestinal tract at death. In 20.8% of cases, it was seen in combination with one or more gastrointestinal pathogens, including Cryptosporidium parvum, Enterocytozoon bieneusi, Mycobacterium avium, Entamoeba histolytica, Balantidium coli, Strongyloides stercoralis, cytomegalovirus, and adenovirus. Clinically, infection was associated with persistent diarrhea and wasting and was more frequent in animals that died at under 1 year of age (P < 0.001, Fisher exact test). The organism was associated with the characteristic attaching and effacing lesion in colonic tissue sections and produced a focal adherence pattern on a HEp-2 assay but was negative for Shiga toxin production as assessed by PCR and a HeLa cell cytotoxicity assay. A 2.6-kb fragment encompassing the intimin gene was amplified and sequenced and revealed 99.2% identity to sequences obtained from human isolates (GenBank AF116899) corresponding to the epsilon intimin subtype. Further investigations with rhesus macaques may offer opportunities to study the impact of EPEC on AIDS pathogenesis and gastrointestinal dysfunction. PMID:11230413

  20. Survey and Experimental Infection of Enteropathogenic Escherichia coli in Common Marmosets (Callithrix jacchus).

    PubMed

    Hayashimoto, Nobuhito; Inoue, Takashi; Morita, Hanako; Yasuda, Masahiko; Ueno, Masami; Kawai, Kenji; Itoh, Toshio

    2016-01-01

    Common marmosets (Callithrix jacchus) are frequently used for biomedical research but can be afflicted with diarrhea-a serious and potentially lethal health problem. Enteropathogenic Escherichia coli (EPEC) is thought to be the causative pathogen of hemorrhagic typhlocolitis in common marmosets, but the actual incidence of the disease and the relationship between EPEC and hematochezia are unknown. This study investigated the prevalence of EPEC infection in common marmosets and the association between EPEC and hematochezia. A total of 230 stool or rectal swab samples were collected from 230 common marmosets (98 clinically healthy, 85 diarrhea, and 47 bloody stool samples) and tested by culture-based detection and PCR amplification of VT1, VT2, LT, ST, eae, and bfp genes. Healthy animals were divided into three groups (n = 4 each for high and low concentration groups and n = 2 as negative control), and those in the experimental groups were perorally inoculated with a 2-ml of suspension of EPEC R811 strain adjusted to 5 × 108 (high concentration) and 5 × 104 (low concentration) CFU/ ml. Two animals in each group were examined 3 and 14 days post-inoculation (DPI). EPEC was detected in 10 of 98 clinically healthy samples (10.2%), 17 of 85 diarrhea samples (20%), and all 47 bloody stool samples (100%), with a significant difference detected between presence of EPEC and sample status (P < 0.01). Acute hematochezia was observed in all animals of the high-concentration group but not in other groups at 1 or 2 DPI. A histopathological examination revealed the attachment of gram-negative bacilli to epithelial apical membranes and desquamated epithelial cells in the cecum of animals in the high-concentration group at 3 DPI. These findings suggest that EPEC is a causative agent of hemorrhagic typhlocolitis in common marmosets. PMID:27501144

  1. Molecular Characterization of Human Atypical Sorbitol-Fermenting Enteropathogenic Escherichia coli O157 Reveals High Diversity.

    PubMed

    Kossow, Annelene; Zhang, Wenlan; Bielaszewska, Martina; Rhode, Sophie; Hansen, Kevin; Fruth, Angelika; Rüter, Christian; Karch, Helge; Mellmann, Alexander

    2016-05-01

    Alongside the well-characterized enterohemorrhagic Escherichia coli (EHEC) O157:H7, serogroup O157 comprises sorbitol-fermenting typical and atypical enteropathogenic E. coli (EPEC/aEPEC) strains that carry the intimin-encoding gene eae but not Shiga toxin-encoding genes (stx). Since little is known about these pathogens, we characterized 30 clinical isolates from patients with hemolytic uremic syndrome (HUS) or uncomplicated diarrhea with respect to their flagellin gene (fliC) type and multilocus sequence type (MLST). Moreover, we applied whole-genome sequencing (WGS) to determine the phylogenetic relationship with other eae-positive EHEC serotypes and the composition of the rfbO157 region. fliC typing resulted in five fliC types (H7, H16, H34, H39, and H45). Isolates of each fliC type shared a unique ST. In comparison to the 42 HUS-associated E. coli (HUSEC) strains, only the stx-negative isolates with fliCH7 shared their ST with EHEC O157:H7/H(-) strains. With the exception of one O157:H(-) fliCH16 isolate, HUS was exclusively associated with fliCH7. WGS corroborated the separation of the fliCH7 isolates, which were closely related to the EHEC O157:H7/H(-) isolates, and the diverse group of isolates exhibiting different fliC types, indicating independent evolution of the different serotypes. This was also supported by the heterogeneity within the rfbO157 region that exhibited extensive recombinations. The genotypic subtypes and distribution of clinical symptoms suggested that the stx-negative O157 strains with fliCH7 were originally EHEC strains that lost stx The remaining isolates form a distinct and diverse group of atypical EPEC isolates that do not possess the full spectrum of virulence genes, underlining the importance of identifying the H antigen for clinical risk assessment. PMID:26984976

  2. Atypical enteropathogenic Escherichia coli as aetiologic agents of sporadic and outbreak-associated diarrhoea in Brazil.

    PubMed

    Vieira, Melissa A; Dos Santos, Luís F; Dias, Regiane C B; Camargo, Carlos H; Pinheiro, Sandra R S; Gomes, Tânia A T; Hernandes, Rodrigo T

    2016-09-01

    Enteropathogenic Escherichia coli (EPEC) are important agents of diarrhoea in industrialized as well as developing countries, such as Brazil. The hallmark of EPEC pathogenesis is the establishment of attaching and effacing lesions in enterocytes, in which pedestal-like structures are formed underneath adherent bacteria. EPEC are divided into two subgroups, typical (tEPEC) and atypical (aEPEC), based on the presence of the EPEC adherence factor plasmid in tEPEC and its absence in aEPEC. This study was designed to characterize 82 aEPEC isolates obtained from stool samples of diarrhoeic patients during 2012 and 2013 in Brazil. The majority of the aEPEC were assigned to the phylo-group B1 (48.8 %), and intimin subtypes θ (20.7 %), β1 (9.7 %) and λ (9.7 %) were the most prevalent among the isolates. The nleB and nleE genes were concomitantly detected in 32.9 % of the isolates, demonstrating the occurrence of the pathogenicity island O122 among them. The O157-plasmid genes (ehxA and/or espP) were detected in 7.3 % of the isolates, suggesting that some aEPEC could be derived from Shiga-toxin-producing E. coli that lost the stx genes while trafficking in the host. PFGE of 14 aEPEC of serotypes O2 : H16, O33 : H34, O39 : H9, O108 : H- and ONT : H19 isolated from five distinct outbreaks showed serotype-specific PFGE clusters, indicating a high degree of similarity among the isolates from the same event, thus highlighting these serotypes as potential aetiologic agents of diarrhoeal outbreaks in Brazil.

  3. Prebiotic Galactooligosaccharides Reduce Adherence of Enteropathogenic Escherichia coli to Tissue Culture Cells▿

    PubMed Central

    Shoaf, Kari; Mulvey, George L.; Armstrong, Glen D.; Hutkins, Robert W.

    2006-01-01

    Prebiotic oligosaccharides are thought to provide beneficial effects in the gastrointestinal tract of humans and animals by stimulating growth of selected members of the intestinal microflora. Another means by which prebiotic oligosaccharides may confer health benefits is via their antiadhesive activity. Specifically, these oligosaccharides may directly inhibit infections by enteric pathogens due to their ability to act as structural mimics of the pathogen binding sites that coat the surface of gastrointestinal epithelial cells. In this study, the ability of commercial prebiotics to inhibit attachment of microcolony-forming enteropathogenic Escherichia coli (EPEC) was investigated. The adherence of EPEC strain E2348/69 on HEp-2 and Caco-2 cells, in the presence of fructooligosaccharides, inulin, galactooligosaccharides (GOS), lactulose, and raffinose was determined by cultural enumeration and microscopy. Purified GOS exhibited the greatest adherence inhibition on both HEp-2 and Caco-2 cells, reducing the adherence of EPEC by 65 and 70%, respectively. In addition, the average number of bacteria per microcolony was significantly reduced from 14 to 4 when GOS was present. Adherence inhibition by GOS was dose dependent, reaching a maximum at 16 mg/ml. When GOS was added to adhered EPEC cells, no displacement was observed. The expression of BfpA, a bundle-forming-pilus protein involved in localized adherence, was not affected by GOS, indicating that adherence inhibition was not due to the absence of this adherence factor. In addition, GOS did not affect autoaggregation. These observations suggest that some prebiotic oligosaccharides may have antiadhesive activity and directly inhibit the adherence of pathogens to the host epithelial cell surface. PMID:16982832

  4. Survey and Experimental Infection of Enteropathogenic Escherichia coli in Common Marmosets (Callithrix jacchus)

    PubMed Central

    Hayashimoto, Nobuhito; Inoue, Takashi; Morita, Hanako; Yasuda, Masahiko; Ueno, Masami; Kawai, Kenji; Itoh, Toshio

    2016-01-01

    Common marmosets (Callithrix jacchus) are frequently used for biomedical research but can be afflicted with diarrhea—a serious and potentially lethal health problem. Enteropathogenic Escherichia coli (EPEC) is thought to be the causative pathogen of hemorrhagic typhlocolitis in common marmosets, but the actual incidence of the disease and the relationship between EPEC and hematochezia are unknown. This study investigated the prevalence of EPEC infection in common marmosets and the association between EPEC and hematochezia. A total of 230 stool or rectal swab samples were collected from 230 common marmosets (98 clinically healthy, 85 diarrhea, and 47 bloody stool samples) and tested by culture-based detection and PCR amplification of VT1, VT2, LT, ST, eae, and bfp genes. Healthy animals were divided into three groups (n = 4 each for high and low concentration groups and n = 2 as negative control), and those in the experimental groups were perorally inoculated with a 2-ml of suspension of EPEC R811 strain adjusted to 5 × 108 (high concentration) and 5 × 104 (low concentration) CFU/ ml. Two animals in each group were examined 3 and 14 days post-inoculation (DPI). EPEC was detected in 10 of 98 clinically healthy samples (10.2%), 17 of 85 diarrhea samples (20%), and all 47 bloody stool samples (100%), with a significant difference detected between presence of EPEC and sample status (P < 0.01). Acute hematochezia was observed in all animals of the high-concentration group but not in other groups at 1 or 2 DPI. A histopathological examination revealed the attachment of gram-negative bacilli to epithelial apical membranes and desquamated epithelial cells in the cecum of animals in the high-concentration group at 3 DPI. These findings suggest that EPEC is a causative agent of hemorrhagic typhlocolitis in common marmosets. PMID:27501144

  5. Tir Is Essential for the Recruitment of Tks5 to Enteropathogenic Escherichia coli Pedestals

    PubMed Central

    Jensen, Helene H.; Pedersen, Hans N.; Stenkjær, Eva; Pedersen, Gitte A.; Login, Frédéric H.; Nejsum, Lene N.

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that infects the epithelial lining of the small intestine and causes diarrhea. Upon attachment to the intestinal epithelium, EPEC uses a Type III Secretion System to inject its own high affinity receptor Translocated intimin receptor (Tir) into the host cell. Tir facilitates tight adhesion and recruitment of actin-regulating proteins leading to formation of an actin pedestal beneath the infecting bacterium. The pedestal has several similarities with podosomes, which are basolateral actin-rich extensions found in some migrating animal cells. Formation of podosomes is dependent upon the early podosome-specific scavenger protein Tks5, which is involved in actin recruitment. Although Tks5 is expressed in epithelial cells, and podosomes and EPEC pedestals share many components in their structure and mechanism of formation, the potential role of Tks5 in EPEC infections has not been studied. The aim of this study was to determine the subcellular localization of Tks5 in epithelial cells and to investigate if Tks5 is recruited to the EPEC pedestal. In an epithelial MDCK cell line stably expressing Tks5-EGFP, Tks5 localized to actin bundles. Upon infection, EPEC recruited Tks5-EGFP. Tir, but not Tir phosphorylation was essential for the recruitment. Time-lapse microscopy revealed that Tks5-EGFP was recruited instantly upon EPEC attachment to host cells, simultaneously with actin and N-WASp. EPEC infection of cells expressing a ΔPX-Tks5 deletion version of Tks5 showed that EPEC was able to both infect and form pedestals when the PX domain was deleted from Tks5. Future investigations will clarify the role of Tks5 in EPEC infection and pedestal formation. PMID:26536015

  6. Tir Is Essential for the Recruitment of Tks5 to Enteropathogenic Escherichia coli Pedestals.

    PubMed

    Jensen, Helene H; Pedersen, Hans N; Stenkjær, Eva; Pedersen, Gitte A; Login, Frédéric H; Nejsum, Lene N

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) is a bacterial pathogen that infects the epithelial lining of the small intestine and causes diarrhea. Upon attachment to the intestinal epithelium, EPEC uses a Type III Secretion System to inject its own high affinity receptor Translocated intimin receptor (Tir) into the host cell. Tir facilitates tight adhesion and recruitment of actin-regulating proteins leading to formation of an actin pedestal beneath the infecting bacterium. The pedestal has several similarities with podosomes, which are basolateral actin-rich extensions found in some migrating animal cells. Formation of podosomes is dependent upon the early podosome-specific scavenger protein Tks5, which is involved in actin recruitment. Although Tks5 is expressed in epithelial cells, and podosomes and EPEC pedestals share many components in their structure and mechanism of formation, the potential role of Tks5 in EPEC infections has not been studied. The aim of this study was to determine the subcellular localization of Tks5 in epithelial cells and to investigate if Tks5 is recruited to the EPEC pedestal. In an epithelial MDCK cell line stably expressing Tks5-EGFP, Tks5 localized to actin bundles. Upon infection, EPEC recruited Tks5-EGFP. Tir, but not Tir phosphorylation was essential for the recruitment. Time-lapse microscopy revealed that Tks5-EGFP was recruited instantly upon EPEC attachment to host cells, simultaneously with actin and N-WASp. EPEC infection of cells expressing a ΔPX-Tks5 deletion version of Tks5 showed that EPEC was able to both infect and form pedestals when the PX domain was deleted from Tks5. Future investigations will clarify the role of Tks5 in EPEC infection and pedestal formation. PMID:26536015

  7. Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene.

    PubMed

    Anyanful, Akwasi; Dolan-Livengood, Jennifer M; Lewis, Taiesha; Sheth, Seema; Dezalia, Mark N; Sherman, Melanie A; Kalman, Lisa V; Benian, Guy M; Kalman, Daniel

    2005-08-01

    Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water-borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non-pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin-filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif-1 and egl-9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek-1, mek-1, mev-1, pgp-1,3 and vhl-1, rendered C. elegans more

  8. Bile salts induce expression of the afimbrial LDA adhesin of atypical enteropathogenic Escherichia coli.

    PubMed

    Torres, Alfredo G; Tutt, Christopher B; Duval, Lisabeth; Popov, Vsevolod; Nasr, Abdelhakim Ben; Michalski, Jane; Scaletsky, Isabel C A

    2007-04-01

    Atypical enteropathogenic Escherichia coli (aEPEC) strains are frequently implicated in infant diarrhoea in developing countries. Not much is known about the adherence properties of aEPEC; however, it has been shown that these strains can adhere to tissue-cultured cells. A chromosomal region designated the locus for diffuse adherence (LDA) confers aEPEC strain 22 the ability to adhere to culture cells. LDA is an afimbrial adhesin that contains a major subunit, LdaG, whose expression is induced on MacConkey agar at 37 degrees C. We hypothesized that the bile salts found in this culture media induce the expression of LdaG. Strain 22 and the LdaG mutant were grown in Luria-Bertani (LB) media in the presence or absence of bile salts and heat-extracted surface-expressed proteins were separated by SDS-PAGE to determine whether expression of the 25 kDa LdaG protein was induced. Western blot analysis with anti-LdaG confirmed that bile salts enhance LdaG expression at 37 degrees C. Adhesion assays on HeLa cells revealed that adhesion in a diffuse pattern of strain 22 increased in the presence of bile salts. We also confirmed that expression of the localized adherence pattern observed in the ldaG mutant required the presence of a large cryptic plasmid found in strain 22 and that this phenotype was not induced by bile salts. At the transcriptional level, the ldaG-lacZ promoter fusion displayed maximum beta-galactosidase activity when the parent strain was grown in LB supplemented with bile salts. Fluorescence Activated Cell Sorting analysis, immunogold labelling electron microscopy and immunofluorescence using anti-LdaG sera confirmed that LDA is a bile salts-inducible surface-expressed afimbrial adhesin. Finally, LdaG expression was induced in presence of individual bile salts but not by other detergents. We concluded that bile salts increase expression of LDA, conferring a diffuse adherence pattern and having an impact on the adhesion properties of this aEPEC strain.

  9. CsrA and TnaB coregulate tryptophanase activity to promote exotoxin-induced killing of Caenorhabditis elegans by enteropathogenic Escherichia coli.

    PubMed

    Bhatt, Shantanu; Anyanful, Akwasi; Kalman, Daniel

    2011-09-01

    Enteropathogenic Escherichia coli(EPEC) requires the tnaA-encoded enzyme tryptophanase and its substrate tryptophan to synthesize diffusible exotoxins that kill the nematode Caenorhabditis elegans. Here, we demonstrate that the RNA-binding protein CsrA and the tryptophan permease TnaB coregulate tryptophanase activity, through mutually exclusive pathways, to stimulate toxin-mediated paralysis and killing of C. elegans.

  10. Comparative analysis of virulence determinants, antibiotic susceptibility patterns and serogrouping of atypical enteropathogenic Escherichia coli versus typical enteropathogenic E. coli in India.

    PubMed

    Malvi, Supriya; Appannanavar, Suma; Mohan, Balvinder; Kaur, Harsimran; Gautam, Neha; Bharti, Bhavneet; Kumar, Yashwant; Taneja, Neelam

    2015-10-01

    The epidemiology of enteropathogenic Escherichia coli (EPEC) and the significance of isolation of atypical EPEC (aEPEC) in childhood diarrhoea have not been well studied in an Indian context. A comparative study was undertaken to investigate virulence determinants, antibiotic susceptibility patterns and serogrouping of typical EPEC (tEPEC) versus aEPEC causing diarrhoea in children. A total of 400 prospective and 500 retrospective E. coli isolates were included. PCR was performed for eae, bfpA, efa, nleB, nleE, cdt, ehxA and paa genes. The Clinical and Laboratory Standards Institute's disc diffusion test was used to determine the antimicrobial susceptibility. Phenotypic screening of extended spectrum β-lactamases (ESBLs), AmpC and Klebsiella pneumoniae carbapenemase (KPC) production, and molecular detection of bla(NDM-1), bla(VIM), bla(CTX-M-15), bla(IMP) and bla(KPC) were performed. aEPEC (57.6 %) were more common as compared with tEPEC (42.3 %). The occurrence of virulence genes was observed to be three times higher in aEPEC as compared with tEPEC, efa1 (14.7 % of aEPEC, 4 % of tEPEC) being the most common. Most of the isolates did not belong to the classical EPEC O-serogroups. The highest resistance was observed against amoxicillin (93.22 %) followed by quinolones (83 %), cephalosporins (37.28 %), cotrimoxazole (35.59 %) and carbapenems (30.5 %). Overall equal numbers of aEPEC (41.17 %) and tEPEC (40 %) were observed to be multidrug-resistant. Fifteen EPEC strains demonstrated presence of ESBLs, five produced AmpC and four each produced metallo-β-lactamases and KPC-type carbapenemases; eight, seven and one isolate(s) each were positive for bla(VIM), bla(CTX-M-15) and bla(NDM-1), respectively. Here, to the best of our knowledge, we report for the first time on carbapenem resistance and the presence of bla(NDM-1) and bla(CTX-M-15) in EPEC isolates from India. PMID:26233663

  11. Comparative analysis of virulence determinants, antibiotic susceptibility patterns and serogrouping of atypical enteropathogenic Escherichia coli versus typical enteropathogenic E. coli in India.

    PubMed

    Malvi, Supriya; Appannanavar, Suma; Mohan, Balvinder; Kaur, Harsimran; Gautam, Neha; Bharti, Bhavneet; Kumar, Yashwant; Taneja, Neelam

    2015-10-01

    The epidemiology of enteropathogenic Escherichia coli (EPEC) and the significance of isolation of atypical EPEC (aEPEC) in childhood diarrhoea have not been well studied in an Indian context. A comparative study was undertaken to investigate virulence determinants, antibiotic susceptibility patterns and serogrouping of typical EPEC (tEPEC) versus aEPEC causing diarrhoea in children. A total of 400 prospective and 500 retrospective E. coli isolates were included. PCR was performed for eae, bfpA, efa, nleB, nleE, cdt, ehxA and paa genes. The Clinical and Laboratory Standards Institute's disc diffusion test was used to determine the antimicrobial susceptibility. Phenotypic screening of extended spectrum β-lactamases (ESBLs), AmpC and Klebsiella pneumoniae carbapenemase (KPC) production, and molecular detection of bla(NDM-1), bla(VIM), bla(CTX-M-15), bla(IMP) and bla(KPC) were performed. aEPEC (57.6 %) were more common as compared with tEPEC (42.3 %). The occurrence of virulence genes was observed to be three times higher in aEPEC as compared with tEPEC, efa1 (14.7 % of aEPEC, 4 % of tEPEC) being the most common. Most of the isolates did not belong to the classical EPEC O-serogroups. The highest resistance was observed against amoxicillin (93.22 %) followed by quinolones (83 %), cephalosporins (37.28 %), cotrimoxazole (35.59 %) and carbapenems (30.5 %). Overall equal numbers of aEPEC (41.17 %) and tEPEC (40 %) were observed to be multidrug-resistant. Fifteen EPEC strains demonstrated presence of ESBLs, five produced AmpC and four each produced metallo-β-lactamases and KPC-type carbapenemases; eight, seven and one isolate(s) each were positive for bla(VIM), bla(CTX-M-15) and bla(NDM-1), respectively. Here, to the best of our knowledge, we report for the first time on carbapenem resistance and the presence of bla(NDM-1) and bla(CTX-M-15) in EPEC isolates from India.

  12. Genetic Diversity of Intimin Gene of Atypical Enteropathogenic Escherichia coli Isolated from Human, Animals and Raw Meats in China.

    PubMed

    Xu, Yanmei; Bai, Xiangning; Zhao, Ailan; Zhang, Wang; Ba, Pengbin; Liu, Kai; Jin, Yujuan; Wang, Hong; Guo, Qiusheng; Sun, Hui; Xu, Jianguo; Xiong, Yanwen

    2016-01-01

    Atypical enteropathogenic Escherichia coli (aEPEC) is considered to be an emerging enteropathogen that is more prevalent than typical EPEC in developing and developed countries. The major adherence factor, intimin, an outer membrane protein encoded by eae, plays a pivotal role in the pathogenesis of aEPEC. This study investigated the distribution and polymorphisms of intimin subtypes of 143 aEPEC strains from diarrheal patients, healthy carriers, animals, and raw meats in China. These aEPEC strains belonged to more than 71 different serotypes, which comprised 52 O serogroups and 24 H types. Sixty-eight different eae genotypes and 19 intimin subtypes were detected. Eighteen, eight, seven, and five intimin subtypes were identified from 86 diarrheal patients, 14 healthy carriers, 19 animals, and 24 raw meats strains, respectively. Intimin β1 was the most prevalent subtype in strains from diarrheal patients (34.88%) and animals (47.37%). There was a statistically significant difference in the distribution of eae-β1 between diarrheal patients and healthy carriers (P = 0.004). Intimin-θ was more predominant among raw meat strains (50%) than among diarrheal patients strains (12.79%, P = 0.0003), healthy carrier strains (7.14%, P = 0.007), or animal strains (15.79%, P = 0.020). The two predominant subtypes (eae-β1 and eae-θ) had considerable polymorphisms with no significant differences among the four sources. PFGE analysis revealed 119 distinct patterns and the strains were clustered into 11 groups with similarity indices ranging from 63% to 100%. These results suggest that in China, aEPEC strains from different sources are highly heterogeneous. Animals and raw meats are important sources of genetically diverse intimin-harboring aEPEC, which might serve as important transmission vehicles of these bacteria.

  13. Genetic Diversity of Intimin Gene of Atypical Enteropathogenic Escherichia coli Isolated from Human, Animals and Raw Meats in China

    PubMed Central

    Xu, Yanmei; Bai, Xiangning; Zhao, Ailan; Zhang, Wang; Ba, Pengbin; Liu, Kai; Jin, Yujuan; Wang, Hong; Guo, Qiusheng; Sun, Hui; Xu, Jianguo; Xiong, Yanwen

    2016-01-01

    Atypical enteropathogenic Escherichia coli (aEPEC) is considered to be an emerging enteropathogen that is more prevalent than typical EPEC in developing and developed countries. The major adherence factor, intimin, an outer membrane protein encoded by eae, plays a pivotal role in the pathogenesis of aEPEC. This study investigated the distribution and polymorphisms of intimin subtypes of 143 aEPEC strains from diarrheal patients, healthy carriers, animals, and raw meats in China. These aEPEC strains belonged to more than 71 different serotypes, which comprised 52 O serogroups and 24 H types. Sixty-eight different eae genotypes and 19 intimin subtypes were detected. Eighteen, eight, seven, and five intimin subtypes were identified from 86 diarrheal patients, 14 healthy carriers, 19 animals, and 24 raw meats strains, respectively. Intimin β1 was the most prevalent subtype in strains from diarrheal patients (34.88%) and animals (47.37%). There was a statistically significant difference in the distribution of eae-β1 between diarrheal patients and healthy carriers (P = 0.004). Intimin-θ was more predominant among raw meat strains (50%) than among diarrheal patients strains (12.79%, P = 0.0003), healthy carrier strains (7.14%, P = 0.007), or animal strains (15.79%, P = 0.020). The two predominant subtypes (eae-β1 and eae-θ) had considerable polymorphisms with no significant differences among the four sources. PFGE analysis revealed 119 distinct patterns and the strains were clustered into 11 groups with similarity indices ranging from 63% to 100%. These results suggest that in China, aEPEC strains from different sources are highly heterogeneous. Animals and raw meats are important sources of genetically diverse intimin-harboring aEPEC, which might serve as important transmission vehicles of these bacteria. PMID:27031337

  14. Genetic Diversity of Intimin Gene of Atypical Enteropathogenic Escherichia coli Isolated from Human, Animals and Raw Meats in China.

    PubMed

    Xu, Yanmei; Bai, Xiangning; Zhao, Ailan; Zhang, Wang; Ba, Pengbin; Liu, Kai; Jin, Yujuan; Wang, Hong; Guo, Qiusheng; Sun, Hui; Xu, Jianguo; Xiong, Yanwen

    2016-01-01

    Atypical enteropathogenic Escherichia coli (aEPEC) is considered to be an emerging enteropathogen that is more prevalent than typical EPEC in developing and developed countries. The major adherence factor, intimin, an outer membrane protein encoded by eae, plays a pivotal role in the pathogenesis of aEPEC. This study investigated the distribution and polymorphisms of intimin subtypes of 143 aEPEC strains from diarrheal patients, healthy carriers, animals, and raw meats in China. These aEPEC strains belonged to more than 71 different serotypes, which comprised 52 O serogroups and 24 H types. Sixty-eight different eae genotypes and 19 intimin subtypes were detected. Eighteen, eight, seven, and five intimin subtypes were identified from 86 diarrheal patients, 14 healthy carriers, 19 animals, and 24 raw meats strains, respectively. Intimin β1 was the most prevalent subtype in strains from diarrheal patients (34.88%) and animals (47.37%). There was a statistically significant difference in the distribution of eae-β1 between diarrheal patients and healthy carriers (P = 0.004). Intimin-θ was more predominant among raw meat strains (50%) than among diarrheal patients strains (12.79%, P = 0.0003), healthy carrier strains (7.14%, P = 0.007), or animal strains (15.79%, P = 0.020). The two predominant subtypes (eae-β1 and eae-θ) had considerable polymorphisms with no significant differences among the four sources. PFGE analysis revealed 119 distinct patterns and the strains were clustered into 11 groups with similarity indices ranging from 63% to 100%. These results suggest that in China, aEPEC strains from different sources are highly heterogeneous. Animals and raw meats are important sources of genetically diverse intimin-harboring aEPEC, which might serve as important transmission vehicles of these bacteria. PMID:27031337

  15. Enteropathogenic and enterohemorrhagic Escherichia coli type III secretion effector EspV induces radical morphological changes in eukaryotic cells.

    PubMed

    Arbeloa, Ana; Oates, Clare V; Marchès, Oliver; Hartland, Elizabeth L; Frankel, Gad

    2011-03-01

    Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC) are important human pathogens that rely on translocation of type III secretion system (T3SS) effectors for subversion of signal transduction pathways and colonization of the mammalian gut mucosa. While a core set of effectors is conserved between EPEC and EHEC strains, a growing number of accessory effectors that were found at various frequencies in clinical and environmental isolates have been recently identified. Recent genome projects identified espV as a pseudogene in EHEC but a putative functional gene in EPEC strains E110019 and E22 and the closely related mouse pathogen Citrobacter rodentium. The aim of this study was to determine the distribution of espV among clinical EPEC and EHEC strains and to investigate its function and role in pathogenesis. espV was found in 16% of the tested strains. While deletion of espV from C. rodentium did not affect colonization dynamics or fitness in mixed infections, expression of EspV in mammalian cells led to drastic morphological alterations, which were characterized by nuclear condensation, cell rounding, and formation of dendrite-like projections. Expression of EspV in yeast resulted in a dramatic increase in cell size and irreversible growth arrest. Although the role of EspV in infection and its target host cell protein(s) require further investigation, the data point to a novel mechanism by which the T3SS subverts cell signaling.

  16. CsrA and TnaB coregulate tryptophanase activity to promote exotoxin-induced killing of Caenorhabditis elegans by enteropathogenic Escherichia coli.

    PubMed

    Bhatt, Shantanu; Anyanful, Akwasi; Kalman, Daniel

    2011-09-01

    Enteropathogenic Escherichia coli(EPEC) requires the tnaA-encoded enzyme tryptophanase and its substrate tryptophan to synthesize diffusible exotoxins that kill the nematode Caenorhabditis elegans. Here, we demonstrate that the RNA-binding protein CsrA and the tryptophan permease TnaB coregulate tryptophanase activity, through mutually exclusive pathways, to stimulate toxin-mediated paralysis and killing of C. elegans. PMID:21705596

  17. Thiophenone Attenuates Enteropathogenic Escherichia coli O103:H2 Virulence by Interfering with AI-2 Signaling

    PubMed Central

    Valen Rukke, Håkon; Benneche, Tore; Aamdal Scheie, Anne

    2016-01-01

    Interference with bacterial quorum sensing communication provides an anti-virulence strategy to control pathogenic bacteria. Here, using the Enteropathogenic E. coli (EPEC) O103:H2, we showed for the first time that thiophenone TF101 reduced expression of lsrB; the gene encoding the AI-2 receptor. Combined results of transcriptional and phenotypic analyses suggested that TF101 interfere with AI-2 signalling, possibly by competing with AI-2 for binding to LsrB. This is supported by in silico docking prediction of thiophenone TF101 in the LsrB pocket. Transcriptional analyses furthermore showed that thiophenone TF101 interfered with expression of the virulence genes eae and fimH. In addition, TF101 reduced AI-2 induced E. coli adhesion to colorectal adenocarcinoma cells. TF101, on the other hand, did not affect epinephrine or norepinephrine enhanced E. coli adhesion. Overall, our results showed that thiophenone TF101 interfered with virulence expression in E. coli O103:H2, suggestedly by interfering with AI-2 mediated quorum sensing. We thus conclude that thiophenone TF101 might represent a promising future anti-virulence agent in the fight against pathogenic E. coli. PMID:27309855

  18. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli.

    PubMed

    Crane, John K

    2013-01-01

    Xanthine oxidase (XO) has been recognized as an important host defense enzyme for decades. In our recent study in Infection and Immunity, we found that enteropathogenic and Shiga-toxigenic E. coli (EPEC and STEC) were far more resistant to killing by the XO pathway than laboratory E. coli strains used in the past. Although XO plus hypoxanthine substrate rarely generated enough H 2O 2 to kill EPEC and STEC, the pathogens were able to sense the H2O2 and react to it with an increase in expression of virulence factors, most notably Shiga toxin (Stx). H 2O 2 produced by XO also triggered a chloride secretory response in T84 cell monolayers studied in the Ussing chamber. Adding exogenous XO plus its substrate in vivo did not decrease the number of STEC bacteria recovered from ligated intestinal loops, but instead appeared to worsen the infection and increased the amount of Stx2 toxin produced. XO plus hypoxanthine also increases the ability of Stx2 to translocate across intestinal monolayers. With regard to EPEC and STEC, the role of XO appears more complex and subtle than what has been reported in the past, since XO also plays a role in host-pathogen signaling, in regulating virulence in pathogens, in Stx production and in toxin translocation. Uric acid produced by XO may also be in itself an immune modulator in the intestinal tract.

  19. Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract.

    PubMed Central

    Kenny, B; Abe, A; Stein, M; Finlay, B B

    1997-01-01

    The pathogenicity of enteropathogenic Escherichia coli (EPEC) is associated with the expression and secretion of specific bacterial factors. EspB is one such secreted protein which is required to trigger host signaling pathways resulting in effacement of microvilli and cytoskeletal rearrangements. These events presumably contribute to the ensuing diarrhea associated with EPEC infections. EPEC encounters several environmental changes and stimuli during its passage from the external environment into the host gastrointestinal tract. In this paper we show that the secretion of EspB is subject to environmental regulation, and maximal secretion occurs under conditions reminiscent of those in the gastrointestinal tract. Thus, secretion is maximal at 37 degrees C, pH 7, and physiological osmolarity. In addition, maximal secretion requires the presence of sodium bicarbonate and calcium and is stimulated by millimolar concentrations of Fe(NO3)3. The secretion of the four other EPEC-secreted proteins appears to be modulated in a manner similar to that of EspB. Our results also show that secretion is not dependent on CO2, as originally reported by Haigh et al. (FEMS Microbiol. Lett. 129: 63-67, 1995), but that CO2 more likely acts as a component of the medium buffering system, since CO2 dependence was abolished by the use of alternative buffers. PMID:9199427

  20. Characterization of the pathogenome and phylogenomic classification of enteropathogenic Escherichia coli of the O157:non-H7 serotypes

    PubMed Central

    Sanjar, Fatemeh; Rusconi, Brigida; Hazen, Tracy H.; Koenig, Sara S.K.; Mammel, Mark K.; Feng, Peter C.H.; Rasko, David A.; Eppinger, Mark

    2015-01-01

    Escherichia coli of the O157 serogroup are comprised of a diverse collection of more than 100 O157:non-H7 serotypes that are found in the environment, animal reservoir and infected patients and some have been linked to severe outbreaks of human disease. Among these, the enteropathogenic E. coli O157:non-H7 serotypes carry virulence factors that are hallmarks of enterohemorrhagic E. coli, such as causing attaching and effacing lesions during human gastrointestinal tract infections. Given the shared virulence gene pool between O157:H7 and O157:non-H7 serotypes, our objective was to examine the prevalence of virulence traits of O157:non-H7 serotypes within and across their H-serotype and when compared to other E. coli pathovars. We sequenced six O157:non-H7 genomes complemented by four genomes from public repositories in an effort to determine their virulence state and genetic relatedness to the highly pathogenic enterohemorrhagic O157:H7 lineage and its ancestral O55:H7 serotype. Whole-genome-based phylogenomic analysis and molecular typing is indicative of a non-monophyletic origin of the heterogeneous O157:non-H7 serotypes that are only distantly related to the O157:H7 serotype. The availability of multiple genomes enables robust phylogenomic placement of these strains into their evolutionary context, and the assessment of the pathogenic potential of the O157:non-H7 strains in causing human disease. PMID:25962987

  1. Detection of Escherichia coli Enteropathogens by Multiplex Polymerase Chain Reaction from Children's Diarrheal Stools in Two Caribbean–Colombian Cities

    PubMed Central

    Arzuza, Octavio; Urbina, Delfina; Bai, Jing; Guerra, Julio; Montes, Oscar; Puello, Marta; Mendoza, Ketty; Castro, Gregorio Y.

    2010-01-01

    Abstract Acute diarrheal disease is a leading cause of childhood morbidity and mortality in the developing world and Escherichia coli intestinal pathogens are important causative agents. Information on the epidemiology of E. coli intestinal pathogens and their association with diarrheal disease is limited because no diagnostic testing is available in countries with limited resources. To evaluate the prevalence of E. coli intestinal pathogens in a Caribbean–Colombian region, E. coli clinical isolates from children with diarrhea were analyzed by a recently reported two-reaction multiplex polymerase chain reaction (Gomez-Duarte et al., Diagn Microbiol Infect Dis 2009;63:1–9). The phylogenetic group from all E. coli isolates was also typed by a single-reaction multiplex polymerase chain reaction. We found that among 139 E. coli strains analyzed, 20 (14.4%) corresponded to E. coli diarrheagenic pathotypes. Enterotoxigenic, shiga-toxin–producing, enteroaggregative, diffuse adherent, and enteropathogenic E. coli pathotypes were detected, and most of them belonged to the phylogenetic groups A and B1, known to be associated with intestinal pathogens. This is the first report on the molecular characterization of E. coli diarrheogenic isolates in Colombia and the first report on the potential role of E. coli in childhood diarrhea in this geographic area. PMID:19839760

  2. Enteropathogenic Escherichia coli outer membrane proteins induce iNOS by activation of NF-kappaB and MAP kinases.

    PubMed

    Malladi, Vasantha; Puthenedam, Manjula; Williams, Peter H; Balakrishnan, Arun

    2004-12-01

    Enteropathogenic Escherichia coli (EPEC) infects the human intestinal epithelium and is a major cause of infantile diarrhea in developing countries. Nitric oxide (NO) is an important modulator of intestinal inflammatory response. The aim of the present study was to investigate whether EPEC outer membrane proteins (OMPs) up regulate epithelial cell expression of inducible nitric oxide synthase (iNOS) and to examine the role of NF-kappaB and MAP kinases (MAPK) on nitrite production. iNOS mRNA expression was assessed by RT-PCR. Nitrite levels were measured by Griess reaction. NF-kappaB activation by OMPs was evaluated by EMSA and immunoblotting was done to detect MAPK activation. EPEC OMP up regulated iNOS, induced nitrite production and NF-kappaB and MAPK were activated in caco-2 cells. The nitrite levels decreased when NF-kappaB and MAPK inhibitors were used. Thus, EPEC OMPs induce iNOS expression and NO production through activation of NF-kappaB and MAPK.

  3. Expression of enteropathogenic Escherichia coli map is significantly different than that of other type III secreted effectors in vivo.

    PubMed

    Nguyen, Mai; Rizvi, Jason; Hecht, Gail

    2015-01-01

    The enteropathogenic Escherichia coli (EPEC) locus of enterocyte effacement (LEE)-encoded effectors EspF and Map are multifunctional and have an impact on the tight junction barrier while the non-LEE-encoded proteins NleH1 and NleH2 possess significant anti-inflammatory activity. In order to address the temporal expression of these important genes in vivo, their promoters were cloned upstream of the luxCDABE operon, and luciferase expression was measured in EPEC-infected mice by bioluminescence using an in vivo imaging system (IVIS). Bioluminescent images of living mice, of excised whole intestines, and of whole intestines longitudinally opened and washed were assessed. The majority of bioluminescent bacteria localized in the cecum by 3 h postinfection, indicating that the cecum is not only a major colonization site of EPEC but also a site of EPEC effector gene expression in mice. espF, nleH1, and nleH2 were abundantly expressed over the course of infection. In contrast, map expression was suppressed at 2 days postinfection, and at 4 days postinfection it was totally abolished. After 2 to 4 days postinfection, when map is suppressed, EPEC colonization is significantly reduced, indicating that map may be one of the factors required to maintain EPEC colonization. This was confirmed in a competitive colonization study and in two models of chronic infection, repeated exposure to ketamine and Citrobacter rodentium infection. Our data suggest that map expression contributes to the maintenance of EPEC colonization.

  4. Virulence features of atypical enteropathogenic Escherichia coli identified by the eae(+) EAF-negative stx(-) genetic profile.

    PubMed

    Abe, Cecilia M; Trabulsi, Luiz R; Blanco, Jorge; Blanco, Miguel; Dahbi, Ghizlane; Blanco, Jesús E; Mora, Azucena; Franzolin, Marcia R; Taddei, Carla R; Martinez, Marina B; Piazza, Roxane M F; Elias, Waldir P

    2009-08-01

    This study characterized 76 atypical enteropathogenic Escherichia coli (aEPEC) strains, previously classified by the eae(+) EAF-negative stx(-) genotype, isolated from children with diarrhea in Brazil. Presence of bfpA and bfpA/perA was detected in 2 and 6 strains, respectively. The expression of bundle-forming pilus (BFP), however, was observed by immunofluorescence in 1 bfpA and 3 bfpA/perA strains, classifying them as typical EPEC (tEPEC). The remaining 72 aEPEC strains were characterized by serotyping, intimin typing, adherence patterns to HEp-2 cells, capacity to induce actin aggregation (fluorescent actin staining test), and antimicrobial resistance. Our results show that aEPEC comprise a very heterogeneous group that does not present any prevalence or association regarding the studied characteristics. It also suggest that tEPEC and aEPEC must not be classified only by the reactivity with the EAF probe, and that the search of other markers present in pEAF, as well as the BFP expression, must be considered for this matter.

  5. Molecular Evolution of Typical Enteropathogenic Escherichia coli: Clonal Analysis by Multilocus Sequence Typing and Virulence Gene Allelic Profiling▿ †

    PubMed Central

    Lacher, David W.; Steinsland, Hans; Blank, T. Eric; Donnenberg, Michael S.; Whittam, Thomas S.

    2007-01-01

    Enteropathogenic Escherichia coli (EPEC) infections are a leading cause of infantile diarrhea in developing nations. Typical EPEC isolates are differentiated from other types of pathogenic E. coli by two distinctive phenotypes, attaching effacement and localized adherence. The genes specifying these phenotypes are found on the locus of enterocyte effacement (LEE) and the EPEC adherence factor (EAF) plasmid. To describe how typical EPEC has evolved, we characterized a diverse collection of strains by multilocus sequence typing (MLST) and performed restriction fragment length polymorphism (RFLP) analysis of three virulence genes (eae, bfpA, and perA) to assess allelic variation. Among 129 strains representing 20 O-serogroups, 21 clonal genotypes were identified using MLST. RFLP analysis resolved nine eae, nine bfpA, and four perA alleles. Each bfpA allele was associated with only one perA allele class, suggesting that recombination has not played a large role in shuffling the bfpA and perA loci between separate EAF plasmids. The distribution of eae alleles among typical EPEC strains is more concordant with the clonal relationships than the distribution of the EAF plasmid types. These results provide further support for the hypothesis that the EPEC pathotype has evolved multiple times within E. coli through separate acquisitions of the LEE island and EAF plasmid. PMID:17098897

  6. Lactoferrin and free secretory component of human milk inhibit the adhesion of enteropathogenic Escherichia coli to HeLa cells

    PubMed Central

    de Araújo, Andréa Nascimento; Giugliano, Loreny Gimenes

    2001-01-01

    Background Diarrhoea caused by Escherichia coli is an important cause of infant morbidity and mortality in developing countries. Enteropathogenic Escherichia coli (EPEC) is considered one of the major causes of diarrhoea in children living in developing countries. The ability of diarrhoeagenic strains of E. coli to adhere to and colonize the intestine is the first step towards developing the disease. EPEC strains adhere to enterocytes and HeLa cells in a characteristic pattern known as localized adherence. Many epidemiological studies of diarrhoea have shown that breast-feeding protects infants from intestinal infections. Both immunoglobulin and non-immunoglobulin elements of human milk are thought to contribute to the protection from diarrhoeal agents. Results The effects of human milk and its protein components on the localized adherence of EPEC were investigated. Non-immunoglobulin components of human milk responsible for the inhibition of EPEC adhesion to HeLa cells were isolated by chromatographic fractionation of human whey proteins. Besides secretory immunoglobulin A, which has been previously reported to affect the adhesion of EPEC, free secretory component (fSC) and lactoferrin (Lf) were isolated. Even in concentrations lower than those usually found in whole milk, fSC and Lf were able to inhibit the adhesion of EPEC. α-lactalbumin was also isolated, but showed no activity on EPEC adhesion. Conclusions This study demonstrated that the immunoglobulin fraction, the free secretory component and lactoferrin of human milk inhibit EPEC adhesion to HeLa cells. These results indicate that fSC and Lf may be important non-specific defence factors against EPEC infections. PMID:11690544

  7. Substrate recognition by the zinc metalloprotease effector NleC from enteropathogenic Escherichia coli.

    PubMed

    Giogha, Cristina; Lung, Tania Wong Fok; Mühlen, Sabrina; Pearson, Jaclyn S; Hartland, Elizabeth L

    2015-12-01

    Upon infection of epithelial cells, enteropathogenic Escherichia coli suppresses host cell inflammatory signalling in a type III secretion system (T3SS) dependent manner. Two key T3SS effector proteins involved in this response are NleE and NleC. NleC is a zinc metalloprotease effector that degrades the p65 subunit of NF-κB. Although the site of p65 cleavage by NleC is now well described, other areas of interaction have not been precisely defined. Here we constructed overlapping truncations of p65 to identify regions required for NleC cleavage. We determined that NleC cleaved both p65 and p50 within the Rel homology domain (RHD) and that two motifs, E22IIE25 and P177VLS180 , within the RHD of p65 were important for recognition and binding by NleC. Alanine substitution of one or both of these motifs protected p65 from binding and degradation by NleC. The E22IIE25 and P177VLS180 motifs were located within the structurally distinct N-terminal subdomain of the RHD involved in DNA binding by p65 on adjacent, parallel strands. Although these motifs have not been recognized previously, both were needed for the correct localization and function of p65. In summary, this work has identified two regions of p65 within the RHD needed for binding and cleavage by NleC and provides further insight into the molecular basis of substrate recognition by a T3SS effector.

  8. Designed Coiled-Coil Peptides Inhibit the Type Three Secretion System of Enteropathogenic Escherichia coli

    PubMed Central

    Larzábal, Mariano; Mercado, Elsa C.; Vilte, Daniel A.; Salazar-González, Hector; Cataldi, Angel; Navarro-Garcia, Fernando

    2010-01-01

    Background Enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are two categories of E. coli strains associated with human disease. A major virulence factor of both pathotypes is the expression of a type three secretion system (TTSS), responsible for their ability to adhere to gut mucosa causing a characteristic attaching and effacing lesion (A/E). The TTSS translocates effector proteins directly into the host cell that subvert mammalian cell biochemistry. Methods/Principal Findings We examined synthetic peptides designed to inhibit the TTSS. CoilA and CoilB peptides, both representing coiled-coil regions of the translocator protein EspA, and CoilD peptide, corresponding to a coiled–coil region of the needle protein EscF, were effective in inhibiting the TTSS dependent hemolysis of red blood cells by the EPEC E2348/69 strain. CoilA and CoilB peptides also reduced the formation of actin pedestals by the same strain in HEp-2 cells and impaired the TTSS-mediated protein translocation into the epithelial cell. Interestingly, CoilA and CoilB were able to block EspA assembly, destabilizing the TTSS and thereby Tir translocation. This blockage of EspA polymerization by CoilA or CoilB peptides, also inhibited the correct delivery of EspB and EspD as detected by immunoblotting. Interestingly, electron microscopy of bacteria incubated with the CoilA peptide showed a reduction of the length of EspA filaments. Conclusions Our data indicate that coiled-coil peptides can prevent the assembly and thus the functionality of the TTSS apparatus and suggest that these peptides could provide an attractive tool to block EPEC and EHEC pathogenesis. PMID:20140230

  9. The type III secretion effector NleF of enteropathogenic Escherichia coli activates NF-κB early during infection.

    PubMed

    Pallett, Mitchell A; Berger, Cedric N; Pearson, Jaclyn S; Hartland, Elizabeth L; Frankel, Gad

    2014-11-01

    The enteric pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli employ a type 3 secretion system (T3SS) to manipulate the host inflammatory response during infection. Previously, it has been reported that EPEC, in a T3SS-dependent manner, induces an early proinflammatory response through activation of NF-κB via extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase Cζ (PKCζ). However, the activation of NF-κB during infection has not yet been attributed to an effector. At later time points postinfection, NF-κB signaling is inhibited through the translocation of multiple effectors, including NleE and NleC. Here we report that the highly conserved non-LEE (locus of enterocyte effacement)-encoded effector F (NleF) shows both diffuse and mitochondrial localization during ectopic expression. Moreover, NleF induces the nuclear translocation of NF-κB p65 and the expression of interleukin 8 (IL-8) following ectopic expression and during EPEC infection. Furthermore, the proinflammatory activity and localization of NleF were dependent on the C-terminal amino acids LQCG. While the C-terminal domain of NleF has previously been shown to be essential for interaction with caspase-4, caspase-8, and caspase-9, the proinflammatory activity of NleF was independent of interaction with caspase-4, -8, or -9. In conclusion, EPEC, through the T3SS-dependent translocation of NleF, induces a proinflammatory response in an NF-κB-dependent manner in the early stages of infection.

  10. Enteropathogenic Escherichia coli inhibits intestinal vitamin B1 (thiamin) uptake: studies with human-derived intestinal epithelial Caco-2 cells.

    PubMed

    Ashokkumar, Balasubramaniem; Kumar, Jeyan S; Hecht, Gail A; Said, Hamid M

    2009-10-01

    Infection with the gram-negative enteropathogenic Escherichia coli (EPEC), a food-borne pathogen, represents a significant risk to human health. Whereas diarrhea is a major consequence of this infection, malnutrition also occurs especially in severe and prolonged cases, which may aggravate the health status of the infected hosts. Here we examined the effect of EPEC infection on the intestinal uptake of the water-soluble vitamin B1 (thiamin) using an established human intestinal epithelial Caco-2 cell model. The results showed that infecting Caco-2 cells with wild-type EPEC (but not with nonpathogenic E. coli, killed EPEC, or filtered supernatant) leads to a significant (P < 0.01) inhibition in thiamin uptake. Kinetic parameters of both the nanomolar (mediated by THTR-2) and the micromolar (mediated by THTR-1) saturable thiamin uptake processes were affected by EPEC infection. Cell surface expression of hTHTR-1 and -2 proteins, (determined by the biotinylation method) showed a significantly (P < 0.01) lower expression in EPEC-treated cells compared with controls. EPEC infection also affected the steady-state mRNA levels as well as promoter activity of the SLC19A2 and SLC19A3 genes. Infecting Caco-2 cells with EPEC mutants that harbor mutations in the escN gene (which encodes a putative ATPase for the EPEC type III secretion system, TTSS) or the espA, espB, or espD genes (which encode structural components of the TTSS) did not affect thiamin uptake. On the other hand, mutations in espF and espH genes (which encode effector proteins) exhibited partial inhibition in thiamin uptake. These results demonstrate for the first time that EPEC infection of human intestinal epithelial cells leads to inhibition in thiamin uptake via effects on physiological and molecular parameters of hTHTR-1 and -2. Furthermore, the inhibition appears to be dependent on a functional TTSS of EPEC.

  11. The type III protein translocation system of enteropathogenic Escherichia coli involves EspA-EspB protein interactions.

    PubMed

    Hartland, E L; Daniell, S J; Delahay, R M; Neves, B C; Wallis, T; Shaw, R K; Hale, C; Knutton, S; Frankel, G

    2000-03-01

    Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, use a type III secretion system to deliver effector proteins across the bacterial cell wall. In EPEC, four proteins, EspA, EspB, EspD and Tir are known to be exported by a type III secretion system and to be essential for 'attaching and effacing' (A/E) lesion formation, the hallmark of EPEC pathogenicity. EspA was recently shown to be a structural protein and a major component of a large, transiently expressed, filamentous surface organelle which forms a direct link between the bacterium and the host cell. In contrast, EspB is translocated into the host cell where it is localized to both membrane and cytosolic cell fractions. EspA and EspB are required for translocation of Tir to the host cell membrane suggesting that they may both be components of the translocation apparatus. In this study, we show that EspB co-immunoprecipitates with the EspA filaments and that, during EPEC infection of HEp-2 cells, EspB localizes closely with EspA. Using a number of binding assays, we also show that EspB can bind and be copurified with EspA. Nevertheless, binding of EspA filaments to the host cell membranes occurred even in the absence of EspB. These results suggest that following initial attachment of the EspA filaments to the target cells, EspB is delivered into the host cell membrane and that the interaction between EspA and EspB may be important for protein translocation.

  12. The Type III Secretion Effector NleF of Enteropathogenic Escherichia coli Activates NF-κB Early during Infection

    PubMed Central

    Pallett, Mitchell A.; Berger, Cedric N.; Pearson, Jaclyn S.; Hartland, Elizabeth L.

    2014-01-01

    The enteric pathogens enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli employ a type 3 secretion system (T3SS) to manipulate the host inflammatory response during infection. Previously, it has been reported that EPEC, in a T3SS-dependent manner, induces an early proinflammatory response through activation of NF-κB via extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase Cζ (PKCζ). However, the activation of NF-κB during infection has not yet been attributed to an effector. At later time points postinfection, NF-κB signaling is inhibited through the translocation of multiple effectors, including NleE and NleC. Here we report that the highly conserved non-LEE (locus of enterocyte effacement)-encoded effector F (NleF) shows both diffuse and mitochondrial localization during ectopic expression. Moreover, NleF induces the nuclear translocation of NF-κB p65 and the expression of interleukin 8 (IL-8) following ectopic expression and during EPEC infection. Furthermore, the proinflammatory activity and localization of NleF were dependent on the C-terminal amino acids LQCG. While the C-terminal domain of NleF has previously been shown to be essential for interaction with caspase-4, caspase-8, and caspase-9, the proinflammatory activity of NleF was independent of interaction with caspase-4, -8, or -9. In conclusion, EPEC, through the T3SS-dependent translocation of NleF, induces a proinflammatory response in an NF-κB-dependent manner in the early stages of infection. PMID:25183730

  13. A type III effector protease NleC from enteropathogenic Escherichia coli targets NF-κB for degradation.

    PubMed

    Pearson, Jaclyn S; Riedmaier, Patrice; Marchès, Olivier; Frankel, Gad; Hartland, Elizabeth L

    2011-04-01

    Many bacterial pathogens utilize a type III secretion system (T3SS) to inject virulence effector proteins into host cells during infection. Previously, we found that enteropathogenic Escherichia coli (EPEC) uses the type III effector, NleE, to block the inflammatory response by inhibiting IκB degradation and nuclear translocation of the p65 subunit of NF-κB. Here we screened further effectors with unknown function for their capacity to prevent p65 nuclear translocation. We observed that ectopic expression of GFP-NleC in HeLa cells led to the degradation of p65. Delivery of NleC by the T3SS of EPEC also induced degradation of p65 in infected cells as well as other NF-κB components, c-Rel and p50. Recombinant His(6) -NleC induced p65 and p50 cleavage in HeLa cell lysates and mutation of a consensus zinc metalloprotease motif, HEIIH, abrogated NleC proteolytic activity. NleC inhibited IL-8 production during prolonged EPEC infection of HeLa cells in a protease activity-dependent manner. A double nleE/nleC mutant was further impaired for its ability to inhibit IL-8 secretion than either a single nleE or a single nleC mutant. We conclude that NleC is a type III effector protease that degrades NF-κB thereby contributing the arsenal of bacterial effectors that inhibit innate immune activation.

  14. Cross-Reactive Protection against Enterohemorrhagic Escherichia coli Infection by Enteropathogenic E. coli in a Mouse Model ▿

    PubMed Central

    Calderon Toledo, Carla; Arvidsson, Ida; Karpman, Diana

    2011-01-01

    Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are related attaching and effacing (A/E) pathogens. The genes responsible for the A/E pathology are carried on a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Both pathogens share a high degree of homology in the LEE and additional O islands. EHEC prevalence is much lower in areas where EPEC is endemic. This may be due to the development of antibodies against common EPEC and EHEC antigens. This study investigated the hypothesis that EPEC infections may protect against EHEC infections. We used a mouse model to inoculate BALB/c mice intragastrically, first with EPEC and then with EHEC (E. coli O157:H7). Four control groups received either a nonpathogenic E. coli (NPEC) strain followed by EHEC (NPEC/EHEC), phosphate-buffered saline (PBS) followed by EHEC (PBS/EHEC), EPEC/PBS, or PBS/PBS. Mice were monitored for weight loss and symptoms. EPEC colonized the intestine after challenge, and mice developed serum antibodies to intimin and E. coli secreted protein B (encoded in the LEE). Prechallenge with an EPEC strain had a protective effect after EHEC infection, as only a few mice developed mild symptoms, from which they recovered. These mice had an increase in body weight similar to that in control animals, and tissue morphology exhibited mild intestinal changes and normal renal histology. All mice that were not prechallenged with the EPEC strain developed mild to severe symptoms after EHEC infection, with weight loss as well as intestinal and renal histopathological changes. These data suggest that EPEC may protect against EHEC infection in this mouse model. PMID:21402761

  15. Characterization of enteropathogenic and Shiga toxin-producing Escherichia coli in cattle and deer in a shared agroecosystem.

    PubMed

    Singh, Pallavi; Sha, Qiong; Lacher, David W; Del Valle, Jacquelyn; Mosci, Rebekah E; Moore, Jennifer A; Scribner, Kim T; Manning, Shannon D

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. Cattle are suggested to be an important reservoir for STEC; however, these pathogens have also been isolated from other livestock and wildlife. In this study we sought to investigate transmission of STEC, enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) between cattle and white-tailed deer in a shared agroecosystem. Cattle feces were collected from 100 animals in a Michigan dairy farm in July 2012, while 163 deer fecal samples were collected during two sampling periods (March and June). The locations of deer fecal pellets were recorded via geographic information system mapping and microsatellite multi-locus genotyping was used to link the fecal samples to individual deer at both time points. Following subculture to sorbitol MacConkey agar and STEC CHROMagar, the pathogens were characterized by serotyping, stx profiling, and PCR-based fingerprinting; multilocus sequence typing (MLST) was performed on a subset. STEC and EHEC were cultured from 12 to 16% of cattle, respectively, and EPEC was found in 36%. Deer were significantly less likely to have a pathogen in March vs. June where the frequency of STEC, EHEC, and EPEC was 1, 6, and 22%, respectively. PCR fingerprinting and MLST clustered the cattle- and deer-derived strains together in a phylogenetic tree. Two STEC strains recovered from both animal species shared MLST and fingerprinting profiles, thereby providing evidence of interspecies transmission and highlighting the importance of wildlife species in pathogen shedding dynamics and persistence in the environment and cattle herds.

  16. Invasiveness as a putative additional virulence mechanism of some atypical Enteropathogenic Escherichia coli strains with different uncommon intimin types

    PubMed Central

    2009-01-01

    Background Enteropathogenic Escherichia coli (EPEC) produce attaching/effacing (A/E) lesions on eukaryotic cells mediated by the outer membrane adhesin intimin. EPEC are sub-grouped into typical (tEPEC) and atypical (aEPEC). We have recently demonstrated that aEPEC strain 1551-2 (serotype O non-typable, non-motile) invades HeLa cells by a process dependent on the expression of intimin sub-type omicron. In this study, we evaluated whether aEPEC strains expressing other intimin sub-types are also invasive using the quantitative gentamicin protection assay. We also evaluated whether aEPEC invade differentiated intestinal T84 cells. Results Five of six strains invaded HeLa and T84 cells in a range of 13.3%–20.9% and 5.8%–17.8%, respectively, of the total cell-associated bacteria. The strains studied were significantly more invasive than prototype tEPEC strain E2348/69 (1.4% and 0.5% in HeLa and T84 cells, respectively). Invasiveness was confirmed by transmission electron microscopy. We also showed that invasion of HeLa cells by aEPEC 1551-2 depended on actin filaments, but not on microtubules. In addition, disruption of tight junctions enhanced its invasion efficiency in T84 cells, suggesting preferential invasion via a non-differentiated surface. Conclusion Some aEPEC strains may invade intestinal cells in vitro with varying efficiencies and independently of the intimin sub-type. PMID:19622141

  17. Virulence, Antimicrobial Resistance Properties and Phylogenetic Background of Non-H7 Enteropathogenic Escherichia coli O157

    PubMed Central

    Ferdous, Mithila; Kooistra-Smid, Anna M. D.; Zhou, Kai; Rossen, John W. A.; Friedrich, Alexander W.

    2016-01-01

    Escherichia coli (E.coli) O157 that do not produce Shiga toxin and do not possess flagellar antigen H7 are of diverse H serotypes. In this study, the antibiotic resistance properties, genotype of a set of virulence associated genes and the phylogenetic background of E. coli O157:non-H7 groups were compared. Whole genome sequencing was performed on fourteen O157:non-H7 isolates collected in the STEC-ID-net study. The genomes were compared with E. coli O157 genomes and a typical Enteropathogenic E. coli (tEPEC) genome downloaded from NCBI. Twenty-six (86%) of the analyzed genomes had the intimin encoding gene eae but of different types mostly correlating with their H types, e.g., H16, H26, H39, and H45 carried intimin type ε, β, κ, and α, respectively. They belonged to several E. coli phylogenetic groups, i.e., to phylogenetic group A, B1, B2, and D. Seven (50%) of our collected O157:non-H7 isolates were resistant to two or more antibiotics. Several mobile genetic elements, such as plasmids, insertion elements, and pathogenicity islands, carrying a set of virulence and resistance genes were found in the E. coli O157:non-H7 isolates. Core genome phylogenetic analysis showed that O157:non-H7 isolates probably evolved from different phylogenetic lineages and were distantly related to the E. coli O157:H7 lineage. We hypothesize that independent acquisition of mobile genetic elements by isolates of different lineages have contributed to the different molecular features of the O157:non-H7 strains. Although distantly related to the STEC O157, E. coli O157:non-H7 isolates from multiple genetic background could be considered as pathogen of concern for their diverse virulence and antibiotic resistance properties. PMID:27733849

  18. Characterization of enteropathogenic and Shiga toxin-producing Escherichia coli in cattle and deer in a shared agroecosystem

    PubMed Central

    Singh, Pallavi; Sha, Qiong; Lacher, David W.; Del Valle, Jacquelyn; Mosci, Rebekah E.; Moore, Jennifer A.; Scribner, Kim T.; Manning, Shannon D.

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. Cattle are suggested to be an important reservoir for STEC; however, these pathogens have also been isolated from other livestock and wildlife. In this study we sought to investigate transmission of STEC, enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) between cattle and white-tailed deer in a shared agroecosystem. Cattle feces were collected from 100 animals in a Michigan dairy farm in July 2012, while 163 deer fecal samples were collected during two sampling periods (March and June). The locations of deer fecal pellets were recorded via geographic information system mapping and microsatellite multi-locus genotyping was used to link the fecal samples to individual deer at both time points. Following subculture to sorbitol MacConkey agar and STEC CHROMagar, the pathogens were characterized by serotyping, stx profiling, and PCR-based fingerprinting; multilocus sequence typing (MLST) was performed on a subset. STEC and EHEC were cultured from 12 to 16% of cattle, respectively, and EPEC was found in 36%. Deer were significantly less likely to have a pathogen in March vs. June where the frequency of STEC, EHEC, and EPEC was 1, 6, and 22%, respectively. PCR fingerprinting and MLST clustered the cattle- and deer-derived strains together in a phylogenetic tree. Two STEC strains recovered from both animal species shared MLST and fingerprinting profiles, thereby providing evidence of interspecies transmission and highlighting the importance of wildlife species in pathogen shedding dynamics and persistence in the environment and cattle herds. PMID:25883908

  19. Characterization of enteropathogenic and Shiga toxin-producing Escherichia coli in cattle and deer in a shared agroecosystem.

    PubMed

    Singh, Pallavi; Sha, Qiong; Lacher, David W; Del Valle, Jacquelyn; Mosci, Rebekah E; Moore, Jennifer A; Scribner, Kim T; Manning, Shannon D

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. Cattle are suggested to be an important reservoir for STEC; however, these pathogens have also been isolated from other livestock and wildlife. In this study we sought to investigate transmission of STEC, enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) between cattle and white-tailed deer in a shared agroecosystem. Cattle feces were collected from 100 animals in a Michigan dairy farm in July 2012, while 163 deer fecal samples were collected during two sampling periods (March and June). The locations of deer fecal pellets were recorded via geographic information system mapping and microsatellite multi-locus genotyping was used to link the fecal samples to individual deer at both time points. Following subculture to sorbitol MacConkey agar and STEC CHROMagar, the pathogens were characterized by serotyping, stx profiling, and PCR-based fingerprinting; multilocus sequence typing (MLST) was performed on a subset. STEC and EHEC were cultured from 12 to 16% of cattle, respectively, and EPEC was found in 36%. Deer were significantly less likely to have a pathogen in March vs. June where the frequency of STEC, EHEC, and EPEC was 1, 6, and 22%, respectively. PCR fingerprinting and MLST clustered the cattle- and deer-derived strains together in a phylogenetic tree. Two STEC strains recovered from both animal species shared MLST and fingerprinting profiles, thereby providing evidence of interspecies transmission and highlighting the importance of wildlife species in pathogen shedding dynamics and persistence in the environment and cattle herds. PMID:25883908

  20. [Epidemic of gastroenteritis in Noumea (New Caledonia) caused by an enterotoxinogenic strain of Escherichia coli (0l26:B16) believed to be enteropathogenic].

    PubMed

    Germani, Y; Amat, F; Brethes, B; Begaud, E; Plassart, H

    1985-01-01

    A strain of enteropathogenic Escherichia coli 0126:B16 has been isolated in fifteen children and one adult during a severe outbreak. One infant is dead. The strain produced heat-stable enterotoxin, attach to rabbit enterocytes but did not have colonization factor antigen CFA/I or CFA/II. Its hemagglutination type was the same that the E. coli H10407, CFA/I+. It presented a resistance at eight antibiotics and, with the loss of enterotoxigenicity, there was a loss of resistance at ampicillin and of the capacity to attach to enterocytes. PMID:3906346

  1. Thiol-independent activity of a cholesterol-binding enterohemolysin produced by enteropathogenic Escherichia coli.

    PubMed

    Figueirêdo, P M S; Catani, C F; Yano, T

    2003-11-01

    Enterohemolysin produced by Escherichia coli associated with infant diarrhea showed characteristics similar to those of thiol-activated hemolysins produced by Gram-positive bacteria, including inactivation by cholesterol, lytic activity towards eukaryotic cells and thermoinstability. However, enterohemolysin activity was not inactivated by oxidation or by SH group-blocking agents (1 mM HgCl2, 1 mM iodoacetic acid) and the hemolysin (100 microg/ml) was not lethal to mice, in contrast to the lethality of the thiol-activated hemolysin family to animals. Earlier reports showed that intravenous injection of partially purified streptolysin O preparations (0.2 microg) was rapidly lethal to mice. These results suggest that E. coli enterohemolysin is not a thiol-activated hemolysin, despite its ability to bind cholesterol, probably due to the absence of free thiol-group(s) that characterize the active form of the thiol-activated hemolysin molecule.

  2. Neem (Azadirachta indica A. Juss) Oil to Tackle Enteropathogenic Escherichia coli

    PubMed Central

    Del Serrone, Paola; Nicoletti, Marcello

    2015-01-01

    Neem (Azadirachta indica A. Juss) oil (NO) was assayed against forty-eight isolates of Escherichia coli by standardised disc diffusion test and microdilution test. By molecular biology characterization, fourteen isolates resulted in diarrheagenic E. coli with sixteen primer pairs that specifically amplify unique sequences of virulence genes and of 16S rRNA. The NO showed biological activity against all isolates. The bacterial growth inhibition zone by disc diffusion method (100 µL NO) ranged between 9.50 ± 0.70 and 30.00 ± 1.00 mm. The antibacterial activity was furthermore determined at lower NO concentrations (1 : 10–1 : 10,000). The percent of growth reduction ranged between 23.71 ± 1.00 and 99.70 ± 1.53. The highest bacterial growth reduction was 1 : 10 NO concentration with 50 µL of bacterial suspension (ca. 1 × 106 CFU/mL). There is significant difference between the antibacterial activities against pathogenic and nonpathogenic E. coli, as well as NO and ciprofloxacin activities. Viable cells after the different NO concentration treatments were checked by molecular biology assay using PMA dye. On the basis of the obtained results, NO counteracts E. coli and also influences the virulence of E. coli viable cells after NO treatment. The NO metabolomic composition was obtained using fingerprint HPTLC. PMID:26064900

  3. Neem (Azadirachta indica A. Juss) Oil to Tackle Enteropathogenic Escherichia coli.

    PubMed

    Del Serrone, Paola; Toniolo, Chiara; Nicoletti, Marcello

    2015-01-01

    Neem (Azadirachta indica A. Juss) oil (NO) was assayed against forty-eight isolates of Escherichia coli by standardised disc diffusion test and microdilution test. By molecular biology characterization, fourteen isolates resulted in diarrheagenic E. coli with sixteen primer pairs that specifically amplify unique sequences of virulence genes and of 16S rRNA. The NO showed biological activity against all isolates. The bacterial growth inhibition zone by disc diffusion method (100 µL NO) ranged between 9.50 ± 0.70 and 30.00 ± 1.00 mm. The antibacterial activity was furthermore determined at lower NO concentrations (1 : 10-1 : 10,000). The percent of growth reduction ranged between 23.71 ± 1.00 and 99.70 ± 1.53. The highest bacterial growth reduction was 1 : 10 NO concentration with 50 µL of bacterial suspension (ca. 1 × 10(6) CFU/mL). There is significant difference between the antibacterial activities against pathogenic and nonpathogenic E. coli, as well as NO and ciprofloxacin activities. Viable cells after the different NO concentration treatments were checked by molecular biology assay using PMA dye. On the basis of the obtained results, NO counteracts E. coli and also influences the virulence of E. coli viable cells after NO treatment. The NO metabolomic composition was obtained using fingerprint HPTLC. PMID:26064900

  4. Neem (Azadirachta indica A. Juss) Oil to Tackle Enteropathogenic Escherichia coli.

    PubMed

    Del Serrone, Paola; Toniolo, Chiara; Nicoletti, Marcello

    2015-01-01

    Neem (Azadirachta indica A. Juss) oil (NO) was assayed against forty-eight isolates of Escherichia coli by standardised disc diffusion test and microdilution test. By molecular biology characterization, fourteen isolates resulted in diarrheagenic E. coli with sixteen primer pairs that specifically amplify unique sequences of virulence genes and of 16S rRNA. The NO showed biological activity against all isolates. The bacterial growth inhibition zone by disc diffusion method (100 µL NO) ranged between 9.50 ± 0.70 and 30.00 ± 1.00 mm. The antibacterial activity was furthermore determined at lower NO concentrations (1 : 10-1 : 10,000). The percent of growth reduction ranged between 23.71 ± 1.00 and 99.70 ± 1.53. The highest bacterial growth reduction was 1 : 10 NO concentration with 50 µL of bacterial suspension (ca. 1 × 10(6) CFU/mL). There is significant difference between the antibacterial activities against pathogenic and nonpathogenic E. coli, as well as NO and ciprofloxacin activities. Viable cells after the different NO concentration treatments were checked by molecular biology assay using PMA dye. On the basis of the obtained results, NO counteracts E. coli and also influences the virulence of E. coli viable cells after NO treatment. The NO metabolomic composition was obtained using fingerprint HPTLC.

  5. Structural and Functional Analysis of BipA, a Regulator of Virulence in Enteropathogenic Escherichia coli*

    PubMed Central

    Fan, Haitian; Hahm, Joseph; Diggs, Stephen; Perry, J. Jefferson P.; Blaha, Gregor

    2015-01-01

    The translational GTPase BipA regulates the expression of virulence and pathogenicity factors in several eubacteria. BipA-dependent expression of virulence factors occurs under starvation conditions, such as encountered during infection of a host. Under these conditions, BipA associates with the small ribosomal subunit. BipA also has a second function to promote the efficiency of late steps in biogenesis of large ribosomal subunits at low temperatures, presumably while bound to the ribosome. During starvation, the cellular concentration of stress alarmone guanosine-3′, 5′-bis pyrophosphate (ppGpp) is increased. This increase allows ppGpp to bind to BipA and switch its binding specificity from ribosomes to small ribosomal subunits. A conformational change of BipA upon ppGpp binding could explain the ppGpp regulation of the binding specificity of BipA. Here, we present the structures of the full-length BipA from Escherichia coli in apo, GDP-, and ppGpp-bound forms. The crystal structure and small-angle x-ray scattering data of the protein with bound nucleotides, together with a thermodynamic analysis of the binding of GDP and of ppGpp to BipA, indicate that the ppGpp-bound form of BipA adopts the structure of the GDP form. This suggests furthermore, that the switch in binding preference only occurs when both ppGpp and the small ribosomal subunit are present. This molecular mechanism would allow BipA to interact with both the ribosome and the small ribosomal subunit during stress response. PMID:26163516

  6. Structural and Functional Analysis of BipA, a Regulator of Virulence in Enteropathogenic Escherichia coli.

    PubMed

    Fan, Haitian; Hahm, Joseph; Diggs, Stephen; Perry, J Jefferson P; Blaha, Gregor

    2015-08-21

    The translational GTPase BipA regulates the expression of virulence and pathogenicity factors in several eubacteria. BipA-dependent expression of virulence factors occurs under starvation conditions, such as encountered during infection of a host. Under these conditions, BipA associates with the small ribosomal subunit. BipA also has a second function to promote the efficiency of late steps in biogenesis of large ribosomal subunits at low temperatures, presumably while bound to the ribosome. During starvation, the cellular concentration of stress alarmone guanosine-3', 5'-bis pyrophosphate (ppGpp) is increased. This increase allows ppGpp to bind to BipA and switch its binding specificity from ribosomes to small ribosomal subunits. A conformational change of BipA upon ppGpp binding could explain the ppGpp regulation of the binding specificity of BipA. Here, we present the structures of the full-length BipA from Escherichia coli in apo, GDP-, and ppGpp-bound forms. The crystal structure and small-angle x-ray scattering data of the protein with bound nucleotides, together with a thermodynamic analysis of the binding of GDP and of ppGpp to BipA, indicate that the ppGpp-bound form of BipA adopts the structure of the GDP form. This suggests furthermore, that the switch in binding preference only occurs when both ppGpp and the small ribosomal subunit are present. This molecular mechanism would allow BipA to interact with both the ribosome and the small ribosomal subunit during stress response.

  7. Phenotypic and genotypic characteristics associated with biofilm formation in clinical isolates of atypical enteropathogenic Escherichia coli (aEPEC) strains

    PubMed Central

    2014-01-01

    Background Biofilm formation by enteropathogenic Escherichia coli (EPEC) have been recently described in the prototype typical EPEC E2348/69 strain and in an atypical EPEC O55:H7 strain. In this study, we sought to evaluate biofilm formation in a collection of 126 atypical EPEC strains isolated from 92 diarrheic and 34 nondiarrheic children, belonging to different serotypes. The association of biofilm formation and adhesin-related genes were also investigated. Results Biofilm formation occurred in 37 (29%) strains of different serotypes, when the assays were performed at 26°C and 37°C for 24 h. Among these, four strains (A79, A87, A88, and A111) formed a stronger biofilm than did the others. The frequency of biofilm producers was higher among isolates from patients compared with isolates from controls (34.8% vs 14.7%; P = 0.029). An association was found between biofilm formation and expression of type 1 fimbriae and curli (P < 0.05). Unlike the previously described aEPEC O55:H7, one aEPEC O119:HND strain (A111) formed a strong biofilm and pellicle at the air-liquid interface, but did not express curli. Transposon mutagenesis was used to identify biofilm-deficient mutants. Transposon insertion sequences of six mutants revealed similarity with type 1 fimbriae (fimC, fimD, and fimH), diguanylate cyclase, ATP synthase F1, beta subunit (atpD), and the uncharacterized YjiC protein. All these mutants were deficient in biofilm formation ability. Conclusion This study showed that the ability to adhere to abiotic surfaces and form biofilm is present in an array of aEPEC strains. Moreover, it seems that the ability to form biofilms is associated with the presence of type 1 fimbriae and diguanylate cyclase. Characterization of additional biofilm formation mutants may reveal other mechanisms involved in biofilm formation and bring new insights into aEPEC adhesion and pathogenesis. PMID:25012525

  8. Genetic characterization of Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic Escherichia coli (EPEC) isolates from goat's milk and goat farm environment.

    PubMed

    Álvarez-Suárez, María-Elena; Otero, Andrés; García-López, María-Luisa; Dahbi, Ghizlane; Blanco, Miguel; Mora, Azucena; Blanco, Jorge; Santos, Jesús A

    2016-11-01

    The aim of this study was to characterize a collection of 44 Shiga toxin-producing (STEC) and enteropathogenic Escherichia coli (EPEC) isolated from goat milk and goat farm environment. Of the 19 STEC isolates, five (26.3%) carried the stx1 gene, four (21.1%) the stx2 gene and 10 (52.6%) presented both stx genes. Six (31.6%) STEC strains were eae-positive and belonged to serotypes related to severe human disease (O157:H7 and O5:HNM). Another seven STEC strains were of serotype O146:H21 and three of serotype O166:H28, also linked to human disease. The STEC strains isolated from goat milk were of serotypes potentially pathogenic for humans. All the 25 EPEC isolates were considered atypical (aEPEC) and one aEPEC strain was of serotype O26:H11, a serotype frequently isolated in children with diarrhea. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 23 sequence types (ST) were detected, 14 of them newly described. Twelve STs grouped STEC isolates and 11 STs grouped EPEC isolates. Genetic typing by pulsed field gel electrophoresis (PFGE) resulted in 38 patterns which grouped in 10 clusters. Well-defined groups were also observed for strains of pathogenic serotypes. In conclusion, strains of STEC and aEPEC belonging to serotypes related to severe human disease have been detected in goat milk and the goat farm environment. Ruminants are an important reservoir of STEC strains and the role of these animals as carriers of other pathogenic types of E. coli seems to be an emerging concern.

  9. Is Shiga Toxin-Negative Escherichia coli O157:H7 Enteropathogenic or Enterohemorrhagic Escherichia coli? Comprehensive Molecular Analysis Using Whole-Genome Sequencing

    PubMed Central

    Ferdous, Mithila; Zhou, Kai; Mellmann, Alexander; Morabito, Stefano; Croughs, Peter D.; de Boer, Richard F.; Kooistra-Smid, Anna M. D.; Friedrich, Alexander W.

    2015-01-01

    The ability of Escherichia coli O157:H7 to induce cellular damage leading to disease in humans is related to numerous virulence factors, most notably the stx gene, encoding Shiga toxin (Stx) and carried by a bacteriophage. Loss of the Stx-encoding bacteriophage may occur during infection or culturing of the strain. Here, we collected stx-positive and stx-negative variants of E. coli O157:H7/NM (nonmotile) isolates from patients with gastrointestinal complaints. Isolates were characterized by whole-genome sequencing (WGS), and their virulence properties and phylogenetic relationship were determined. Because of the presence of the eae gene but lack of the bfpA gene, the stx-negative isolates were considered atypical enteropathogenic E. coli (aEPEC). However, they had phenotypic characteristics similar to those of the Shiga toxin-producing E. coli (STEC) isolates and belonged to the same sequence type, ST11. Furthermore, EPEC and STEC isolates shared similar virulence genes, the locus of enterocyte effacement region, and plasmids. Core genome phylogenetic analysis using a gene-by-gene typing approach showed that the sorbitol-fermenting (SF) stx-negative isolates clustered together with an SF STEC isolate and that one non-sorbitol-fermenting (NSF) stx-negative isolate clustered together with NSF STEC isolates. Therefore, these stx-negative isolates were thought either to have lost the Stx phage or to be a progenitor of STEC O157:H7/NM. As detection of STEC infections is often based solely on the identification of the presence of stx genes, these may be misdiagnosed in routine laboratories. Therefore, an improved diagnostic approach is required to manage identification, strategies for treatment, and prevention of transmission of these potentially pathogenic strains. PMID:26311863

  10. Genetic characterization of Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic Escherichia coli (EPEC) isolates from goat's milk and goat farm environment.

    PubMed

    Álvarez-Suárez, María-Elena; Otero, Andrés; García-López, María-Luisa; Dahbi, Ghizlane; Blanco, Miguel; Mora, Azucena; Blanco, Jorge; Santos, Jesús A

    2016-11-01

    The aim of this study was to characterize a collection of 44 Shiga toxin-producing (STEC) and enteropathogenic Escherichia coli (EPEC) isolated from goat milk and goat farm environment. Of the 19 STEC isolates, five (26.3%) carried the stx1 gene, four (21.1%) the stx2 gene and 10 (52.6%) presented both stx genes. Six (31.6%) STEC strains were eae-positive and belonged to serotypes related to severe human disease (O157:H7 and O5:HNM). Another seven STEC strains were of serotype O146:H21 and three of serotype O166:H28, also linked to human disease. The STEC strains isolated from goat milk were of serotypes potentially pathogenic for humans. All the 25 EPEC isolates were considered atypical (aEPEC) and one aEPEC strain was of serotype O26:H11, a serotype frequently isolated in children with diarrhea. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 23 sequence types (ST) were detected, 14 of them newly described. Twelve STs grouped STEC isolates and 11 STs grouped EPEC isolates. Genetic typing by pulsed field gel electrophoresis (PFGE) resulted in 38 patterns which grouped in 10 clusters. Well-defined groups were also observed for strains of pathogenic serotypes. In conclusion, strains of STEC and aEPEC belonging to serotypes related to severe human disease have been detected in goat milk and the goat farm environment. Ruminants are an important reservoir of STEC strains and the role of these animals as carriers of other pathogenic types of E. coli seems to be an emerging concern. PMID:27497630

  11. Scanning and transmission electron microscopic study of adherence of Escherichia coli O103 enteropathogenic and/or enterohemorrhagic strain GV in enteric infection in rabbits.

    PubMed Central

    Licois, D; Reynaud, A; Federighi, M; Gaillard-Martinie, B; Guillot, J F; Joly, B

    1991-01-01

    The GV strain (serotype O103:H2:K-), originally isolated from a diarrheic rabbit, is an enteropathogenic Escherichia coli strain that produces diarrhea without synthesizing the classical enterotoxins and that is not invasive. This strain is characterized by a 117-kb plasmid (pREC-1). Histological study of the gut by scanning electron microscopy and transmission electron microscopy was performed on the GV strain, on a derivative strain cured of pREC-1, and on transconjugants obtained by transfer of pREC-1 to nonpathogenic strains E. coli K-12 and 6100, not belonging to the O103 serogroup. The GV strain adhered to the epithelial cells of the ileum and large intestine, whereas the cured GV strain did not. Transfer of plasmid pREC-1 to E. coli K-12 or 6100 allowed the bacteria to attach to the intestinal mucosa in the same manner as that of the wild-type GV strain. Thus, pREC-1 seems to play an important role in attachment to and colonization of the intestinal tract of rabbits by E. coli serogroup O103. Scanning electron microscopy showed numerous bacteria attached together and closely associated with intestinal villi. Transmission electron microscopy revealed effacing lesions characteristic of enteropathogenic E. coli strains: effacing of microvilli and cuplike projections (pedestal formations) associated with an acute inflammatory and hemorrhagic response. In contrast with the results reported for rabbit pathogenic O15 strains, it appeared that the Peyer's patches were not involved in the early stages of infection with the O103 GV strain. This strain may represent a model for the study of the virulence and pathogenic effects of enteropathogenic and enterohemorrhagic E. coli strains. Images PMID:1894377

  12. Coiled-coil domain of enteropathogenic Escherichia coli type III secreted protein EspD is involved in EspA filament-mediated cell attachment and hemolysis.

    PubMed

    Daniell, S J; Delahay, R M; Shaw, R K; Hartland, E L; Pallen, M J; Booy, F; Ebel, F; Knutton, S; Frankel, G

    2001-06-01

    Many animal and plant pathogens use type III secretion systems to secrete key virulence factors, some directly into the host cell cytosol. However, the basis for such protein translocation has yet to be fully elucidated for any type III secretion system. We have previously shown that in enteropathogenic and enterohemorrhagic Escherichia coli the type III secreted protein EspA is assembled into a filamentous organelle that attaches the bacterium to the plasma membrane of the host cell. Formation of EspA filaments is dependent on expression of another type III secreted protein, EspD. The carboxy terminus of EspD, a protein involved in formation of the translocation pore in the host cell membrane, is predicted to adopt a coiled-coil conformation with 99% probability. Here, we demonstrate EspD-EspD protein interaction using the yeast two-hybrid system and column overlays. Nonconservative triple amino acid substitutions of specific EspD carboxy-terminal residues generated an enteropathogenic E. coli mutant that was attenuated in its ability to induce attaching and effacing lesions on HEp-2 cells. Although the mutation had no effect on EspA filament biosynthesis, it also resulted in reduced binding to and reduced hemolysis of red blood cells. These results segregate, for the first time, functional domains of EspD that control EspA filament length from EspD-mediated cell attachment and pore formation.

  13. The Flagella of an Atypical Enteropathogenic Escherichia coli Strain Are Required for Efficient Interaction with and Stimulation of Interleukin-8 Production by Enterocytes In Vitro▿

    PubMed Central

    Sampaio, Suely C. F.; Gomes, Tânia A. T.; Pichon, Christophe; du Merle, Laurence; Guadagnini, Stéphanie; Abe, Cecilia M.; Sampaio, Jorge L. M.; Le Bouguénec, Chantal

    2009-01-01

    The ability of some typical enteropathogenic Escherichia coli (EPEC) strains to adhere to, invade, and increase interleukin-8 (IL-8) production in intestinal epithelial cells in vitro has been demonstrated. However, few studies regarding these aspects have been performed with atypical EPEC (aEPEC) strains, which are emerging enteropathogens in Brazil. In this study, we evaluated a selected aEPEC strain (1711-4) of serotype O51:H40, the most prevalent aEPEC serotype in Brazil, in regard to its ability to adhere to and invade Caco-2 and T84 cells and to elicit IL-8 production in Caco-2 cells. The role of flagella in aEPEC 1711-4 adhesion, invasion, and IL-8 production was investigated by performing the same experiments with an isogenic aEPEC mutant unable to produce flagellin (FliC), the flagellum protein subunit. We demonstrated that this mutant (fliC mutant) had a marked decrease in the ability to adhere to T84 cells and invade both T84 and Caco-2 cells in gentamicin protection assays and by transmission electron microscopy. In addition, the aEPEC 1711-4 fliC mutant had a reduced ability to stimulate IL-8 production by Caco-2 cells in early (3-h) but not in late (24-h) infections. Our findings demonstrate that flagella of aEPEC 1711-4 are required for efficient adhesion, invasion, and early but not late IL-8 production in intestinal epithelial cells in vitro. PMID:19620340

  14. Contribution of Efa1/LifA to the adherence of enteropathogenic Escherichia coli to epithelial cells.

    PubMed

    Badea, Luminita; Doughty, Stephen; Nicholls, Larissa; Sloan, Joan; Robins-Browne, Roy M; Hartland, Elizabeth L

    2003-05-01

    Enteropathogenic E. coli(EPEC) is an important diarrhoeal pathogen that induces characteristic lesions on the host intestine termed attaching and effacing (A/E) lesions. In this study we have examined the contribution of a large gene, efa1, which is present in all A/E pathogens, to the adherence phenotype of EPEC. An efa- derivative of EPEC JPN15 was constructed and this mutant was significantly less adherent to epithelial cells than the parent strain. The JPN15 efa- derivative was FAS-positive, produced EspA filaments and showed comparable levels of EspA secretion to JPN15. In addition, polyclonal antibodies raised to Efa1 partially inhibited the adherence of JPN15 to cultured epithelial cells. In further work, we showed that human and rabbit hosts infected with an A/E pathogen produced antibodies to Efa1 and we observed that the truncated form of efa1 present in EHEC O157:H7 was specific to that serotype. Generally efa1 was present in its entirety in the genomes of other A/E pathogens. Overall our data suggest that Efa1 has host cell binding activity, at least in tissue culture, and that it is produced during infection. These findings suggest that Efa1 may play a direct role in the pathogenesis of infections caused by A/E pathogens.

  15. Genome sequences and phylogenetic analysis of K88- and F18-positive porcine enterotoxigenic Escherichia coli.

    PubMed

    Shepard, Sara M; Danzeisen, Jessica L; Isaacson, Richard E; Seemann, Torsten; Achtman, Mark; Johnson, Timothy J

    2012-01-01

    Porcine enterotoxigenic Escherichia coli (ETEC) continues to result in major morbidity and mortality in the swine industry via postweaning diarrhea. The key virulence factors of ETEC strains, their serotypes, and their fimbrial components have been well studied. However, most studies to date have focused on plasmid-encoded traits related to colonization and toxin production, and the chromosomal backgrounds of these strains have been largely understudied. Here, we generated the genomic sequences of K88-positive and F18-positive porcine ETEC strains and examined the phylogenetic distribution of clinical porcine ETEC strains and their plasmid-associated genetic content. The genomes of porcine ETEC strains UMNK88 and UMNF18 were both found to contain remarkable plasmid complements containing known virulence factors, potential novel virulence factors, and antimicrobial resistance-associated elements. The chromosomes of these strains also possessed several unique genomic islands containing hypothetical genes with similarity to classical virulence factors, although phage-associated genomic islands dominated the accessory genomes of these strains. Phylogenetic analysis of 78 clinical isolates associated with neonatal and porcine diarrhea revealed that a limited subset of porcine ETEC lineages exist that generally contain common toxin and fimbrial profiles, with many of the isolates belonging to the ST10, ST23, and ST169 multilocus sequencing types. These lineages were generally distinct from existing human ETEC database isolates. Overall, most porcine ETEC strains appear to have emerged from a limited subset of E. coli lineages that either have an increased propensity to carry plasmid-encoded virulence factors or have the appropriate ETEC core genome required for virulence. PMID:22081385

  16. Diarrheagenic Escherichia coli pathotypes investigation revealed atypical enteropathogenic E. coli as putative emerging diarrheal agents in children living in Botucatu, São Paulo State, Brazil.

    PubMed

    Dias, Regiane C B; Dos Santos, Bruna C; Dos Santos, Luis F; Vieira, Melissa A; Yamatogi, Ricardo S; Mondelli, Alessandro L; Sadatsune, Terue; Sforcin, José M; Gomes, Tânia A T; Hernandes, Rodrigo T

    2016-04-01

    The aim of the present study was to investigate the prevalence of Diarrheagenic Escherichia coli (DEC) pathotypes, a leading cause of diarrhea worldwide, among diarrheal and healthy children, up to 5 years of age, living in the city of Botucatu, São Paulo, Brazil. DEC, investigated by PCR detection of virulence factor-encoding genes associated with the distinct pathotypes, was isolated from 18.0% of the patients, and 19.0% of the controls, with enteroaggregative E. coli (EAEC), the most frequent pathotype, being detected in equal proportion between patients and controls (10.0%). Among the enteropathogenic E. coli (EPEC) isolates, only one isolate was able to produce the localized adherence pattern to HeLa cells, being thus the only typical EPEC identified. All the remaining EPEC were classified as atypical (aEPEC), and detected in 8.0% and 8.5% of the patients and controls, respectively. Regarding the serotypes, 26.5% of the analyzed EPEC isolates belonged to classical EPEC-serogroups, and the only two STEC found were serotyped as O26:H11 (patient) and O119:H7 (control). Antimicrobial susceptibility tests revealed that 43.6%, 29.5% and 2.6% of the DEC isolates were resistant to ampicillin, cotrimoxazole and gentamicin, respectively. Our data indicate that EAEC remains prevalent among children living in Botucatu, and revealed atypical EPEC as emerging putative diarrheal agents in this geographical region. PMID:26752102

  17. Modulation of tight junction barrier function by outer membrane proteins of enteropathogenic Escherichia coli: role of F-actin and junctional adhesion molecule-1.

    PubMed

    Puthenedam, Manjula; Williams, Peter H; Lakshmi, B S; Balakrishnan, Arun

    2007-08-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhea. In this work we investigated the effect of outer membrane proteins (OMP) of EPEC on barrier integrity and the role of actin, junctional adhesion molecule (JAM) and signaling pathways contributing to these changes. Barrier function was assessed by transepithelial electrical resistance (TER). OMP of wild type EPEC, eaeA and maltoporin mutants decreased TER levels of Caco-2 cells. The OMP of espB mutant was deficient in decreasing TER of Caco-2 cells. The proteinase K-digested wild type OMP and EAF mutant OMP did not cause any change in barrier function. Our previous studies have demonstrated that EPEC OMP induced changes in cadherin junctions of Caco-2 cells. Immunofluorescence revealed disruption in actin cytoskeleton by EPEC OMP. However, no change in expression of junctional adhesion molecule-1 was observed. NF-kappaB inhibitor slightly blocked the decrease in TER and protected against actin disruption while ERK1/2 inhibitor had no effect in blocking these changes. In conclusion, our data suggest that the OMP of EPEC alter intestinal barrier function by disrupting actin cytoskeleton and signaling pathways like NF-kappaB may have a role in regulating barrier changes.

  18. Action of phosphorylated mannanoligosaccharides on immune and hematological responses and fecal consistency of dogs experimentally infected with enteropathogenic Escherichia coli strains

    PubMed Central

    Gouveia, E.M.M.F.; Silva, I.S.; Nakazato, G.; Onselem, V.J.V.; Corrêa, R.A.C.; Araujo, F.R.; Chang, M.R.

    2013-01-01

    The therapeutic action of phosphorylated mannanoligosaccharides (MOS) was investigated regarding its prebiotic activity on enteropathogenic Escherichia coli (EPEC). Diarrhea was induced in dogs by experimental infection with EPEC strains. Then MOS was supplied once a day, in water for 20 days. Immunological (IgA and IgG), hematological (lymphocytes, neutrophils and monocytes) and bacteriological variables (PCR detection of the eae gene of EPEC recovered from stool culture), as well as occurrence of diarrhea were evaluated. All strains caused diarrhea at 24, 48 and 72 h after infection. PCR results indicated that E. coli isolated from stool culture of all infected animals had the eae gene. There was no significant difference among groups as to number of blood cells in the hemogram and IgA and IgG production. MOS was effective in recovering of EPEC-infected dogs since prebiotic-treated animals recovered more rapidly from infection than untreated ones (p < 0.05). This is an important finding since diarrhea causes intense dehydration and nutrient loss. The use of prebiotics for humans and other animals with diarrhea can be an alternative for the treatment and prophylaxis of EPEC infections. PMID:24294246

  19. Diarrheagenic Escherichia coli pathotypes investigation revealed atypical enteropathogenic E. coli as putative emerging diarrheal agents in children living in Botucatu, São Paulo State, Brazil.

    PubMed

    Dias, Regiane C B; Dos Santos, Bruna C; Dos Santos, Luis F; Vieira, Melissa A; Yamatogi, Ricardo S; Mondelli, Alessandro L; Sadatsune, Terue; Sforcin, José M; Gomes, Tânia A T; Hernandes, Rodrigo T

    2016-04-01

    The aim of the present study was to investigate the prevalence of Diarrheagenic Escherichia coli (DEC) pathotypes, a leading cause of diarrhea worldwide, among diarrheal and healthy children, up to 5 years of age, living in the city of Botucatu, São Paulo, Brazil. DEC, investigated by PCR detection of virulence factor-encoding genes associated with the distinct pathotypes, was isolated from 18.0% of the patients, and 19.0% of the controls, with enteroaggregative E. coli (EAEC), the most frequent pathotype, being detected in equal proportion between patients and controls (10.0%). Among the enteropathogenic E. coli (EPEC) isolates, only one isolate was able to produce the localized adherence pattern to HeLa cells, being thus the only typical EPEC identified. All the remaining EPEC were classified as atypical (aEPEC), and detected in 8.0% and 8.5% of the patients and controls, respectively. Regarding the serotypes, 26.5% of the analyzed EPEC isolates belonged to classical EPEC-serogroups, and the only two STEC found were serotyped as O26:H11 (patient) and O119:H7 (control). Antimicrobial susceptibility tests revealed that 43.6%, 29.5% and 2.6% of the DEC isolates were resistant to ampicillin, cotrimoxazole and gentamicin, respectively. Our data indicate that EAEC remains prevalent among children living in Botucatu, and revealed atypical EPEC as emerging putative diarrheal agents in this geographical region.

  20. The Tip of the Iceberg: On the Roles of Regulatory Small RNAs in the Virulence of Enterohemorrhagic and Enteropathogenic Escherichia coli

    PubMed Central

    Bhatt, Shantanu; Egan, Marisa; Jenkins, Valerie; Muche, Sarah; El-Fenej, Jihad

    2016-01-01

    Enterohemorrhagic and enteropathogenic Escherichia coli are gastrointestinal pathogens that disrupt the intestinal microvilli to form attaching and effacing (A/E) lesions on infected cells and cause diarrhea. This pathomorphological trait is encoded within the pathogenicity island locus of enterocyte effacement (LEE). The LEE houses a type 3 secretion system (T3SS), which upon assembly bridges the bacterial cytosol to that of the host and enables the bacterium to traffic dozens of effectors into the host where they hijack regulatory and signal transduction pathways and contribute to bacterial colonization and disease. Owing to the importance of the LEE to EHEC and EPEC pathogenesis, much of the research on these pathogens has centered on its regulation. To date, over 40 proteinaceous factors have been identified that control the LEE at various hierarchical levels of gene expression. In contrast, RNA-based regulatory mechanisms that converge on the LEE have only just begun to be unraveled. In this minireview, we highlight major breakthroughs in small RNAs (sRNAs)-dependent regulation of the LEE, with an emphasis on their mechanisms of action and/or LEE-encoded targets. PMID:27709103

  1. [Isolation of enteropathogenic Escherichia coli O157:H16 identified in a diarrhea case in a child and his household contacts in La Pampa Province, Argentina].

    PubMed

    Silveyra, Ivana M; Pereyra, Adriana M; Alvarez, María G; Villagran, Mariana D; Baroni, Andrea B; Deza, Natalia; Carbonari, Claudia C; Miliwebsky, Elizabeth; Rivas, Marta

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major causative agent of acute diarrhea in children in developing countries. This pathotype is divided into typical EPEC (tEPEC) and atypical EPEC (aEPEC), based on the presence of the bfp virulence factor associated with adhesion, encoded in the pEAF plasmid. In the present study, the isolation of aEPEC O157:H16 from a bloody diarrhea case in a child and his household contacts (mother, father and sister) is described. The strain was characterized as E. coli O157:H16 eae-ɛ-positive, sorbitol fermenter with β-glucuronidase activity, susceptible to all antimicrobials tested, and negative for virulence factors stx1, stx2, ehxA and bfp. XbaI-PFGE performed on all isolates showed the AREXHX01.1040 macrorestriction pattern, with 100% similarity. These results highlight the importance of epidemiological surveillance of E. coli O157-associated diarrhea cases identified in children and their family contacts, as well as the incorporation of molecular techniques that allow the detection of the different E. coli pathotypes.

  2. Late establishment of the attaching and effacing lesion caused by atypical enteropathogenic Escherichia coli depends on protein expression regulated by Per.

    PubMed

    Bueris, Vanessa; Huerta-Cantillo, Jazmín; Navarro-Garcia, Fernando; Ruiz, Renato M; Cianciarullo, Aurora M; Elias, Waldir P

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) is classified as typical (tEPEC) or atypical (aEPEC) based on the presence or absence of the E. coli adherence factor plasmid (pEAF), respectively. The hallmark of EPEC infection is the formation of the attaching and effacing (A/E) lesions on the gut mucosa. We compared the kinetics of A/E lesion formation induced by aEPEC and tEPEC. The examination of infected HEp-2 cells clearly demonstrated delayed A/E lesion formation by aEPEC in comparison to tEPEC. This delay was associated with the expression of locus of enterocyte effacement (LEE)-encoded virulence factors (i.e., intimin and EspD). Indeed, the insertion of a plasmid containing perABC, a transcriptional regulator of virulence factors involved in A/E formation, into aEPEC strains increased and accelerated the formation of A/E lesions. Interestingly, the enhanced expression and translocation of LEE-encoded proteins, such as those expressed in LEE5 (intimin) and LEE4 (EspD), in aEPEC (perABC) was independent of bacterial adhesion. The secretion kinetics of these two proteins representing LEE5 and LEE4 expression correlated with A/E lesion formation. We conclude that the lack of Per in the regulation network of virulence genes is one of the main factors that delay the establishment of A/E lesions induced by aEPEC strains.

  3. Characterization of two virulence proteins secreted by rabbit enteropathogenic Escherichia coli, EspA and EspB, whose maximal expression is sensitive to host body temperature.

    PubMed Central

    Abe, A; Kenny, B; Stein, M; Finlay, B B

    1997-01-01

    Enteropathogenic Escherichia coli (EPEC) and rabbit EPEC (RDEC-1) cause unique histopathological features on intestinal mucosa, including attaching/effacing (A/E) lesions. Due to the human specificity of EPEC, RDEC-1 has been used as an animal model to study EPEC pathogenesis. At least two of the previously identified EPEC-secreted proteins, EspA and EspB, are required for triggering host epithelial signal transduction pathways, intimate adherence, and A/E lesions. However, the functions of these secreted proteins and their roles in pathogenesis have not been characterized. To investigate the function of EspA and EspB in RDEC-1, the espA and espB genes were cloned and their sequences were compared to that of EPEC O127. The EspA proteins showed high similarity (88.5% identity), while EspB was heterogeneous in internal regions (69.8% identity). However, RDEC-1 EspB was identical to that of enterohemorrhagic E. coli serotype O26. Mutations in RDEC-1 espA and espB revealed that the corresponding RDEC-1 gene products are essential for triggering of host signal transduction pathways and invasion into HeLa cells. Complementation with plasmids containing EPEC espA or/and espB genes into RDEC-1 mutant strains demonstrated that they were functionally interchangeable, although the EPEC proteins mediated higher levels of invasion. Furthermore, maximal expression of RDEC-1 and EPEC-secreted proteins occurred at their respective host body temperatures, which may contribute to the lack of EPEC infectivity in rabbits. PMID:9284118

  4. Occurrence of SHV, TEM and CTX-M β-Lactamase Genes Among Enteropathogenic Escherichia coli Strains Isolated From Children With Diarrhea

    PubMed Central

    Memariani, Mojtaba; Najar Peerayeh, Shahin; Zahraei Salehi, Taghi; Shokouhi Mostafavi, Seyyed Khalil

    2015-01-01

    Background: Antibiotic resistance is widespread among diarrheagenic Escherichia coli in developing countries, where the overuse of antibiotics is common. Information regarding β-lactamases, especially Extended-Spectrum β-Lactamases (ESBLs) in diarrheagenic pathogens should be considered in clinical management when an optimal treatment is needed. Objectives: The main objective of this study was to investigate the prevalence of blaCTX-M, blaSHV and blaTEM β-lactamase genes among enteropathogenic E. coli (EPEC) isolates in Tehran, Iran. Materials and Methods: Stool specimens were collected from children with diarrhea during a 17-month period from 2011 to 2013. Routine biochemical tests were performed for identification of E. coli isolates. The isolates were further examined by PCR for the presence of eae, stx1, stx2 and bfp genes. EPEC isolates have been screened for different β-lactamase genes. Genotyping EPEC isolates harboring blaCTX-M15 gene was performed through Multi-Locus VNTR Analysis (MLVA). Results: Of 42 EPEC, eight isolates carried the blaCTX-M1. None of the isolates carried blaCTX-M2 and blaCTX-M9. The blaCTX-M15 variant was identified in all of blaCTX-M1-positive isolates. Furthermore, blaSHV and blaTEM genes were detected in 40.5% (n = 17) and 19% (n = 8) of all EPEC isolates, respectively. No significant association was observed between the existence of bfp gene and presence of those β-lactamase genes (P > 0.05). MLVA analysis revealed high genetic diversity among blaCTX-M15-positive isolates. Conclusions: Our study emphasized the increasing role of ESBL genes, especially blaCTX-M15 in EPEC isolates. PMID:26034531

  5. RNA-Seq analysis of isolate- and growth phase-specific differences in the global transcriptomes of enteropathogenic Escherichia coli prototype isolates

    PubMed Central

    Hazen, Tracy H.; Daugherty, Sean C.; Shetty, Amol; Mahurkar, Anup A.; White, Owen; Kaper, James B.; Rasko, David A.

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) are a leading cause of diarrheal illness among infants in developing countries. E. coli isolates classified as typical EPEC are identified by the presence of the locus of enterocyte effacement (LEE) and the bundle-forming pilus (BFP), and absence of the Shiga-toxin genes, while the atypical EPEC also encode LEE but do not encode BFP or Shiga-toxin. Comparative genomic analyses have demonstrated that EPEC isolates belong to diverse evolutionary lineages and possess lineage- and isolate-specific genomic content. To investigate whether this genomic diversity results in significant differences in global gene expression, we used an RNA sequencing (RNA-Seq) approach to characterize the global transcriptomes of the prototype typical EPEC isolates E2348/69, B171, C581-05, and the prototype atypical EPEC isolate E110019. The global transcriptomes were characterized during laboratory growth in two different media and three different growth phases, as well as during adherence of the EPEC isolates to human cells using in vitro tissue culture assays. Comparison of the global transcriptomes during these conditions was used to identify isolate- and growth phase-specific differences in EPEC gene expression. These analyses resulted in the identification of genes that encode proteins involved in survival and metabolism that were coordinately expressed with virulence factors. These findings demonstrate there are isolate- and growth phase-specific differences in the global transcriptomes of EPEC prototype isolates, and highlight the utility of comparative transcriptomics for identifying additional factors that are directly or indirectly involved in EPEC pathogenesis. PMID:26124752

  6. The NleE/OspZ family of effector proteins is required for polymorphonuclear transepithelial migration, a characteristic shared by enteropathogenic Escherichia coli and Shigella flexneri infections.

    PubMed

    Zurawski, Daniel V; Mumy, Karen L; Badea, Luminita; Prentice, Julia A; Hartland, Elizabeth L; McCormick, Beth A; Maurelli, Anthony T

    2008-01-01

    Enteropathogenic Escherichia coli (EPEC) and Shigella flexneri are human host-specific pathogens that infect intestinal epithelial cells. However, each bacterial species employs a different infection strategy within this environmental niche. EPEC attaches to the apical surface of small intestine enterocytes, causing microvillus effacement and rearrangement of the host cell cytoskeleton beneath adherent bacteria. In contrast, S. flexneri invades the large intestine epithelium at the basolateral membrane, replicates, and spreads cell to cell. Both EPEC and S. flexneri rely on type three secretion systems (T3SS) to secrete effectors into host cells, and both pathogens recruit polymorphonuclear leukocytes (PMNs) from the submucosa to the lumen of the intestine. In this report, we compared the virulence functions of the EPEC T3SS effector NleE and the homologous Shigella protein Orf212. We discovered that Orf212 was secreted by the S. flexneri T3SS and renamed this protein OspZ. Infection of polarized T84 intestinal epithelial cells with an ospZ deletion mutant of S. flexneri resulted in reduced PMN transepithelial migration compared to infection by the wild type. An nleE deletion mutant of EPEC showed a similar reduction of PMN migration. The ability to induce PMN migration was restored in both mutants when either ospZ or nleE was expressed from a plasmid. An infection of T84 cells with the delta ospZ mutant resulted in reduced extracellular signal-related kinase phosphorylation and NF-kappaB activation compared to infection with the wild type. Therefore, we conclude that OspZ and NleE have similar roles in the upstream induction of host signaling pathways required for PMN transepithelial migration in Shigella and EPEC infections.

  7. Oral infection with enteropathogenic Escherichia coli triggers immune response and intestinal histological alterations in mice selected for their minimal acute inflammatory responses.

    PubMed

    Vulcano, Amanda Bardella; Tino-De-Franco, Milene; Amaral, José Araujo; Ribeiro, Orlando Garcia; Cabrera, Wafa Hanna Koury; Bordenalli, Marcela Aparecida; Carbonare, Cristiane Barros; Álvares, Eliana Parisi; Carbonare, Solange Barros

    2014-06-01

    Enteropathogenic Escherichia coli (EPEC), a leading cause of infant diarrhea, is an important public health problem in Brazil and other developing countries. In vitro assays of bacterial adhesion to cultured cells are important tools for studying bacterial pathogenicity but do not reproduce all the events that occur in natural infections. In this study, the effects of oral infection with EPEC on mice selected for their minimal acute inflammatory response (AIR min) were evaluated. Mice were orally infected with EPEC and variations in body weight, bacterial shedding and antibody production observed. The infected animals developed seric and secretory anti-EPEC antibodies; however, neither mortality nor diarrhea was observed. Light microscopy of their intestines demonstrated histological modifications that were not present in controls. However, electron microscopy did not show bacteria attached to the intestinal epithelia to form attaching and effacing lesions, characteristic of EPEC in humans. The bacteria were detected in Peyer's patches and intestinal contents up to 5 hr post-infection. When human anti-EPEC secretory immunoglobulin A or avian immunoglobulin Y antibodies were administered to infected animals, they developed minor histological alterations compared with non-treated animals. In summary, it was found that EPEC triggers immune responses and intestinal histological alterations but does not produce evidence of diarrheal disease in mice infected by the oral route. This study of EPEC experimental infection provides a better understanding of the effects of antibodies on bacterial infections and may provide a suitable model for the design and testing of immunobiological products for active or passive immunization. PMID:24750489

  8. EspC, an Autotransporter Protein Secreted by Enteropathogenic Escherichia coli, Causes Apoptosis and Necrosis through Caspase and Calpain Activation, Including Direct Procaspase-3 Cleavage

    PubMed Central

    Serapio-Palacios, Antonio

    2016-01-01

    ABSTRACT Enteropathogenic Escherichia coli (EPEC) has the ability to antagonize host apoptosis during infection through promotion and inhibition of effectors injected by the type III secretion system (T3SS), but the total number of these effectors and the overall functional relationships between these effectors during infection are poorly understood. EspC produced by EPEC cleaves fodrin, paxillin, and focal adhesion kinase (FAK), which are also cleaved by caspases and calpains during apoptosis. Here we show the role of EspC in cell death induced by EPEC. EspC is involved in EPEC-mediated cell death and induces both apoptosis and necrosis in epithelial cells. EspC induces apoptosis through the mitochondrial apoptotic pathway by provoking (i) a decrease in the expression levels of antiapoptotic protein Bcl-2, (ii) translocation of the proapoptotic protein Bax from cytosol to mitochondria, (iii) cytochrome c release from mitochondria to the cytoplasm, (iv) loss of mitochondrial membrane potential, (v) caspase-9 activation, (vi) cleavage of procaspase-3 and (vii) an increase in caspase-3 activity, (viii) PARP proteolysis, and (ix) nuclear fragmentation and an increase in the sub-G1 population. Interestingly, EspC-induced apoptosis was triggered through a dual mechanism involving both independent and dependent functions of its EspC serine protease motif, the direct cleavage of procaspase-3 being dependent on this motif. This is the first report showing a shortcut for induction of apoptosis by the catalytic activity of an EPEC protein. Furthermore, this atypical intrinsic apoptosis appeared to induce necrosis through the activation of calpain and through the increase of intracellular calcium induced by EspC. Our data indicate that EspC plays a relevant role in cell death induced by EPEC. PMID:27329750

  9. Prevalence and behavior of multidrug-resistant shiga toxin-producing Escherichia coli, enteropathogenic E. coli and enterotoxigenic E. coli on coriander.

    PubMed

    Gómez-Aldapa, Carlos A; Segovia-Cruz, Jesús A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Salas-Rangel, Laura P; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-10-01

    The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander.

  10. Development of a Rapid Agglutination Latex Test for Diagnosis of Enteropathogenic and Enterohemorrhagic Escherichia coli Infection in Developing World: Defining the Biomarker, Antibody and Method

    PubMed Central

    Munhoz, Danielle D.; Cardoso, Lucas T. A.; Luz, Daniela E.; Andrade, Fernanda B.; Horton, Denise S. P. Q.; Elias, Waldir P.; Piazza, Roxane M. F.

    2014-01-01

    Background Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC/EHEC) are human intestinal pathogens responsible for diarrhea in both developing and industrialized countries. In research laboratories, EPEC and EHEC are defined on the basis of their pathogenic features; nevertheless, their identification in routine laboratories is expensive and laborious. Therefore, the aim of the present work was to develop a rapid and simple assay for EPEC/EHEC detection. Accordingly, the EPEC/EHEC-secreted proteins EspA and EspB were chosen as target antigens. Methodology First, we investigated the ideal conditions for EspA/EspB production/secretion by ELISA in a collection of EPEC/EHEC strains after cultivating bacterial isolates in Dulbecco’s modified Eagle’s medium (DMEM) or DMEM containing 1% tryptone or HEp-2 cells-preconditioned DMEM, employing either anti-EspA/anti-EspB polyclonal or monoclonal antibodies developed and characterized herein. Subsequently, a rapid agglutination latex test (RALT) was developed and tested with the same collection of bacterial isolates. Principal findings EspB was defined as a biomarker and its corresponding monoclonal antibody as the tool for EPEC/EHEC diagnosis; the production of EspB was better in DMEM medium. RALT assay has the sensitivity and specificity required for high-impact diagnosis of neglected diseases in the developing world. Conclusion RALT assay described herein can be considered an alternative assay for diarrhea diagnosis in low-income countries since it achieved 97% sensitivity, 98% specificity and 97% efficiency. PMID:25254981

  11. Nck adaptors, besides promoting N-WASP mediated actin-nucleation activity at pedestals, influence the cellular levels of enteropathogenic Escherichia coli Tir effector.

    PubMed

    Nieto-Pelegrin, Elvira; Kenny, Brendan; Martinez-Quiles, Narcisa

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) binding to human intestinal cells triggers the formation of disease-associated actin rich structures called pedestals. The latter process requires the delivery, via a Type 3 secretion system, of the translocated Intimin receptor (Tir) protein into the host plasma membrane where binding of a host kinase-modified form to the bacterial surface protein Intimin triggers pedestal formation. Tir-Intimin interaction recruits the Nck adaptor to a Tir tyrosine phosphorylated residue where it activates neural Wiskott-Aldrich syndrome protein (N-WASP); initiating the major pathway to actin polymerization mediated by the actin-related protein (Arp) 2/3 complex. Previous studies with Nck-deficient mouse embryonic fibroblasts (MEFs) identified a key role for Nck in pedestal formation, presumed to reflect a lack of N-WASP activation. Here, we show the defect relates to reduced amounts of Tir within Nck-deficient cells. Indeed, Tir delivery and, thus, pedestal formation defects were much greater for MEFs than HeLa (human epithelial) cells. Crucially, the levels of two other effectors (EspB/EspF) within Nck-deficient MEFs were not reduced unlike that of Map (Mitochondrial associated protein) which, like Tir, requires CesT chaperone function for efficient delivery. Interestingly, drugs blocking various host protein degradation pathways failed to increase Tir cellular levels unlike an inhibitor of deacetylase activity (Trichostatin A; TSA). Treatments with TSA resulted in significant recovery of Tir levels, potentiation of actin polymerization and improvement in bacterial attachment to cells. Our findings have important implications for the current model of Tir-mediated actin polymerization and opens new lines of research in this area. PMID:25482634

  12. Oral vaccination of weaned rabbits against enteropathogenic Escherichia coli-like E. coli O103 infection: use of heterologous strains harboring lipopolysaccharide or adhesin of pathogenic strains.

    PubMed Central

    Milon, A; Esslinger, J; Camguilhem, R

    1992-01-01

    To test the importance of lipopolysaccharide (LPS) and adhesin as major antigens in vaccination against rabbit enteropathogenic Escherichia coli (EPEC)-like E. coli O103 infection, we used two nonpathogenic wild-type strains to immunize rabbits at weaning. One of these strains (C127) harbors the O103 LPS but does not express the 32,000-molecular-weight adhesin that characterizes the highly pathogenic O103 strains. The other (C6) belongs to the O128 serogroup, which does not cross-react with the O103 serogroup, but expresses the adhesin. These strains were administered orally, either live or after Formalin inactivation. After vaccination, the animals were challenged with highly pathogenic O103 strain B10. Compared with rabbits vaccinated with the Formalin-killed homologous strain, rabbits vaccinated with killed C127 or C6 showed partial but significant protection. When given live, these strains colonized more or less heavily the digestive tract of the animals and provided nearly complete (C127) or complete (C6) protection against challenge. They induced a quick local immune response, as judged by fecal immunoglobulin A anti-LPS kinetics. Furthermore, strain C6 induced an ecological effect of "resistance to colonization" against challenge strain B10. This effect may have been due to the adhesin that is shared by both strains and to the production of a colicin. Strain C6 could inhibit in vitro the growth of highly pathogenic O103 strains. On the whole, our results show that adhesins and LPS are important, although probably not exclusive, protection-inducing components in rabbit EPEC-like colibacillosis and provide insight into possible protection of rabbits against EPEC-like E. coli infection with live strains. Images PMID:1351880

  13. Prevalence and behavior of multidrug-resistant shiga toxin-producing Escherichia coli, enteropathogenic E. coli and enterotoxigenic E. coli on coriander.

    PubMed

    Gómez-Aldapa, Carlos A; Segovia-Cruz, Jesús A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Salas-Rangel, Laura P; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-10-01

    The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander. PMID:27375249

  14. The Serine Protease Motif of EspC from Enteropathogenic Escherichia coli Produces Epithelial Damage by a Mechanism Different from That of Pet Toxin from Enteroaggregative E. coli

    PubMed Central

    Navarro-García, Fernando; Canizalez-Roman, Adrián; Sui, Bao Quan; Nataro, James P.; Azamar, Yenia

    2004-01-01

    EspC (Escherichia coli secreted protein C) of enteropathogenic E. coli (EPEC) shows the three classical domains of the autotransporter proteins and has a conserved serine protease motif belonging to the SPATE (serine protease autotransporters of Enterobacteriaceae) subfamily. EspC and its homolog Pet in enteroaggregative E. coli (EAEC) bear the same sequence within the serine protease motif, and both proteins produce enterotoxic effects, suggesting that like Pet, EspC could be internalized to reach and cleave the calmodulin-binding domain of fodrin, causing actin cytoskeleton disruption. Even though both proteins cause cytoskeleton damage by virtue of their serine protease motifs, the following evidence supports the hypothesis that the mechanisms are different. (i) To obtain similar cytotoxic and cytoskeletal effects, a threefold-higher EspC concentration and a twofold-higher exposure time are needed. (ii) EspC internalization into epithelial cells takes more time (6 h) than Pet internalization (30 min), and the distributions of the two proteins inside the cells are also different. (iii) Both proteins have affinity for fodrin and cleave it, but the cleavage sites are different; EspC produces two cleavages, while Pet produces just one. (iv) EspC does not cause fodrin redistribution within epithelial cells. (v) An EspC serine protease motif mutant, but not a Pet serine protease mutant, competes with EspC by blocking cytoskeletal damage. All these data suggest that the protein conformational structure is very important for the activity of the catalytic site, influencing its interaction with the target protein and its internalization. The differences between these proteins may explain the reduced ability of EspC to cause cytopathic effects. However, these differences may confer a specialized role on EspC in the pathogenesis of EPEC, which is different from that of Pet in EAEC pathogenesis. PMID:15155671

  15. Epidemiology, Antimicrobial Resistance and β-lactamase Genotypic Features of Enteropathogenic Escherichia coli Isolated from Children with Diarrhea in Southern China.

    PubMed

    Huang, Yong; Shan, Xue-feng; Deng, Haijun; Huang, Yu-jun; Mu, Xiao-ping; Huang, Ai-long; Long, Quan-xin

    2015-01-01

    The main objective of this study was to investigate the epidemiology, drug resistance and β-lactamase genotype distribution of enteropathogenic Escherichia coli (EPEC) isolated from pediatric patients with diarrhea in southern China. The prevalence of EPEC in children with diarrhea was 3.53%. The commonest serotypes were O55:K59 and O126:K71, and the typical EPEC were more prevalent than atypical EPEC (51 vs 7). Isolates from this region were most commonly found to be resistant to ampicillin and cotrimoxazole, followed by chloramphenicol, ceftriaxone, and ceftazidime. More than 96% of the strains were susceptible to cefoperazone/sulbactam and imipenem. The most common β-lactamase genotypes identified in 58 strains were blaCTX-M-1 (60.3%), blaTEM (56.9%), blaCTX-M-9 (27.6%), and blaSHV (15.5%). Among 58 isolates, 22 strains were found to harbor one β-lactamase gene, and the proportions of resistance to ampicillin, cotrimoxazole, chloramphenicol, ceftriaxone, and ceftazidime, were 81.8%, 63.6%, 40.9%, 18.2%, and 9.1%, respectively. A further 30 strains carrying multiple β-lactamase genes had increased resistance to the above antimicrobial agents (100%, 83.3%, 70.0%, 60.0%, and 30.0%, respectively). In contrast, antibiotic resistance in the last 6 strains without a detectable β-lactamase gene was substantially reduced. Drug resistance may be associated with the β-lactamase gene number, with a greater the number of β-lactamase genes resulting in higher antibiotic resistance.

  16. Quantitative Proteomic Analysis of Type III Secretome of Enteropathogenic Escherichia coli Reveals an Expanded Effector Repertoire for Attaching/Effacing Bacterial Pathogens*

    PubMed Central

    Deng, Wanyin; Yu, Hong B.; de Hoog, Carmen L.; Stoynov, Nikolay; Li, Yuling; Foster, Leonard J.; Finlay, B. Brett

    2012-01-01

    Type III secretion systems are central to the pathogenesis and virulence of many important Gram-negative bacterial pathogens, and elucidation of the secretion mechanism and identification of the secreted substrates are critical to our understanding of their pathogenic mechanisms and developing potential therapeutics. Stable isotope labeling with amino acids in cell culture-based mass spectrometry is a quantitative and highly sensitive proteomics tool that we have previously used to successfully analyze the type III secretomes of Citrobacter rodentium and Salmonella enterica serovar Typhimurium. In this report, stable isotope labeling with amino acids in cell culture was used to analyze the type III secretome of enteropathogenic Escherichia coli (EPEC), an important human pathogen, which, together with enterohemorrhagic E. coli and C. rodentium, represents the family of attaching and effacing bacterial pathogens. We not only confirmed all 25 known EPEC type III-secreted proteins and effectors previously identified by conventional molecular and bioinformatical techniques but also identified several new type III-secreted proteins, including two novel effectors, C_0814/NleJ and LifA, that were shown to be translocated into host cells. LifA is a known virulence factor believed to act as a toxin as well as an adhesin, but its mechanism of secretion and function is not understood. With a predicted molecular mass of 366 kDa, LifA is the largest type III effector identified thus far in any pathogen. We further demonstrated that Efa1, ToxB, and Z4332 (homologs of LifA in enterohemorrhagic E. coli) are also type III effectors. This study has comprehensively characterized the type III secretome of EPEC, expanded the repertoire of type III-secreted effectors for the attaching and effacing pathogens, and provided new insights into the mode of function for LifA/Efa1/ToxB/Z4332, an important family of virulence factors. PMID:22661456

  17. Detection and genetic analysis of the enteroaggregative Escherichia coli heat-stable enterotoxin (EAST1) gene in clinical isolates of enteropathogenic Escherichia coli (EPEC) strains

    PubMed Central

    2014-01-01

    Background The enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1) encoded by astA gene has been found in enteropathogenic E. coli (EPEC) strains. However, it is not sufficient to simply probe strains with an astA gene probe due to the existence of astA mutants (type 1 and type 2 SHEAST) and EAST1 variants (EAST1 v1-4). In this study, 222 EPEC (70 typical and 152 atypical) isolates were tested for the presence of the astA gene sequence by PCR and sequencing. Results The astA gene was amplified from 54 strains, 11 typical and 43 atypical. Sequence analysis of the PCR products showed that 25 strains, 7 typical and 18 atypical, had an intact astA gene. A subgroup of 7 atypical strains had a variant type of the astA gene sequence, with four non-synonymous nucleotide substitutions. The remaining 22 strains had mutated astA gene with nucleotide deletions or substitutions in the first 8 codons. The RT-PCR results showed that the astA gene was transcribed only by the strains carrying either the intact or the variant type of the astA gene sequence. Southern blot analysis indicated that astA is located in EAF plasmid in typical strains, and in plasmids of similar size in atypical strains. Strains carrying intact astA genes were more frequently found in diarrheic children than in non-diarrheic children (p < 0.05). Conclusion In conclusion, our data suggest that the presence of an intact astA gene may represent an additional virulence determinant in both EPEC groups. PMID:24884767

  18. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane

    PubMed Central

    Novakovic, Predrag; Huang, Yanyun Y.; Lockerbie, Betty; Shahriar, Farshid; Kelly, John; Gordon, John R.; Middleton, Dorothy M.; Loewen, Matthew E.; Kidney, Beverly A.; Simko, Elemir

    2015-01-01

    F4ac-positive enterotoxigenic Escherichia coli (ETEC) must attach to the intestinal mucosa to cause diarrhea in piglets. Prevention of bacterial attachment to the intestinal mucosa is the most effective defense against ETEC-induced diarrhea. Porcine milk fat globule membranes (MFGM) were shown to be able to inhibit attachment of ETEC to the intestinal brush border; however, the specific components of porcine MFGM that inhibited attachment of ETEC to enterocytes were not identified. Accordingly, the purpose of this study was to identify F4ac-binding MFGM proteins by overlay Western blot and affinity chromatography. The proteome of porcine MFGM was characterized and the following F4ac-binding proteins were detected by overlay Western blot and affinity chromatography: lactadherin, butyrophilin, adipophilin, acyl-CoA synthetase 3, and fatty acid-binding protein 3. The biological function of these proteins was not investigated but it is possible that their interaction with F4ac fimbria interferes with bacterial attachment and colonization. PMID:25852227

  19. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane.

    PubMed

    Novakovic, Predrag; Huang, Yanyun Y; Lockerbie, Betty; Shahriar, Farshid; Kelly, John; Gordon, John R; Middleton, Dorothy M; Loewen, Matthew E; Kidney, Beverly A; Simko, Elemir

    2015-04-01

    F4ac-positive enterotoxigenic Escherichia coli (ETEC) must attach to the intestinal mucosa to cause diarrhea in piglets. Prevention of bacterial attachment to the intestinal mucosa is the most effective defense against ETEC-induced diarrhea. Porcine milk fat globule membranes (MFGM) were shown to be able to inhibit attachment of ETEC to the intestinal brush border; however, the specific components of porcine MFGM that inhibited attachment of ETEC to enterocytes were not identified. Accordingly, the purpose of this study was to identify F4ac-binding MFGM proteins by overlay Western blot and affinity chromatography. The proteome of porcine MFGM was characterized and the following F4ac-binding proteins were detected by overlay Western blot and affinity chromatography: lactadherin, butyrophilin, adipophilin, acyl-CoA synthetase 3, and fatty acid-binding protein 3. The biological function of these proteins was not investigated but it is possible that their interaction with F4ac fimbria interferes with bacterial attachment and colonization.

  20. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane.

    PubMed

    Novakovic, Predrag; Huang, Yanyun Y; Lockerbie, Betty; Shahriar, Farshid; Kelly, John; Gordon, John R; Middleton, Dorothy M; Loewen, Matthew E; Kidney, Beverly A; Simko, Elemir

    2015-04-01

    F4ac-positive enterotoxigenic Escherichia coli (ETEC) must attach to the intestinal mucosa to cause diarrhea in piglets. Prevention of bacterial attachment to the intestinal mucosa is the most effective defense against ETEC-induced diarrhea. Porcine milk fat globule membranes (MFGM) were shown to be able to inhibit attachment of ETEC to the intestinal brush border; however, the specific components of porcine MFGM that inhibited attachment of ETEC to enterocytes were not identified. Accordingly, the purpose of this study was to identify F4ac-binding MFGM proteins by overlay Western blot and affinity chromatography. The proteome of porcine MFGM was characterized and the following F4ac-binding proteins were detected by overlay Western blot and affinity chromatography: lactadherin, butyrophilin, adipophilin, acyl-CoA synthetase 3, and fatty acid-binding protein 3. The biological function of these proteins was not investigated but it is possible that their interaction with F4ac fimbria interferes with bacterial attachment and colonization. PMID:25852227

  1. Development of a Multiplex PCR Assay for Detection of Shiga Toxin-Producing Escherichia coli, Enterohemorrhagic E. coli, and Enteropathogenic E. coli Strains

    PubMed Central

    Botkin, Douglas J.; Galli, Lucía; Sankarapani, Vinoth; Soler, Michael; Rivas, Marta; Torres, Alfredo G.

    2012-01-01

    Escherichia coli O157:H7 and other pathogenic E. coli strains are enteric pathogens associated with food safety threats and which remain a significant cause of morbidity and mortality worldwide. In the current study, we investigated whether enterohemorrhagic E. coli (EHEC), Shiga toxin-producing E. coli (STEC), and enteropathogenic E. coli (EPEC) strains can be rapidly and specifically differentiated with multiplex PCR (mPCR) utilizing selected biomarkers associated with each strain’s respective virulence genotype. Primers were designed to amplify multiple intimin (eae) and long polar fimbriae (lpfA) variants, the bundle-forming pilus gene bfpA, and the Shiga toxin-encoding genes stx1 and stx2. We demonstrated consistent amplification of genes specific to the prototype EHEC O157:H7 EDL933 (lpfA1-3, lpfA2-2, stx1, stx2, and eae-γ) and EPEC O127:H6 E2348/69 (eae-α, lpfA1-1, and bfpA) strains using the optimized mPCR protocol with purified genomic DNA (gDNA). A screen of gDNA from isolates in a diarrheagenic E. coli collection revealed that the mPCR assay was successful in predicting the correct pathotype of EPEC and EHEC clones grouped in the distinctive phylogenetic disease clusters EPEC1 and EHEC1, and was able to differentiate EHEC1 from EHEC2 clusters. The assay detection threshold was 2 × 104 CFU per PCR reaction for EHEC and EPEC. mPCR was also used to screen Argentinean clinical samples from hemolytic uremic syndrome and diarrheal patients, resulting in 91% sensitivity and 84% specificity when compared to established molecular diagnostic procedures. In conclusion, our mPCR methodology permitted differentiation of EPEC, STEC and EHEC strains from other pathogenic E. coli; therefore, the assay becomes an additional tool for rapid diagnosis of these organisms. PMID:22919600

  2. Both Group 4 Capsule and Lipopolysaccharide O-Antigen Contribute to Enteropathogenic Escherichia coli Resistance to Human α-Defensin 5

    PubMed Central

    Thomassin, Jenny-Lee; Lee, Mark J.; Brannon, John R.; Sheppard, Donald C.; Gruenheid, Samantha; Le Moual, Hervé

    2013-01-01

    Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) are food-borne pathogens that colonize the small intestine and colon, respectively. To cause disease, these pathogens must overcome the action of different host antimicrobial peptides (AMPs) secreted into these distinct niches. We have shown previously that EHEC expresses high levels of the OmpT protease to inactivate the human cathelicidin LL-37, an AMP present in the colon. In this study, we investigate the mechanisms used by EPEC to resist human α-defensin 5 (HD-5), the most abundant AMP in the small intestine. Quantitative PCR was used to measure transcript levels of various EPEC surface structures. High transcript levels of gfcA, a gene required for group 4 capsule (G4C) production, were observed in EPEC, but not in EHEC. The unencapsulated EPEC ∆gfcA and EHEC wild-type strains were more susceptible to HD-5 than EPEC wild-type. Since the G4C is composed of the same sugar repeats as the lipopolysaccharide O-antigen, an -antigen ligase (waaL) deletion mutant was generated in EPEC to assess its role in HD-5 resistance. The ∆waaL EPEC strain was more susceptible to HD-5 than both the wild-type and ∆gfcA strains. The ∆gfcA∆waaL EPEC strain was not significantly more susceptible to HD-5 than the ∆waaL strain, suggesting that the absence of -antigen influences G4C formation. To determine whether the G4C and -antigen interact with HD-5, total polysaccharide was purified from wild-type EPEC and added to the ∆gfcA∆waaL strain in the presence of HD-5. The addition of exogenous polysaccharide protected the susceptible strain against HD-5 killing in a dose-dependent manner, suggesting that HD-5 binds to the polysaccharides present on the surface of EPEC. Altogether, these findings indicate that EPEC relies on both the G4C and the -antigen to resist the bactericidal activity of HD-5. PMID:24324796

  3. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific.

  4. Porcine aminopeptidase N binds to F4+ enterotoxigenic Escherichia coli fimbriae.

    PubMed

    Xia, Pengpeng; Wang, Yiting; Zhu, Congrui; Zou, Yajie; Yang, Ying; Liu, Wei; Hardwidge, Philip R; Zhu, Guoqiang

    2016-02-09

    F4(+) enterotoxigenic Escherichia coli (ETEC) strains cause diarrheal disease in neonatal and post-weaned piglets. Several different host receptors for F4 fimbriae have been described, with porcine aminopeptidase N (APN) reported most recently. The FaeG subunit is essential for the binding of the three F4 variants to host cells. Here we show in both yeast two-hybrid and pulldown assays that APN binds directly to FaeG, the major subunit of F4 fimbriae, from three serotypes of F4(+) ETEC. Modulating APN gene expression in IPEC-J2 cells affected ETEC adherence. Antibodies raised against APN or F4 fimbriae both reduced ETEC adherence. Thus, APN mediates the attachment of F4(+) E. coli to intestinal epithelial cells.

  5. Efficient expression and purification of porcine circovirus type 2 virus-like particles in Escherichia coli.

    PubMed

    Wu, Pei-Ching; Chen, Tzu-Yu; Chi, Jiun-Ni; Chien, Maw-Sheng; Huang, Chienjin

    2016-02-20

    Porcine circovirus type 2 (PCV2) capsid (Cap) protein has been successfully used as a vaccine to control porcine circovirus associated disease (PCVAD). Most PCV2 subunit vaccines are recombinant Cap protein expressed in baculovirus/insect cell expression system, but using this eukaryotic system is laborious and expensive. In our previous study, full-length of PCV2Cap protein expressed in Escherichia coli formed virus-like particles (VLPs). This expression system has the advantages of being relatively simple and inexpensive. In this study, we constructed a recombinant plasmid containing the full-length codon-optimized cap (ORF2) gene to improve high-level expression of recombinant Cap protein (rCap) with no changed amino acids. The highly water-soluble rCap protein was purified by a single-column, high-throughput fractionation procedure based on size exclusion chromatography. Yield was 10mg per 200ml bacterial culture. The rCap protein self-assembled into VLPs of diameter 25-30nm that contained exogenous nucleic acids. The immunogenicity of PCV2 VLPs was analyzed by immunizing mice. VLP-immunized mice mounted specific immune responses to PCV2. Thus, expression of rCap in E. coli was feasible for large-scale production of PCV2 VLPs, which could potentially be used for a VLP-based PCV2 vaccine. PMID:26795354

  6. BfpI, BfpJ, and BfpK Minor Pilins Are Important for the Function and Biogenesis of Bundle-Forming Pili Expressed by Enteropathogenic Escherichia coli

    PubMed Central

    Martinez de la Peña, Claudia F.; De Masi, Leon; Nisa, Shahista; Mulvey, George; Tong, Jesse; Donnenberg, Michael S.

    2015-01-01

    ABSTRACT Enteropathogenic Escherichia coli (EPEC) remains a significant cause of infant diarrheal illness and associated morbidity and mortality in developing countries. EPEC strains are characterized by their ability to colonize the small intestines of their hosts by a multistep program involving initial loose attachment to intestinal epithelial cells followed by an intimate adhesion phase. The initial loose interaction of typical EPEC with host intestinal cells is mediated by bundle-forming pili (BFP). BFP are type 4b pili (T4bP) based on structural and functional properties shared with T4bP expressed by other bacteria. The major structural subunit of BFP is called bundlin, a T4b pilin expressed from the bfpA gene in the BFP operon, which contains three additional genes that encode the pilin-like proteins BfpI, BfpJ, and BfpK. In this study, we show that, in the absence of the BFP retraction ATPase (BfpF), BfpI, BfpJ, and BfpK are dispensable for BFP biogenesis. We also demonstrate that these three minor pilins are incorporated along with bundlin into the BFP filament and contribute to its structural integrity and host cell adhesive properties. The results confirm that previous findings in T4aP systems can be extended to a model T4bP such as BFP. IMPORTANCE Bundle-forming pili contribute to the host colonization strategy of enteropathogenic Escherichia coli. The studies described here investigate the role for three minor pilin subunits in the structure and function of BFP in EPEC. The studies also suggest that these subunits could be antigens for vaccine development. PMID:26712935

  7. Porcine intestinal epithelial cell lines as a new in vitro model for studying adherence and pathogenesis of enterotoxigenic Escherichia coli.

    PubMed

    Koh, Seung Y; George, Sajan; Brözel, Volker; Moxley, Rodney; Francis, David; Kaushik, Radhey S

    2008-07-27

    Enterotoxigenic Escherichia coli (ETEC) infections result in large economic losses in the swine industry worldwide. The organism causes diarrhea by adhering to and colonizing enterocytes in the small intestines. While much progress has been made in understanding the pathogenesis of ETEC, no homologous intestinal epithelial cultures suitable for studying porcine ETEC pathogenesis have been described prior to this report. In the current study, we investigated the adherence of various porcine ETEC strains to two porcine (IPEC-1 and IPEC-J2) and one human (INT-407) small intestinal epithelial cell lines. Each cell line was assessed for its ability to support the adherence of E. coli expressing fimbrial adhesins K88ab, K88ac, K88ad, K99, F41, 987P, and F18. Wild-type ETEC expressing K88ab, K88ac, and K88ad efficiently bound to both IPEC-1 and IPEC-J2 cells. An ETEC strain expressing both K99 and F41 bound heavily to both porcine cell lines but an E. coli strain expressing only K99 bound very poorly to these cells. E. coli expressing F18 adhesin strongly bound to IPEC-1 cells but did not adhere to IPEC-J2 cells. The E. coli strains G58-1 and 711 which express no fimbrial adhesins and those that express 987P fimbriae failed to bind to either porcine cell line. Only strains B41 and K12:K99 bound in abundance to INT-407 cells. The binding of porcine ETEC to IPEC-J2, IPEC-1 and INT-407 with varying affinities, together with lack of binding of 987P ETEC and non-fimbriated E. coli strains, suggests strain-specific E. coli binding to these cell lines. These findings suggest the potential usefulness of porcine intestinal cell lines for studying ETEC pathogenesis.

  8. Identification of plasmid-encoded mannose-resistant hemagglutinin and HEp-2 and HeLa cell adherence factors of two diarrheagenic Escherichia coli strains belonging to an enteropathogenic serogroup.

    PubMed Central

    Pal, R; Ghose, A C

    1990-01-01

    Two Escherichia coli strains (B/M 369 and C-35) belonging to enteropathogenic serogroup O86 were isolated from patients with infantile diarrhea and studied with respect to their cellular adherence properties. Both strains exhibited adherence (Ad+) to HEp-2 and HeLa cell monolayers in vitro and expressed mannose-resistant hemagglutinating (MRHA+) activity towards human, chicken, and sheep (but not mouse, rabbit, or guinea pig) erythrocytes. Cellular adherence properties of both strains could be substantially reduced by pronase treatment and by heat treatment (100 degrees C for 5 min) of bacteria. Electron microscopic examination failed to reveal fimbria- or pilus-like structures on the bacterial cell surface. Conjugation experiments conducted with these strains suggested that both MRHA and HEp-2 and HeLa cell adherence factors were encoded by the same plasmid, with a size of 55 to 57 megadaltons (MDa). Further biochemical studies indicated that the cellular adherence factors were associated with cell surface structures of bacteria that were proteinaceous in nature. An antiserum, rendered specific for the 57-MDa plasmid (pRP201) products of B/M 369 by adsorption, reacted with both MRHA+ Ad+ strains, B/M 369 and C-35, but not with their 57- or 55-MDa plasmidless MRHA- Ad- transconjugants or with other MRHA- Ad- E. coli strains. Immunological studies showed that the absorbed antiserum recognized two proteins with subunit molecular sizes of 18 and 14.5 kDa that were present on the cell surfaces of both strains. Furthermore, the absorbed antiserum at subagglutinating dilutions did inhibit, although only partially, the MRHA and HEp-2 and HeLa cell adherence activities of both E. coli strains. All these results would indicate that some of the E. coli strains belonging to enteropathogenic serogroups express their adherence potential through factors that were hitherto unrecognized. Images PMID:1969390

  9. Porcine intestinal glycosphingolipids recognized by F6-fimbriated enterotoxigenic Escherichia coli.

    PubMed

    Madar Johansson, Miralda; Coddens, Annelies; Benktander, John; Cox, Eric; Teneberg, Susann

    2014-11-01

    One important virulence factor of enterotoxigenic Escherichia coli is their ability to adhere via fimbrial adhesins to specific receptors located on the intestinal mucosa. Here, the potential glycosphingolipid receptors of enterotoxigenic F6-fimbriated E. coli were examined by binding of purified F6 fimbriae, and F6-expressing bacteria, to glycosphingolipids on thin-layer chromatograms. When intestinal mucosal non-acid glycosphingolipids from single pigs were assayed for F6 binding capacity, a selective interaction with two glycosphingolipids was observed. The binding-active glycosphingolipids were isolated and characterized as lactotriaosylceramide (GlcNAcβ3Galβ4Glcβ1Cer) and lactotetraosylceramide (Galβ3GlcNAcβ3Galβ4Glcβ1Cer). Further binding assays using a panel of reference glycosphingolipids showed a specific interaction between the F6 fimbriae and a number of neolacto core chain (Galβ4GlcNAc) glycosphingolipids. In addition, an occasional binding of the F6 fimbriae to sulfatide, galactosylceramide, lactosylceramide with phytosphingosine and/or hydroxy fatty acids, isoglobotriaosylceramide, gangliotriaosylceramide, and gangliotetraosylceramide was obtained. From the results we conclude that lactotriaosylceramide and lactotetraosylceramide are major porcine intestinal receptors for F6-fimbriated E. coli. PMID:25241919

  10. Comparison of different assays for definition of heat-stable enterotoxigenicity of Escherichia coli porcine strains.

    PubMed

    Olsson, E; Söderlind, O

    1980-01-01

    Ninety-one Escherichia coli strains isolated from porcine neonatal diarrhea, representing 28 O-groups and rough and non-O-groupable strains, were examined for enterotoxigenicity (heat stable [ST] or heat labile [LT]) by using bacterial suspensions in intestinal loop tests in 3- to 7-week-old piglets and culture supernatant fluids in the Y1 adrenal cell test, the 18-h rabbit intestinal loop test, and the infant mouse test. Eleven strains in O-groups 101, 138, 147, and 149 were positive in all four assay systems and were designated ST + LT. Fourteen strains within O-groups 8, 9, 20, 64, 141, and 149 and non-O-groupable were positive only in the 3- to 7-week-old piglet loop test and the infant mouse test and were designated ST pig + mouse. Sixteen strains distributed among O-groups 8, 16, 32, 50, 51, 98, 115, 141, 149, and 157 were positive only in the piglet intestinal loop test and were designated ST pig. Three strains of O-groups 8, 9, and 140 were positive only in the infant mouse assay and were designated ST mouse. Two strains of O-group 149 were positive in all tests except the infant mouse test and were designated LT. A total of 42 strains were negative in all four tests (Ent(-)), and 3 strains could not be categorized by the enterotoxigenicity criteria used. All K88-positive isolates, 17 strains of O-groups 8, 32, 147, and 149, were positive in at least one enterotoxigenicity test. ST pig and ST mouse strains gave positive intestinal loop tests as bacterial suspensions in 4- to 10-day-old piglets. A 6-h piglet intestinal loop test performed with heat-inactivated culture supernatants was preferable to an 18- to 20-h test for determination of ST production by strains of diverse O-groups. ST production by the two strains designated LT was detected by the 6-h test. The infant mouse test, although highly reproducible and convenient, appears to possess considerable limitations in routine screening of E. coli of porcine origin for ST production.

  11. Interaction of porcine neutrophils with different strains of enterotoxigenic Escherichia coli.

    PubMed

    Ondrackova, Petra; Alexa, Pavel; Matiasovic, Jan; Volf, Jiri; Faldyna, Martin

    2012-11-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the most important causes of post-weaning diarrhea in piglets. Whilst serotype O149:F4 is frequently associated with hemorrhagic gastroenteritis, other serotypes have been found to be associated with mild or moderate enteritis. As neutrophils are recruited to sites of inflammation, the aim of this study was to ascertain whether or not there is any difference in the in vitro interaction between neutrophils and two different ETEC serotypes: O149:F4 and O147:F18. The association of bacteria with neutrophils was evaluated by flow cytometry. The respiratory burst was measured by the fluorescent probe dichlorofluorescein diacetate using flow cytometry and by L012-amplified chemiluminescence. The titers of antibodies against ETEC present in cultivation sera were assessed by agglutination. The viability of E. coli was ascertained by cultivation. It was found that the strains of O149 serotype were more frequently associated with neutrophils and induced a more intensive respiratory burst compared to the strains of O147 serotype. These differences might be due to the presence of different types of fimbriae on the surface of the strains tested and by the presence of anti-fimbrial antibodies in the porcine plasma. However, the intensive interaction between E. coli and the neutrophils and respiratory burst induced by the O149 strain did not lead to more efficient killing of the bacteria. It is suggested that a stronger respiratory burst may be an important factor causing severe clinical signs of post-weaning diarrhea in piglets. PMID:22704243

  12. Binding to Na(+) /H(+) exchanger regulatory factor 2 (NHERF2) affects trafficking and function of the enteropathogenic Escherichia coli type III secretion system effectors Map, EspI and NleH.

    PubMed

    Martinez, Eric; Schroeder, Gunnar N; Berger, Cedric N; Lee, Sau Fung; Robinson, Keith S; Badea, Luminita; Simpson, Nandi; Hall, Randy A; Hartland, Elizabeth L; Crepin, Valerie F; Frankel, Gad

    2010-12-01

    Enteropathogenic Escherichia coli (EPEC) strains are diarrhoeal pathogens that use a type III secretion system to translocate effector proteins into host cells in order to colonize and multiply in the human gut. Map, EspI and NleH1 are conserved EPEC effectors that possess a C-terminal class I PSD-95/Disc Large/ZO-1 (PDZ)-binding motif. Using a PDZ array screen we identified Na(+)/H(+) exchanger regulatory factor 2 (NHERF2), a scaffold protein involved in tethering and recycling ion channels in polarized epithelia that contains two PDZ domains, as a common target of Map, EspI and NleH1. Using recombinant proteins and co-immunoprecipitation we confirmed that NHERF2 binds each of the effectors. We generated a HeLa cell line stably expressing HA-tagged NHERF2 and found that Map, EspI and NleH1 colocalize and interact with intracellular NHERF2 via their C-terminal PDZ-binding motif. Overexpression of NHERF2 enhanced the formation and persistence of Map-induced filopodia, accelerated the trafficking of EspI to the Golgi and diminished the anti-apoptotic activity of NleH1. The binding of multiple T3SS effectors to a single scaffold protein is unique. Our data suggest that NHERF2 may act as a plasma membrane sorting site, providing a novel regulatory mechanism to control the intracellular spatial and temporal effector protein activity.

  13. A third secreted protein that is encoded by the enteropathogenic Escherichia coli pathogenicity island is required for transduction of signals and for attaching and effacing activities in host cells.

    PubMed Central

    Lai, L C; Wainwright, L A; Stone, K D; Donnenberg, M S

    1997-01-01

    Enteropathogenic Escherichia coli strains are able to signal host cells, cause dramatic cytoskeletal rearrangements, and adhere intimately to the cell surface in a process known as the attaching and effacing effect. A pathogenicity island of 35 kb known as the locus of enterocyte effacement (LEE) is necessary and sufficient for this effect. The LEE encodes an outer membrane adhesin called intimin, a type III secretion apparatus, and the EspA and EspB secreted proteins. The DNA sequence of the region between espA and espB revealed a new gene, espD. The product of espD was demonstrated by using a T7 expression system. We constructed a nonpolar mutation in espD and found that the mutant is incapable of the signal transduction events that lead to activation of the putative intimin receptor in host cells and that the mutant fails to induce the attaching and effacing effect. These phenotypes were restored to the mutant by complementation with a plasmid containing the cloned espD locus. We demonstrated by immunoblotting and microsequencing that the EspD protein is secreted via the type III apparatus. Thus, we describe a novel locus encoding a secreted protein that is required for attaching and effacing activity. PMID:9169753

  14. Interleukin-8, CXCL1, and MicroRNA miR-146a Responses to Probiotic Escherichia coli Nissle 1917 and Enteropathogenic E. coli in Human Intestinal Epithelial T84 and Monocytic THP-1 Cells after Apical or Basolateral Infection.

    PubMed

    Sabharwal, Harshana; Cichon, Christoph; Ölschläger, Tobias A; Sonnenborn, Ulrich; Schmidt, M Alexander

    2016-09-01

    Bacterium-host interactions in the gut proceed via directly contacted epithelial cells, the host's immune system, and a plethora of bacterial factors. Here we characterized and compared exemplary cytokine and microRNA (miRNA) responses of human epithelial and THP-1 cells toward the prototype enteropathogenic Escherichia coli (EPEC) strain E2348/69 (O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). Human T84 and THP-1 cells were used as cell culture-based model systems for epithelial and monocytic cells. Polarized T84 monolayers were infected apically or basolaterally. Bacterial challenges from the basolateral side resulted in more pronounced cytokine and miRNA responses than those observed for apical side infections. Interestingly, the probiotic EcN also caused a pronounced transcriptional increase of proinflammatory CXCL1 and interleukin-8 (IL-8) levels when human T84 epithelial cells were infected from the basolateral side. miR-146a, which is known to regulate adaptor molecules in Toll-like receptor (TLR)/NF-κB signaling, was found to be differentially regulated in THP-1 cells between probiotic and pathogenic bacteria. To assess the roles of flagella and flagellin, we employed several flagellin mutants of EcN. EcN flagellin mutants induced reduced IL-8 as well as CXCL1 responses in T84 cells, suggesting that flagellin is an inducer of this cytokine response. Following infection with an EPEC type 3 secretion system (T3SS) mutant, we observed increased IL-8 and CXCL1 transcription in T84 and THP-1 cells compared to that in wild-type EPEC. This study emphasizes the differential induction of miR-146a by pathogenic and probiotic E. coli strains in epithelial and immune cells as well as a loss of probiotic properties in EcN interacting with cells from the basolateral side. PMID:27297392

  15. Relationship between heat-labile enterotoxin secretion capacity and virulence in wild type porcine-origin enterotoxigenic Escherichia coli strains.

    PubMed

    Wijemanne, Prageeth; Xing, Jun; Berberov, Emil M; Marx, David B; Francis, David H; Moxley, Rodney A

    2015-01-01

    Heat-labile enterotoxin (LT) is an important virulence factor secreted by some strains of enterotoxigenic Escherichia coli (ETEC). The prototypic human-origin strain H10407 secretes LT via a type II secretion system (T2SS). We sought to determine the relationship between the capacity to secrete LT and virulence in porcine-origin wild type (WT) ETEC strains. Sixteen WT ETEC strains isolated from cases of severe diarrheal disease were analyzed by GM1ganglioside enzyme-linked immunosorbent assay to measure LT concentrations in culture supernatants. All strains had detectable LT in supernatants by 2 h of culture and 1 strain, which was particularly virulent in gnotobiotic piglets (3030-2), had the highest LT secretion level all porcine-origin WT strains tested (P<0.05). The level of LT secretion (concentration in supernatants at 6-h culture) explained 92% of the variation in time-to-a-moribund-condition (R2 = 0.92, P<0.0001) in gnotobiotic piglets inoculated with either strain 3030-2, or an ETEC strain of lesser virulence (2534-86), or a non-enterotoxigenic WT strain (G58-1). All 16 porcine ETEC strains were positive by PCR analysis for the T2SS genes, gspD and gspK, and bioinformatic analysis of 4 porcine-origin strains for which complete genomic sequences were available revealed a T2SS with a high degree of homology to that of H10407. Maximum Likelihood phylogenetic trees constructed using T2SS genes gspC, gspD, gspE and homologs showed that strains 2534-86 and 3030-2 clustered together in the same clade with other porcine-origin ETEC strains in the database, UMNK88 and UMN18. Protein modeling of the ATPase gene (gspE) further revealed a direct relationship between the predicted ATP-binding capacities and LT secretion levels as follows: H10407, -8.8 kcal/mol and 199 ng/ml; 3030-2, -8.6 kcal/mol and 133 ng/ml; and 2534-86, -8.5 kcal/mol and 80 ng/ml. This study demonstrated a direct relationship between predicted ATP-binding capacity of GspE and LT secretion, and

  16. Behavior of shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli and enterotoxigenic E. coli strains on whole and sliced jalapeño and serrano peppers.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Gordillo-Martínez, Alberto J; Castro-Rosas, Javier

    2014-06-01

    The behavior of enterotoxigenic Escherichia coli (ETEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC) and non-O157 shiga toxin-producing E. coli (non-O157-STEC) on whole and slices of jalapeño and serrano peppers as well as in blended sauce at 25 ± 2 °C and 3 ± 2 °C was investigated. Chili peppers were collected from markets of Pachuca city, Hidalgo, Mexico. On whole serrano and jalapeño stored at 25 ± 2 °C or 3 ± 2 °C, no growth was observed for EPEC, ETEC, EIEC and non-O157-STEC rifampicin resistant strains. After twelve days at 25 ± 2 °C, on serrano peppers all diarrheagenic E. coli pathotypes (DEP) strains had decreased by a total of approximately 3.7 log, whereas on jalapeño peppers the strains had decreased by approximately 2.8 log, and at 3 ± 2 °C they decreased to approximately 2.5 and 2.2 log respectively, on serrano and jalapeño. All E. coli pathotypes grew onto sliced chili peppers and in blended sauce: after 24 h at 25 ± 2 °C, all pathotypes had grown to approximately 3 and 4 log CFU on pepper slices and sauce, respectively. At 3 ± 2 °C the bacterial growth was inhibited. PMID:24549200

  17. Presence of Multidrug-Resistant Shiga Toxin-Producing Escherichia coli, Enteropathogenic E. coli and Enterotoxigenic E. coli, on Raw Nopalitos (Opuntia ficus-indica L.) and in Nopalitos Salads from Local Retail Markets in Mexico.

    PubMed

    Gómez-Aldapa, Carlos A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Torres-Vitela, Mdel Refugio; Villarruel-López, Angelica; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-05-01

    The presence of multidrug-resistant pathogenic bacteria in food is a significant public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. In Mexico, DEPs have been associated with diarrheal illness. There is no information about the presence of multidrug-resistant DEPs on fresh vegetables and in cooked vegetable salads in Mexico. "Nopalitos" (Opuntia ficus-indica L.) is a Cactacea extensively used as a fresh green vegetable throughout Mexico. The presence of generic E. coli and multidrug-resistant DEPs on raw whole and cut nopalitos and in nopalitos salad samples was determined. One hundred raw whole nopalitos (without prickles) samples, 100 raw nopalitos cut into small square samples, and 100 cooked nopalitos salad samples were collected from markets. Generic E. coli was determined using the most probable number procedures. DEPs were identified using two multiplex polymerase chain reaction procedures. Susceptibility to 16 antibiotics was tested for the isolated DEP strains by standard test. Of the 100 whole nopalitos samples, 100 cut nopalitos samples, and 100 nopalitos salad samples, generic E. coli and DEPs were identified, respectively, in 80% and 10%, 74% and 10%, and 64% and 8%. Eighty-two DEP strains were isolated from positive nopalitos samples. The identified DEPs included Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). All isolated strains exhibited resistance to at least six antibiotics. To the best of our knowledge, this is the first report of the presence of multidrug-resistant and antibiotic resistance profiles of STEC, ETEC, and EPEC on raw nopalitos and in nopalitos salads in Mexico.

  18. Behavior of shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli and enterotoxigenic E. coli strains on whole and sliced jalapeño and serrano peppers.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Gordillo-Martínez, Alberto J; Castro-Rosas, Javier

    2014-06-01

    The behavior of enterotoxigenic Escherichia coli (ETEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC) and non-O157 shiga toxin-producing E. coli (non-O157-STEC) on whole and slices of jalapeño and serrano peppers as well as in blended sauce at 25 ± 2 °C and 3 ± 2 °C was investigated. Chili peppers were collected from markets of Pachuca city, Hidalgo, Mexico. On whole serrano and jalapeño stored at 25 ± 2 °C or 3 ± 2 °C, no growth was observed for EPEC, ETEC, EIEC and non-O157-STEC rifampicin resistant strains. After twelve days at 25 ± 2 °C, on serrano peppers all diarrheagenic E. coli pathotypes (DEP) strains had decreased by a total of approximately 3.7 log, whereas on jalapeño peppers the strains had decreased by approximately 2.8 log, and at 3 ± 2 °C they decreased to approximately 2.5 and 2.2 log respectively, on serrano and jalapeño. All E. coli pathotypes grew onto sliced chili peppers and in blended sauce: after 24 h at 25 ± 2 °C, all pathotypes had grown to approximately 3 and 4 log CFU on pepper slices and sauce, respectively. At 3 ± 2 °C the bacterial growth was inhibited.

  19. Systematic identification and sequence analysis of the genomic islands of the enteropathogenic Escherichia coli strain B171-8 by the combined use of whole-genome PCR scanning and fosmid mapping.

    PubMed

    Ogura, Yoshitoshi; Abe, Hiroyuki; Katsura, Keisuke; Kurokawa, Ken; Asadulghani, Md; Iguchi, Atsushi; Ooka, Tadasuke; Nakayama, Keisuke; Yamashita, Atsushi; Hattori, Masahira; Tobe, Toru; Hayashi, Tetsuya

    2008-11-01

    Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are diarrheagenic pathogens that colonize the intestinal tract through the formation of attaching and effacing lesions, induced by effectors translocated via a type III secretion system (T3SS) encoded on the locus of enterocyte effacement (LEE). In EHEC O157, numerous virulence factors, including around 40 T3SS effectors, have been identified. Most of them are encoded on genomic islands (GEIs) such as prophages and integrative elements. For EPEC, however, no systematic search of GEIs and virulence-related genes carried therein has been done, and only a limited number of virulence factors have been identified so far. In this study, we performed a systemic and genome-wide survey of the GEIs in strain B171-8, one of the prototype strains of EPEC, by the combined use of whole-genome PCR scanning and fosmid mapping and identified 22 large GEIs, including nine lambda-like prophages, three P2-like prophages, the LEE, and three additional integrative elements. On these prophages and integrative elements, we found genes for a set of T3SS proteins, a total of 33 T3SS effectors or effector homologues, and 12 other virulence factors which include five nonfimbrial adhesins. Most of the T3SS effector families identified are also present in EHEC O157, but B171-8 possesses a significantly smaller number of effectors. Not only the presence or absence of Shiga toxin genes but also the difference in the T3SS effector repertoire should be considered in analyzing the pathogenicity of EPEC and EHEC strains.

  20. Escherichia coli expressing single-chain Fv on the cell surface as a potential prophylactic of porcine epidemic diarrhea virus.

    PubMed

    Pyo, Hyun-Mi; Kim, In-Joong; Kim, Seong-Hee; Kim, Hyun-Soo; Cho, Soo-Dong; Cho, In-Soo; Hyun, Bang-Hun

    2009-03-23

    Porcine epidemic diarrhea virus (PEDV) is a causative agent of severe diarrhea which leads to death in piglets. Because of the high mortality which is up to 100% in suckling piglets, PED is an important porcine disease in Korea. In this study, we developed a prophylactic candidate using single-chain Fvs to prevent the PEDV infection. ScFvs of mouse monoclonal antibody which was verified to neutralize PEDV was expressed in Escherichia coli expression system. After the confirmation of PEDV neutralizing activity of purified recombinant scFvs by VN test, scFvs were expressed on the surface of E. coli cells. The signal sequence and autotransporter beta domain of protease IgA (IgAP) of Neisseria gonorrhoeae were introduced to endow scFvs with the direction to the cell surface and the support as a transmembrane domain. 5x10(6)CFU of E. coli expressing scFvs against PEDV showed promising result of 94% foci reduction compared to wild type E. coli. This result demonstrated that E. coli expressing scFvs on the cell surface retained functional potency of parent antibody and therefore blocked PEDV infection into target cells in vitro. This in vitro assay result proposes the perspective of recombinant E. coli cells expressing scFvs as a novel prophylactic against PEDV infection. PMID:19428826

  1. Characterization of EspC, a 110-kilodalton protein secreted by enteropathogenic Escherichia coli which is homologous to members of the immunoglobulin A protease-like family of secreted proteins.

    PubMed Central

    Stein, M; Kenny, B; Stein, M A; Finlay, B B

    1996-01-01

    Enteropathogenic Escherichia coli (EPEC) secretes at least five proteins. Two of these proteins, EspA and EspB (previously called EaeB), activate signal transduction pathways in host epithelial cells. While the role of the other three proteins (39, 40, and 110 kDa) remains undetermined, secretion of all five proteins is under the control of perA, a known positive regulator of several EPEC virulence factors. On the basis of amino-terminal protein sequence data, we cloned and sequenced the gene which encodes the 110-kDa secreted protein and examined its possible role in EPEC signaling and interaction with epithelial cells. In accordance with the terminology used for espA and espB, we called this gene espC, for EPEC-secreted protein C. We found significant homology between the predicted EspC protein sequence and a family of immunoglobulin A (IgA) protease-like proteins which are widespread among pathogenic bacteria. Members of this protein family are found in avian pathogenic Escherichia coli (Tsh), Haemophilus influenzae (Hap), and Shigella flexneri (SepA). Although these proteins and EspC do not encode IgA protease activity, they have considerable homology with IgA protease from Neisseria gonorrhoeae and H. influenzae and appear to use a export system for secretion. We found that genes homologous to espC also exist in other pathogenic bacteria which cause attaching and effacing lesions, including Hafnia alvei biotype 19982, Citrobacter freundii biotype 4280, and rabbit diarrheagenic E. coli (RDEC-1). Although these strains secrete various proteins similar in molecular size to the proteins secreted by EPEC, we did not detect secretion of a 110-kDa protein by these strains. To examine the possible role of EspC in EPEC interactions with epithelial cells, we constructed a deletion mutant in espC by allelic exchange and characterized the mutant by standard tissue culture assays. We found that EspC is not necessary for mediating EPEC-induced signal transduction in He

  2. Phylogenetic and molecular insights into the evolution of multidrug-resistant porcine enterotoxigenic Escherichia coli in Australia.

    PubMed

    Abraham, Sam; Trott, Darren J; Jordan, David; Gordon, David M; Groves, Mitchell D; Fairbrother, John M; Smith, Matthew G; Zhang, Ren; Chapman, Toni A

    2014-08-01

    This study investigated the phylogeny and molecular epidemiology of Australian porcine enterotoxigenic Escherichia coli (ETEC) isolates (n=70) by performing multilocus sequence typing (MLST), random amplified polymorphic DNA (RAPD) analysis, virulence gene analysis, plasmid, bacteriocin, integron and antimicrobial resistance gene typing, and antimicrobial susceptibility phenotyping. Isolates of the most commonly observed O serogroup (O149) were highly clonal with a lower frequency of antimicrobial resistance compared with the less common O141 serogroup isolates, which were more genetically diverse and resistant to a greater array of antimicrobials. The O149 and O141 isolates belonged to sequence types (STs) ST100 and ST1260, respectively. A small number of new STs were identified for the least common serogroups, including O157 (ST4245), O138 (ST4244), O139 (ST4246) and O8 (ST4247). A high frequency of plasmid replicons was observed among all ETEC isolates. However, O149 isolates predominantly carried IncFIB, I1, HI1 and FIC, whereas O141 isolates carried a more varied array, including IncI1, FIB, FIC, HI1, I1, Y and, most significantly, A/C. O141 isolates also possessed a greater diversity of bacteriocins, with almost one-half of the isolates carrying colicin E3 (44.4%; 12/27) and E7 (48.1%; 13/27). This study shows that Australian porcine ETEC are distinct from isolates obtained in other parts of the world with respect to the MLST profile and the absence of resistance to critically important antimicrobials, including third-generation cephalosporins and fluoroquinolones.

  3. Characterization of shiga toxin subtypes and virulence genes in Porcine shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a...

  4. Characterization of porcine intestinal receptors for the K88ac fimbrial adhesin of Escherichia coli as mucin-type sialoglycoproteins.

    PubMed Central

    Erickson, A K; Baker, D R; Bosworth, B T; Casey, T A; Benfield, D A; Francis, D H

    1994-01-01

    We have previously identified two K88ac adhesion receptors (210 and 240 kDa) which are present in membrane preparations from adhesive but not nonadhesive porcine intestinal brush border cells; these adhesin receptors are postulated to be important determinants of the susceptibility of pigs to K88ac+ enterotoxigenic Escherichia coli infections (A.K. Erickson, J.A. Willgohs, S.Y. McFarland, D.A. Benfield, and D.F. Francis, Infect. Immun. 60:983-988, 1992). We now describe a procedure for the purification of these two receptors. Receptors were solubilized from adhesive intestinal brush border vesicles using deoxycholate and were purified by gel filtration chromatography on Sepharose CL-4B and then by hydroxyapatite chromatography. Amino acid compositional analyses indicated that the two receptors have similar amino acid compositions. The most distinguishing characteristic of both receptors is a high percentage of threonine and proline residues. Neuraminidase treatment caused the K88ac adhesin receptors to migrate with a slower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, indicating that these receptors are sialoglycoproteins. Results from lectin-binding studies indicated that the receptors contain O-linked oligosaccharides composed of galactosyl (beta-1,3)N-acetylgalactosamine, alpha-linked fucose, galactosyl(beta-1,4)N-acetylglucosamine, sialic acid, galactose, and N-acetylgalactosamine. Collectively, these characteristics indicate that the K88ac adhesin receptors are mucin-type sialoglycoproteins. Images PMID:7960120

  5. Genetic relatedness and virulence properties of enteropathogenic Escherichia coli strains of serotype O119:H6 expressing localized adherence or localized and aggregative adherence-like patterns on HeLa cells.

    PubMed

    Garcia, Bruna G; Ooka, Tadasuke; Gotoh, Yasuhiro; Vieira, Mônica A M; Yamamoto, Denise; Ogura, Yoshitoshi; Girão, Dennys M; Sampaio, Suely C F; Melo, Alexis Bonfim; Irino, Kinue; Hayashi, Tetsuya; Gomes, Tânia A T

    2016-05-01

    Enteropathogenic Escherichia coli (EPEC) induce attaching and effacing (A/E) lesions in enterocytes and produce the bundle-forming pilus (BFP) contributing to the localized adherence (LA) pattern formation on HeLa cells. Enteroaggregative E. coli (EAEC) produce aggregative adherence (AA) on HeLa cells and form prominent biofilms. The ability to produce LA or AA is an important hallmark to classify fecal E. coli isolates as EPEC or EAEC, respectively. E. coli strains of serotype O119:H6 exhibit an LA+ phenotype and have been considered as comprising a clonal group of EPEC strains. However, we have recently identified O119:H6 EPEC strains that produce LA and an AA-like pattern concurrently (LA/AA-like+). In this study, we evaluated the relatedness of three LA/AA-like+ and three LA+ O119:H6 strains by comparing their virulence and genotypic properties. We first found that the LA/AA-like+ strains induced actin accumulation in HeLa cells (indicative of A/E lesions formation) and formed biofilms on abiotic surfaces more efficiently than the LA+ strains. MLST analysis showed that the six strains all belong to the ST28 complex. All strains carried multiple plasmids, but as plasmid profiles were highly variable, this cannot be used to differentiate LA/AA-like+ and LA+ strains. We further obtained their draft genome sequences and the complete sequences of four plasmids harbored by one LA/AA-like+ strain. Analysis of these sequences and comparison with 37 fully sequenced E. coli genomes revealed that both O119:H6 groups belong to the E. coli phylogroup B2 and are very closely related with only 58-67 SNPs found between LA/AA-like+ and LA+ strains. Search of the draft sequences of the six strains for adhesion-related genes known in EAEC and other E. coli pathotypes detected no genes specifically present in LA/AA-like+ strains. Unexpectedly however, we found that a large plasmid distinct from pEAF is responsible for the AA-like phenotype of the LA/AA-like+ strains. Although we

  6. Molecular Characterization of Commensal Escherichia coli Adapted to Different Compartments of the Porcine Gastrointestinal Tract

    PubMed Central

    Abraham, Sam; Gordon, David M.; Chin, James; Brouwers, Huub J. M.; Njuguna, Peter; Groves, Mitchell D.; Zhang, Ren

    2012-01-01

    The role of Escherichia coli as a pathogen has been the focus of considerable study, while much less is known about it as a commensal and how it adapts to and colonizes different environmental niches within the mammalian gut. In this study, we characterize Escherichia coli organisms (n = 146) isolated from different regions of the intestinal tracts of eight pigs (dueodenum, ileum, colon, and feces). The isolates were typed using the method of random amplified polymorphic DNA (RAPD) and screened for the presence of bacteriocin genes and plasmid replicon types. Molecular analysis of variance using the RAPD data showed that E. coli isolates are nonrandomly distributed among different gut regions, and that gut region accounted for 25% (P < 0.001) of the observed variation among strains. Bacteriocin screening revealed that a bacteriocin gene was detected in 45% of the isolates, with 43% carrying colicin genes and 3% carrying microcin genes. Of the bacteriocins observed (H47, E3, E1, E2, E7, Ia/Ib, and B/M), the frequency with which they were detected varied with respect to gut region for the colicins E2, E7, Ia/Ib, and B/M. The plasmid replicon typing gave rise to 25 profiles from the 13 Inc types detected. Inc F types were detected most frequently, followed by Inc HI1 and N types. Of the Inc types detected, 7 were nonrandomly distributed among isolates from the different regions of the gut. The results of this study indicate that not only may the different regions of the gastrointestinal tract harbor different strains of E. coli but also that strains from different regions have different characteristics. PMID:22798360

  7. Organ inflammation in porcine Escherichia coli sepsis is markedly attenuated by combined inhibition of C5 and CD14.

    PubMed

    Egge, Kjetil H; Thorgersen, Ebbe B; Pischke, Søren E; Lindstad, Julie K; Pharo, Anne; Bongoni, Anjan K; Rieben, Robert; Nunn, Miles A; Barratt-Due, Andreas; Mollnes, Tom E

    2015-08-01

    Sepsis is an infection-induced systemic inflammatory syndrome, potentially causing organ failure. We previously showed attenuating effects on inflammation, thrombogenicity and haemodynamics by inhibiting the Toll-like receptor co-factor CD14 and complement factor C5 in a porcine Escherichia coli-induced sepsis model. The present study explored the effect on organ inflammation in these pigs. Tissue samples were examined from the combined treatment group (n = 8), the positive (n = 8) and negative (n = 6) control groups after 4h of sepsis. Inflammatory biomarkers were measured using ELISA, multiplex and qPCR analysis. Combined inhibition of C5 and CD14 markedly attenuated IL-1β by 31-66% (P < 0.05) and IL-6 by 54-96% (P < 0.01) in liver, kidney, lung and spleen; IL-8 by 65-100% in kidney, lung, spleen, and heart (P < 0.05) and MCP-1 by 46-69% in liver, kidney, spleen and heart (P < 0.05). Combined inhibition significantly attenuated tissue factor mRNA upregulation in spleen (P < 0.05) and IP-10 mRNA upregulation in four out of five organs. Finally, C5aR mRNA downregulation was prevented in heart and kidney (P < 0.05). Combined inhibition of C5 and CD14 thus markedly attenuated inflammatory responses in all organs examined. The anti-inflammatory effects observed in lung and heart may explain the delayed haemodynamic disturbances observed in septic pigs receiving combined inhibition of C5 and CD14. PMID:25956456

  8. Production of soluble truncated spike protein of porcine epidemic diarrhea virus from inclusion bodies of Escherichia coli through refolding.

    PubMed

    Piao, Da-Chuan; Lee, Yoon-Seok; Bok, Jin-Duck; Cho, Chong-Su; Hong, Zhong-Shan; Kang, Sang-Kee; Choi, Yun-Jaie

    2016-10-01

    The emergence of highly pathogenic variant porcine epidemic diarrhea virus (PEDV) strains, from 2013 to 2014, in North American and Asian countries have greatly threatened global swine industry. Therefore, development of effective vaccines against PEDV variant strains is urgently needed. Recently, it has been reported that the N-terminal domain (NTD) of S1 domain of PEDV spike protein is responsible for binding to the 5-N-acetylneuraminic acid (Neu5Ac), a possible sugar co-receptor. Therefore, the NTD of S1 domain could be an attractive target for the development of subunit vaccines. In this study, the NTD spanning amino acid residues 25-229 (S25-229) of S1 domain of PEDV variant strain was expressed in Escherichia coli BL21 (DE3) in the form of inclusion bodies (IBs). S25-229 IBs were solubilized in 20 mM sodium acetate (pH 4.5) buffer containing 8 M urea and 1 mM dithiothreitol with 95% yield. Solubilized S25-229 IBs were refolded by 10-fold flash dilution and purified by one-step cation exchange chromatography with >95% purity and 20% yield. The CD spectrum of S25-229 showed the characteristic pattern of alpha helical structure. In an indirect ELISA, purified S25-229 showed strong reactivity with mouse anti-PEDV sera. In addition, immunization of mice with 20 μg of purified S25-229 elicited highly potent serum IgG titers. Finally, mouse antisera against S25-229 showed immune reactivity with native PEDV S protein in an immunofluorescence assay. These results suggest that purified S25-229 may have potential to be used as a subunit vaccine against PEDV variant strains. PMID:27260969

  9. Immunogenic characterization of outer membrane porins OmpC and OmpF of porcine extraintestinal pathogenic Escherichia coli.

    PubMed

    Liu, Canying; Chen, Zhaohui; Tan, Chen; Liu, Wugang; Xu, Zhuofei; Zhou, Rui; Chen, Huanchun

    2012-12-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen that can cause systemic infections in a broad spectrum of mammals and birds. To date, commercial vaccines against ExPEC infections in pigs are rare and antibiotic resistance has become a serious clinical problem. Identification of protective antigens is helpful for developing potentially effective vaccines. In this study, two outer membrane porins, OmpC and OmpF, of porcine ExPEC were cloned and expressed to investigate their immunogenicity. Intraperitoneal immunization of mice with the purified recombinant proteins OmpC and OmpF stimulated strong immunoglobulin G (IgG) antibody responses. Both IgG1 and IgG2a subclasses were induced, with a predominance of IgG1 production. After challenge with 2.5 × 10(7) CFU (5 × LD50 ) of the highly virulent ExPEC strain PCN033, 62.5% and 87.5% protection was observed in mice immunized with OmpC and OmpF, respectively. In addition, both anti-OmpC and anti-OmpF sera can mediate complement-dependent opsonophagocytosis. Phylogenetic analysis showed that the ompC gene was ubiquitously present in all E. coli strains, whereas the ompF gene was mutated in certain strains. Furthermore, the selection analysis indicated that gene ompC may be subject to strong immune pressure. Our results demonstrated that OmpC is a promising vaccine target against ExPEC infections in swine.

  10. Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells.

    PubMed

    Wu, Yunpeng; Zhu, Cui; Chen, Zhuang; Chen, Zhongjian; Zhang, Weina; Ma, Xianyong; Wang, Li; Yang, Xuefen; Jiang, Zongyong

    2016-04-01

    Tight junctions (TJs) play an important role in maintaining the mucosal barrier function and gastrointestinal health of animals. Lactobacillus plantarum (L. plantarum) was reported to protect the intestinal barrier function of early-weaned piglets against enterotoxigenic Escherichia coli (ETEC) K88 challenge; however, the underlying cellular mechanism of this protection was unclear. Here, an established intestinal porcine epithelia cell (IPEC-J2) model was used to investigate the protective effects and related mechanisms of L. plantarum on epithelial barrier damages induced by ETEC K88. Epithelial permeability, expression of inflammatory cytokines, and abundance of TJ proteins, were determined. Pre-treatment with L. plantarum for 6h prevented the reduction in transepithelial electrical resistance (TEER) (P<0.05), inhibited the increased transcript abundances of interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) (P<0.05), decreased expression of claudin-1, occludin and zonula occludens (ZO-1) (P<0.05) and protein expression of occludin (P<0.05) of IPEC-J2 cells caused by ETEC K88. Moreover, the mRNA expression of negative regulators of toll-like receptors (TLRs) [single Ig Il-1-related receptor (SIGIRR), B-cell CLL/lymphoma 3 (Bcl3), and mitogen-activated protein kinase phosphatase-1 (MKP-1)] in IPEC-J2 cells pre-treated with L. plantarum were higher (P<0.05) compared with those in cells just exposed to K88. Furthermore, L. plantarum was shown to regulate proteins of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results indicated that L. plantarum may improve epithelial barrier function by maintenance of TEER, inhibiting the reduction of TJ proteins, and reducing the expression of proinflammatory cytokines induced by ETEC K88, possibly through modulation of TLRs, NF-κB and MAPK pathways.

  11. Production of soluble truncated spike protein of porcine epidemic diarrhea virus from inclusion bodies of Escherichia coli through refolding.

    PubMed

    Piao, Da-Chuan; Lee, Yoon-Seok; Bok, Jin-Duck; Cho, Chong-Su; Hong, Zhong-Shan; Kang, Sang-Kee; Choi, Yun-Jaie

    2016-10-01

    The emergence of highly pathogenic variant porcine epidemic diarrhea virus (PEDV) strains, from 2013 to 2014, in North American and Asian countries have greatly threatened global swine industry. Therefore, development of effective vaccines against PEDV variant strains is urgently needed. Recently, it has been reported that the N-terminal domain (NTD) of S1 domain of PEDV spike protein is responsible for binding to the 5-N-acetylneuraminic acid (Neu5Ac), a possible sugar co-receptor. Therefore, the NTD of S1 domain could be an attractive target for the development of subunit vaccines. In this study, the NTD spanning amino acid residues 25-229 (S25-229) of S1 domain of PEDV variant strain was expressed in Escherichia coli BL21 (DE3) in the form of inclusion bodies (IBs). S25-229 IBs were solubilized in 20 mM sodium acetate (pH 4.5) buffer containing 8 M urea and 1 mM dithiothreitol with 95% yield. Solubilized S25-229 IBs were refolded by 10-fold flash dilution and purified by one-step cation exchange chromatography with >95% purity and 20% yield. The CD spectrum of S25-229 showed the characteristic pattern of alpha helical structure. In an indirect ELISA, purified S25-229 showed strong reactivity with mouse anti-PEDV sera. In addition, immunization of mice with 20 μg of purified S25-229 elicited highly potent serum IgG titers. Finally, mouse antisera against S25-229 showed immune reactivity with native PEDV S protein in an immunofluorescence assay. These results suggest that purified S25-229 may have potential to be used as a subunit vaccine against PEDV variant strains.

  12. Characterization of a cfr-Carrying Plasmid from Porcine Escherichia coli That Closely Resembles Plasmid pEA3 from the Plant Pathogen Erwinia amylovora.

    PubMed

    Zhang, Rongmin; Sun, Bin; Wang, Yang; Lei, Lei; Schwarz, Stefan; Wu, Congming

    2015-11-02

    The multiresistance gene cfr was found in two porcine Escherichia coli isolates, one harboring it on the conjugative 33,885-bp plasmid pFSEC-01, the other harboring it in the chromosomal DNA. Sequence analysis of pFSEC-01 revealed that a 6,769-bp fragment containing the cfr gene bracketed by two IS26 elements was inserted into a plasmid closely related to pEA3 from the plant pathogen Erwinia amylovora, suggesting that pFSEC-01 may be transferred between different bacterial genera of both animal and plant origin.

  13. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli.

    PubMed

    Baranzoni, Gian Marco; Fratamico, Pina M; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-01-01

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx 2e (81%) was the most common Stx variant, followed by stx 1a (14%), stx 2d (3%), and stx 1c (1%). The STEC serogroups that carried stx 2d were O15:H27, O159:H16 and O159:H-. Similar to stx 2a and stx 2c, the stx 2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections. PMID:27148249

  14. Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli

    DOE PAGES

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K.; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-04-21

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using amore » Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. Furthermore, the present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.« less

  15. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K.; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-01-01

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections. PMID:27148249

  16. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus.

    PubMed Central

    Krempl, C; Schultze, B; Laude, H; Herrler, G

    1997-01-01

    Enteropathogenic transmissible gastroenteritis virus (TGEV), a porcine coronavirus, is able to agglutinate erythrocytes because of sialic acid binding activity. Competitive inhibitors that may mask the sialic acid binding activity can be inactivated by sialidase treatment of virions. Here, we show that TGEV virions with efficient hemagglutinating activity were also obtained when cells were treated with sialidase prior to infection. This method was used to analyze TGEV mutants for hemagglutinating activity. Recently, mutants with strongly reduced enteropathogenicity that have point mutations or a deletion of four amino acids within residues 145 to 155 of the S protein have been described. Here, we show that in addition to their reduced pathogenicity, these mutants also have lost hemagglutinating activity. These results connect sialic acid binding activity with the enteropathogenicity of TGEV. PMID:9060696

  17. In Vitro Evaluation of Swine-Derived Lactobacillus reuteri: Probiotic Properties and Effects on Intestinal Porcine Epithelial Cells Challenged with Enterotoxigenic Escherichia coli K88.

    PubMed

    Wang, Zhilin; Wang, Li; Chen, Zhuang; Ma, Xianyong; Yang, Xuefen; Zhang, Jian; Jiang, Zongyong

    2016-06-28

    Probiotics are considered as the best effective alternatives to antibiotics. The aim of this study was to characterize the probiotic potential of lactobacilli for use in swine farming by using in vitro evaluation methods. A total of 106 lactic acid bacterial isolates, originating from porcine feces, were first screened for the capacity to survive stresses considered important for putative probiotic strains. Sixteen isolates showed notable acid and bile resistance, antibacterial activity, and adherence to intestinal porcine epithelial cells (IPEC-1). One isolate, LR1, identified as Lactobacillus reuteri, was selected for extensive study of its probiotic and functional properties in IPEC-1 cell models. L. reuteri LR1 exhibited good adhesion to IPEC-1 cells and could inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells. L. reuteri LR1 could also modulate transcript and protein expression of cytokines involved in inflammation in IPEC-1 cells; the Lactobacillus strain inhibited the ETEC-induced expression of proinflammatory transcripts (IL-6 and TNF-α) and protein (IL-6), and increased the level of anti-inflammatory cytokine (IL-10). Measurement of the permeation of FD-4 showed that L. reuteri LR1 could maintain barrier integrity in monolayer IPEC-1 cells exposed to ETEC. Immunolocalization experiments showed L. reuteri LR1 could also prevent ETEC-induced tight junction ZO-1 disruption. Together, these results indicate that L. reuteri LR1 exhibits desirable probiotic properties and could be a potential probiotic for use in swine production. PMID:26907754

  18. The chronic enteropathogenic disease schistosomiasis.

    PubMed

    Olveda, David U; Olveda, Remigio M; McManus, Donald P; Cai, Pengfei; Chau, Thao N P; Lam, Alfred K; Li, Yuesheng; Harn, Donald A; Vinluan, Marilyn L; Ross, Allen G P

    2014-11-01

    Schistosomiasis is a chronic enteropathogenic disease caused by blood flukes of the genus Schistosoma. The disease afflicts approximately 240 million individuals globally, causing approximately 70 million disability-adjusted life years lost. Chronic infections with morbidity and mortality occur as a result of granuloma formation in the intestine, liver, or in the case of Schistosoma haematobium, the bladder. Various methods are utilized to diagnose and evaluate liver fibrosis due to schistosomiasis. Liver biopsy is still considered the gold standard, but it is invasive. Diagnostic imaging has proven to be an invaluable method in assessing hepatic morbidity in the hospital setting, but has practical limitations in the field. The potential of non-invasive biological markers, serum antibodies, cytokines, and circulating host microRNAs to diagnose hepatic fibrosis is presently undergoing evaluation. This review provides an update on the recent advances made with respect to gastrointestinal disease associated with chronic schistosomiasis.

  19. Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system

    PubMed Central

    Peng, Ying; Wang, Xiangru; Shou, Jin; Zong, Bingbing; Zhang, Yanyan; Tan, Jia; Chen, Jing; Hu, Linlin; Zhu, Yongwei; Chen, Huanchun; Tan, Chen

    2016-01-01

    Hcp (hemolysin-coregulated protein) is considered a vital component of the functional T6SS (Type VI Secretion System), which is a newly discovered secretion system. Our laboratory has previously sequenced the whole genome of porcine extraintestinal pathogenic E. coli (ExPEC) strain PCN033, and identified an integrated T6SS encoding three different hcp family genes. In this study, we first identified a functional T6SS in porcine ExPEC strain PCN033, and demonstrated that the Hcp family proteins were involved in bacterial competition and the interactions with other cells. Interestingly, the three Hcp proteins had different functions. Hcp2 functioned predominantly in bacterial competition; all three proteins were involved in the colonization of mice; and Hcp1 and Hcp3 were predominantly contributed to bacterial-eukaryotic cell interactions. We showed an active T6SS in porcine ExPEC strain PCN033, and the Hcp family proteins had different functions in their interaction with other bacteria or host cells. PMID:27229766

  20. Immunological Study of the Heat-Labile Enterotoxins of Escherichia coli and Vibrio cholerae

    PubMed Central

    Gyles, Carlton L.

    1974-01-01

    Immunodiffusion experiments were conducted to associate a precipitin line with Escherichia coli heat-labile enterotoxin (LT). Wild strains of porcine and of human enteropathogenic E. coli as well as laboratory-derived enterotoxigenic variants of E. coli K-12 were used for LT antigen preparations. These were produced mainly by ultrafiltration and ammonium sulfate precipitation of broth culture supernatants. When antisera with anti-LT activity were reacted with antigen preparations from Ent+ and Ent− variants of E. coli K-12, a line “a” was given by Ent+ but not by Ent− preparations. Line “a” was removed by absorption of anti-LT serum with antigen preparation from an Ent+E. coli K-12, but was unaffected when the antigen preparation used to absorb the serum was from an Ent−E. coli K-12. A line identical to “a” was given by antigen preparations from wild strains of porcine enteropathogenic E. coli reacted with homologous or heterologous anti-LT sera. One human strain of enteropathogenic E. coli was shown to possess an antigen identical to that which gave rise to line “a.” To demonstrate this line it was necessary to use high concentrations of gammaglobulin and high concentrations of the crude antigen preparations. LT preparations reacted with anticholera toxin to give a line “c,” which showed a reaction of partial identity with line “b” produced by reaction of pure choleragenoid and anticholera toxin. Lines “a” and “c” gave reactions of identity. Images PMID:4206029

  1. Refolding and single-step purification of porcine interferon-gamma from Escherichia coli inclusion bodies. Conditions for reconstitution of dimeric IFN-gamma.

    PubMed

    Vandenbroeck, K; Martens, E; D'Andrea, S; Billiau, A

    1993-07-15

    Recombinant porcine interferon-gamma, overexpressed in Escherichia coli, was found to accumulate in cytoplasmic inclusion bodies. The influence of various physicochemical parameters on refolding was investigated using 6 M guanidine/HCl-solubilised inclusion bodies which had been purified by ultracentrifugation on a sucrose step gradient. It appeared that the yield of reconstitution of denatured protein reached 60-70% under optimum conditions, i.e. at an intermediary guanidine/HCl concentration of 0.5 M and at a protein concentration of 10-20 microM (0 degrees C). Since intermediary guanidine/HCl concentrations at 0.5-1.65 M increasingly promoted off-pathway formation of soluble aggregates and at 0.5-0.2 M progressively promoted precipitation, maximal recovery of biologically active protein required a twofold transition in the surrounding guanidine/HCl concentration (6 M-->0.5 M-->0 M). A single additional size-exclusion chromatographic step yielded a final product that was > 99.5% pure, had specific antiviral activity > 10(7) U/mg protein and contained < or = 25 pg/ml endotoxin. Cross-linking by means of disulfosuccinimidyl tartarate revealed that the refolded protein possessed a dimeric structure. Furthermore, we have characterized three different molecular species of recombinant porcine interferon-gamma that are formed under non-optimal refolding conditions (1 M guanidine/HCl) and that differ from each other in specific activity, size and stability. One of these converts irreversibly into dimeric interferon-gamma in a temperature-dependent manner and is therefore considered as a productive folding intermediate.

  2. Effect of Saccharomyces cerevisiae var. Boulardii and β-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88)

    PubMed Central

    2012-01-01

    Probiotic and prebiotics, often called "immune-enhancing" feed additives, are believed to deal with pathogens, preventing the need of an immune response and reducing tissue damage. In this study, we investigated if a recently developed β-galactomannan (βGM) had a similar protective role compared to Saccharomyces cerevisiae var. Boulardii (Scb), a proven probiotic, in the context of enterotoxigenic Escherichia coli (ETEC) infection. ETEC causes inflammation, diarrhea and intestinal damage in piglets, resulting in large economic loses worldwide. We observed that Scb and βGM products inhibited in vitro adhesion of ETEC on cell surface of porcine intestinal IPI-2I cells. Our data showed that Scb and βGM decreased the mRNA ETEC-induced gene expression of pro-inflammatory cytokines TNF-α, IL-6, GM-CSF and chemokines CCL2, CCL20 and CXCL8 on intestinal IPI-2I. Furthermore, we investigated the putative immunomodulatory role of Scb and βGM on porcine monocyte-derived dendritic cells (DCs) per se and under infection conditions. We observed a slight up-regulation of mRNA for TNF-α and CCR7 receptor after co-incubation of DC with Scb and βGM. However, no differences were found in DC activation upon ETEC infection and Scb or βGM co-culture. Therefore, our results indicate that, similar to probiotic Scb, prebiotic βGM may protect intestinal epithelial cells against intestinal pathogens. Finally, although these products may modulate DC activation, their effect under ETEC challenge conditions remains to be elucidated. PMID:22277078

  3. High frequency of coinfecting enteropathogens in Aeromonas-associated diarrhea of hospitalized Peruvian infants.

    PubMed

    Pazzaglia, G; Sack, R B; Salazar, E; Yi, A; Chea, E; Leon-Barua, R; Guerrero, C E; Palomino, J

    1991-06-01

    Rectal swabs from 391 infants less than 18 months of age who were hospitalized with acute diarrhea and from 138 similarly aged healthy infants were examined for the etiologic agents of diarrhea. Aeromonas spp. were recovered from 205 of 391 (52.4%) diarrheic patients, whereas they were recovered from 12 of 138 (8.7%) controls (P less than 10(-11). Among the 205 Aeromonas-positive diarrheic patients, 118 (57.6%) were found to be coinfected with other common enteropathogens. Of the 164 Aeromonas-positive initial diarrheic specimens, 82 (50.0%) had one or more other enteropathogens present; 30 patients were coinfected with rotavirus, 20 with enterotoxigenic Escherichia coli, 16 with Campylobacter spp., 14 with Shigella spp., 13 with enteropathogenic E. coli, 4 with Vibrio spp., 1 with Salmonella spp., and 1 with Plesiomonas spp. of Aeromonas strains from cases compared with that from controls supports an etiologic role for this organism. However, frequent concomitant infections with other well-recognized enteropathogens and a lack of disease correlation with common Aeromonas phenotypes suggest that only a subset of Aeromonas strains may be diarrhea causing and that such strains may be common to several of the existing species.

  4. Two or more enteropathogens are associated with diarrhoea in Mexican children

    PubMed Central

    Paniagua, Gloria Luz; Monroy, Eric; García-González, Octavio; Alonso, Javier; Negrete, Erasmo; Vaca, Sergio

    2007-01-01

    Background Diarrhoeal diseases constitute a major public health problem, particularly in the developing world, where the rate of mortality and morbidity is very high. The purpose of this study was to conduct a 2 years and 3 months study in order to determine the prevalence of five enteropathogen diarrheogenic agents in Mexico City. Methods Faecal samples were obtained from 300 Mexican children diagnosed as positive for diarrhoea, aged > 2 to < 12 years old, and from 80 children matched for age but with no symptoms of the disease (control group). Two multiplex PCR were used to detect Escherichia coli, Salmonella spp., and Shigella spp. In addition, the two protozoan parasites Entamoeba histolytica/Entamoeba dispar and Giardia intestinalis were detected by conventional methods. Results All diarrhoeal samples were positive for one or more enteropathogens. The most common enteropathogens in diarrhoeal samples were E. histolytica/E. dispar (70.3%), Salmonella (ohio 28.3%; typhimurium 16.3%; infantis 8%; anatum 0.6%; Newport 0.3%), G. intestinalis (33%), E. coli (ETEC 13.3%; EPEC 9.3%; VTEC 8.6%; EIEC 1%) and Shigella spp. (flexneri 1.6%, sonnei 1%). Infections by two (24%) three (16%) and four (12%) pathogens were observed. Conclusion This study revealed that 52% of the patients were infected by more than one enteropathogen, notably E. histolitica/E. dispar and Salmonella ohio. These results are useful for clinicians to improve the empiric treatment used in such cases. PMID:18162140

  5. Porcine gonadogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five images submitted for teaching purposes related to porcine gonadogenesis (2), porcine fetal testicular development (2), and porcine fetal ovarian development. Key words include: Egg cell nests, Embryo, GATA4, Genital ridge, Gonad, Leydig cell, Mesonephros, MIS, Ovary, P450c17, Porcine, Sertoli ...

  6. Production of Escherichia coli-based virus-like particle vaccine against porcine circovirus type 2 challenge in piglets: Structure characterization and protective efficacy validation.

    PubMed

    Xi, Xiangfeng; Mo, Xiaobing; Xiao, Yan; Yin, Bo; Lv, Chaochao; Wang, Yuzhou; Sun, Zhe; Yang, Qingyuan; Yao, Yali; Xuan, Yajie; Li, Xiangdong; Yuan, Y Adam; Tian, Kegong

    2016-04-10

    We report the strategies leading to the large-production of soluble non-tag full-length porcine circovirus type 2 (PCV2) Cap protein in Escherichia coli. Under neutral pH condition, the purified recombinant Cap protein derived from E. coli expression self-assembles into homogenous round virus-like particle at the similar size of that of the intact PCV2 virus, which is further characterized by Cryo-EM single particle structure determined at 4.5Å. The engineered PCV2 rCap VLP was tested as a subunit vaccine for the protective efficacy against PCV2 challenge on 3-week old piglets. Similar to commercial available PCV2 vaccine, the Cap VLP-immunized piglets developed specific antibody-mediated response and were protected from the virulent SH PCV2 strain challenge. Hence, the production of E. coli based PCV2Cap-VLP could be applied as a cost-friendly and effective subunit vaccine to control PCV2 spreading in developing countries. PMID:26907669

  7. Effect of bovine colostrum, cheese whey, and spray-dried porcine plasma on the in vitro growth of probiotic bacteria and Escherichia coli.

    PubMed

    Champagne, Claude P; Raymond, Yves; Pouliot, Yves; Gauthier, Sylvie F; Lessard, Martin

    2014-05-01

    The aim of this study is to evaluate the effects of defatted colostrum (Col), defatted decaseinated colostrum whey, cheese whey, and spray-dried porcine plasma (SDPP) as supplements of a growth medium (de Man - Rogosa - Sharpe (MRS) broth) on the multiplication of lactic acid bacteria, probiotic bacteria, and potentially pathogenic Escherichia coli. Using automated spectrophotometry (in vitro system), we evaluated the effect of the 4 supplements on maximum growth rate (μ(max)), lag time (LagT), and biomass (OD(max)) of 12 lactic acid bacteria and probiotic bacteria and of an E. coli culture. Enrichment of MRS broth with a Col concentration of 10 g/L increased the μ(max) of 5 of the 12 strains by up to 55%. Negative effects of Col or SDPP on growth rates were also observed with 3 probiotic strains; in one instance μ(max) was reduced by 40%. The most effective inhibitor of E. coli growth was SDPP, and this effect was not linked to its lysozyme content. The positive effect of enrichment with the dairy-based ingredient might be linked to enrichment in sugars and increased buffering power of the medium. These in vitro data suggest that both Col and SDPP could be considered as supplements to animal feeds to improve intestinal health because of their potential to promote growth of probiotic bacteria and to inhibit growth of pathogenic bacteria such as E. coli. PMID:24773334

  8. Influence of dietary ingredients on in vitro inflammatory response of intestinal porcine epithelial cells challenged by an enterotoxigenic Escherichia coli (K88).

    PubMed

    Hermes, Rafael G; Manzanilla, Edgar G; Martín-Orúe, Susana M; Pérez, José F; Klasing, Kirk C

    2011-12-01

    Enterotoxigenic Escherichia coli (ETEC) K88 is the main bacterial cause of diarrhea in piglets around weaning and the adhesion of ETEC to the intestinal mucosa is a prerequisite step for its colonization. In this study, the adhesion of a fimbriated ETEC and a non-fimbriated E. coli (NFEC) to the intestinal cells and the activation of the innate immune system were evaluated using a porcine intestinal epithelial cell line (IPEC-J2). The impact of several feedstuffs (wheat bran (WB); casein glycomacropeptide (CGMP); mannan-oligosaccharides (MOS); locust bean extract (LB) and Aspergillus oryzae fermentation extract (AO)) on ETEC attachment and the inflammatory response were also studied. The gene expression of TLR-4; TLR-5; IL-1β; IL-8; IL-10 and TNF-α were quantified using Cyclophilin-A, as a reference gene, and related to a non-challenged treatment. The fimbriated strain was markedly better than the non-fimbriated strain at adherence to intestinal cells and inducing an inflammatory response. All the feedstuffs studied were able to reduce the adhesion of ETEC, with the greatest decrease with CGMP or MOS at highest concentration. Regarding the inflammatory response, the highest dose of WB promoted the lowest relative expression of cytokines and chemokines. All tested feedstuffs were able to reduce the adhesion of ETEC to IPEC-J2 and interfere on the innate inflammatory response; however WB should be further studied according to the beneficial results on the intestinal inflammatory process evidenced in this study. PMID:21944732

  9. Effect of bovine colostrum, cheese whey, and spray-dried porcine plasma on the in vitro growth of probiotic bacteria and Escherichia coli.

    PubMed

    Champagne, Claude P; Raymond, Yves; Pouliot, Yves; Gauthier, Sylvie F; Lessard, Martin

    2014-05-01

    The aim of this study is to evaluate the effects of defatted colostrum (Col), defatted decaseinated colostrum whey, cheese whey, and spray-dried porcine plasma (SDPP) as supplements of a growth medium (de Man - Rogosa - Sharpe (MRS) broth) on the multiplication of lactic acid bacteria, probiotic bacteria, and potentially pathogenic Escherichia coli. Using automated spectrophotometry (in vitro system), we evaluated the effect of the 4 supplements on maximum growth rate (μ(max)), lag time (LagT), and biomass (OD(max)) of 12 lactic acid bacteria and probiotic bacteria and of an E. coli culture. Enrichment of MRS broth with a Col concentration of 10 g/L increased the μ(max) of 5 of the 12 strains by up to 55%. Negative effects of Col or SDPP on growth rates were also observed with 3 probiotic strains; in one instance μ(max) was reduced by 40%. The most effective inhibitor of E. coli growth was SDPP, and this effect was not linked to its lysozyme content. The positive effect of enrichment with the dairy-based ingredient might be linked to enrichment in sugars and increased buffering power of the medium. These in vitro data suggest that both Col and SDPP could be considered as supplements to animal feeds to improve intestinal health because of their potential to promote growth of probiotic bacteria and to inhibit growth of pathogenic bacteria such as E. coli.

  10. The comparative activity of pefloxacin, enoxacin, ciprofloxacin and 13 other antimicrobial agents against enteropathogenic microorganisms.

    PubMed

    Vanhoof, R; Hubrechts, J M; Roebben, E; Nyssen, H J; Nulens, E; Leger, J; De Schepper, N

    1986-01-01

    In this study, we compared the activity of pefloxacin, enoxacin and ciprofloxacin against 269 enteropathogenic strains (Campylobacter jejuni, enteropathogenic Escherichia coli, Salmonella typhi, Shigella spp., Vibrio cholerae and Yersinia enterocolitica) with that of rosoxacin, flumequin, nifuroxazide, erythromycin, chloramphenicol, ampicillin, cefotaxime, tetracycline, amikacin, netilmicin, sulfamethoxazole, trimethoprim and co-trimoxazole. Pefloxacin, enoxacin and ciprofloxacin were always among the most active compounds. Furthermore, resistant strains or strains with elevated MIC values were not found. The MIC90 value for these three compounds was less than or equal to 0.25 mg/l, except for C. jejuni where it was 0.3 mg/l and 1.4 mg/l for pefloxacin and enoxacin, respectively. PMID:3546145

  11. Enteropathogenic and enteroaggregative E. coli in stools of children with acute gastroenteritis in Davidson County, Tennessee.

    PubMed

    Foster, Monique A; Iqbal, Junaid; Zhang, Chengxian; McHenry, Rendie; Cleveland, Brent E; Romero-Herazo, Yesenia; Fonnesbeck, Chris; Payne, Daniel C; Chappell, James D; Halasa, Natasha; Gómez-Duarte, Oscar G

    2015-11-01

    This prospective acute gastroenteritis (AGE) surveillance was conducted in the inpatient and emergency room settings at a referral pediatric hospital to determine the prevalence of diarrheagenic Escherichia coli (DEC) in children <12years of age with AGE in Davidson County, Tennessee. Subjects 15 days to 11 years of age, who presented with diarrhea and/or vomiting, were enrolled. Stool specimens were processed for detection of DEC using multiplex polymerase chain reaction. From December 1, 2011, to June 30, 2012, a total of 79 (38%) out of 206 stool specimens from children with AGE tested positive for E. coli. A total of 12 (5.8%) out of 206 stool specimens from children with AGE were positive for a DEC. Eight (67%) out of these 12 were positive for enteropathogenic E. coli, and the remaining 4 were positive for enteroaggregative E. coli. DEC clinical isolates clustered with known E. coli enteropathogens according to multilocus sequencing typing.

  12. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review.

    PubMed

    Heaton, J C; Jones, K

    2008-03-01

    Consumption of fruit and vegetable products is commonly viewed as a potential risk factor for infection with enteropathogens such as Salmonella and Escherichia coli O157, with recent outbreaks linked to lettuce, spinach and tomatoes. Routes of contamination are varied and include application of organic wastes to agricultural land as fertilizer, contamination of waters used for irrigation with faecal material, direct contamination by livestock, wild animals and birds and postharvest issues such as worker hygiene. The ability of pathogens to survive in the field environment has been well studied, leading to the implementation of guidelines such as the Safe Sludge Matrix, which aim to limit the likelihood of viable pathogens remaining at point-of-sale. The behaviour of enteropathogens in the phyllosphere is a growing field of research, and it is suggested that inclusion in phyllosphere biofilms or internalization within the plant augments the survival. Improved knowledge of plant-microbe interactions and the interaction between epiphytic and immigrant micro-organisms on the leaf surface will lead to novel methods to limit enteropathogen survival in the phyllosphere. PMID:17927745

  13. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review.

    PubMed

    Heaton, J C; Jones, K

    2008-03-01

    Consumption of fruit and vegetable products is commonly viewed as a potential risk factor for infection with enteropathogens such as Salmonella and Escherichia coli O157, with recent outbreaks linked to lettuce, spinach and tomatoes. Routes of contamination are varied and include application of organic wastes to agricultural land as fertilizer, contamination of waters used for irrigation with faecal material, direct contamination by livestock, wild animals and birds and postharvest issues such as worker hygiene. The ability of pathogens to survive in the field environment has been well studied, leading to the implementation of guidelines such as the Safe Sludge Matrix, which aim to limit the likelihood of viable pathogens remaining at point-of-sale. The behaviour of enteropathogens in the phyllosphere is a growing field of research, and it is suggested that inclusion in phyllosphere biofilms or internalization within the plant augments the survival. Improved knowledge of plant-microbe interactions and the interaction between epiphytic and immigrant micro-organisms on the leaf surface will lead to novel methods to limit enteropathogen survival in the phyllosphere.

  14. Pathology of US Porcine Epidemic Diarrhea Virus Strain PC21A in Gnotobiotic Pigs

    PubMed Central

    Jung, Kwonil; Scheuer, Kelly A.; Lu, Zhongyan; Zhang, Yan; Saif, Linda J.

    2014-01-01

    To understand the progression of porcine epidemic diarrhea virus infection, we inoculated gnotobiotic pigs with a newly emerged US strain, PC21A, of the virus. At 24–48 hours postinoculation, the pigs exhibited severe diarrhea and vomiting, fecal shedding, viremia, and severe atrophic enteritis. These findings confirm that strain PC21A is highly enteropathogenic. PMID:24795932

  15. Response of early-weaned pigs to spray-dried porcine or animal plasma-based diets supplemented with egg-yolk antibodies against enterotoxigenic Escherichia colil.

    PubMed

    Owusu-Asiedu, A; Baidoot, S K; Nyachoti, C M; Marquardt, R R

    2002-11-01

    Two experiments involving 168 10-d-old weaned pigs were conducted to compare growth-promoting properties of dietary spray-dried animal plasma (SDAP), spray-dried porcine plasma (SDPP), and chicken egg-yolk antibodies (EYA) or egg-yolk powder (EYP, contains no specific antibodies) from d 0 to 14 postweaning. In Exp. 1, 96 pigs (3.2 +/- 0.2 kg BW) were used to test the hypothesis that the superior performance of piglets fed SDPP-based diets was partly due to the presence of specific antibodies against enterotoxigenic Escherichia coli (ETEC), which could be replaced with EYA. Four experimental diets in a completely randomized design and arranged in a 2 x 2 factorial (SDPP without or with autoclaving [AuSDPP] and without [EYP] or with supplementation of EYA) were used. Autoclaving SDPP at 121degrees C for 15 min completely destroyed anti-K88/F18 antibodies. Overall feed intake and gain:feed ratio were similar (P > 0.05) among treatments and averaged 122.7 g/d and 0.688, respectively. However, pigs fed AuSDPP+EYP diets had poorer (P < 0.001) ADG compared with those fed SDPP+EYP or SDPP+EYA from 0 to 14 d. Scours were four times higher (P < 0.05) for treatment AuSDPP+EYP compared with all other treatments. Plasma urea nitrogen concentration was higher (P < 0.05) in AuSDPP+EYP- and AuSDPP+EYA-fed pigs. Also twice the number of piglets fed AuSDPP+EYP appeared unhealthy compared with piglets on treatment AuSDPP+EYA. In Exp. 2, 72 10-d-old weaned pigs (3.5 kg BW) were used to compare the effect of EYA supplementation and oral challenge of ETEC strain F18 on performance and visceral organ weights. The experimental diets consisted of SDAP+EYP, SDAP+EYA, SDPP+EYP, and SDPP+EYA. From d 0 to 7, and the entire experimental period, dietary treatment did not influence (P > 0.05) growth rate and feed consumption. Plasma urea N concentration was higher (P < 0.05) in piglets fed the SDAP+EYP diet before and after the oral challenge. Gain:feed ratio, organ weights, villi heights, and

  16. Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves.

    PubMed

    Bartels, Chris J M; Holzhauer, Menno; Jorritsma, Ruurd; Swart, Wim A J M; Lam, Theo J G M

    2010-02-01

    Between January and April 2007, 424 calves under 22 days of age from 108 Dutch dairy herds were sampled to estimate the prevalence of non-normal faeces ('custard-like'-yellowish-coloured with custard consistency or diarrhoea: watery-like faeces) and the shedding of enteropathogens Escherichia coli K99 (E. coli), Coronavirus, Cryptosporidium parvum (C. parvum), Rotavirus and Clostridium perfringens (Cl. perfringens). In addition, information was collected on animal characteristics and herd-management practices. The probability of detecting each one of five enteropathogens given a calf with 'custard-like' faeces or diarrhoea was estimated using Bayes' rule and was based on the predicted probabilities from a multinominal model including each of five enteropathogens as independent variables. In addition, putative risk factors for the presence of each of five enteropathogens were analysed using logistic regression models with random herd effects. Fifty-seven percent of calves had faeces of normal colour (brownish) and consistency (firm), 23.8% (95%CI: 19.8-28.2%) had 'custard-like' faeces and 19.1% (95%CI: 15.5-23.2%) had diarrhoea. E. coli was the least detected enteropathogen (2.6% (95%CI: 1.3-4.6%) of calves, 9% (95%CI: 5-16%) of herds) and Cl. perfringens was most detected (54.0% (95%CI: 49.1-58.8%) of calves, 85% (95%CI: 77-91%) of herds). E. coli and Coronavirus were detected incidentally in only one or two calves per herd, whereas C. parvum and Cl. perfringens were frequently detected in up to four calves per herd. For calves with 'custard-like' faeces, the probability of detecting Rotavirus from a calf in its first week of age was 0.31 whereas for a calf in its second week, there was a 0.66 probability of detecting C. parvum. The probabilities of detecting E. coli, Rotavirus and C. parvum in calves with diarrhoea in their first week of age were 0.10, 0.20 and 0.43, respectively. In calves with diarrhoea between 1 and 2 weeks of age, the probability of detecting

  17. Multiple-class antimicrobial resistance surveillance in swine Escherichia coli F4, Pasteurella multocida and Streptococcus suis isolates from Ontario and the impact of the 2004-2006 Porcine Circovirus type-2 Associated Disease outbreak.

    PubMed

    Glass-Kaastra, Shiona K; Pearl, David L; Reid-Smith, Richard; McEwen, Beverly; Slavic, Durda; Fairles, Jim; McEwen, Scott A

    2014-02-01

    The objective of this work was to describe trends in multiple-class antimicrobial resistance present in clinical isolates of Escherichia coli F4, Pasteurella multocida and Streptococcus suis from Ontario swine 1998-2010. Temporal changes in multiple-class resistance varied by the pathogens examined; significant yearly changes were apparent for the E. coli and P. multocida data. Although not present in the E. coli data, significant increases in multiple-class resistance within P. multocida isolates occurred from 2003 to 2005, coinciding with the expected increase in antimicrobials used to treat clinical signs of Porcine Circovirus Associated Disease (PCVAD) before it was confirmed. Prospective temporal scan statistics for multiple-class resistance suggest that significant clusters of increased resistance may have been found in the spring of 2004; months before the identification of the PCVAD outbreak in the fall of 2004.

  18. A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens.

    PubMed

    Liu, Jie; Gratz, Jean; Amour, Caroline; Kibiki, Gibson; Becker, Stephen; Janaki, Lalitha; Verweij, Jaco J; Taniuchi, Mami; Sobuz, Shihab U; Haque, Rashidul; Haverstick, Doris M; Houpt, Eric R

    2013-02-01

    The TaqMan Array Card (TAC) system is a 384-well singleplex real-time PCR format that has been used to detect multiple infection targets. Here we developed an enteric TaqMan Array Card to detect 19 enteropathogens, including viruses (adenovirus, astrovirus, norovirus GII, rotavirus, and sapovirus), bacteria (Campylobacter jejuni/C. coli, Clostridium difficile, Salmonella, Vibrio cholerae, diarrheagenic Escherichia coli strains including enteroaggregative E. coli [EAEC], enterotoxigenic E. coli [ETEC], enteropathogenic E. coli [EPEC], and Shiga-toxigenic E. coli [STEC]), Shigella/enteroinvasive E. coli (EIEC), protozoa (Cryptosporidium, Giardia lamblia, and Entamoeba histolytica), and helminths (Ascaris lumbricoides and Trichuris trichiura), as well as two extrinsic controls to monitor extraction and amplification efficiency (the bacteriophage MS2 and phocine herpesvirus). Primers and probes were newly designed or adapted from published sources and spotted onto microfluidic cards. Fecal samples were spiked with extrinsic controls, and DNA and RNA were extracted using the QiaAmp Stool DNA minikit and the QuickGene RNA Tissue kit, respectively, and then mixed with Ag-Path-ID One Step real-time reverse transcription-PCR (RT-PCR) reagents and loaded into cards. PCR efficiencies were between 90% and 105%, with linearities of 0.988 to 1. The limit of detection of the assays in the TAC was within a 10-fold difference from the cognate assays performed on plates. Precision testing demonstrated a coefficient of variation of below 5% within a run and 14% between runs. Accuracy was evaluated for 109 selected clinical specimens and revealed an average sensitivity and specificity of 85% and 77%, respectively, compared with conventional methods (including microscopy, culture, and immunoassay) and 98% and 96%, respectively, compared with our laboratory-developed PCR-Luminex assays. This TAC allows fast, accurate, and quantitative detection of a broad spectrum of enteropathogens and

  19. Risk of diarrhoea from shallow groundwater contaminated with enteropathogens in the Kathmandu Valley, Nepal.

    PubMed

    Shrestha, Sadhana; Haramoto, Eiji; Malla, Rabin; Nishida, Kei

    2015-03-01

    Shallow groundwater is the main water source among many alternatives in the Kathmandu Valley, Nepal, which has a rapidly growing population and intermittent piped water supply. Although human pathogens are detected in groundwater, its health effects are unclear. We estimated risk of diarrhoea from shallow groundwater use using quantitative microbial risk assessment. Escherichia coli, Giardia cyst and Cryptosporidium oocyst levels were analysed in dug and tube wells samples. E. coli concentrations were converted to those of enteropathogenic E. coli (EPEC). Risks from EPEC in dug wells and from Cryptosporidium and Giardia in both dug and tube wells were higher than the acceptable limit (<10⁻⁴ infections/person-year) for both drinking and bathing exposures. Risk from protozoan enteropathogens increased the total risk 10,000 times, indicating that ignoring protozoans could lead to serious risk underestimation. Bathing exposure considerably increased risk, indicating that it is an important pathway. Point-of-use (POU) water treatment decreased the risk six-fold and decreased risk overestimation. Because removal efficiency of POU water treatment has the largest impact on total risk, increasing the coverage and efficiency of POU water treatment could be a practical risk management strategy in the Kathmandu Valley and similar settings.

  20. Porcine E. coli: virulence-associated genes, resistance genes and adhesion and probiotic activity tested by a new screening method.

    PubMed

    Schierack, Peter; Rödiger, Stefan; Kuhl, Christoph; Hiemann, Rico; Roggenbuck, Dirk; Li, Ganwu; Weinreich, Jörg; Berger, Enrico; Nolan, Lisa K; Nicholson, Bryon; Römer, Antje; Frömmel, Ulrike; Wieler, Lothar H; Schröder, Christian

    2013-01-01

    We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars.

  1. Porcine E. coli: Virulence-Associated Genes, Resistance Genes and Adhesion and Probiotic Activity Tested by a New Screening Method

    PubMed Central

    Schierack, Peter; Rödiger, Stefan; Kuhl, Christoph; Hiemann, Rico; Roggenbuck, Dirk; Li, Ganwu; Weinreich, Jörg; Berger, Enrico; Nolan, Lisa K.; Nicholson, Bryon; Römer, Antje; Frömmel, Ulrike; Wieler, Lothar H.; Schröder, Christian

    2013-01-01

    We established an automated screening method to characterize adhesion of Escherichia coli to intestinal porcine epithelial cells (IPEC-J2) and their probiotic activity against infection by enteropathogenic E. coli (EPEC). 104 intestinal E. coli isolates from domestic pigs were tested by PCR for the occurrence of virulence-associated genes, genes coding for resistances to antimicrobial agents and metals, and for phylogenetic origin by PCR. Adhesion rates and probiotic activity were examined for correlation with the presence of these genes. Finally, data were compared with those from 93 E. coli isolates from wild boars. Isolates from domestic pigs carried a broad variety of all tested genes and showed great diversity in gene patterns. Adhesions varied with a maximum of 18.3 or 24.2 mean bacteria adherence per epithelial cell after 2 or 6 hours respectively. Most isolates from domestic pigs and wild boars showed low adherence, with no correlation between adhesion/probiotic activity and E. coli genes or gene clusters. The gene sfa/foc, encoding for a subunit of F1C fimbriae did show a positive correlative association with adherence and probiotic activity; however E. coli isolates from wild boars with the sfa/foc gene showed less adhesion and probiotic activity than E. coli with the sfa/foc gene isolated from domestic pigs after 6 hour incubation. In conclusion, screening porcine E. coli for virulence associated genes genes, adhesion to intestinal epithelial cells, and probiotic activity revealed a single important adhesion factor, several probiotic candidates, and showed important differences between E. coli of domestic pigs and wild boars. PMID:23658605

  2. Membrane cholesterol plays an important role in enteropathogen adhesion and the activation of innate immunity via flagellin-TLR5 signaling.

    PubMed

    Zhou, Mingxu; Duan, Qiangde; Li, Yinchau; Yang, Yang; Hardwidge, Philip R; Zhu, Guoqiang

    2015-08-01

    Lipid rafts are cholesterol- and sphingolipid-rich ordered microdomains distributed in the plasma membrane that participates in mammalian signal transduction pathways. To determine the role of lipid rafts in mediating interactions between enteropathogens and intestinal epithelial cells, membrane cholesterol was depleted from Caco-2 and IPEC-J2 cells using methyl-β-cyclodextrin. Cholesterol depletion significantly reduced Escherichia coli and Salmonella enteritidis adhesion and invasion into intestinal epithelial cells. Complementation with exogenous cholesterol restored bacterial adhesion to basal levels. We also evaluated the role of lipid rafts in the activation of Toll-like receptor 5 signaling by bacterial flagellin. Depleting membrane cholesterol reduced the ability of purified recombinant E. coli flagellin to activate TLR5 signaling in intestinal cells. These data suggest that both membrane cholesterol and lipid rafts play important roles in enteropathogen adhesion and contribute to the activation of innate immunity via flagellin-TLR5 signaling.

  3. High Iron-Sequestrating Bifidobacteria Inhibit Enteropathogen Growth and Adhesion to Intestinal Epithelial Cells In vitro

    PubMed Central

    Vazquez-Gutierrez, Pamela; de Wouters, Tomas; Werder, Julia; Chassard, Christophe; Lacroix, Christophe

    2016-01-01

    The gut microbiota plays an important role in host health, in particular by its barrier effect and competition with exogenous pathogenic bacteria. In the present study, the competition of Bifidobacterium pseudolongum PV8-2 (Bp PV8-2) and Bifidobacterium kashiwanohense PV20-2 (Bk PV20-2), isolated from anemic infant gut microbiota and selected for their high iron sequestration properties, was investigated against Salmonella Typhimurium (S. Typhi) and Escherichia coli O157:H45 (EHEC) by using co-culture tests and assays with intestinal cell lines. Single and co-cultures were carried out anaerobically in chemically semi-defined low iron (1.5 μM Fe) medium (CSDLIM) without and with added ferrous iron (30 μM Fe). Surface properties of the tested strains were measured by bacterial adhesion to solvent xylene, chloroform, ethyl acetate, and to extracellular matrix molecules, mucus II, collagen I, fibrinogen, fibronectin. HT29-MTX mucus-secreting intestinal cell cultures were used to study bifidobacteria competition, inhibition and displacement of the enteropathogens. During co-cultures in CSDLIM we observed strain-dependent inhibition of bifidobacterial strains on enteropathogens, independent of pH, organic acid production and supplemented iron. Bp PV8-2 significantly (P < 0.05) inhibited S. Typhi N15 and EHEC after 24 h compared to single culture growth. In contrast Bk PV20-2 showed less inhibition on S. Typhi N15 than Bp PV8-2, and no inhibition on EHEC. Affinity for intestinal cell surface glycoproteins was strain-specific, with high affinity of Bp PV8-2 for mucin and Bk PV20-2 for fibronectin. Bk PV20-2 showed high adhesion potential (15.6 ± 6.0%) to HT29-MTX cell layer compared to Bp PV8-2 (1.4 ± 0.4%). In competition, inhibition and displacement tests, Bp PV8-2 significantly (P < 0.05) reduced S. Typhi N15 and EHEC adhesion, while Bk PV20-2 was only active on S. Typhi N15 adhesion. To conclude, bifidobacterial strains selected for their high iron binding

  4. Both enzymatic and non-enzymatic properties of heat-labile enterotoxin are responsible for LT-enhanced adherence of enterotoxigenic Escherichia coli to porcine IPEC-J2 cells.

    PubMed

    Fekete, Peter Z; Mateo, Kristina S; Zhang, Weiping; Moxley, Rodney A; Kaushik, Radhey S; Francis, David H

    2013-06-28

    Previous studies in piglets indicate that heat labile enterotoxin (LT) expression enhances intestinal colonization by K88 adhesin-producing enterotoxigenic Escherichia coli (ETEC) as wild-type ETEC adhered to intestinal epithelium in substantially greater numbers than did non-toxigenic constructs. Enzymatic activity of the toxin was also shown to contribute to the adhesion of ETEC and non-ETEC bacteria to epithelial cells in culture. To further characterize the contribution of LT to host cell adhesion, a nontoxigenic, K88-producing E. coli was transformed with either the gene encoding for LT holotoxin, a catalytically-attenuated form of the toxin [LT(R192G)], or LTB subunits, and resultant changes in bacterial adherence to IPEC-J2 porcine intestinal epithelial cells were measured. Strains expressing LT holotoxin or mutants were able to adhere in significantly higher numbers to IPEC-J2 cells than was an isogenic, toxin-negative construct. LT+ strains were also able to significantly block binding of a wild-type LT+ ETEC strain to IPEC-J2 cells. Adherence of isogenic strains to IPEC-J2 cells was unaltered by cycloheximide treatment, suggesting that LT enhances ETEC adherence to IPEC-J2 cells independent of host cell protein synthesis. However, pretreating IPEC-J2 cells with LT promoted adherence of negatively charged latex beads (a surrogate for bacteria which carry a negative change), which adherence was inhibited by cycloheximide, suggesting LT may induce a change in epithelial cell membrane potential. Overall, these data suggest that LT may enhance ETEC adherence by promoting an association between LTB and epithelial cells, and by altering the surface charge of the host plasma membrane to promote non-specific adherence.

  5. Both enzymatic and non-enzymatic properties of heat-labile enterotoxin are responsible for LT-enhanced adherence of enterotoxigenic Escherichia coli to porcine IPEC-J2 cells.

    PubMed

    Fekete, Peter Z; Mateo, Kristina S; Zhang, Weiping; Moxley, Rodney A; Kaushik, Radhey S; Francis, David H

    2013-06-28

    Previous studies in piglets indicate that heat labile enterotoxin (LT) expression enhances intestinal colonization by K88 adhesin-producing enterotoxigenic Escherichia coli (ETEC) as wild-type ETEC adhered to intestinal epithelium in substantially greater numbers than did non-toxigenic constructs. Enzymatic activity of the toxin was also shown to contribute to the adhesion of ETEC and non-ETEC bacteria to epithelial cells in culture. To further characterize the contribution of LT to host cell adhesion, a nontoxigenic, K88-producing E. coli was transformed with either the gene encoding for LT holotoxin, a catalytically-attenuated form of the toxin [LT(R192G)], or LTB subunits, and resultant changes in bacterial adherence to IPEC-J2 porcine intestinal epithelial cells were measured. Strains expressing LT holotoxin or mutants were able to adhere in significantly higher numbers to IPEC-J2 cells than was an isogenic, toxin-negative construct. LT+ strains were also able to significantly block binding of a wild-type LT+ ETEC strain to IPEC-J2 cells. Adherence of isogenic strains to IPEC-J2 cells was unaltered by cycloheximide treatment, suggesting that LT enhances ETEC adherence to IPEC-J2 cells independent of host cell protein synthesis. However, pretreating IPEC-J2 cells with LT promoted adherence of negatively charged latex beads (a surrogate for bacteria which carry a negative change), which adherence was inhibited by cycloheximide, suggesting LT may induce a change in epithelial cell membrane potential. Overall, these data suggest that LT may enhance ETEC adherence by promoting an association between LTB and epithelial cells, and by altering the surface charge of the host plasma membrane to promote non-specific adherence. PMID:23517763

  6. Inhibition of enteropathogens adhesion to human enterocyte-like HT-29 cells by a dairy strain of Propionibacterium acidipropionici.

    PubMed

    Zárate, G; Palacios, J M; Villena, J; Zúñiga-Hansen, M E

    2016-06-01

    Adhesion to the host intestinal mucosa is considered relevant for orally delivered probiotics as it prolongs their persistence in the gut and their health promoting effects. Classical propionibacteria are microorganisms of interest due to their role as dairy starters as well as for their functions as probiotics. Propionibacterium acidipropionici Q4, is a dairy strain isolated from a Swiss-type cheese made in Argentina that displays probiotic potential. In the present work we assessed the ability of this strain to adhere to the human enterocyte-like HT-29 cell line and to counteract the adhesion of two common human enteropathogens, such as Escherichia coli C3 and Salmonella Enteritidis 90/390. The results were compared with those obtained with the well-known probiotic Lactobacillus rhamnosus GG. P. acidipropionici Q4 showed a high adhesion capacity, even higher than the reference strain L. rhamnosus GG (42.3±4.4% and 36.2±2.3%, respectively), whereas adhesion of enteropathogens was significantly lower (25.2±2.2% for E. coli and 21.0±3.4% for S. Enteritidis). Propionibacteria as well as lactobacilli were able to inhibit by exclusion and competition the adherence of E. coli C3 and S. Enteritidis 90/390 whereas only L. rhamnosus GG displaced S. Enteritidis from HT-29 intestinal cells. Inhibition of pathogens by propionibacteria was not exerted by antimicrobials or coaggregation but was mainly due to exclusion by cell surface components, such as proteins and carbohydrates. The relevance of cell surface proteins (CSP) for preventing pathogens infection was confirmed by their concentration dependent effect observed for both pathogens: 100 µg/ml of CSP inhibited E. coli attachment almost as untreated propionibacteria, whereas it partially inhibited the attachment of S. Enteritidis. Results suggest that P. acidipropionici Q4 could be considered for the development of propionibacteria containing functional foods helpful in counteracting enteropathogen infection.

  7. Inhibition of enteropathogens adhesion to human enterocyte-like HT-29 cells by a dairy strain of Propionibacterium acidipropionici.

    PubMed

    Zárate, G; Palacios, J M; Villena, J; Zúñiga-Hansen, M E

    2016-06-01

    Adhesion to the host intestinal mucosa is considered relevant for orally delivered probiotics as it prolongs their persistence in the gut and their health promoting effects. Classical propionibacteria are microorganisms of interest due to their role as dairy starters as well as for their functions as probiotics. Propionibacterium acidipropionici Q4, is a dairy strain isolated from a Swiss-type cheese made in Argentina that displays probiotic potential. In the present work we assessed the ability of this strain to adhere to the human enterocyte-like HT-29 cell line and to counteract the adhesion of two common human enteropathogens, such as Escherichia coli C3 and Salmonella Enteritidis 90/390. The results were compared with those obtained with the well-known probiotic Lactobacillus rhamnosus GG. P. acidipropionici Q4 showed a high adhesion capacity, even higher than the reference strain L. rhamnosus GG (42.3±4.4% and 36.2±2.3%, respectively), whereas adhesion of enteropathogens was significantly lower (25.2±2.2% for E. coli and 21.0±3.4% for S. Enteritidis). Propionibacteria as well as lactobacilli were able to inhibit by exclusion and competition the adherence of E. coli C3 and S. Enteritidis 90/390 whereas only L. rhamnosus GG displaced S. Enteritidis from HT-29 intestinal cells. Inhibition of pathogens by propionibacteria was not exerted by antimicrobials or coaggregation but was mainly due to exclusion by cell surface components, such as proteins and carbohydrates. The relevance of cell surface proteins (CSP) for preventing pathogens infection was confirmed by their concentration dependent effect observed for both pathogens: 100 µg/ml of CSP inhibited E. coli attachment almost as untreated propionibacteria, whereas it partially inhibited the attachment of S. Enteritidis. Results suggest that P. acidipropionici Q4 could be considered for the development of propionibacteria containing functional foods helpful in counteracting enteropathogen infection. PMID

  8. Prevalence and antimicrobial resistance of porcine O157 and non-O157 Shiga toxin-producing Escherichia coli from India.

    PubMed

    Rajkhowa, Swaraj; Sarma, Dilip Kumar

    2014-08-01

    The aims of this study were to determine the prevalence of Shiga toxin-producing Escherichia coli (STEC) strains in pigs as a possible STEC reservoir in India as well as to characterize the STEC strains and to determine the antimicrobial resistance pattern of the strains. A total of 782 E. coli isolates from clinically healthy (n = 473) and diarrhoeic piglets (309) belonging to major pig-producing states of India were screened by the polymerase chain reaction (PCR) assay for the presence of virulence genes characteristic for STEC, that is, Shiga toxin-producing gene(s) (stx1, stx2), intimin (eae), enterohemolysin (hlyA) and STEC autoagglutinating adhesin (Saa). Overall STEC were detected in 113 (14.4%) piglets, and the prevalence of E. coli O157 and non-O157 STEC were 4 (0.5%) and 109 (13.9%), respectively. None of the O157 STEC isolates carried gene encoding for H7 antigen (fliCh7). The various combinations of virulence genes present in the strains studied were stx1 in 4.6%, stx1 in combination with stx2 gene in 5.1%, stx1 in combination with stx2 and ehxA in 0.6%, stx1 in combination with stx2 and eae in 0.2% and stx2 alone in 3.7%. All STEC isolates were found negative for STEC autoagglutinating adhesin (Saa). The number of STEC isolates which showed resistance to antimicrobials such as ampicillin, tetracycline, streptomycin, lincomycin, nalidixic acid, sulfadiazine, penicillin, gentamicin, kanamycin and ceftriaxone were 100, 99, 98, 97, 95, 94, 92, 88, 85 and 85, respectively. Ninety-seven isolates showed resistance to more than 2 antimicrobials, and 8 resistance groups (R1 to R8) were observed. This study demonstrates that pigs in India harbour both O157 and non-O157 STEC, and this may pose serious public health problems in future.

  9. Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system.

    PubMed

    Ganner, Anja; Schatzmayr, Gerd

    2012-07-01

    Yeast derivatives including yeast cell wall components are promising alternatives to antibiotics with respect to the promotion of health and performance in livestock, based on their capacity to bind enteropathogenic bacteria and to beneficially modulate the immune system. However, these mode(s) of action both in vitro and in vivo are still not well understood. Furthermore, standardization and reproducibility of in vitro techniques (microbiology, cell culture assays) are critical features for the application of yeast derivatives as well as for the proof of effectiveness. Yeast cell wall products are suggested as anti-adhesive agents and are thus proposed to prevent attachment of certain intestinal bacteria by providing alternative adhesion sites to enterobacteria, which contain mannose-specific type I fimbriae such as Escherichia coli or Salmonella spp. and which is well documented. Various in vitro assay techniques have become of paramount importance for biotechnological research since they allow for determination and quantification of potential mode(s) of action. However, in vitro assays may be criticized by product end users as not accurately reflecting in vivo responses. Pro and cons of different assays and their bias will be discussed specifically regarding yeast cell wall components and adhesion of enteropathogenic bacteria. Immunomodulation is a therapeutic approach intervening in auto-regulating processes of the defense system. Yeast derivatives such as beta-glucans are proposed to interact with cells of the innate immune system by receptor recognition. Controversial data in literature and mode(s) of action are reviewed and discussed here.

  10. Antigenic Relationships among Porcine Epidemic Diarrhea Virus and Transmissible Gastroenteritis Virus Strains

    PubMed Central

    Lin, Chun-Ming; Gao, Xiang; Oka, Tomoichiro; Vlasova, Anastasia N; Esseili, Malak A.

    2015-01-01

    ABSTRACT Porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) are economically important swine enteropathogenic coronaviruses. These two viruses belong to two distinct species of the Alphacoronavirus genus within Coronaviridae and induce similar clinical signs and pathological lesions in newborn piglets, but they are presumed to be antigenically distinct. In the present study, two-way antigenic cross-reactivity examinations between the prototype PEDV CV777 strain, three distinct U.S. PEDV strains (the original highly virulent PC22A, S indel Iowa106, and S 197del PC177), and two representative U.S. TGEV strains (Miller and Purdue) were conducted by cell culture immunofluorescent (CCIF) and viral neutralization (VN) assays. None of the pig TGEV antisera neutralized PEDV and vice versa. One-way cross-reactions were observed by CCIF between TGEV Miller hyperimmune pig antisera and all PEDV strains. Enzyme-linked immunosorbent assays, immunoblotting using monoclonal antibodies and Escherichia coli-expressed recombinant PEDV and TGEV nucleocapsid (N) proteins, and sequence analysis suggested at least one epitope on the N-terminal region of PEDV/TGEV N protein that contributed to this cross-reactivity. Biologically, PEDV strain CV777 induced greater cell fusion in Vero cells than did U.S. PEDV strains. Consistent with the reported genetic differences, the results of CCIF and VN assays also revealed higher antigenic variation between PEDV CV777 and U.S. strains. IMPORTANCE Evidence of antigenic cross-reactivity between porcine enteric coronaviruses, PEDV and TGEV, in CCIF assays supports the idea that these two species are evolutionarily related, but they are distinct species defined by VN assays. Identification of PEDV- or TGEV-specific antigenic regions allows the development of more specific immunoassays for each virus. Antigenic and biologic variations between the prototype and current PEDV strains could explain, at least partially, the

  11. Inheritance of porcine receptors for enterotoxigenic Escherichia coli with fimbriae F4ad and their relation to other F4 receptors.

    PubMed

    Rampoldi, A; Bertschinger, H U; Bürgi, E; Dolf, G; Sidler, X; Bratus, A; Vögeli, P; Neuenschwander, S

    2014-06-01

    Enteric Escherichia coli infections are a highly relevant cause of disease and death in young pigs. Breeding genetically resistant pigs is an economical and sustainable method of prevention. Resistant pigs are protected against colonization of the intestine through the absence of receptors for the bacterial fimbriae, which mediate adhesion to the intestinal surface. The present work aimed at elucidation of the mode of inheritance of the F4ad receptor which according to former investigations appeared quite confusing. Intestines of 489 pigs of an experimental herd were examined by a microscopic adhesion test modified in such a manner that four small intestinal sites instead of one were tested for adhesion of the fimbrial variant F4ad. Segregation analysis revealed that the mixed inheritance model explained our data best. The heritability of the F4ad phenotype was estimated to be 0.7±0.1. There are no relations to the strong receptors for variants F4ab and F4ac. Targeted matings allowed the discrimination between two F4ad receptors, that is, a fully adhesive receptor (F4adRFA) expressed on all enterocytes and at all small intestinal sites, and a partially adhesive receptor (F4adRPA) variably expressed at different sites and often leading to partial bacterial adhesion. In pigs with both F4ad receptors, the F4adRPA receptor is masked by the F4adRFA. The hypothesis that F4adRFA must be encoded by at least two complementary or epistatic dominant genes is supported by the Hardy-Weinberg equilibrium statistics. The F4adRPA receptor is inherited as a monogenetic dominant trait. A comparable partially adhesive receptor for variant F4ab (F4abRPA) was also observed but the limited data did not allow a prediction of the mode of inheritance. Pigs were therefore classified into one of eight receptor phenotypes: A1 (F4abRFA/F4acR+/F4adRFA); A2 (F4abRFA/F4acR+/F4adRPA); B (F4abRFA/F4acR+/F4adR-); C1 (F4abRPA/F4acR-/F4adRFA); C2 (F4abRPA/F4acR-/F4adRPA); D1 (F4abR-/F4acR-/F4ad

  12. Inheritance of porcine receptors for enterotoxigenic Escherichia coli with fimbriae F4ad and their relation to other F4 receptors.

    PubMed

    Rampoldi, A; Bertschinger, H U; Bürgi, E; Dolf, G; Sidler, X; Bratus, A; Vögeli, P; Neuenschwander, S

    2014-06-01

    Enteric Escherichia coli infections are a highly relevant cause of disease and death in young pigs. Breeding genetically resistant pigs is an economical and sustainable method of prevention. Resistant pigs are protected against colonization of the intestine through the absence of receptors for the bacterial fimbriae, which mediate adhesion to the intestinal surface. The present work aimed at elucidation of the mode of inheritance of the F4ad receptor which according to former investigations appeared quite confusing. Intestines of 489 pigs of an experimental herd were examined by a microscopic adhesion test modified in such a manner that four small intestinal sites instead of one were tested for adhesion of the fimbrial variant F4ad. Segregation analysis revealed that the mixed inheritance model explained our data best. The heritability of the F4ad phenotype was estimated to be 0.7±0.1. There are no relations to the strong receptors for variants F4ab and F4ac. Targeted matings allowed the discrimination between two F4ad receptors, that is, a fully adhesive receptor (F4adRFA) expressed on all enterocytes and at all small intestinal sites, and a partially adhesive receptor (F4adRPA) variably expressed at different sites and often leading to partial bacterial adhesion. In pigs with both F4ad receptors, the F4adRPA receptor is masked by the F4adRFA. The hypothesis that F4adRFA must be encoded by at least two complementary or epistatic dominant genes is supported by the Hardy-Weinberg equilibrium statistics. The F4adRPA receptor is inherited as a monogenetic dominant trait. A comparable partially adhesive receptor for variant F4ab (F4abRPA) was also observed but the limited data did not allow a prediction of the mode of inheritance. Pigs were therefore classified into one of eight receptor phenotypes: A1 (F4abRFA/F4acR+/F4adRFA); A2 (F4abRFA/F4acR+/F4adRPA); B (F4abRFA/F4acR+/F4adR-); C1 (F4abRPA/F4acR-/F4adRFA); C2 (F4abRPA/F4acR-/F4adRPA); D1 (F4abR-/F4acR-/F4ad

  13. Frequency of virulence genes of Escherichia coli among newborn piglets from an intensive pig farm in Argentina.

    PubMed

    Alustiza, Fabrisio E; Picco, Natalia Y; Bellingeri, Romina V; Terzolo, Horacio R; Vivas, Adriana B

    2012-01-01

    The enterotoxigenic and porcine enteropathogenic Escherichia coli (EtEc and PEPEc) strains are agents associated with swine neonatal diarrhea, causing economic losses in swine production. The main goal of this study was to identify virulence genes of EtEc, verotoxigenic (VtEc) and PEPEc in intestinal strains responsible for swine diseases, by molecular typing using Pcr in newborn piglets from an intensive farm system. Two hundred and sixty seven rectal swabbings from 7-15 days- old landrace x large White crossbred piglets were taken, and 123 randomly selected samples, biochemically compatible with E. coli, were tested for E. coli virulence genes by Pcr. A frequency (%) compatible with: 68 EtEc, 24 VtEc, and 8 EPEc were found. of all E. coli strains studied, 19.51 % carried at least one virulence gene. These data showed conclusively that, in spite of the application of strict sanitary measures in the intensive farm, genes encoding virulence factors of intestinal pathogens compatible with EtEc are still detected; therefore these strains will probably keep circulating among animals. PMID:23267620

  14. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  15. Reassessment of the Enteropathogenicity of Mesophilic Aeromonas Species

    PubMed Central

    Teunis, Peter; Figueras, Maria J.

    2016-01-01

    Cases of Aeromonas diarrhea have been described all over the world. The genus Aeromonas includes ca. 30 species, of which 10 have been isolated in association with gastroenteritis. The dominating species that account for ca. 96% of the identified strains are Aeromonas caviae, A. veronii, A. dhakensis, and A. hydrophila. However, the role of Aeromonas as a true enteropathogen has been questioned on the basis of the lack of outbreaks, the non-fulfillment of Koch’s postulates and the low numbers of acute illnesses in the only existing human challenge study. In the present study we reassess the enteropathogenicity of Aeromonas using dose response models for microbial infection and acute illness. The analysis uses the data from the human challenge study and additional data from selected outbreak investigations where the numbers exposed and the dose were reported, allowing their inclusion as “natural experiments”. In the challenge study several cases of asymptomatic shedding were found (26.3%, 15/57), however, only 3.5% (2/57) of those challenged with Aeromonas developed acute enteric symptoms (i.e., diarrhea). The “natural experiments” showed a much higher risk of illness associated with exposure to Aeromonas, even at moderate to low doses. The median dose required for 1% illness risk, was ~1.4 × 104 times higher in the challenge study (1.24 × 104 cfu) compared to natural exposure events (0.9 cfu). The dose response assessment presented in this study shows that the combined challenge and outbreak data are consistent with high infectivity of Aeromonas, and a wide range of susceptibility to acute enteric illness. To illustrate the outcomes, we simulate the risk associated with concentrations of Aeromonas found in different water and food matrices, indicating the disease burden potentially associated with these bacteria. In conclusion this study showed that Aeromonas is highly infectious, and that human susceptibility to illness may be high, similar to

  16. Seroprevalence of enteropathogenic Yersinia spp. in pig batches at slaughter.

    PubMed

    Vanantwerpen, Gerty; Van Damme, Inge; De Zutter, Lieven; Houf, Kurt

    2014-09-01

    Enteropathogenic Yersinia spp. are one of the main causes of foodborne bacterial infections in Europe. Slaughter pigs are the main reservoir and carcasses are contaminated during a sub-optimal hygienically slaughtering-process. Serology is potentially an easy option to test for the Yersinia-status of the pig (batches) before slaughter. A study of the variation in activity values (OD%) of Yersinia spp. in pigs and pig batches when applying a serological test were therefore conducted. In this study, pieces of the diaphragm of 7047 pigs, originating from 100 farms, were collected and meat juice was gathered, where after an enzyme-linked immunosorbent assay (ELISA) Pigtype Yopscreen (Labor Diagnostik Leipzig, Qiagen, Leipzig, Germany) was performed. The results were defined positive if the activity values exceeded the proposed cut-off value of 30 OD%. Results at pig level displayed a bimodal-shaped distribution with modes at 0-10% (n=879) and 50-60% (n=667). The average OD% was 51% and 66% of the animals tested positive. The within-batch seroprevalence ranged from 0 to 100% and also showed a bimodal distribution with modes at 0% (n=7) and 85-90% (n=16). On 7 farms, no single seropositive animal was present and in 22 farms, the mean OD% was below 30%. Based on the results obtained at slaughter, 66% of the pigs had contact with enteropathogenic Yersinia spp. at farm level. The latter occurred in at least 93% of the farms indicating that most farms are harboring enteropathogenic Yersinia spp.

  17. Fast and sensitive detection of enteropathogenic Yersinia by immunoassays.

    PubMed

    Laporte, Jérôme; Savin, Cyril; Lamourette, Patricia; Devilliers, Karine; Volland, Hervé; Carniel, Elisabeth; Créminon, Christophe; Simon, Stéphanie

    2015-01-01

    Yersinia enterocolitica and Yersinia pseudotuberculosis, the two Yersinia species that are enteropathogenic for humans, are distributed worldwide and frequently cause diarrhea in inhabitants of temperate and cold countries. Y. enterocolitica is a major cause of foodborne disease resulting from consumption of contaminated pork meat and is further associated with substantial economic cost. However, investigation of enteropathogenic Yersinia species is infrequently performed routinely in clinical laboratories because of their specific growth characteristics, which make difficult their isolation from stool samples. Moreover, current isolation procedures are time-consuming and expensive, thus leading to underestimates of the incidence of enteric yersiniosis, inappropriate prescriptions of antibiotic treatments, and unnecessary appendectomies. The main objective of the study was to develop fast, sensitive, specific, and easy-to-use immunoassays, useful for both human and veterinary diagnosis. Monoclonal antibodies (MAbs) directed against Y. enterocolitica bioserotypes 2/O:9 and 4/O:3 and Y. pseudotuberculosis serotypes I and III were produced. Pairs of MAbs were selected by testing their specificity and affinity for enteropathogenic Yersinia and other commonly found enterobacteria. Pairs of MAbs were selected to develop highly sensitive enzyme immunoassays (EIAs) and lateral flow immunoassays (LFIs or dipsticks) convenient for the purpose of rapid diagnosis. The limit of detection of the EIAs ranged from 3.2 × 10(3) CFU/ml to 8.8 × 10(4) CFU/ml for pathogenic serotypes I and III of Y. pseudotuberculosis and pathogenic bioserotypes 2/O:9 and 4/O:3 of Y. enterocolitica and for the LFIs ranged from 10(5) CFU/ml to 10(6) CFU/ml. A similar limit of detection was observed for artificially contaminated human feces.

  18. Fast and Sensitive Detection of Enteropathogenic Yersinia by Immunoassays

    PubMed Central

    Laporte, Jérôme; Savin, Cyril; Lamourette, Patricia; Devilliers, Karine; Volland, Hervé; Carniel, Elisabeth; Créminon, Christophe

    2014-01-01

    Yersinia enterocolitica and Yersinia pseudotuberculosis, the two Yersinia species that are enteropathogenic for humans, are distributed worldwide and frequently cause diarrhea in inhabitants of temperate and cold countries. Y. enterocolitica is a major cause of foodborne disease resulting from consumption of contaminated pork meat and is further associated with substantial economic cost. However, investigation of enteropathogenic Yersinia species is infrequently performed routinely in clinical laboratories because of their specific growth characteristics, which make difficult their isolation from stool samples. Moreover, current isolation procedures are time-consuming and expensive, thus leading to underestimates of the incidence of enteric yersiniosis, inappropriate prescriptions of antibiotic treatments, and unnecessary appendectomies. The main objective of the study was to develop fast, sensitive, specific, and easy-to-use immunoassays, useful for both human and veterinary diagnosis. Monoclonal antibodies (MAbs) directed against Y. enterocolitica bioserotypes 2/O:9 and 4/O:3 and Y. pseudotuberculosis serotypes I and III were produced. Pairs of MAbs were selected by testing their specificity and affinity for enteropathogenic Yersinia and other commonly found enterobacteria. Pairs of MAbs were selected to develop highly sensitive enzyme immunoassays (EIAs) and lateral flow immunoassays (LFIs or dipsticks) convenient for the purpose of rapid diagnosis. The limit of detection of the EIAs ranged from 3.2 × 103 CFU/ml to 8.8 × 104 CFU/ml for pathogenic serotypes I and III of Y. pseudotuberculosis and pathogenic bioserotypes 2/O:9 and 4/O:3 of Y. enterocolitica and for the LFIs ranged from 105 CFU/ml to 106 CFU/ml. A similar limit of detection was observed for artificially contaminated human feces. PMID:25355759

  19. Enteropathogens associated with diarrhea among military personnel during Operation Bright Star 96, in Alexandria, Egypt.

    PubMed

    Oyofo, B A; Peruski, L F; Ismail, T F; el-Etr, S H; Churilla, A M; Wasfy, M O; Petruccelli, B P; Gabriel, M E

    1997-06-01

    This study investigated the microbial causes of diarrheal disease among U.S. troops deployed near Alexandria, Egypt, during October 1995. Bacterial causes associated with 19 cases of diarrhea included: enterotoxigenic Escherichia coli (ETEC), 42% (21% heat-stable, 11% heat-labile, and 11% heat-stable/ heat-labile producers); enteropathogenic E. coli (5.3%); and enteroadherent E. coli (42%). Four cases of diarrhea were associated with enteroaggregative E. coli based on probe analysis for enteroaggregative heat-stable enterotoxin 1. Protozoan causes included; Entamoeba histolytica (11%), E. hartmanni (5%), E. nana (5%), Blastocystis hominis (5%), Chilomastix mesnili (11%), Dientamoeba fragilis (5%), Entamoeba coli (5%), and Cryptosporidium (5%). Shigella, Aeromonas, Plesiomonas, Vibrio, Campylobacter, and Salmonella were not detected. Of the eight ETEC cases, one was colonization factor antigen (CFA)/I only, one was both CFA/I and CFA/III, three were CFA/II, two were CFA/IV, and two were CFA-negative. Antibiograms of the ETEC and enteroadherent E. coli strains showed that all isolates were susceptible to norfloxacin, ciprofloxacin, and nalidixic acid but resistant to ampicillin, tetracycline, chloramphenicol, and sulfamethoxazole. PMID:9183160

  20. Evolution of atypical enteropathogenic E. coli by repeated acquisition of LEE pathogenicity island variants.

    PubMed

    Ingle, Danielle J; Tauschek, Marija; Edwards, David J; Hocking, Dianna M; Pickard, Derek J; Azzopardi, Kristy I; Amarasena, Thakshila; Bennett-Wood, Vicki; Pearson, Jaclyn S; Tamboura, Boubou; Antonio, Martin; Ochieng, John B; Oundo, Joseph; Mandomando, Inácio; Qureshi, Shahida; Ramamurthy, Thandavarayan; Hossain, Anowar; Kotloff, Karen L; Nataro, James P; Dougan, Gordon; Levine, Myron M; Robins-Browne, Roy M; Holt, Kathryn E

    2016-01-18

    Atypical enteropathogenic Escherichia coli (aEPEC) is an umbrella term given to E. coli that possess a type III secretion system encoded in the locus of enterocyte effacement (LEE), but lack the virulence factors (stx, bfpA) that characterize enterohaemorrhagic E. coli and typical EPEC, respectively. The burden of disease caused by aEPEC has recently increased in industrialized and developing nations, yet the population structure and virulence profile of this emerging pathogen are poorly understood. Here, we generated whole-genome sequences of 185 aEPEC isolates collected during the Global Enteric Multicenter Study from seven study sites in Asia and Africa, and compared them with publicly available E. coli genomes. Phylogenomic analysis revealed ten distinct widely distributed aEPEC clones. Analysis of genetic variation in the LEE pathogenicity island identified 30 distinct LEE subtypes divided into three major lineages. Each LEE lineage demonstrated a preferred chromosomal insertion site and different complements of non-LEE encoded effector genes, indicating distinct patterns of evolution of these lineages. This study provides the first detailed genomic framework for aEPEC in the context of the EPEC pathotype and will facilitate further studies into the epidemiology and pathogenicity of EPEC by enabling the detection and tracking of specific clones and LEE variants.

  1. Evolution of atypical enteropathogenic E. coli by repeated acquisition of LEE pathogenicity island variants.

    PubMed

    Ingle, Danielle J; Tauschek, Marija; Edwards, David J; Hocking, Dianna M; Pickard, Derek J; Azzopardi, Kristy I; Amarasena, Thakshila; Bennett-Wood, Vicki; Pearson, Jaclyn S; Tamboura, Boubou; Antonio, Martin; Ochieng, John B; Oundo, Joseph; Mandomando, Inácio; Qureshi, Shahida; Ramamurthy, Thandavarayan; Hossain, Anowar; Kotloff, Karen L; Nataro, James P; Dougan, Gordon; Levine, Myron M; Robins-Browne, Roy M; Holt, Kathryn E

    2016-01-01

    Atypical enteropathogenic Escherichia coli (aEPEC) is an umbrella term given to E. coli that possess a type III secretion system encoded in the locus of enterocyte effacement (LEE), but lack the virulence factors (stx, bfpA) that characterize enterohaemorrhagic E. coli and typical EPEC, respectively. The burden of disease caused by aEPEC has recently increased in industrialized and developing nations, yet the population structure and virulence profile of this emerging pathogen are poorly understood. Here, we generated whole-genome sequences of 185 aEPEC isolates collected during the Global Enteric Multicenter Study from seven study sites in Asia and Africa, and compared them with publicly available E. coli genomes. Phylogenomic analysis revealed ten distinct widely distributed aEPEC clones. Analysis of genetic variation in the LEE pathogenicity island identified 30 distinct LEE subtypes divided into three major lineages. Each LEE lineage demonstrated a preferred chromosomal insertion site and different complements of non-LEE encoded effector genes, indicating distinct patterns of evolution of these lineages. This study provides the first detailed genomic framework for aEPEC in the context of the EPEC pathotype and will facilitate further studies into the epidemiology and pathogenicity of EPEC by enabling the detection and tracking of specific clones and LEE variants. PMID:27571974

  2. Evaluation of a Single Procedure Allowing the Isolation of Enteropathogenic Yersinia along with Other Bacterial Enteropathogens from Human Stools

    PubMed Central

    Savin, Cyril; Leclercq, Alexandre; Carniel, Elisabeth

    2012-01-01

    Enteropathogenic Yersinia are among the most frequent agents of human diarrhea in temperate and cold countries. However, the incidence of yersiniosis is largely underestimated because of the peculiar growth characteristics of pathogenic Yersinia, which make their isolation from poly-contaminated samples difficult. The use of specific procedures for Yersinia isolation is required, but is expensive and time consuming, and therefore is not systematically performed in clinical pathology laboratories. A means to circumvent this problem would be to use a single procedure for the isolation of all bacterial enteropathogens. Since the Statens Serum Institut enteric medium (SSI) has been reported to allow the growth at 37°C of most Gram-negative bacteria, including Yersinia, our study aimed at evaluating its performances for Yersinia isolation, as compared to the commonly used Yersinia-specific semi-selective Cefsulodin-Irgasan-Novobiocin medium (CIN) incubated at 28°C. Our results show that Yersinia pseudotuberculosis growth was strongly inhibited on SSI at 37°C, and therefore that this medium is not suitable for the isolation of this species. All Yersinia enterocolitica strains tested grew on SSI, while some non-pathogenic Yersinia species were inhibited. The morphology of Y. enterocolitica colonies on SSI allowed their differentiation from various other Gram-negative bacteria commonly isolated from stool samples. However, in artificially contaminated human stools, the recovery of Y. enterocolitica colonies on SSI at 37°C was difficult and was 3 logs less sensitive than on CIN at 28°C. Therefore, despite its limitations, the use of a specific procedure (CIN incubated at 28°C) is still required for an efficient isolation of enteropathogenic Yersinia from stools. PMID:22911756

  3. Optimization of Quantitative PCR Methods for Enteropathogen Detection.

    PubMed

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen's extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease. PMID:27336160

  4. Optimization of Quantitative PCR Methods for Enteropathogen Detection

    PubMed Central

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M.; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R.

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen’s extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease. PMID:27336160

  5. Heat susceptibility of bacterial enteropathogens. Implications for the prevention of travelers' diarrhea.

    PubMed

    Bandres, J C; Mathewson, J J; DuPont, H L

    1988-10-01

    The heat susceptibility of four bacterial enteropathogens in foods and water was studied to develop effective recommendations for travelers to regions where diarrheal diseases are important health problems. All enteropathogens tested survived well in foods stored at refrigerator temperature (4 degrees C), room temperature (25 degrees C), and 50 degrees C, which is too hot to touch. Tap water had to be heated above 65 degrees C to reliably kill all bacterial enteropathogens. At 13 of the 14 tourist-oriented hotels in four countries, water from the hot water tap did not reach temperatures of 65 degrees C. The implications of this study are that food and water that are too hot to touch may still be contaminated with bacterial enteropathogens. Travelers should be advised that food, water, or beverages are safe only if they have been brought to boiling or near-boiling temperatures prior to consumption.

  6. Mechanisms of DRA recycling in intestinal epithelial cells: effect of enteropathogenic E. coli.

    PubMed

    Gujral, Tarunmeet; Kumar, Anoop; Priyamvada, Shubha; Saksena, Seema; Gill, Ravinder K; Hodges, Kim; Alrefai, Waddah A; Hecht, Gail A; Dudeja, Pradeep K

    2015-12-15

    Enteropathogenic Escherichia coli (EPEC) is a food-borne pathogen that causes infantile diarrhea worldwide. EPEC decreases the activity and surface expression of the key intestinal Cl(-)/HCO3(-) exchanger SLC26A3 [downregulated in adenoma (DRA)], contributing to the pathophysiology of early diarrhea. Little is known about the mechanisms governing membrane recycling of DRA. In the current study, Caco-2 cells were used to investigate DRA trafficking under basal conditions and in response to EPEC. Apical Cl(-)/HCO3(-) exchange activity was measured as DIDS-sensitive (125)I(-) uptake. Cell surface biotinylation was performed to assess DRA endocytosis and exocytosis. Inhibition of clathrin-mediated endocytosis by chlorpromazine (60 μM) increased apical Cl(-)/HCO3(-) exchange activity. Dynasore, a dynamin inhibitor, also increased function and surface levels of DRA via decreased endocytosis. Perturbation of microtubules by nocodazole revealed that intact microtubules are essential for basal exocytic (but not endocytic) DRA recycling. Mice treated with colchicine showed a decrease in DRA surface levels as visualized by confocal microscopy. In response to EPEC infection, DRA surface expression was reduced partly via an increase in DRA endocytosis and a decrease in exocytosis. These effects were dependent on the EPEC virulence genes espG1 and espG2. Intriguingly, the EPEC-induced decrease in DRA function was unaltered in the presence of dynasore, suggesting a clathrin-independent internalization of surface DRA. In conclusion, these studies establish the role of clathrin-mediated endocytosis and microtubules in the basal surface expression of DRA and demonstrate that the EPEC-mediated decrease in DRA function and apical expression in Caco-2 cells involves decreased exocytosis.

  7. Role of porin proteins in acquisition of transferrin iron by enteropathogens.

    PubMed

    Sandrini, Sara; Masania, Rikesh; Zia, Fatima; Haigh, Richard; Freestone, Primrose

    2013-12-01

    Acquisition of iron from key innate immune defence proteins such as transferrin (Tf) and lactoferrin is an important mechanism by which pathogenic bacteria obtain essential iron for growth within their host. Bacterial species that do not produce siderophores often use specific Tf-binding proteins, the best characterized being the Neisseriaceae-type Tf-binding proteins TbpA and TbpB. Previous work from our laboratory has shown that siderophore-producing enteric species such as Escherichia coli also readily bind Tf, although no genomic evidence exists for Tbp-like Tf-binding proteins. Application of proteomic analyses and molecular mutagenesis strategies to an enteropathogenic E. coli identified the OmpA and OmpC porins as Tf-binding proteins. Mutagenesis of the ompA or ompC genes affected E. coli Tf binding and, furthermore, compromised the ability of the ompA mutant to respond to growth promotion by certain catecholamine stress hormones. Evidence was also found to implicate the OmpA porin as an entry point for catecholamine stress hormones. Further proteomic analyses in other bacterial pathogens revealed wide-scale involvement of porins in Tf binding: Salmonella typhimurium (OmpC), and Shigella sonnei, Shigella flexneri and Shigella boydii (OmpC and/or OmpA). This study shows that in addition to their existing housekeeping functions, the Gram-negative porin family of proteins can also act as Tf-capture proteins for those bacteria that lack the classical Neisseriaceae-type Tf-binding proteins.

  8. Novel Host Proteins and Signaling Pathways in Enteropathogenic E. coli Pathogenesis Identified by Global Phosphoproteome Analysis*

    PubMed Central

    Scholz, Roland; Imami, Koshi; Scott, Nichollas E.; Trimble, William S.; Foster, Leonard J.; Finlay, B. Brett

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system (T3SS) to directly translocate effector proteins into host cells where they play a pivotal role in subverting host cell signaling needed for disease. However, our knowledge of how EPEC affects host protein phosphorylation is limited to a few individual protein studies. We employed a quantitative proteomics approach to globally map alterations in the host phosphoproteome during EPEC infection. By characterizing host phosphorylation events at various time points throughout infection, we examined how EPEC dynamically impacts the host phosphoproteome over time. This experimental setup also enabled identification of T3SS-dependent and -independent changes in host phosphorylation. Specifically, T3SS-regulated events affected various cellular processes that are known EPEC targets, including cytoskeletal organization, immune signaling, and intracellular trafficking. However, the involvement of phosphorylation in these events has thus far been poorly studied. We confirmed the MAPK family as an established key host player, showed its central role in signal transduction during EPEC infection, and extended the repertoire of known signaling hubs with previously unrecognized proteins, including TPD52, CIN85, EPHA2, and HSP27. We identified altered phosphorylation of known EPEC targets, such as cofilin, where the involvement of phosphorylation has so far been undefined, thus providing novel mechanistic insights into the roles of these proteins in EPEC infection. An overlap of regulated proteins, especially those that are cytoskeleton-associated, was observed when compared with the phosphoproteome of Shigella-infected cells. We determined the biological relevance of the phosphorylation of a novel protein in EPEC pathogenesis, septin-9 (SEPT9). Both siRNA knockdown and a phosphorylation-impaired SEPT9 mutant decreased bacterial adherence and EPEC-mediated cell death. In contrast, a phosphorylation

  9. Characteristics of child daycare centres associated with clustering of major enteropathogens.

    PubMed

    Pijnacker, R; Mughini-Gras, L; Vennema, H; Enserink, R; VAN DEN Wijngaard, C C; Kortbeek, T; VAN Pelt, W

    2016-09-01

    Insights into transmission dynamics of enteropathogens in children attending daycare are limited. Here we aimed at identifying daycare centre (DCC) characteristics associated with time-clustered occurrence of enteropathogens in DCC-attending children. For this purpose, we used the KIzSS network, which comprises 43 DCCs that participated in infectious disease surveillance in The Netherlands during February 2010-February 2013. Space-time scan statistics were used to identify clusters of rotavirus, norovirus, astrovirus, Giardia lamblia and Cryptosporidium spp. in a two-dimensional DCC characteristic space constructed using canonical correlation analysis. Logistic regression models were then used to further identify DCC characteristics associated with increased or decreased odds for clustering of enteropathogens. Factors associated with increased odds for enteropathogen clustering in DCCs were having indoor/outdoor paddling pools or sandpits, owning animals, high numbers of attending children, and reporting outbreaks to local health authorities. Factors associated with decreased odds for enteropathogen clustering in DCCs were cleaning child potties in designated waste disposal stations, cleaning vomit with chlorine-based products, daily cleaning of toys, extra cleaning of toys during a suspected outbreak, and excluding children with gastroenteritis. These factors provide targets for reducing the burden of gastrointestinal morbidity associated with time-clustered occurrence of major enteropathogens in DCC attendees. PMID:27483376

  10. Molecular characterization of the tia invasion locus from enterotoxigenic Escherichia coli.

    PubMed Central

    Fleckenstein, J M; Kopecko, D J; Warren, R L; Elsinghorst, E A

    1996-01-01

    Enterotoxigenic Escherichia coli (ETEC) shares with other diarrheal pathogens the capacity to invade epithelial cell lines originating from the human ileum or colon, although the role of invasion in ETEC pathogenesis remains undefined. Two distinct loci (tia and tib) that direct noninvasive E. coli to adhere to and invade intestinal epithelial cell lines have previously been isolated from cosmid libraries of the classical ETEC strain H10407. Here, we report the molecular characterization of the tia locus. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cellular fractions of E. coli DH5alpha carrying the tia-positive cosmids and recombinant plasmid subclones revealed that this locus directs the production of a 25-kDa protein (the Tia protein) that is localized to the outer membrane. The tia locus was subcloned to a maximum of 2 kb and mutagenized with bacteriophage Mud. Synthesis of this protein was directly correlated with the ability of subclones and Mud transposon mutants to adhere to and invade epithelial cells. Sequencing of the tia locus identified a 756-bp open reading frame. All transposon insertions resulting in an invasion-negative phenotype mapped to this open reading frame. The open reading frame was amplified and directionally cloned behind the lac promoter of pHG165. This construct directed DHalpha to express a 25-kDa protein and to adhere to and invade epithelial cells. The role of the tia gene in directing epithelial adherence and invasion was further assessed by the construction of chromosomal tia deletion derivatives of the parent ETEC strain, H10407. These tia deletion strains were noninvasive and lacked the ability to adhere to human ileocecal cells. The tia gene shares limited homology with the Yersinia ail locus and significant homology with the hra1 agglutinin gene cloned from a porcine ETEC strain. Additionally, tia probes hybridized to geographically diverse ETEC strains, as well as some enteropathogenic E. coli

  11. Campylobacters: the most common bacterial enteropathogens in the Nordic countries.

    PubMed

    Rautelin, H; Hänninen, M L

    2000-10-01

    Campylobacters have been known as important human pathogens since the late 1970s. Campylobacter jejuni and coli are the most common bacterial enteropathogens in the developed countries. During the past years an increasing incidence of campylobacteriosis has been reported in many developed countries. C. jejuni is the most common Campylobacter species while C. coli accounts for about 5-10% of the cases. Although the genome of C. jejuni NCTC 11168 strain was sequenced recently, the exact pathogenetic mechanisms are still not known. Furthermore, there are no reliable animal models available. The epidemiology of this common infection is not well understood; however, eating and handling poultry, contaminated drinking water, and contact with pet animals have been recognized as important risk factors. Most of the cases are sporadic although large water-borne outbreaks have also been reported. Discriminatory typing methods are helpful in tracing the sources and transmission routes. In addition to traditional serotyping, genotyping methods, such as pulsed-field gel electrophoresis, have been developed. As Campylobacter infections probably precede Guillan-Barré syndrome in many cases, a great interest has lately been focused on the possible triggering mechanisms underlying this phenomenon.

  12. Enteropathogenicity of Aeromonas species isolated from infants: a cohort study.

    PubMed

    Figueroa, G; Galeno, H; Soto, V; Troncoso, M; Hinrichsen, V; Yudelevich, A

    1988-11-01

    The significance of Aeromonas spp. as potential enteric pathogens was evaluated in a cohort of 187 infants aged 3-18 months during a 16-week summer period. Aeromonas spp. were isolated from 14 of the 196 (7.1%) diarrhoeal episodes detected and from eight (5.2%) of 153 samples from paired asymptomatic infants. Carriage of bacterial enteropathogens excluding Aeromonas spp. was detected in a high proportion (23%) of the asymptomatic children. Almost all of the seven isolates of Aeromonas sobria were enterotoxigenic, invasive and beta-haemolytic. In contrast, none of the seven Aeromonas caviae strains had these virulence-associated characteristics. The only isolate of Aeromonas hydrophila produced cytotoxic enterotoxin and was invasive. Plasmid analysis of selected strains did not correlate with these two properties or with antibiotic resistance. Nevertheless, the latter was found in an important proportion of the isolates. The diarrhoeal episodes, in which Aeromonas spp. were detected, lasted significantly longer, i.e. 17.2 days when the strains were invasive and/or toxigenic as compared with 4.3 days (P less than 0.001) in patients harbouring strains lacking both traits. These results reinforce the need to characterise virulence determinants before assigning any pathogenic role to Aeromonas spp. isolated from faecal specimens. Our findings also suggest the need for adequate antibiotic treatment in patients with confirmed Aeromonas spp. having enterotoxigenic and/or invasive properties.

  13. Single Multiplex PCR Assay To Identify Simultaneously the Six Categories of Diarrheagenic Escherichia coli Associated with Enteric Infections

    PubMed Central

    Vidal, Maricel; Kruger, Eileen; Durán, Claudia; Lagos, Rosanna; Levine, Myron; Prado, Valeria; Toro, Cecilia; Vidal, Roberto

    2005-01-01

    We designed a multiplex PCR for the detection of all categories of diarrheagenic Escherichia coli. This method proved to be specific and rapid in detecting virulence genes from Shiga toxin-producing (stx1, stx2, and eae), enteropathogenic (eae and bfp), enterotoxigenic (stII and lt), enteroinvasive (virF and ipaH), enteroaggregative (aafII), and diffuse adherent (daaE) Escherichia coli in stool samples. PMID:16208019

  14. [Characterization of enteropathogenic Escherichia coli (EPEC) strains isolated during the chicken slaughtering process].

    PubMed

    Alonso, Mónica Z; Sanz, Marcelo E; Padola, Nora L; Lucchesi, Paula M A

    2014-01-01

    In Argentina, EPEC is one of the most prevalent agents isolated from children with diarrhea. Because contamination with this pathotype could occur during slaughter, the aim of this study was to isolate and characterize EPEC strains obtained from live animals (cloacae), eviscerated carcasses, washed carcasses and water from chillers. Twenty nine isolates of atypical EPEC were characterized. These isolates presented a wide variety of serotypes, some of which (O2:H40, O8:H19 and O108:H9) had been reported in other animal species. Serotype O45:H8, previously isolated from children with diarrhea was also found. Isolates of serotypes O2:H40, O108:H9 and O123:H32 were detected at different stages of the slaughtering process, suggesting that the process is not adequately performed. This latter fact highlights the importance of reinforcing control and hygienic measures at different stages of the chicken slaughtering process in order to reduce microbial contamination. PMID:25011596

  15. Biofilm modifies expression of ribonucleotide reductase genes in Escherichia coli.

    PubMed

    Cendra, Maria del Mar; Juárez, Antonio; Torrents, Eduard

    2012-01-01

    Ribonucleotide reductase (RNR) is an essential enzyme for all living organisms since is the responsible for the last step in the synthesis of the four deoxyribonucleotides (dNTPs) necessary for DNA replication and repair. In this work, we have investigated the expression of the three-RNR classes (Ia, Ib and III) during Escherichia coli biofilm formation. We show the temporal and spatial importance of class Ib and III RNRs during this process in two different E. coli wild-type strains, the commensal MG1655 and the enteropathogenic and virulent E2348/69, the prototype for the enteropathogenic E. coli (EPEC). We have established that class Ib RNR, so far considered cryptic, play and important role during biofilm formation. The implication of this RNR class under the specific growth conditions of biofilm formation is discussed. PMID:23050019

  16. Release of ATP during host cell killing by enteropathogenic E. coli and its role as a secretory mediator.

    PubMed

    Crane, John K; Olson, Ruth A; Jones, Heather M; Duffey, Michael E

    2002-07-01

    Enteropathogenic Escherichia coli (EPEC) causes severe, watery diarrhea in children. We investigated ATP release during EPEC-mediated killing of human cell lines and whether released adenine nucleotides function as secretory mediators. EPEC triggered a release of ATP from all human cell lines tested: HeLa, COS-7, and T84 (colon cells) as measured using a luciferase kit. Accumulation of ATP in the supernatant medium was enhanced if an inhibitor of 5'-ectonucleotidase was included and was further enhanced if an ATP-regenerating system was added. In the presence of the inhibitor/regenerator, ATP concentrations in the supernatant medium reached 1.5-2 microM 4 h after infection with wild-type EPEC strains. In the absence of the inhibitor/regenerator system, extracellular ATP was rapidly broken down to ADP, AMP, and adenosine. Conditioned medium from EPEC-infected cells triggered a brisk chloride secretory response in intestinal tissues studied in the Ussing chamber (rabbit distal colon and T84 cell monolayers), whereas conditioned medium from uninfected cells and sterile filtrates of EPEC bacteria did not. The short-circuit current response to EPEC-conditioned medium was completely reversed by adenosine receptor blockers, such as 8-(p-sulfophenyl)-theophylline and MRS1754. EPEC killing of host cells releases ATP, which is broken down to adenosine, which in turn stimulates secretion via apical adenosine A2b receptors. These findings provide new insight into how EPEC causes watery diarrhea. PMID:12065294

  17. Characterization of Escherichia coli Strains Isolated from Patients with Diarrhea in São Paulo, Brazil: Identification of Intermediate Virulence Factor Profiles by Multiplex PCR▿

    PubMed Central

    Liebchen, Ariane; Benz, Inga; Mellmann, Alexander; Karch, Helge; Gomes, Tânia A. T.; Yamamoto, Denise; Hernandes, Rodrigo T.; Sampaio, Jorge; Sampaio, Suely C. F.; Fruth, Angelika; Schmidt, M. Alexander

    2011-01-01

    Intestinal pathogenic Escherichia coli is a major causative agent of severe diarrhea. In this study the prevalences of different pathotypes among 702 E. coli isolates from Brazilian patients with diarrhea were determined by multiplex PCR. Interestingly, most strains were enteroaggregative E. coli (EAEC) strains, followed by atypical EPEC (ATEC) strains. Classical enteropathogenic E. coli (EPEC) strains were not detected. PMID:21508159

  18. Insights into Evolution of Escherichia coli O157:H7 from Complete Genome Sequence of Closely Related O55:H7 Precursor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enteropathogenic Escherichia coli (EPEC) is a leading cause of infant mortality and morbidity in developing countries. In spite of this, only two EPEC genomes have been fully sequenced: the typical, model EPEC strain E2348/69 (O127:H6), and the contemporary, atypical EPEC strain CB9615 (O55:H7, Ger...

  19. Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms.

    PubMed

    Al Mawly, J; Grinberg, A; Prattley, D; Moffat, J; Marshall, J; French, N

    2015-02-01

    To investigate the risk factors for neonatal calf diarrhoea, a cross-sectional study was conducted on 97 New Zealand dairy farms. Faecal specimens from 1283 calves were scored as liquid, semi-solid or solid, and analysed for bovine rotavirus (BRV) and coronavirus (BCV), enterotoxigenic K99(+)Escherichia coli (K99), Salmonella spp. and Cryptosporidium parvum. Calf- and farm-level data were collected by means of a questionnaire and the odds of liquid faeces calculated using mixed effects logistic regression models. Among the infectious agents, only C. parvum (odds ratio [OR] = 2.6; 95% confidence interval [CI], 1.3-5.6; P = 0.02), BRV (OR = 2.7; 95% CI, 1.3-5.9; P = 0.01) and co-infection with more than one agent (compared with mono-infection: OR = 2.5; 95% CI, 1.3-4.8; P = 0.01) were associated with increased odds of liquid faeces in calves which were 9 to 21 days old. Housing of calves in open barns so exposing them to the weather was also associated with increased odds of liquid faeces compared with closed barns (OR = 2.1; 95% CI, 1.1-12.2; P = 0.03). Vaccinating cows against calf enteropathogens (OR = 0.2; 95% CI, 0.1-0.9; P = 0.03), administering waste milk (from mastitis and/or containing antibiotics; OR = 0.4; 95% CI, 0.1-0.8; P = 0.01), the sex of calves (females compared to males OR = 0.2, 95% CI, 0.07-0.7; P <0.01), and the use of straw for bedding (OR = 0.2; 95% CI, 0.03-0.9; P = 0.03) decreased the odds of liquid faeces. Conversely, in calves that were 1 to 5 days old, only K99 was associated with liquid faeces (OR = 4.6; 95% CI, 1.2-16.1; P = 0.02). In this age group, the odds of liquid faeces were smaller on farms where females took care of the calves, compared with males (OR = 0.4; 95% CI, 0.01-0.9; P = 0.04). PMID:25653209

  20. Xenotransplantation and porcine cytomegalovirus.

    PubMed

    Denner, Joachim

    2015-01-01

    Porcine microorganisms may be transmitted to the human recipient when xenotransplantation with pig cells, tissues, and organs will be performed. Most of such microorganisms can be eliminated from the donor pig by specified or designated pathogen-free production of the animals. As human cytomegalovirus causes severe transplant rejection in allotransplantation, considerable concern is warranted on the potential pathogenicity of porcine cytomegalovirus (PCMV) in the setting of xenotransplantation. On the other hand, despite having a similar name, PCMV is different from HCMV. The impact of PCMV infection on pigs is known; however, the influence of PCMV on the human transplant recipient is unclear. However, first transplantations of pig organs infected with PCMV into non-human primates were associated with a significant reduction of the survival time of the transplants. Sensitive detection methods and strategies for elimination of PCMV from donor herds are required.

  1. Diagnostic investigation of porcine periweaning failure-to-thrive syndrome: lack of compelling evidence linking to common porcine pathogens.

    PubMed

    Huang, Yanyun; Gauvreau, Henry; Harding, John

    2012-01-01

    Porcine periweaning failure-to-thrive syndrome (PFTS), an increasingly recognized syndrome in the swine industry of North America, is characterized by the anorexia of nursery pigs noticeable within 1 week of weaning, and progressive loss of body condition and lethargy during the next 1-2 weeks. Morbidity caused by PFTS is moderate, but case fatality is high. The etiology of PFTS is presently unknown and may include infectious agent(s), noninfectious factors, or both. PFTS was identified in a high health status farm with good management in early 2007. A diagnostic investigation was undertaken to identify the pathological lesions of, and infectious agents associated with, pigs demonstrating typical clinical signs. Affected (PFTS-SICK) and unaffected (PFTS-HLTHY) pigs from an affected farm, and unaffected pigs from 2 unaffected farms, were examined. The most prevalent lesions in PFTS-SICK pigs were superficial lymphocytic fundic gastritis, atrophic enteritis, superficial colitis, lymphocytic and neutrophilic rhinitis, mild nonsuppurative meningoencephalitis, and thymic atrophy. Rotavirus A and Betacoronavirus 1 (Porcine hemagglutinating encephalomyelitis virus) were identified only in PFTS-SICK pigs, but the significance of the viruses is uncertain because PFTS is not consistent with the typical presentation following infection by these pathogens. Porcine reproductive and respiratory syndrome virus, Porcine circovirus-2, Influenza A virus, Alphacoronavirus 1 (Transmissible gastroenteritis virus), Torque teno virus 1, Brachyspira hyodysenteriae, and Brachyspira pilosicoli were not identified in PFTS-SICK pigs. Suid herpesvirus 2 (Porcine cytomegalovirus), Porcine enteric calicivirus, Torque teno virus 2, pathogenic Escherichia coli, and coccidia were detected in both PFTS-SICK and PFTS-HLTHY pigs. It was concluded that there is a lack of compelling evidence that PFTS is caused by any of these pathogens.

  2. Spectrum of enteropathogens detected by the FilmArray GI Panel in a multicentre study of community-acquired gastroenteritis.

    PubMed

    Spina, A; Kerr, K G; Cormican, M; Barbut, F; Eigentler, A; Zerva, L; Tassios, P; Popescu, G A; Rafila, A; Eerola, E; Batista, J; Maass, M; Aschbacher, R; Olsen, K E P; Allerberger, F

    2015-08-01

    The European, multicentre, quarterly point-prevalence study of community-acquired diarrhoea (EUCODI) analysed stool samples received at ten participating clinical microbiology laboratories (Austria, Finland, France, Germany, Greece, Ireland, Italy, Portugal, Romania, and the UK) in 2014. On four specified days, each local laboratory submitted samples from ≤20 consecutive patients to the Austrian Study Centre for further testing with the FilmArray GI Panel (BioFire Diagnostics, Salt Lake City, UT, USA). Of the 709 samples from as many patients received, 325 (45.8%) tested negative, 268 (37.8%) yielded only one organism, and 116 (16.4%) yielded multiple organisms. Positivity rates ranged from 41% (30 of 73 samples) in France to 74% (59 of 80 samples) in Romania. With the exception of Entamoeba histolytica and Vibrio cholerae, all of the 22 targeted pathogens were detected at least once. Enteropathogenic Escherichia coli, Campylobacter species, toxigenic Clostridium difficile, enteroaggregative E. coli, norovirus and enterotoxigenic E. coli were the six most commonly detected pathogens. When tested according to local protocols, seven of 128 positive samples (5.5%) yielded multiple organisms. Overall, the FilmArray GI Panel detected at least one organism in 54.2% (384/709) of the samples, as compared with 18.1% (128/709) when testing was performed with conventional techniques locally. This underlines the considerable potential of multiplex PCR to improve routine stool diagnostics in community-acquired diarrhoea. Classic culture methods directed at the isolation of specific pathogens are increasingly becoming second-line tools, being deployed when rapid molecular tests give positive results. This optimizes the yield from stool examinations and dramatically improves the timeliness of diagnosis. PMID:25908431

  3. Spectrum of enteropathogens detected by the FilmArray GI Panel in a multicentre study of community-acquired gastroenteritis.

    PubMed

    Spina, A; Kerr, K G; Cormican, M; Barbut, F; Eigentler, A; Zerva, L; Tassios, P; Popescu, G A; Rafila, A; Eerola, E; Batista, J; Maass, M; Aschbacher, R; Olsen, K E P; Allerberger, F

    2015-08-01

    The European, multicentre, quarterly point-prevalence study of community-acquired diarrhoea (EUCODI) analysed stool samples received at ten participating clinical microbiology laboratories (Austria, Finland, France, Germany, Greece, Ireland, Italy, Portugal, Romania, and the UK) in 2014. On four specified days, each local laboratory submitted samples from ≤20 consecutive patients to the Austrian Study Centre for further testing with the FilmArray GI Panel (BioFire Diagnostics, Salt Lake City, UT, USA). Of the 709 samples from as many patients received, 325 (45.8%) tested negative, 268 (37.8%) yielded only one organism, and 116 (16.4%) yielded multiple organisms. Positivity rates ranged from 41% (30 of 73 samples) in France to 74% (59 of 80 samples) in Romania. With the exception of Entamoeba histolytica and Vibrio cholerae, all of the 22 targeted pathogens were detected at least once. Enteropathogenic Escherichia coli, Campylobacter species, toxigenic Clostridium difficile, enteroaggregative E. coli, norovirus and enterotoxigenic E. coli were the six most commonly detected pathogens. When tested according to local protocols, seven of 128 positive samples (5.5%) yielded multiple organisms. Overall, the FilmArray GI Panel detected at least one organism in 54.2% (384/709) of the samples, as compared with 18.1% (128/709) when testing was performed with conventional techniques locally. This underlines the considerable potential of multiplex PCR to improve routine stool diagnostics in community-acquired diarrhoea. Classic culture methods directed at the isolation of specific pathogens are increasingly becoming second-line tools, being deployed when rapid molecular tests give positive results. This optimizes the yield from stool examinations and dramatically improves the timeliness of diagnosis.

  4. Detection and Characterization of Shiga Toxin Producing Escherichia coli, Salmonella spp., and Yersinia Strains from Human, Animal, and Food Samples in San Luis, Argentina

    PubMed Central

    Favier, Gabriela Isabel; Lucero Estrada, Cecilia; Cortiñas, Teresa Inés; Escudero, María Esther

    2014-01-01

    Shiga toxin producing Escherichia coli (STEC), Salmonella spp., and Yersinia species was investigated in humans, animals, and foods in San Luis, Argentina. A total of 453 samples were analyzed by culture and PCR. The antimicrobial susceptibility of all the strains was studied, the genomic relationships among isolates of the same species were determined by PFGE, and the potencial virulence of Y. enterocolitica strains was analyzed. Yersinia species showed higher prevalence (9/453, 2.0%, 95% CI, 0.7–3.3%) than STEC (4/453, 0.9%, 95% CI, 0–1.8%) and Salmonella spp. (3/453, 0.7%, 95% CI, 0–1.5%). Y. enterocolitica and Y. intermedia were isolated from chicken carcasses (6/80, 7.5%, 95% CI, 1.5–13.5%) and porcine skin and bones (3/10, 30%, 95% CI, 0–65%). One STEC strain was recovered from human feces (1/70, 1.4%, 95% CI, 0–4.2%) and STEC stx1/stx2 genes were detected in bovine stools (3/129, 2.3%, 95% CI, 0–5.0%). S. Typhimurium was isolated from human feces (1/70, 1.4%, 95% CI, 0–4.2%) while one S. Newport and two S. Gaminara strains were recovered from one wild boar (1/3, 33%, 95% CI, 0–99%). The knowledge of prevalence and characteristics of these enteropathogens in our region would allow public health services to take adequate preventive measures. PMID:25177351

  5. Seasonal Prevalence of Enteropathogenic Vibrio and Their Phages in the Riverine Estuarine Ecosystem of South Bengal

    PubMed Central

    Mookerjee, Subham; Batabyal, Prasenjit; Sarkar, Madhumanti Halder; Palit, Anup

    2015-01-01

    Diarrheal disease remains an unsolved problem in developing countries. The emergence of new etiological agents (non-cholera vibrios) is a major cause of concern for health planners. We attempted to unveil the seasonal dynamics of entero-pathogenic Vibrios in Gangetic riverine-estuarine ecosystem. 120 surface water samples were collected for a period of one year from 3 sampling sites on the Hooghly river. Five enteropathogenic Vibrio species, V. cholerae (35%), V. parahaemolyticus (22.5%), V. mimicus (19.1%), V. alginolyticus (15.8%) and V. vulnificus (11.6%), were present in the water samples. The vibriophages, V. vulnificus ɸ (17.5%), V. alginolyticus ɸ (17.5%), V. parahaemolyticus ɸ (10%), V. cholerae non-O1/O139 ɸ (26.6%) and V. mimicus ɸ (9.1%), were also detected in these samples. The highest number of Vibrios were noted in the monsoon (20–34°C), and to a lesser extent, in the summer (24–36°C) seasons. Samples positive for phages for any of the identified Vibrio species were mostly devoid of that particular bacterial organism and vice versa. The detection of toxin genes and resistance to β-lactam antibiotics in some environmental enteropathogenic Vibrio species in the aquatic niches is a significant outcome. This finding is instrumental in the south Bengal diarrhoeal incidence. PMID:26340543

  6. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia

    PubMed Central

    Keto-Timonen, Riikka; Hietala, Nina; Palonen, Eveliina; Hakakorpi, Anna; Lindström, Miia; Korkeala, Hannu

    2016-01-01

    Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp) as a response to rapid temperature downshift (cold shock). During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0°C and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia. PMID:27499753

  7. Methods of analysis of enteropathogen infection in the MAL-ED Cohort Study.

    PubMed

    Platts-Mills, James A; McCormick, Benjamin J J; Kosek, Margaret; Pan, William K; Checkley, William; Houpt, Eric R

    2014-11-01

    Studies of diarrheal etiology in low- and middle-income countries have typically focused on children presenting with severe symptoms to health centers and thus are best equipped to describe the pathogens capable of leading to severe diarrheal disease. The Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) cohort study was designed to evaluate, via intensive community surveillance, the hypothesis that repeated exposure to enteropathogens has a detrimental effect on growth, vaccine response, and cognitive development, which are the primary outcome measures for this study. In the setting of multiple outcomes of interest, a longitudinal cohort design was chosen. Because many or even the majority of enteric infections are asymptomatic, the collection of asymptomatic surveillance stools was a critical element. However, capturing diarrheal stools additionally allowed for the determination of the principle causes of diarrhea at the community level as well as for a comparison between those enteropathogens associated with diarrhea and those that are associated with poor growth, diminished vaccine response, and impaired cognitive development. Here, we discuss the analytical methods proposed for the MAL-ED study to determine the principal causes of diarrhea at the community level and describe the complex interplay between recurrent exposure to enteropathogens and these critical long-term outcomes.

  8. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia.

    PubMed

    Keto-Timonen, Riikka; Hietala, Nina; Palonen, Eveliina; Hakakorpi, Anna; Lindström, Miia; Korkeala, Hannu

    2016-01-01

    Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp) as a response to rapid temperature downshift (cold shock). During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0°C and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia. PMID:27499753

  9. Methods of analysis of enteropathogen infection in the MAL-ED Cohort Study.

    PubMed

    Platts-Mills, James A; McCormick, Benjamin J J; Kosek, Margaret; Pan, William K; Checkley, William; Houpt, Eric R

    2014-11-01

    Studies of diarrheal etiology in low- and middle-income countries have typically focused on children presenting with severe symptoms to health centers and thus are best equipped to describe the pathogens capable of leading to severe diarrheal disease. The Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) cohort study was designed to evaluate, via intensive community surveillance, the hypothesis that repeated exposure to enteropathogens has a detrimental effect on growth, vaccine response, and cognitive development, which are the primary outcome measures for this study. In the setting of multiple outcomes of interest, a longitudinal cohort design was chosen. Because many or even the majority of enteric infections are asymptomatic, the collection of asymptomatic surveillance stools was a critical element. However, capturing diarrheal stools additionally allowed for the determination of the principle causes of diarrhea at the community level as well as for a comparison between those enteropathogens associated with diarrhea and those that are associated with poor growth, diminished vaccine response, and impaired cognitive development. Here, we discuss the analytical methods proposed for the MAL-ED study to determine the principal causes of diarrhea at the community level and describe the complex interplay between recurrent exposure to enteropathogens and these critical long-term outcomes. PMID:25305292

  10. Clinical Implications of Enteroadherent Escherichia coli

    PubMed Central

    Arenas-Hernández, Margarita M.P.; Martínez-Laguna, Ygnacio; Torres, Alfredo G.

    2012-01-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli enteropathogenic E. coli and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including non-intimate adherence mediated by various adhesins. These so called “enteroadherent E. coli ” categories subsequently produced toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  11. Clinical implications of enteroadherent Escherichia coli.

    PubMed

    Arenas-Hernández, Margarita M P; Martínez-Laguna, Ygnacio; Torres, Alfredo G

    2012-10-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli, enteropathogenic E. coli, and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including nonintimate adherence mediated by various adhesins. These so called "enteroadherent E. coli" categories subsequently produce toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  12. The growing threat of foodborne bacterial enteropathogens of animal origin.

    PubMed

    DuPont, Herbert L

    2007-11-15

    Campylobacter and Salmonella species and Shiga toxin-producing Escherichia coli (STEC; the majority of which are type O157:H7) efficiently enter the human food chain from infected or colonized animals. Poultry contamination with Campylobacter and/or Salmonella species and produce contamination with STEC have become major public health challenges. The global food supply, which allows us to purchase desired items throughout the year, a growing interest in consuming fresh vegetables and fruits, and an increasing number of persons who consume foods at restaurants all assure that the health threats associated with these pathogens will continue. Antibiotic use by humans and food animals selects for the development of resistance among Campylobacter and Salmonella strains, promoting invasive forms of infection and complicating therapy of illness. A comprehensive public health approach is needed that focuses on disease surveillance and infection control in the food industry continuum, from harvesting and processing, to distribution, to later preparation in public eating establishments and in homes. Good Agricultural Practices, including the Hazard Analysis and Critical Control Point Program and validation of critical infection-control points at all stages of the food industry cycle, coupled with other food safety interventions, including irradiation for certain higher-risk foods, should help us improve the quality of food with regard to microbials and reduce human disease.

  13. Porcine prion protein amyloid.

    PubMed

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. PMID:26218890

  14. Porcine prion protein amyloid

    PubMed Central

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    ABSTRACT Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. PMID:26218890

  15. Porcine prion protein amyloid.

    PubMed

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  16. Expression and purification of soluble porcine cystatin 11 in Pichia pastoris.

    PubMed

    Fan, Kuohai; Jiang, Junbing; Wang, Zhirui; Fan, Ruicheng; Yin, Wei; Sun, Yaogui; Li, Hongquan

    2014-11-01

    Cystatin 11 (CST11) belongs to the cystatin type 2 family of cysteine protease inhibitors and exhibits antimicrobial activity in vitro. In this study, we describe the expression and purification of recombinant porcine CST11 in the Pichia pastoris system. We then assess its antimicrobial activity against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, and Bacillus subtilis by liquid growth inhibition assay. Kinetic studies indicate that the recombinant porcine CST11 has high potency against E. coli and S. aureus. Scanning electronic microscope analysis showed that CST11 might be targeting the bacterial membrane and, thus, could potentially be developed as a therapeutic agent for inhibiting microbe infection without the risk of antibiotic resistance.

  17. Propagation of Human Enteropathogens in Constructed Horizontal Wetlands Used for Tertiary Wastewater Treatment ▿

    PubMed Central

    Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Mashinski, Yessika; Broaders, Michael A.; Connolly, Michelle; Cheng, Hui-Wen A.

    2009-01-01

    Constructed subsurface flow (SSF) and free-surface flow (FSF) wetlands are being increasingly implemented worldwide into wastewater treatments in response to the growing need for microbiologically safe reclaimed waters, which is driven by an exponential increase in the human population and limited water resources. Wastewater samples from four SSF and FSF wetlands in northwestern Ireland were tested qualitatively and quantitatively for Cryptosporidium spp., Giardia duodenalis, and human-pathogenic microsporidia, with assessment of their viability. Overall, seven species of human enteropathogens were detected in wetland influents, vegetated areas, and effluents: Cryptosporidium parvum, C. hominis, C. meleagridis, C. muris, G. duodenalis, Encephalitozoon hellem, and Enterocytozoon bieneusi. SSF wetland had the highest pathogen removal rate (i.e., Cryptosporidium, 97.4%; G. duodenalis, 95.4%); however, most of these values for FSF were in the negative area (mean, −84.0%), meaning that more pathogens were discharged by FSF wetlands than were delivered to wetlands with incoming wastewater. We demonstrate here that (i) the composition of human enteropathogens in wastewater entering and leaving SSF and FSF wetlands is highly complex and dynamic, (ii) the removal and inactivation of human-pathogenic microorganisms were significantly higher at the SSF wetland, (iii) FSF wetlands may not always provide sufficient remediation for human enteropathogens, (iv) wildlife can contribute a substantial load of human zoonotic pathogens to wetlands, (v) most of the pathogens discharged by wetlands were viable, (vi) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat, and (vii) even with the best pathogen removal rates achieved by SSF wetland, the reduction of pathogens was not enough for a safety reuse of the reclaimed water. To our knowledge, this

  18. Rabbit-specific fimbriae, Ral, alter the patterns of in vitro adherence and intestinal colonisation of rabbits by human-specific enteropathogenic E. coli.

    PubMed

    Hart, Emily; Tauschek, Marija; Bennett-Wood, Vicki; Hartland, Elizabeth L; Robins-Browne, Roy M

    2009-01-01

    Enteropathogenic Escherichia coli (EPEC) poses a significant threat to human health, causing diarrhoea in children worldwide, and is a leading cause of infant mortality in developing countries. The pathogenic effects of EPEC and other attaching-effacing (A/E) bacteria result from adhesion to the intestinal mucosa by a variety of mechanisms, including fimbrial adhesins, which are believed to contribute to the host and tissue specificity of EPEC by their interaction with specific receptors on cell surfaces. In this study we investigated the contribution of a fimbrial adhesin, Ral, of rabbit-specific EPEC (REPEC) to host specificity by introducing Ral into derivatives of human-specific EPEC (hEPEC) strain, E2348/69, in which expression of the fimbrial adhesin, Bfp, had been interrupted. Although unable to cause diarrhoeal disease in rabbits, Ral-bearing hEPEC strains colonised rabbit intestine more efficiently and showed altered intestinal localisation when compared to an isogenic Ral-negative strain. These findings suggest that Ral enhances the initial interaction between a DeltabfpA mutant of hEPEC and rabbit intestine and may influence tissue specificity, but is not sufficient on its own to transform hEPEC into a rabbit pathogen. This study affords new insights into the complex mechanisms which determine the host range of bacterial pathogens.

  19. EspG of enteropathogenic and enterohemorrhagic E. coli binds the Golgi matrix protein GM130 and disrupts the Golgi structure and function.

    PubMed

    Clements, Abigail; Smollett, Katherine; Lee, Sau Fung; Hartland, Elizabeth L; Lowe, Martin; Frankel, Gad

    2011-09-01

    The enteric pathogens enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli (EHEC) and Shigella flexneri all translocate at least one effector protein of the EspG protein family into host cells via a type III secretion system (T3SS). The EspG family comprises EspG, EspG2 and VirA. From a Y2H screen, we identified the Golgi matrix protein GM130 as a potential binding partner of EspG. We confirmed EspG:GM130 protein interaction by affinity co-purification. In co-immunoprecipitation experiments EspG was co-precipitated with GM130 while both GM130 and tubulins were co-precipitated with EspG. When expressed ectopically in HeLa cells, the EspG protein family all localized to the Golgi and induced fragmentation of the Golgi apparatus. All EspG family proteins were also able to disrupt protein secretion to a greater extent than the T3SS effector NleA/EspI, which has previously been shown to localize to the Golgi and interact with SEC24 to disrupt COPII vesicle formation. We hypothesize that EspG:GM130 interaction disrupts protein secretion either through direct disruption of GM130 function or through recruitment of other EspG interacting proteins to the Golgi.

  20. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required.

  1. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  2. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  3. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  4. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  5. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  6. Enteroadherent Escherichia coli as a cause of diarrhea among children in Mexico.

    PubMed Central

    Mathewson, J J; Oberhelman, R A; Dupont, H L; Javier de la Cabada, F; Garibay, E V

    1987-01-01

    Enteropathogenic Escherichia coli (EPEC) often exhibits localized adherence or diffuse adherence to HEp-2 cells. We recently provided evidence that HEp-2 cell-adherent or enteroadherent E. coli (EAEC) not belonging to EPEC serogroups was the cause of diarrhea among U.S. travelers to Mexico. In the present study, we looked for EAEC and EPEC in stool specimens from 154 children with acute diarrhea and 137 well children seen at several outpatient clinics in Guadalajara, Mexico. EAEC showing localized adherence (EAEC-L) was isolated from 13.0% of the patients and 0.7% of the controls (P less than 0.0001). EAEC showing diffuse adherence (EAEC-D) was recovered from 20.8% of the patients and 7.3% of the controls (P less than 0.001). EPEC was isolated from 4.5 and 6.7% of the patients and controls, respectively. Among all enteropathogens, only enterotoxigenic E. coli occurred as commonly (21.4%) as EAEC-D and EAEC-L did in children with diarrhea. Of the EAEC-L strains isolated from children with diarrhea, 20% belonged to recognized EPEC serogroups, and 3.1% of EAEC-D strains belonged to recognized EPEC serogroups. This study suggests that EAEC may be an important pediatric enteropathogen in Mexican children with diarrhea and further supports the observation that adherence to HEp-2 cells may be a marker of virulence independent of EPEC serogroup among E. coli strains. PMID:3312288

  7. Radiation sensitivity of bacteria and virus in porcine xenoskin for dressing agent

    NASA Astrophysics Data System (ADS)

    Jo, Eu-Ri; Jung, Pil-Mun; Choi, Jong-il; Lee, Ju-Woon

    2012-08-01

    In this study, gamma irradiation sensitivities of bacteria and viruses in porcine skin were evaluated to establish the optimum sterilization condition for the dressing material and a xenoskin graft. Escherichia coli and Bacillus subtilis were used as model pathogens and inoculated at 106-107 log CFU/g. As model viruses, porcine parvovirus (PPV), bovine viral diarrhea virus (BVDV), and poliovirus were used and inoculated at 105-106 TCID50/g into porcine skin. The D10 value of E. coli was found to be 0.25±0.1 kGy. B. subtilis endospores produced under stressful environmental conditions showed lower radiation sensitivity as D10 was 3.88±0.3 kGy in porcine skin. The D10 values of PPV, BVDV, and poliovirus were found to be 1.73±0.2, 3.81±0.2, and 6.88±0.3 kGy, respectively. These results can offer the basic information required for inactivating pathogens by gamma irradiation and achieving dressing material and porcine skin grafts.

  8. Concentration and pattern changes of porcine serum apolipoprotein A-I in four different infectious diseases.

    PubMed

    Marco-Ramell, Anna; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Bassols, Anna; Miller, Ingrid

    2015-02-01

    Apolipoprotein A-I (Apo A-I) is a major protein in lipid/lipoprotein metabolism and decreased serum levels have been observed in many species in response to inflammatory and infectious challenges. Little is known about the porcine homologue, therefore in this work we have characterized it through biochemical and proteomic techniques. In 2DE, porcine serum Apo A-I is found as three spots, the two more acidic ones corresponding to the mature protein, the more basic spot to the protein precursor. Despite high sequence coverage in LC-MS/MS, we did not find a sequence or PTM difference between the two mature protein species. Besides this biochemical characterization, we measured overall levels and relative species abundance of serum Apo A-I in four different viral and bacterial porcine infectious diseases. Lower overall amounts of Apo A-I were observed in Salmonella typhimurium and Escherichia coli infections. In the 2DE protein pattern, an increase of the protein precursor together with a lower level of mature protein species were detected in the porcine circovirus type 2-systemic disease and S. typhimurium infection. These results reveal that both the porcine serum Apo A-I concentration and the species pattern are influenced by the nature of the infectious disease.

  9. Prevalence and Characterization of Shiga Toxin-Producing and Enteropathogenic Escherichia coli in Shellfish-Harvesting Areas and Their Watersheds

    PubMed Central

    Balière, Charlotte; Rincé, Alain; Blanco, Jorge; Dahbi, Ghizlane; Harel, Josée; Vogeleer, Philippe; Giard, Jean-Christophe; Mariani-Kurkdjian, Patricia; Gourmelon, Michèle

    2015-01-01

    more strains formed a strong biofilm at 18 than at 30°C. Finally, more than 85% of analyzed strains were found to be sensitive to the 16 tested antibiotics. These data suggest the low risk of human infection by STEC if shellfish from these shellfish-harvesting areas were consumed. PMID:26648928

  10. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli

    PubMed Central

    Ugalde-Silva, Paul; Gonzalez-Lugo, Octavio; Navarro-Garcia, Fernando

    2016-01-01

    The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption. PMID:27606286

  11. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli.

    PubMed

    Ugalde-Silva, Paul; Gonzalez-Lugo, Octavio; Navarro-Garcia, Fernando

    2016-01-01

    The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption. PMID:27606286

  12. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli

    PubMed Central

    Ugalde-Silva, Paul; Gonzalez-Lugo, Octavio; Navarro-Garcia, Fernando

    2016-01-01

    The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption.

  13. Activity of essential oils from Brazilian medicinal plants on Escherichia coli.

    PubMed

    Duarte, Marta Cristina Teixeira; Leme, Ewerton Eduardo; Delarmelina, Camila; Soares, Andressa Almeida; Figueira, Glyn Mara; Sartoratto, Adilson

    2007-05-01

    Essential oils obtained from leaves of 29 medicinal plants commonly used in Brazil were screened against 13 different Escherichia coli serotypes. The oils were obtained by water-distillation using a Clevenger-type system and their minimal inhibitory concentration (MIC) were determined by microdilution method. Essential oil from Cymbopogon martinii exhibited a broad inhibition spectrum, presenting strong activity (MIC between 100 and 500 microg/mL) against 10 out of 13 Escherichia coli serotypes: three enterotoxigenic, two enteropathogenic, three enteroinvasive and two shiga-toxin producers. C. winterianus inhibited strongly two enterotoxigenic, one enteropathogenic, one enteroinvasive and one shiga-toxin producer serotypes. Aloysia triphylla also shows good potential to kill Escherichia coli with moderate to strong inhibition. Other essential oils showed antimicrobial properties, however with a more restricted action against the serotypes studied. Chemical analysis of Cymbopogon martinii essential oil performed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS) showed the presence of compounds with known antimicrobial activity, including geraniol, geranyl acetate and trans-cariophyllene, which tested separately, indicated geraniol as antimicrobial active compound. The significant antibacterial activity of Cymbopogon martinii oil suggests that they could serve as a source for compounds with therapeutic potential.

  14. Activity of essential oils from Brazilian medicinal plants on Escherichia coli.

    PubMed

    Duarte, Marta Cristina Teixeira; Leme, Ewerton Eduardo; Delarmelina, Camila; Soares, Andressa Almeida; Figueira, Glyn Mara; Sartoratto, Adilson

    2007-05-01

    Essential oils obtained from leaves of 29 medicinal plants commonly used in Brazil were screened against 13 different Escherichia coli serotypes. The oils were obtained by water-distillation using a Clevenger-type system and their minimal inhibitory concentration (MIC) were determined by microdilution method. Essential oil from Cymbopogon martinii exhibited a broad inhibition spectrum, presenting strong activity (MIC between 100 and 500 microg/mL) against 10 out of 13 Escherichia coli serotypes: three enterotoxigenic, two enteropathogenic, three enteroinvasive and two shiga-toxin producers. C. winterianus inhibited strongly two enterotoxigenic, one enteropathogenic, one enteroinvasive and one shiga-toxin producer serotypes. Aloysia triphylla also shows good potential to kill Escherichia coli with moderate to strong inhibition. Other essential oils showed antimicrobial properties, however with a more restricted action against the serotypes studied. Chemical analysis of Cymbopogon martinii essential oil performed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS) showed the presence of compounds with known antimicrobial activity, including geraniol, geranyl acetate and trans-cariophyllene, which tested separately, indicated geraniol as antimicrobial active compound. The significant antibacterial activity of Cymbopogon martinii oil suggests that they could serve as a source for compounds with therapeutic potential. PMID:17210236

  15. Sorbitol-negative phenotype among enterohemorrhagic Escherichia coli strains of different serotypes and from different sources.

    PubMed Central

    Ojeda, A; Prado, V; Martinez, J; Arellano, C; Borczyk, A; Johnson, W; Lior, H; Levine, M M

    1995-01-01

    Enterohemorrhagic Escherichia coli (EHEC) strains detected with DNA probes (for virulence plasmid and Shiga-like toxins) from subjects with hemolytic-uremic syndrome (n = 19) or diarrhea (n = 41) or asymptomatic carriers (n = 29) were examined for sorbitol fermentability, as were enterotoxigenic (n = 40), enteropathogenic (n = 40), and enteroinvasive (n = 40) E. coli and urinary tract infection (n = 40) strains and normal flora E. coli strains (n = 40). Sorbitol negativity was common only in EHEC, particularly among strains from severe clinical infections. All 19 EHEC strains from patients with hemolytic-uremic syndrome, irrespective of O:H serotype or Shiga-like toxin genotype, were sorbitol negative. PMID:7559979

  16. Sorbitol-negative phenotype among enterohemorrhagic Escherichia coli strains of different serotypes and from different sources.

    PubMed

    Ojeda, A; Prado, V; Martinez, J; Arellano, C; Borczyk, A; Johnson, W; Lior, H; Levine, M M

    1995-08-01

    Enterohemorrhagic Escherichia coli (EHEC) strains detected with DNA probes (for virulence plasmid and Shiga-like toxins) from subjects with hemolytic-uremic syndrome (n = 19) or diarrhea (n = 41) or asymptomatic carriers (n = 29) were examined for sorbitol fermentability, as were enterotoxigenic (n = 40), enteropathogenic (n = 40), and enteroinvasive (n = 40) E. coli and urinary tract infection (n = 40) strains and normal flora E. coli strains (n = 40). Sorbitol negativity was common only in EHEC, particularly among strains from severe clinical infections. All 19 EHEC strains from patients with hemolytic-uremic syndrome, irrespective of O:H serotype or Shiga-like toxin genotype, were sorbitol negative.

  17. Adherence to HEp-2 cells and enteropathogenic potential of Aeromonas spp.

    PubMed

    Grey, P A; Kirov, S M

    1993-04-01

    Aeromonas strains (total = 60) of clinical, water and food origin were tested for adherence to HEp-2 cells. Environmental strains were selected (except for A. caviae) to include primarily those expressing other virulence-associated properties. Adhesion was markedly species-dependent (A. veronii biotype sobria, 15 of 26 [58%]. A caviae, 4 of 12 [33%] and A. hydrophila, 2 of 8 [11%]). A. veronii biotype sobria were adhesive, irrespective of source (62 and 54% for clinical and environmental strains, respectively). Adherent strains of this species were enterotoxin-positive and most (13 of 15) grew at 43 degrees C. A. caviae isolated from clinical specimens contained a higher proportion (75%) of adherent strains than environmental strains (13%). Virulent subsets of A. veronii biotype sobria and A. caviae are adherent to HEp-2 cells. The HEp-2 assay is a useful model for investigating mechanisms of adherence and enteropathogenicity of virulent Aeromonas species.

  18. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1{beta} effect and increase in the transepithelial passage of commensal bacteria

    SciTech Connect

    Maresca, Marc; Yahi, Nouara; Younes-Sakr, Lama; Boyron, Marilyn; Caporiccio, Bertrand; Fantini, Jacques

    2008-04-01

    Mycotoxins are fungal secondary metabolites responsible of food-mediated intoxication in animals and humans. Deoxynivalenol, ochratoxin A and patulin are the best known enteropathogenic mycotoxins able to alter intestinal functions resulting in malnutrition, diarrhea, vomiting and intestinal inflammation in vivo. Although their effects on intestinal barrier and transport activities have been extensively characterized, the mechanisms responsible for their pro-inflammatory effect are still poorly understood. Here we investigated if mycotoxin-induced intestinal inflammation results from a direct and/or indirect pro-inflammatory activity of these mycotoxins on human intestinal epithelial cells, using differentiated Caco-2 cells as model and interleukin 8 (IL-8) as an indicator of intestinal inflammation. Deoxynivalenol was the only mycotoxin able to directly increase IL-8 secretion (10- to 15-fold increase). We also investigated if these mycotoxins could indirectly stimulate IL-8 secretion through: (i) a modulation of the action of pro-inflammatory molecules such as the interleukin-1beta (IL-1{beta}), and/or (ii) an increase in the transepithelial passage of non-invasive commensal Escherichia coli. We found that deoxynivalenol, ochratoxin A and patulin all potentiated the effect of IL-1{beta} on IL-8 secretion (ranging from 35% to 138% increase) and increased the transepithelial passage of commensal bacteria (ranging from 12- to 1544-fold increase). In addition to potentially exacerbate established intestinal inflammation, these mycotoxins may thus participate in the induction of sepsis and intestinal inflammation in vivo. Taken together, our results suggest that the pro-inflammatory activity of enteropathogenic mycotoxins is mediated by both direct and indirect effects.

  19. Escherichia Coli

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  20. The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium

    PubMed Central

    Read, Hannah M.; Mills, Grant; Johnson, Sarah; Tsai, Peter; Dalton, James; Barquist, Lars; Print, Cristin G.; Patrick, Wayne M.

    2016-01-01

    Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments. PMID:27366640

  1. The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium.

    PubMed

    Read, Hannah M; Mills, Grant; Johnson, Sarah; Tsai, Peter; Dalton, James; Barquist, Lars; Print, Cristin G; Patrick, Wayne M; Wiles, Siouxsie

    2016-01-01

    Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments. PMID:27366640

  2. Drinking water and diarrhoeal disease due to Escherichia coli.

    PubMed

    Hunter, Paul R

    2003-06-01

    Escherichia coli has had a central place in water microbiology for decades as an indicator of faecal pollution. It is only relatively recently that the role of E. coli as pathogen, rather than indicator, in drinking water has begun to be stressed. Interest in the role of E. coli as a cause of diarrhoeal disease has increased because of the emergence of E. coli O157:H7 and other enterohaemorrhagic E. coli, due to the severity of the related disease. There are enterotoxigenic, enteropathogenic, enterohaemorrhagic, enteroinvasive, enteroaggregative and diffusely adherent strains of E. coli. Each type of E. coli causes diarrhoeal disease through different mechanisms and each causes a different clinical presentation. Several of the types cause diarrhoea by the elaboration of one or more toxins, others by some other form of direct damage to epithelial cells. This paper discusses each of these types in turn and also describes their epidemiology, with particular reference to whether they are waterborne or not.

  3. Antiviral activity of quercetin 7-rhamnoside against porcine epidemic diarrhea virus.

    PubMed

    Choi, Hwa-Jung; Kim, Jin-Hee; Lee, Choong-Hwan; Ahn, Young-Joon; Song, Jae-Hyoung; Baek, Seung-Hwa; Kwon, Dur-Han

    2009-01-01

    Porcine epidemic diarrhea virus (PEDV) is the predominant cause of severe entero-pathogenic diarrhea in swine. The lack of effective therapeutical treatment underlines the importance of research for new antivirals. In this study, we identified Q7R, which actively inhibited PEDV replication with a 50% inhibitory concentration (IC(50)) of 0.014 microg/mL. The 50% cytotoxicity concentration (CC(50)) of Q7R was over 100 microg/mL and the derived therapeutic index was 7142. Several structural analogues of Q7R, quercetin, apigenin, luteolin and catechin, also showed moderate anti-PEDV activity. Antiviral drugs and natural compounds revealed ribavirin, interferon-alpha, coumarin and tannic acid have relative weaker efficacy compared to Q7R. Q7R did not directly interact with or inactivate PEDV particles and affect the initial stage of PEDV infection by interfering of PEDV replication. Also, the effectiveness of Q7R against the other two viruses (TGEV, PRCV) was lower compared to PEDV. Q7R could be considered as a lead compound for development of anti-PEDV drugs to may be used to during the early stage of PEDV replication and the structure-activity data of Q7R may usefully guideline to design other related antiviral agents.

  4. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  5. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  6. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  7. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  8. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  9. Coliform and Escherichia coli contamination of desserts served in public restaurants from Guadalajara, Mexico, and Houston, Texas.

    PubMed

    Vigil, Karen J; Jiang, Zhi-Dong; Chen, Jaclyn J; Palumbo, Kathryn L; Galbadage, Thushara; Brown, Eric L; Yiang, Jing; Koo, Hoonmo; DuPont, Margaret W; Ericsson, Charles; Adachi, Javier A; DuPont, Herbert L

    2009-04-01

    Bacterial enteropathogens acquired from contaminated food are the principal causes of travelers' diarrhea (TD). We evaluated desserts obtained from popular restaurants in the tourist city of Guadalajara, Mexico, and Houston, Texas, to determine coliform and Escherichia coli contamination levels and presence of diarrheagenic E. coli known to be important in TD. Contamination for all organisms was seen for desserts served in Guadalajara restaurants. Desserts should be considered as potentially risky foods for development of TD among international visitors to developing regions of the world.

  10. Enhancement of plaque formation and cell fusion of an enteropathogenic coronavirus by trypsin treatment.

    PubMed Central

    Storz, J; Rott, R; Kaluza, G

    1981-01-01

    Plaque formation, replication, and related cytopathic functions of the enteropathogenic bovine coronavirus strain L9 in bovine fetal thyroid (BFTy) and bovine fetal brain (BFB) cells were investigated in the presence and absence of trypsin. Plaque formation was enhanced in both cell types. Plaques reached a size with an average diameter of 5 mm within 4 days with trypsin in the overlay, whereas their diameter remained less than 1 mm at this time after plating without trypsin in the overlay. Fusion of both cell types was observed 12 to 18 h after infection when trypsin was present in the medium. Fusion was not observed in infected BFB cell cultures and was rarely observed 48 h after infection of BFTy cells maintained with the trypsin-free medium. The largest polycaryons formed had 15 to 22 nuclei. They then lysed and detached. Cell fusion depended on de novo synthesis of hemagglutinin and infectivity. Fusion from without was not observed. Virus produced under trypsin-enhancing conditions accompanied by cell fusion did not lyse mouse erythrocytes that reacted with L9 coronavirus hemagglutinin. Trypsin-treated, infected BFTy cultures produced coronaviral particles that excluded stain from the envelope confinement. These virions had uniformly shorter surface projections than did the viral forms generated by trypsin-free cell cultures. Images PMID:7228403

  11. Inactivation of enteropathogenic E. coli by solar disinfection (SODIS) under simulated sunlight conditions

    NASA Astrophysics Data System (ADS)

    Ubomba-Jaswa, E.; Boyle, M. A. R.; McGuigan, K. G.

    2008-02-01

    Solar Disinfection (SODIS) is a low cost water treatment method currently used in communities that do not have year round access to safe water. However, there is still reluctance in widespread adoption of this treatment method due to a number of limitations. An important limitation is the lack of SODIS inactivation studies on some waterborne pathogens in the developing world. SODIS inactivation of enteropathogenic E. coli (EPEC), a major cause of infantile diarrhoea is reported for the first time under simulated sunlight conditions and following a natural temperature profile. EPEC was exposed to simulated sunlight (885Wm-2) for periods up to a cumulative time of 4 hours. Inactivation was determined by a log reduction in growth of the organisms. The temperature (°C) of the water was taken at every time point. After 4 hours exposure EPEC was completely inactivated (7 log reduction) by SODIS. Imposing a realistic water temperature profile (min-max) concomitant with irradiation produces a greater kill of EPEC. Maintaining simulated sunlight experiments at a high fixed temperature may result in over --estimation of inactivation. Following a natural water temperature profile will result in more reliable inactivation comparable with those that might be obtained under natural sunlight conditions.

  12. Enteropathogens Associated with Acute Diarrhea in Children from Households with High Socioeconomic Level in Uruguay

    PubMed Central

    Batthyány, Lara; Bianco, María Noel; Pérez, Walter; Pardo, Lorena; Algorta, Gabriela; Robino, Luciana; Suárez, Ramón; Navarro, Armando; Pírez, María Catalina; Schelotto, Felipe

    2015-01-01

    Infectious diarrhea, a common disease of children, deserves permanent monitoring in all social groups. To know the etiology and clinical manifestations of acute diarrhea in children up to 5 years of age from high socioeconomic level households, we conducted a descriptive, microbiological, and clinical study. Stools from 59 children with acute community-acquired diarrhea were examined, and their parents were interviewed concerning symptoms and signs. Rotavirus, adenovirus, and norovirus were detected by commercially available qualitative immunochromatographic lateral flow rapid tests. Salmonella, Campylobacter, Yersinia, and Shigella were investigated by standard bacteriological methods and diarrheagenic E. coli by PCR assays. We identified a potential enteric pathogen in 30 children. The most frequent causes of diarrhea were enteropathogenic E. coli (EPEC), viruses, Campylobacter, Salmonella, and Shiga-toxin-producing E. coli (STEC). Only 2 patients showed mixed infections. Our data suggest that children with viral or Campylobacter diarrhea were taken to the hospital earlier than those infected with EPEC. One child infected with STEC O26 developed “complete” HUS. The microbiological results highlight the importance of zoonotic bacteria such as atypical EPEC, Campylobacter, STEC, and Salmonella as pathogens associated with acute diarrhea in these children. The findings also reinforce our previous communications about the regional importance of non-O157 STEC strains in severe infant food-borne diseases. PMID:25861274

  13. Inhibitory effects of recombinant feline interferon on the replication of feline enteropathogenic viruses in vitro.

    PubMed

    Mochizuki, M; Nakatani, H; Yoshida, M

    1994-03-01

    Antiviral activities of a recombinant feline interferon (rFeIFN) KT-80 were evaluated against feline enteropathogenic viruses in feline and canine cell lines. Sensitivity to antiviral activities of the rFeIFN varied with cell types; Felis catus whole fetus (fcwf-4) cells were more sensitive than Crandell feline kidney cells, but no sensitivity was found for Madin-Darby canine kidney cells when vesicular stomatitis virus was used as a challenge virus. Reductions were generally IFN dose-dependent and were more consistent when the cells were continuously treated with the rFeIFN than when they were pretreated only before viral challenge. Compared with each virus control culture of fcwf-4 cells, yields of rotavirus, feline panleukopenia virus (FPLV), feline calicivirus and feline infectious peritonitis coronavirus were reduced by ranges of 1.3 to < or = 3.1 log10, 0.6 to 1.6 log2, 0.8 to 3.7 log10 and 0.5 to 0.6 log10, respectively, in the cultures continuously treated with 10 to 10000 U of the rFeIFN. The yield reduction of FPLV was considered to be in part attributable to inhibition of cell growth by the rFeIFN supplemented in the medium. PMID:7515537

  14. Blocking porcine sialoadhesin improves extracorporeal porcine liver xenoperfusion with human blood

    PubMed Central

    Waldman, Joshua P.; Vogel, Thomas; Burlak, Christopher; Coussios, Constantin; Dominguez, Javier; Friend, Peter; Rees, Michael A.

    2013-01-01

    Patients in fulminant hepatic failure currently do not have a temporary means of support while awaiting liver transplantation. A potential therapeutic approach for such patients is the use of extracorporeal perfusion with porcine livers as a form of “liver dialysis”. During a 72-hour extracorporeal perfusion of porcine livers with human blood, porcine Kupffer cells bind to and phagocytose human red blood cells (hRBC) causing the hematocrit to decrease to 2.5% of the original value. Our laboratory has identified porcine sialoadhesin expressed on Kupffer cells as the lectin responsible for binding N-acetylneuraminic acid on the surface of the hRBC. We evaluated whether blocking porcine sialoadhesin prevents the recognition and subsequent destruction of hRBCs seen during extracorporeal porcine liver xenoperfusion. Ex vivo studies were performed using wild type pig livers perfused with isolated hRBCs for 72-hours in the presence of an anti-porcine sialoadhesin antibody or isotype control. The addition of an anti-porcine sialoadhesin antibody to an extracorporeal porcine liver xenoperfusion model reduces the loss of hRBC over a 72 hour period. Sustained liver function was demonstrated throughout the perfusion. This study illustrates the role of sialoadhesin in mediating the destruction of hRBCs in an extracorporeal porcine liver xenoperfusion model. PMID:23822217

  15. Lactobacillus acidophilus counteracts enteropathogenic E. coli-induced inhibition of butyrate uptake in intestinal epithelial cells.

    PubMed

    Kumar, Anoop; Alrefai, Waddah A; Borthakur, Alip; Dudeja, Pradeep K

    2015-10-01

    Butyrate, a key short-chain fatty acid metabolite of colonic luminal bacterial action on dietary fiber, serves as a primary fuel for the colonocytes, ameliorates mucosal inflammation, and stimulates NaCl absorption. Absorption of butyrate into the colonocytes is essential for these intracellular effects. Monocarboxylate transporter 1 (MCT1) plays a major role in colonic luminal butyrate absorption. Previous studies (Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. Adv Immunol 121: 91-119, 2014.) showed decreased MCT1 expression and function in intestinal inflammation. We have previously shown (Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G, Dudeja PK. Am J Physiol Gastrointest Liver Physiol 290: G30-G35, 2006.) impaired butyrate absorption in human intestinal epithelial Caco-2 cells due to decreased MCT1 level at the apical cell surface following enteropathogenic E. coli (EPEC) infection. Current studies, therefore, examined the potential role of probiotic Lactobacilli in stimulating MCT1-mediated butyrate uptake and counteracting EPEC inhibition of MCT1 function. Of the five species of Lactobacilli, short-term (3 h) treatment with L. acidophilus (LA) significantly increased MCT1-mediated butyrate uptake in Caco-2 cells. Heat-killed LA was ineffective, whereas the conditioned culture supernatant of LA (LA-CS) was equally effective in stimulating MCT1 function, indicating that the effects are mediated by LA-secreted soluble factor(s). Furthermore, LA-CS increased apical membrane levels of MCT1 protein via decreasing its basal endocytosis, suggesting that LA-CS stimulation of butyrate uptake could be secondary to increased levels of MCT1 on the apical cell surface. LA-CS also attenuated EPEC inhibition of butyrate uptake and EPEC-mediated endocytosis of MCT1. Our studies highlight distinct role of specific LA-secreted molecules in modulating colonic butyrate absorption. PMID:26272259

  16. Porcine Head Response to Blast

    PubMed Central

    Shridharani, Jay K.; Wood, Garrett W.; Panzer, Matthew B.; Capehart, Bruce P.; Nyein, Michelle K.; Radovitzky, Raul A.; Bass, Cameron R. ‘Dale’

    2012-01-01

    Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740 kPa peak incident overpressure with scaled durations from 1.3 to 6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30 s and the remaining two recovered within 8 min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300–2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G’s and were well correlated with peak incident overpressure (R2 = 0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are

  17. Sirtuin Inhibition Adversely Affects Porcine Oocyte Meiosis

    PubMed Central

    Zhang, Liang; Ma, Rujun; Hu, Jin; Ding, Xiaolin; Xu, Yinxue

    2015-01-01

    Sirtuins have been implicated in diverse biological processes, including oxidative stress, energy metabolism, cell migration, and aging. Here, we employed Sirtuin inhibitors, nicotinamide (NAM) and Sirtinol, to investigate their effects on porcine oocyte maturation respectively. The rate of polar body extrusion in porcine oocytes decreased after treatment with NAM and Sirtinol, accompanied with the failure of cumulus cell expansion. We further found that NAM and Sirtinol significantly disrupted oocyte polarity, and inhibited the formation of actin cap and cortical granule-free domain (CGFD). Moreover, the abnormal spindles and misaligned chromosomes were readily detected during porcine oocyte maturation after treatment with NAM and Sirtinol. Together, these results suggest that Sirtuins are involved in cortical polarity and spindle organization in porcine oocytes. PMID:26176547

  18. (PCG) Protein Crystal Growth Porcine Elastase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Porcine Elastase. This enzyme is associated with the degradation of lung tissue in people suffering from emphysema. It is useful in studying causes of this disease. Principal Investigator on STS-26 was Charles Bugg.

  19. Porcine models of muscular dystrophy.

    PubMed

    Selsby, Joshua T; Ross, Jason W; Nonneman, Dan; Hollinger, Katrin

    2015-01-01

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease.

  20. Molecular characterization of diarrheagenic Escherichia coli from Libya.

    PubMed

    Ali, Mostafa Mohamed M; Mohamed, Zienat Kamel; Klena, John D; Ahmed, Salwa Fouad; Moussa, Tarek A A; Ghenghesh, Khalifa Sifaw

    2012-05-01

    Diarrheagenic Escherichia coli (DEC) are important enteric pathogens that cause a wide variety of gastrointestinal diseases, particularly in children. Escherichia coli isolates cultured from 243 diarrheal stool samples obtained from Libyan children and 50 water samples were screened by polymerase chain reaction (PCR) for genes characteristic of enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC), and enteroinvasive E. coli (EIEC). The DEC were detected in 21 (8.6%) children with diarrhea; 10 (4.1%) cases were identified as EAEC, 3 (1.2%) as EPEC, and 8 (3.3%) were ETEC; EHEC, and EIEC were not detected. All DEC were grouped phylogenetically by PCR with the majority (> 70%) identified as phylogenetic groups A and B1. The EAEC isolates were also tested for eight genes associated with virulence using PCR. Multi-virulence (≥ 3 virulence factors) was found in 50% of EAEC isolates. Isolated EAEC possessed different virulence traits and belonged to different phylogenetic groups indicating their heterogeneity.

  1. Characteristics of verotoxigenic Escherichia coli from pigs.

    PubMed Central

    Gannon, V P; Gyles, C L; Friendship, R W

    1988-01-01

    Porcine verotoxigenic Escherichia coli were characterized with respect to frequency of occurrence, serogroup, and association with disease, weaning, and selected properties of the bacterium. Of 668 strains of E. coli from southern Ontario pigs with enteric disease, 32 (4.8%) produced verotoxin at 10(3)-10(7) cytotoxic doses per mL of culture supernatant. Of 22 isolates which belonged to O serogroups 138, 139 and 141, 15 produced verotoxin. Among other enterotoxigenic types of E. coli, two of 57 isolates of O157:K"V17" and two of 96 isolates of O149:K91 were verotoxigenic. The remaining 13 verotoxigenic E. coli belonged to O groups 2, 107, 120, 121 and 130. An additional 21 verotoxigenic E. coli belonging to O groups 138, 139 and 141 and three to O157:K"V17" were identified in a collection of 47 E. coli recovered from weaned pigs with enteric disease. Verotoxigenic E. coli were associated with postweaning diarrhea, bloody stools, sudden death and edema disease. They were isolated at similar frequencies (14%) from healthy weaned pigs, and from weaned pigs with enteric disease. Isolation rates from neonates were low and significantly different from rates in weaned pigs. Neutralizing antibody to verotoxin was not detected in the sera of 45 pigs, which included pigs from herds with a history of edema disease. Verotoxin was not associated with production of colicin, hemolysin, or enterotoxins or with any of 23 biochemical properties of the organisms. The serological data indicate that porcine verotoxigenic E. coli are not a common source of verotoxigenic E. coli for humans. Porcine verotoxin may play a role in postweaning diarrhea and absence of detectable neutralizing antibody in serum may be an important aspect of pathogenesis. PMID:3048621

  2. Prevalence and characteristics of intimin-producing Escherichia coli strains isolated from healthy chickens in Korea.

    PubMed

    Oh, J-Y; Kang, M-S; An, B-K; Shin, E-G; Kim, M-J; Kim, Y-J; Kwon, Y-K

    2012-10-01

    Virulent Escherichia coli strains have commonly been associated with diarrheal illness in humans and animals. Typical enteropathogenic Escherichia coli (EPEC) with intimin gene (eaeA) and E. coli adherence factor plasmid, or atypical EPEC with only eaeA have been implicated in human cases. In the present study, we investigated the prevalence of virulence-associated genes including eaeA in the E. coli strains isolated from cloacal specimens of 184 chicken flocks in 7 provinces in Korea between 2009 and 2010. When 7 virulence genes (VT1, VT2, LT, and ST for enterotoxigenic E. coli; eaeA and bfpA for enteropathogenic E. coli; and aggR for enteroaggregative E. coli) were screened by multiplex PCR, a total of 30 E. coli strains carrying only the eaeA gene were detected from 184 flocks that were identified as atypical enteropathogenic Escherichia coli (aEPEC). The aEPEC strains were analyzed by eae subtyping, phylogenetic grouping PCR, and serotyping. Twelve (40%) of 30 aEPEC strains possessed an eae-β subtype, followed by θ (30%), ε (16.7%), and β1 (13.3%). Eight (26.7%) of 30 aEPEC strains were designated into the phylogenetic group A. Two (6.7%) and 3 (10%) aEPEC strains were classified into the phylogenetic group B2 and D, respectively. A total of 15 (50%) aEPEC strains were serotyped to groups O24, O25, O26, O71, O80, O103, and O157, and the remaining strains were nontypeable. In analyzing the genetic diversity among the 30 aEPEC isolates by the pulsed-field gel electrophoresis method with XbaI-digestion, the pulsed-field gel electrophoresis profiling produced 20 different patterns, but isolates within the same group did not show clear geographic or breed relationships. Our data indicate that healthy chickens may constitute an important natural reservoir of aEPEC strains, and suggest that transmission to humans could not be excluded. PMID:22991525

  3. Porcine epidemic diarrhea virus infection: inhibition by polysaccharide from Ginkgo biloba exocarp and mode of its action.

    PubMed

    Lee, Jung-Hee; Park, Jang-Soon; Lee, Seung-Woong; Hwang, Seock-Yeon; Young, Bae-Eun; Choi, Hwa-Jung

    2015-01-01

    Porcine epidemic diarrhea virus (PEDV) is the predominant cause of severe entero-pathogenic diarrhea in swine. Until now there is no recorded clinically effective antiviral chemotherapeutic agent for treatment of diseases caused by PEDV. This study aimed to investigate in vitro anti-PEDV effect of polysaccharide from Ginkgo biloba exocarp and mode of its action. The polysaccharide exhibited potent antiviral activity against PEDV reducing the formation of a visible CPE [a 50% inhibitory concentration (IC50)=1.7±1.3μg/mL], compared to positive control, ribavirin and it did not show cytotoxicity at 100μg/mL [a 50% cytotoxicity concentration (CC50)=100μg/mL]. Polysaccharide also showed effective inhibitory effects when added at the viral attachment and entry steps. Moreover, polysaccharide effectively inactivated PEDV infection in time-, dose- and temperature-dependent manners. Overall, this research revealed that polysaccharide could inhibit PEDV infection, and that polysaccharide may be involved in PEDV-Vero cell interactions, as the virus attachment and entry to the Vero cells was hindered by the polysaccharide. Therefore, polysaccharide possessing effective inhibitory effect on viral attachment and entry steps of PEDV life cycle is a good candidate for development of antivirals.

  4. Lentiviral Vector Gene Transfer to Porcine Airways

    PubMed Central

    Sinn, Patrick L; Cooney, Ashley L; Oakland, Mayumi; Dylla, Douglas E; Wallen, Tanner J; Pezzulo, Alejandro A; Chang, Eugene H; McCray, Paul B

    2012-01-01

    In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE) and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE). Interestingly, feline immunodeficiency virus (FIV)-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1–based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF). PMID:23187455

  5. Isolation, cloning, and characterization of a novel phosphomannan-binding lectin from porcine serum.

    PubMed

    Ma, Bruce Yong; Nakamura, Natsuko; Dlabac, Vladimir; Naito, Haruna; Yamaguchi, Shinsuke; Ishikawa, Makiko; Nonaka, Motohiro; Ishiguro, Masaji; Kawasaki, Nobuko; Oka, Shogo; Kawasaki, Toshisuke

    2007-04-27

    Mannan-binding protein (MBP) is a C-type serum lectin that is an important constituent of the innate immune defense because it activates the complement system via the lectin pathway. While the pig has been proposed to be an attractive source of xenotransplantable tissues and organs, little is known about porcine MBP. In our previous studies, phosphomannan, but not mannan, was found to be an effective inhibitor of the C1q-independent bactericidal activity of newborn piglet serum against some rough strains of Gram-negative bacteria. In contrast, the inhibitory activities of phosphomannan and mannan were very similar in the case of MBP-dependent bactericidal activity against rough strains of Escherichia coli K-12 and S-16. Based on these findings, we inferred that an MBP-like lectin with slightly or completely different carbohydrate binding specificity might exist in newborn piglet serum and be responsible for the C1q-independent bactericidal activity. Herein we report that a novel phosphomannan-binding lectin (PMBL) of 33 kDa under reducing conditions was isolated from both newborn and adult porcine serum and characterized. Porcine PMBL functionally activated the complement system via the lectin pathway triggered by binding with both phosphomannan (P-mannan) and mannan, which, unlike MBP, was effectively inhibited by mannose 6-phosphate- or galatose-containing oligosaccharides. Our observations suggest that porcine PMBL plays a critical role in the innate immune defense from the newborn stage to adult-hood, and the establishment of a newborn piglet experimental model for the innate immune system studies is a valuable step toward elucidation of the physiological function and molecular mechanism of lectin pathway. PMID:17324926

  6. Restriction of Porcine Endogenous Retrovirus by Porcine APOBEC3 Cytidine Deaminases ▿

    PubMed Central

    Dörrschuck, Eva; Fischer, Nicole; Bravo, Ignacio G.; Hanschmann, Kay-Martin; Kuiper, Heidi; Spötter, Andreas; Möller, Ronny; Cichutek, Klaus; Münk, Carsten; Tönjes, Ralf R.

    2011-01-01

    Xenotransplantation of porcine cells, tissues, and organs shows promise to surmount the shortage of human donor materials. Among the barriers to pig-to-human xenotransplantation are porcine endogenous retroviruses (PERV) since functional representatives of the two polytropic classes, PERV-A and PERV-B, are able to infect human embryonic kidney cells in vitro, suggesting that a xenozoonosis in vivo could occur. To assess the capacity of human and porcine cells to counteract PERV infections, we analyzed human and porcine APOBEC3 (A3) proteins. This multigene family of cytidine deaminases contributes to the cellular intrinsic immunity and act as potent inhibitors of retroviruses and retrotransposons. Our data show that the porcine A3 gene locus on chromosome 5 consists of the two single-domain genes A3Z2 and A3Z3. The evolutionary relationships of the A3Z3 genes reflect the evolutionary history of mammals. The two A3 genes encode at least four different mRNAs: A3Z2, A3Z3, A3Z2-Z3, and A3Z2-Z3 splice variant A (SVA). Porcine and human A3s have been tested toward their antiretroviral activity against PERV and murine leukemia virus (MuLV) using novel single-round reporter viruses. The porcine A3Z2, A3Z3 and A3Z2-Z3 were packaged into PERV particles and inhibited PERV replication in a dose-dependent manner. The antiretroviral effect correlated with editing by the porcine A3s with a trinucleotide preference for 5′ TGC for A3Z2 and A3Z2-Z3 and 5′ CAC for A3Z3. These results strongly imply that human and porcine A3s could inhibit PERV replication in vivo, thereby reducing the risk of infection of human cells by PERV in the context of pig-to-human xenotransplantation. PMID:21307203

  7. Isolation and characterization of a Korean porcine epidemic diarrhea virus strain KNU-141112.

    PubMed

    Lee, Sunhee; Kim, Youngnam; Lee, Changhee

    2015-10-01

    Severe outbreaks of porcine epidemic diarrhea virus (PEDV) have re-emerged in Korea and rapidly swept across the country, causing tremendous economic losses to producers and customers. Despite the availability of PEDV vaccines in the domestic market, the disease continues to plague the Korean pork industry, raising issues regarding their protective efficacy and new vaccine development. Therefore, PEDV isolation in cell culture is urgently needed to develop efficacious vaccines and diagnostic assays and to conduct further studies on the virus biology. In the present study, one Korean PEDV strain, KOR/KNU-141112/2014, was successfully isolated and serially propagated in Vero cells for over 30 passages. The in vitro and in vivo characteristics of the Korean PEDV isolate were investigated. Virus production in cell culture was confirmed by cytopathology, immunofluorescence, and real-time RT-PCR. The infectious virus titers of the viruses during the first 30 passages ranged from 10(5.1) to 10(8.2) TCID50 per ml. The inactivated KNU-141112 virus was found to mediate potent neutralizing antibody responses in immunized guinea pigs. Animal studies showed that KNU-141112 virus causes severe diarrhea and vomiting, fecal shedding, and acute atrophic enteritis, indicating that strain KNU-141112 is highly enteropathogenic in the natural host. In addition, the entire genomes or complete S genes of KNU-141112 viruses at selected cell culture passages were sequenced to assess the genetic stability and relatedness. Our genomic analyses indicated that the Korean isolate KNU-141112 is genetically stable during the first 30 passages in cell culture and is grouped within subgroup G2b together with the recent re-emergent Korean strains.

  8. Antibiotic Resistance Trends in Enteropathogenic Bacteria Isolated in 1985–1987 and 1995–1998 in Barcelona

    PubMed Central

    Prats, Guillermo; Mirelis, Beatriz; Llovet, Teresa; Muñoz, Carmen; Miró, Elisenda; Navarro, Ferran

    2000-01-01

    Trends in resistance to antimicrobial agents used for therapy have been evaluated with 3,797 enteropathogenic bacteria, Campylobacter, Salmonella, Shigella, and Yersinia, between 1985–1987 and 1995–1998. The greater increase in the rate of resistance was observed in Campylobacter jejuni for quinolones (from 1 to 82%) and tetracycline (from 23 to 72%) and in gastroenteric salmonellae for ampicillin (from 8 to 44%), chloramphenicol (from 1.7 to 26%), and trimethoprim-sulfamethoxazole and nalidixic acid (from less than 0.5 to 11%). Multidrug resistance was detected in several Salmonella serotypes. In the 1995–1998 period, 76% of Shigella strains were resistant to trimethoprim-sulfamethoxazole, 43% were resistant to ampicillin, and 39% were resistant to chloramphenicol. Seventy-two percent of Yersinia enterocolitica O3 strains were resistant to streptomycin, 45% were resistant to sulfonamides, 28% were resistant to trimethoprim-sulfamethoxazole, and 20% were resistant to chloramphenicol. PMID:10770742

  9. Heat sensitivity of porcine IgG.

    PubMed

    Metzger, J J; Bourdieu, C; Rouze, P; Houdayer, M

    1975-09-01

    The sensitivity to heat of porcine IgG was studied. The serum from immunized pigs was heated at 56 degrees C for 30 min as for decomplementation. The elution pattern of the serum proteins on an agarose gel column showed a dramatic change with the appearance of a large peak of the gel-excluded material. This peak contained mainly IgG molecules which still retained its antibody activity. This fact points to misinterpretations which can easily occur in 7S and 19S antibody recognition during the porcine immune response. Correlation is suggested of this property with the large number of interheavy chain disulfide bridges present in porcine IgG.

  10. Porcine Epidemic Diarrhea Virus 3C-Like Protease Regulates Its Interferon Antagonism by Cleaving NEMO

    PubMed Central

    Wang, Dang; Fang, Liurong; Shi, Yanling; Zhang, Huan; Gao, Li; Peng, Guiqing; Chen, Huanchun; Li, Kui

    2015-01-01

    ABSTRACT Porcine epidemic diarrhea virus (PEDV) is an enteropathogenic coronavirus causing lethal watery diarrhea in piglets. Since 2010, a PEDV variant has spread rapidly in China, and it emerged in the United States in 2013, posing significant economic and public health concerns. The ability to circumvent the interferon (IFN) antiviral response, as suggested for PEDV, promotes viral survival and regulates pathogenesis of PEDV infections, but the underlying mechanisms remain obscure. Here, we show that PEDV-encoded 3C-like protease, nsp5, is an IFN antagonist that proteolytically cleaves the nuclear transcription factor kappa B (NF-κB) essential modulator (NEMO), an essential adaptor bridging interferon-regulatory factor and NF-κB activation. NEMO is cleaved at glutamine 231 (Q231) by PEDV, and this cleavage impaired the ability of NEMO to activate downstream IFN production and to act as a signaling adaptor of the RIG-I/MDA5 pathway. Mutations specifically disrupting the cysteine protease activity of PEDV nsp5 abrogated NEMO cleavage and the inhibition of IFN induction. Structural analysis suggests that several key residues outside the catalytic sites of PEDV nsp5 probably impact NEMO cleavage by modulating potential interactions of nsp5 with their substrates. These data show that PEDV nsp5 disrupts type I IFN signaling by cleaving NEMO. Previously, we and others demonstrated that NEMO is also cleaved by 3C or 3C-like proteinases of picornavirus and artertivirus. Thus, NEMO probably represents a prime target for 3C or 3C-like proteinases of different viruses. IMPORTANCE The continued emergence and reemergence of porcine epidemic diarrhea virus (PEDV) underscore the importance of studying how this virus manipulates the immune responses of its hosts. During coevolution with its hosts, PEDV has acquired mechanisms to subvert host innate immune responses for its survival advantage. At least two proteins encoded by PEDV have been identified as interferon (IFN

  11. Contamination of freshly slaughtered pig carcasses with enteropathogenic Yersinia spp.: Distribution, quantification and identification of risk factors.

    PubMed

    Van Damme, I; Berkvens, D; Vanantwerpen, G; Baré, J; Houf, K; Wauters, G; De Zutter, L

    2015-07-01

    A cross-sectional survey was undertaken to determine the overall prevalence of enteropathogenic Yersinia spp. in the tonsils, feces and on carcasses of pigs at slaughter. Moreover, factors associated with Yersinia contamination of freshly eviscerated pig carcasses were studied. Yersinia enterocolitica serotype O:3 was isolated from the tonsils and feces of 55.3% and 25.6% of pigs, and Y. pseudotuberculosis from 1.4% and 0.6%, respectively. The pathogens were also recovered from 39.7% of carcass surfaces post-evisceration. The highest prevalence was found at the mandibular region (28.9%), followed by the sternal region (16.4%), pelvic duct (7.8%), and split surface near the sacral vertebrae (6.9%). Regarding the quantification of the pathogen, the median concentration of pathogenic Y. enterocolitica was 4.14l og10 CFU/g in tonsils with countable numbers (n=143) and 2.80 log10 CFU/g for fecal samples with countable numbers (n=26). The quantitative load on the carcass surface was generally low as the majority of the carcass samples (97.0%) had Yersinia concentrations below the detection limit of enumeration (<1.30 log10 CFU/100 cm(2)). The initial presence of Y. enterocolitica in the tonsils and/or feces was significantly associated with carcass contamination at all sampled areas. Other risk factors for carcass contamination are the splitting of the head together with the carcass, and incision of the tonsils during removal of the pluck. Small adaptations in slaughter practices and the training of slaughterhouse personnel to respect basic hygienic instructions may diminish carcass contamination with enteropathogenic Yersinia.

  12. Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes.

    PubMed

    Sanchez-Villamil, Javier; Navarro-Garcia, Fernando

    2015-01-01

    Pathogens are able to breach the intestinal barrier, and different bacterial species can display different abilities to colonize hosts and induce inflammation. Inflammatory response studies induced by enteropathogens as Escherichia coli are interesting since it has acquired diverse genetic mobile elements, leading to different E. coli pathotypes. Diarrheagenic E. coli secrete toxins, effectors and virulence factors that exploit the host cell functions to facilitate the bacterial colonization. Many bacterial proteins are delivered to the host cell for subverting the inflammatory response. Hereby, we have highlighted the specific processes used by E. coli pathotypes, by that subvert the inflammatory pathways. These mechanisms include an arrangement of pro- and anti-inflammatory responses to favor the appropriate environmental niche for the bacterial survival and growth. PMID:26059623

  13. Antimicrobial activity of selected synbiotics targeted for the elderly against pathogenic Escherichia coli strains.

    PubMed

    Likotrafiti, E; Tuohy, K M; Gibson, G R; Rastall, R A

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of two synbiotic combinations, Lactobacillus fermentum with short-chain fructooligosaccharides (FOS-LF) and Bifidobacterium longum with isomaltooligosaccharides (IMO-BL), against enterohaemorrhagic Escherichia coli O157:H7 and enteropathogenic E. coli O86. Antimicrobial activity was determined (1) by co-culturing the synbiotics and pathogens in batch cultures, and (2) with the three-stage continuous culture system (gut model), inoculated with faecal slurry from an elderly donor. In the co-culture experiments, IMO-BL was significantly inhibitory to both E. coli strains, while FOS-LF was slightly inhibitory or not inhibitory. Factors other than acid production appeared to play a role in the inhibition. In the gut models, both synbiotics effectively inhibited E. coli O157 in the first vessel, but not in vessels 2 and 3. E. coli O86 was not significantly inhibited. PMID:26754553

  14. Porcine Epidemic Diarrhea Virus Nucleocapsid Protein Antagonizes Beta Interferon Production by Sequestering the Interaction between IRF3 and TBK1

    PubMed Central

    Ding, Zhen; Jing, Huiyuan; Zeng, Songlin; Wang, Dang; Liu, Lianzeng; Zhang, Huan; Luo, Rui; Chen, Huanchun

    2014-01-01

    ABSTRACT Porcine epidemic diarrhea virus (PEDV), a porcine enteropathogenic coronavirus, causes lethal watery diarrhea in piglets and results in large economic losses in many Asian and European countries. A large-scale outbreak of porcine epidemic diarrhea occurred in China in 2010, and the virus emerged in the United States in 2013 and spread rapidly, posing significant economic and public health concerns. Previous studies have shown that PEDV infection inhibits the synthesis of type I interferon (IFN), and viral papain-like protease 2 has been identified as an IFN antagonist. In this study, we found that the PEDV-encoded nucleocapsid (N) protein also inhibits Sendai virus-induced IFN-β production, IFN-stimulated gene expression, and activation of the transcription factors IFN regulatory factor 3 (IRF3) and NF-κB. We also found that N protein significantly impedes the activation of the IFN-β promoter stimulated by TBK1 or its upstream molecules (RIG-I, MDA5, IPS-1, and TRAF3) but does not counteract its activation by IRF3. A detailed analysis revealed that the PEDV N protein targets TBK1 by direct interaction and that this binding sequesters the association between TBK1 and IRF3, which in turn inhibits both IRF3 activation and type I IFN production. Together, our findings demonstrate a new mechanism evolved by PEDV to circumvent the host's antiviral immunity. IMPORTANCE PEDV has received increasing attention since the emergence of a PEDV variant in China and the United States. Here, we identify nucleocapsid (N) protein as a novel PEDV-encoded interferon (IFN) antagonist and demonstrate that N protein antagonizes IFN production by sequestering the interaction between IRF3 and TBK1, a critical step in type I IFN signaling. This adds another layer of complexity to the immune evasion strategies evolved by this economically important viral pathogen. An understanding of its immune evasion mechanism may direct us to novel therapeutic targets and more effective

  15. Quantitative proteomics and bioinformatic analysis provide new insight into the dynamic response of porcine intestine to Salmonella Typhimurium

    PubMed Central

    Collado-Romero, Melania; Aguilar, Carmen; Arce, Cristina; Lucena, Concepción; Codrea, Marius C.; Morera, Luis; Bendixen, Emoke; Moreno, Ángela; Garrido, Juan J.

    2015-01-01

    The enteropathogen Salmonella Typhimurium (S. Typhimurium) is the most commonly non-typhoideal serotype isolated in pig worldwide. Currently, one of the main sources of human infection is by consumption of pork meat. Therefore, prevention and control of salmonellosis in pigs is crucial for minimizing risks to public health. The aim of the present study was to use isobaric tags for relative and absolute quantification (iTRAQ) to explore differences in the response to Salmonella in two segment of the porcine gut (ileum and colon) along a time course of 1, 2, and 6 days post infection (dpi) with S. Typhimurium. A total of 298 proteins were identified in the infected ileum samples of which, 112 displayed significant expression differences due to Salmonella infection. In colon, 184 proteins were detected in the infected samples of which 46 resulted differentially expressed with respect to the controls. The higher number of changes in protein expression was quantified in ileum at 2 dpi. Further biological interpretation of proteomics data using bioinformatics tools demonstrated that the expression changes in colon were found in proteins involved in cell death and survival, tissue morphology or molecular transport at the early stages and tissue regeneration at 6 dpi. In ileum, however, changes in protein expression were mainly related to immunological and infection diseases, inflammatory response or connective tissue disorders at 1 and 2 dpi. iTRAQ has proved to be a proteomic robust approach allowing us to identify ileum as the earliest response focus upon S. Typhimurium in the porcine gut. In addition, new functions involved in the response to bacteria such as eIF2 signaling, free radical scavengers or antimicrobial peptides (AMP) expression have been identified. Finally, the impairment at of the enterohepatic circulation of bile acids and lipid metabolism by means the under regulation of FABP6 protein and FXR/RXR and LXR/RXR signaling pathway in ileum has been

  16. Splicing variants of porcine synphilin-1.

    PubMed

    Larsen, Knud; Madsen, Lone Bruhn; Farajzadeh, Leila; Bendixen, Christian

    2015-09-01

    Parkinson's disease (PD), idiopathic and familial, is characterized by degradation of dopaminergic neurons and the presence of Lewy bodies (LB) in the substantia nigra. LBs contain aggregated proteins of which α-synuclein is the major component. The protein synphilin-1 interacts and colocalizes with α-synuclein in LBs. The aim of this study was to isolate and characterize porcine synphilin-1 and isoforms hereof with the future perspective to use the pig as a model for Parkinson's disease. The porcine SNCAIP cDNA was cloned by reverse transcriptase PCR. The spatial expression of SNCAIP mRNA was investigated by RNAseq. The presented work reports the molecular cloning and characterization of the porcine (Sus scrofa) synphilin-1 cDNA (SNCAIP) and three splice variants hereof. The porcine SNCAIP cDNA codes for a protein (synphilin-1) of 919 amino acids which shows a high similarity to human (90%) and to mouse (84%) synphilin-1. Three shorter transcript variants of the synphilin-1 gene were identified, all lacking one or more exons. SNCAIP transcripts were detected in most examined organs and tissues and the highest expression was found in brain tissues and lung. Conserved splicing variants and a novel splice form of synhilin-1 were found in this study. All synphilin-1 isoforms encoded by the identified transcript variants lack functional domains important for protein degradation. PMID:26101749

  17. Attaching and effacing Escherichia coli and Shiga toxin-producing E. coli in children with acute diarrhoea and controls in Teresina/PI, Brazil.

    PubMed

    Nunes, Maria do Rosário Conceição Moura; Magalhães, Paula Prazeres; Macêdo, Antônio da Silva; Franco, Roger Teixeira; Penna, Francisco José; Mendes, Edilberto Nogueira

    2012-01-01

    This 3.5-year prospective study was conducted to ascertain the level of attaching and effacing Escherichia coli (AEEC) associated diarrhoea in children from Teresina, a northeastern state of Brazil. Passed faecal specimens from 400 patients (250 with and 150 without diarrhoea) up to 60 months of age attending from 2004 to 2007 at two public hospitals were investigated. Conventional microbiology methods and PCR were employed. Escherichia coli was isolated from 390 children, 240 of them with diarrhoea. A total of 117 AEEC strains were cultivated from specimens from 63 children, 37 with and 26 without diarrhoea. No association between AEEC and diarrhoea was observed. Atypical enteropathogenic E. coli (a-EPEC) (79.4%) was more commonly found than typical EPEC (t-EPEC). Association between EPEC and EPEC subtypes and diarrhoea was not detected. Mixed infection by t-EPEC and a-EPEC and infection by Shiga toxin-producing E. coli (STEC) were rare. Enteropathogenic E. coli was more common in males and in children aged less than 12 months. Correlation between serotyping and PCR results was 0.19. High resistance rates of AEEC to ampicillin, cephalotin, and trimethoprim-sulfamethoxazole were found. In conclusion, EPEC is very common in children with diarrhoea and controls in the population we studied, with a-EPEC predominating. This diarrhoeagenic E. coli (DEC) pathotype is more common in infant males and is resistant to drugs frequently used in clinical practice.

  18. Campylobacter spp., Enterococcus spp., Escherichia coli, Salmonella spp., Yersinia spp., and Cryptosporidium oocysts in semi-domesticated reindeer (Rangifer tarandus tarandus) in Northern Finland and Norway

    PubMed Central

    Kemper, N; Aschfalk, A; Höller, C

    2006-01-01

    The specific aim of this study was to assess the faecal shedding of zoonotic enteropathogens by semi-domesticated reindeer (Rangifer tarandus tarandus) to deduce the potential risk to human health through modern reindeer herding. In total, 2,243 faecal samples of reindeer from northern regions of Finland and Norway were examined for potentially enteropathogenic bacteria (Campylobacter species, Enterococcus species, Escherichia coli, Salmonella species and Yersinia species) and parasites (Cryptosporidium species) in accordance with standard procedures. Escherichia coli were isolated in 94.7%, Enterococcus species in 92.9%, Yersinia species in 4.8% of the samples and Campylobacter species in one sample only (0.04%). Analysis for virulence factors in E. coli and Yersinia species revealed no pathogenic strains. Neither Salmonella species nor Cryptosporidium oocysts were detected. The public health risk due to reindeer husbandry concerning zoonotic diseases included in this study has to be considered as very low at present but a putative epidemiological threat may arise when herding conditions are changed with respect to intensification and crowding. PMID:16987403

  19. Bayesian Estimation of the True Prevalence and of the Diagnostic Test Sensitivity and Specificity of Enteropathogenic Yersinia in Finnish Pig Serum Samples

    PubMed Central

    Vilar, M. J.; Ranta, J.; Virtanen, S.; Korkeala, H.

    2015-01-01

    Bayesian analysis was used to estimate the pig's and herd's true prevalence of enteropathogenic Yersinia in serum samples collected from Finnish pig farms. The sensitivity and specificity of the diagnostic test were also estimated for the commercially available ELISA which is used for antibody detection against enteropathogenic Yersinia. The Bayesian analysis was performed in two steps; the first step estimated the prior true prevalence of enteropathogenic Yersinia with data obtained from a systematic review of the literature. In the second step, data of the apparent prevalence (cross-sectional study data), prior true prevalence (first step), and estimated sensitivity and specificity of the diagnostic methods were used for building the Bayesian model. The true prevalence of Yersinia in slaughter-age pigs was 67.5% (95% PI 63.2–70.9). The true prevalence of Yersinia in sows was 74.0% (95% PI 57.3–82.4). The estimates of sensitivity and specificity values of the ELISA were 79.5% and 96.9%. PMID:26539540

  20. Bayesian Estimation of the True Prevalence and of the Diagnostic Test Sensitivity and Specificity of Enteropathogenic Yersinia in Finnish Pig Serum Samples.

    PubMed

    Vilar, M J; Ranta, J; Virtanen, S; Korkeala, H

    2015-01-01

    Bayesian analysis was used to estimate the pig's and herd's true prevalence of enteropathogenic Yersinia in serum samples collected from Finnish pig farms. The sensitivity and specificity of the diagnostic test were also estimated for the commercially available ELISA which is used for antibody detection against enteropathogenic Yersinia. The Bayesian analysis was performed in two steps; the first step estimated the prior true prevalence of enteropathogenic Yersinia with data obtained from a systematic review of the literature. In the second step, data of the apparent prevalence (cross-sectional study data), prior true prevalence (first step), and estimated sensitivity and specificity of the diagnostic methods were used for building the Bayesian model. The true prevalence of Yersinia in slaughter-age pigs was 67.5% (95% PI 63.2-70.9). The true prevalence of Yersinia in sows was 74.0% (95% PI 57.3-82.4). The estimates of sensitivity and specificity values of the ELISA were 79.5% and 96.9%.

  1. Identification of diarrheagenic Escherichia coli strains from avian organic fertilizers.

    PubMed

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P; Nishio, Erick K; Kobayashi, Renata K T; Nakazato, Gerson

    2014-08-28

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  2. Prevalence and characteristics of eae- and stx-positive strains of Escherichia coli from wild birds in the immediate environment of Tokyo Bay.

    PubMed

    Kobayashi, Hideki; Kanazaki, Mika; Hata, Eiji; Kubo, Masanori

    2009-01-01

    The prevalence and characteristics of eae- and stx-positive Escherichia coli strains in wild birds in the immediate environment of Tokyo Bay, Japan, was examined using cloacal swab samples taken from 447 birds belonging to 62 species. PCR screening showed that the prevalences of stx- and eae-positive strains of Escherichia coli were 5% (23/447) and 25% (113/447), respectively. Four strains of stx(2f)-positive E. coli were isolated from two feral pigeons, an oriental turtle dove and a barn swallow. In contrast, 39 eae-positive E. coli strains were isolated, and most of the strains possessed a subtype of intimin that is classified as a minor group of human intimins, such as intimin upsilon, kappa, and mu. Moreover, these strains did not possess any of the other pathogenic genes tested, such as stxs, ehxA, bfp, or irp. Thus, wild birds were considered to be a reservoir of atypical enteropathogenic E. coli.

  3. Production of monoclonal antibodies to porcine interleukin-18 and their use for immunoaffinity purification of recombinant porcine interleukin-18.

    PubMed

    Muneta, Y; Shimoji, Y; Yokomizo, Y; Mori, Y

    2000-03-01

    We have recently reported the cloning and expression of porcine interleukin-18 (IL-18). In this study, we describe the production of anti-porcine IL-18 monoclonal antibodies (mAb) and their use in the purification of a large amount of recombinant porcine IL-18 by immunoaffinity column chromatography. Five monoclonal antibodies (2-2-B, 2-5-B, 2-13-C, 3-1-C and 5-3-B) were established and characterized. Three (2-2-B, 3-1-C and 5-3-B) of them were of IgG1 subclass, and the other two were IgMs. Epitope analysis of the three IgG1 mAbs showed that they recognized the same epitope. All five mAbs demonstrated reactivity with baculovirus generated porcine IL-18 by immunoblot analysis. Biologically active porcine IL-18 was obtained by immunoaffinity chromatography using anti-porcine IL-18 mAb at more than 85% purity from culture supernatants of Trichoplusia ni (Tn5) derived cells infected with recombinant baculovirus containing the coding sequence of porcine mature IL-18. These results suggest that the anti-porcine IL-18 mAbs established in this study are useful for one-step purification of porcine mature IL-18 as well as the detection of porcine IL-18 by immunoblotting. PMID:10699583

  4. Prevalence of Escherichia coli O157:H7 in Children with Bloody Diarrhea Referring to Abuzar Teaching Hospital, Ahvaz, Iran

    PubMed Central

    Khosravi, Azar Dokht; Sheikh, Ahmad Farajzadeh; Ahmadzadeh, Ali; Shamsizadeh, Ahmad

    2016-01-01

    Introduction Escherichia coli O157: H7 are recognized as important aetiological agents of diarrhea in children, particularly in developed countries. Aim The aim of the study was to determine the rates of detection of E. coli O157: H7strains among children in Ahvaz, Iran. Materials and Methods From June 2010 to December 2010, 137 diarrheal stool samples of children were collected. E.coli was identified by standard microbiological techniques. O157 or O157:H7 subtypes discerned by serological tests. Results Of the 137 E. coli isolates, enteropathogens were found in 53 (38.7%) of the patients as follow: Shigella spp. (75.5%), EPEC (enteropathogenic E. coli) (16.9%), Campylobacter spp. (3.8%) and Salmonella spp. (3.8%). None of the isolated E. coli was O157:H7 serotype. Conclusion This shows that non-O157:H7 E. coli are the major cause of paediatric infections in this region of Iran. PMID:26894066

  5. Enteropathogens associated with acute diarrhea in community and hospital patients in Jakarta, Indonesia.

    PubMed

    Oyofo, Buhari A; Subekti, Decy; Tjaniadi, Periska; Machpud, Nunung; Komalarini, S; Setiawan, B; Simanjuntak, C; Punjabi, Narain; Corwin, Andrew L; Wasfy, Momtaz; Campbell, James R; Lesmana, Murad

    2002-10-11

    The prevalence of bacteria, parasite and viral pathogens in 3875 patients with diarrhea in community and hospital settings from March 1997 through August 1999 in Jakarta, Indonesia was determined using routine bacteriology and molecular assay techniques. Bacterial pathogens isolated from hospital patients were, in decreasing frequency, Vibrio cholerae O1, Shigella flexneri, Salmonella spp. and Campylobacter jejuni, while S. flexneri, V. cholerae O1, Salmonella spp. and C. jejuni were isolated from the community patients. V. cholerae O1 was isolated more frequently (P<0.005) from the hospital patients than the community patients. Overall, bacterial pathogens were isolated from 538 of 3875 (14%) enrolled cases of diarrhea. Enterotoxigenic Escherichia coli were detected in 218 (18%) of 1244 rectal swabs. A small percentage of enterohemorrhagic E. coli (1%) and of Clostridium difficile (1.3%) was detected. Parasitic examination of 389 samples resulted in 43 (11%) positives comprising Ascaris lumbricoides (1.5%), Blastocystis hominis (5.7%), Giardia lamblia (0.8%), Trichuris trichiura (2.1%) and Endolimax nana (0.5%). Rotavirus (37.5%), adenovirus (3.3%) and Norwalk-like virus (17.6%) were also detected. Antimicrobial resistance was observed among some isolates. Bacterial isolates were susceptible to quinolones, with the exception of some isolates of C. jejuni which were resistant to ciprofloxacin, nalidixic acid and norfloxacin. Data obtained from this community- and hospital-based study will enable the Indonesian Ministry of Health to plan relevant studies on diarrheal diseases in the archipelago. PMID:12381465

  6. Occurrence of enteropathogenic bacteria in urban pigeons (Columba livia) in Italy.

    PubMed

    Gargiulo, Antonio; Russo, Tamara Pasqualina; Schettini, Rita; Mallardo, Karina; Calabria, Mariarosaria; Menna, Lucia Francesca; Raia, Pasquale; Pagnini, Ugo; Caputo, Vincenzo; Fioretti, Alessandro; Dipineto, Ludovico

    2014-04-01

    This study was aimed at evaluating the prevalence of Campylobacter spp., Escherichia coli O157, Salmonella spp., and related virulence factors (the cdt, stx, and eae genes) in urban pigeons of the coastal area of the Campania region (southern Italy). To achieve this goal, cloacal swab samples from a total of 1800 urban pigeons were collected and subjected to culture methods, PCR, and serotyping. The results of the present study showed a prevalence of 48.3% (870/1800), 7.8% (141/1800), and 0.9% (16/1800), for C. jejuni, E. coli O157, and S. Typhimurium, respectively. All C. jejuni isolates (870/870) carried cdt genes, whereas all E. coli O157 isolates carried stx genes, and 14.9% (21/141) carried the eae gene. These findings clearly show that urban pigeons in the coastal area of the Campania region may constitute an environmental reservoir of these pathogens, thus representing a source of infection for other birds, livestock, and humans.

  7. Coincidental detection of genomes of porcine parvoviruses and porcine circovirus type 2 infecting pigs in Japan.

    PubMed

    Saekhow, Prayuth; Kishizuka, Shingo; Sano, Natsuha; Mitsui, Hiroko; Akasaki, Hajime; Mawatari, Takahiro; Ikeda, Hidetoshi

    2016-01-01

    The infection status of 15 viruses in 120 pigs aged about 6 months was investigated based on tonsil specimens collected from a slaughterhouse. Only 5 species of porcine parvoviruses and porcine circovirus type 2 (PCV2) were detected at high frequencies; 67% for porcine parvovirus (PPV) (PPV-Kr or -NADL2 as the new abbreviation), 58% for PPV2 (CnP-PARV4), 39% for PPV3 (P-PARV4), 33% for PPV4 (PPV4), 55% for PBo-likeV (PBoV7) and 80% for PCV2. A phylogenetic analysis of PPV3 suggested that Japanese PPV3s showed a slight variation, and possibly, there were farms harboring homogeneous or heterogeneous PPV3s. Statistical analyses indicated that the detection of PCV2 was significantly coincidental with each detection of PPV, PPV2 and PPV3, and PPV and PPV4 were also coincidentally detected. The concurrent infection with PCV2 and porcine parvoviruses in the subclinically infected pigs may resemble the infection status of pigs with the clinical manifestations of porcine circovirus associated disease which occurs in 3-5 months old pigs and is thought to be primarily caused by the PCV2 infection. PMID:26166811

  8. Tissue Distribution of Porcine FTO and Its Effect on Porcine Intramuscular Preadipocytes Proliferation and Differentiation

    PubMed Central

    Chen, Xiaoling; Zhou, Bo; Luo, Yanliu; Huang, Zhiqing; Jia, Gang; Liu, Guangmang; Zhao, Hua

    2016-01-01

    The fat mass and obesity associated (FTO) gene plays an important role in adipogenesis. However, its function during porcine intramuscular preadipocyte proliferation and differentiation remains poorly understood. In this study, we prepared the antiserum against porcine FTO (pFTO), which was used to determine its subcellular localization and tissue distribution. Our data indicated that pFTO was localized predominantly in the nucleus. Real-time quantitative PCR and western blot analysis showed that pFTO was highly expressed in the lung and subcutaneous adipose tissue. Overexpression of pFTO in porcine intramuscular preadipocytes significantly promoted cell proliferation and lipid deposition. Furthermore, overexpression of pFTO in differentiating porcine intramuscular preadipocytes also significantly increased the mRNA levels of adipocyte differentiation transcription factors peroxisome proliferators-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), lipoprotein lipase (LPL) and fatty acid synthase (FAS). Our findings provide the first functional evidence to reveal a role of pFTO in porcine intramuscular preadipocyte proliferation and differentiation. PMID:26964098

  9. Occurrence, virulence genes and antibiotic resistance of enteropathogenic Escherichia coli (EPEC) from twelve bovine farms in the north-east of Ireland.

    PubMed

    Bolton, D J; Ennis, C; McDowell, D

    2014-03-01

    Cattle faecal samples (n = 480) were collected from a cluster of 12 farms, and PCR screened for the presence of the intimin gene (eae). Positive samples were cultured, and colonies were examined for the presence of eae and verocytotoxin (vtx) genes. Colonies which were positive for the intimin gene and negative for the verocytotoxin genes were further screened using PCR for a range of virulence factors including bfpA, espA, espB, tir ehxA, toxB, etpD, katP, saa, iha, lpfAO157/OI-141 and lpfAO157/OI-154. Of the 480 faecal samples, 5.8% (28/480) were PCR positive, and one isolate was obtained from each. All 28 isolates obtained were bfpA negative and therefore atypical EPEC (aEPEC). The serotypes detected included O2:H27, O8:H36, O15:H2, O49:H+, O84:H28, O105:H7 and O132:H34 but half of the isolates could not be serogrouped using currently available antisera. Twenty-two (79%) of the isolates carried the tir gene but only 25% were espB positive, and all other virulence genes tested for were scarce or absent. Several isolates showed intermediate resistance to ciprofloxacin, kanamycin, nalidixic acid, minocycline and tetracycline; full resistance to nalidixic acid or tetracycline with one isolate (O-:H8) displaying resistance to aminoglycosides (kanamycin and streptomycin), quinolones (nalidixic acid) and sulphonamides. This study provides further evidence that cattle are a potential source of aEPEC and add to the very limited data currently available on virulence genes and antibiotic resistance in this pathogenic E. coli group in animals.

  10. Intimin subtyping of atypical enteropathogenic Escherichia coli isolated from children with and without diarrhea: a possible temporal shift in the distribution of intimin alleles.

    PubMed

    Franco, Roger T; Araújo, Lizandra D R; Penna, Francisco J; Magalhães, Paula P; Mendes, Edilberto N

    2012-09-01

    Intimins of atypical EPEC strains from children with and without diarrhea were genotyped. κ was not found and β was the most common. η- and ζ-alleles prevailed in strains from children without diarrhea and ι-allele among children older than 13 months. ε-allele emerged in 2006 and was the most common in 2007.

  11. Porcine Sialoadhesin: A Newly Identified Xenogeneic Innate Immune Receptor

    PubMed Central

    Brock, Linda G.; Delputte, Peter L.; Waldman, Joshua P.; Nauwynck, Hans J.; Rees, Michael A.

    2012-01-01

    Extracorporeal porcine liver perfusion is being developed as a bridge to liver allotransplantation for patients with fulminant hepatic failure. This strategy is limited by porcine Kupffer cell destruction of human erythrocytes, mediated by lectin binding of a sialic acid motif in the absence of antibody and complement. Sialoadhesin, a macrophage restricted lectin that binds sialic acid, was originally described as a sheep erythrocyte binding receptor. Given similarities between sialoadhesin and the unidentified macrophage lectin in our model, we hypothesized porcine sialoadhesin contributed to recognition of human erythrocytes. Two additional types of macrophages were identified to bind human erythrocytes - spleen and alveolar. Expression of sialoadhesin was confirmed by immunofluorescence in porcine tissues and by flow cytometry on primary macrophages. A stable transgenic cell line expressing porcine sialoadhesin (pSn CHO) bound human erythrocytes, while a sialoadhesin mutant cell line did not. Porcine macrophage and pSn CHO recognition of human erythrocytes was inhibited approximately 90% by an anti-porcine sialoadhesin monoclonal antibody and by human erythrocyte glycoproteins. Furthermore, this binding was substantially reduced by sialidase treatment of erythrocytes. These data support the hypothesis that porcine sialoadhesin is a xenogeneic receptor that mediates porcine macrophage binding of human erythrocytes in a sialic acid-dependent manner. PMID:22958948

  12. Porcine hokovirus in wild boar in Portugal.

    PubMed

    Miranda, Carla; Coelho, Catarina; Vieira-Pinto, Madalena; Thompson, Gertrude

    2016-04-01

    Porcine hokovirus (PHoV), also referred to as porcine parvovirus 4 (P-PARV4), a recently discovered parvovirus of swine that is closely related to human parvovirus 4/5 (H-PARV4/5), was first described in Hong Kong. To evaluate the occurrence of P-PARV4 in Portuguese wild boars in the hunting season of 2011/2012, liver and serum samples were tested. P-PARV4 was detected in 24 % of the wild boars analyzed. Phylogenetic analysis showed a close relationship between the P-PARV4 isolates and other P-PARV4 reference strains. This virus appears to be emerging, with yet unknown implications for public health.

  13. A new acidic protein in porcine brain.

    PubMed

    Ishioka, N; Isobe, T; Okuyama, T; Numata, Y; Wada, H

    1980-10-21

    An extremely acidic protein has been isolated in a purified form from porcine rain extract, by (NH4)2SO4 fractionation followed by column chromatography on DEAE-Sephadex A-50 and on Sephadex G-75. The purified protein was tentatively named as glutamic acid-rich protein because it was characterized by its remarkably high content of glutamic acid which accounted for 49% of the total amino acid composition. The protein appeared to be a single polypeptide chain with a molecular weight of 56 000-58 000, and had an isoelectric point of 4.6. The N-terminal amino acid sequence was Asp-Glu-Pro-Pro-Ser-Glu-Gly. The immunochemical analysis using rabbit antiserum prepared to the porcine protein has suggested that it is present in the brain of human, cow, cat, dog and goat as well as in various goat organs including liver, kidney, heart, small intestine and spleen.

  14. Porcine hokovirus in wild boar in Portugal.

    PubMed

    Miranda, Carla; Coelho, Catarina; Vieira-Pinto, Madalena; Thompson, Gertrude

    2016-04-01

    Porcine hokovirus (PHoV), also referred to as porcine parvovirus 4 (P-PARV4), a recently discovered parvovirus of swine that is closely related to human parvovirus 4/5 (H-PARV4/5), was first described in Hong Kong. To evaluate the occurrence of P-PARV4 in Portuguese wild boars in the hunting season of 2011/2012, liver and serum samples were tested. P-PARV4 was detected in 24 % of the wild boars analyzed. Phylogenetic analysis showed a close relationship between the P-PARV4 isolates and other P-PARV4 reference strains. This virus appears to be emerging, with yet unknown implications for public health. PMID:26711454

  15. Porcine myelomonocytic markers and cell populations.

    PubMed

    Ezquerra, A; Revilla, C; Alvarez, B; Pérez, C; Alonso, F; Domínguez, J

    2009-03-01

    This review focuses in what is currently known about swine myeloid markers, the expression and function of these receptors in the biology of porcine myelomonocytic cells, the regulation of their expression along the different developmental stages of these cells and their utility to investigate the heterogeneity of monocyte and macrophage populations. Although the number of monoclonal antibodies recognizing surface antigens expressed on either swine granulocytes or monocytes is low compared with those available for human or mouse, they have contributed significantly to study the members of myeloid lineages in this species, allowing to discriminate different maturation stages of these cells in bone marrow and to reveal the heterogeneity of blood monocytes and tissue macrophages. Porcine myeloid cells share many similarities with humans, highlighting the relevance of the pig as a biomedical model.

  16. Immunomodulatory and antimicrobial efficacy of Lactobacilli against enteropathogenic infection of Salmonella typhi: In-vitro and in-vivo study.

    PubMed

    Mazaya, Basem; Hamzawy, Mohamed A; Khalil, Mahmoud A F; Tawkol, Wael M; Sabit, Hussein

    2015-12-01

    Salmonellosis-induced diarrhea, is one of the commonest cause of childhood mortality in developing countries. Using of probiotics is viewed as a promising means for reducing the pathogenic loads of bacterial infection. The current study aimed to evaluate the potential antimicrobial and immunomodulatory efficacy of isolated lactobacillus strains against the enteropathogenic effect of S. Typhi. Different Lactobacillus strains were isolated from 13 dairy products. Their antimicrobial activities were tested against different bacterial strains. Six groups of CD1 mice were treated for 8 days as follows: group (1) untreated control; group (2) was challenged with single inoculation S. typhi, and groups (3) and (4) were treated with Lactobacillus plantarum (LA5) or Lactobacillus paracsi (LA7) for 7 days, respectively. Groups (5) and (6) were challenged with S. typhi, and then treated with either LA5 or LA 7 for 7 days, respectively. Isolated Lactobacillus showed antimicrobial activity against wide range of bacterial strains. Salmonellosis showed high widal titer, induced significant disturbance of TNF and IL-1β, while sever changes of the histological patterns of the intestinal villi and hepatocytes have been illustrated. LA5 or LA7 succeeded to eradicate typhoid infection, restore the values of inflammatory cytokines to typical levels of control group, and improve histological pictures of intestinal and hepatic tissues. It can be concluded that lactobacilli are promising candidate in protection and eradication against bacterial infection induced by S. Typhi due to its antimicrobial, anti-inflammatory, and immunomodulatory activities.

  17. Thiouracil-Forming Bacteria Identified and Characterized upon Porcine In Vitro Digestion of Brassicaceae Feed

    PubMed Central

    Kiebooms, Julie A. L.; Wauters, Jella; Vanden Bussche, Julie; Houf, Kurt; De Vos, Paul; Van Trappen, Stefanie; Cleenwerck, Ilse

    2014-01-01

    In recent years, the frequent detection of the banned thyreostat thiouracil (TU) in livestock urine has been related to endogenous TU formation following digestion of glucosinolate-rich Brassicaceae crops. Recently, it was demonstrated that, upon in vitro digestion of Brassicaceae, fecal bacteria induce TU detection in livestock (porcine livestock > bovines). Therefore, the present study was intended to isolate and identify bacteria involved in this intestinal TU formation upon Brassicaceae digestion and to gain more insight into the underlying mechanism in porcine livestock. Twenty porcine fecal inocula (gilts and multiparous sows) were assessed through static in vitro colonic-digestion simulations with rapeseed. After derivatization and extraction of the fecal suspensions, TU was analyzed using liquid chromatography-tandem mass spectrometry (LC-MS2). On average, lower TU concentrations were observed in fecal colonic simulations in gilts (8.35 ng g−1 rapeseed ± 3.42 [mean ± standard deviation]) than in multiparous sows (52.63 ng g−1 ± 16.17), which correlates with maturation of the gut microbial population with age. Further exploration of the mechanism showed cell-dependent activity of the microbial conversion and sustained TU-forming activity after subjection of the fecal inoculum to moderate heat over a time span of up to 30 min. Finally, nine TU-producing bacterial species were successfully isolated and identified by a combination of biochemical and molecular techniques as Escherichia coli (n = 5), Lactobacillus reuteri (n = 2), Enterococcus faecium (n = 1), and Salmonella enterica subsp. arizonae (n = 1). This report demonstrates that endogenous formation of TU is Brassicaceae induced and occurs under colonic conditions most likely through myrosinase-like enzyme activity expressed by different common intestinal bacterial species. PMID:25261511

  18. Thiouracil-Forming Bacteria Identified and Characterized upon Porcine In Vitro Digestion of Brassicaceae Feed.

    PubMed

    Kiebooms, Julie A L; Wauters, Jella; Vanden Bussche, Julie; Houf, Kurt; De Vos, Paul; Van Trappen, Stefanie; Cleenwerck, Ilse; Vanhaecke, Lynn

    2014-12-01

    In recent years, the frequent detection of the banned thyreostat thiouracil (TU) in livestock urine has been related to endogenous TU formation following digestion of glucosinolate-rich Brassicaceae crops. Recently, it was demonstrated that, upon in vitro digestion of Brassicaceae, fecal bacteria induce TU detection in livestock (porcine livestock > bovines). Therefore, the present study was intended to isolate and identify bacteria involved in this intestinal TU formation upon Brassicaceae digestion and to gain more insight into the underlying mechanism in porcine livestock. Twenty porcine fecal inocula (gilts and multiparous sows) were assessed through static in vitro colonic-digestion simulations with rapeseed. After derivatization and extraction of the fecal suspensions, TU was analyzed using liquid chromatography-tandem mass spectrometry (LC-MS(2)). On average, lower TU concentrations were observed in fecal colonic simulations in gilts (8.35 ng g(-1) rapeseed ± 3.42 [mean ± standard deviation]) than in multiparous sows (52.63 ng g(-1) ± 16.17), which correlates with maturation of the gut microbial population with age. Further exploration of the mechanism showed cell-dependent activity of the microbial conversion and sustained TU-forming activity after subjection of the fecal inoculum to moderate heat over a time span of up to 30 min. Finally, nine TU-producing bacterial species were successfully isolated and identified by a combination of biochemical and molecular techniques as Escherichia coli (n = 5), Lactobacillus reuteri (n = 2), Enterococcus faecium (n = 1), and Salmonella enterica subsp. arizonae (n = 1). This report demonstrates that endogenous formation of TU is Brassicaceae induced and occurs under colonic conditions most likely through myrosinase-like enzyme activity expressed by different common intestinal bacterial species.

  19. Vitamin D Intoxication Treated with Porcine Calcitonin

    PubMed Central

    Buckle, R. M.; Gamlen, T. R.; Pullen, I. M.

    1972-01-01

    Porcine calcitonin was used to treat three patients with hypercalcaemia due to vitamin D intoxication. In two patients a rapid and sustained fall to normal in serum calcium occurred within three days, in the third patient normocalcaemia was achieved in seven days. In view of its rapid and sustained effect calcitonin may be of value in the urgent treatment of hypercalcaemia due to vitamin D intoxication. PMID:4261142

  20. Purification of tubulin from porcine brain.

    PubMed

    Gell, Christopher; Friel, Claire T; Borgonovo, Barbara; Drechsel, David N; Hyman, Anthony A; Howard, Jonathon

    2011-01-01

    Microtubules, polymers of the heterodimeric protein αβ-tubulin, give shape to cells and are the tracks for vesicle transport and chromosome segregation. In vitro assays to study microtubule functions and their regulation by microtubule-associated proteins require the availability of purified αβ-tubulin. In this chapter, we describe the process of purification of heterodimeric αβ-tubulin from porcine brain.

  1. One-step spray-dried polyelectrolyte microparticles enhance the antigen cross-presentation capacity of porcine dendritic cells.

    PubMed

    Devriendt, Bert; Baert, Kim; Dierendonck, Marijke; Favoreel, Herman; De Koker, Stefaan; Remon, Jean Paul; De Geest, Bruno G; Cox, Eric

    2013-06-01

    Vaccination is regarded as the most efficient and cost-effective way to prevent infectious diseases. Vaccine design nowadays focuses on the implementation of safer recombinant subunit vaccines. However, these recombinant subunit antigens are often poor immunogens and several strategies are currently under investigation to enhance their immunogenicity. The encapsulation of antigens in biodegradable microparticulate delivery systems seems a promising strategy to boost their immunogenicity. Here, we evaluate the capacity of polyelectrolyte complex microparticles (PECMs), fabricated by single step spray-drying, to deliver antigens to porcine dendritic cells and how these particles affect the functional maturation of dendritic cells (DCs). As clinically relevant model antigen F4 fimbriae, a bacterial adhesin purified from a porcine-specific enterotoxigenic Escherichia coli strain was chosen. The resulting antigen-loaded PECMs are efficiently internalised by porcine monocyte-derived DCs. F4 fimbriae-loaded PECMs (F4-PECMs) enhanced CD40 and CD25 surface expression by DCs and this phenotypical maturation correlated with an increased secretion of IL-6 and IL-1β. More importantly, F4-PECMs enhance both the T cell stimulatory and antigen presentation capacity of DCs. Moreover, PECMs efficiently promoted the CD8(+) T cell stimulatory capacity of dendritic cells, indicating an enhanced ability to cross-present the encapsulated antigens. These results could accelerate the development of veterinary and human subunit vaccines based on polyelectrolyte complex microparticles to induce protective immunity against a variety of extra- and intracellular pathogens. PMID:23207327

  2. Probing of some compounds as anti-aggregatory additives in the protein refolding process from Escherichia coli inclusion bodies.

    PubMed

    Zilinskas, Albinas; Sereikaite, Jolanta

    2011-01-01

    Five compounds of different chemical structure were tested for aggregation suppression during the refolding of porcine and mink growth hormones as model proteins from Escherichia coli inclusion bodies by the dilution method. Of all compounds tested in this work, 3-guanidinopropionic acid (GPA) containing a guanidinium group was the most effective additive for aggregation suppression. Anti-aggregatory properties of GPA were compared with the ones of l-arginine.

  3. Tissue Sampling Guides for Porcine Biomedical Models.

    PubMed

    Albl, Barbara; Haesner, Serena; Braun-Reichhart, Christina; Streckel, Elisabeth; Renner, Simone; Seeliger, Frank; Wolf, Eckhard; Wanke, Rüdiger; Blutke, Andreas

    2016-04-01

    This article provides guidelines for organ and tissue sampling adapted to porcine animal models in translational medical research. Detailed protocols for the determination of sampling locations and numbers as well as recommendations on the orientation, size, and trimming direction of samples from ∼50 different porcine organs and tissues are provided in the Supplementary Material. The proposed sampling protocols include the generation of samples suitable for subsequent qualitative and quantitative analyses, including cryohistology, paraffin, and plastic histology; immunohistochemistry;in situhybridization; electron microscopy; and quantitative stereology as well as molecular analyses of DNA, RNA, proteins, metabolites, and electrolytes. With regard to the planned extent of sampling efforts, time, and personnel expenses, and dependent upon the scheduled analyses, different protocols are provided. These protocols are adjusted for (I) routine screenings, as used in general toxicity studies or in analyses of gene expression patterns or histopathological organ alterations, (II) advanced analyses of single organs/tissues, and (III) large-scale sampling procedures to be applied in biobank projects. Providing a robust reference for studies of porcine models, the described protocols will ensure the efficiency of sampling, the systematic recovery of high-quality samples representing the entire organ or tissue as well as the intra-/interstudy comparability and reproducibility of results.

  4. A proteomic approach to porcine saliva.

    PubMed

    Gutiérrez, Ana M; Cerón, José J; Fuentes-Rubio, María; Tecles, Fernando; Beeley, Josie A

    2014-02-01

    This paper reviews recent progress in salivary animal proteomics, with special reference to the porcine proteome. Until fairly recently, most studies on saliva as a diagnostic fluid have focused on humans, primates and rodents, and the development of salivary analysis in monitoring health in farm animals including pigs has received only limited consideration. The porcine salivary proteome has been characterised by 2D-electrophoresis followed by mass spectrometry. Major and minor proteins have been identified. The use of saliva as a non-invasive biological fluid in monitoring health and disease in pigs will be reviewed, together with the potential use of proteomics for the development of biomarkers. In this review, methods of collection and the composition of porcine saliva will be considered, together with saliva handling and analysis. The overall findings indicate that there is considerable potential for the development of salivary analysis as a non-invasive diagnostic fluid in the pig, and that it offers advantages over other body fluids in this animal.

  5. Cloning of Porcine Pituitary Tumor Transforming Gene 1 and Its Expression in Porcine Oocytes and Embryos.

    PubMed

    Xie, Bingkun; Qin, Zhaoxian; Liu, Shuai; Nong, Suqun; Ma, Qingyan; Chen, Baojian; Liu, Mingjun; Pan, Tianbiao; Liao, D Joshua

    2016-01-01

    The maternal-to-embryonic transition (MET) is a complex process that occurs during early mammalian embryogenesis and is characterized by activation of the zygotic genome, initiation of embryonic transcription, and replacement of maternal mRNA with embryonic mRNA. The objective of this study was to reveal the temporal expression and localization patterns of PTTG1 during early porcine embryonic development and to establish a relationship between PTTG1 and the MET. To achieve this goal, reverse transcription-polymerase chain reaction (RT-PCR) was performed to clone porcine PTTG1. Subsequently, germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, zygotes, 2-, 4-, and 8-cell-stage embryos, morulas, and blastocysts were produced in vitro and their gene expression was analyzed. The results revealed that the coding sequence of porcine PTTG1 is 609-bp in length and that it encodes a 202-aa polypeptide. Using qRT-PCR, PTTG1 mRNA expression was observed to be maintained at high levels in GV- and MII-stage oocytes. The transcript levels in oocytes were also significantly higher than those in embryos from the zygote to blastocyst stages. Immunohistochemical analyses revealed that porcine PTTG1 was primarily localized to the cytoplasm and partially localized to the nucleus. Furthermore, the PTTG1 protein levels in MII-stage oocytes and zygotes were significantly higher than those in embryos from the 2-cell to blastocyst stage. After fertilization, the level of this protein began to decrease gradually until the blastocyst stage. The results of our study suggest that porcine PTTG1 is a new candidate maternal effect gene (MEG) that may participate in the processes of oocyte maturation and zygotic genome activation during porcine embryogenesis. PMID:27058238

  6. Cloning of Porcine Pituitary Tumor Transforming Gene 1 and Its Expression in Porcine Oocytes and Embryos

    PubMed Central

    Liu, Shuai; Nong, Suqun; Ma, Qingyan; Chen, Baojian; Liu, Mingjun; Pan, Tianbiao; Liao, D. Joshua

    2016-01-01

    The maternal-to-embryonic transition (MET) is a complex process that occurs during early mammalian embryogenesis and is characterized by activation of the zygotic genome, initiation of embryonic transcription, and replacement of maternal mRNA with embryonic mRNA. The objective of this study was to reveal the temporal expression and localization patterns of PTTG1 during early porcine embryonic development and to establish a relationship between PTTG1 and the MET. To achieve this goal, reverse transcription-polymerase chain reaction (RT-PCR) was performed to clone porcine PTTG1. Subsequently, germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, zygotes, 2-, 4-, and 8-cell-stage embryos, morulas, and blastocysts were produced in vitro and their gene expression was analyzed. The results revealed that the coding sequence of porcine PTTG1 is 609-bp in length and that it encodes a 202-aa polypeptide. Using qRT-PCR, PTTG1 mRNA expression was observed to be maintained at high levels in GV- and MII-stage oocytes. The transcript levels in oocytes were also significantly higher than those in embryos from the zygote to blastocyst stages. Immunohistochemical analyses revealed that porcine PTTG1 was primarily localized to the cytoplasm and partially localized to the nucleus. Furthermore, the PTTG1 protein levels in MII-stage oocytes and zygotes were significantly higher than those in embryos from the 2-cell to blastocyst stage. After fertilization, the level of this protein began to decrease gradually until the blastocyst stage. The results of our study suggest that porcine PTTG1 is a new candidate maternal effect gene (MEG) that may participate in the processes of oocyte maturation and zygotic genome activation during porcine embryogenesis. PMID:27058238

  7. In vitro inhibition of the replication of classical swine fever virus by porcine Mx1 protein.

    PubMed

    He, Dan-ni; Zhang, Xiao-min; Liu, Ke; Pang, Ran; Zhao, Jin; Zhou, Bin; Chen, Pu-yan

    2014-04-01

    Classical swine fever virus (CSFV) is the causative pathogen of classical swine fever (CSF), a highly contagious disease of swine. Mx proteins are interferon-induced dynamin-like GTPases present in all vertebrates with a wide range of antiviral activities. Although Zhao et al. (2011) have reported that human MxA can inhibit CSFV replication, whether porcine Mx1 (poMx1) has anti-CSFV activity remains unknown. In this study, we generated a cell line designated PK-15/EGFP-poMx1 which expressed porcine Mx1 protein constitutively, and we observed that the proliferation of progeny virus in this cell line was significantly inhibited as measured by virus titration, indirect immune fluorescence assay, Q-PCR and Western blot. Furthermore, when PTD-poMx1 fusion protein expressed in Escherichia coli (Zhang et al., 2013) was used to treat CSFV-infected PK-15 cells, the results showed that PTD-poMx1 inhibited CSFV replication in a dose-dependent manner. Additionally, the proliferation of progeny virus was inhibited as measured by virus titration and Q-PCR. Overall, the results demonstrated that poMx1 effectively inhibited CSFV replication, suggesting that poMx1 may be a valuable therapeutic agent against CSFV infection.

  8. Lawsonia intracellularis and Porcine Circovirus type-2 infection in Estonia.

    PubMed

    Järveots, T; Saar, T; Põdersoo, D; Rüütel-Boudinot, S; Sütt, S; Tummeleht, L; Suuroja, T; Lindjärv, R

    2016-01-01

    The present study describes the reasons of post-weaning distress in Estonian pig herds. Here we examined the natural cases of Lawsonia intracellularis and porcine circovirus 2 (PCV2) infection and co-infections. The presence of L. intracellularis in swine herds were tested by PCR and by histopathological methods, whereas PCV2 was detected by real-time-PCR and immunohistochemical stainings. Seven of the 11 investigated herds with signs of post-weaning wasting were infected with L. intracellularis and all 11 herds with PCV2. From the analysed samples 22.2% were infected with L. intracellularis and 25% with PCV2. The results of microbiological studies suggested that the piglets suffered from enteritis and pneumonia. Escherichia coli and Pasteurella multocida often aggravated the process of illness. The frequency of L. intracellularis was high in pigs 7-12 weeks old (18.5-42.7%) and PCV2 infection was too high in pigs 7-12 weeks old (24.8-32.7%). E. coli was often a co-factor with L. intracellularis and PCV2. The primary reasons of post weaning wasting were PCV2 and E. coli, later aggravated by L. intracellularis and other pathogens. Our results indicated that different pathogens have an important role in developing post-weaning wasting. Proliferative intestinal inflammation caused by L. intracellularis is mainly characterised by its localization and morphological findings. The main gross lesions were the enlargement of mesenteric lymph nodes and thickening of the wall of ileum. In post-weaning multi-systemic wasting syndrome there are characteristic histological lesions in lymphoid tissues. They consist of a variable degree of lymphocyte depletion, together with histiocytic and/or multinucleate giant cell infiltration. This basic lymphoid lesions is observable in almost all tissues of a single severely affected animal, including lymph nodes, Peyer's patches and spleen. Sporadically, multifocal coagulative necrosis may be observed. PMID:27487502

  9. Preponderance of toxigenic Escherichia coli in stool pathogens correlates with toxin detection in accessible drinking-water sources.

    PubMed

    Igbokwe, H; Bhattacharyya, S; Gradus, S; Khubbar, M; Griswold, D; Navidad, J; Igwilo, C; Masson-Meyers, D; Azenabor, A A

    2015-02-01

    Since early detection of pathogens and their virulence factors contribute to intervention and control strategies, we assessed the enteropathogens in diarrhoea disease and investigated the link between toxigenic strains of Escherichia coli from stool and drinking-water sources; and determined the expression of toxin genes by antibiotic-resistant E. coli in Lagos, Nigeria. This was compared with isolates from diarrhoeal stool and water from Wisconsin, USA. The new Luminex xTAG GPP (Gastroplex) technique and conventional real-time PCR were used to profile enteric pathogens and E. coli toxin gene isolates, respectively. Results showed the pathogen profile of stool and indicated a relationship between E. coli toxin genes in water and stool from Lagos which was absent in Wisconsin isolates. The Gastroplex technique was efficient for multiple enteric pathogens and toxin gene detection. The co-existence of antibiotic resistance with enteroinvasive E. coli toxin genes suggests an additional prognostic burden on patients.

  10. Volunteer challenge with enterotoxigenic Escherichia coli that express intestinal colonization factor fimbriae CS17 and CS19.

    PubMed

    McKenzie, Robin; Porter, Chad K; Cantrell, Joyce A; Denearing, Barbara; O'Dowd, Aisling; Grahek, Shannon L; Sincock, Stephanie A; Woods, Colleen; Sebeny, Peter; Sack, David A; Tribble, David R; Bourgeois, A Louis; Savarino, Stephen J

    2011-07-01

    Human challenges with enterotoxigenic Escherichia coli (ETEC) have broadened our understanding of this important enteropathogen. We report findings from the first challenge studies using ETEC-expressing colonization factor fimbria CS17 and CS19. LSN03-016011/A (LT, CS17) elicited a dose-dependent effect, with the upper dose (6 × 10(9) organisms) causing diarrhea in 88% of recipients. WS0115A (LTSTp, CS19) also showed a dose response, with a 44% diarrhea rate at 9 × 10(9) organisms. Both strains elicited homologous antifimbrial and anti-LT antibody seroconversion. These studies establish the relative pathogenicity of ETEC expressing newer class 5 fimbriae and suggest suitability of the LT|CS17-ETEC challenge model for interventional trials. PMID:21628659

  11. Production of a subunit vaccine candidate against porcine post-weaning diarrhea in high-biomass transplastomic tobacco.

    PubMed

    Kolotilin, Igor; Kaldis, Angelo; Devriendt, Bert; Joensuu, Jussi; Cox, Eric; Menassa, Rima

    2012-01-01

    Post-weaning diarrhea (PWD) in piglets is a major problem in piggeries worldwide and results in severe economic losses. Infection with Enterotoxigenic Escherichia coli (ETEC) is the key culprit for the PWD disease. F4 fimbriae of ETEC are highly stable proteinaceous polymers, mainly composed of the major structural subunit FaeG, with a capacity to evoke mucosal immune responses, thus demonstrating a potential to act as an oral vaccine against ETEC-induced porcine PWD. In this study we used a transplastomic approach in tobacco to produce a recombinant variant of the FaeG protein, rFaeG(ntd/dsc), engineered for expression as a stable monomer by N-terminal deletion and donor strand-complementation (ntd/dsc). The generated transplastomic tobacco plants accumulated up to 2.0 g rFaeG(ntd/dsc) per 1 kg fresh leaf tissue (more than 1% of dry leaf tissue) and showed normal phenotype indistinguishable from wild type untransformed plants. We determined that chloroplast-produced rFaeG(ntd/dsc) protein retained the key properties of an oral vaccine, i.e. binding to porcine intestinal F4 receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. Additionally, the plant biomass matrix was shown to delay degradation of the chloroplast-produced rFaeG(ntd/dsc) in gastrointestinal conditions, demonstrating a potential to function as a shelter-vehicle for vaccine delivery. These results suggest that transplastomic plants expressing the rFaeG(ntd/dsc) protein could be used for production and, possibly, delivery of an oral vaccine against porcine F4+ ETEC infections. Our findings therefore present a feasible approach for developing an oral vaccination strategy against porcine PWD. PMID:22879967

  12. Feasibility of a porcine oral mucosa equivalent: a preclinical study.

    PubMed

    Kinikoglu, Beste; Hemar, Julie; Hasirci, Vasif; Breton, Pierre; Damour, Odile

    2012-08-01

    Oral tissue engineering aims to treat and fill tissue deficits caused by congenital defects, facial trauma, or malignant lesion surgery, as well as to study the biology of oral mucosa. The Food and Drug Administration (FDA) and the European Medicines Agency (EMA) require a large animal model to evaluate cell-based devices, including tissue-engineered oral mucosa, prior to initiating human clinical studies. Porcine oral mucosa is non-keratinized and resembles that of humans more closely than any other animal in terms of structure and composition; however, there have not been any reports on the reconstruction of a porcine oral mucosa equivalent, probably due to the difficulty to culture porcine fibroblasts. In this study, we demonstrate the feasibility of a 3D porcine oral mucosa equivalent based on a collagen-GAG-chitosan scaffold, as well as reconstructed porcine epithelium by using an amniotic membrane as support, or without any support in form of epithelial cell sheets by using thermoresponsive culture plates. Explants technique was used for the isolation of the porcine fibroblasts and a modified fibroblast medium containing 20% fetal calf serum was used for their culture. The histological and transmission electron microscopic analyses of the resulting porcine oral mucosa models showed the presence of non-keratinized epithelia expressing keratin 13, the major differentiation marker of non-keratinized oral mucosa, in all models, and the presence of newly synthesized collagen fibers in the lamina propria equivalent of the full-thickness model, indicating the functionality of porcine fibroblasts. PMID:22309108

  13. Porcine bocaviruses: genetic analysis and prevalence in Chinese swine population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among members of the Bocavirus genus, that contain three open reading frames (ORFs), of the Parvovirinae subfamily, porcine bocaviruses (PoBoVs) exhibit the most genetic diversity. Based on the ORF2-encoded VP1 classification, the six reported porcine bocaviruses were grouped into four species: PoBo...

  14. Outbreak investigation of porcine epidemic diarrhea in swine in Ontario

    PubMed Central

    Pasma, Tim; Furness, Mary Catherine; Alves, David; Aubry, Pascale

    2016-01-01

    Porcine epidemic diarrhea virus was first diagnosed in Ontario in January of 2014. An outbreak investigation was conducted and it was hypothesized that feed containing spray-dried porcine plasma contaminated with the virus was a risk factor in the introduction and spread of the disease in Ontario. PMID:26740705

  15. Exploring the genetic basis for porcine circovirus pathogenicity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine circoviruses are members of the Circovirus genus within the Circoviridae family. Association of porcine circovirus type 2 (PCV2) with post-weaning multisystemic wasting syndrome (PMWS) was first reported in western Canada in 1996. Shortly thereafter the disease was recognized in Europe. Sub...

  16. O serogroups, biotypes, and eae genes in Escherichia coli strains isolated from diarrheic and healthy rabbits.

    PubMed Central

    Blanco, J E; Blanco, M; Blanco, J; Mora, A; Balaguer, L; Mouriño, M; Juarez, A; Jansen, W H

    1996-01-01

    A total of 305 Escherichia coli strains isolated from diarrheic and healthy rabbits in 10 industrial fattening farms from different areas of Spain were serotyped, biotyped, and tested for the presence of the eae gene and toxin production. The characteristics found in strains isolated from healthy rabbits were generally different from those observed in E. coli strains associated with disease. Thus, strains with the eae gene (74% versus 22%); strains belonging to serogroups O26, O49, O92, O103, and O128 (64% versus 12%); rhamnose-negative strains (51% versus 5%); and rhamnose-negative O103 strains with eae genes present (41% versus 1%) were significantly (P < 0.001 in all cases) more frequently detected in isolates from diarrheic animals than in those from healthy rabbits. Whereas a total of 35 serogroups and 17 biotypes were distinguished, the majority of the strains obtained from diarrheic rabbits belonged to only four serobiotypes, which in order of frequency were O103:B14 (72 strains), O103:B6 (16 strains), O26:B13 (12 strains), and O128:B30 (12 strains). These four serobiotypes accounted for 48% (112 of 231) and 5% (4 of 74) of the E. coli strains isolated from diarrheic and healthy rabbits, respectively. Only six strains were toxigenic (three CNF1+, two CNF2+, and one VT1+). We conclude that enteropathogenic E. coli strains that possess the eae gene are a common cause of diarrhea in Spanish rabbit farms and that the rhamnose-negative highly pathogenic strains of serotype O103:K-:H2 and biotype B14 are especially predominant. Detection of the eae gene is a useful method for the identification of enteropathogenic E. coli strains from rabbits. However, a combination of serogrouping and biotyping may be sufficient to accurately identify the highly pathogenic strains for rabbits. PMID:8940455

  17. Adherence characteristics of attaching and effacing strains of Escherichia coli from rabbits.

    PubMed Central

    Robins-Browne, R M; Tokhi, A M; Adams, L M; Bennett-Wood, V; Moisidis, A V; Krejany, E O; O'Gorman, L E

    1994-01-01

    Twelve strains of Escherichia coli previously reported to cause diarrhea in rabbits were examined for properties associated with virulence. Ten strains met the criteria for classification as enteropathogenic E. coli in that they were diarrheagenic strains that evoked attaching-effacing lesions in the small intestine and did not produce detectable enterotoxins or cytotoxins. These bacteria exhibited a variety of patterns when investigated for adherence to HEp-2 epithelial cells. Although several strains displayed localized and/or diffuse adherence to epithelial cells, they did not hybridize with DNA probes that recognize the genes responsible for these phenotypes in diarrheagenic E. coli from humans. The bacteria also varied in their ability to bind to erythrocytes and intestinal brush borders from various animal species. Six strains adhered to rabbit brush borders; two of these also adhered to brush borders from other animals. Two strains that did not adhere to rabbit brush borders adhered to those from guinea pigs or sheep. Only one of the strains investigated carried AF/R1 fimbriae, which are believed to govern the host specificity of this category of diarrheagenic E. coli. This strain was E. coli RDEC-1, which remains the only E. coli strain to date that is known to carry fimbriae of this type. The results indicate that although diarrheagenic E. coli strains from rabbits may have common properties associated with the ability to produce attaching-effacing lesions, they differ from each other and from enteropathogenic E. coli of humans in terms of some of the adhesins that mediate binding to eukaryotic cells. Images PMID:8168918

  18. Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells.

    PubMed

    Li, Bo-Jiang; Li, Ping-Hua; Huang, Rui-Hua; Sun, Wen-Xing; Wang, Han; Li, Qi-Fa; Chen, Jie; Wu, Wang-Jun; Liu, Hong-Lin

    2015-08-01

    The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

  19. Development of a diphtheria toxin-based recombinant porcine IL-2 fusion toxin for depleting porcine CD25+ cells.

    PubMed

    Peraino, Jaclyn Stromp; Schenk, Marian; Li, Guoying; Zhang, Huiping; Farkash, Evan A; Sachs, David H; Huang, Christene A; Duran-Struuck, Raimon; Wang, Zhirui

    2013-12-15

    Regulatory T cells (Tregs) have been widely recognized as crucial players in controlling immune responses. Because their major role is to ensure that the immune system is not over reactive, Tregs have been the focus of multiple research studies including those investigating transplantation tolerance, autoimmunity and cancer treatment. On their surface Tregs constitutively express CD25, a high affinity receptor for the cytokine interleukin-2 (IL-2). The reagents constructed in this study were generated by genetically linking porcine IL-2 to the truncated diphtheria toxin (DT390). This reagent functions by first binding to the cell surface via the porcine IL-2/porcine CD25 interaction then the DT390 domain facilitates internalization followed by inhibition of protein synthesis resulting in cell death. Four versions of the porcine IL-2 fusion toxin were designed in an interest to find the most effective isoform: 1) monovalent glycosylated porcine IL-2 fusion toxin (Gly); 2) monovalent non-N-glycosylated porcine IL-2 fusion toxin (NonGly); 3) bivalent glycosylated porcine IL-2 fusion toxin (Bi-Gly); 4) bivalent non-N-glycosylated porcine IL-2 fusion toxin (Bi-NonGly). Using a porcine CD25(+) B cell lymphoma cell line (LCL13271) in vitro analysis of the fusion toxins' ability to inhibit protein synthesis demonstrated that the Bi-NonGly fusion toxin is the most efficient reagent. These in vitro results are consistent with binding affinity as the Bi-NonGly fusion toxin binds strongest to CD25 on the same LCL13271 cells. The Bi-Gly fusion toxin significantly prolonged the survival (p=0.028) of tumor-bearing NOD/SCID IL-2 receptor γ(-/-) (NSG) mice injected with LCL13271 cells compared with untreated controls. This recombinant protein has great potential to function as a useful tool for in vivo depletion of porcine CD25(+) cells for studying immune regulation. PMID:24055128

  20. The "Cryptic" Escherichia.

    PubMed

    Walk, Seth T

    2015-01-01

    In 2009, five monophyletic Escherichia clades were described and referred to as "cryptic" based on the inability to distinguish them from representative E. coli isolates using diagnostic biochemical reactions. Since this original publication, a number of studies have explored the genomic, transcriptomic, and phenotypic diversity of cryptic clade isolates to better understand their phylogenetic, physiological, and ecological distinctiveness with respect to previously named Escherichia species. This chapter reviews the original discovery of the cryptic clades, discusses available evidence that some are environmentally adapted, and evaluates current support for taxonomic designations of these microorganisms. The importance of these clades to clinical research, epidemiology, population genetics, and microbial speciation is also discussed.

  1. Molecular characterization and expression of porcine Siglec-5.

    PubMed

    Escalona, Z; Álvarez, B; Uenishi, H; Toki, D; Yuste, M; Revilla, C; Gómez del Moral, M; Alonso, F; Ezquerra, A; Domínguez, J

    2014-05-01

    In this study we describe the characterization of the porcine orthologue of Siglec-5. A cDNa clone was obtained from a porcine cDNa library derived from swine small intestine which encodes a 555 a-a type 1 transmembrane protein with sequence homology to human Siglec-5. This protein consists of four Ig-like domains, a transmembrane region, and a cytoplasmic tail with two tyrosine-based signalling motifs. When expressed as a recombinant protein fused to the Fc region of human IgG1, porcine Siglec-5 was able to bind porcine red blood cells in a sialic acid-dependent manner. Monoclonal antibodies (mAb) were developed against porcine Siglec-5 and used to analyse its expression in bone marrow and blood cells, and lymphoid tissues. Porcine Siglec-5 expression was mainly restricted to myelomonocytic cells and their precursors, being detected also, although at low levels, on plasmacytoid dendritic cells and B lymphocytes. In lymphoid tissues, ellipsoids of the spleen and subcapsular and medullar sinuses of lymph nodes were positive for Siglec-5. These mAbs were able to precipitate, from granulocyte lysates, a protein of approximately 85 kDa under non-reducing conditions, indicating that porcine Siglec-5 is expressed as a monomer in the plasma membrane.

  2. Molecular characterization and expression of porcine Siglec-5.

    PubMed

    Escalona, Z; Álvarez, B; Uenishi, H; Toki, D; Yuste, M; Revilla, C; Gómez del Moral, M; Alonso, F; Ezquerra, A; Domínguez, J

    2014-05-01

    In this study we describe the characterization of the porcine orthologue of Siglec-5. A cDNa clone was obtained from a porcine cDNa library derived from swine small intestine which encodes a 555 a-a type 1 transmembrane protein with sequence homology to human Siglec-5. This protein consists of four Ig-like domains, a transmembrane region, and a cytoplasmic tail with two tyrosine-based signalling motifs. When expressed as a recombinant protein fused to the Fc region of human IgG1, porcine Siglec-5 was able to bind porcine red blood cells in a sialic acid-dependent manner. Monoclonal antibodies (mAb) were developed against porcine Siglec-5 and used to analyse its expression in bone marrow and blood cells, and lymphoid tissues. Porcine Siglec-5 expression was mainly restricted to myelomonocytic cells and their precursors, being detected also, although at low levels, on plasmacytoid dendritic cells and B lymphocytes. In lymphoid tissues, ellipsoids of the spleen and subcapsular and medullar sinuses of lymph nodes were positive for Siglec-5. These mAbs were able to precipitate, from granulocyte lysates, a protein of approximately 85 kDa under non-reducing conditions, indicating that porcine Siglec-5 is expressed as a monomer in the plasma membrane. PMID:24382335

  3. Expression of colonization factor CS5 of enterotoxigenic Escherichia coli (ETEC) is enhanced in vivo and by the bile component Na glycocholate hydrate.

    PubMed

    Nicklasson, Matilda; Sjöling, Åsa; von Mentzer, Astrid; Qadri, Firdausi; Svennerholm, Ann-Mari

    2012-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of acute watery diarrhoea in developing countries. Colonization factors (CFs) on the bacterial surface mediate adhesion to the small intestinal epithelium. Two of the most common CFs worldwide are coli surface antigens 5 and 6 (CS5, CS6). In this study we investigated the expression of CS5 and CS6 in vivo, and the effects of bile and sodium bicarbonate, present in the human gut, on the expression of CS5. Five CS5+CS6 ETEC isolates from adult Bangladeshi patients with acute diarrhoea were studied. The level of transcription from the CS5 operon was approximately 100-fold higher than from the CS6 operon in ETEC bacteria recovered directly from diarrhoeal stool without sub-culturing (in vivo). The glyco-conjugated primary bile salt sodium glycocholate hydrate (NaGCH) induced phenotypic expression of CS5 in a dose-dependent manner and caused a 100-fold up-regulation of CS5 mRNA levels; this is the first description of NaGCH as an enteropathogenic virulence inducer. The relative transcription levels from the CS5 and CS6 operons in the presence of bile or NaGCH in vitro were similar to those in vivo. Another bile salt, sodium deoxycholate (NaDC), previously reported to induce enteropathogenic virulence, also induced expression of CS5, whereas sodium bicarbonate did not.

  4. Expression of colonization factor CS5 of enterotoxigenic Escherichia coli (ETEC) is enhanced in vivo and by the bile component Na glycocholate hydrate.

    PubMed

    Nicklasson, Matilda; Sjöling, Åsa; von Mentzer, Astrid; Qadri, Firdausi; Svennerholm, Ann-Mari

    2012-01-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of acute watery diarrhoea in developing countries. Colonization factors (CFs) on the bacterial surface mediate adhesion to the small intestinal epithelium. Two of the most common CFs worldwide are coli surface antigens 5 and 6 (CS5, CS6). In this study we investigated the expression of CS5 and CS6 in vivo, and the effects of bile and sodium bicarbonate, present in the human gut, on the expression of CS5. Five CS5+CS6 ETEC isolates from adult Bangladeshi patients with acute diarrhoea were studied. The level of transcription from the CS5 operon was approximately 100-fold higher than from the CS6 operon in ETEC bacteria recovered directly from diarrhoeal stool without sub-culturing (in vivo). The glyco-conjugated primary bile salt sodium glycocholate hydrate (NaGCH) induced phenotypic expression of CS5 in a dose-dependent manner and caused a 100-fold up-regulation of CS5 mRNA levels; this is the first description of NaGCH as an enteropathogenic virulence inducer. The relative transcription levels from the CS5 and CS6 operons in the presence of bile or NaGCH in vitro were similar to those in vivo. Another bile salt, sodium deoxycholate (NaDC), previously reported to induce enteropathogenic virulence, also induced expression of CS5, whereas sodium bicarbonate did not. PMID:22563407

  5. Candidate chemosensory cells in the porcine stomach.

    PubMed

    Widmayer, Patricia; Breer, Heinz; Hass, Nicole

    2011-07-01

    A continuous chemosensory monitoring of the ingested food is of vital importance for adjusting digestive processes according to diet composition. Although any dysfunction of this surveillance system may be the cause of severe gastrointestinal disorders, information about the cellular and molecular basis of chemosensation in the gastrointestinal tract is limited. The porcine alimentary canal is considered as an appropriate model for the human gastrointestinal tract. Therefore, in this study we have investigated the gastric mucosa of swine for cells which express gustatory transduction elements such as TRPM5 or PLCβ2, and thus may represent candidate "chemosensors". It was found that the porcine stomach indeed contains cells expressing gustatory marker molecules; however, the morphology and topographic distribution of putative chemosensory cells varied significantly from that in mice. Whereas in the murine stomach these cells were clustered at a distinct region near the gastric entrance, no such compact cell cluster was found in the pig stomach. These results indicate substantial differences regarding the phenotype of candidate chemosensory cells of mice and swine and underline the importance of choosing the most suitable model organisms. PMID:21667283

  6. Justifying clinical trials for porcine islet xenotransplantation.

    PubMed

    Ellis, Cara E; Korbutt, Gregory S

    2015-01-01

    The development of the Edmonton Protocol encouraged a great deal of optimism that a cell-based cure for type I diabetes could be achieved. However, donor organ shortages prevent islet transplantation from being a widespread solution as the supply cannot possibly equal the demand. Porcine islet xenotransplantation has the potential to address these shortages, and recent preclinical and clinical trials show promising scientific support. Consequently, it is important to consider whether the current science meets the ethical requirements for moving toward clinical trials. Despite the potential risks and the scientific unknowns that remain to be investigated, there is optimism regarding the xenotransplantation of some types of tissue, and enough evidence has been gathered to ethically justify clinical trials for the most safe and advanced area of research, porcine islet transplantation. Researchers must make a concerted effort to maintain a positive image for xenotransplantation, as a few well-publicized failed trials could irrevocably damage public perception of xenotransplantation. Because all of society carries the burden of risk, it is important that the public be involved in the decision to proceed. As new information from preclinical and clinical trials develops, policy decisions should be frequently updated. If at any point evidence shows that islet xenotransplantation is unsafe, then clinical trials will no longer be justified and they should be halted. However, as of now, the expected benefit of an unlimited supply of islets, combined with adequate informed consent, justifies clinical trials for islet xenotransplantation.

  7. Molecular epidemiology and evolution of porcine parvoviruses.

    PubMed

    Streck, André Felipe; Canal, Cláudio Wageck; Truyen, Uwe

    2015-12-01

    Porcine parvovirus (PPV), recently named Ungulate protoparvovirus 1, is considered to be one of the most important causes of reproductive failure in swine. Fetal death, mummification, stillbirths and delayed return to estrus are predominant clinical signs commonly associated with PPV infection in a herd. It has recently been shown that certain parvoviruses exhibit a nucleotide substitution rate close to that commonly determined for RNA viruses. However, the PPV vaccines broadly used in the last 30 years have most likely reduced the genetic diversity of the virus and led to the predominance of strains with a capsid profile distinct from that of the original vaccine-based strains. Furthermore, a number of novel porcine parvovirus species with yet-unknown veterinary relevance and characteristics have been described during the last decade. In this review, an overview of PPV molecular evolution is presented, highlighting characteristics of the various genetic elements, their evolutionary rate and the discovery of new capsid profiles driven by the currently used vaccines.

  8. Mechanical evaluation of decellularized porcine thoracic aorta

    PubMed Central

    Zou, Yu; Zhang, Yanhang

    2011-01-01

    Background Decellularized tissues are expected to have major cellular immunogenic components removed and in the mean time maintain similar mechanical strength and extracellular matrix (ECM) structure. However, the decellularization processes likely cause alterations of the ECM structure and thus influence the mechanical properties. In the present study, the effects of different decellularization protocols on the (passive) mechanical properties of the resulted porcine aortic ECM were evaluated. Methods Decellularization methods using anionic detergent (sodium dodecyl sulfate), enzymatic detergent (Trypsin), and non-ionic detergent (tert-octylphenylpolyoxyethylen (Triton X-100)) were adopted to obtain decellularized porcine aortic ECM. Histological studies and scanning electron microscopy were performed to confirm the removal of cells and to examine the structure of ECM. Biaxial tensile testing was used to characterize both the elastic and viscoelastic mechanical behaviors of decellularized ECM. Results All three decellularization protocols remove the cells effectively. The major ECM structure is preserved under SDS and Triton X-100 treatments. However, the structure of Trypsin treated ECM is severely disrupted. SDS and Triton X-100 decellularized ECM exhibits similar elastic properties as intact aorta tissues. Decellularized ECM shows less stress relaxation than intact aorta due to the removal of cells. Creep behavior is negligible for both decellularized ECM and intact aortas. Conclusion SDS and Triton X-100 decellularized ECM tissue appeared to maintain the critical mechanical and structural properties and might work as a potential material for further vascular tissue engineering. PMID:21571306

  9. Progesterone improves porcine in vitro fertilisation system.

    PubMed

    Malo, Clara; Gil, Lydia; Cano, Rafael; Martinez, Felisa; Gonzalez, Noelia

    2014-03-01

    In an effort to improve the quality of in vitro produced porcine embryos, the effect of progestagens - progesterone analogues - on the in vitro developmental competence of porcine oocytes was studied. A total of 1421 in vitro matured oocytes, from 4 replicates, were inseminated with frozen-thawed spermatozoa. Progestagens were added to late maturation and embryo cultures (10 IU/ml). Fertilisation success (pre-maturation, penetration, monospermy and efficiency) and nuclear maturation were evaluated. There were no differences among prematuration rates between groups (P = 0.221). Penetration rates were higher (P < 0.001) in the presence of progestagens (75.0%) as compared to the control (51.7%). However, no differences were observed in monospermy percentages (P = 0.246). The results indicated that supplementation with progestagens increased the efficiency of the in vitro fertilisation system (P < 0.001). An additional beneficial effect was observed in nuclear maturation with progestagens (P = 0.035). In summary, progestagen supplementation is an important factor to improve the in vitro fertilisation procedure.

  10. Participation of free oxygen radicals in damage of porcine erythrocytes

    SciTech Connect

    Jozwiak, J.; Helszer, Z.

    1981-10-01

    Gamma radiation causes disturbances in energy metabolism, decreases in (Na/sup +/-K/sup +/)-ATPase, Mg/sup 2 +/-APTase activity, and increase in the degree of hemolysis in porcine erythrocytes. Our results indicated a contribution of exogenous free radicals in radiation damage to porcine erythrocytes. In the presence of biological and chemical radioprotectors a protective effect with respect to ATPase activity and energy metabolism was observed in the presence of catalase, histidine, glucose, and sulfhydryl compounds. It appears that radiation damage to porcine erythrocytes is due to the action of various radicals formed upon irradiation which react at different rates with various cell constituents.

  11. Interactions of porcine circovirus 2 with its hosts.

    PubMed

    Ren, Linzhu; Chen, Xinrong; Ouyang, Hongsheng

    2016-08-01

    Porcine circovirus 2 (PCV2) can cause porcine circovirus diseases and porcine circovirus-associated diseases (PCVD/PCVAD), which are widely presented in swine-producing countries. Since the discovery of this virus, considerable efforts have been devoted to understanding this pathogen and its interactions with its host. Here, we review the current state of knowledge on interactions between host cell factors and PCV2 with respect to viral proliferation, virus-induced cell apoptosis and autophagy, and host antiviral defenses during PCV2 infection. We also review mouse model systems for PCV2 infection. PMID:27016220

  12. A new asset for pathogen informatics--the Enteropathogen Resource Integration Center (ERIC), an NIAID Bioinformatics Resource Center for Biodefense and Emerging/Re-emerging Infectious Disease.

    PubMed

    Greene, John M; Plunkett, Guy; Burland, Valerie; Glasner, Jeremy; Cabot, Eric; Anderson, Brad; Neeno-Eckwall, Eric; Qiu, Yu; Mau, Bob; Rusch, Michael; Liss, Paul; Hampton, Thomas; Pot, David; Shaker, Matthew; Shaull, Lorie; Shetty, Panna; Shi, Chuan; Whitmore, Jon; Wong, Mary; Zaremba, Sam; Blattner, Frederick R; Perna, Nicole T

    2007-01-01

    ERIC (Enteropathogen Resource Information Center) is one of the National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Centers for Biodefense and Emerging/Re-emerging Infectious Disease. ERIC serves as a comprehensive information resource for five related pathogens: Yersinia enterocolitica, Yersinia pestis, diarrheagenic E. coli, Shigella spp., and Salmonella spp. ERIC integrates genomics, proteomics, biochemical and microbiological information to facilitate the interpretation and understanding of ERIC pathogens and select related non-pathogens for the advancement of diagnostics, therapeutics, and vaccines. ERIC (www.ericbrc.org) is evolving to provide state-of-the-art analysis tools and data types, such as genome sequencing, comparative genomics, genome polymorphisms, gene expression, proteomics, and pathways as well as expertly curated community genome annotation. Genome sequence and genome annotation data and a variety of analysis and tools for eight strains of Yersinia enterocolitica and Yersinia pestis pathogens (Yersinia pestis biovars Mediaevalis KIM, Mediaevalis 91001, Orientalis CO92, Orientalis IP275, Antiqua Angola, Antiqua Antiqua, Antiqua Nepal516, and Yersinia enterocolitica 8081) and two strains of Yersinia pseudotuberculosis (Yersinia pseudotuberculosis IP32953 and IP31758) are currently available through the ERIC portal. ERIC seeks to maintain a strong collaboration with the scientific community so that we can continue to identify and incorporate the latest research data, tools, and training to best meet the current and future needs of the enteropathogen research community. All tools and data developed under this NIAID contract will be freely available. Please contact info@ericbrc.org for more information.

  13. PATHOGENIC ESCHERICHIA COLI

    EPA Science Inventory

    Escherichia coli is a bacterial species which inhabits the gastrointestinal tract of man and warm-blooded animals. Because of the ubiquity of this bacterium in the intestinal flora, it serves as an important indicator organism of fecal contamination. E. coli, aside from serving a...

  14. Genetic recombination. [Escherichia coli

    SciTech Connect

    Stahl, F.W.

    1987-02-01

    The molecular pathways of gene recombination are explored and compared in studies of the model organisms, Escherichia coli and phase lambda. In the discussion of data from these studies it seems that recombination varies with the genetic idiosyncrasies of the organism and may also vary within a single organism.

  15. Porcine circovirus type 2 detection in in vitro produced porcine blastocysts after virus sperm exposure.

    PubMed

    Galeati, Giovanna; Zannoni, Augusta; Spinaci, Marcella; Bucci, Diego; Ostanello, Fabio; Panarese, Serena; Tamanini, Carlo; Sarli, Giuseppe

    2016-04-01

    This study was aimed at assessing the capability of semen experimentally infected with porcine circovirus type 2 (PCV2) to produce porcine blastocysts PCR positive for PCV2. Embryos were obtained from in vitro maturation (IVM) and in vitro fertilization (IVF) of porcine oocytes or by parthenogenesis. Sperm suspension was exposed to PCV2b and utilized for IVF. PCV2 spiked semen did not reveal any reduction in sperm viability or motility but its ability to produce infected blastocysts was irrelevant as only one out of 15 blastocysts obtained by IVF were PCV2b; however two blastocysts were PCV2a positive. Furthermore, the presence of PCV2 was demonstrated also in embryos obtained by parthenogenesis (one out of 17 was PCV2b and one PCV2a positive). Even if PCV2 firmly attaches to the surface of spermatozoa, experimentally spiked sperm were not effective in infecting oocytes during IVF and in producing PCR positive embryos. The infected blastocysts we obtained derived most probably from infected oocytes recovered at the abattoir. PMID:26434667

  16. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    SciTech Connect

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun; Lv, Xiaonan; Herrler, Georg; Enjuanes, Luis; Zhou, Xingdong; Qu, Bo; Meng, Fandan; Cong, Chengcheng; Ren, Xiaofeng; Li, Guangxing

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  17. Isolation and partial characterization of a novel porcine astrovirus.

    PubMed

    Indik, Stanislav; Valícek, Lubomír; Smíd, Bedrich; Dvoráková, Hana; Rodák, Ladislav

    2006-10-31

    Astroviral infection has been described as one of the causes of porcine diarrhoeal disease. Here we describe the detection of astrovirus-like particles by electron microscopy in a diarrhoeal specimen. Furthermore, a cytopathic virus was isolated and propagated in an established porcine kidney cell line, PK-15. Reverse transcription and PCR performed with astrovirus-specific primers amplified a product with the expected size. Sequencing of the PCR product revealed that the virus observed by electron microscopy and propagated in the porcine cell line is an astrovirus, showing 86% identity at the nucleotide level with the only known porcine astrovirus, PAstV. Phylogenetic analysis clustered the novel isolate, Sb4685, together with PAstV in a broad clade comprising mammalian astroviruses.

  18. Molecular characterization of a porcine kobuvirus strain in China.

    PubMed

    Wang, Changsong; Lan, Daoliang; Cui, Li; Yang, Zhibiao; Yuan, Congli; Hua, Xiuguo

    2012-03-01

    Porcine kobuvirus was first identified in 2007 in Hungary. The virus has been detected in several Asian countries. In our study, the complete genome of the recently identified porcine kobuvirus strain SH-W-CHN was amplified by RT-PCR and was sequenced. Dendrograms indicated that SH-W-CHN is closely related to other porcine kobuviruses. To identify sites of possible recombination within the genome of the SH-W-CHN strain, the SimPlot program was used to perform recombination analysis. The results showed that no significant recombination event between strain S-1-HUN and Y-1-CHI had occurred. However, certain possible recombination signals were identified, indicating that some early recombination events may have contributed to the genome of SH-W-CHN. This study further confirmed the existence of multiple lineages of porcine kobuvirus and indicated that homologous recombination may be a driving force in its evolution.

  19. Porcine radial artery decellularization by high hydrostatic pressure.

    PubMed

    Negishi, Jun; Funamoto, Seiichi; Kimura, Tsuyoshi; Nam, Kwangoo; Higami, Tetsuya; Kishida, Akio

    2015-11-01

    Many types of decellularized tissues have been studied and some have been commercially used in clinics. In this study, small-diameter vascular grafts were made using HHP to decellularize porcine radial arteries. One decellularization method, high hydrostatic pressure (HHP), has been used to prepare the decellularized porcine tissues. Low-temperature treatment was effective in preserving collagen and collagen structures in decellularized porcine carotid arteries. The collagen and elastin structures and mechanical properties of HHP-decellularized radial arteries were similar to those of untreated radial arteries. Xenogeneic transplantation (into rats) was performed using HHP-decellularized radial arteries and an untreated porcine radial artery. Two weeks after transplantation into rat carotid arteries, the HHP-decellularized radial arteries were patent and without thrombosis. In addition, the luminal surface of each decellularized artery was covered by recipient endothelial cells and the arterial medium was fully infiltrated with recipient cells.

  20. Porcine skin flow-through diffusion cell system.

    PubMed

    Baynes, R E

    2001-11-01

    Porcine Skin Flow-Through Diffusion Cell System (Ronald E. Baynes, North Carolina State University, Raleigh, North Carolina). Porcine skin can be used in a diffusion cell apparatus to study the rate and extent of absorption of topically applied chemicals through the skin. Although the skin of a number of animals can be used in this system, that of the pig most closely approximates human skin anatomically and physiologically.

  1. A functional comparison of ovine and porcine trypsins.

    PubMed

    Dallas Johnson, Keryn; Clark, Alan; Marshall, Sue

    2002-03-01

    Trypsin was isolated from ovine and porcine pancreas using affinity chromatography on immobilized p-aminobenzamidine. Molecular masses of the two proteins were 23900 and 23435 Da, determined by matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass spectrometry. The purified trypsins were compared using the kinetic properties K(m) and k(cat) which were determined at pH 8.0 and between 25 and 55 degrees C. Comparison of the Michaelis constants for ovine and porcine trypsins toward N-alpha-benzoyl-arginine-p-nitroanilide (BapNA) indicated that ovine trypsin had higher affinity for this substrate than the porcine enzyme. The rates of the reactions catalysed by the two enzymes correlated strongly over the range of temperatures and substrate concentrations tested, as did the k(cat) values. The specific activity of ovine trypsin for BapNA was, on average, approximately 10% higher than that of the porcine enzyme over the range of conditions tested. Porcine trypsin was less susceptible to denaturation at low pH or high temperature than was ovine trypsin. Porcine and ovine trypsin produced seven identically sized fragments from auto-catalytic hydrolysis. Proposed regions of identity between ovine and porcine trypsins were I(54)-K(77), L(98)-R(107), S(134)-K(178) and N(209)-K(116). Hydrolysis of beta-lactoglobulin, egg white lysozyme or casein by ovine or porcine trypsin yielded virtually identical patterns of fragments although the rate at which fragments were produced, in the case of beta-lactoglobulin, differed between the two enzymes. On balance the two enzymes appear to be functionally identical in their action. PMID:11959024

  2. Tiamulin resistance in porcine Brachyspira pilosicoli isolates.

    PubMed

    Pringle, M; Landén, A; Franklin, A

    2006-02-01

    There are few studies on antimicrobial susceptibility of Brachyspira pilosicoli, therefore this study was performed to investigate the situation among isolates from pigs. The tiamulin and tylosin susceptibility was determined by broth dilution for 93 and 86 porcine B. pilosicoli isolates, respectively. The isolates came from clinical samples taken in Swedish pig herds during the years 2002 and 2003. The tylosin minimal inhibitory concentration (MIC) was >16 microg/ml for 50% (n=43) of the isolates tested. A tiamulin MIC >2 microg/ml was obtained for 14% (n=13) of the isolates and these were also tested against doxycycline, salinomycin, valnemulin, lincomycin and aivlosin. For these isolates the susceptibility to salinomycin and doxycycline was high but the MICs for aivlosin varied. The relationship between the 13 tiamulin resistant isolates was analyzed by pulsed-field gel electrophoresis (PFGE). Among the 13 isolates 10 different PFGE patterns were identified. PMID:16253666

  3. [Research Advances in the Porcine Deltacoronavirus].

    PubMed

    Fang, Puxian; Fang, Liurong; Dong, Nan; Xiao, Shaobo

    2016-03-01

    The deltacoronavirus is a new member of the subfamily Coronaviridae of the family Coronaviridae. Deltacoronaviruses can infect birds and mammals. Deltacoronaviruses were detected in early 2007 in Asian leopard cats and Chinese ferret badgers. In 2014, porcine deltacoronavirus (PDCoV) infection spread rapidly in the USA. Moreover, cell culture-adapted PDCoV has been obtained from infected piglets. Animal experiments have confirmed that the isolated PDCoV is highly pathogenic and causes severe diarrhea in piglets. Thus, the PDCoV can be considered to be a good model to study the deltacoronavirus. In this review, we discuss the etiology, epidemiology, pathogenicity, culture, and diagnostic methods of the PDCoV. PMID:27396171

  4. Tiamulin resistance in porcine Brachyspira pilosicoli isolates.

    PubMed

    Pringle, M; Landén, A; Franklin, A

    2006-02-01

    There are few studies on antimicrobial susceptibility of Brachyspira pilosicoli, therefore this study was performed to investigate the situation among isolates from pigs. The tiamulin and tylosin susceptibility was determined by broth dilution for 93 and 86 porcine B. pilosicoli isolates, respectively. The isolates came from clinical samples taken in Swedish pig herds during the years 2002 and 2003. The tylosin minimal inhibitory concentration (MIC) was >16 microg/ml for 50% (n=43) of the isolates tested. A tiamulin MIC >2 microg/ml was obtained for 14% (n=13) of the isolates and these were also tested against doxycycline, salinomycin, valnemulin, lincomycin and aivlosin. For these isolates the susceptibility to salinomycin and doxycycline was high but the MICs for aivlosin varied. The relationship between the 13 tiamulin resistant isolates was analyzed by pulsed-field gel electrophoresis (PFGE). Among the 13 isolates 10 different PFGE patterns were identified.

  5. The porcine innate immune system: an update.

    PubMed

    Mair, K H; Sedlak, C; Käser, T; Pasternak, A; Levast, B; Gerner, W; Saalmüller, A; Summerfield, A; Gerdts, V; Wilson, H L; Meurens, F

    2014-08-01

    Over the last few years, we have seen an increasing interest and demand for pigs in biomedical research. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of their anatomy, genetics, and physiology, and often are the model of choice for the assessment of novel vaccines and therapeutics in a preclinical stage. However, the pig as a model has much more to offer, and can serve as a model for many biomedical applications including aging research, medical imaging, and pharmaceutical studies to name a few. In this review, we will provide an overview of the innate immune system in pigs, describe its anatomical and physiological key features, and discuss the key players involved. In particular, we compare the porcine innate immune system to that of humans, and emphasize on the importance of the pig as model for human disease.

  6. How Active Are Porcine Endogenous Retroviruses (PERVs)?

    PubMed Central

    Denner, Joachim

    2016-01-01

    Porcine endogenous retroviruses (PERVs) represent a risk factor if porcine cells, tissues, or organs were to be transplanted into human recipients to alleviate the shortage of human transplants; a procedure called xenotransplantation. In contrast to human endogenous retroviruses (HERVs), which are mostly defective and not replication-competent, PERVs are released from normal pig cells and are infectious. PERV-A and PERV-B are polytropic viruses infecting cells of several species, among them humans; whereas PERV-C is an ecotropic virus infecting only pig cells. Virus infection was shown in co-culture experiments, but also in vivo, in the pig, leading to de novo integration of proviruses in certain organs. This was shown by measurement of the copy number per cell, finding different numbers in different organs. In addition, recombinations between PERV-A and PERV-C were observed and the recombinant PERV-A/C were found to be integrated in cells of different organs, but not in the germ line of the animals. Here, the evidence for such in vivo activities of PERVs, including expression as mRNA, protein and virus particles, de novo infection and recombination, will be summarised. These activities make screening of pigs for provirus number and PERV expression level difficult, especially when only blood or ear biopsies are available for analysis. Highly sensitive methods to measure the copy number and the expression level will be required when selecting pigs with low copy number and low expression of PERV as well as when inactivating PERVs using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (CRISPR/Cas) technology. PMID:27527207

  7. Porcine Models of Muscular Dystrophy1

    PubMed Central

    Selsby, Joshua T.; Ross, Jason W.; Nonneman, Dan; Hollinger, Katrin

    2015-01-01

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease. PMID:25991703

  8. ISOLATION AND MOLECULAR IDENTIFICATION OF POTENTIALLY PATHOGENIC Escherichia coli AND Campylobacter jejuni IN FERAL PIGEONS FROM AN URBAN AREA IN THE CITY OF LIMA, PERU.

    PubMed

    Caballero, Moisés; Rivera, Isabel; Jara, Luis M; Ulloa-Stanojlovic, Francisco M; Shiva, Carlos

    2015-01-01

    Feral pigeons (Columbia livia) live in close contact with humans and other animals. They can transmit potentially pathogenic and zoonotic agents. The objective of this study was to isolate and detect strains of diarrheagenic Escherichia coli and Campylobacter jejuni of urban feral pigeons from an area of Lima, Peru. Fresh dropping samples from urban parks were collected for microbiological isolation of E. coli strains in selective agar, and Campylobacter by filtration method. Molecular identification of diarrheagenic pathotypes of E.coli and Campylobacter jejuni was performed by PCR. Twenty-two parks were sampled and 16 colonies of Campylobacter spp. were isolated. The 100% of isolates were identified as Campylobacter jejuni. Furthermore, 102 colonies of E. coli were isolated and the 5.88% resulted as Enteropathogenic (EPEC) type and 0.98% as Shiga toxin-producing E. coli (STEC). The urban feral pigeons of Lima in Peru can act as a reservoir or carriers of zoonotic potentially pathogenic enteric agents.

  9. An outbreak of foodborne illness caused by Escherichia coli O39:NM, an agent not fitting into the existing scheme for classifying diarrheogenic E. coli.

    PubMed

    Hedberg, C W; Savarino, S J; Besser, J M; Paulus, C J; Thelen, V M; Myers, L J; Cameron, D N; Barrett, T J; Kaper, J B; Osterholm, M T

    1997-12-01

    An outbreak of gastrointestinal illness with clinical and epidemiologic features of enterotoxigenic Escherichia coli (ETEC) occurred among patrons of a restaurant during April 1991. Illnesses among several groups of patrons were characterized by diarrhea (100%) and cramps (79%-88%) lasting a median of 3-5 days. Median incubation periods ranged from 50 to 56 h. A nonmotile strain of E. coli (E. coli O39), which was negative for heat-labile (LT) and heat-stable (STa, STb) ETEC toxins, was isolated only from ill patrons. This organism produced enteroaggregative E. coli heat-stable enterotoxin 1 and contained the enteropathogenic E. coli gene locus for enterocyte effacement; it did not display mannose-resistant adherence, but produced attaching and effacing lesions in the absence of mannose on cultured HEp-2 cells. E. coli that are not part of highly characterized but narrowly defined groups may be important causes of foodborne illness.

  10. Locus of enterocyte effacement-encoded regulator (Ler) of pathogenic Escherichia coli competes off histone-like nucleoid-structuring protein (H-NS) through noncooperative DNA binding.

    PubMed

    Winardhi, Ricksen S; Gulvady, Ranjit; Mellies, Jay L; Yan, Jie

    2014-05-16

    The locus of enterocyte effacement-encoded regulator (Ler) of enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC) functions to activate transcription of virulence genes silenced by the histone-like nucleoid-structuring protein (H-NS). Despite its important role in the bacterial gene regulation, the binding mode of Ler to DNA and its mechanism in alleviating genes repressed by H-NS are largely unknown. In this study, we use magnetic tweezers to demonstrate that Ler binds extended DNA through a largely noncooperative process, which results in DNA stiffening and DNA folding depending on protein concentration. We also show that Ler can replace prebound H-NS on DNA over a range of potassium and magnesium concentrations. Our findings reveal the DNA binding properties of Ler and shed light to further understand the anti-silencing activity of Ler.

  11. Changes in microbial contamination levels of porcine carcasses and fresh pork in slaughterhouses, processing lines, retail outlets, and local markets by commercial distribution.

    PubMed

    Choi, Y M; Park, H J; Jang, H I; Kim, S A; Imm, J Y; Hwang, I G; Rhee, M S

    2013-06-01

    The objective of this study was to evaluate the changes in microbial contamination levels of each porcine carcass and fresh pork in a general distribution process. A total of 100 commercial pigs were sampled (six sampling sites per individual, total 600 samples) at four sequential stages: slaughterhouse (after carcass grading and boning), processing line, retail outlet, and local market. No significant differences were observed in the contaminant percentages among sampling sites and sample collection years (P>0.05) with the exception of Bacillus cereus. The contaminant percentage of B. cereus at 1st collection year was higher than these of 2nd collection year (28.31% vs. 12.26%, P<0.05). B. cereus and Listeria monocytogenes were the most frequently detected pathogenic bacteria in the slaughterhouse and markets, respectively. On the other hand, Escherichia coli O157:H7 and Yersinia enterocolitica were not detected in carcasses or pork collected from any carcass sites and pork samples. However, the frequency of pathogenic bacteria in end-products at local markets was not highly related to the initial contamination of porcine carcasses in the slaughterhouse. Thus, the improvement of microbial safety for pork end-products requires hygienic control of porcine carcasses and meat cutting during all operations in the slaughterhouse, processing line, retail outlet, and local market.

  12. A field trial to evaluate the efficacy of a combined rotavirus-coronavirus/Escherichia coli vaccine in dairy cattle.

    PubMed Central

    Waltner-Toews, D; Martin, S W; Meek, A H; McMillan, I; Crouch, C F

    1985-01-01

    A field trial was designed to determine the efficacy of a combination rotavirus-coronavirus/Escherichia coli vaccine on dairy farms in southwestern Ontario. In Part A of the trial, 321 cows on 15 farms were randomly assigned to either vaccination or placebo groups. On eight farms, 50% of the dams were vaccinated, while on the other seven farms, 80% of the dams were vaccinated. In Part B of the trial, 26 farms were randomly assigned to either a total vaccination program or to no vaccination program. Mortality, disease occurrence and weight gains were recorded on all calves for the first two weeks of life. In Part A, 23.5% of all calves were treated in the first two weeks of life, 20.9% were treated specifically for scours and 3.6% of live-born calves died. Enteropathogenic E. coli was identified on 13 of the 15 farms, rotavirus on 11 and coronavirus on ten. At least one of the three potential pathogens was found on every farm. There were no significant differences between calves from placebo-treated and vaccine-treated dams with regard to the proportion treated for all diseases, or for scours, or the proportion which died. Neither were there differences in days to first treatment for all diseases (seven days on average), days to first scour (6.7 days), duration of treatments (3.9 days for all diseases, 3.7 days for scours), or estimated weight gains (0.5 kg/day to 14 days). These results were not altered when the presence or absence of enteropathogenic E. coli, rotavirus or coronavirus on the premises was accounted for.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2985213

  13. [Factors of virulence associated with enteropathogenicity in strains of Aeromonas spp. isolated from children with diarrhea in Mérida, Venezuela].

    PubMed

    Longa, Aurora; Vizcaya, Luisa; Nieves, Beatriz; Bravo, Laura; Morier, Luis; Pérez-Schael, Irene; Enrique Cabrera, Luis

    2005-01-01

    The feces of 397 patients with acute diarrheal disease (ADD) and of other 121 patients without diarrea (control group) were studied in the state of Mérida, Venezuela, from June 1993 to December 1994. The genus Aeromonas was identified in patients with ADD in 11.83% and in 5.78% of the patients from the control group. On studying the virulence factors described for Aeromonas (enterotoxin, cytotoxin, hemaglutinins, cellular hydrofibrosity, and hemolytic activity) in the isolated strains, it was detected that all presented at least one of the factors investigated associated with enteropathogenicity. Of the isolated species, Aeromonas caviae was the most frequently identified. All these results suggest that the Aeromonas species are potential enteric pathogens in this population.

  14. Hepatic differentiation of porcine embryonic stem cells for translational research of hepatocyte transplantation.

    PubMed

    Park, K M; Hussein, K H; Ghim, J H; Ahn, C; Cha, S H; Lee, G S; Hong, S H; Yang, S; Woo, H M

    2015-04-01

    Porcine embryonic stem cells (ES) are considered attractive preclinical research tools for human liver diseases. Although several studies previously reported generation of porcine ES, none of these studies has described hepatic differentiation from porcine ES. The aim of this study was to generate hepatocytes from porcine ES and analyze their characteristics. We optimized conditions for definitive endoderm induction and developed a 4-step hepatic differentiation protocol. A brief serum-free condition with activin A efficiently induced definitive endoderm differentiation from porcine ES. The porcine ES-derived hepatocyte-like cells highly expressed hepatic markers including albumin and α-fetoprotein, and displayed liver characteristics such as glycogen storage, lipid production, and low-density lipoprotein uptake. For the first time, we describe a highly efficient protocol for hepatic differentiation from porcine ES. Our findings provide valuable information for translational liver research using porcine models, including hepatic regeneration and transplant studies, drug screening, and toxicology.

  15. Molecular characterization reveals similar virulence gene content in unrelated clonal groups of Escherichia coli of serogroup O174 (OX3).

    PubMed

    Tarr, Cheryl L; Nelson, Adam M; Beutin, Lothar; Olsen, Katharina E P; Whittam, Thomas S

    2008-02-01

    Most severe illnesses that are attributed to Shiga toxin-producing Escherichia coli are caused by isolates that also carry a pathogenicity island called the locus of enterocyte effacement (LEE). However, many cases of severe disease are associated with LEE-negative strains. We characterized the virulence gene content and the evolutionary relationships of Escherichia coli isolates of serogroup O174 (formerly OX3), strains of which have been implicated in cases of hemorrhagic colitis and hemolytic uremic syndrome. A total of 56 isolates from humans, farm animals, and food were subjected to multilocus virulence gene profiling (MVGP), and a subset of 16 isolates was subjected to multilocus sequence analysis (MLSA). The MLSA revealed that the O174 isolates fall into four separate evolutionary clusters within the E. coli phylogeny and are related to a diverse array of clonal groups, including enteropathogenic E. coli 2 (EPEC 2), enterohemorrhagic E. coli 2 (EHEC 2), and EHEC-O121. Of the 15 genes that we surveyed with MVGP, only 6 are common in the O174 strains. The different clonal groups within the O174 serogroup appear to have independently acquired and maintained similar sets of genes that include the Shiga toxins (stx1 and stx2) and two adhesins (saa and iha). The absence of certain O island (OI) genes, such as those found on OI-122, is consistent with the notion that certain pathogenicity islands act cooperatively with the LEE island.

  16. Genome Sequences of the Novel Porcine Parvovirus 3, Identified in Guangxi Province, China

    PubMed Central

    Zhong, Hui; Li, Xiangmin; Zhao, Zekai; An, Chunjing; Wan, Peng; Wu, Mengge; Chen, Huanchun

    2016-01-01

    Porcine parvovirus 3 is a novel parvovirus that infects pigs. Here, we report two genome sequences of porcine parvovirus 3 strains GX1 and GX2, which are highly prevalent in Guangxi province. It will help in understanding the epidemiology and molecular characteristics of the porcine parvovirus 3. PMID:26941135

  17. 7 CFR 1230.608 - Imported porcine animals, pork, and pork products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Imported porcine animals, pork, and pork products... AGRICULTURE PORK PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.608 Imported porcine animals, pork, and pork products. The term Imported porcine...

  18. 7 CFR 1230.608 - Imported porcine animals, pork, and pork products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Imported porcine animals, pork, and pork products... AGRICULTURE PORK PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.608 Imported porcine animals, pork, and pork products. The term Imported porcine...

  19. 7 CFR 1230.608 - Imported porcine animals, pork, and pork products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Imported porcine animals, pork, and pork products... AGRICULTURE PORK PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.608 Imported porcine animals, pork, and pork products. The term Imported porcine...

  20. 7 CFR 1230.608 - Imported porcine animals, pork, and pork products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Imported porcine animals, pork, and pork products... AGRICULTURE PORK PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.608 Imported porcine animals, pork, and pork products. The term Imported porcine...

  1. 7 CFR 1230.111 - Remittance of assessments on domestic porcine animals.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Remittance of assessments on domestic porcine animals... AGRICULTURE PORK PROMOTION, RESEARCH, AND CONSUMER INFORMATION Rules and Regulations Assessments § 1230.111 Remittance of assessments on domestic porcine animals. Assessments on domestic porcine animals shall...

  2. 7 CFR 1230.111 - Remittance of assessments on domestic porcine animals.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Remittance of assessments on domestic porcine animals... AGRICULTURE PORK PROMOTION, RESEARCH, AND CONSUMER INFORMATION Rules and Regulations Assessments § 1230.111 Remittance of assessments on domestic porcine animals. Assessments on domestic porcine animals shall...

  3. 7 CFR 1230.111 - Remittance of assessments on domestic porcine animals.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Remittance of assessments on domestic porcine animals... AGRICULTURE PORK PROMOTION, RESEARCH, AND CONSUMER INFORMATION Rules and Regulations Assessments § 1230.111 Remittance of assessments on domestic porcine animals. Assessments on domestic porcine animals shall...

  4. 7 CFR 1230.608 - Imported porcine animals, pork, and pork products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Imported porcine animals, pork, and pork products... AGRICULTURE PORK PROMOTION, RESEARCH, AND CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.608 Imported porcine animals, pork, and pork products. The term Imported porcine...

  5. Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae.

    PubMed

    Chae, Chanhee

    2016-06-01

    Porcine respiratory disease is a multifactorial and complex disease caused by a combination of infectious pathogens, environmental stressors, differences in production systems, and various management practices; hence the name porcine respiratory disease complex (PRDC) is used. Porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneumoniae are considered to be the most important pathogens that cause PRDC. Although interactions among the three major respiratory pathogens are well documented, it is also necessary to understand the interaction between vaccines and the three major respiratory pathogens. PRRSV and M. hyopneumoniae are well known to potentiate PCV2-associated lesions; however, PRRSV and mycoplasmal vaccines can both enhance PCV2 viraemia regardless of the effects of the actual PRRSV or M. hyopneumoniae infection. On the other hand, M. hyopneumoniae potentiates the severity of pneumonia induced by PRRSV, and vaccination against M. hyopneumoniae alone is also able to decrease PRRSV viraemia and PRRSV-induced lung lesions in dually infected pigs. This review focuses on (1) interactions between PCV2, PRRSV, and M. hyopneumoniae; and (2) interactions between vaccines and the three major respiratory pathogens. PMID:27256017

  6. Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae.

    PubMed

    Chae, Chanhee

    2016-06-01

    Porcine respiratory disease is a multifactorial and complex disease caused by a combination of infectious pathogens, environmental stressors, differences in production systems, and various management practices; hence the name porcine respiratory disease complex (PRDC) is used. Porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneumoniae are considered to be the most important pathogens that cause PRDC. Although interactions among the three major respiratory pathogens are well documented, it is also necessary to understand the interaction between vaccines and the three major respiratory pathogens. PRRSV and M. hyopneumoniae are well known to potentiate PCV2-associated lesions; however, PRRSV and mycoplasmal vaccines can both enhance PCV2 viraemia regardless of the effects of the actual PRRSV or M. hyopneumoniae infection. On the other hand, M. hyopneumoniae potentiates the severity of pneumonia induced by PRRSV, and vaccination against M. hyopneumoniae alone is also able to decrease PRRSV viraemia and PRRSV-induced lung lesions in dually infected pigs. This review focuses on (1) interactions between PCV2, PRRSV, and M. hyopneumoniae; and (2) interactions between vaccines and the three major respiratory pathogens.

  7. Clinical comparison of St. Jude and porcine mitral valve prostheses.

    PubMed

    Douglas, P S; Hirshfeld, J W; Edie, R N; Stephenson, L W; Gleason, K; Edmunds, L H

    1988-01-01

    One hundred and six consecutive patients who had mitral valve replacement with either a St. Jude or porcine heterograft prosthesis were prospectively studied. The 2 groups are similar with respect to 67 clinical and operative factors and allow comparison of valve performance as an independent variable. Total follow-up is 3,312 patient-months (mean 36 months, range 2-57 months, 94% complete). There are no statistical differences in symptomatic improvement or mortality by life table analysis. Valve-related complications expressed as percent per patient-year are: reoperation: 1.8 St. Jude and 3.8 porcine; endocarditis: 1.2 and 1.9; regurgitant murmur: 2.3 and 1.9; hemolysis: 1.8 and 0.0; late thromboembolism: 1.8 and 1.0; hemorrhage: 2.9 and 2.9; and valve failure: 0.0 and 1.0. There were no significant differences found. Actuarial survival at 3 years was 78% in St. Jude and 81% in porcine patients. Forty-six percent of patients with St. Jude valves and 55% of patients with porcine valves were alive and free of all complications at latest follow-up. The clinical performance of St. Jude and porcine mitral valves are similar over this period of intermediate follow-up. PMID:3360831

  8. Genetic and antigenic changes in porcine rubulavirus

    PubMed Central

    Sánchez-Betancourt, José I.; Trujillo, María E.; Mendoza, Susana E.; Reyes-Leyva, Julio; Alonso, Rogelio A.

    2012-01-01

    Blue eye disease, caused by a porcine rubulavirus (PoRV), is an emergent viral swine disease that has been endemic in Mexico since 1980. Atypical outbreaks were detected in 1990 and 2003. Growing and adult pigs presented neurological signs, mild neurological signs were observed in piglets, and severe reproductive problems were observed in adults. Amino acid sequence comparisons and phylogenetic analysis of the hemagglutinin-neuraminidase (HN) protein revealed genetically different lineages. We used cross-neutralization assays, with homologous and heterologous antisera, to determine the antigenic relatedness values for the PoRV isolates. We found antigenic changes among several strains and identified a highly divergent one, making up a new serogroup. It seems that genetically and antigenically different PoRV strains are circulating simultaneously in the swine population in the geographical region studied. The cross neutralization studies suggest that the HN is not the only antigenic determinant participating in the antigenic changes among the different PoRV strains. PMID:22754092

  9. Reproductive technologies and the porcine embryonic transcriptome.

    PubMed

    Dyck, M K; Zhou, C; Tsoi, S; Grant, J; Dixon, W T; Foxcroft, G R

    2014-09-01

    The domestic pig is not only an economically-important livestock species, but also an increasingly recognized biomedical animal model due to its physiological similarities with humans. As a result, there is a strong interest in the factors that affect the efficient production of viable embryos and offspring in the pig using either in vivo or in vitro production methods. The application of assisted reproductive technologies (ART) has the potential to increase reproductive efficiency in livestock. These technologies include, but are not limited to: artificial insemination (AI), fixed-time AI, embryo transfer, cryopreservation of sperm/oocytes/embryos, in vitro fertilization and somatic cell nuclear transfer (cloning). However, the application of ART is much less efficient in the pig than in many other mammalian species such as cattle. Until recently, the underlying causes of these inefficiencies have been difficult to study, but advances in molecular biology techniques for studying gene expression have resulted in the availability of a variety of options for gene expression profiling such as microarrays, and next generation sequencing technologies. Capitalizing on these technologies the effects of various ARTs on the porcine embryonic transcriptome has been determined and the impact on the related biological pathways and functions been evaluated. The implications of these results on the efficiency of ARTs in swine, as well potential consequences for the developing embryo and resulting offspring, are reviewed.

  10. Ultrafast laser machining of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; Carter, R. M.; Dhillon, B.; Hand, D. P.; Shephard, J. D.

    2015-07-01

    The use of ultrafast lasers (pulsed lasers with pulse lengths of a few picoseconds or less) offers the possibility for minimally invasive removal of soft ophthalmic tissue. The potential for using pico- and femtosecond pulses for modification of scleral tissue has been reported elsewhere [1-6] and has resulted in the introduction of new, minimally invasive, procedures into clinical practice [3, 5-10]. Our research is focused on finding optimal parameters for picosecond laser machining of scleral tissue without introducing any unwanted collateral damage to the tissue. Experiments were carried out on hydrated porcine sclera in vitro, which has similar collagen organization, histology and water content (~70%) to human tissue. In this paper we present a 2D finite element ablation model which employs a one-step heating process. It is assumed that the incident laser radiation that is not reflected is absorbed in the tissue according to the Beer-Lambert law and transformed into heat energy. The experimental setup uses an industrial picosecond laser (TRUMPF TruMicro 5x50) with 5.9 ps pulses at 1030 nm, with pulse energies up to 125 μJ and a focused spot diameter of 35 μm. The use of a scan head allows flexibility in designing various scanning patterns. We show that picosecond pulses are capable of modifying scleral tissue without introducing collateral damage. This offers a possible route for minimally invasive sclerostomy. Many scanning patterns including single line ablation, square and circular cavity removal were tested.

  11. A Genetic Porcine Model of Cancer

    PubMed Central

    Schook, Lawrence B.; Collares, Tiago V.; Hu, Wenping; Liang, Ying; Rodrigues, Fernanda M.; Rund, Laurie A.; Schachtschneider, Kyle M.; Seixas, Fabiana K.; Singh, Kuldeep; Wells, Kevin D.; Walters, Eric M.; Prather, Randall S.; Counter, Christopher M.

    2015-01-01

    The large size of the pig and its similarity in anatomy, physiology, metabolism, and genetics to humans make it an ideal platform to develop a genetically defined, large animal model of cancer. To this end, we created a transgenic “oncopig” line encoding Cre recombinase inducible porcine transgenes encoding KRASG12D and TP53R167H, which represent a commonly mutated oncogene and tumor suppressor in human cancers, respectively. Treatment of cells derived from these oncopigs with the adenovirus encoding Cre (AdCre) led to KRASG12D and TP53R167H expression, which rendered the cells transformed in culture and tumorigenic when engrafted into immunocompromised mice. Finally, injection of AdCre directly into these oncopigs led to the rapid and reproducible tumor development of mesenchymal origin. Transgenic animals receiving AdGFP (green fluorescent protein) did not have any tumor mass formation or altered histopathology. This oncopig line could thus serve as a genetically malleable model for potentially a wide spectrum of cancers, while controlling for temporal or spatial genesis, which should prove invaluable to studies previously hampered by the lack of a large animal model of cancer. PMID:26132737

  12. Experimental transplacental transmission of porcine cytomegalovirus.

    PubMed

    Edington, N; Watt, R G; Plowright, W

    1977-04-01

    Six serologically negative sows were infected by intranasal instillation of porcine cytomegalovirus (PCMV) between 31 and 85 days of pregnacy. Four sows showed an afebrile anorexia and lethargy 14-25 days after infection and all 6 developed significant increases in indirect immunofluorescent (IIF) antibody titres within 35 days. Virus was recovered from nasal and/or cervical swabs from 2 sows during life and from lung macrophage cultures after death. At term the sows were killed and their fetuses harvested by caesarean section. The number of mummified and stillborn fetuses increased from 4/63 in 6 previous litters to 18/60 in the 6 present litters. Nine of 43 fetuses born alive were reared in isolators for up to 6 weeks but the majority were killed for examination on the day of birth. Virus was isolated from 16 piglets from 4 of the 6 litters examined; it was isolated most frequently from lungs and liver but also from spleen, kidney, brain and nasal mucosa. Unsuckled day-old pigs had insignificant IIF titres, irrespective of whether they were excreting virus or not. The 5 congenital excretors which were reared all died within 7 days but no death occurred among their 4 litter-mates. Post-natal infection of 2 of these piglets reared in contact with congenitally infected pigs was suggested by the recovery of virus from nasal swabs 17 and 27 days after birth and the subsequent rise in IIF titre to 1/256 by day 42.

  13. Picosecond laser ablation of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, Wojciech S.; Harvey, Eleanor M.; Dhillon, Baljean; Parson, Simon H.; Maier, Robert R. J.; Hand, Duncan P.; Shephard, Jonathan D.

    2013-03-01

    Lasers have been shown to be successful in certain medical procedures and they have been identified as potentially making a major contribution to the development of minimally invasive procedures. However, the uptake is not as widespread and there is scope for many other applications where laser devices may offer a significant advantage in comparison to the traditional surgical tools. The purpose of this research is to assess the potential of using a picosecond laser for minimally invasive laser sclerostomy. Experiments were carried out on porcine scleral samples due to the comparable properties to human tissue. Samples were prepared with a 5mm diameter trephine and were stored in lactated Ringer's solution. After laser machining, the samples were fixed in 3% glutaraldehyde, then dried and investigated under SEM. The laser used in the experiments is an industrial picosecond TRUMPF TruMicro laser operating at a wavelength of 1030nm, pulse length of 6ps, repetition rate of 1 kHz and a focused spot diameter of 30μm. The laser beam was scanned across the samples with the use of a galvanometer scan head and various ablation patterns were investigated. Processing parameters (pulse energy, spot and line separation) which allow for the most efficient laser ablation of scleral tissue without introducing any collateral damage were investigated. The potential to create various shapes, such as linear incisions, square cavities and circular cavities was demonstrated.

  14. Microindentation of the young porcine ocular lens.

    PubMed

    Reilly, Matthew; Ravi, Nathan

    2009-04-01

    Debate regarding the mechanisms of how the eye changes focus (accommodation) and why this ability is lost with age (presbyopia) has recently been rejoined due to the advent of surgical procedures for the correction of presbyopia. Due to inherent confounding factors in both in vivo and in vitro measurement techniques, mechanical modeling of the behavior of the ocular lens in accommodation has been attempted to settle the debate. However, a paucity of reliable mechanical property measurements has proven problematic in the development of a successful mechanical model of accommodation. Instrumented microindentation was utilized to directly measure the local elastic modulus and dynamic response at various locations in the lens. The young porcine lens exhibits a large modulus gradient with the highest modulus appearing at the center of the nucleus and exponentially decreasing with distance. The loss tangent was significantly higher in the decapsulated lens and the force waveform amplitude decreased significantly upon removal of the lens capsule. The findings indicate that localized measurements of the lens' mechanical properties are necessary to achieve accurate quantitative parameters suitable for mechanical modeling efforts. The results also indicate that the lens behaves as a crosslinked gel rather than as a collection of individual arched fiber cells.

  15. Antioxidant capacity of hydrolyzed porcine tissues

    PubMed Central

    Damgaard, Trine D; Otte, Jeanette A H; Meinert, Lene; Jensen, Kirsten; Lametsch, René

    2014-01-01

    The antioxidative capacity of seven different porcine tissue hydrolysates (colon, appendix, rectum, pancreas, heart, liver, and lung) were tested by four different assays, including iron chelation, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, 2,2-Diphenyl-1-(2,4,6-trinitrophenyl) hydrazyl (DPPH) radical scavenging, and inhibition of lipid oxidation. All hydrolyzed tissues displayed antioxidant capacity in all four assays, with colon, liver, and appendix as the three most potent inhibitors of lipid oxidation (47, 29, and 27 mmol/L trolox equivalent antioxidant capacity [TEAC], respectively) and liver, colon, pancreas, and appendix as the four most potent iron chelators (92% ± 1.1, 79.3% ± 3.2, 77.1% ± 1.8, and 77% ± 2.3, respectively). Furthermore, colon and appendix showed good radical scavenging capacities with ABTS scavenging of 86.4% ± 2.1 and 84.4% ± 2.9 and DPPH scavenging of 17.6% ± 0.3 and 17.1% ± 0.2, respectively. Our results provide new knowledge about the antioxidant capacity of a variety of animal by-products, which can be transformed into antioxidant hydrolysates, thereby creating added value. PMID:24936298

  16. Steroid binding domain of porcine estrogen receptor

    SciTech Connect

    Koike, S.; Nii, A.; Sakai, M.; Muramatsu, M.

    1987-05-05

    For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), the authors have made use of affinity labeling of partially purified ER with (/sup 3/H)tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or ..cap alpha..-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.

  17. Extensive complement activation in hereditary porcine membranoproliferative glomerulonephritis type II (porcine dense deposit disease).

    PubMed Central

    Jansen, J. H.; Høgåsen, K.; Mollnes, T. E.

    1993-01-01

    Massive glomerular deposits of C3 and the terminal C5b-9 complement complex (TCC), but no immune complex deposits were detected by immunofluorescence in porcine membranoproliferative glomerulonephritis type II. TCC deposits were always observed with concomitant deposits of vitronectin (S-protein) in membranoproliferative glomerulonephritis, in contrast to a piglet with mesangial glomerulopathy where TCC was present without vitronectin co-deposition. Enzyme immunoassays revealed extensive systemic complement activation in 1-week-old affected piglets, observed by low plasma C3 (about 5% of normal) and high plasma TCC (about 10 x normal). Affected piglets revealed some plasma complement activation already at birth, 3 to 4 weeks before recognizable clinical disease. It is concluded that porcine membranoproliferative glomerulonephritis represents a nonimmune complex-mediated glomerulonephritis caused by unrestricted systemic complement activation with C3 consumption, TCC formation, and glomerular trapping of complement activation products. A pathogenetic mechanism of a defective or missing complement regulation protein is suggested. Images Figure 1 Figure 2 Figure 3 PMID:8238252

  18. Aging of Escherichia coli

    PubMed Central

    Clifton, C. E.

    1966-01-01

    Clifton, C. E. (Stanford University, Stanford, Calif.). Aging of Escherichia coli. J. Bacteriol. 92:905–912. 1966.—The rates of endogenous and exogenous (glucose) respiration decreased much more rapidly than did the viable count during the first 24 hr of aging of washed, C14-labeled cells of Escherichia coli K-12 suspended in a basal salt medium devoid of ammonium salts. The rates of decrease of respiration and of death approached each other as the age of the cells increased, but death was not the only factor involved in decreased respiratory activity of the suspensions. The greatest decrease in cellular contents with aging was noted in the ribonucleic acid fraction, of which the ribose appeared to be oxidized, while uracil accumulated in the suspension medium. The viable count and respiratory activities remained higher in glucose-fed than in nonfed suspensions. Proline-labeled cells fed glucose tended to lose more of their proline and to convert more proline into C14O2 than in unfed controls. On the other hand, uracil-labeled cells fed glucose retained more of the uracil than did nonfed cells, but glucose elicited some oxidation of uracil. An exogenous energy source such as glucose aided in the maintenance of a population, but it was not the only factor needed for such maintenance. PMID:5332874

  19. The Escherichia coli effector EspJ blocks Src kinase activity via amidation and ADP ribosylation

    PubMed Central

    Young, Joanna C.; Clements, Abigail; Lang, Alexander E.; Garnett, James A.; Munera, Diana; Arbeloa, Ana; Pearson, Jaclyn; Hartland, Elizabeth L.; Matthews, Stephen J.; Mousnier, Aurelie; Barry, David J.; Way, Michael; Schlosser, Andreas; Aktories, Klaus; Frankel, Gad

    2014-01-01

    The hallmark of enteropathogenic Escherichia coli (EPEC) infection is the formation of actin-rich pedestal-like structures, which are generated following phosphorylation of the bacterial effector Tir by cellular Src and Abl family tyrosine kinases. This leads to recruitment of the Nck–WIP–N-WASP complex that triggers Arp2/3-dependent actin polymerization in the host cell. The same phosphorylation-mediated signalling network is also assembled downstream of the Vaccinia virus protein A36 and the phagocytic Fc-gamma receptor FcγRIIa. Here we report that the EPEC type-III secretion system effector EspJ inhibits autophosphorylation of Src and phosphorylation of the Src substrates Tir and FcγRIIa. Consistent with this, EspJ inhibits actin polymerization downstream of EPEC, Vaccinia virus and opsonized red blood cells. We identify EspJ as a unique adenosine diphosphate (ADP) ribosyltransferase that directly inhibits Src kinase by simultaneous amidation and ADP ribosylation of the conserved kinase-domain residue, Src E310, resulting in glutamine-ADP ribose. PMID:25523213

  20. The Escherichia coli effector EspJ blocks Src kinase activity via amidation and ADP ribosylation.

    PubMed

    Young, Joanna C; Clements, Abigail; Lang, Alexander E; Garnett, James A; Munera, Diana; Arbeloa, Ana; Pearson, Jaclyn; Hartland, Elizabeth L; Matthews, Stephen J; Mousnier, Aurelie; Barry, David J; Way, Michael; Schlosser, Andreas; Aktories, Klaus; Frankel, Gad

    2014-01-01

    The hallmark of enteropathogenic Escherichia coli (EPEC) infection is the formation of actin-rich pedestal-like structures, which are generated following phosphorylation of the bacterial effector Tir by cellular Src and Abl family tyrosine kinases. This leads to recruitment of the Nck-WIP-N-WASP complex that triggers Arp2/3-dependent actin polymerization in the host cell. The same phosphorylation-mediated signalling network is also assembled downstream of the Vaccinia virus protein A36 and the phagocytic Fc-gamma receptor FcγRIIa. Here we report that the EPEC type-III secretion system effector EspJ inhibits autophosphorylation of Src and phosphorylation of the Src substrates Tir and FcγRIIa. Consistent with this, EspJ inhibits actin polymerization downstream of EPEC, Vaccinia virus and opsonized red blood cells. We identify EspJ as a unique adenosine diphosphate (ADP) ribosyltransferase that directly inhibits Src kinase by simultaneous amidation and ADP ribosylation of the conserved kinase-domain residue, Src E310, resulting in glutamine-ADP ribose.

  1. A Survey for Escherichia coli Virulence Factors in Asymptomatic Free-Ranging Parrots.

    PubMed

    Becker Saidenberg, André; Robaldo Guedes, Neiva Maria; Fernandes Seixas, Gláucia Helena; da Costa Allgayer, Mariangela; Pacífico de Assis, Erica; Fabio Silveira, Luis; Anne Melville, Priscilla; Benites, Nilson Roberti

    2012-01-01

    Parrots in captivity are frequently affected by Escherichia coli (E. coli) infections. The objective of this study was to collect information on the carrier state for E. coli pathotypes in asymptomatic free-ranging parrots. Cloacal swabs were collected from nestlings of Hyacinth, Lear's macaws and Blue-fronted Amazon parrots and tested by polymerase chain reaction (PCR) for virulence factors commonly found in enteropathogenic, avian pathogenic, and uropathogenic E. coli strains. In total, 44 samples were cultured and E. coli isolates were yielded, from which DNA was extracted and processed by PCR. Genes commonly found in APEC isolates from Blue-fronted Amazon parrots and Hyacinth macaws were expressed in 14 of these 44 samples. One atypical EPEC isolate was obtained from a sample from Lear's macaw. The most commonly found gene was the increased serum survival (iss) gene. This is the first report, that describes such pathotypes in asymptomatic free-living parrots. The findings of this study suggest the presence of a stable host/parasite relationship at the time of the sampling brings a new understanding to the role that E. coli plays in captive and wild parrots. Such information can be used to improve husbandry protocols as well as help conservation efforts of free-living populations.

  2. A Survey for Escherichia coli Virulence Factors in Asymptomatic Free-Ranging Parrots

    PubMed Central

    Becker Saidenberg, André; Robaldo Guedes, Neiva Maria; Fernandes Seixas, Gláucia Helena; da Costa Allgayer, Mariangela; Pacífico de Assis, Erica; Fabio Silveira, Luis; Anne Melville, Priscilla; Benites, Nilson Roberti

    2012-01-01

    Parrots in captivity are frequently affected by Escherichia coli (E. coli) infections. The objective of this study was to collect information on the carrier state for E. coli pathotypes in asymptomatic free-ranging parrots. Cloacal swabs were collected from nestlings of Hyacinth, Lear's macaws and Blue-fronted Amazon parrots and tested by polymerase chain reaction (PCR) for virulence factors commonly found in enteropathogenic, avian pathogenic, and uropathogenic E. coli strains. In total, 44 samples were cultured and E. coli isolates were yielded, from which DNA was extracted and processed by PCR. Genes commonly found in APEC isolates from Blue-fronted Amazon parrots and Hyacinth macaws were expressed in 14 of these 44 samples. One atypical EPEC isolate was obtained from a sample from Lear's macaw. The most commonly found gene was the increased serum survival (iss) gene. This is the first report, that describes such pathotypes in asymptomatic free-living parrots. The findings of this study suggest the presence of a stable host/parasite relationship at the time of the sampling brings a new understanding to the role that E. coli plays in captive and wild parrots. Such information can be used to improve husbandry protocols as well as help conservation efforts of free-living populations. PMID:23738135

  3. Escherichia coli pathotypes in Pakistan from consecutive floods in 2010 and 2011.

    PubMed

    Bokhari, Habib; Shah, Muhammad Ali; Asad, Saba; Akhtar, Sania; Akram, Muhammad; Wren, Brendan W

    2013-03-01

    This study compares Escherichia coli pathotypes circulating among children in Pakistan during the floods of 2010 and 2011 and from sporadic cases outside flood affected areas. Using multiplex polymerase chain reaction 115 of 205 stool samples (56.29%) were positive for diarrheagenic E. coli from specimens taken during the floods compared with 50 of 400 (12.5%) stool samples being positive for sporadic cases. The E. coli pathotypes were categorized as Enteropathogenic E. coli 33 (28.69%) and 13 (26%), Enterotoxigenic E. coli 29 (25.21%) and 15 (30%), Enteroaggregative E. coli 21 (18.2%) and 18 (36%), Enterohemorrhagic E. coli 5 (4.34%) and 1 (2%) from flood and sporadic cases, respectively. Furthermore, patients co-infected with more than one pathotype were 26 (22.60%) and 3 (6%) from flood and sporadic cases, respectively. The study shows an unexpectedly high rate of isolation of E. coli pathotypes suggesting Pakistan as an endemic region that requires active surveillance particularly during flood periods.

  4. Comparative Genomics Provides Insight into the Diversity of the Attaching and Effacing Escherichia coli Virulence Plasmids

    PubMed Central

    Hazen, Tracy H.; Kaper, James B.; Nataro, James P.

    2015-01-01

    Attaching and effacing Escherichia coli (AEEC) strains are a genomically diverse group of diarrheagenic E. coli strains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagic E. coli (EHEC), typical enteropathogenic E. coli (EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates. PMID:26238712

  5. Comparative Genomics Provides Insight into the Diversity of the Attaching and Effacing Escherichia coli Virulence Plasmids.

    PubMed

    Hazen, Tracy H; Kaper, James B; Nataro, James P; Rasko, David A

    2015-10-01

    Attaching and effacing Escherichia coli (AEEC) strains are a genomically diverse group of diarrheagenic E. coli strains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagic E. coli (EHEC), typical enteropathogenic E. coli (EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates.

  6. A PCR-ELISA for detecting Shiga toxin-producing Escherichia coli.

    PubMed

    Ge, Beilei; Zhao, Shaohua; Hall, Robert; Meng, Jianghong

    2002-03-01

    A sensitive and specific PCR-ELISA was developed to detect Escherichia coli O157:H7 and other Shiga toxin-producing E. coli (STEC) in food. The assay was based on the incorporation of digoxigenin-labeled dUTP and a biotin-labeled primer specific for Shiga toxin genes during PCR amplification. The labeled PCR products were bound to streptavidin-coated wells of a microtiter plate and detected by an ELISA. The specificity of the PCR was determined using 39 bacterial strains, including STEC, enteropathogenic E. coli, E. coli K12, and Salmonella. All of the STEC strains were positive, and non-STEC organisms were negative. The ELISA detecting system was able to increase the sensitivity of the PCR assay by up to 100-fold, compared with a conventional gel electrophoresis. The detection limit of the PCR-ELISA was 0.1-10 CFU dependent upon STEC serotypes, and genotypes of Shiga toxins. With the aid of a simple DNA extraction system, PrepMan, the PCR-ELISA was able to detect ca. 10(5) CFU of STEC per gram of ground beef without any culture enrichment. The entire procedure took about 6 h. Because of its microtiter plate format, PCR-ELISA is particularly suitable for large-scale screening and compatible with future automation.

  7. Characteristics of Escherichia coli from raw vegetables at a retail market in the Czech Republic.

    PubMed

    Skočková, Alena; Karpíšková, Renáta; Koláčková, Ivana; Cupáková, Šárka

    2013-10-15

    A large epidemic caused by shigatoxigenic Escherichia coli (E. coli) in spring 2011 in Germany resulted in reduction of trust in the health safety of raw vegetables and sprouted seeds. This study focused on the detection and characterization of E. coli in raw vegetables and sprouted seeds sold in the Czech Republic. Out of 91 samples, 24 (26.4%) were positive for the presence of E. coli. Resistance to antimicrobial agents was determined by the disk diffusion method and E-test. Polymerase chain reaction was used for the detection of selected genes encoding virulence--eaeA, hly, stx1, and stx2 and genes encoding resistance to tetracycline--tet(A), tet(B), tet(C), and tet(G) and to β-lactams--blaTEM, blaSHV, and blaCTX. The blaTEM gene was detected in two isolates, the tet(B) gene in three and tet(A) in one isolate. No hly, stx1, or stx2 genes were present, but the eaeA gene was found in three (11.1%) isolates from imported vegetables. These isolates can be considered as potentially enteropathogenic. Results of this study show that raw vegetables and sprouted seeds sold in the retail market can represent a potential risk for consumers. PMID:24135675

  8. Diarrheagenic Escherichia coli and Acute and Persistent Diarrhea in Returned Travelers

    PubMed Central

    Schultsz, C.; van den Ende, J.; Cobelens, F.; Vervoort, T.; van Gompel, A.; Wetsteyn, J. C. F. M.; Dankert, J.

    2000-01-01

    To determine the role of diarrheagenic Escherichia coli in acute and persistent diarrhea in returned travelers, a case control study was performed. Enterotoxigenic E. coli (ETEC) was detected in stool samples from 18 (10.7%) of 169 patients and 4 (3.7%) of 108 controls. Enteroaggregative E. coli (EAggEC) was detected in 16 (9.5%) patients and 7 (6.5%) controls. Diffuse adherent E. coli strains were commonly present in both patients (13%) and controls (13.9). Campylobacter and Shigella species were the other bacterial enteropathogens most commonly isolated (10% of patients, 2% of controls). Multivariate analysis showed that the presence of ETEC was associated with acute diarrhea (odds ratio [OR], 6.7; 95% confidence interval [CI], 1.5 to 29.1; P = 0.005), but not with persistent diarrhea (OR, 1.6; 95% CI, 0.4 to 7.4). EAggEC was significantly more often present in patients with acute diarrhea than in controls (P = 0.009), but no significant association remained after multivariate analysis. ETEC and EAggEC are frequently detected in returned travelers with diarrhea. The presence of ETEC strains is associated with acute but not with persistent diarrhea. PMID:11015362

  9. Seasonal distribution and prevalence of diarrheagenic Escherichia coli in different aquatic environments in Taiwan.

    PubMed

    Huang, Wen-Chien; Hsu, Bing-Mu; Kao, Po-Min; Tao, Chi-Wei; Ho, Ying-Ning; Kuo, Chun-Wei; Huang, Yu-Li

    2016-02-01

    Diarrheagenic Escherichia coli (DEC) are the most common agents of diarrhea. Waterborne DEC could pose a potential health risk to human through agricultural, household, recreational, and industrial use. There are few published reports on the detection of DEC and its seasonal distribution in aquatic environments. The presence of DEC in different types of aquatic environments was investigated in this study. Water samples were collected from major rivers, water reservoirs, and recreational hot springs throughout Taiwan. Moreover, an intensive water sampling plan was carried out along Puzih River. The detection of DEC target genes was used to determine the presence of enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC). Among the 383 water samples analyzed, DEC was found in 122 (31.8%) samples. The detection rate varied by genotype, raging from 3.6% for STEC to 17.2% for EPEC. The DEC detection rate was higher from river waters than reservoirs and hot springs. In addition, DEC was detected at a higher rate in spring and summer. The presence of EPEC was significantly associated with total coliform levels among hot spring samples. Moreover, the presence of ETEC in river water samples was associated with heterotrophic plate counts. Water with EPEC differed significantly in pH from Puzih River samples. These results suggest that seasonal characteristics may affect the presence of DEC in different aquatic environments, and water quality indicators may be indicative of the presence of DEC.

  10. Seasonal distribution and prevalence of diarrheagenic Escherichia coli in different aquatic environments in Taiwan.

    PubMed

    Huang, Wen-Chien; Hsu, Bing-Mu; Kao, Po-Min; Tao, Chi-Wei; Ho, Ying-Ning; Kuo, Chun-Wei; Huang, Yu-Li

    2016-02-01

    Diarrheagenic Escherichia coli (DEC) are the most common agents of diarrhea. Waterborne DEC could pose a potential health risk to human through agricultural, household, recreational, and industrial use. There are few published reports on the detection of DEC and its seasonal distribution in aquatic environments. The presence of DEC in different types of aquatic environments was investigated in this study. Water samples were collected from major rivers, water reservoirs, and recreational hot springs throughout Taiwan. Moreover, an intensive water sampling plan was carried out along Puzih River. The detection of DEC target genes was used to determine the presence of enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC). Among the 383 water samples analyzed, DEC was found in 122 (31.8%) samples. The detection rate varied by genotype, raging from 3.6% for STEC to 17.2% for EPEC. The DEC detection rate was higher from river waters than reservoirs and hot springs. In addition, DEC was detected at a higher rate in spring and summer. The presence of EPEC was significantly associated with total coliform levels among hot spring samples. Moreover, the presence of ETEC in river water samples was associated with heterotrophic plate counts. Water with EPEC differed significantly in pH from Puzih River samples. These results suggest that seasonal characteristics may affect the presence of DEC in different aquatic environments, and water quality indicators may be indicative of the presence of DEC. PMID:26454073

  11. tir- and stx-positive Escherichia coli in stream waters in a metropolitan area.

    PubMed

    Higgins, James A; Belt, Kenneth T; Karns, Jeffrey S; Russell-Anelli, Jonathan; Shelton, Daniel R

    2005-05-01

    Diarrheagenic Escherichia coli, which may include the enteropathogenic E. coli and the enterohemorrhagic E. coli, are a significant cause of diarrheal disease among infants and children in both developing and developed areas. Disease outbreaks related to freshwater exposure have been documented, but the presence of these organisms in the urban aquatic environment is not well characterized. From April 2002 through April 2004 we conducted weekly surveys of streams in the metropolitan Baltimore, Md., area for the prevalence of potentially pathogenic E. coli by using PCR assays targeting the tir and stx(1) and stx(2) genes. Coliforms testing positive for the presence of the tir gene were cultured from 653 of 1,218 samples (53%), with a greater prevalence associated with urban, polluted streams than in suburban and forested watershed streams. Polluted urban streams were also more likely to test positive for the presence of one of the stx genes. Sequence analysis of the tir amplicon, as well as the entire tir gene from three isolates, indicated that the pathogenic E. coli present in the stream waters has a high degree of sequence homology with the E. coli O157:H7 serotype. Our data indicate that pathogenic E. coli are continually deposited into a variety of stream habitats and suggest that this organism may be a permanent member of the gastrointestinal microflora of humans and animals in the metropolitan Baltimore area.

  12. Enterohaemorrhagic Escherichia coli inhibits recycling endosome function and trafficking of surface receptors

    PubMed Central

    Clements, Abigail; Stoneham, Charlotte A; Furniss, R Christopher D; Frankel, Gad

    2014-01-01

    Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC/EHEC) manipulate many cell processes by injecting effector proteins from the bacteria into the host cell via a Type III secretion system. In this paper we report that the effector protein EspG disrupts recycling endosome function. In particular, we found that following transferrin binding and endocytosis EspG reduces recycling of the transferrin receptor (TfR), the prototypical recycling protein, from an intracellular location to the cell surface, resulting in an accumulation of TfR within the cell. The surface levels of three receptors [TfR, epidermal growth factor receptor (EGFR) and β1 integrin] were tested and found to be reduced dependent on EspG translocation. Furthermore, disruption of recycling endosome function and the reduced surface presentation of receptors was dependent on the previously reported RabGAP activity and ARF binding ability of EspG. This paper therefore supports the previous hypothesis that EspG acts as an enzyme scaffold perturbing cell signalling events, in this case altering recycling endosome function and cell surface receptor levels during infection. PMID:24898821

  13. Incidence of diarrhoeagenic Escherichia coli isolated from young children with diarrhoea in the west of Iran.

    PubMed

    Alikhani, Mohammad Yousef; Sedighi, Iraj; Zamani, Alireza; Aslani, Mohammad Mehdi; Sadrosadat, Taravat

    2012-09-01

    Diarrhoeagenic Escherichia coli (DEC) represents a main group of enteric pathogens that cause human diarrhoea. Because it is not simply distinguished from normal flora by simple laboratory methods, modern molecular diagnostic assays are necessary. Although it is neither necessary nor applicable to perform PCR for all patients, it is of many advantages to verify the prevalence of DEC in different areas by this method. Knowing the prevalence of DEC in an area, we can focus on few pathogens and narrow our antimicrobial treatment. The aim of this study is to evaluate the contribution of the different DEC categories in children diarrhoea in the west of Iran.The stool specimens of 251 children with diarrhoea were collected from June to September 2007. Polymerase chain reaction (PCR) was performed to determine the presence of enteropathogenic (EPEC), enterotoxigenic (ETEC), entero-invasive (EIEC), Shiga toxin-producing (STEC) and entero-aggregative (EAEC) strains. ETEC strains were isolated from 13 and EAEC strains from 16 children. STEC was detected in 7 children, and no EIEC was isolated. Finally, EPEC strains were isolated in 41 cases. EAEC and EPEC are the most frequent DECs in children less than 10 years of age in West of Iran.

  14. Microarray Evaluation of Antimicrobial Resistance and Virulence of Escherichia coli Isolates from Portuguese Poultry

    PubMed Central

    Mendonça, Nuno; Figueiredo, Rui; Mendes, Catarina; Card, Roderick M.; Anjum, Muna F.; da Silva, Gabriela Jorge

    2016-01-01

    The presence of antimicrobial resistance and virulence factors of 174 Escherichia coli strains isolated from healthy Portuguese Gallus gallus was evaluated. Resistance profiles were determined against 33 antimicrobials by microbroth dilution. Resistance was prevalent for tetracycline (70%) and ampicillin (63%). Extended-spectrum beta-lactamase (ESBL) phenotype was observed in 18% of the isolates. Multidrug resistance was found in 56% of isolates. A subset of 74 isolates were screened by DNA microarrays for the carriage of 88 antibiotic resistance genes and 62 virulence genes. Overall, 37 different resistance genes were detected. The most common were tet(A) (72%), blaTEM (68%), and sul1 (47%), while 21% isolates harbored an ESBL gene (blaCTX-M group 1, group 2, or group 9). Of these, 96% carried the increased serum survival (iss) virulence gene, while 89% presented the enterobactin siderophore receptor protein (iroN), 70% the temperature-sensitive hemagglutinin (tsh), and 68% the long polar fimbriae (lpfA) virulence genes associated with extraintestinal pathogenic E. coli. In conclusion, prevalence of antibiotic resistant E. coli from the microbiota of Portuguese chickens was high, including to extended spectrum cephalosporins. The majority of isolates seems to have the potential to trigger extraintestinal human infection due to the presence of some virulence genes. However, the absence of genes specific for enteropathogenic E. coli reduces the risk for human intestinal infection. PMID:27025519

  15. Impact of the locus of enterocyte effacement pathogenicity island on the evolution of pathogenic Escherichia coli.

    PubMed

    Jores, Joerg; Rumer, Leonid; Wieler, Lothar H

    2004-09-01

    This review summarizes our current knowledge and models of appearance and dissemination of the locus of enterocyte effacement (LEE) within Escherichia coli phylogenetic lineages. The LEE is a pathogenicity island (PAI) required for attaching and effacing (A/E) lesion formation induced on epithelial cells of humans and animals by enteropathogenic and numerous enterohemorrhagic E. coli strains as well as other related bacteria. The LEE encodes a type III secretion system, an adhesin (intimin) responsible for the intimate attachment of the bacteria to the cell and a number of secreted proteins involved in signal transduction events. It has been shown that the LEE varies in size from 36 to 111 kb, depending on what E. coli lineages carrying that PAI. Three tRNA genes are known as LEE integration sites selC, pheU and pheV, the latter two are identical in sequence. Beneath its functional role, intimin is considered a phylogenetic marker of the LEE. Currently, 14 different intimin types have been described, designated alpha through ksi. Beta intimin-carrying LEEs moved within certain E. coli lineages from the pheU tRNA gene into the pheV tRNA gene. Moreover, as a result of the typing of multiple LEE core regions, the appearance of two different LEE cores indicates an import of the LEE within E. coli at least two times.

  16. Half-life of porcine antibodies absorbed from a colostrum supplement containing porcine immunoglobulins.

    PubMed

    Polo, J; Campbell, J M; Crenshaw, J; Rodríguez, C; Pujol, N; Navarro, N; Pujols, J

    2012-12-01

    Absorption of immunoglobulins (Ig) at birth from colostrum is essential for piglet survival. The objective was to evaluate the half-life of antibodies absorbed in the bloodstream of newborn piglets orally fed a colostrum supplement (CS) containing energy (fat and carbohydrates) and IgG from porcine plasma. Viable piglets (n = 23; 900 to 1,800 g BW) from 6 sows were colostrum deprived and blood sampled and within the next 2 h of life randomly allocated to either control group (n = 9) providing 30 mL of Ig-free milk replacer or a group (n = 14) receiving 30 mL of CS by oral gavage. Piglets were transported to a Biosafety Level 3 facility (Centre de Recerca en Sanitat Animal, Spain) and fed Ig-free milk replacer every 3 to 4 h for 15 d. Survival, weight, plasma IgG content by radial immunodiffusion (RID), and antibodies against porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome (PRRS), Mycoplasma hyopneumoniae (Mhy), and swine influenza virus (SIV) were determined by specific ELISA before treatment administration, at 24 h, and weekly for 56 d. Clinical symptoms were not observed for either group. Mortality index was lower (17 vs. 38%; P < 0.02) and BW higher (17.7 vs. 15.3 kg; P = 0.035) for pigs supplemented with CS than piglets in the control group. At 24 h postadministration, the CS group had a plasma IgG mean of 7.6 ± 0.06 vs. 0.14 ± 0.03 mg/mL for the control group. The IgG levels in the CS group decayed until day 21 when de novo synthesis of IgG was detected in 25% of piglets. Half-life of antibody concentration (HLAC) by RID was 6.2 d. In the CS group, efficiency of PCV2 and PPV antibody transfer was high. For PCV2, all animals remained positive by day 56 and the calculated HLAC was 17.7 d. For PPV, 72.7% of piglets were ELISA positive by day 35 and HLAC was 12.0 d. For PRRS, all piglets remained positive by day 14 and the calculated HLAC was 11.9 d. For Mhy and SIV the calculated HLAC were 8.4 and 3.0 d

  17. Influence of aerobic and anaerobic conditions on survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in Luria-Bertani broth, farm-yard manure and slurry.

    PubMed

    Semenov, Alexander V; van Overbeek, Leo; Termorshuizen, Aad J; van Bruggen, Ariena H C

    2011-03-01

    The influence of aerobic and anaerobic conditions on the survival of the enteropathogens Escherichia coli O157:H7 and Salmonella serovar Typhimurium was investigated in microcosms with broth, cattle manure or slurry. These substrates were inoculated with a green fluorescent protein transformed strain of the enteropathogens at 10(7) cells g(-1) dry weight. Survival data was fitted to the Weibull model. The survival curves in aerobic conditions generally showed a concave curvature, while the curvature was convex in anaerobic conditions. The estimated survival times showed that E. coli O157:H7 survived significantly longer under anaerobic than under aerobic conditions. Survival ranged from approximately. 2 weeks for aerobic manure and slurry to more than six months for anaerobic manure at 16 °C. On average, in 56.3% of the samplings, the number of recovered E. coli O157:H7 cells by anaerobic incubation of Petri plates was significantly (p < 0.05) higher in comparison with aerobic incubation. Survival of Salmonella serovar Typhimurium was not different between aerobic and anaerobic storage of LB broth or manure as well as between aerobic and anaerobic incubation of Petri dishes. The importance of changes in microbial community and chemical composition of manure and slurry was distinguished for the survival of E. coli O157:H7 in different oxygen conditions.

  18. Identification and Analysis of the Porcine MicroRNA in Porcine Cytomegalovirus-Infected Macrophages Using Deep Sequencing

    PubMed Central

    Liu, Xiao; Liao, Shan; Xu, Zhiwen; Zhu, Ling; Yang, Fan; Guo, Wanzhu

    2016-01-01

    Porcine cytomegalovirus (PCMV; genus Cytomegalovirus, subfamily Betaherpesvirinae, family Herpesviridae) is an immunosuppressive virus that mainly inhibits the immune function of T lymphocytes and macrophages, which has caused substantial damage in the farming industry. In this study, we obtained the miRNA expression profiles of PCMV-infected porcine macrophages via high-throughput sequencing. The comprehensive analysis of miRNA profiles showed that 239 miRNA database-annotated and 355 novel pig-encoded miRNAs were detected. Of these, 130 miRNAs showed significant differential expression between the PCMV-infected and uninfected porcine macrophages. The 10 differentially expressed pig-encoded miRNAs were further determined by stem-loop reverse-transcription polymerase chain reaction, and the results were consistent with the high-throughput sequencing. Gene Ontology analysis of the target genes of miRNAs in PCMV-infected porcine macrophages showed that the differentially expressed miRNAs are mainly involved in immune and metabolic processes. This is the first report of the miRNA transcriptome in porcine macrophages and an analysis of the miRNA regulatory mechanisms during PCMV infection. Further research into the regulatory mechanisms of miRNAs during immunosuppressive viral infections should contribute to the treatment and prevention of immunosuppressive viruses. PMID:26943793

  19. Porcine survival model to simulate acute upper gastrointestinal bleedings.

    PubMed

    Prosst, Ruediger L; Schurr, Marc O; Schostek, Sebastian; Krautwald, Martina; Gottwald, Thomas

    2016-06-01

    The existing animal models used for the simulation of acute gastrointestinal bleedings are usually non-survival models. We developed and evaluated a new porcine model (domestic pig, German Landrace) in which the animal remains alive and survives the artificial bleeding without any cardiovascular impairment. This consists of a bleeding catheter which is implanted into the stomach, then subcutaneously tunnelled from the abdomen to the neck where it is exteriorized and fixed with sutures. Using the injection of porcine blood, controllable and reproducible acute upper gastrointestinal bleeding can be simulated while maintaining normal gastrointestinal motility and physiology. Depending on the volume of blood applied through the gastric catheter, the bleeding intensity can be varied from traces of blood to a massive haemorrhage. This porcine model could be valuable, e.g. for testing the efficacy of new bleeding diagnostics in large animals before human use. PMID:26306615

  20. Porcine survival model to simulate acute upper gastrointestinal bleedings.

    PubMed

    Prosst, Ruediger L; Schurr, Marc O; Schostek, Sebastian; Krautwald, Martina; Gottwald, Thomas

    2016-06-01

    The existing animal models used for the simulation of acute gastrointestinal bleedings are usually non-survival models. We developed and evaluated a new porcine model (domestic pig, German Landrace) in which the animal remains alive and survives the artificial bleeding without any cardiovascular impairment. This consists of a bleeding catheter which is implanted into the stomach, then subcutaneously tunnelled from the abdomen to the neck where it is exteriorized and fixed with sutures. Using the injection of porcine blood, controllable and reproducible acute upper gastrointestinal bleeding can be simulated while maintaining normal gastrointestinal motility and physiology. Depending on the volume of blood applied through the gastric catheter, the bleeding intensity can be varied from traces of blood to a massive haemorrhage. This porcine model could be valuable, e.g. for testing the efficacy of new bleeding diagnostics in large animals before human use.

  1. Comparison of human and porcine skin for characterization of sunscreens

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Jürgen; Schanzer, Sabine; Patzelt, Alexa; Bahaban, Virginie; Durat, Fabienne; Sterry, Wolfram; Lademann, Jürgen

    2009-03-01

    The universal sun protection factor (USPF) characterizing sunscreen efficacy based on spectroscopically determined data, which were obtained using the tape stripping procedure. The USPF takes into account the complete ultraviolet (UV) spectral range in contrast to the classical sun protection factor (SPF). Until now, the USPF determination has been evaluated only in human skin. However, investigating new filters not yet licensed excludes in vivo investigation on human skin but requires the utilization of a suitable skin model. The penetration behavior and the protection efficacy of 10 commercial sunscreens characterized by USPF were investigated, comparing human and porcine skin. The penetration behavior found for typical UV filter substances is nearly identical for both skin types. The comparison of the USPF obtained for human and porcine skin results in a linear relation between both USPF values with a correlation factor R2=0.98. The results demonstrate the possibility for the use of porcine skin to determine the protection efficacy of sunscreens.

  2. Temperature profiles of different cooling methods in porcine pancreas procurement.

    PubMed

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  3. Preparation of a porcine plasma protein composite film and its application.

    PubMed

    Lee, Ji-Hyun; Song, Kyung Bin

    2015-01-01

    To use blood released from slaughtering houses, a porcine plasma protein (PPP)/nanoclay composite film was prepared. The tensile strength and elongation at break values of the PPP composite film with 5% nanoclay were 10.01 MPa and 6.55%, respectively. The PPP composite film containing 1% grapefruit seed extract (GSE) was applied to pork meat, and the populations of inoculated Escherichia coli O157:H7 and Listeria monocytogenes in the pork meat packaged with the PPP composite film decreased by 0.8 and 1.0 log CFU/g, respectively, after 7 days of storage compared to the populations of the control. In addition, thiobarbituric acid values in the pork meat packaged with the PPP composite film were less than those of the control sample during storage. These results suggest that the PPP nanocomposite film containing 1% GSE can be used as a packaging material to maintain the quality of pork meat. PMID:25248798

  4. Inhibition and activation of porcine squalene epoxidase.

    PubMed

    Bai, M; Prestwich, G D

    1992-03-01

    Pig liver squalene epoxidase (SE) has been partially purified from solubilized microsomes by DEAE-Sephacel and Blue Sepharose 4B chromatography. This stable and reproducible preparation was used to investigate the mechanism of several substrate-like inhibitors of SE and to study the effects of pH, metals, detergents, and cofactors on enzyme activity. Most divalent (1 mM) and trivalent (0.1 mM) metal cations had little effect on SE at pH 7.4; only ferrous and cupric ions showed ca. 50% reduction in SE activity. Interestingly, at pH 8.8, EDTA (10 mM) shows 1.8-fold enhancement of enzyme activity. Among the detergents, Triton X-100 was clearly superior for solubilization and purification of porcine SE; Tween 80, Lubrol-PX, 3-[(3-cholamidopropyl)dimethylammonio]propanesulfonic acid, octyl beta-glucoside, and three different Zwittergents were much less effective for SE solubilization. Partially purified pig liver SE showed maximal activity at pH 8.8-9.0. Trisnorsqualene alcohol and trisnorsqualene cyclopropylamine were noncompetitive inhibitors at pH 8.8, with Ki values of 4 microM and 180 nM, respectively; these two inhibitors were not substrates for SE. In contrast, 26-hydroxysqualene was both a competitive inhibitor with a Ki value of 4 microM at pH 8.8 and a substrate for SE. An unexpected enhancement (up to 350%) of SE activity was observed at pH 7.4 following preincubation with selected nonpolar derivatives of farnesol and farnesoic acid. At pH 8.8, this effect was less dramatic but still evident.

  5. Ivermectin inhibits porcine reproductive and respiratory syndrome virus in cultured porcine alveolar macrophages.

    PubMed

    Lee, Yoo Jin; Lee, Changhee

    2016-02-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a devastating viral pathogen of swine that causes huge financial losses in the pig industry worldwide. Ivermectin is known to be a potent inhibitor of importin α/β-mediated nuclear transport and exhibits antiviral activity towards several RNA viruses by blocking the nuclear trafficking of viral proteins. Although PRRSV replication occurs exclusively in the cytoplasm of infected cells, the nucleocapsid (N) protein has been shown to distinctly localize in the nucleus and nucleolus throughout infection. Here, we sought to assess whether ivermectin suppresses PRRSV replication in cultured porcine alveolar macrophage (PAM) cells and to investigate the effect of ivermectin on the subcellular localization of the PRRSV N protein. Our data demonstrate that ivermectin treatment inhibits PRRSV infection in PAM-pCD163 cells in a dose-dependent manner. The antiviral activity of ivermectin on PRRSV replication was most effective when cells were treated during the early stage of infection. Treatment of PRRSV-infected cells with ivermectin significantly suppressed viral RNA synthesis, viral protein expression, and progeny virus production. However, immunofluorescence and cell fractionation assays revealed that ivermectin was incapable of disrupting the nuclear localization of the N protein, both in PRRSV-infected PAM-pCD163 cells and in PAM cells stably expressing the PRRSV N protein. This finding suggests that an alternative mechanism of action accounts for the ability of ivermectin to diminish PRRSV replication. Taken together, our results suggest that ivermectin is an invaluable therapeutic or preventative agent against PRRSV infection. PMID:26518309

  6. IscR Regulates Synthesis of Colonization Factor Antigen I Fimbriae in Response to Iron Starvation in Enterotoxigenic Escherichia coli

    PubMed Central

    Haines, Sara; Arnaud-Barbe, Nadège; Poncet, David; Reverchon, Sylvie; Wawrzyniak, Julien; Nasser, William

    2015-01-01

    ABSTRACT Iron availability functions as an environmental cue for enteropathogenic bacteria, signaling arrival within the human host. As enterotoxigenic Escherichia coli (ETEC) is a major cause of human diarrhea, the effect of iron on ETEC virulence factors was evaluated here. ETEC pathogenicity is directly linked to production of fimbrial colonization factors and secretion of heat-labile enterotoxin (LT) and/or heat-stable enterotoxin (ST). Efficient colonization of the small intestine further requires at least the flagellin binding adhesin EtpA. Under iron starvation, production of the CFA/I fimbriae was increased in the ETEC H10407 prototype strain. In contrast, LT secretion was inhibited. Furthermore, under iron starvation, gene expression of the cfa (CFA/I) and etp (EtpBAC) operons was induced, whereas transcription of toxin genes was either unchanged or repressed. Transcriptional reporter fusion experiments focusing on the cfa operon further showed that iron starvation stimulated cfaA promoter activity in ETEC, indicating that the impact of iron on CFA/I production was mediated by transcriptional regulation. Evaluation of cfaA promoter activity in heterologous E. coli single mutant knockout strains identified IscR as the regulator responsible for inducing cfa fimbrial gene expression in response to iron starvation, and this was confirmed in an ETEC ΔiscR strain. The global iron response regulator, Fur, was not implicated. IscR binding sites were identified in silico within the cfaA promoter and fixation confirmed by DNase I footprinting, indicating that IscR directly binds the promoter region to induce CFA/I. IMPORTANCE Pathogenic enterobacteria modulate expression of virulence genes in response to iron availability. Although the Fur transcription factor represents the global regulator of iron homeostasis in Escherichia coli, we show that several ETEC virulence factors are modulated by iron, with expression of the major fimbriae under the control of the iron

  7. Porcine circovirus: transcription and rolling-circle DNA replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review summarizes the molecular studies pertaining to porcine circovirus (PCV) transcription and DNA replication. The genome of PCV is circular, single-stranded DNA and contains 1759-1768 nucleotides. Both the genome-strand (packaged in the virus particle) and the complementary-strand (synthesi...

  8. Atypical porcine enterovirus encephalomyelitis: possible interraction between enteroviruses and arsenicals.

    PubMed

    Pass, D A; Forman, A J; Connaughton, I D; Gillick, J C; Cutler, R S

    1979-10-01

    Porcine enteroviruses were isolated from weaner pigs that had nervous signs and mild non-suppurative meningoencephalomyelitis and ganglioneuritis. The clinical signs and lesions were not typical of enterovirus infection and it is believed that an organic arsenical present in feed enhanced pathogenicity of enteroviruses. Severe non-suppurative polioencephalomyelitis and ganglioneuritis were produced in gnotobiotic pigs by oral inoculation of the viruses.

  9. Porcine Bocavirus: Achievements in the Past Five Years

    PubMed Central

    Zhou, Feng; Sun, Haoting; Wang, Yuyan

    2014-01-01

    Porcine bocavirus is a recently discovered virus that infects pigs and is classified within the Bocavirus genus (family Parvoviridae, subfamily Parvovirinae). The viral genome constitutes linear single-stranded DNA and has three open reading frames that encode four proteins: NS1, NP1, VP1, and VP2. There have been more than seven genotypes discovered to date. These genotypes have been classified into three groups based on VP1 sequence. Porcine bocavirus is much more prevalent in piglets that are co-infected with other pathogens than in healthy piglets. The virus can be detected using PCR, loop-mediated isothermal amplification, cell cultures, indirect immunofluorescence, and other molecular virology techniques. Porcine bocavirus has been detected in various samples, including stool, serum, lymph nodes, and tonsils. Because this virus was discovered only five years ago, there are still many unanswered questions that require further research. This review summarizes the current state of knowledge and primary research achievements regarding porcine bocavirus. PMID:25514206

  10. Research Advancements in Porcine Derived Mesenchymal Stem Cells.

    PubMed

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton's jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson's disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  11. Dystrophin deficiency-induced changes in porcine skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel porcine stress syndrome was detected in the U.S. Meat Animal Research Center’s swine research population when two sibling barrows died of apparent stress symptoms (open mouth breathing, vocalization, and refusal to move or stand) after transport at 12 weeks of age. At eight weeks of age, the...

  12. Age and nursing affect the neonatal porcine uterine transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lactocrine hypothesis for maternal programming of neonatal development was proposed to describe a mechanism through which milk-borne bioactive factors, delivered from mother to nursing offspring, could affect development of tissues, including the uterus. Porcine uterine development, initiated be...

  13. Detection of a Novel Porcine Parvovirus in Chinese Swine Herds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine whether the recently reported novel porcine parvovirus type 4 (PPV4) is prevalent in China, a set of PPV4 specific primers were designed and used for the molecular survey of PPV4 among clinical samples. The results indicated a positive detection for PPV4 in Chinese swine herds of 1.84% ...

  14. Immunological evidence of cholecystokinin-39 in porcine brain

    SciTech Connect

    Jansen, J.B.M.J.; Lamers, C.B.H.W.

    1983-02-21

    Using a sensitive and specific radioimmunoassay for cholecystokinin-39 (CCK-39), CCK-39 was demonstrated in aqueous-acid extracts of porcine brain. The highest concentration of CCK-39 was found in the cortex (6.1 +/- 1.5 pmol/g). In the cortex CCK-39 comprised 21% of total CCK-immunoreactivity and 51% of large CCK-immunoreactivity.

  15. Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells.

    PubMed

    Qu, Chang-qing; Zhang, Guo-hua; Zhang, Li-jie; Yang, Gong-she

    2007-02-01

    Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering. PMID:17570023

  16. Coinfection of pigs with Porcine Respiratory Coronavirus and Bordetella bronchisphica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coinfection with two or more pathogens is a common occurrence in respiratory diseases of most species. The manner in which multiple pathogens interact is not always straightforward, however. Bordetella bronchiseptica and porcine respiratory coronavirus (PRCV) are respiratory pathogens of pigs whos...

  17. Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells.

    PubMed

    Qu, Chang-qing; Zhang, Guo-hua; Zhang, Li-jie; Yang, Gong-she

    2007-02-01

    Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering.

  18. The first case of porcine epidemic diarrhea in Canada

    PubMed Central

    Ojkic, Davor; Hazlett, Murray; Fairles, Jim; Marom, Anna; Slavic, Durda; Maxie, Grant; Alexandersen, Soren; Pasick, John; Alsop, Janet; Burlatschenko, Sue

    2015-01-01

    In January, 2014, increased mortality was reported in piglets with acute diarrhea on an Ontario farm. Villus atrophy in affected piglets was confined to the small intestine. Samples of colon content were PCR-positive for porcine epidemic diarrhea virus (PEDV). Other laboratory tests did not detect significant pathogens, confirming this was the first case of PED in Canada. PMID:25694663

  19. Porcine reproductive and respiratory syndrome (PRRS): an immune dysregulatory pandemic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory disease syndrome (PRRS) is a viral pandemic that especially affects neonates within the "critical window" of immunological development. PRRS was recognized in 1987 and within a few years became pandemic causing an estimated yearly $600,000 economic loss in the US...

  20. MLL2 is essential for porcine embryo development in vitro.

    PubMed

    Zhao, Ming-Hui; Liang, Shuang; Kim, Nam-Hyung; Cui, Xiang-Shun

    2016-06-01

    Several germ cell-specific transcription factors essential for ovarian formation and folliculogenesis have been identified and studied. However, their function during early embryo development has been poorly explored. In this study, we investigated the role of mixed-lineage leukemia protein 2 (MLL2) in the development of porcine preimplantation embryos. To explore the function of MLL2 in porcine embryo development, expression and localization of MLL2 were assessed by qRT-PCR and immunofluorescence assays. Results showed that expression of MLL2 was significantly reduced after the four-cell stage. However, immunofluorescence results showed that MLL2 only localized in the nucleus of blastocysts, revealing a potential role of MLL2 in regulating the gene expression in the blastocyst stage. Knockdown of Mll2 by double-stranded RNA (dsRNA) caused a reduction in MLL2 signal in porcine blastocyst cells and in blastocyst formation. No significant differences in the cleavage and morula stages were observed. The mechanism of MLL2 regulation in blastocysts was assessed by assaying the trimethylation of histone 3 at lysine 4 (H3K4m3). MLL2 knockdown significantly reduced H3K4m3 in the nucleus and further reduced expression of Sox2 and Magoh genes. In conclusion, MLL2 is essential for porcine embryo development by the regulation of methylation of H3K4 in vitro. PMID:27059328

  1. Porcine Epidemic Diarrhea Virus among Farmed Pigs, Ukraine

    PubMed Central

    Carr, John; Ellis, Richard J.; Steinbach, Falko; Williamson, Susanna

    2015-01-01

    An outbreak of porcine epidemic diarrhea occurred in the summer of 2014 in Ukraine, severely affecting piglets <10 days of age; the mortality rate approached 100%. Full genome sequencing showed the virus to be closely related to strains reported from North America, showing a sequence identity of up to 99.8%. PMID:26584081

  2. Antibody to porcine parvovirus in warthog (Phacochoerus aethiopicus).

    PubMed

    Thomson, G R; Peenze, I

    1980-03-01

    Haemagglutination inhibiting antibody to porcine parvovirus was shown to be widespread in all but one of the warthog populations sampled from South Africa and Zimbabwe Rhodesia. In some instances titres as high as greater than or equal to 1/20 000 were detected. PMID:7454234

  3. Structural and functional annotation of the porcine immunome

    PubMed Central

    2013-01-01

    Background The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. Results The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated

  4. Simultaneous detection of porcine circovirus type 2, classical swine fever virus, porcine parvovirus and porcine reproductive and respiratory syndrome virus in pigs by multiplex polymerase chain reaction.

    PubMed

    Jiang, Yonghou; Shang, Hanwu; Xu, Hui; Zhu, Liangjun; Chen, Weijie; Zhao, Lingyan; Fang, Li

    2010-02-01

    A multiplex polymerase chain reaction (PCR) was designed for the simultaneous detection of four viruses involved in reproductive and respiratory failure in pigs: porcine circovirus type 2 (PCV-2), porcine parvovirus (PPV), classical swine fever virus (CSFV) and porcine reproductive and respiratory syndrome virus (PRRSV). Each of the four pairs of oligonucleotide primers exclusively amplified the targeted fragment of the specific viruses. The sensitivity of the multiplex PCR using purified plasmid constructs containing the specific viral target fragments was 2.58x10(7), 2.64x10(5), 2.66x10(7) and 2.73x10(5) copies for PRRSV, PCV-2, CSFV and PPV, respectively. Using the multiplex PCR, co-infections with these four viruses were identified in 26/76 (34.2%) piglets born from sows with reproductive failure in China. This method is a rapid, sensitive and cost-effective diagnostic tool for the routine surveillance of viral infections in pigs.

  5. [Construction and specificity of porcine bmp15 gene reporter vector].

    PubMed

    Qin, Mingming; Wei, Jianghua; Yu, Xiaoli; Zhang, Jinglong; Liu, Xiaopeng; Ma, Xiaoling; Wang, Huayan

    2014-02-01

    The aim of this study is to identify the express specificity of bone morphogenetic protein 15 (Bmp15) in porcine. The pBMP15-EGFP reporter vector was constructed from the 2.2 kb fragment of porcine bmp15 promoter to trace the differentiation process of stem cells into oocyte-like cells. We used porcine ovary and Chinese Hamster Ovary cell line (CHO), mouse myoblast cell line (C2C12) and porcine amniotic fluid stem cell (pAFSC) to investigate the expression and regulation of this gene via RT-PCR, immunofluorescence, cell transfection, and microinjection methods. We also used single layer cell differentiation to detect the application potential of bmp15. The results show that bmp15 gene was specifically expressed in the porcine ovary and CHO rather than in C2C12 and pAFSC. In addition, the characteristic of tissue-specific of Bmp15 was detected on CHO instead of other cell lines by transient transfection. We also detected the expression of Bmp15 in oocyte at different development stages by immunofluorescence of fixed paraffin-embedded ovary sections. Furthermore, microinjection results show that bmp15 expressed in oocytes at 18 h of maturation in vitro, and continued up to 4-cell stage embryos. Most importantly, we found that the expression of Bmp15 started at day 12 after inducing pAFSC into oocyte-like cells by transfection; green fluorescent was visible in round cell masses. It indicated that bmp15 has the expression specificity and the pBMP15-EGFP reporter vector can be used to trace Bmp15 action in the differentiation of stem cells into germ cells.

  6. A Large Chondroitin Sulfate Proteoglycan, Versican, in Porcine Predentin.

    PubMed

    Okahata, Saori; Yamamoto, Ryuji; Yamakoshi, Yasuo; Fukae, Makoto

    2011-01-01

    Proteoglycans and their constituent glycosaminoglycan (GAG) have been proposed to be involved in the inhibition of mineralization in unmineralized tissue, predentin. Among the proteoglycans secreted by odontoblasts, we focused on the large chondroitin sulfate proteoglycan, versican, for its large binding capacity for calcium ions. The aims of this study were the determination of the full-length sequence and splicing variants of the porcine versican, and the detection of versican in the porcine predentin. The complete coding sequence of the porcine versican mRNA was cloned to be 11,775 nucleotides long and encode 3,924 amino acids, and four splicing variants, V0, V1, V2 and V3, were characterized in the isolated porcine cartilage cells. The number of potential GAG attachment sites was 15 in the V0 variant, 13 in the V1 variant, 2 in the V2 variant and 0 in the V3 variant. They were deposited in DDBJ. The V1 variant was determined by RT-PCR in the odontoblasts, dental papilla cells, dental follicle cells, periodontal ligament cells, dental pulp cells, and gingival cells of pigs, although a small amount of the V0 valiant was found in the dental papilla cells. The predentin was prepared from developing porcine permanent incisor tooth germs and its soluble proteins were extracted in order to be partially characterized by protein and proteinase profiles. The versican V1 cleavage products were detected in the predentin extract by Western blotting analysis. These results suggested that the versican splice variant V1 implicates both the control of the mineralization and the activities of the predentin metalloproteinases, because it has 13 GAG chains that bind a large amount of calcium. PMID:22200993

  7. Kangaroo vs. porcine aortic valves: calcification potential after glutaraldehyde fixation.

    PubMed

    Narine, K; Chéry, Cyrille C; Goetghebeur, Els; Forsyth, R; Claeys, E; Cornelissen, Maria; Moens, L; Van Nooten, G

    2005-01-01

    The aim of this study was to evaluate and compare the calcification potential of kangaroo and porcine aortic valves after glutaraldehyde fixation at both low (0.6%) and high (2.0%) concentrations of glutaraldehyde in the rat subcutaneous model. To our knowledge this is the first report comparing the time-related, progressive calcification of these two species in the rat subcutaneous model. Twenty-two Sprague-Dawley rats were each implanted with two aortic valve leaflets (porcine and kangaroo) after fixation in 0.6% glutaraldehyde and two aortic valve leaflets (porcine and kangaroo) after fixation in 2% glutaraldehyde respectively. Animals were sacrificed after 24 h and thereafter weekly for up to 10 weeks after implantation. Calcium content was determined using inductively coupled plasma-mass spectrometry and confirmed histologically. Mean calcium content per milligram of tissue (dry weight) treated with 0.6 and 2% glutaraldehyde was 116.2 and 110.4 microg/mg tissue for kangaroo and 95.0 and 106.8 microg/mg tissue for porcine valves. Calcium content increased significantly over time (8.8 microg/mg tissue per week) and was not significantly different between groups. Regression analysis of calcification over time showed no significant difference in calcification of valves treated with 0.6 or 2% glutaraldehyde within and between the two species. Using the subcutaneous model, we did not detect a difference in calcification potential between kangaroo and porcine aortic valves treated with either high or low concentrations of glutaraldehyde.

  8. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging evidence suggests that swine are a scientifically acceptable intermediate species between rodents and humans to model immune function relevant to humans. The swine genome has recently been sequenced and several preliminary structural and functional analysis of the porcine immunome have been...

  9. Extraintestinal pathogenic Escherichia coli.

    PubMed

    Smith, James L; Fratamico, Pina M; Gunther, Nereus W

    2007-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) possesses virulence traits that allow it to invade, colonize, and induce disease in bodily sites outside of the gastrointestinal tract. Human diseases caused by ExPEC include urinary tract infections, neonatal meningitis, sepsis, pneumonia, surgical site infections, as well as infections in other extraintestinal locations. ExPEC-induced diseases represent a large burden in terms of medical costs and productivity losses. In addition to human illnesses, ExPEC strains also cause extraintestinal infections in domestic animals and pets. A commonality of virulence factors has been demonstrated between human and animal ExPEC, suggesting that the organisms are zoonotic pathogens. ExPEC strains have been isolated from food products, in particular from raw meats and poultry, indicating that these organisms potentially represent a new class of foodborne pathogens. This review discusses various aspects of ExPEC, including its presence in food products, in animals used for food or as companion pets; the diseases ExPEC can cause; and the virulence factors and virulence mechanisms that cause disease.

  10. Fluorescence in situ hybridization investigation of potentially pathogenic bacteria involved in neonatal porcine diarrhea

    PubMed Central

    2014-01-01

    Background Neonatal diarrhea is a multifactorial condition commonly present on pig farms and leads to economic losses due to increased morbidity and mortality of piglets. Immature immune system and lack of fully established microbiota at birth predispose neonatal piglets to infection with enteric pathogens. The microorganisms that for decades have been associated with enteritis and diarrhea in suckling piglets are: rotavirus A, coronavirus, enterotoxigenic Escherichia coli (ETEC), Clostridium perfringens type C, Cryptosporidium spp., Giardia spp., Cystoisospora suis and Strongyloides ransomi. However, in recent years, the pig industry has experienced an increased number of neonatal diarrhea cases in which the above mentioned pathogens are no longer detected. Potentially pathogenic bacteria have recently received focus in the research on the possible etiology of neonatal diarrhea not caused by common pathogens. The primary aim of this study was to investigate the role of E. coli, Enterococcus spp., C. perfringens and C. difficile in the pathogenesis of neonatal porcine diarrhea with no established casual agents. Fluorescence in situ hybridization with oligonucleotide probes was applied on the fixed intestinal tissue samples from 51 diarrheic and 50 non-diarrheic piglets collected from four Danish farms during outbreaks of neonatal diarrhea not caused by well-known enteric pathogens. Furthermore, an association between the presence of these bacteria and histological lesions was evaluated. Results The prevalence of fluorescence signals specific for E. coli, C. perfringens and C. difficile was similar in both groups of piglets. However, Enterococcus spp. was primarily detected in the diarrheic piglets. Furthermore, adherent bacteria were detected in 37 % diarrheic and 14 % non-diarrheic piglets. These bacteria were identified as E. coli and Enterococcus spp. and their presence in the intestinal mucosa was associated with histopathological changes. Conclusions The

  11. Susceptibility of porcine preimplantation embryos to viruses associated with reproductive failure.

    PubMed

    Zhao, Haijing; Zhao, Guangyuan; Wang, Wenjun

    2016-10-15

    In the modern biological area, the applications of pig as a laboratory model have extensive prospects, such as gene transfer, IVF, SCNT, and xenotransplantation. However, the risk of pathogen transmission by porcine embryos is always a topic to be investigated, especially the viruses related to reproductive failure, for instance, pseudorabies virus, porcine reproductive and respiratory syndrome virus, porcine parvovirus, and porcine circovirus type 2. It should be mentioned that the zona pellucida (ZP) of porcine embryos can be a barrier against the viruses, but certain pathogens may stick to or even pass through the ZP. With intact, free, and damaged ZP, porcine preimplantation embryos are susceptible to these viruses in varying degrees, which may be associated with the virus-specific receptor on embryonic cell membrane. These topics are discussed in the present review. PMID:27423729

  12. A Comparative Anatomic and Physiologic Overview of the Porcine Heart

    PubMed Central

    Lelovas, Pavlos P; Kostomitsopoulos, Nikolaos G; Xanthos, Theodoros T

    2014-01-01

    Despite advances during the last 2 decades in every aspect of cardiovascular research (interventional cardiology, cardiopulmonary resuscitation, and so forth), Western societies still are plagued by the consequences of cardiovascular disease. Consequently the discovery of new regimens and therapeutic interventions is of utmost importance. Research using human subjects is associated with substantial methodologic and ethical considerations, and the quest for an appropriate animal model for the human cardiovascular system has led to swine. The porcine heart bears a close resemblance to the human heart in terms of its coronary circulation and hemodynamic similarities and offers ease of implementation of methods and devices from human healthcare facilities. A thorough comprehension of the anatomy and physiology of the porcine cardiovascular system should focus on differences between swine and humans as well as similarities. Understanding these differences and similarities is essential to extrapolating data appropriately and to addressing the social demand for the ethical use of animals in biomedical research. PMID:25255064

  13. Perforation forces of the intact porcine anterior lens capsule.

    PubMed

    Ullrich, Franziska; Lussi, Jonas; Felekis, Dimitrios; Michels, Stephan; Petruska, Andrew J; Nelson, Bradley J

    2016-09-01

    During the first step of cataract surgery, the lens capsule is perforated and a circular hole is created with a sharp instrument, a procedure called capsulorhexis. To develop automated systems that can assist ophthalmologists during capsulorhexis, the forces required must be quantified. This study investigates perforation forces of the central anterior lens capsule in porcine eyes, which are used as a conservative model for the human eye. A micro-mechanical characterisation method is presented that measures capsular bag perforation forces with a high precision positioning and high-resolution force sensing system. The force during perforation of the anterior lens capsule was measured with various sized needles and indentation speeds and is found to be 15-35mN. A bio-mechanical model is identified that describes an exponential correlation between indentation force and depth, indicating strain hardening behaviour of the porcine anterior lens capsule.

  14. Porcine Reproductive and Respiratory Syndrome Virus: Origin Hypothesis

    PubMed Central

    2003-01-01

    Porcine reproductive and respiratory syndrome is a serious swine disease that appeared suddenly in the midwestern United States and central Europe approximately 14 years ago; the disease has now spread worldwide. In North America and Europe, the syndrome is caused by two genotypes of porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus whose genomes diverge by approximately 40%. My hypothesis, which explains the origin and evolution of the two distinct PRRSV genotypes, is that a mutant of a closely related arterivirus of mice (lactate dehydrogenase-elevating virus) infected wild boars in central Europe. These wild boars functioned as intermediate hosts and spread the virus to North Carolina in imported, infected European wild boars in 1912; the virus then evolved independently on the two continents in the prevalent wild hog populations for approximately 70 years until independently entering the domestic pig population. PMID:12967485

  15. Perforation forces of the intact porcine anterior lens capsule.

    PubMed

    Ullrich, Franziska; Lussi, Jonas; Felekis, Dimitrios; Michels, Stephan; Petruska, Andrew J; Nelson, Bradley J

    2016-09-01

    During the first step of cataract surgery, the lens capsule is perforated and a circular hole is created with a sharp instrument, a procedure called capsulorhexis. To develop automated systems that can assist ophthalmologists during capsulorhexis, the forces required must be quantified. This study investigates perforation forces of the central anterior lens capsule in porcine eyes, which are used as a conservative model for the human eye. A micro-mechanical characterisation method is presented that measures capsular bag perforation forces with a high precision positioning and high-resolution force sensing system. The force during perforation of the anterior lens capsule was measured with various sized needles and indentation speeds and is found to be 15-35mN. A bio-mechanical model is identified that describes an exponential correlation between indentation force and depth, indicating strain hardening behaviour of the porcine anterior lens capsule. PMID:27254279

  16. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2.

    PubMed

    Sun, Na; Sun, Panpan; Lv, Haipeng; Sun, Yaogui; Guo, Jianhua; Wang, Zhirui; Luo, Tiantian; Wang, Shaoyu; Li, Hongquan

    2016-01-01

    The co-infection of porcine reproductive respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) is quite common in clinical settings and no effective treatment to the co-infection is available. In this study, we established the porcine alveolar macrophages (PAM) cells model co-infected with PRRSV/PCV2 with modification in vitro, and investigated the antiviral activity of Matrine on this cell model and further evaluated the effect of Matrine on virus-induced TLR3,4/NF-κB/TNF-α pathway. The results demonstrated PAM cells inoculated with PRRSV followed by PCV2 2 h later enhanced PRRSV and PCV2 replications. Matrine treatment suppressed both PRRSV and PCV2 infection at 12 h post infection. Furthermore, PRRSV/PCV2 co- infection induced IκBα degradation and phosphorylation as well as the translocation of NF-κB from the cytoplasm to the nucleus indicating that PRRSV/PCV2 co-infection induced NF-κB activation. Matrine treatment significantly down-regulated the expression of TLR3, TLR4 and TNF-α although it, to some extent, suppressed p-IκBα expression, suggesting that TLR3,4/NF-κB/TNF-α pathway play an important role of Matrine in combating PRRSV/PCV2 co-infection. It is concluded that Matrine possesses activity against PRRSV/PCV2 co-infection in vitro and suppression of the TLR3,4/NF-κB/TNF-α pathway as an important underlying molecular mechanism. These findings warrant Matrine to be further explored for its antiviral activity in clinical settings. PMID:27080155

  17. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2.

    PubMed

    Sun, Na; Sun, Panpan; Lv, Haipeng; Sun, Yaogui; Guo, Jianhua; Wang, Zhirui; Luo, Tiantian; Wang, Shaoyu; Li, Hongquan

    2016-04-15

    The co-infection of porcine reproductive respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) is quite common in clinical settings and no effective treatment to the co-infection is available. In this study, we established the porcine alveolar macrophages (PAM) cells model co-infected with PRRSV/PCV2 with modification in vitro, and investigated the antiviral activity of Matrine on this cell model and further evaluated the effect of Matrine on virus-induced TLR3,4/NF-κB/TNF-α pathway. The results demonstrated PAM cells inoculated with PRRSV followed by PCV2 2 h later enhanced PRRSV and PCV2 replications. Matrine treatment suppressed both PRRSV and PCV2 infection at 12 h post infection. Furthermore, PRRSV/PCV2 co- infection induced IκBα degradation and phosphorylation as well as the translocation of NF-κB from the cytoplasm to the nucleus indicating that PRRSV/PCV2 co-infection induced NF-κB activation. Matrine treatment significantly down-regulated the expression of TLR3, TLR4 and TNF-α although it, to some extent, suppressed p-IκBα expression, suggesting that TLR3,4/NF-κB/TNF-α pathway play an important role of Matrine in combating PRRSV/PCV2 co-infection. It is concluded that Matrine possesses activity against PRRSV/PCV2 co-infection in vitro and suppression of the TLR3,4/NF-κB/TNF-α pathway as an important underlying molecular mechanism. These findings warrant Matrine to be further explored for its antiviral activity in clinical settings.

  18. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2

    PubMed Central

    Sun, Na; Sun, Panpan; Lv, Haipeng; Sun, Yaogui; Guo, Jianhua; Wang, Zhirui; Luo, Tiantian; Wang, Shaoyu; Li, Hongquan

    2016-01-01

    The co-infection of porcine reproductive respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) is quite common in clinical settings and no effective treatment to the co-infection is available. In this study, we established the porcine alveolar macrophages (PAM) cells model co-infected with PRRSV/PCV2 with modification in vitro, and investigated the antiviral activity of Matrine on this cell model and further evaluated the effect of Matrine on virus-induced TLR3,4/NF-κB/TNF-α pathway. The results demonstrated PAM cells inoculated with PRRSV followed by PCV2 2 h later enhanced PRRSV and PCV2 replications. Matrine treatment suppressed both PRRSV and PCV2 infection at 12 h post infection. Furthermore, PRRSV/PCV2 co- infection induced IκBα degradation and phosphorylation as well as the translocation of NF-κB from the cytoplasm to the nucleus indicating that PRRSV/PCV2 co-infection induced NF-κB activation. Matrine treatment significantly down-regulated the expression of TLR3, TLR4 and TNF-α although it, to some extent, suppressed p-IκBα expression, suggesting that TLR3,4/NF-κB/TNF-α pathway play an important role of Matrine in combating PRRSV/PCV2 co-infection. It is concluded that Matrine possesses activity against PRRSV/PCV2 co-infection in vitro and suppression of the TLR3,4/NF-κB/TNF-α pathway as an important underlying molecular mechanism. These findings warrant Matrine to be further explored for its antiviral activity in clinical settings. PMID:27080155

  19. The effect of insulin on porcine adipose tissue lipogenesis.

    PubMed

    Mersmann, H J

    1989-01-01

    1. This laboratory and others have not been able to demonstrate consistent insulin stimulation of glucose incorporation into lipid by porcine adipose tissue in vitro. 2. A multiplicity of tissue handling procedures, additions to the incubation medium, and pig size (age) did not allow the expression of a consistent and substantial insulin stimulation. 3. It is suggested that the twofold or greater stimulation of glucose metabolism observed occasionally in this laboratory results from pig genetics, husbandry, or seasonal effects. PMID:2514071

  20. Dielectric properties of porcine glands, gonads and body fluids.

    PubMed

    Peyman, A; Gabriel, C

    2012-10-01

    Dielectric properties of porcine glandular tissues and gonads (in vivo) and body fluids (in vitro) have been obtained in the frequency range of 50 MHz to 20 GHz. The experimental data were fitted to a two term Cole-Cole expression. The data presented complement the available dielectric properties of tissues in the literature and can be used in numerical simulations of the exposure of people to electromagnetic fields.

  1. The effect of insulin on porcine adipose tissue lipogenesis.

    PubMed

    Mersmann, H J

    1989-01-01

    1. This laboratory and others have not been able to demonstrate consistent insulin stimulation of glucose incorporation into lipid by porcine adipose tissue in vitro. 2. A multiplicity of tissue handling procedures, additions to the incubation medium, and pig size (age) did not allow the expression of a consistent and substantial insulin stimulation. 3. It is suggested that the twofold or greater stimulation of glucose metabolism observed occasionally in this laboratory results from pig genetics, husbandry, or seasonal effects.

  2. A Bacterial Glycoengineered Antigen for Improved Serodiagnosis of Porcine Brucellosis.

    PubMed

    Cortina, María E; Balzano, Rodrigo E; Rey Serantes, Diego A; Caillava, Ana J; Elena, Sebastián; Ferreira, A C; Nicola, Ana M; Ugalde, Juan E; Comerci, Diego J; Ciocchini, Andrés E

    2016-06-01

    Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glyco-iELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of "smooth" brucellosis in animals and humans.

  3. Morphology and functional characteristics of isolated porcine intraepithelial lymphocytes.

    PubMed Central

    Wilson, A D; Stokes, C R; Bourne, F J

    1986-01-01

    We have examined the morphology and functional characteristics of porcine intraepithelial lymphocytes (IEL). A subpopulation of IEL contains granules as seen in other species, and their ultrastructure was also similar. They were capable of producing T-cell growth factor and interferon on in vitro stimulation. IEL killed P815 cells in the presence of PHA, but did not kill K562 cells. Images Figure 1 Figure 2 PMID:2428733

  4. A Bacterial Glycoengineered Antigen for Improved Serodiagnosis of Porcine Brucellosis.

    PubMed

    Cortina, María E; Balzano, Rodrigo E; Rey Serantes, Diego A; Caillava, Ana J; Elena, Sebastián; Ferreira, A C; Nicola, Ana M; Ugalde, Juan E; Comerci, Diego J; Ciocchini, Andrés E

    2016-06-01

    Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glyco-iELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of "smooth" brucellosis in animals and humans. PMID:26984975

  5. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus.

    PubMed

    Liu, Chang; Tang, Jian; Ma, Yuanmei; Liang, Xueya; Yang, Yang; Peng, Guiqing; Qi, Qianqian; Jiang, Shibo; Li, Jianrong; Du, Lanying; Li, Fang

    2015-06-01

    Porcine epidemic diarrhea coronavirus (PEDV) has significantly damaged America's pork industry. Here we investigate the receptor usage and cell entry of PEDV. PEDV recognizes protein receptor aminopeptidase N from pig and human and sugar coreceptor N-acetylneuraminic acid. Moreover, PEDV infects cells from pig, human, monkey, and bat. These results support the idea of bats as an evolutionary origin for PEDV, implicate PEDV as a potential threat to other species, and suggest antiviral strategies to control its spread. PMID:25787280

  6. Characterization, cloning, and expression of porcine alpha B crystallin.

    PubMed

    Liao, J H; Hung, C C; Lee, J S; Wu, S H; Chiou, S H

    1998-03-01

    alpha-Crystallin is a major lens protein present in the lenses of all vertebrate species. Recent studies have revealed that bovine alpha-crystallins possess genuine chaperone activity similar to small heat-shock proteins. In order to compare this chaperone-like structural protein from the eye lenses of different mammalian species, we have cloned and expressed one of the main alpha-crystallin subunits, i.e., alpha B crystallin, from the porcine lenses in order to facilitate the structure-function evaluation and comparison of this chaperonin protein. cDNA encoding alpha B subunit chain was obtained using a new "Marathon cDNA amplification" protocol of Polymerase Chain Reaction (PCR). PCR-amplified product corresponding to alpha B subunit was then ligated into pGEM-T plasmid and prepared for nucleotide sequencing by the dideoxy-nucleotide chain-termination method. Sequencing several positive clones containing DNA inserts coding for alpha B-crystallin subunit constructed only one complete full-length reading frame of 525 base pairs similar to human and bovine alpha B subunits, covering a deduced protein sequence of 175 amino acids including the universal translation-initiating methionine. The porcine alpha B crystallin shows only 3 and 7 residues difference to bovine and human alpha B crystallins respectively, revealing the close relatedness among mammalian eye lens proteins. The sequence differences between porcine and sub-mammalian species such as chicken and bullfrog are much greater, especially at the N- and C-terminal regions of these alpha B crystallins. Expression of alpha B subunit chain in E. coli vector generated a polypeptide which can cross-react with the antiserum against the native and purified alpha B subunit from the native porcine lenses albeit with a much lower activity.

  7. F4+ enterotoxigenic Escherichia coli (ETEC) adhesion mediated by the major fimbrial subunit FaeG.

    PubMed

    Xia, Pengpeng; Song, Yujie; Zou, Yajie; Yang, Ying; Zhu, Guoqiang

    2015-09-01

    The FaeG subunit is the major constituent of F4(+) fimbriae, associated with glycoprotein and/or glycolipid receptor recognition and majorly contributes to the pathogen attachment to the host cells. To investigate the key factor involved in the fimbrial binding of F4(+) Escherichia coli, both the recombinant E. coli SE5000 strains carrying the fae operon gene clusters that express the different types of fimbriae in vitro, named as rF4ab, rF4ac, and rF4ad, respectively, corresponding to the fimbrial types F4ab, F4ac, and F4ad, and the three isogenic in-frame faeG gene deletion mutants were constructed. The adhesion assays and adhesion inhibition assays showed that ΔfaeG mutants had a significant reduction in the binding to porcine brush border as well as the intestinal epithelial cell lines, while the complemented strain ΔfaeG/pfaeG restored the adhesion function. The recombinant bacterial strains rF4ab, rF4ac, and rF4ad have the same binding property as wild-type F4(+) E. coli strains do and improvement in terms of binding to porcine brush border and the intestinal epithelial cells, and the adherence was blocked by the monoclonal antibody anti-F4 fimbriae. These data demonstrate that the fimbrial binding of F4(+) E. coli is directly mediated by the major FaeG subunit. PMID:25847483

  8. Age-specific prevalence of Escherichia coli with localized and aggregative adherence in Venezuelan infants with acute diarrhea.

    PubMed

    González, R; Díaz, C; Mariño, M; Cloralt, R; Pequeneze, M; Pérez-Schael, I

    1997-05-01

    To evaluate the epidemiological significance of HEp-2 cell-adherent Escherichia coli isolates in diarrheal disease, we performed a study with 513 Venezuelan infants with diarrhea and 241 age-matched controls to determine the prevalence of enteropathogenic E. coli (enteroadherent E. coli, enterotoxigenic E. coli, enteroinvasive E. coli, and enterohemorrhagic E. coli) and their correlation with O:H serotypes. E. coli isolates exhibiting localized and aggregative adherence in the HEp-2 cell assay were significantly more frequently isolated from the patients (8.5 and 26.9%, respectively) than from the controls (1.7 and 15%, respectively). This difference was significant for the group 0 to 2 months of age but for older infants. Regardless of age, E. coli isolates with diffuse adherence were found at similar frequencies in both the patients and the controls. A striking correlation between classic O serogroups and localized adherence was also observed. These findings confirm the pathogenic role of E. coli with localized and aggregative adherence in diarrheal disease, as well as the epidemiological importance of O:H serotyping for characterizing localized-adhering E. coli.

  9. Temporospatial fate of bacteria and immune effector expression in house flies fed GFP-Escherichia coli O157:H7.

    PubMed

    Fleming, A; Kumar, H V; Joyner, C; Reynolds, A; Nayduch, D

    2014-12-01

    The house fly Musca domestica L. (Diptera: Muscidae) harbours and transmits a variety of human enteropathogens including Escherichia coli (Enterobacteriales: Enterobacteriaceae) O157:H7. Interactions between ingested bacteria and the fly gut directly impact bacterial persistence, survival and ultimately fly vector competence. We assessed the temporospatial fate of green fluorescent protein (GFP)-expressing E. coli O157:H7 (GFP-ECO157) in house flies along with fly antimicrobial responses up to 12 h post-ingestion. In flies fed GFP-ECO157, culture and microscopy revealed a steady decrease in bacterial load over 12 h, which is likely to be attributable to the combined effects of immobilization within the peritrophic matrix, lysis and peristaltic excretion. However, flies can putatively transmit this pathogen in excreta because intact bacteria were observed in the crop and rectum. Quantitative reverse-transcriptase polymerase chain reaction analysis of antimicrobial peptides (AMPs) and lysozyme gene expression showed minimal upregulation in both the gut and carcass of house flies fed GFP-ECO157. However, these genes were upregulated in fly heads and salivary glands, and effector proteins were detected in the gut in some flies. Collectively, these data indicate that house flies can serve as reservoirs of E. coli O157:H7 for up to 12 h, and factors in addition to AMPs and lysozyme may contribute to bacteria destruction in the gut.

  10. Application of DNA hybridization techniques in the assessment of diarrheal disease among refugess in Thailand. [Shigella; Escherichia coli; Campylobacter; Cryptosporidium

    SciTech Connect

    Taylor, D.N.; Echeverria, P.; Pitarangsi, C.; Seriwatana, J.; Sethabutr, O.; Bodhidatta, L.; Brown, C.; Herrmann, J.E.; Blacklow, N.R.

    1988-01-01

    The epidemiology and etiology of acute diarrheal disease were determined in a Hmong refugee camp on the Thai-Laotian border from April 11 to May 14, 1985. DNA hybridization techniques were used to detect Shigella species, enteroinvasive Escherichia coli, and enterotoxigenic E. coli. A monoclonal enzyme-linked immunosorbent assay was used to detect rotavirus, and standard microbiology was used to detect other enteropathogens. The age-specific diarrheal disease rates were 47 episodes per month per 1000 children less than five years old and 113 episodes per month per 1000 children less than one year old. Rotavirus, enterotoxigenic E. coli, Campylobacter, and Cryptosporidium were the predominant pathogens in children less than two years old. The DNA probe hybridized with 94% of 31 specimens identified as enterotoxigenic E. coli by the standard assays and with none of the specimens in which the standard assays were negative. The probe for Shigella and enteroinvasive E. coli hybridized in eight of 10 stools that contained Shigella and four of 314 stools from which Shigella and enteroinvasive E. coli were not isolated. The use of DNA probes allows specimens to be collected in remote areas with a minimum amount of equipment and technical expertise so that they can be easily transported to a central laboratory for further processing.

  11. Biotypes and O serogroups of Escherichia coli involved in intestinal infections of weaned rabbits: clues to diagnosis of pathogenic strains.

    PubMed Central

    Camguilhem, R; Milon, A

    1989-01-01

    A total of 575 Escherichia coli strains isolated from weaned rabbits experiencing diarrhea in 119 French commercial farms were tested for O serogroups. The results showed a strong predominance of serogroup O103 strains. A sample of 126 strains were further checked for simplified biotypes by using five carbohydrate fermentation reactions. Of 72 O103 strains, 70 were shown to belong to biotypes characterized by a rhamnose-negative reaction. Four of nine serogroup O68 strains also showed this type of reaction. Thirty-nine strains, representative of the serotypes and biotypes found, were further tested for experimental pathogenicity in weaned rabbits and for antibiotic susceptibility. All the rhamnose-negative strains produced life-threatening watery or hemorrhagic diarrhea, whereas rhamnose-positive strains induced only mild diarrheic syndrome without any mortality or no clinical signs at all. Rhamnose-negative, highly pathogenic strains did not belong to related antibiotypes. We think that O serogrouping together with biotyping, or even rhamnose fermentation testing, may be an important clue in the diagnosis of enteropathogenic strains from rabbits in France, permitting rapid identification of highly pathogenic strains and leading to improved prognosis and treatment. PMID:2656746

  12. Isolation of Escherichia coli from piglets in South Korea with diarrhea and characteristics of the virulence genes.

    PubMed

    Kim, Yeong Ju; Kim, Ji Hee; Hur, Jin; Lee, John Hwa

    2010-01-01

    Escherichia coli was isolated from the feces of 122 piglets with diarrhea on 55 farms in Korea. The virulence genes of each isolate were characterized by polymerase chain reaction (PCR). Of the 562 isolates, 191 carried 1 or more of the virulence genes tested for in this study. Of the 191 isolates, 114 (60%) carried 1 or more of the genes for enterotoxigenic E. coli (ETEC) fimbriae F4, F5, F6, F18, and F41 and ETEC toxins LT, STa, and STb, 57 (30%) carried 1 or more of the genes for the Shiga-toxin-producing E. coli (STEC) toxins Stx1, Stx2, and Stx2e, and 21% and 37% carried the gene for enteropathogenic E. coli intimin and for enteroaggregative E. coli toxin, respectively. Collectively, our results indicate that other pathotypes of E. coli as well as ETEC can be strongly associated with diarrhea in piglets. In addition, detection of the genes for Stx1 and Stx2 indicates that pigs are reservoirs of human pathogenic STEC. PMID:20357961

  13. Identification and characterization of "pathoadaptive mutations" of the cadBA operon in several intestinal Escherichia coli.

    PubMed

    Jores, Joerg; Torres, Alfredo G; Wagner, Sylke; Tutt, Christopher B; Kaper, James B; Wieler, Lothar H

    2006-12-01

    The dysenteric Shigella spp. and enteroinvasive Escherichia coli (EIEC) have evolved from commensal E. coli by the acquisition of a virulence plasmid and inactivation of genes of the cad locus encoding lysine decarboxylase (LDC) by so-called pathoadaptive mutation. As horizontal gene transfer and recombination occurs frequently in E. coli we were interested to see if similar pathoadaptive mutations are commonly present in other intestinal pathotypes. Therefore, we examined 140 intestinal E. coli strains of various pathotypes and the ECOR collection for their ability to decarboxylate lysine, and identified 25 strains that were unable to do so. Complementation of a Shiga toxin-producing E. coli and two enteropathogenic E. coli strains, both LDC-negative, with the intact cad locus restored LDC activity and resulted in a reduction in adherence to tissue culture cells. We investigated the cad locus for possible alterations by using hybridization and PCR techniques and compared the results with the alterations reported for Shigella spp. and EIEC strains. Interestingly, the alterations of the cad genes were similar to those previously reported, pointing towards a parallel evolution of LDC silencing in different intestinal E. coli pathotypes.

  14. Immunodiagnosis of porcine cysticercosis: identification of candidate antigens through immunoproteomics.

    PubMed

    Diaz-Masmela, Yuliet; Fragoso, Gladis; Ambrosio, Javier R; Mendoza-Hernández, Guillermo; Rosas, Gabriela; Estrada, Karel; Carrero, Julio César; Sciutto, Edda; Laclette, Juan P; Bobes, Raúl J

    2013-12-01

    Cysticercosis, caused by the larval stage of Taenia solium, is a zoonotic disease affecting pigs and humans that is endemic to developing countries in Latin America, Africa and South East Asia. The prevalence of infection in pigs, the intermediate host for T. solium, has been used as an indicator for monitoring disease transmission in endemic areas. However, accurate and specific diagnostic tools for porcine cysticercosis remain to be established. Using proteomic approaches and the T. solium genome sequence, seven antigens were identified as specific for porcine cysticercosis, namely, tropomyosin 2, alpha-1 tubulin, beta-tubulin 2, annexin B1, small heat-shock protein, 14-3-3 protein, and cAMP-dependent protein kinase. None of these proteins were cross-reactive when tested with sera from pigs infected with Ascaris spp., Cysticercus tenuicollis and hydatid cysts of Echinococcus spp. or with serum from a Taenia saginata-infected cow. Comparison with orthologues, indicated that the amino acid sequences of annexin B1 and cAMP-dependent protein kinase possessed highly specific regions, which might make them suitable candidates for development of a specific diagnostic assay for porcine cysticercosis. PMID:24161749

  15. Progesterone influences cytoplasmic maturation in porcine oocytes developing in vitro

    PubMed Central

    Jin, Yong-Xun; Kwon, Jeong-Woo

    2016-01-01

    Progesterone (P4), an ovarian steroid hormone, is an important regulator of female reproduction. In this study, we explored the influence of progesterone on porcine oocyte nuclear maturation and cytoplasmic maturation and development in vitro. We found that the presence of P4 during oocyte maturation did not inhibit polar body extrusions but significantly increased glutathione and decreased reactive oxygen species (ROS) levels relative to that in control groups. The incidence of parthenogenetically activated oocytes that could develop to the blastocyst stage was higher (p < 0.05) when oocytes were exposed to P4 as compared to that in the controls. Cell numbers were increased in the P4-treated groups. Further, the P4-specific inhibitor mifepristone (RU486) prevented porcine oocyte maturation, as represented by the reduced incidence (p < 0.05) of oocyte first polar body extrusions. RU486 affected maturation promoting factor (MPF) activity and maternal mRNA polyadenylation status. In general, these data show that P4 influences the cytoplasmic maturation of porcine oocytes, at least partially, by decreasing their polyadenylation, thereby altering maternal gene expression.

  16. Effective, single-dose treatment or porcine cysticercosis with oxfendazole.

    PubMed

    Gonzales, A E; Garcia, H H; Gilman, R H; Gavidia, C M; Tsang, V C; Bernal, T; Falcon, N; Romero, M; Lopez-Urbina, M T

    1996-04-01

    The pig is a vital link in the transmission cycle of Taenia solium, the cestode responsible for human-porcine cysticercosis. Infected pigs also represent an important source of economic loss to farmers in developing countries. Past efforts to find an adequate therapeutic regimen to treat this parasite disease in swine have failed because of low efficacy, high cost, side effects, or the need for multiple doses. In this randomized, no treatment-controlled study, the efficacy and safety of oxfendazole and praziquantel for the treatment of porcine cysticercosis were evaluated in 16 naturally infected pigs. Four groups of four pigs were treated with oxfendazole, praziquantel, oxfendazole plus praziquantel, or untreated. The pigs were humanely killed 12 weeks post-treatment, the number of cyst was counted, and parasite viability was assessed by cyst evagination. No detectable side effects were seen in any of the pigs. Praziquantel treatment alone appeared to reduce the number of cysts, but did not decrease the viability of the remaining parasites. Treatment with oxfendazole alone or oxfendazole plus praziquantel killed all of the parasites, and left only microcalcifications in the meat. Oxfendazole provides, for the first time, a practical, effective, inexpensive, and single-dose therapy for porcine cysticercosis.

  17. Recombinant Human Factor IX Produced from Transgenic Porcine Milk

    PubMed Central

    Lee, Meng-Hwan; Lin, Yin-Shen; Tu, Ching-Fu; Yen, Chon-Ho

    2014-01-01

    Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitation step to remove casein. The purified protein had high specific activity and a low ratio of the active form (FIXa). The purified rhFIX had 11.9 γ-carboxyglutamic acid (Gla) residues/mol protein, which approached full occupancy of the 12 potential sites in the Gla domain. The rhFIX was shown to have a higher isoelectric point and lower sialic acid content than plasma-derived FIX (pdFIX). The rhFIX had the same N-glycosylation sites and phosphorylation sites as pdFIX, but had a higher specific activity. These results suggest that rhFIX produced from porcine milk is physiologically active and they support the use of transgenic animals as bioreactors for industrial scale production in milk. PMID:24955355

  18. Progesterone influences cytoplasmic maturation in porcine oocytes developing in vitro

    PubMed Central

    Jin, Yong-Xun; Kwon, Jeong-Woo

    2016-01-01

    Progesterone (P4), an ovarian steroid hormone, is an important regulator of female reproduction. In this study, we explored the influence of progesterone on porcine oocyte nuclear maturation and cytoplasmic maturation and development in vitro. We found that the presence of P4 during oocyte maturation did not inhibit polar body extrusions but significantly increased glutathione and decreased reactive oxygen species (ROS) levels relative to that in control groups. The incidence of parthenogenetically activated oocytes that could develop to the blastocyst stage was higher (p < 0.05) when oocytes were exposed to P4 as compared to that in the controls. Cell numbers were increased in the P4-treated groups. Further, the P4-specific inhibitor mifepristone (RU486) prevented porcine oocyte maturation, as represented by the reduced incidence (p < 0.05) of oocyte first polar body extrusions. RU486 affected maturation promoting factor (MPF) activity and maternal mRNA polyadenylation status. In general, these data show that P4 influences the cytoplasmic maturation of porcine oocytes, at least partially, by decreasing their polyadenylation, thereby altering maternal gene expression. PMID:27672508

  19. Age and Nursing Affect the Neonatal Porcine Uterine Transcriptome.

    PubMed

    Rahman, Kathleen M; Camp, Meredith E; Prasad, Nripesh; McNeel, Anthony K; Levy, Shawn E; Bartol, Frank F; Bagnell, Carol A

    2016-02-01

    The lactocrine hypothesis for maternal programming of neonatal development was proposed to describe a mechanism through which milk-borne bioactive factors, delivered from mother to nursing offspring, could affect development of tissues, including the uterus. Porcine uterine development, initiated before birth, is completed postnatally. However, age- and lactocrine-sensitive elements of the neonatal porcine uterine developmental program are undefined. Here, effects of age and nursing on the uterine transcriptome for 48 h from birth (Postnatal Day [PND] = 0) were identified using RNA sequencing (RNAseq). Uterine tissues were obtained from neonatal gilts (n = 4 per group) within 1 h of birth and before feeding (PND 0), or 48 h after nursing ad libitum (PND 2N) or feeding a commercial milk replacer (PND 2R). RNAseq analysis revealed differentially expressed genes (DEGs) associated with both age (PND 2N vs. PND 0; 3283 DEGs) and nursing on PND 2 (PND 2N vs PND 2R; 896 DEGs). Expression of selected uterine genes was validated using quantitative real-time PCR. Bioinformatic analyses revealed multiple biological processes enriched in response to both age and nursing, including cell adhesion, morphogenesis, and cell-cell signaling. Age-sensitive pathways also included estrogen receptor-alpha and hedgehog signaling cascades. Lactocrine-sensitive processes in nursed gilts included those involved in response to wounding, the plasminogen activator network and coagulation. Overall, RNAseq analysis revealed comprehensive age- and nursing-related transcriptomic differences in the neonatal porcine uterus and identified novel pathways and biological processes regulating uterine development.

  20. Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord

    PubMed Central

    Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.

    2014-01-01

    Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612

  1. Immunodiagnosis of porcine cysticercosis: identification of candidate antigens through immunoproteomics.

    PubMed

    Diaz-Masmela, Yuliet; Fragoso, Gladis; Ambrosio, Javier R; Mendoza-Hernández, Guillermo; Rosas, Gabriela; Estrada, Karel; Carrero, Julio César; Sciutto, Edda; Laclette, Juan P; Bobes, Raúl J

    2013-12-01

    Cysticercosis, caused by the larval stage of Taenia solium, is a zoonotic disease affecting pigs and humans that is endemic to developing countries in Latin America, Africa and South East Asia. The prevalence of infection in pigs, the intermediate host for T. solium, has been used as an indicator for monitoring disease transmission in endemic areas. However, accurate and specific diagnostic tools for porcine cysticercosis remain to be established. Using proteomic approaches and the T. solium genome sequence, seven antigens were identified as specific for porcine cysticercosis, namely, tropomyosin 2, alpha-1 tubulin, beta-tubulin 2, annexin B1, small heat-shock protein, 14-3-3 protein, and cAMP-dependent protein kinase. None of these proteins were cross-reactive when tested with sera from pigs infected with Ascaris spp., Cysticercus tenuicollis and hydatid cysts of Echinococcus spp. or with serum from a Taenia saginata-infected cow. Comparison with orthologues, indicated that the amino acid sequences of annexin B1 and cAMP-dependent protein kinase possessed highly specific regions, which might make them suitable candidates for development of a specific diagnostic assay for porcine cysticercosis.

  2. Progesterone influences cytoplasmic maturation in porcine oocytes developing in vitro.

    PubMed

    Yuan, Bao; Liang, Shuang; Jin, Yong-Xun; Kwon, Jeong-Woo; Zhang, Jia-Bao; Kim, Nam-Hyung

    2016-01-01

    Progesterone (P4), an ovarian steroid hormone, is an important regulator of female reproduction. In this study, we explored the influence of progesterone on porcine oocyte nuclear maturation and cytoplasmic maturation and development in vitro. We found that the presence of P4 during oocyte maturation did not inhibit polar body extrusions but significantly increased glutathione and decreased reactive oxygen species (ROS) levels relative to that in control groups. The incidence of parthenogenetically activated oocytes that could develop to the blastocyst stage was higher (p < 0.05) when oocytes were exposed to P4 as compared to that in the controls. Cell numbers were increased in the P4-treated groups. Further, the P4-specific inhibitor mifepristone (RU486) prevented porcine oocyte maturation, as represented by the reduced incidence (p < 0.05) of oocyte first polar body extrusions. RU486 affected maturation promoting factor (MPF) activity and maternal mRNA polyadenylation status. In general, these data show that P4 influences the cytoplasmic maturation of porcine oocytes, at least partially, by decreasing their polyadenylation, thereby altering maternal gene expression. PMID:27672508

  3. Natural interspecies recombinant bovine/porcine enterovirus in sheep.

    PubMed

    Boros, Akos; Pankovics, Péter; Knowles, Nick J; Reuter, Gábor

    2012-09-01

    Members of the genus Enterovirus (family Picornaviridae) are believed to be common and widespread among humans and different animal species, although only a few enteroviruses have been identified from animal sources. Intraspecies recombination among human enteroviruses is a well-known phenomenon, but only a few interspecies examples have been reported and, to our current knowledge, none of these have involved non-primate enteroviruses. In this study, we report the detection and complete genome characterization (using RT-PCR and long-range PCR) of a natural interspecies recombinant bovine/porcine enterovirus (ovine enterovirus type 1; OEV-1) in seven (44 %) of 16 faecal samples from 3-week-old domestic sheep (Ovis aries) collected in two consecutive years. Phylogenetic analysis of the complete coding region revealed that OEV-1 (ovine/TB4-OEV/2009/HUN; GenBank accession no. JQ277724) was a novel member of the species Porcine enterovirus B (PEV-B), implying the endemic presence of PEV-B viruses among sheep. However, the 5' UTR of OEV-1 showed a high degree of sequence and structural identity to bovine enteroviruses. The presumed recombination breakpoint was mapped to the end of the 5' UTR at nucleotide position 814 using sequence and SimPlot analyses. The interspecies-recombinant nature of OEV-1 suggests a closer relationship among bovine and porcine enteroviruses, enabling the exchange of at least some modular genetic elements that may evolve independently.

  4. Measurement of the anisotropic thermal conductivity of the porcine cornea.

    PubMed

    Barton, Michael D; Trembly, B Stuart

    2013-10-01

    Accurate thermal models for the cornea of the eye support the development of thermal techniques for reshaping the cornea and other scientific purposes. Heat transfer in the cornea must be quantified accurately so that a thermal treatment does not destroy the endothelial layer, which cannot regenerate, and yet is responsible for maintaining corneal transparency. We developed a custom apparatus to measure the thermal conductivity of ex vivo porcine corneas perpendicular to the surface and applied a commercial apparatus to measure thermal conductivity parallel to the surface. We found that corneal thermal conductivity is 14% anisotropic at the normal state of corneal hydration. Small numbers of ex vivo feline and human corneas had a thermal conductivity perpendicular to the surface that was indistinguishable from the porcine corneas. Aqueous humor from ex vivo porcine, feline, and human eyes had a thermal conductivity nearly equal to that of water. Including the anisotropy of corneal thermal conductivity will improve the predictive power of thermal models of the eye.

  5. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* sialic acid-binding domain of porcine rotavirus strain OSU

    SciTech Connect

    Zhang, Yang-De Li, Hao; Liu, Hui; Pan, Yi-Feng

    2007-02-01

    Porcine rotavirus strain OSU VP8* domain has been expressed, purified and crystallized. X-ray diffraction data from different crystal forms of the VP8* domain have been collected to 2.65 and 2.2 Å resolution, respectively. The rotavirus outer capsid spike protein VP4 is utilized in the process of rotavirus attachment to and membrane penetration of host cells. VP4 is cleaved by trypsin into two domains: VP8* and VP5*. The VP8* domain is implicated in initial interaction with sialic acid-containing cell-surface carbohydrates and triggers subsequent virus invasion. The VP8* domain from porcine OSU rotavirus was cloned and expressed in Escherichia coli. Different crystal forms (orthorhombic P2{sub 1}2{sub 1}2{sub 1} and tetragonal P4{sub 1}2{sub 1}2) were harvested from two distinct crystallization conditions. Diffraction data have been collected to 2.65 and 2.2 Å resolution and the VP8*{sub 65–224} structure was determined by molecular replacement.

  6. Prevalence and molecular characterization of porcine enteric caliciviruses and first detection of porcine kobuviruses in US swine.

    PubMed

    Sisay, Zufan; Wang, Qiuhong; Oka, Tomoichiro; Saif, Linda

    2013-07-01

    The prevalence of porcine sapoviruses (SaVs) and noroviruses (NoVs) in nursing piglets on three pig farms in Ohio was studied. Fecal samples (n = 139) were collected from individual pigs and screened for caliciviruses by RT-PCR. Phylogenetic analysis was conducted using partial sequences of the RNA polymerase region. Three different SaV genogroups, including a newly emerging one (DO19 Korea-like) were detected. No NoVs were detected. Kobuviruses, emerging members of the family Picornaviridae, were detected by primers designed for SaV. To our knowledge, this is the first report of porcine DO19 Korea-like SaV and kobuvirus in the United States. PMID:23456421

  7. Cloning, expression and characterization of potential immunogenic recombinant hemagglutinin-neuraminidase protein of Porcine rubulavirus.

    PubMed

    Cuevas-Romero, Julieta Sandra; Rivera-Benítez, José Francisco; Hernández-Baumgarten, Eliseo; Hernández-Jaúregui, Pablo; Vega, Marco; Blomström, Anne-Lie; Berg, Mikael; Baule, Claudia

    2016-12-01

    Blue eye disease caused by Porcine rubulavirus (PorPV) is an endemic viral infection of swine causing neurological and respiratory disease in piglets, and reproductive failure in sows and boars. The hemagglutinin-neuraminidase (HN) glycoprotein of PorPV is the most abundant component in the viral envelope and the main target of the immune response in infected animals. In this study, we expressed the HN-PorPV-recombinant (rHN-PorPV) protein in an Escherichia coli system and analyzed the immune responses in mice. The HN gene was cloned from the reference strain PorPV-La Piedad Michoacan Virus (GenBank accession number BK005918), into the pDual expression vector. The expressed protein was identified at a molecular weight of 61.7 kDa. Three-dimensional modeling showed that the main conformational and functional domains of the rHN-PorPV protein were preserved. The antigenicity of the expressed protein was confirmed by Western blot with a monoclonal antibody recognizing the HN, and by testing against serum samples from pigs experimentally infected with PorPV. The immunogenicity of the rHN-PorPV protein was tested by inoculation of BALB/c mice with AbISCO-100(®) as adjuvant. Analysis of the humoral immune responses in mice showed an increased level of specific antibodies 14 days after the first immunization, compared to the control group (P < 0.0005). The results show the ability of the rHN-PorPV protein to induce an antibody response in mice. Due to its immunogenic potential, the rHN-PorPV protein will be further evaluated in pig trials for its suitability for prevention and control of blue eye disease. PMID:27496728

  8. Cloning, expression and characterization of potential immunogenic recombinant hemagglutinin-neuraminidase protein of Porcine rubulavirus.

    PubMed

    Cuevas-Romero, Julieta Sandra; Rivera-Benítez, José Francisco; Hernández-Baumgarten, Eliseo; Hernández-Jaúregui, Pablo; Vega, Marco; Blomström, Anne-Lie; Berg, Mikael; Baule, Claudia

    2016-12-01

    Blue eye disease caused by Porcine rubulavirus (PorPV) is an endemic viral infection of swine causing neurological and respiratory disease in piglets, and reproductive failure in sows and boars. The hemagglutinin-neuraminidase (HN) glycoprotein of PorPV is the most abundant component in the viral envelope and the main target of the immune response in infected animals. In this study, we expressed the HN-PorPV-recombinant (rHN-PorPV) protein in an Escherichia coli system and analyzed the immune responses in mice. The HN gene was cloned from the reference strain PorPV-La Piedad Michoacan Virus (GenBank accession number BK005918), into the pDual expression vector. The expressed protein was identified at a molecular weight of 61.7 kDa. Three-dimensional modeling showed that the main conformational and functional domains of the rHN-PorPV protein were preserved. The antigenicity of the expressed protein was confirmed by Western blot with a monoclonal antibody recognizing the HN, and by testing against serum samples from pigs experimentally infected with PorPV. The immunogenicity of the rHN-PorPV protein was tested by inoculation of BALB/c mice with AbISCO-100(®) as adjuvant. Analysis of the humoral immune responses in mice showed an increased level of specific antibodies 14 days after the first immunization, compared to the control group (P < 0.0005). The results show the ability of the rHN-PorPV protein to induce an antibody response in mice. Due to its immunogenic potential, the rHN-PorPV protein will be further evaluated in pig trials for its suitability for prevention and control of blue eye disease.

  9. Vaccination with a porcine reproductive and respiratory syndrome modified live virus vaccine followed by challenge with PRRSV and porcine circovirus type 2 protects against PRRS but enhances PCV2 replication and parthogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Co-infections involving porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) contribute to a group of disease syndromes known as porcine circovirus-associated disease (PCVAD). Presumably, PRRSV infection enhances PCV2 replication as a result of modulation...

  10. Use of polarized light microscopy in porcine reproductive technologies.

    PubMed

    Caamaño, J N; Maside, C; Gil, M A; Muñoz, M; Cuello, C; Díez, C; Sánchez-Osorio, J R; Martín, D; Gomis, J; Vazquez, J M; Roca, J; Carrocera, S; Martinez, E A; Gómez, E

    2011-09-01

    The meiotic spindle in the oocyte is composed of microtubules and plays an important role during chromosome alignment and separation at meiosis. Polarized light microscopy (PLM) could be useful for a non-invasive evaluation of the meiotic spindle and may allow removal of nuclear structures without fluorochrome staining and ultraviolet exposure. In this study, PLM was used to assess its potential application in porcine reproductive technologies. The objectives of the present study were to assess the efficiency of PLM to detect microtubule-polymerized protein in in vitro-matured porcine oocytes; to examine its effects on the oocyte developmental competence; to select oocytes based on the presence of the meiotic spindle detected by PLM; and to assess the efficiency oocyte enucleation assisted with PLM. In the first experiment, the presence of microtubule-polymerized protein was assessed and confirmed in oocytes (n = 117) by immunostaining and chromatin detection. In the second experiment, oocytes (n = 160) were exposed or not (controls) to PLM for 10 minutes, and then parthenogenetically activated and cultured in vitro. In the third experiment, development competence of oocytes with a positive or negative signal to PLM was analyzed after in vitro fertilization. Finally, oocytes (n = 54) were enucleated using PLM as a tool to remove the meiotic spindle. A positive PLM signal was detected in 98.2 % of the oocytes, which strongly correlated (r = 1; p < 0.0001) with the presence of microtubule-polymerized protein as confirmed by immunostaining. Oocytes exposed to PLM did not differ significantly from controls on cleavage, total blastocyst, expanded blastocyst rates and total cell numbers. The percentage of oocytes at the MII stage and blastocyst formation rate in the negative PLM group significantly differed from control and PLM positive groups. Overall efficiency of spindle removal using the PLM-Oosight system was 92.6%. These results suggest that polarized light

  11. EXTRAINTESTINAL PATHOGENIC ESCHERICHIA COLI (EXPEC)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extraintestinal pathogenic Escherichia coli (ExPEC) possess virulence traits that allow them to invade, colonize, and induce disease in bodily sites outside of the gastrointestinal tract. Human diseases caused by ExPEC include urinary tract infections, neonatal meningitis, sepsis, pneumonia, surgic...

  12. Effects of inactivated porcine epidemic diarrhea virus on porcine monocyte-derived dendritic cells and intestinal dendritic cells.

    PubMed

    Gao, Qi; Zhao, Shanshan; Qin, Tao; Yin, Yinyan; Yu, Qinghua; Yang, Qian

    2016-06-01

    Porcine epidemic diarrhea (PED) is a serious infection in neonatal piglets. As the causative agent of PED, porcine epidemic diarrhea virus (PEDV) results in acute diarrhea and dehydration with high mortality rates in swine. Dendritic cells (DCs) are highly effective antigen-presenting cells to uptake and present viral antigens to T cells, which then initiate a distinct immune response. In this study, our results show that the expression of Mo-DCs surface markers such as SWC3a(+)CD1a(+), SWC3a(+)CD80/86(+) and SWC3a(+)SLA-II-DR(+) is increased after incubation with UV-PEDV for 24h. Mo-DCs incubated with UV-PEDV produce higher levels of IL-12 and INF-γ compared to mock-infected Mo-DCs. Interactions between Mo-DCs and UV-PEDV significantly stimulate T-cell proliferation in vitro. Consistent with these results, there is an enhancement in the ability of porcine intestinal DCs to activate T-cell proliferation in vivo. We conclude that UV-PEDV may be a useful and safe vaccine to trigger adaptive immunity. PMID:27234553

  13. Comparison of ruminant and human attaching and effacing Escherichia coli (AEEC) strains.

    PubMed

    Horcajo, Pilar; Domínguez-Bernal, Gustavo; de la Fuente, Ricardo; Ruiz-Santa-Quiteria, José A; Blanco, Jesús E; Blanco, Miguel; Mora, Azucena; Dahbi, Ghizlane; López, Cecilia; Puentes, Beatriz; Alonso, María Pilar; Blanco, Jorge; Orden, José A

    2012-03-23

    The presence of 12 genes associated with virulence in human attaching and effacing Escherichia coli (AEEC) was studied within a collection of 20 enterohemorrhagic E. coli (EHEC) and 206 atypical enteropathogenic E. coli (EPEC) isolated from ruminants. In addition, virulence genes and the clonal relationship of 49 atypical EPEC O26 strains isolated from humans and ruminants were compared to clarify whether ruminants serve as a reservoir of atypical EPEC for humans. A great diversity in the content of virulence gene was found. Thus, the espH, espG and map genes were detected in more than 85% of ruminant AEEC strains; the tccP2, espI, efa1/lifA, ehxA and paa genes were present in 50-70% of strains; and other genes such as tccP, espP, katP and toxB were detected in <25% of strains. EHEC strains contained more virulence genes than atypical EPEC strains. Our results suggest for the first time that the efa1/lifA gene is associated with diarrhea in newborn ruminants and that the AEEC strains with the H11 flagellar antigen are potentially more virulent than the non-H11 AEEC strains. Importantly, we identified a new intimin variant gene, eaeρ, in three ruminant atypical EPEC strains. The comparison of ruminant and human EPEC O26 strains showed that some ruminant strains possess virulence gene profiles and pulse-field gel electrophoresis pulsotypes similar to those of human strains. In conclusion, our data suggest that atypical EPEC is a heterogeneous group with different pathogenic potential and that ruminants could serve as a reservoir of atypical EPEC for humans.

  14. Comparison of Helicobacter pylori and attaching-effacing Escherichia coli adhesion to eukaryotic cells.

    PubMed Central

    Dytoc, M; Gold, B; Louie, M; Huesca, M; Fedorko, L; Crowe, S; Lingwood, C; Brunton, J; Sherman, P

    1993-01-01

    Adhesion of Helicobacter pylori was reported previously to be morphologically identical to "attaching and effacing" Escherichia coli. Therefore, the aim of the present study was to define the adhesion phenotype of H. pylori LC-11 to HEp-2, KATO-III, HEL, and CHO tissue culture cells. By using both staining of F-actin with fluorescein-labeled phalloidin and ultrastructural analysis, diffuse bacterial adhesion to discrete microvillus-denuded regions of the plasma membrane was observed in each of the infected cell lines. However, strain LC-11 did not induce formation of F-actin adhesion pedestals on the eukaryotic cells. H. pylori was negative by colony blot hybridization with an E. coli attaching and effacing gene probe. Elevations in inositol triphosphates followed infection of HEp-2 cells with H. pylori (405% of control values +/- 147%; P < 0.05). To correlate the observed histopathology with expression of the H. pylori phosphatidylethanolamine receptor, a thin-layer chromatography overlay-binding assay was used to identify receptors in each of the cell lines. H. pylori adhered to eukaryotic cells regardless of the presence (HEp-2, KATO-III, and CHO cells) or absence (HEL cells) of the lipid receptor as detected under the assay conditions. However, in comparison to cell lines that possess the phosphatidylethanolamine receptor, HEL cells demonstrated less quantitative H. pylori binding. These findings suggest that mechanisms distinct from E. coli enteropathogens underlie the adhesion of H. pylori to mucosal surfaces. In addition to the phosphatidylethanolamine H. pylori receptor, another host factor(s) likely mediates the attachment of H. pylori to human eukaryotic cells. Images PMID:8380793

  15. Prevalence of diarrhoeagenic Escherichia coli in children from León, Nicaragua.

    PubMed

    Vilchez, Samuel; Reyes, Daniel; Paniagua, Margarita; Bucardo, Filemon; Möllby, Roland; Weintraub, Andrej

    2009-05-01

    Diarrhoeal disease is a public health problem worldwide, mostly affecting children in developing countries. In Nicaragua, diarrhoea is the second greatest cause of infant mortality. During the period March 2005 to September 2006, a total of 526 faecal samples from children aged 0-60 months (381 with and 145 without diarrhoea) from León, Nicaragua, were studied. In order to detect five different diarrhoeagenic Escherichia coli pathotypes simultaneously [enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC) and enteroinvasive E. coli (EIEC)], a mixture of eight primer pairs was used in a single PCR. At least one diarrhoeagenic E. coli pathotype was detected in 205 samples (53.8%) of the diarrhoea group and in 77 samples (53.1%) in the non-diarrhoea group. ETEC was detected significantly more often in children with diarrhoea (20.5%) than in children without diarrhoea (8.3%) (P=0.001). Atypical EPEC, EIEC and EAEC were detected with slightly lower frequencies in children with (16.0, 0.8 and 27.8%, respectively) than in children without (20.7, 1.4 and 33.1%, respectively) diarrhoea. EHEC was only detected in children with diarrhoea (2.1%). In conclusion, ETEC continues to be an important agent associated with diarrhoea in children from León, Nicaragua. Although not very frequent, the only findings that were 100% associated with diarrhoea were ETEC estA (4.7%) and EHEC (2.1%). Nevertheless, EAEC and EPEC were also frequent pathotypes in the population under study. In children with severe diarrhoea, more than half had EAEC, ETEC or EPEC, and EAEC was the most prevalent pathotype.

  16. Enterotoxigenic Escherichia coli infection and intestinal thiamin uptake: studies with intestinal epithelial Caco-2 monolayers.

    PubMed

    Ghosal, Abhisek; Chatterjee, Nabendu S; Chou, Tristan; Said, Hamid M

    2013-12-01

    Infections with enteric pathogens like enterotoxigenic Escherichia coli (ETEC) is a major health issue worldwide and while diarrhea is the major problem, prolonged, severe, and dual infections with multiple pathogens may also compromise the nutritional status of the infected individuals. There is almost nothing currently known about the effect of ETEC infection on intestinal absorptions of water-soluble vitamins including thiamin. We examined the effect of ETEC infection on intestinal uptake of the thiamin using as a model the human-derived intestinal epithelial Caco-2 cells. The results showed that infecting confluent Caco-2 monolayers with live ETEC (but not with boiled/killed ETEC or nonpathogenic E. coli) or treatment with bacterial culture supernatant led to a significant inhibition in thiamin uptake. This inhibition appears to be caused by a heat-labile and -secreted ETEC component and is mediated via activation of the epithelial adenylate cyclase system. The inhibition in thiamin uptake by ETEC was associated with a significant reduction in expression of human thiamin transporter-1 and -2 (hTHTR1 and hTHTR2) at the protein and mRNA levels as well as in the activity of the SLC19A2 and SLC19A3 promoters. Dual infection of Caco-2 cells with ETEC and EPEC (enteropathogenic E. coli) led to compounded inhibition in intestinal thiamin uptake. These results show for the first time that infection of human intestinal epithelial cells with ETEC causes a significant inhibition in intestinal thiamin uptake. This inhibition is mediated by a secreted heat-labile toxin and is associated with a decrease in the expression of intestinal thiamin transporters.

  17. Biophysical Characterization and Activity of Lymphostatin, a Multifunctional Virulence Factor of Attaching and Effacing Escherichia coli *

    PubMed Central

    Cassady-Cain, Robin L.; Blackburn, Elizabeth A.; Alsarraf, Husam; Dedic, Emil; Bease, Andrew G.; Böttcher, Bettina; Jørgensen, René; Wear, Martin; Stevens, Mark P.

    2016-01-01

    Attaching and effacing Escherichia coli cause diarrhea and typically produce lymphostatin (LifA), an inhibitor of mitogen-activated proliferation of lymphocytes and pro-inflammatory cytokine synthesis. A near-identical factor (Efa1) has been reported to mediate adherence of E. coli to epithelial cells. An amino-terminal region of LifA shares homology with the catalytic domain of the large clostridial toxins, which are retaining glycosyltransferases with a DXD motif involved in binding of a metal ion. Understanding the mode(s) of action of lymphostatin has been constrained by difficulties obtaining a stably transformed plasmid expression clone. We constructed a tightly inducible clone of enteropathogenic E. coli O127:H6 lifA for affinity purification of lymphostatin. The purified protein inhibited mitogen-activated proliferation of bovine T lymphocytes in the femtomolar range. It is a monomer in solution and the molecular envelope was determined using both transmission electron microscopy and small-angle x-ray scattering. Domain architecture was further studied by limited proteolysis. The largest proteolytic fragment containing the putative glycosyltransferase domain was tested in isolation for activity against T cells, and was not sufficient for activity. Tryptophan fluorescence studies indicated thatlymphostatin binds uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) but not UDP-glucose (UDP-Glc). Substitution of the predicted DXD glycosyltransferase motif with alanine residues abolished UDP-GlcNAc binding and lymphostatin activity, although other biophysical properties were unchanged. The data indicate that lymphostatin has UDP-sugar binding potential that is critical for activity, and is a major leap toward identifying the nature and consequences of modifications of host cell factors. PMID:26786100

  18. Long-term persistence and leaching of Escherichia coli in temperate maritime soils.

    PubMed

    Brennan, Fiona P; O'Flaherty, Vincent; Kramers, Gaelene; Grant, Jim; Richards, Karl G

    2010-03-01

    Enteropathogen contamination of groundwater, including potable water sources, is a global concern. The spreading on land of animal slurries and manures, which can contain a broad range of pathogenic microorganisms, is considered a major contributor to this contamination. Some of the pathogenic microorganisms applied to soil have been observed to leach through the soil into groundwater, which poses a risk to public health. There is a critical need, therefore, for characterization of pathogen movement through the vadose zone for assessment of the risk to groundwater quality due to agricultural activities. A lysimeter experiment was performed to investigate the effect of soil type and condition on the fate and transport of potential bacterial pathogens, using Escherichia coli as a marker, in four Irish soils (n = 9). Cattle slurry (34 tonnes per ha) was spread on intact soil monoliths (depth, 1 m; diameter, 0.6 m) in the spring and summer. No effect of treatment or the initial soil moisture on the E. coli that leached from the soil was observed. Leaching of E. coli was observed predominantly from one soil type (average, 1.11 +/- 0.77 CFU ml(-1)), a poorly drained Luvic Stagnosol, under natural rainfall conditions, and preferential flow was an important transport mechanism. E. coli was found to have persisted in control soils for more than 9 years, indicating that autochthonous E. coli populations are capable of becoming naturalized in the low-temperature environments of temperate maritime soils and that they can move through soil. This may compromise the use of E. coli as an indicator of fecal pollution of waters in these regions.

  19. Comparison of ruminant and human attaching and effacing Escherichia coli (AEEC) strains.

    PubMed

    Horcajo, Pilar; Domínguez-Bernal, Gustavo; de la Fuente, Ricardo; Ruiz-Santa-Quiteria, José A; Blanco, Jesús E; Blanco, Miguel; Mora, Azucena; Dahbi, Ghizlane; López, Cecilia; Puentes, Beatriz; Alonso, María Pilar; Blanco, Jorge; Orden, José A

    2012-03-23

    The presence of 12 genes associated with virulence in human attaching and effacing Escherichia coli (AEEC) was studied within a collection of 20 enterohemorrhagic E. coli (EHEC) and 206 atypical enteropathogenic E. coli (EPEC) isolated from ruminants. In addition, virulence genes and the clonal relationship of 49 atypical EPEC O26 strains isolated from humans and ruminants were compared to clarify whether ruminants serve as a