Science.gov

Sample records for porcine enteropathogenic escherichia

  1. Association of Escherichia coli with the Small Intestinal Epithelium I. Comparison of Enteropathogenic and Nonenteropathogenic Porcine Strains in Pigs

    PubMed Central

    Bertschinger, Hans U.; Moon, Harley W.; Whipp, Shannon C.

    1972-01-01

    Two enteropathogenic strains of Escherichia coli (EEC) differed from a nonenteropathogenic strain of E. coli (NEEC) in their association with porcine small intestinal epithelium. The EEC characteristically were found along villi from tip to base and contiguous to the brush border. They were not in crypts. In contrast, the NEEC characteristically remained in the central lumen near the tips of villi and was only occasionally contiguous to the brush border. No organisms were detected within epithelial cells. The difference in distribution between EEC and NEEC was apparent in ligated jejunal loops 45 min postexposure. The association between host and bacterial cells was most consistently demonstrated on frozen sections of intestine, as other histological techniques removed many bacteria. However, cellular details of the association were best demonstrated in chemically fixed tissues. Images PMID:4564680

  2. Colonization of porcine small intestine by Escherichia coli: ileal colonization and adhesion by pig enteropathogens that lack K88 antigen and by some acapsular mutants.

    PubMed

    Nagy, B; Moon, H W; Isaacson, R E

    1976-04-01

    Seven K88-negative porcine enteropathogenic Escherichia coli, representing three different serogroups, caused severe diarrhea and characteristically colonized the ileum, but not the jejunum, of intragastrically exposed newborn pigs. Bacterial counts of intestinal contents and wall, fluorescence, and scanning electron microscopy all suggested that these strains colonized the ileum by adhesion to the villous epithelium. However, in ligated intestinal loops, these enteropathogenic E. coli strains adhered to jejunal epithelium as well as to ileal epithelium. Acapsular (K-) mutants, derived from one of the principal strains, retained their colonizing and adhesive abilities, whereas K- mutants from three other enteropathogenic E. coli strains did not. It is suggested that: (i) these K88-negative enteropathogenic E. coli colonize the ileum by adhesion, and (ii) the adhesion of some K-88-negative strains is mediated by surface factors other than, or in addition to, the polysaccharide K antigen.

  3. Colonization of porcine small intestine by Escherichia coli: colonization and adhesion factors of pig enteropathogens that lack K88.

    PubMed

    Isaacson, R E; Nagy, B; Moon, H W

    1977-04-01

    The colonizing and adhesive attributes of enterotoxigenic acapsular and/or nonpiliated mutants from K88-negative enteropathogenic Escherichia coli strains were compared with their capsulated and piliated parents (parents were piliated when grown in vitro and in vivo). Acapsular, nonpiliated mutants from three different colonizing strains of enteropathogenic E. coli lost their ability to colonize the ileum of newborn pigs. Acapsular, piliated and capsular, nonpiliated mutants were derived from one of the parental strains (987), and both mutants lacked the ability to colonize the ileum of pigs. The only mutants available from a fourth strain (431) were acapsular and piliated, and they colonized as well as their parents. These data indicate that both capsule and pili are involved in colonization by strain 987. In contrast, capsule is not required for colonization by strain 431, but pili may be.

  4. An overview of atypical enteropathogenic Escherichia coli.

    PubMed

    Hernandes, Rodrigo T; Elias, Waldir P; Vieira, Mônica A M; Gomes, Tânia A T

    2009-08-01

    The enteropathogenic Escherichia coli (EPEC) pathotype is currently divided into two groups, typical EPEC (tEPEC) and atypical EPEC (aEPEC). The property that distinguishes these two groups is the presence of the EPEC adherence factor plasmid, which is only found in tEPEC. aEPEC strains are emerging enteropathogens that have been detected worldwide. Herein, we review the serotypes, virulence properties, genetic relationships, epidemiology, reservoir and diagnosis of aEPEC, including those strains not belonging to the classical EPEC serogroups (nonclassical EPEC serogroups). The large variety of serotypes and genetic virulence properties of aEPEC strains from nonclassical EPEC serogroups makes it difficult to determine which strains are truly pathogenic.

  5. Colonization of porcine intestine by enterotoxigenic Escherichia coli: selection of piliated forms in vivo, adhesion of piliated forms to epithelial cells in vitro, and incidence of a pilus antigen among porcine enteropathogenic E. coli.

    PubMed Central

    Nagy, B; Moon, H W; Isaacson, R E

    1977-01-01

    In contrast to K88-positive porcine enterotoxigenic Escherichia coli (ETEC), K88-negative porcine ETEC strains did not adhere to isolated intestinal epithelial cells in vitro. However, they did adhere to intestinal epithelium in vivo. Growth of one such ETEC (strain 987) in pig small intestine consistently yielded a greater percentage of piliated cells than did growth in vitro. This increase was demonstrable by electron microscopy, by change in colonial morphology, and by agglutination in specific antisera against the pili of strain 987. In contrast to the stored stock culture (which contained very few piliated cells), richly piliated forms of strain 987 did adhere to isolated intestinal epithelial cells in vitro. A series of porcine E. coli strains was tested for agglutinability in antiserum against the pili of strain 987, and several K88-negative ETEC strains were agglutinated. These data are consistent with the hypothesis that pili facilitate intestinal adhesion and colonization by K88-negative ETEC strains. Images PMID:326676

  6. Colonization of porcine intestine by enterotoxigenic Escherichia coli: selection of piliated forms in vivo, adhesion of piliated forms to epithelial cells in vitro, and incidence of a pilus antigen among porcine enteropathogenic E. coli.

    PubMed

    Nagy, B; Moon, H W; Isaacson, R E

    1977-04-01

    In contrast to K88-positive porcine enterotoxigenic Escherichia coli (ETEC), K88-negative porcine ETEC strains did not adhere to isolated intestinal epithelial cells in vitro. However, they did adhere to intestinal epithelium in vivo. Growth of one such ETEC (strain 987) in pig small intestine consistently yielded a greater percentage of piliated cells than did growth in vitro. This increase was demonstrable by electron microscopy, by change in colonial morphology, and by agglutination in specific antisera against the pili of strain 987. In contrast to the stored stock culture (which contained very few piliated cells), richly piliated forms of strain 987 did adhere to isolated intestinal epithelial cells in vitro. A series of porcine E. coli strains was tested for agglutinability in antiserum against the pili of strain 987, and several K88-negative ETEC strains were agglutinated. These data are consistent with the hypothesis that pili facilitate intestinal adhesion and colonization by K88-negative ETEC strains.

  7. Enteropathogenic Escherichia coli Serotypes and Endemic Diarrhea in Infants

    PubMed Central

    Toledo, M. Regina F.; Alvariza, M. do Carmo B.; Murahovschi, Jayme; Ramos, Sonia R. T. S.; Trabulsi, Luiz R.

    1983-01-01

    Enteropathogenic Escherichia coli serotypes were searched for in feces of 550 children with endemic diarrhea and in 129 controls, in São Paulo, in 1978 and 1979; serotypes O111ab:H−, O111ab:H2, and O119:H6 were significantly associated with diarrhea in children 0 to 5 months old and were the most frequent agents of diarrhea in this age group as compared with enterotoxigenic and enteroinvasive E. coli, Salmonella sp., Shigella sp., and Yersinia enterocolitica. It is concluded that various enteropathogenic E. coli serotypes may be agents of endemic infantile diarrhea. PMID:6339384

  8. Enteropathogenic Escherichia coli (EPEC) infection in association with acute gastroenteritis in 7 dogs from Saskatchewan

    PubMed Central

    Kjaergaard, Astrid B.; Carr, Anthony P.; Gaunt, M. Casey

    2016-01-01

    Seven dogs diagnosed with enteropathogenic Escherichia coli (EPEC) infection in association with acute gastroenteritis are described. Disease severity ranged from mild in adults to fatal disease in young dogs. Enteropathogenic E. coli infection should be considered as a possible differential diagnosis in dogs with diarrhea. PMID:27587889

  9. Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coli

    PubMed Central

    Lai, YuShuan; Rosenshine, Ilan; Leong, John M.; Frankel, Gad

    2013-01-01

    Enteropathogenic and enterohaemorrhagic Escherichia coli use a novel infection strategy to colonize the gut epithelium, involving translocation of their own receptor, Tir, via a type III secretion system and subsequent formation of attaching and effecting (A/E) lesions. Following integration into the host cell plasma membrane of cultured cells, and clustering by the outer membrane adhesin intimin, Tir triggers multiple actin polymerization pathways involving host and bacterial adaptor proteins that converge on the host Arp2/3 actin nucleator. Although initially thought to be involved in A/E lesion formation, recent data have shown that the known Tir-induced actin polymerization pathways are dispensable for this activity, but can play other major roles in colonization efficiency, in vivo fitness and systemic disease. In this review we summarize the roadmap leading from the discovery of Tir, through the different actin polymerization pathways it triggers, to our current understanding of their physiological functions. PMID:23927593

  10. [Acute diarrheal disease caused by enteropathogenic Escherichia coli in Colombia].

    PubMed

    Gómez-Duarte, Oscar G

    2014-10-01

    Intestinal Escherichia coli pathogens are leading causes of acute diarrheal disease in children less than 5 years in Latin America, Africa and Asia and a leading cause of death in children living in poorest communities in Africa and South East Asia. Studies on the role of E. coli pathogens in childhood diarrhea in Colombia and other countries in Latin America are limited due to the lack of detection assays in clinical laboratories at the main urban medical centers. Recent studies report that enterotoxigenic E. coli is the most common E. coli pathogens associated with diarrhea in children less than 5 years of age. Other E. coli pathotypes have been detected in children with diarrhea including enteropathogenic, enteroaggregative, shiga-toxin producing and diffusely adherent E. coli. It was also found that meat and vegetables at retail stores are contaminated with Shiga-toxin producing E. coli and enteroaggregative E. coli, suggesting that food products are involved in transmission and infection of the susceptible host. More studies are necessary to evaluate the mechanisms of transmission, the impact on the epidemiology of diarrheal disease, and management strategies and prevention of these pathogens affecting the pediatric population in Colombia.

  11. Enteropathogenic Escherichia coli Infection Triggers Host Phospholipid Metabolism Perturbations

    PubMed Central

    Wu, Y.; Lau, B.; Smith, S.; Troyan, K.; Barnett Foster, D. E.

    2004-01-01

    Enteropathogenic Escherichia coli (EPEC) specifically recognizes phosphatidylethanolamine (PE) on the outer leaflet of host epithelial cells. EPEC also induces apoptosis in epithelial cells, which results in increased levels of outer leaflet PE and increased bacterial binding. Consequently, it is of interest to investigate whether EPEC infection perturbs host cell phospholipid metabolism and whether the changes play a role in the apoptotic signaling. Our findings indicate that EPEC infection results in a significant increase in the epithelial cell PE level and a corresponding decrease in the phosphatidylcholine (PC) level. PE synthesis via both the de novo pathway and the serine decarboxylation pathway was enhanced, and de novo synthesis of phosphatidylcholine via CDP-choline was reduced. The changes were transitory, and the maximum change was noted after 4 to 5 h of infection. Addition of exogenous PC or CDP-choline to epithelial cells prior to infection abrogated EPEC-induced apoptosis, suggesting that EPEC infection inhibits the CTP-phosphocholine cytidylyltransferase step in PC synthesis, which is reportedly inhibited during nonmicrobially induced apoptosis. On the other hand, incorporation of exogenous PE by the host cells enhanced EPEC-induced apoptosis and necrosis without increasing bacterial adhesion. This is the first report that pathogen-induced apoptosis is associated with significant changes in PE and PC metabolism, and the results suggest that EPEC adhesion to a host membrane phospholipid plays a role in disruption of host phospholipid metabolism. PMID:15557596

  12. Enteropathogenic Escherichia coli infection triggers host phospholipid metabolism perturbations.

    PubMed

    Wu, Y; Lau, B; Smith, S; Troyan, K; Barnett Foster, D E

    2004-12-01

    Enteropathogenic Escherichia coli (EPEC) specifically recognizes phosphatidylethanolamine (PE) on the outer leaflet of host epithelial cells. EPEC also induces apoptosis in epithelial cells, which results in increased levels of outer leaflet PE and increased bacterial binding. Consequently, it is of interest to investigate whether EPEC infection perturbs host cell phospholipid metabolism and whether the changes play a role in the apoptotic signaling. Our findings indicate that EPEC infection results in a significant increase in the epithelial cell PE level and a corresponding decrease in the phosphatidylcholine (PC) level. PE synthesis via both the de novo pathway and the serine decarboxylation pathway was enhanced, and de novo synthesis of phosphatidylcholine via CDP-choline was reduced. The changes were transitory, and the maximum change was noted after 4 to 5 h of infection. Addition of exogenous PC or CDP-choline to epithelial cells prior to infection abrogated EPEC-induced apoptosis, suggesting that EPEC infection inhibits the CTP-phosphocholine cytidylyltransferase step in PC synthesis, which is reportedly inhibited during nonmicrobially induced apoptosis. On the other hand, incorporation of exogenous PE by the host cells enhanced EPEC-induced apoptosis and necrosis without increasing bacterial adhesion. This is the first report that pathogen-induced apoptosis is associated with significant changes in PE and PC metabolism, and the results suggest that EPEC adhesion to a host membrane phospholipid plays a role in disruption of host phospholipid metabolism.

  13. Bundle-forming pilus retraction enhances enteropathogenic Escherichia coli infectivity

    PubMed Central

    Zahavi, Eitan E.; Lieberman, Joshua A.; Donnenberg, Michael S.; Nitzan, Mor; Baruch, Kobi; Rosenshine, Ilan; Turner, Jerrold R.; Melamed-Book, Naomi; Feinstein, Naomi; Zlotkin-Rivkin, Efrat; Aroeti, Benjamin

    2011-01-01

    Enteropathogenic Escherichia coli (EPEC) is an important human pathogen that causes acute infantile diarrhea. The type IV bundle-forming pili (BFP) of typical EPEC strains are dynamic fibrillar organelles that can extend out and retract into the bacterium. The bfpF gene encodes for BfpF, a protein that promotes pili retraction. The BFP are involved in bacterial autoaggregation and in mediating the initial adherence of the bacterium with its host cell. Importantly, BFP retraction is implicated in virulence in experimental human infection. How pili retraction contributes to EPEC pathogenesis at the cellular level remains largely obscure, however. In this study, an effort has been made to address this question using engineered EPEC strains with induced BFP retraction capacity. We show that the retraction is important for tight-junction disruption and, to a lesser extent, actin-rich pedestal formation by promoting efficient translocation of bacterial protein effectors into the host cells. A model is proposed whereby BFP retraction permits closer apposition between the bacterial and the host cell surfaces, thus enabling timely and effective introduction of bacterial effectors into the host cell via the type III secretion apparatus. Our studies hence suggest novel insights into the involvement of pili retraction in EPEC pathogenesis. PMID:21613538

  14. In vitro evolution of an archetypal enteropathogenic Escherichia coli strain.

    PubMed

    Nisa, Shahista; Hazen, Tracy H; Assatourian, Lillian; Nougayrède, Jean-Philippe; Rasko, David A; Donnenberg, Michael S

    2013-10-01

    Enteropathogenic Escherichia coli (EPEC) is a leading cause of infantile diarrhea in developing countries. EPEC strain E2348/69 is used worldwide as a prototype to study EPEC genetics and disease. However, isolates of E2348/69 differ phenotypically, reflecting a history of in vitro selection. To identify the genomic and phenotypic changes in the prototype strain, we sequenced the genome of the nalidixic acid-resistant (Nal(r)) E2348/69 clone. We also sequenced a recent nleF mutant derived by one-step PCR mutagenesis from the Nal(r) strain. The sequencing results revealed no unintended changes between the mutant and the parent strain. However, loss of the pE2348-2 plasmid and 3 nonsynonymous mutations were found in comparison to the published streptomycin-resistant (Str(r)) E2348/69 reference genome. One mutation is a conservative amino acid substitution in ftsK. Another, in gyrA, is a mutation known to result in resistance to nalidixic acid. The third mutation converts a stop codon to a tryptophan, predicted to result in the fusion of hflD, the lysogenization regulator, to purB. The purB gene encodes an adenylosuccinate lyase involved in purine biosynthesis. The Nal(r) clone has a lower growth rate than the Str(r) isolate when cultured in minimal media, a difference which is corrected upon addition of adenine or by genetic complementation with purB. Addition of adenine or genetic complementation also restored the invasion efficiency of the Nal(r) clone. This report reconciles longstanding inconsistencies in phenotypic properties of an archetypal strain and provides both reassurance and cautions regarding intentional and unintentional evolution in vitro.

  15. Characterization of fimbriae produced by enteropathogenic Escherichia coli.

    PubMed Central

    Girón, J A; Ho, A S; Schoolnik, G K

    1993-01-01

    Enteropathogenic Escherichia coli (EPEC) express rope-like bundles of filaments, termed bundle-forming pili (BFP) (J. A. Girón, A. S. Y. Ho, and G. K. Schoolnik, Science 254:710-713, 1991). Expression of BFP is associated with localized adherence to HEp-2 cells and the presence of the EPEC adherence factor plasmid. In this study, we describe the identification of rod-like fimbriae and fibrillae expressed simultaneously on the bacterial surface of three prototype EPEC strains. Upon fimbrial extraction from EPEC B171 (O111:NM), three fimbrial subunits with masses of 16.5, 15.5, and 14.7 kDa were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Their N-terminal amino acid sequence showed homology with F9 and F7(2) fimbriae of uropathogenic E. coli and F1845 of diffuse-adhering E. coli, respectively. The mixture of fimbrial subunits (called FB171) exhibited mannose-resistant agglutination of human erythrocytes only, and this activity was not inhibited by alpha-D-Gal(1-4)-beta-Gal disaccharide or any other described receptor analogs for P, S, F, M, G, and Dr hemagglutinins of uropathogenic E. coli, which suggests a different receptor specificity. Hemagglutination was inhibited by extracellular matrix glycoproteins, i.e., collagen type IV, laminin, and fibronectin, and to a lesser extent by gangliosides, fetuin, and asialofetuin. Scanning electron microscopic studies performed on clusters of bacteria adhering to HEp-2 cells revealed the presence of structures resembling BFP and rod-like fimbriae linking bacteria to bacteria and bacteria to the eukaryotic cell membrane. We suggest a role of these surface appendages in the interaction of EPEC with eukaryotic cells as well as in the overall pathogenesis of intestinal disease caused by EPEC. Images PMID:7901197

  16. Modulation of the Inflammasome Signaling Pathway by Enteropathogenic and Enterohemorrhagic Escherichia coli

    PubMed Central

    Yen, Hilo; Karino, Masaki; Tobe, Toru

    2016-01-01

    Innate immunity is an essential component in the protection of a host against pathogens. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) are known to modulate the innate immune responses of infected cells. The interference is dependent on their type III secretion system (T3SS) and T3SS-dependent effector proteins. Furthermore, these cytosolically injected effectors have been demonstrated to engage multiple immune signaling pathways, including the IFN/STAT, MAPK, NF-κB, and inflammasome pathways. In this review, recent work describing the interaction between EPEC/EHEC and the inflammasome pathway will be discussed. PMID:27617233

  17. Epidemiological survey of the enteropathogenic Escherichia coli isolated from children with diarrhoea.

    PubMed

    Regua, A H; Bravo, V L; Leal, M C; Lobo Leite, M E

    1990-08-01

    Escherichia coli was isolated in 382 (94 per cent) of 406 children from 0 to 3 years of age who had been hospitalized for diarrhoea at the Hospital Municipal Salles Neto, Rio de Janeiro. Enteropathogenic Escherichia coli strains were isolated in 67 samples (18 per cent), distributed among the serogroups that were tested as follows: 0111 (33 per cent); 0125 (19 per cent); 0126, 0127, and 0142 (9 per cent); 0128 and 0119 (8 per cent); 055 (5 per cent); 0114 (2 per cent). No strains of EPEC belonging to serogroups 086, 0126, and 0158 were found. Among the samples in which EPEC strains were isolated, 15.0 per cent were children living in dwellings which had piped systems of water supply and drain, whereas with regard to those living in houses without such facilities, this percentage raised to 24 per cent. Similar results were found when the availability of water supply of drainage were taken separately.

  18. Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes.

    PubMed

    Kessler, Robert; Nisa, Shahista; Hazen, Tracy H; Horneman, Amy; Amoroso, Anthony; Rasko, David A; Donnenberg, Michael S

    2015-11-01

    A 55-year-old man with well-controlled HIV had severe diarrhea for 3 weeks and developed multiorgan dysfunction and bacteremia due to Escherichia coli. The genome of the patient's isolate had features characteristic of extraintestinal pathogenic E. coli and genes distantly related to those defining enteropathogenic E. coli.

  19. Escherichia albertii, a novel human enteropathogen, colonizes rat enterocytes and translocates to extra-intestinal sites

    PubMed Central

    Yamamoto, Denise; Hernandes, Rodrigo T.; Liberatore, Ana Maria A.; Abe, Cecilia M.; de Souza, Rodrigo B.; Romão, Fabiano T.; Sperandio, Vanessa; Koh, Ivan H.

    2017-01-01

    Diarrhea is the second leading cause of death of children up to five years old in the developing countries. Among the etiological diarrheal agents are atypical enteropathogenic Escherichia coli (aEPEC), one of the diarrheagenic E. coli pathotypes that affects children and adults, even in developed countries. Currently, genotypic and biochemical approaches have helped to demonstrate that some strains classified as aEPEC are actually E. albertii, a recently recognized human enteropathogen. Studies on particular strains are necessary to explore their virulence potential in order to further understand the underlying mechanisms of E. albertii infections. Here we demonstrated for the first time that infection of fragments of rat intestinal mucosa is a useful tool to study the initial steps of E. albertii colonization. We also observed that an E. albertii strain can translocate from the intestinal lumen to Mesenteric Lymph Nodes and liver in a rat model. Based on our finding of bacterial translocation, we investigated how E. albertii might cross the intestinal epithelium by performing infections of M-like cells in vitro to identify the potential in vivo translocation route. Altogether, our approaches allowed us to draft a general E. albertii infection route from the colonization till the bacterial spreading in vivo. PMID:28178312

  20. Escherichia albertii, a novel human enteropathogen, colonizes rat enterocytes and translocates to extra-intestinal sites.

    PubMed

    Yamamoto, Denise; Hernandes, Rodrigo T; Liberatore, Ana Maria A; Abe, Cecilia M; Souza, Rodrigo B de; Romão, Fabiano T; Sperandio, Vanessa; Koh, Ivan H; Gomes, Tânia A T

    2017-01-01

    Diarrhea is the second leading cause of death of children up to five years old in the developing countries. Among the etiological diarrheal agents are atypical enteropathogenic Escherichia coli (aEPEC), one of the diarrheagenic E. coli pathotypes that affects children and adults, even in developed countries. Currently, genotypic and biochemical approaches have helped to demonstrate that some strains classified as aEPEC are actually E. albertii, a recently recognized human enteropathogen. Studies on particular strains are necessary to explore their virulence potential in order to further understand the underlying mechanisms of E. albertii infections. Here we demonstrated for the first time that infection of fragments of rat intestinal mucosa is a useful tool to study the initial steps of E. albertii colonization. We also observed that an E. albertii strain can translocate from the intestinal lumen to Mesenteric Lymph Nodes and liver in a rat model. Based on our finding of bacterial translocation, we investigated how E. albertii might cross the intestinal epithelium by performing infections of M-like cells in vitro to identify the potential in vivo translocation route. Altogether, our approaches allowed us to draft a general E. albertii infection route from the colonization till the bacterial spreading in vivo.

  1. [Lactose intolerance in hospitalized infants with acute diarrhea due to classic enteropathogenic Escherichia coil (EPEC)].

    PubMed

    Moreira, C R; Fagundes-Neto, U

    1997-01-01

    Three hundred and eleven hospitalized weaned infants with acute diarrhea, all under 12 months of age, were studied in order to evaluate the development of lactose intolerance and its association with age, nutritional status, birth weight, dehydration and enteropathogenic agents identified in fecal samples. After been rehydrated the infants received whole cow' milk assuring the intake of 100 kcal/kg per day. Lactose intolerance was defined according t the following criteria: 1) persistence of diarrhea associated with weight loss during 48 hours, 2) development of vomiting and/or abdominal distention associated with excretion of carbohydrate in feces and/or acids tools, 3) metabolic acidosis associated with abdominal distention at anytime of refeeding period. Lactose intolerance was detected in 52.1% (162/311) of the patients and it was significantly associated with age under 6 months (P < 0.01), birth weight under 3000 grams (P < 0.01), development of dehydration (P < 0.01) and with enteropathogenic Escherichia coli (EPEC) serotypes infection (P < 0.01).

  2. Role of F1C fimbriae, flagella, and secreted bacterial components in the inhibitory effect of probiotic Escherichia coli Nissle 1917 on atypical enteropathogenic E. coli infection.

    PubMed

    Kleta, Sylvia; Nordhoff, Marcel; Tedin, Karsten; Wieler, Lothar H; Kolenda, Rafal; Oswald, Sibylle; Oelschlaeger, Tobias A; Bleiss, Wilfried; Schierack, Peter

    2014-05-01

    Enteropathogenic Escherichia coli (EPEC) is recognized as an important intestinal pathogen that frequently causes acute and persistent diarrhea in humans and animals. The use of probiotic bacteria to prevent diarrhea is gaining increasing interest. The probiotic E. coli strain Nissle 1917 (EcN) is known to be effective in the treatment of several gastrointestinal disorders. While both in vitro and in vivo studies have described strong inhibitory effects of EcN on enteropathogenic bacteria, including pathogenic E. coli, the underlying molecular mechanisms remain largely unknown. In this study, we examined the inhibitory effect of EcN on infections of porcine intestinal epithelial cells with atypical enteropathogenic E. coli (aEPEC) with respect to single infection steps, including adhesion, microcolony formation, and the attaching and effacing phenotype. We show that EcN drastically reduced the infection efficiencies of aEPEC by inhibiting bacterial adhesion and growth of microcolonies, but not the attaching and effacing of adherent bacteria. The inhibitory effect correlated with EcN adhesion capacities and was predominantly mediated by F1C fimbriae, but also by H1 flagella, which served as bridges between EcN cells. Furthermore, EcN seemed to interfere with the initial adhesion of aEPEC to host cells by secretion of inhibitory components. These components do not appear to be specific to EcN, but we propose that the strong adhesion capacities enable EcN to secrete sufficient local concentrations of the inhibitory factors. The results of this study are consistent with a mode of action whereby EcN inhibits secretion of virulence-associated proteins of EPEC, but not their expression.

  3. Afa, a diffuse adherence fibrillar adhesin associated with enteropathogenic Escherichia coli.

    PubMed

    Keller, Rogéria; Ordoñez, Juana G; de Oliveira, Rosana R; Trabulsi, Luiz R; Baldwin, Thomas J; Knutton, Stuart

    2002-05-01

    O55 is one of the most frequent enteropathogenic Escherichia coli (EPEC) O serogroups implicated in infantile diarrhea in developing countries. Multilocus enzyme electrophoresis analysis showed that this serogroup includes two major electrophoretic types (ET), designated ET1 and ET5. ET1 corresponds to typical EPEC, whilst ET5 comprises strains with different combinations of virulence genes, including those for localized adherence (LA) and diffuse adherence (DA). Here we report that ET5 DA strains possess a DA adhesin, designated EPEC Afa. An 11.6-kb chromosomal region including the DA adhesin operon from one O55:H(-) ET5 EPEC strain was sequenced and found to encode a protein with 98% identity to AfaE-1, an adhesin associated with uropathogenic E. coli. Although described as an afimbrial adhesin, we show that both AfaE-1 and EPEC Afa possess fine fibrillar structures. This is the first characterization and demonstration of an Afa adhesin associated with EPEC.

  4. Enteropathogenic Escherichia coli Tir recruits cellular SHP-2 through ITIM motifs to suppress host immune response.

    PubMed

    Yan, Dapeng; Quan, Heming; Wang, Lin; Liu, Feng; Liu, Haipeng; Chen, Jianxia; Cao, Xuetao; Ge, Baoxue

    2013-09-01

    Immune responses to pathogens are regulated by immune receptors containing either an immunoreceptor tyrosine-based activation motif (ITAM) or an immunoreceptor tyrosine-based inhibitory motif (ITIM). The important diarrheal pathogen enteropathogenic Escherichia coli (EPEC) require delivery and insertion of the bacterial translocated intimin receptor (Tir) into the host plasma membrane for pedestal formation. The C-terminal region of Tir, encompassing Y483 and Y511, shares sequence similarity with cellular ITIMs. Here, we show that EPEC Tir suppresses the production of inflammatory cytokines by recruitment of SHP-2 and subsequent deubiquitination of TRAF6 in an ITIM dependent manner. Our findings revealed a novel mechanism by which the EPEC utilize its ITIM motifs to suppress and evade the host innate immune response, which could lead to the development of novel therapeutics to prevent bacterial infection.

  5. Phage biocontrol of enteropathogenic and shiga toxin-producing Escherichia coli in meat products

    PubMed Central

    Tomat, David; Migliore, Leonel; Aquili, Virginia; Quiberoni, Andrea; Balagué, Claudia

    2013-01-01

    Ten bacteriophages were isolated from faeces and their lytic effects assayed on 103 pathogenic and non-pathogenic Enterobacteriaceae. Two phages (DT1 and DT6) were selected based on their host ranges, and their lytic effects on pathogenic E. coli strains inoculated on pieces of beef were determined. We evaluated the reductions of viable cells of Escherichia coli O157:H7 and non-O157 Shiga toxigenic E. coli strains on meat after exposure to DT6 at 5 and 24°C for 3, 6, and 24 h and the effect of both phages against an enteropathogenic E. coli strain. Significant viable cell reductions, compared to controls without phages, at both temperatures were observed, with the greatest decrease taking place within the first hours of the assays. Reductions were also influenced by phage concentration, being the highest concentrations, 1.7 × 1010 plaque forming units per milliliter (PFU/mL) for DT1 and 1.4 × 1010 PFU/mL for DT6, the most effective. When enteropathogenic E. coli and Shiga toxigenic E. coli (O157:H7) strains were tested, we obtained viable cell reductions of 0.67 log (p = 0.01) and 0.77 log (p = 0.01) after 3 h incubation and 0.80 log (p = 0.01) and 1.15 log (p = 0.001) after 6 h. In contrast, all nonpathogenic E. coli strains as well as other enterobacteria tested were resistant. In addition, phage cocktail was evaluated on two strains and further reductions were observed. However, E. coli bacteriophage insensitive mutants (BIMs) emerged in meat assays. BIMs isolated from meat along with those isolated by using the secondary culture method were tested to evaluate resistance phenotype stability and reversion. They presented low emergence frequencies (6.5 × 10−7–1.8 × 10−6) and variable stability and reversion. Results indicate that isolated phages were stable on storage, negative for all the virulence factors assayed, presented lytic activity for different E. coli virotypes and could be useful in reducing Shiga toxigenic E. coli and enteropathogenic E

  6. Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli

    PubMed Central

    Sampaio, Suely C. F.; Luiz, Wilson B.; Vieira, Mônica A. M.; Ferreira, Rita C. C.; Garcia, Bruna G.; Sinigaglia-Coimbra, Rita; Sampaio, Jorge L. M.; Ferreira, Luís C. S.

    2016-01-01

    The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliC and fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of aEPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of aEPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The aEPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of aEPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process. PMID:26831466

  7. Prevalence of Pilus Antigens, Enterotoxin Types, and Enteropathogenicity Among K88-Negative Enterotoxigenic Escherichia coli from Neonatal Pigs

    PubMed Central

    Moon, H. W.; Kohler, E. M.; Schneider, R. A.; Whipp, S. C.

    1980-01-01

    Enterotoxigenic Escherichia coli (ETEC) that were isolated from neonatal pigs and that did not react in preliminary tests for pilus antigen K88 were subjected to additional tests for K88 and for pilus antigens K99 and 987P. Four such isolates produced K88, 9 isolates produced K99, 55 isolates produced 987P, and the remaining 43 isolates produced none of the three pilus antigens (3P−). Immunofluorescence tests of ileal sections from pigs were more sensitive for 987P detection than was serum agglutination of bacteria grown from the ileum. Most ETEC that produced K88, K99, or 987P were enteropathogenic (adhered to ileal villi, colonized intensively, and caused profuse diarrhea) when given to neonatal pigs. In contrast, only 3 of the 43 ETEC that produced none of the pilus antigens were enteropathogenic. The isolates were also tested for the type of enterotoxin produced. The K88+ isolates all produced heat-labile enterotoxin (LT) detectable in cultured adrenal cells (i.e., were LT+). None of the 987P+, K99+, or enterpathogenic 3P− isolates produced LT. However (except for a single K99+ isolate), they all produced heat-stable enterotoxin detectable in infant mice (STa+). Sixteen isolates produced neither LT nor STa but did produce enterotoxin detectable in ligated intestinal loops of pigs (STb). Most of these LT− STa− STb+ isolates were also K88−, K99−, and 987P− and non-enteropathogenic. One of them was K99+ and enteropathogenic. Our conclusions are as follows. (i) Most enteropathogenic ETEC from neonatal pigs produce either K88, 987P, or K99; however, there are some that produce none of the three antigens. (ii) Immunofluorescence tests for pilus antigens produced in vivo are recommended for the diagnosis of ETEC infections. (iii) Reports of LT− STa− STb+ swine ETEC are confirmed; furthermore, such isolates can be enteropathogenic. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:6102079

  8. The epidemiological and clinical characteristics of diarrhea associated with enteropathogenic, enteroaggregative and diffuse-adherent Escherichia coli in Egyptian children.

    PubMed

    Ahmed, Salwa F; Shaheen, Hind I; Abdel-Messih, Ibrahim Adib; Mostafa, Manal; Putnam, Shannon D; Kamal, Karim A; Sayed, Abdel Nasser El; Frenck, Robert W; Sanders, John W; Klena, John D; Wierzba, Thomas F

    2014-10-01

    A total of 220 enteroadherent Escherichia coli were identified from 729 Egyptian children with diarrhea using the HEp-2 adherence assay. Enteropathogenic E.coli (EPEC = 38) was common among children <6 months old and provoked vomiting, while diffuse-adhering E.coli (DAEC = 109) induced diarrheal episodes of short duration, and enteroaggregative E.coli (EAEC = 73) induced mild non-persistent diarrhea. These results suggest that EPEC is associated with infantile diarrhea in Egyptian children.

  9. Isolation of atypical enteropathogenic and shiga toxin encoding Escherichia coli strains from poultry in Tehran, Iran

    PubMed Central

    Doregiraee, Fatemeh; Alebouyeh, Masoud; Nayeri Fasaei, Bahar; Charkhkar, Saeed; Tajedin, Elahe; Zali, Mohammad Reza

    2016-01-01

    Aim: The purpose of this study was to investigate the prevalence of enteropathogenic Escherichia coli (EPEC) and shiga toxin producing E. coli (STEC) strains in healthy broilers in Iran. Background: STEC and EPEC strains as diarrheagenic E. coli are among the most prevalent causative agents in acute diarrhea. Domestic animals, mainly cattle and sheep, have been implicated as the principal reservoirs of these pathotypes; however their prevalence among the broilers is varied among different countries. Patients and methods: A total of 500 cloacal swab samples from broilers of five different poultry houses (A-E) were collected to investigate the presence of stx1, stx2, hly, eae, and bfp virulence genes among the E. coli isolates by polymerase chain reaction. The shiga toxin encoding strains were evaluated serologically to detect their interaction with a commercial antiserum against O157 antigen. Results: Out of the 500 collected samples, 444 E. coli strains were isolated. Three strains (0.67%) presented at least one of the studied virulence genes (stx2, hly and eae), two strains were identified as STEC (stx2+, O157:nonH7) and one as an atypical EPEC strains (eae+ bfp-). Conclusion: The study established the presence of STEC and atypical EPEC in healthy broilers in Iran. Poultry might serve as vectors for transmission of pathogenic E. coli to human populations. PMID:26744615

  10. The Global Regulator Ler Is Necessary for Enteropathogenic Escherichia coli Colonization of Caenorhabditis elegans

    PubMed Central

    Mellies, Jay L.; Barron, Alex M. S.; Haack, Kenneth R.; Korson, Andrew S.; Oldridge, Derek A.

    2006-01-01

    Enteropathogenic Escherichia coli (EPEC) is an important cause of infant diarrhea in developing countries and is useful for general investigations of the bacterial infection process. However, the study of the molecular pathogenesis of EPEC has been hampered by the lack of genetically tractable, convenient animal models. We have therefore developed the use of the nematode Caenorhabditis elegans as a small animal model of infection for this diarrheal pathogen. We found that nematodes died faster on nematode growth medium in the presence of EPEC pathogens than in the presence of the laboratory control strain MG1655. Increased numbers of pathogens in the gut, determined by standard plate count assays and fluorescence microscopy using green fluorescent protein-expressing bacteria, correlated with killing. Deletion of the gene encoding the global regulator Ler severely reduced the ability of EPEC to colonize the nematode gut and could be complemented by providing the ler gene on a multicopy plasmid in trans. Neither the type III secretion system nor the type IV bundle-forming pilus was required for colonization. Combined, the similarities and distinct differences between EPEC infection of nematodes and that of humans offer a unique opportunity to study several stages of the infection process, namely, attachment, colonization, and persistence, in a genetically tractable, inexpensive, and convenient in vivo system. PMID:16368958

  11. Enteropathogenic Escherichia coli associated with diarrhea in children in Cairo, Egypt.

    PubMed

    Behiry, Iman K; Abada, Emad A; Ahmed, Entsar A; Labeeb, Rania S

    2011-01-01

    In this study we isolate and identify the Enteropathogenic Escherichia coli (EPEC) causing diarrhea in children less than five years in Cairo, Egypt, during different seasons. Children younger than five years with diarrhea, attending the Pediatric Gastroenterology Intensive Care Unit of the Cairo University Pediatric Hospital in one year period were our group of study. Our control group was age and sex matched concurrent healthy children. The identified E. coli isolates were subjected to antimicrobial disc diffusion susceptibility test and further identified for EPEC serotype by slide agglutination test, using antiserum E. coli somatic trivalent I (O111, O55, O26) according to the instructions of the manufacturer. Out of 134 patients 5.2% of them revealed EPEC in the fecal sample, while the 20 children control group showed no EPEC isolates in their samples. Our EPEC frequency showed variations from the compared results of other studies. Higher rate of EPEC (18.7%) was found in patients between 2 to 3 years, while EPEC rate was (7.5%) in patients less than 6 months old, with P < 0.05. EPEC was identified from fecal specimens as a unique pathogen or associated with other pathogens in acute and chronic diarrhea in children. EPEC were detected in all seasons except in winter, and was predominant in summer season. Four (57%) EPEC isolates were resistant to ampicillin, ticarcillin, and cotrimoxazole, and (14.3%) to the third generation cephalosporins.

  12. Enteropathogenic Escherichia coli Associated with Diarrhea in Children in Cairo, Egypt

    PubMed Central

    Behiry, Iman K.; Abada, Emad A.; Ahmed, Entsar A.; Labeeb, Rania S.

    2011-01-01

    In this study we isolate and identify the Enteropathogenic Escherichia coli (EPEC) causing diarrhea in children less than five years in Cairo, Egypt, during different seasons. Children younger than five years with diarrhea, attending the Pediatric Gastroenterology Intensive Care Unit of the Cairo University Pediatric Hospital in one year period were our group of study. Our control group was age and sex matched concurrent healthy children. The identified E. coli isolates were subjected to antimicrobial disc diffusion susceptibility test and further identified for EPEC serotype by slide agglutination test, using antiserum E. coli somatic trivalent I (O111, O55, O26) according to the instructions of the manufacturer. Out of 134 patients 5.2% of them revealed EPEC in the fecal sample, while the 20 children control group showed no EPEC isolates in their samples. Our EPEC frequency showed variations from the compared results of other studies. Higher rate of EPEC (18.7%) was found in patients between 2 to 3 years, while EPEC rate was (7.5%) in patients less than 6 months old, with P < 0.05. EPEC was identified from fecal specimens as a unique pathogen or associated with other pathogens in acute and chronic diarrhea in children. EPEC were detected in all seasons except in winter, and was predominant in summer season. Four (57%) EPEC isolates were resistant to ampicillin, ticarcillin, and cotrimoxazole, and (14.3%) to the third generation cephalosporins. PMID:22262949

  13. Molecular analysis of typical and atypical enteropathogenic Escherichia coli (EPEC) isolated from children with diarrhoea.

    PubMed

    Nakhjavani, Farrokh Akbari; Emaneini, Mohammad; Hosseini, Hossein; Iman-Eini, Hossein; Aligholi, Marzieh; Jabalameli, Fereshteh; Haghi-Ashtiani, Mohammad Taghi; Taherikalani, Morovat; Mirsalehian, Akbar

    2013-02-01

    Diarrhoea continues to be one of the most common causes of morbidity and mortality among infants and children in developing countries. To investigate the incidence, antimicrobial resistance and genetic relationships of enteropathogenic Escherichia coli (EPEC) in children with diarrhoea, a total of 612 stool specimens were collected in Tehran, Iran, and cultured to isolate strains of EPEC. The disc diffusion method was used to determine the susceptibility of the isolates according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The presence of eae, stx and bfp-A genes was determined by PCR. The genetic relationships between EPEC isolates were determined by pulsed-field gel electrophoresis (PFGE). Out of the 412 strains of E. coli obtained from 612 diarrhoeal stool specimens, 23 (5.6 %) were identified as EPEC, of which seven (30.4 %) were classified as typical strains of EPEC and 16 (69.6 %) were classified as atypical. Out of the 23 EPEC isolates, 69.5 % were resistant to ampicillin, 39.1 % were resistant to tetracycline and cotrimoxazole, 30.4 % were resistant to cefpodoxime, ceftazidime, ceftriaxone and aztreonam, and 26.1 % were resistant to imipenem. The isolates were classified into 21 pulsotypes by PFGE profiles. The present study shows that typical and atypical EPEC isolates displayed considerable heterogeneity in PFGE profiles and EPEC infections were only sporadic in Tehran. Overall 69 % of isolates were resistant to at least one of the antibiotics tested.

  14. Lack of inhibition of adhesion of an enteropathogenic Escherichia coli by polycarbophil.

    PubMed

    Mack, D R; Blain-Nelson, P L; Mauger, J W

    1993-12-01

    Anionic polyacrylic acid polymers, such as polycarbophil, have a number of properties that would make them suitable carriers for sustained antibiotic release formulations in the intestinal tract. However, little is known with regards to possible microbial adhesion to polycarbophil. The aim of this study was to evaluate for such an interaction using the rabbit enteric pathogen Escherichia coli RDEC-1 (serotype O15:H-). RDEC-1 mediates attaching and effacing binding to intestinal epithelium in a manner morphologically identical to that observed in both human enteropathogenic E. coli and enterohemorrhagic E. coli infections. RDEC-1 bacteria were grown to promote the expression of the mannose-resistant AF/R1 adhesion pili. A nonpiliated mutant, strain M34, was used as a negative control. Using radioactive labeling of bacteria, we quantitated adhesion of piliated RDEC-1 in the presence of polycarbophil using an in vitro adhesion assay system. Binding of piliated RDEC-1 in the adhesion assay was greater than for nonpiliated M34 for all concentrations of bacteria greater than 10(9) (P < .05). Polycarbophil did not cause concentration-dependent inhibition of piliated RDEC-1 binding (P > .05). We conclude polycarbophil does not interfere with the AF/R1 adhesin ligand of RDEC-1. Use of this polymer as a mucoadhesive drug delivery vehicle for nonabsorbable antibiotics in the treatment of gastrointestinal infections would not be expected to interfere with the protective effects of intestinal mucins.

  15. Recognition of Enteropathogenic Escherichia coli Virulence Determinants by Human Colostrum and Serum Antibodies

    PubMed Central

    Parissi-Crivelli, Aurora; Parissi-Crivelli, Joaquín M.; Girón, Jorge A.

    2000-01-01

    Human colostra and sera collected from Mexican mothers and their children at birth and 6 months thereafter were studied for the presence of antibodies against the bundle-forming pilus and several chromosomal virulence gene products (intimin and secreted proteins EspA and EspB) of enteropathogenic Escherichia coli (EPEC). Among 21 colostrum samples studied, 76, 71.5, 57, and 47% of them contained immunoglobulin A (IgA) antibodies against EspA, intimin, EspB, and BfpA, respectively. Interestingly, there was a difference in IgG response to EPEC antigens between the sera from neonates and sera from the same children 6 months later. While the number of neonates reacting to Esps and intimin diminished when they reached 6 months of age, those reacting with BfpA increased from 9 to 71%. Intimin from an enterohemorrhagic E. coli strain was also recognized by most of the samples reacting with EPEC intimin. These data suggest that Bfp and Esps elicit an antibody response during the early days of life of neonates and support the value of breast-feeding in areas of the world where bacterial diarrheal infections are endemic. PMID:10878066

  16. Lambs are an important source of atypical enteropathogenic Escherichia coli in southern Brazil.

    PubMed

    Martins, Fernando H; Guth, Beatriz E C; Piazza, Roxane M F; Elias, Waldir P; Leão, Sylvia C; Marzoa, Juan; Dahbi, Ghizlane; Mora, Azucena; Blanco, Miguel; Blanco, Jorge; Pelayo, Jacinta S

    2016-11-30

    Food-producing animals can harbor Escherichia coli strains with potential to cause diseases in humans. In this study, the presence of enteropathogenic E. coli (EPEC) was investigated in fecal samples from 130 healthy sheep (92 lambs and 38 adults) raised for meat in southern Brazil. EPEC was detected in 19.2% of the sheep examined, but only lambs were found to be positive. A total of 25 isolates was characterized and designated atypical EPEC (aEPEC) as tested negative for bfpA gene and BFP production. The presence of virulence markers linked to human disease as ehxA, paa, and lpfAO113 was observed in 60%, 24%, and 88% of the isolates, respectively. Of the 11 serotypes identified, eight were described among human pathogenic strains, while three (O1:H8, O11:H21 and O125:H19) were not previously detected in aEPEC. Associations between intimin subtypes and phylogroups were observed, including eae-θ2/A, eae-β1/B1, eae-α2/B2 and eae-γ1/D. Although PFGE typing of 16 aEPEC isolates resulted in 14 unique pulsetypes suggesting a genetic diversity, specific clones were found to be distributed in some flocks. In conclusion, potentially pathogenic aEPEC strains are present in sheep raised for meat, particularly in lambs, which can better contribute to dissemination of these bacteria than adult animals.

  17. Shiga toxigenic and atypical enteropathogenic Escherichia coli in the feces and carcasses of slaughtered pigs.

    PubMed

    Borges, Clarissa Araújo; Beraldo, Lívia Gerbasi; Maluta, Renato Pariz; Cardozo, Marita Vedovelli; Guth, Beatriz Ernestina Cabilio; Rigobelo, Everlon Cid; de Ávila, Fernando Antônio

    2012-12-01

    Escherichia coli is a pathogen of major importance in swine and public health. To determine the prevalence of Shiga toxigenic E. coli (STEC) and enteropathogenic E. coli (EPEC), samples were collected from the feces and carcasses of swines. In total, 441 samples were collected in four samplings, of which 141 samples tested positive for either the stx1, stx2, and/or eae genes. From the positive samples, one STEC and 15 atypical EPEC (aEPEC) isolates were obtained, and all originated from the same sampling. In addition to eae, lpfA(O157/OI-141), ehxA, toxB, and lpfA(O113) were present in the aEPEC isolates. The only stx2-containing isolate carried stx2e and belonged to serotype O103:HNT. Resistance to four or more antimicrobials was found in almost half of the isolates, and some isolates shared the same fingerprint patterns by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). The presence of certain virulence genes and the high level of resistance to antimicrobials, as well as the possible fecal contamination of carcasses showed that some of the isolates are of public health concern.

  18. Lactobacillus reuteri Inhibition of Enteropathogenic Escherichia coli Adherence to Human Intestinal Epithelium

    PubMed Central

    Walsham, Alistair D. S.; MacKenzie, Donald A.; Cook, Vivienne; Wemyss-Holden, Simon; Hews, Claire L.; Juge, Nathalie; Schüller, Stephanie

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrheal infant death in developing countries, and probiotic bacteria have been shown to provide health benefits in gastrointestinal infections. In this study, we have investigated the influence of the gut symbiont Lactobacillus reuteri on EPEC adherence to the human intestinal epithelium. Different host cell model systems including non-mucus-producing HT-29 and mucus-producing LS174T intestinal epithelial cell lines as well as human small intestinal biopsies were used. Adherence of L. reuteri to HT-29 cells was strain-specific, and the mucus-binding proteins CmbA and MUB increased binding to both HT-29 and LS174T cells. L. reuteri ATCC PTA 6475 and ATCC 53608 significantly inhibited EPEC binding to HT-29 but not LS174T cells. While pre-incubation of LS174T cells with ATCC PTA 6475 did not affect EPEC attaching/effacing (A/E) lesion formation, it increased the size of EPEC microcolonies. ATCC PTA 6475 and ATCC 53608 binding to the mucus layer resulted in decreased EPEC adherence to small intestinal biopsy epithelium. Our findings show that L. reuteri reduction of EPEC adhesion is strain-specific and has the potential to target either the epithelium or the mucus layer, providing further rationale for the selection of probiotic strains. PMID:26973622

  19. Age-Dependent Susceptibility to Enteropathogenic Escherichia coli (EPEC) Infection in Mice

    PubMed Central

    Dupont, Aline; Sommer, Felix; Zhang, Kaiyi; Repnik, Urska; Basic, Marijana; Bleich, André; Kühnel, Mark; Bäckhed, Fredrik; Litvak, Yael; Fulde, Marcus; Rosenshine, Ilan; Hornef, Mathias W.

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) represents a major causative agent of infant diarrhea associated with significant morbidity and mortality in developing countries. Although studied extensively in vitro, the investigation of the host-pathogen interaction in vivo has been hampered by the lack of a suitable small animal model. Using RT-PCR and global transcriptome analysis, high throughput 16S rDNA sequencing as well as immunofluorescence and electron microscopy, we characterize the EPEC-host interaction following oral challenge of newborn mice. Spontaneous colonization of the small intestine and colon of neonate mice that lasted until weaning was observed. Intimate attachment to the epithelial plasma membrane and microcolony formation were visualized only in the presence of a functional bundle forming pili (BFP) and type III secretion system (T3SS). Similarly, a T3SS-dependent EPEC-induced innate immune response, mediated via MyD88, TLR5 and TLR9 led to the induction of a distinct set of genes in infected intestinal epithelial cells. Infection-induced alterations of the microbiota composition remained restricted to the postnatal period. Although EPEC colonized the adult intestine in the absence of a competing microbiota, no microcolonies were observed at the small intestinal epithelium. Here, we introduce the first suitable mouse infection model and describe an age-dependent, virulence factor-dependent attachment of EPEC to enterocytes in vivo. PMID:27159323

  20. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines.

    PubMed Central

    Moon, H W; Whipp, S C; Argenzio, R A; Levine, M M; Giannella, R A

    1983-01-01

    Three strains of enteropathogenic Escherichia coli (EPEC), originally isolated from humans and previously shown to cause diarrhea in human volunteers by unknown mechanisms, and one rabbit EPEC strain were shown to attach intimately to and efface microvilli and cytoplasm from intestinal epithelial cells in both the pig and rabbit intestine. The attaching and effacing activities of these EPEC were demonstrable by light microscopic examination of routine histological sections and by transmission electron microscopy. It was suggested that intact colostrum-deprived newborn pigs and ligated intestinal loops in pigs and rabbits may be useful systems to detect EPEC that have attaching and effacing activities and for studying the pathogenesis of such infections. The lesions (attachment and effacement) produced by EPEC in these systems were multifocal, with considerable animal-to-animal variation in response to the same strain of EPEC. The EPEC strains also varied in the frequency and extent of lesion production. For example, three human EPEC strains usually caused extensive lesions in rabbit intestinal loops, whereas two other human EPEC strains usually did not produce lesions in this system. Images PMID:6350186

  1. PerC and GrlA independently regulate Ler expression in enteropathogenic Escherichia coli.

    PubMed

    Bustamante, Víctor H; Villalba, Miryam I; García-Angulo, Víctor A; Vázquez, Alejandra; Martínez, Luary C; Jiménez, Rafael; Puente, José L

    2011-10-01

    Ler, encoded by the locus of enterocyte effacement (LEE) of attaching and effacing (A/E) pathogens, induces the expression of LEE genes by counteracting the silencing exerted by H-NS. Ler expression is modulated by several global regulators, and is activated by GrlA, which is also LEE-encoded. Typical enteropathogenic Escherichia coli (EPEC) strains contain the EAF plasmid, which carries the perABC locus encoding PerC. The precise role of PerC in EPEC virulence gene regulation has remained unclear, mainly because EPEC strains lacking the pEAF still express the LEE genes and because PerC is not present in other A/E pathogens such as Citrobacter rodentium. Here, we describe that either PerC or GrlA can independently activate ler expression and, in consequence, of LEE genes depending on the growth conditions. Both PerC and GrlA, with the aid of IHF, counteract the repression exerted by H-NS on ler and can also further increase its activity. Our results substantiate the role of PerC and GrlA in EPEC virulence gene regulation and suggest that these convergent regulatory mechanisms may have represented an evolutionary adaptation in EPEC to co-ordinate the expression of plasmid- and chromosome-encoded virulence factors needed to successfully colonize its intestinal niche.

  2. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli.

    PubMed

    Abreu, Afonso G; Abe, Cecilia M; Nunes, Kamila O; Moraes, Claudia T P; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando; Barbosa, Angela S; Piazza, Roxane M F; Elias, Waldir P

    2016-01-01

    Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system.

  3. Biological Activities of Uric Acid in Infection Due to Enteropathogenic and Shiga-Toxigenic Escherichia coli

    PubMed Central

    Broome, Jacqueline E.; Lis, Agnieszka

    2016-01-01

    In previous work, we identified xanthine oxidase (XO) as an important enzyme in the interaction between the host and enteropathogenic Escherichia coli (EPEC) and Shiga-toxigenic E. coli (STEC). Many of the biological effects of XO were due to the hydrogen peroxide produced by the enzyme. We wondered, however, if uric acid generated by XO also had biological effects in the gastrointestinal tract. Uric acid triggered inflammatory responses in the gut, including increased submucosal edema and release of extracellular DNA from host cells. While uric acid alone was unable to trigger a chloride secretory response in intestinal monolayers, it did potentiate the secretory response to cyclic AMP agonists. Uric acid crystals were formed in vivo in the lumen of the gut in response to EPEC and STEC infections. While trying to visualize uric acid crystals formed during EPEC and STEC infections, we noticed that uric acid crystals became enmeshed in the neutrophilic extracellular traps (NETs) produced from host cells in response to bacteria in cultured cell systems and in the intestine in vivo. Uric acid levels in the gut lumen increased in response to exogenous DNA, and these increases were enhanced by the actions of DNase I. Interestingly, addition of DNase I reduced the numbers of EPEC bacteria recovered after a 20-h infection and protected against EPEC-induced histologic damage. PMID:26787720

  4. Role of Lactosyl Glycan Sequences in Inhibiting Enteropathogenic Escherichia coli Attachment

    PubMed Central

    Vanmaele, Rosa P.; Heerze, Louis D.; Armstrong, Glen D.

    1999-01-01

    Previously, we found that asialo-lactosamine sequences served as receptors for enteropathogenic Escherichia coli (EPEC) binding to Chinese hamster ovary (CHO) cells. In the present report, we have extended these earlier results by examining the ability of lactosamine- or fucosylated lactosamine-bovine serum albumin (BSA) glycoconjugates to inhibit EPEC, strain E2348/69, binding to HEp-2 cells. We found that, consistent with our previous findings with CHO cells, N-acetyllactosamine-BSA was the most effective inhibitor of EPEC localized adherence to HEp-2 cells, with Lewis X-BSA being the next best inhibitor. Further investigation revealed that coincubating EPEC E2348/69 with these BSA glycoconjugates alone caused a decrease in the expression of the bundle-forming pilus structural subunit (BfpA) and intimin by the bacteria. BfpA and intimin expression were reduced to the greatest extent by N-acetyllactosamine–BSA and Lewis X-BSA, respectively. These results suggest that the glycoconjugate inhibition of EPEC binding to HEp-2 cells might be achieved, wholly or in part, by an active mechanism that is distinct from simple competitive antagonism of receptor-adhesin interactions. PMID:10377105

  5. Survey and Experimental Infection of Enteropathogenic Escherichia coli in Common Marmosets (Callithrix jacchus)

    PubMed Central

    Hayashimoto, Nobuhito; Inoue, Takashi; Morita, Hanako; Yasuda, Masahiko; Ueno, Masami; Kawai, Kenji; Itoh, Toshio

    2016-01-01

    Common marmosets (Callithrix jacchus) are frequently used for biomedical research but can be afflicted with diarrhea—a serious and potentially lethal health problem. Enteropathogenic Escherichia coli (EPEC) is thought to be the causative pathogen of hemorrhagic typhlocolitis in common marmosets, but the actual incidence of the disease and the relationship between EPEC and hematochezia are unknown. This study investigated the prevalence of EPEC infection in common marmosets and the association between EPEC and hematochezia. A total of 230 stool or rectal swab samples were collected from 230 common marmosets (98 clinically healthy, 85 diarrhea, and 47 bloody stool samples) and tested by culture-based detection and PCR amplification of VT1, VT2, LT, ST, eae, and bfp genes. Healthy animals were divided into three groups (n = 4 each for high and low concentration groups and n = 2 as negative control), and those in the experimental groups were perorally inoculated with a 2-ml of suspension of EPEC R811 strain adjusted to 5 × 108 (high concentration) and 5 × 104 (low concentration) CFU/ ml. Two animals in each group were examined 3 and 14 days post-inoculation (DPI). EPEC was detected in 10 of 98 clinically healthy samples (10.2%), 17 of 85 diarrhea samples (20%), and all 47 bloody stool samples (100%), with a significant difference detected between presence of EPEC and sample status (P < 0.01). Acute hematochezia was observed in all animals of the high-concentration group but not in other groups at 1 or 2 DPI. A histopathological examination revealed the attachment of gram-negative bacilli to epithelial apical membranes and desquamated epithelial cells in the cecum of animals in the high-concentration group at 3 DPI. These findings suggest that EPEC is a causative agent of hemorrhagic typhlocolitis in common marmosets. PMID:27501144

  6. Detection of Shiga toxigenic (STEC) and enteropathogenic (EPEC) Escherichia coli in dairy buffalo.

    PubMed

    Beraldo, Lívia Gerbasi; Borges, Clarissa Araújo; Maluta, Renato Pariz; Cardozo, Marita Vedovelli; Rigobelo, Everlon Cid; de Ávila, Fernando Antônio

    2014-05-14

    Enteropathogenic (EPEC) and Shiga toxigenic (STEC) Escherichia coli are among the bacteria most associated with enteric diseases in man. The aims of this study were to determine the prevalence of STEC and EPEC in dairy buffalo and then characterize these isolates genetically. To determine the prevalence of these bacteria, samples were collected from the feces and milk of buffaloes. In total, 256 samples were collected in 3 samplings, of which 76 samples tested positive for either the stx1, stx2 or eae genes or a combination thereof. From the positive samples, 22 STEC and 11 atypical EPEC (aEPEC) isolates were obtained. The isolates showed 23 different genetic profiles. No profile was very frequent in STEC isolates. On the other hand, the profile eae+, ehxA+, iha+, efa1+, toxB+, paa+, lpfAO113+ was found in 45% of the aEPEC isolates. In addition to stx1, stx2 and eae, the genes ehxA, efa1, saa, lpfAO113, lpfAO157/OI-141, lpfAO157/OI-154, toxB and iha were present in the isolates. Serogroup O26 was found in 26% of the aEPEC. Other serogroups detected include O87, O145, O176 and O179. The isolates were sensitive to almost all drugs tested and some isolates shared the same fingerprint patterns by enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR). The results suggest that, besides major reservoirs of STEC, buffaloes are also aEPEC reservoirs. The detection of a serogroup (O26), and putative virulence genes (efa1 ehxA, paa and lpfAO113), previously associated with aEPEC isolated from humans with diarrhea in aEPEC from buffaloes should be studied further.

  7. Antigen Detection in Enteropathogenic Escherichia coli Using Secretory Immunoglobulin A Antibodies Isolated from Human Breast Milk

    PubMed Central

    Manjarrez-Hernandez, H. A.; Gavilanes-Parra, S.; Chavez-Berrocal, E.; Navarro-Ocaña, A.; Cravioto, A.

    2000-01-01

    Enteropathogenic Escherichia coli (EPEC) produces a characteristic attaching and effacing (A/E) lesion in the small intestines of infected children. The immune response to EPEC infection remains poorly characterized. The molecular targets that elicit protective immunity against EPEC disease are unknown. In this study protein antigens from EPEC were identified using secretory immunoglobulin A (sIgA) antibodies isolated from milk from Mexican women by Western blot analysis. Purified sIgA antibodies, which inhibit the adherence of EPEC to cells, reacted to many EPEC proteins, the most prominent of which were intimin (a 94-kDa outer membrane protein) and two unknown proteins with apparent molecular masses of 80 and 70 kDa. A culture supernatant protein of 110 kDa also reacted strongly with the sIgA antibodies. The molecular size of this protein and its reactivity with specific anti-EspC antiserum suggest that it is EPEC-secreted protein C (EspC). These EPEC surface protein antigens were consistently recognized by all the different sIgA samples obtained from 15 women. Screening of clinical isolates of various O serogroups from cases of severe infantile diarrhea revealed that all EPEC strains able to produce the A/E lesion showed expression of intimin and the 80- and 70-kDa proteins. Such proteins reacted strongly with the purified sIgA pool. Moreover, nonvirulent E. coli strains were unable to generate a sIgA response. The immunogenic capacities of the 80- and 70-kDa proteins as virulence antigens have not been previously reported. The strong sIgA response to intimin and the 80- and 70-kDa proteins obtained in this study indicates that such antigens stimulate intestinal immune responses and may elicit protective immunity against EPEC disease. PMID:10948121

  8. The secreted effector protein EspZ is essential for virulence of rabbit enteropathogenic Escherichia coli.

    PubMed

    Wilbur, John Scott; Byrd, Wyatt; Ramamurthy, Shylaja; Ledvina, Hannah E; Khirfan, Khaldoon; Riggs, Michael W; Boedeker, Edgar C; Vedantam, Gayatri; Viswanathan, V K

    2015-03-01

    Attaching and effacing (A/E) pathogens adhere intimately to intestinal enterocytes and efface brush border microvilli. A key virulence strategy of A/E pathogens is the type III secretion system (T3SS)-mediated delivery of effector proteins into host cells. The secreted protein EspZ is postulated to promote enterocyte survival by regulating the T3SS and/or by modulating epithelial signaling pathways. To explore the role of EspZ in A/E pathogen virulence, we generated an isogenic espZ deletion strain (ΔespZ) and corresponding cis-complemented derivatives of rabbit enteropathogenic Escherichia coli and compared their abilities to regulate the T3SS and influence host cell survival in vitro. For virulence studies, rabbits infected with these strains were monitored for bacterial colonization, clinical signs, and intestinal tissue alterations. Consistent with data from previous reports, espZ-transfected epithelial cells were refractory to infection-dependent effector translocation. Also, the ΔespZ strain induced greater host cell death than did the parent and complemented strains. In rabbit infections, fecal ΔespZ strain levels were 10-fold lower than those of the parent strain at 1 day postinfection, while the complemented strain was recovered at intermediate levels. In contrast to the parent and complemented mutants, ΔespZ mutant fecal carriage progressively decreased on subsequent days. ΔespZ mutant-infected animals gained weight steadily over the infection period, failed to show characteristic disease symptoms, and displayed minimal infection-induced histological alterations. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining of intestinal sections revealed increased epithelial cell apoptosis on day 1 after infection with the ΔespZ strain compared to animals infected with the parent or complemented strains. Thus, EspZ-dependent host cell cytoprotection likely prevents epithelial cell death and sloughing and thereby

  9. The Secreted Effector Protein EspZ Is Essential for Virulence of Rabbit Enteropathogenic Escherichia coli

    PubMed Central

    Wilbur, John Scott; Byrd, Wyatt; Ramamurthy, Shylaja; Ledvina, Hannah E.; Khirfan, Khaldoon; Riggs, Michael W.; Boedeker, Edgar C.; Vedantam, Gayatri

    2015-01-01

    Attaching and effacing (A/E) pathogens adhere intimately to intestinal enterocytes and efface brush border microvilli. A key virulence strategy of A/E pathogens is the type III secretion system (T3SS)-mediated delivery of effector proteins into host cells. The secreted protein EspZ is postulated to promote enterocyte survival by regulating the T3SS and/or by modulating epithelial signaling pathways. To explore the role of EspZ in A/E pathogen virulence, we generated an isogenic espZ deletion strain (ΔespZ) and corresponding cis-complemented derivatives of rabbit enteropathogenic Escherichia coli and compared their abilities to regulate the T3SS and influence host cell survival in vitro. For virulence studies, rabbits infected with these strains were monitored for bacterial colonization, clinical signs, and intestinal tissue alterations. Consistent with data from previous reports, espZ-transfected epithelial cells were refractory to infection-dependent effector translocation. Also, the ΔespZ strain induced greater host cell death than did the parent and complemented strains. In rabbit infections, fecal ΔespZ strain levels were 10-fold lower than those of the parent strain at 1 day postinfection, while the complemented strain was recovered at intermediate levels. In contrast to the parent and complemented mutants, ΔespZ mutant fecal carriage progressively decreased on subsequent days. ΔespZ mutant-infected animals gained weight steadily over the infection period, failed to show characteristic disease symptoms, and displayed minimal infection-induced histological alterations. Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining of intestinal sections revealed increased epithelial cell apoptosis on day 1 after infection with the ΔespZ strain compared to animals infected with the parent or complemented strains. Thus, EspZ-dependent host cell cytoprotection likely prevents epithelial cell death and sloughing and thereby

  10. PerC Manipulates Metabolism and Surface Antigens in Enteropathogenic Escherichia coli

    PubMed Central

    Mellies, Jay L.; Platenkamp, Amy; Osborn, Jossef; Ben-Avi, Lily

    2017-01-01

    Enteropathogenic Escherichia coli is an important cause of profuse, watery diarrhea in infants living in developing regions of the world. Typical strains of EPEC (tEPEC) possess a virulence plasmid, while related clinical isolates that lack the pEAF plasmid are termed atypical EPEC (aEPEC). tEPEC and aEPEC tend to cause acute vs. more chronic type infections, respectively. The pEAF plasmid encodes an attachment factor as well as a regulatory operon, perABC. PerC, a poorly understood regulator, was previously shown to regulate expression of the type III secretion system through Ler. Here we elucidate the regulon of PerC using RNA sequencing analysis to better our understanding of the role of the pEAF in tEPEC infection. We demonstrate that PerC controls anaerobic metabolism by increasing expression of genes necessary for nitrate reduction. A tEPEC strain overexpressing PerC exhibited a growth advantage compared to a strain lacking this regulator, when grown anaerobically in the presence of nitrate, conditions mimicking the human intestine. We show that PerC strongly down-regulates type I fimbriae expression by manipulating fim phase variation. The quantities of a number of non-coding RNA molecules were altered by PerC. In sum, this protein controls niche adaptation, and could help to explain the function of the PerC homologs (Pch), many of which are encoded within prophages in related, Gram-negative pathogens. PMID:28224117

  11. SOS Regulation of the Type III Secretion System of Enteropathogenic Escherichia coli▿

    PubMed Central

    Mellies, Jay L.; Haack, Kenneth R.; Galligan, Derek C.

    2007-01-01

    Genomes of bacterial pathogens contain and coordinately regulate virulence-associated genes in order to cause disease. Enteropathogenic Escherichia coli (EPEC), a major cause of watery diarrhea in infants and a model gram-negative pathogen, expresses a type III secretion system (TTSS) that is encoded by the locus of enterocyte effacement (LEE) and is necessary for causing attaching and effacing intestinal lesions. Effector proteins encoded by the LEE and in cryptic prophage are injected into the host cell cytoplasm by the TTTS apparatus, ultimately leading to diarrhea. The LEE is comprised of multiple polycistronic operons, most of which are controlled by the global, positive regulator Ler. Here we demonstrated that the LEE2 and LEE3 operons also responded to SOS signaling and that this regulation was LexA dependent. As determined by a DNase I protection assay, purified LexA protein bound in vitro to a predicted SOS box located in the divergent, overlapping LEE2/LEE3 promoters. Expression of the lexA1 allele, encoding an uncleavable LexA protein in EPEC, resulted in reduced secretion, particularly in the absence of the Ler regulator. Finally, we obtained evidence that the cryptic phage-located nleA gene encoding an effector molecule is SOS regulated. Thus, we demonstrated, for the first time to our knowledge, that genes encoding components of a TTSS are regulated by the SOS response, and our data might explain how a subset of EPEC effector proteins, encoded in cryptic prophages, are coordinately regulated with the LEE-encoded TTSS necessary for their translocation into host cells. PMID:17237173

  12. Ler interdomain linker is essential for anti-silencing activity in enteropathogenic Escherichia coli

    PubMed Central

    Mellies, Jay L.; Larabee, Fredrick J.; Zarr, Melissa A.; Horback, Katy L.; Lorenzen, Emily; Mavor, David

    2008-01-01

    Enteropathogenic Escherichia coli (EPEC) expresses a type III secretion system (T3SS) required for pathogenesis. Regulation of the genes encoding the T3SS is complex; two major regulators control transcription, the silencer H-NS, and the related H-NS-like protein Ler. Our laboratory is interested in understanding the molecular differences that distinguish the anti-silencer Ler from H-NS, and how Ler differentially regulates EPEC virulence genes. Here, we demonstrate that mutated Ler proteins either containing H-NS α-helices 1 and 2, missing from Ler, or truncated for the 11 aa C-terminal extension compared with the related H-NS protein, did not appreciably alter Ler function. In contrast, mutating the proline at position 92 of Ler, in the conserved C-terminal DNA binding motif, eliminated Ler activity. Inserting 11 H-NS-specific amino acids, 11 alanines or 6 alanines into the Ler linker severely impaired the ability of Ler to increase LEE5 transcription. To extend our analysis, we constructed six chimeric proteins containing the N terminus, linker region or C terminus of Ler in different combinations with the complementary domains of H-NS, and monitored their in vivo activities. Replacing the Ler linker domain with that of H-NS, or replacing the Ler C-terminal, DNA binding domain with that of H-NS eliminated the ability of Ler to increase transcription at the LEE5 promoter. Thus, the linker and C-terminal domains of Ler and H-NS are not functionally equivalent. Conversely, replacing the H-NS linker region with that of Ler caused increased transcription at LEE5 in a strain deleted for hns. In summary, the interdomain linker specific to Ler is necessary for anti-silencing activity in EPEC. PMID:19047730

  13. Paralysis and killing of Caenorhabditis elegans by enteropathogenic Escherichia coli requires the bacterial tryptophanase gene.

    PubMed

    Anyanful, Akwasi; Dolan-Livengood, Jennifer M; Lewis, Taiesha; Sheth, Seema; Dezalia, Mark N; Sherman, Melanie A; Kalman, Lisa V; Benian, Guy M; Kalman, Daniel

    2005-08-01

    Pathogenic Escherichia coli, including enteropathogenic E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC) and enterotoxigenic E. coli (ETEC) are major causes of food and water-borne disease. We have developed a genetically tractable model of pathogenic E. coli virulence based on our observation that these bacteria paralyse and kill the nematode Caenorhabditis elegans. Paralysis and killing of C. elegans by EPEC did not require direct contact, suggesting that a secreted toxin mediates the effect. Virulence against C. elegans required tryptophan and bacterial tryptophanase, the enzyme catalysing the production of indole and other molecules from tryptophan. Thus, lack of tryptophan in growth media or deletion of tryptophanase gene failed to paralyse or kill C. elegans. While known tryptophan metabolites failed to complement an EPEC tryptophanase mutant when presented extracellularly, complementation was achieved with the enzyme itself expressed either within the pathogen or within a cocultured K12 strains. Thus, an unknown metabolite of tryptophanase, derived from EPEC or from commensal non-pathogenic strains, appears to directly or indirectly regulate toxin production within EPEC. EPEC strains containing mutations in the locus of enterocyte effacement (LEE), a pathogenicity island required for virulence in humans, also displayed attenuated capacity to paralyse and kill nematodes. Furthermore, tryptophanase activity was required for full activation of the LEE1 promoter, and for efficient formation of actin-filled membranous protrusions (attaching and effacing lesions) that form on the surface of mammalian epithelial cells following attachment and which depends on LEE genes. Finally, several C. elegans genes, including hif-1 and egl-9, rendered C. elegans less susceptible to EPEC when mutated, suggesting their involvement in mediating toxin effects. Other genes including sek-1, mek-1, mev-1, pgp-1,3 and vhl-1, rendered C. elegans more

  14. A novel serotype of enteropathogenic Escherichia coli (EPEC) as a major pathogen in an outbreak of infantile diarrhoea.

    PubMed

    Barlow, R S; Hirst, R G; Norton, R E; Ashhurst-Smith, C; Bettelheim, K A

    1999-12-01

    An outbreak of infantile diarrhoea was investigated in 32 children, all <2 years old, in the tropical north of Australia. Rotavirus (63%) and enteropathogenic Escherichia coli (EPEC) (59%) were the most common pathogens identified. Of the 19 EPEC isolates, 14 (74%) were of serotype O126:H12, hitherto unreported as an EPEC serotype. Other pathogens isolated included Salmonella spp. (16%), Campylobacter spp. (3%), Giardia (3%) and Shigella spp. (3%). EPEC-related gastro-enteritis is an uncommon but recognised cause of diarrhoeal outbreaks in Australia and clinicians need to be aware of the possibility of this serotype being implicated. This report highlights the disadvantages of relying on serotyping alone for the recognition of EPEC.

  15. Differences in virulence gene expression between atypical enteropathogenic Escherichia coli strains isolated from diarrheic and healthy ruminants.

    PubMed

    Horcajo, Pilar; Domínguez-Bernal, Gustavo; Carrión, Javier; De La Fuente, Ricardo; Ruiz-Santa-Quiteria, José A; Orden, José A

    2013-04-01

    Differences in the pathogenicity of atypical enteropathogenic Escherichia coli (EPEC) strains may be due, at least partially, to different expression patterns of some virulence genes. To investigate this hypothesis, the virulence gene expression patterns of 6 atypical EPEC strains isolated from healthy and diarrheic ruminants were compared using quantitative real-time reverse transcription polymerase chain reaction after growing the bacteria in culture medium alone or after binding it to HeLa epithelial cells. Some virulence genes in strains from diarrheic animals were upregulated relative to their expression in strains from healthy animals. When bacteria were cultured in the presence of HeLa cells, the ehxA and efa1/lifA genes, previously associated with the production of diarrhea, were expressed at higher levels in strains from diarrheic animals than in strains from healthy animals. Thus, the expression levels of some virulence genes may help determine which atypical EPEC strains cause diarrhea in ruminants.

  16. Differences in virulence gene expression between atypical enteropathogenic Escherichia coli strains isolated from diarrheic and healthy ruminants

    PubMed Central

    Horcajo, Pilar; Domínguez-Bernal, Gustavo; Carrión, Javier; De La Fuente, Ricardo; Ruiz-Santa-Quiteria, José A.; Orden, José A.

    2013-01-01

    Differences in the pathogenicity of atypical enteropathogenic Escherichia coli (EPEC) strains may be due, at least partially, to different expression patterns of some virulence genes. To investigate this hypothesis, the virulence gene expression patterns of 6 atypical EPEC strains isolated from healthy and diarrheic ruminants were compared using quantitative real-time reverse transcription polymerase chain reaction after growing the bacteria in culture medium alone or after binding it to HeLa epithelial cells. Some virulence genes in strains from diarrheic animals were upregulated relative to their expression in strains from healthy animals. When bacteria were cultured in the presence of HeLa cells, the ehxA and efa1/lifA genes, previously associated with the production of diarrhea, were expressed at higher levels in strains from diarrheic animals than in strains from healthy animals. Thus, the expression levels of some virulence genes may help determine which atypical EPEC strains cause diarrhea in ruminants. PMID:24082409

  17. The EspB Protein of Enteropathogenic Escherichia coli Is Targeted to the Cytoplasm of Infected HeLa Cells

    PubMed Central

    Taylor, Kathleen A.; O’Connell, Colin B.; Luther, Paul W.; Donnenberg, Michael S.

    1998-01-01

    The EspB protein of enteropathogenic Escherichia coli (EPEC) is exported via a type III secretion apparatus. EspB is critical for signaling the host cell and for the development of the attaching and effacing lesion characteristic of EPEC infection. We used cellular fractionation and confocal laser scanning microscopy to determine the cellular location of EspB during infection of HeLa cells. Both methods indicated that EspB is targeted to the cytoplasm of infected cells. Using mutants, we found that EspB targeting to the host cell cytoplasm requires the type III secretion apparatus and the secreted proteins EspA and EspD, but not intimin. These results provide insights into the function of the type III secretion apparatus of EPEC and the functions of the Esp proteins. PMID:9784563

  18. Comparative analysis of virulence determinants, antibiotic susceptibility patterns and serogrouping of atypical enteropathogenic Escherichia coli versus typical enteropathogenic E. coli in India.

    PubMed

    Malvi, Supriya; Appannanavar, Suma; Mohan, Balvinder; Kaur, Harsimran; Gautam, Neha; Bharti, Bhavneet; Kumar, Yashwant; Taneja, Neelam

    2015-10-01

    The epidemiology of enteropathogenic Escherichia coli (EPEC) and the significance of isolation of atypical EPEC (aEPEC) in childhood diarrhoea have not been well studied in an Indian context. A comparative study was undertaken to investigate virulence determinants, antibiotic susceptibility patterns and serogrouping of typical EPEC (tEPEC) versus aEPEC causing diarrhoea in children. A total of 400 prospective and 500 retrospective E. coli isolates were included. PCR was performed for eae, bfpA, efa, nleB, nleE, cdt, ehxA and paa genes. The Clinical and Laboratory Standards Institute's disc diffusion test was used to determine the antimicrobial susceptibility. Phenotypic screening of extended spectrum β-lactamases (ESBLs), AmpC and Klebsiella pneumoniae carbapenemase (KPC) production, and molecular detection of bla(NDM-1), bla(VIM), bla(CTX-M-15), bla(IMP) and bla(KPC) were performed. aEPEC (57.6 %) were more common as compared with tEPEC (42.3 %). The occurrence of virulence genes was observed to be three times higher in aEPEC as compared with tEPEC, efa1 (14.7 % of aEPEC, 4 % of tEPEC) being the most common. Most of the isolates did not belong to the classical EPEC O-serogroups. The highest resistance was observed against amoxicillin (93.22 %) followed by quinolones (83 %), cephalosporins (37.28 %), cotrimoxazole (35.59 %) and carbapenems (30.5 %). Overall equal numbers of aEPEC (41.17 %) and tEPEC (40 %) were observed to be multidrug-resistant. Fifteen EPEC strains demonstrated presence of ESBLs, five produced AmpC and four each produced metallo-β-lactamases and KPC-type carbapenemases; eight, seven and one isolate(s) each were positive for bla(VIM), bla(CTX-M-15) and bla(NDM-1), respectively. Here, to the best of our knowledge, we report for the first time on carbapenem resistance and the presence of bla(NDM-1) and bla(CTX-M-15) in EPEC isolates from India.

  19. Quantitative Proteomic Analysis Reveals Formation of an EscL-EscQ-EscN Type III Complex in Enteropathogenic Escherichia coli▿

    PubMed Central

    Biemans-Oldehinkel, Esther; Sal-Man, Neta; Deng, Wanyin; Foster, Leonard J.; Finlay, B. Brett

    2011-01-01

    We characterized Orf5 and SepQ, two type III secretion (T3S) system proteins in enteropathogenic Escherichia coli, and showed that they are essential for T3S, associated with the bacterial membrane, and interact with EscN. Our findings suggest that Orf5 and SepQ are homologs of YscL and YscQ from Yersinia, respectively. PMID:21804003

  20. Thiophenone Attenuates Enteropathogenic Escherichia coli O103:H2 Virulence by Interfering with AI-2 Signaling

    PubMed Central

    Valen Rukke, Håkon; Benneche, Tore; Aamdal Scheie, Anne

    2016-01-01

    Interference with bacterial quorum sensing communication provides an anti-virulence strategy to control pathogenic bacteria. Here, using the Enteropathogenic E. coli (EPEC) O103:H2, we showed for the first time that thiophenone TF101 reduced expression of lsrB; the gene encoding the AI-2 receptor. Combined results of transcriptional and phenotypic analyses suggested that TF101 interfere with AI-2 signalling, possibly by competing with AI-2 for binding to LsrB. This is supported by in silico docking prediction of thiophenone TF101 in the LsrB pocket. Transcriptional analyses furthermore showed that thiophenone TF101 interfered with expression of the virulence genes eae and fimH. In addition, TF101 reduced AI-2 induced E. coli adhesion to colorectal adenocarcinoma cells. TF101, on the other hand, did not affect epinephrine or norepinephrine enhanced E. coli adhesion. Overall, our results showed that thiophenone TF101 interfered with virulence expression in E. coli O103:H2, suggestedly by interfering with AI-2 mediated quorum sensing. We thus conclude that thiophenone TF101 might represent a promising future anti-virulence agent in the fight against pathogenic E. coli. PMID:27309855

  1. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli

    PubMed Central

    Crane, John K

    2013-01-01

    Xanthine oxidase (XO) has been recognized as an important host defense enzyme for decades. In our recent study in Infection and Immunity, we found that enteropathogenic and Shiga-toxigenic E. coli (EPEC and STEC) were far more resistant to killing by the XO pathway than laboratory E. coli strains used in the past. Although XO plus hypoxanthine substrate rarely generated enough H2O2 to kill EPEC and STEC, the pathogens were able to sense the H2O2 and react to it with an increase in expression of virulence factors, most notably Shiga toxin (Stx). H2O2 produced by XO also triggered a chloride secretory response in T84 cell monolayers studied in the Ussing chamber. Adding exogenous XO plus its substrate in vivo did not decrease the number of STEC bacteria recovered from ligated intestinal loops, but instead appeared to worsen the infection and increased the amount of Stx2 toxin produced. XO plus hypoxanthine also increases the ability of Stx2 to translocate across intestinal monolayers. With regard to EPEC and STEC, the role of XO appears more complex and subtle than what has been reported in the past, since XO also plays a role in host-pathogen signaling, in regulating virulence in pathogens, in Stx production and in toxin translocation. Uric acid produced by XO may also be in itself an immune modulator in the intestinal tract. PMID:23811846

  2. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli.

    PubMed

    Crane, John K

    2013-01-01

    Xanthine oxidase (XO) has been recognized as an important host defense enzyme for decades. In our recent study in Infection and Immunity, we found that enteropathogenic and Shiga-toxigenic E. coli (EPEC and STEC) were far more resistant to killing by the XO pathway than laboratory E. coli strains used in the past. Although XO plus hypoxanthine substrate rarely generated enough H 2O 2 to kill EPEC and STEC, the pathogens were able to sense the H2O2 and react to it with an increase in expression of virulence factors, most notably Shiga toxin (Stx). H 2O 2 produced by XO also triggered a chloride secretory response in T84 cell monolayers studied in the Ussing chamber. Adding exogenous XO plus its substrate in vivo did not decrease the number of STEC bacteria recovered from ligated intestinal loops, but instead appeared to worsen the infection and increased the amount of Stx2 toxin produced. XO plus hypoxanthine also increases the ability of Stx2 to translocate across intestinal monolayers. With regard to EPEC and STEC, the role of XO appears more complex and subtle than what has been reported in the past, since XO also plays a role in host-pathogen signaling, in regulating virulence in pathogens, in Stx production and in toxin translocation. Uric acid produced by XO may also be in itself an immune modulator in the intestinal tract.

  3. Characterization of Monkey Enteropathogenic Escherichia coli (EPEC) and Human Typical and Atypical EPEC Serotype Isolates from Neotropical Nonhuman Primates

    PubMed Central

    Carvalho, Vania M.; Gyles, Carlton L.; Ziebell, Kim; Ribeiro, Marcela A.; Catão-Dias, José L.; Sinhorini, Idércio L.; Otman, Jamile; Keller, Rogéria; Trabulsi, Luiz R.; Pestana de Castro, Antônio F.

    2003-01-01

    Enteropathogenic Escherichia coli (EPEC) has been associated with infantile diarrhea and mortality in humans in developing countries. While diarrhea is also a major problem among primates kept in captivity, the role of E. coli is unclear. This study was designed to characterize diarrheagenic E. coli recovered from the feces of 56 New World nonhuman primates, primarily marmosets (Callithrix spp.). Seventeen of the 56 primates had signs of diarrhea and/or enteritis. E. coli recovered from feces from these animals was tested by PCR for genes encoding virulence factors of diarrheagenic E. coli and for patterns of adherence to HeLa cells. In addition, isolates were characterized by the fluorescence actin staining test and by their ability to induce attaching and effacing lesions. PCR for the eae gene was positive in 10 of the 39 (27%) apparently healthy animals and in 8 of the 17 (47%) animals with diarrhea and/or enteritis. Colonies of eae+ E. coli were serotyped and examined by PCR for genes encoding EPEC virulence markers. The eae+ E. coli isolates recovered from both healthy and sick nonhuman primates demonstrated virulence-associated attributes similar to those of EPEC strains implicated in human disease and are designated monkey EPEC. The results presented here indicate that EPEC may be a significant pathogen for nonhuman primates, deserving further investigation. The similarities between the affected animals investigated in this study and human EPEC infections suggest that marmosets may represent an important model for EPEC in humans. PMID:12624055

  4. A Comparative Study of the Outer Membrane Proteome from an Atypical and a Typical Enteropathogenic Escherichia coli

    PubMed Central

    Taddei, Carla R; Oliveira, Fernanda F; Piazza, Roxane M. F; Paes Leme, Adriana F.; Klitzke, Clécio F; Serrano, Solange M. T; Martinez, Marina B; Elias, Waldir P; Sant´Anna, Osvaldo A

    2011-01-01

    This study compared the proteomic profile of outer membrane proteins (OMPs) from one strain of atypical enteropathogenic Escherichia coli (aEPEC) and one of typical EPEC (tEPEC). The OMPs fractions were obtained using sarcosine extraction, and analyzed by one- and two-dimensional gel electrophoresis (1DE and 2DE, respectively). The 1DE OMPs analysis of typical and atypical EPEC evidenced similar patterns; however, the 2DE OMP profile from the aEPEC revealed more protein spots in the 40- to 70-kDa region. 2DE image analysis identified 159 protein spots in both strains whereas 53 protein spots were observed only in tEPEC and 128 were observed only in aEPEC. Remarkably, 41.5% of aEPEC spots showed higher levels of expression compared to tEPEC, some of which with two, others four or even five times more. Twenty-four selected spots were identified using MALDI-TOF mass spectrometry and they corresponded to proteins involved in cell structure and metabolism, as well as in gene regulation. Some of these proteins showed similarity with proteins identified in other E. coli pathotypes. Besides, the differential expression of some proteins in aEPEC may suggest that it could be related to their features that ascertain the adaptation to distinct environments and the worldwide spread distribution of these pathogens. PMID:21804903

  5. Detection of Escherichia coli Enteropathogens by Multiplex Polymerase Chain Reaction from Children's Diarrheal Stools in Two Caribbean–Colombian Cities

    PubMed Central

    Arzuza, Octavio; Urbina, Delfina; Bai, Jing; Guerra, Julio; Montes, Oscar; Puello, Marta; Mendoza, Ketty; Castro, Gregorio Y.

    2010-01-01

    Abstract Acute diarrheal disease is a leading cause of childhood morbidity and mortality in the developing world and Escherichia coli intestinal pathogens are important causative agents. Information on the epidemiology of E. coli intestinal pathogens and their association with diarrheal disease is limited because no diagnostic testing is available in countries with limited resources. To evaluate the prevalence of E. coli intestinal pathogens in a Caribbean–Colombian region, E. coli clinical isolates from children with diarrhea were analyzed by a recently reported two-reaction multiplex polymerase chain reaction (Gomez-Duarte et al., Diagn Microbiol Infect Dis 2009;63:1–9). The phylogenetic group from all E. coli isolates was also typed by a single-reaction multiplex polymerase chain reaction. We found that among 139 E. coli strains analyzed, 20 (14.4%) corresponded to E. coli diarrheagenic pathotypes. Enterotoxigenic, shiga-toxin–producing, enteroaggregative, diffuse adherent, and enteropathogenic E. coli pathotypes were detected, and most of them belonged to the phylogenetic groups A and B1, known to be associated with intestinal pathogens. This is the first report on the molecular characterization of E. coli diarrheogenic isolates in Colombia and the first report on the potential role of E. coli in childhood diarrhea in this geographic area. PMID:19839760

  6. Enteropathogenic Escherichia coli protein secretion is induced in response to conditions similar to those in the gastrointestinal tract.

    PubMed Central

    Kenny, B; Abe, A; Stein, M; Finlay, B B

    1997-01-01

    The pathogenicity of enteropathogenic Escherichia coli (EPEC) is associated with the expression and secretion of specific bacterial factors. EspB is one such secreted protein which is required to trigger host signaling pathways resulting in effacement of microvilli and cytoskeletal rearrangements. These events presumably contribute to the ensuing diarrhea associated with EPEC infections. EPEC encounters several environmental changes and stimuli during its passage from the external environment into the host gastrointestinal tract. In this paper we show that the secretion of EspB is subject to environmental regulation, and maximal secretion occurs under conditions reminiscent of those in the gastrointestinal tract. Thus, secretion is maximal at 37 degrees C, pH 7, and physiological osmolarity. In addition, maximal secretion requires the presence of sodium bicarbonate and calcium and is stimulated by millimolar concentrations of Fe(NO3)3. The secretion of the four other EPEC-secreted proteins appears to be modulated in a manner similar to that of EspB. Our results also show that secretion is not dependent on CO2, as originally reported by Haigh et al. (FEMS Microbiol. Lett. 129: 63-67, 1995), but that CO2 more likely acts as a component of the medium buffering system, since CO2 dependence was abolished by the use of alternative buffers. PMID:9199427

  7. Detection of Escherichia coli enteropathogens by multiplex polymerase chain reaction from children's diarrheal stools in two Caribbean-Colombian cities.

    PubMed

    Gómez-Duarte, Oscar G; Arzuza, Octavio; Urbina, Delfina; Bai, Jing; Guerra, Julio; Montes, Oscar; Puello, Marta; Mendoza, Ketty; Castro, Gregorio Y

    2010-02-01

    Acute diarrheal disease is a leading cause of childhood morbidity and mortality in the developing world and Escherichia coli intestinal pathogens are important causative agents. Information on the epidemiology of E. coli intestinal pathogens and their association with diarrheal disease is limited because no diagnostic testing is available in countries with limited resources. To evaluate the prevalence of E. coli intestinal pathogens in a Caribbean-Colombian region, E. coli clinical isolates from children with diarrhea were analyzed by a recently reported two-reaction multiplex polymerase chain reaction (Gomez-Duarte et al., Diagn Microbiol Infect Dis 2009;63:1-9). The phylogenetic group from all E. coli isolates was also typed by a single-reaction multiplex polymerase chain reaction. We found that among 139 E. coli strains analyzed, 20 (14.4%) corresponded to E. coli diarrheagenic pathotypes. Enterotoxigenic, shiga-toxin-producing, enteroaggregative, diffuse adherent, and enteropathogenic E. coli pathotypes were detected, and most of them belonged to the phylogenetic groups A and B1, known to be associated with intestinal pathogens. This is the first report on the molecular characterization of E. coli diarrheogenic isolates in Colombia and the first report on the potential role of E. coli in childhood diarrhea in this geographic area.

  8. Characterization of the pathogenome and phylogenomic classification of enteropathogenic Escherichia coli of the O157:non-H7 serotypes

    PubMed Central

    Sanjar, Fatemeh; Rusconi, Brigida; Hazen, Tracy H.; Koenig, Sara S.K.; Mammel, Mark K.; Feng, Peter C.H.; Rasko, David A.; Eppinger, Mark

    2015-01-01

    Escherichia coli of the O157 serogroup are comprised of a diverse collection of more than 100 O157:non-H7 serotypes that are found in the environment, animal reservoir and infected patients and some have been linked to severe outbreaks of human disease. Among these, the enteropathogenic E. coli O157:non-H7 serotypes carry virulence factors that are hallmarks of enterohemorrhagic E. coli, such as causing attaching and effacing lesions during human gastrointestinal tract infections. Given the shared virulence gene pool between O157:H7 and O157:non-H7 serotypes, our objective was to examine the prevalence of virulence traits of O157:non-H7 serotypes within and across their H-serotype and when compared to other E. coli pathovars. We sequenced six O157:non-H7 genomes complemented by four genomes from public repositories in an effort to determine their virulence state and genetic relatedness to the highly pathogenic enterohemorrhagic O157:H7 lineage and its ancestral O55:H7 serotype. Whole-genome-based phylogenomic analysis and molecular typing is indicative of a non-monophyletic origin of the heterogeneous O157:non-H7 serotypes that are only distantly related to the O157:H7 serotype. The availability of multiple genomes enables robust phylogenomic placement of these strains into their evolutionary context, and the assessment of the pathogenic potential of the O157:non-H7 strains in causing human disease. PMID:25962987

  9. Characterization of the pathogenome and phylogenomic classification of enteropathogenic Escherichia coli of the O157:non-H7 serotypes.

    PubMed

    Sanjar, Fatemeh; Rusconi, Brigida; Hazen, Tracy H; Koenig, Sara S K; Mammel, Mark K; Feng, Peter C H; Rasko, David A; Eppinger, Mark

    2015-07-01

    Escherichia coli of the O157 serogroup are comprised of a diverse collection of more than 100 O157:non-H7 serotypes that are found in the environment, animal reservoir and infected patients and some have been linked to severe outbreaks of human disease. Among these, the enteropathogenic E. coli O157:non-H7 serotypes carry virulence factors that are hallmarks of enterohemorrhagic E. coli, such as causing attaching and effacing lesions during human gastrointestinal tract infections. Given the shared virulence gene pool between O157:H7 and O157:non-H7 serotypes, our objective was to examine the prevalence of virulence traits of O157:non-H7 serotypes within and across their H-serotype and when compared to other E. coli pathovars. We sequenced six O157:non-H7 genomes complemented by four genomes from public repositories in an effort to determine their virulence state and genetic relatedness to the highly pathogenic enterohemorrhagic O157:H7 lineage and its ancestral O55:H7 serotype. Whole-genome-based phylogenomic analysis and molecular typing is indicative of a non-monophyletic origin of the heterogeneous O157:non-H7 serotypes that are only distantly related to the O157:H7 serotype. The availability of multiple genomes enables robust phylogenomic placement of these strains into their evolutionary context, and the assessment of the pathogenic potential of the O157:non-H7 strains in causing human disease.

  10. Characterization of the universal stress protein F from atypical enteropathogenic Escherichia coli and its prevalence in Enterobacteriaceae.

    PubMed

    de Souza, Cristiane S; Torres, Alfredo G; Caravelli, Andressa; Silva, Anderson; Polatto, Juliana M; Piazza, Roxane M F

    2016-12-01

    Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous strains in terms of serotypes, adherence patterns and the presence of novel virulence factors. This heterogeneity is intriguing, promoting studies trying to characterize these novel proteins and to better comprehend this pathotype group. In a previous study analyzing low-molecular mass proteomes of four representative aEPEC strains of three different adhesion phenotypes, we classified proteins according to their annotated function, with most of them being involved in metabolism and transport; while some of them were classified as hypothetical proteins. The majority of the hypothetical proteins were homologue products of genes identified in the genome of enterohemorrhagic E. coli. One of the hypothetical proteins was annotated as Z2335, with orthologue in EPEC, and by bioinformatics analysis, this protein was revealed to be the universal stress protein F (UspF). Thus, herein we successfully obtained a recombinant UspF protein from aEPEC, which is a α/β, ATP-binding protein involved in stress response, with comparable protein production among the four studied strains, but showing noteworthy differences when cultivated in different stress conditions, also present in other enterobacterial species, such as Shigella sonnei and Citrobacter freundii. Furthermore, our results confirm that the Usp protein superfamily encompasses a conserved group of proteins involved in stress resistance in aEPEC and other Enterobacteriaceae.

  11. Characterization of the universal stress protein F from atypical enteropathogenic Escherichia coli and its prevalence in Enterobacteriaceae

    PubMed Central

    de Souza, Cristiane S.; Torres, Alfredo G.; Caravelli, Andressa; Silva, Anderson; Polatto, Juliana M.

    2016-01-01

    Abstract Atypical enteropathogenic Escherichia coli (aEPEC) are heterogeneous strains in terms of serotypes, adherence patterns and the presence of novel virulence factors. This heterogeneity is intriguing, promoting studies trying to characterize these novel proteins and to better comprehend this pathotype group. In a previous study analyzing low‐molecular mass proteomes of four representative aEPEC strains of three different adhesion phenotypes, we classified proteins according to their annotated function, with most of them being involved in metabolism and transport; while some of them were classified as hypothetical proteins. The majority of the hypothetical proteins were homologue products of genes identified in the genome of enterohemorrhagic E. coli. One of the hypothetical proteins was annotated as Z2335, with orthologue in EPEC, and by bioinformatics analysis, this protein was revealed to be the universal stress protein F (UspF). Thus, herein we successfully obtained a recombinant UspF protein from aEPEC, which is a α/β, ATP‐binding protein involved in stress response, with comparable protein production among the four studied strains, but showing noteworthy differences when cultivated in different stress conditions, also present in other enterobacterial species, such as Shigella sonnei and Citrobacter freundii. Furthermore, our results confirm that the Usp protein superfamily encompasses a conserved group of proteins involved in stress resistance in aEPEC and other Enterobacteriaceae. PMID:27616205

  12. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells.

    PubMed Central

    Knutton, S; Rosenshine, I; Pallen, M J; Nisan, I; Neves, B C; Bain, C; Wolff, C; Dougan, G; Frankel, G

    1998-01-01

    Enteropathogenic Escherichia coli (EPEC), like many bacterial pathogens, employ a type III secretion system to deliver effector proteins across the bacterial cell. In EPEC, four proteins are known to be exported by a type III secretion system_EspA, EspB and EspD required for subversion of host cell signal transduction pathways and a translocated intimin receptor (Tir) protein (formerly Hp90) which is tyrosine-phosphorylated following transfer to the host cell to become a receptor for intimin-mediated intimate attachment and 'attaching and effacing' (A/E) lesion formation. The structural basis for protein translocation has yet to be fully elucidated for any type III secretion system. Here, we describe a novel EspA-containing filamentous organelle that is present on the bacterial surface during the early stage of A/E lesion formation, forms a physical bridge between the bacterium and the infected eukaryotic cell surface and is required for the translocation of EspB into infected epithelial cells. PMID:9545230

  13. Hfq reduces envelope stress by controlling expression of envelope-localized proteins and protein complexes in enteropathogenic Escherichia coli.

    PubMed

    Vogt, Stefanie L; Raivio, Tracy L

    2014-05-01

    Gram-negative bacteria possess several envelope stress responses that detect and respond to damage to this critical cellular compartment. The σ(E) envelope stress response senses the misfolding of outer membrane proteins (OMPs), while the Cpx two-component system is believed to detect the misfolding of periplasmic and inner membrane proteins. Recent studies in several Gram-negative organisms found that deletion of hfq, encoding a small RNA chaperone protein, activates the σ(E) envelope stress response. In this study, we assessed the effects of deleting hfq upon activity of the σ(E) and Cpx responses in non-pathogenic and enteropathogenic (EPEC) strains of Escherichia coli. We found that the σ(E) response was activated in Δhfq mutants of all E. coli strains tested, resulting from the misregulation of OMPs. The Cpx response was activated by loss of hfq in EPEC, but not in E. coli K-12. Cpx pathway activation resulted in part from overexpression of the bundle-forming pilus (BFP) in EPEC Δhfq. We found that Hfq repressed expression of the BFP via PerA, a master regulator of virulence in EPEC. This study shows that Hfq has a more extensive role in regulating the expression of envelope proteins and horizontally acquired virulence genes in E. coli than previously recognized.

  14. Clonal relations of atypical enteropathogenic Escherichia coli O157:H16 strains isolated from various sources from several countries.

    PubMed

    Feng, Peter C H; Keys, Christine; Lacher, David W; Beutin, Lothar; Bentancor, Adriana; Heuvelink, Annet; Afset, Jan E; Rumi, Valeria; Monday, Steven

    2012-12-01

    Atypical enteropathogenic Escherichia coli (aEPEC) is comprised of a large heterogeneous group of strains and serotypes that carry the intimin gene (eae) but no other EPEC virulence factors. In a previous study, we examined a few aEPEC strains of O157:H16 serotype from the U.S. and France and found these to be nearly homologous, and speculated that the same strain had been disseminated or perhaps they are part of a large clonal group that exists worldwide. To test that hypothesis, we examined additional 45 strains isolated from various sources from 4 other countries and determined that although there are a few eae-negative O157:H16 strains, most are aEPEC that carried eae and specifically, the ε-eae allele. Analysis by pulsed field gel electrophoresis (PFGE) and multilocus sequence typing showed that as a whole, O157:H16 strains are phylogenetically diverse and have different sequence types and PFGE profiles. But the aEPEC strains within the O157:H16 serotype, regardless of the eae allele carried, are a highly conserved and homologous group of sequence type (ST)-171 strains that shared similar PFGE profiles. These aEPEC strains of O157:H16 serotype are not closely related to any of the major EPEC and enterohemorrhagic E. coli clonal lineages and appear to be part of a large clonal group that are prevalent worldwide.

  15. DNA looping-dependent autorepression of LEE1 P1 promoters by Ler in enteropathogenic Escherichia coli (EPEC)

    PubMed Central

    Bhat, Abhayprasad; Shin, Minsang; Jeong, Jae-Ho; Kim, Hyun-Ju; Lim, Hyung-Ju; Rhee, Joon Haeng; Paik, Soon-Young; Takeyasu, Kunio; Tobe, Toru; Yen, Hilo; Lee, Gwangrog; Choy, Hyon E.

    2014-01-01

    Ler, a homolog of H-NS in enteropathogenic Escherichia coli (EPEC), plays a critical role in the expression of virulence genes encoded by the pathogenic island, locus of enterocyte effacement (LEE). Although Ler acts as an antisilencer of multiple LEE operons by alleviating H-NS–mediated silencing, it represses its own expression from two LEE1 P1 promoters, P1A and P1B, that are separated by 10 bp. Various in vitro biochemical methods were used in this study to elucidate the mechanism underlying transcription repression by Ler. Ler acts through two AATT motifs, centered at position −111.5 on the coding strand and at +65.5 on the noncoding strand, by simultaneously repressing P1A and P1B through DNA-looping. DNA-looping was visualized using atomic force microscopy. It is intriguing that an antisilencing protein represses transcription, not by steric exclusion of RNA polymerase, but by DNA-looping. We propose that the DNA-looping prevents further processing of open promoter complex (RPO) at these promoters during transcription initiation. PMID:24920590

  16. Plasmids coding for drug resistance and localized adherence to HeLa cells in enteropathogenic Escherichia coli O55:H- and O55:H6.

    PubMed Central

    Laporta, M Z; Silva, M L; Scaletsky, I C; Trabulsi, L R

    1986-01-01

    Plasmids coding for drug resistance and localized adherence (LA) to HeLa cells were found in two enteropathogenic Escherichia coli strains belonging to serotypes O55:H- and O55:H6. Strain 49-81 HSJ (O55:H-) carries two plasmids, one coding for both ampicillin resistance (Apr) and LA (pMS49). Strain 71-82 HSJ (O55:H6) harbors only one plasmid, coding for resistance to sulfadiazine, chloramphenicol, kanamycin, ampicillin, and LA (pMS71). Plasmids pMS49 and pMS71 were transferred to E. coli K-12 711 and from this strain to E. coli K-12 J53. Curing with acridine orange of an Apr LA+ transconjugant showed that both characteristics were lost simultaneously. The plasmids have a molecular weight of approximately 55 X 10(6) and are the first naturally recombinant plasmids coding for adherence and drug resistance described in enteropathogenic E. coli. Images PMID:3510986

  17. Disruption the Outer Membrane of Enteropathogenic and Enterotoxigenic Escherichia coli using Proanthocyanidins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    American cranberry (Vaccinium macrocarpon) proanthocyanidins (PACs) have been reported as a natural antibacterial agent to suppress the growth of pathogenic Escherichia coli. The objective of this study was to investigate the efficacy of cranberry-derived proanthocyanidins on destabilizing the outer...

  18. Escherichia coli O157:H7 requires intimin for enteropathogenicity in calves.

    PubMed

    Dean-Nystrom, E A; Bosworth, B T; Moon, H W; O'Brien, A D

    1998-09-01

    Enterohemorrhagic Escherichia coli (EHEC) strains require intimin to induce attaching and effacing (A/E) lesions in newborn piglets. Infection of newborn calves with intimin-positive or intimin-negative EHEC O157:H7 demonstrated that intimin is needed for colonization, A/E lesions, and disease in cattle. These results suggest that experiments to determine if intimin-based vaccines reduce O157:H7 levels in cattle are warranted.

  19. Virulence, Antimicrobial Resistance Properties and Phylogenetic Background of Non-H7 Enteropathogenic Escherichia coli O157

    PubMed Central

    Ferdous, Mithila; Kooistra-Smid, Anna M. D.; Zhou, Kai; Rossen, John W. A.; Friedrich, Alexander W.

    2016-01-01

    Escherichia coli (E.coli) O157 that do not produce Shiga toxin and do not possess flagellar antigen H7 are of diverse H serotypes. In this study, the antibiotic resistance properties, genotype of a set of virulence associated genes and the phylogenetic background of E. coli O157:non-H7 groups were compared. Whole genome sequencing was performed on fourteen O157:non-H7 isolates collected in the STEC-ID-net study. The genomes were compared with E. coli O157 genomes and a typical Enteropathogenic E. coli (tEPEC) genome downloaded from NCBI. Twenty-six (86%) of the analyzed genomes had the intimin encoding gene eae but of different types mostly correlating with their H types, e.g., H16, H26, H39, and H45 carried intimin type ε, β, κ, and α, respectively. They belonged to several E. coli phylogenetic groups, i.e., to phylogenetic group A, B1, B2, and D. Seven (50%) of our collected O157:non-H7 isolates were resistant to two or more antibiotics. Several mobile genetic elements, such as plasmids, insertion elements, and pathogenicity islands, carrying a set of virulence and resistance genes were found in the E. coli O157:non-H7 isolates. Core genome phylogenetic analysis showed that O157:non-H7 isolates probably evolved from different phylogenetic lineages and were distantly related to the E. coli O157:H7 lineage. We hypothesize that independent acquisition of mobile genetic elements by isolates of different lineages have contributed to the different molecular features of the O157:non-H7 strains. Although distantly related to the STEC O157, E. coli O157:non-H7 isolates from multiple genetic background could be considered as pathogen of concern for their diverse virulence and antibiotic resistance properties. PMID:27733849

  20. Cross-Reactive Protection against Enterohemorrhagic Escherichia coli Infection by Enteropathogenic E. coli in a Mouse Model ▿

    PubMed Central

    Calderon Toledo, Carla; Arvidsson, Ida; Karpman, Diana

    2011-01-01

    Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are related attaching and effacing (A/E) pathogens. The genes responsible for the A/E pathology are carried on a chromosomal pathogenicity island termed the locus of enterocyte effacement (LEE). Both pathogens share a high degree of homology in the LEE and additional O islands. EHEC prevalence is much lower in areas where EPEC is endemic. This may be due to the development of antibodies against common EPEC and EHEC antigens. This study investigated the hypothesis that EPEC infections may protect against EHEC infections. We used a mouse model to inoculate BALB/c mice intragastrically, first with EPEC and then with EHEC (E. coli O157:H7). Four control groups received either a nonpathogenic E. coli (NPEC) strain followed by EHEC (NPEC/EHEC), phosphate-buffered saline (PBS) followed by EHEC (PBS/EHEC), EPEC/PBS, or PBS/PBS. Mice were monitored for weight loss and symptoms. EPEC colonized the intestine after challenge, and mice developed serum antibodies to intimin and E. coli secreted protein B (encoded in the LEE). Prechallenge with an EPEC strain had a protective effect after EHEC infection, as only a few mice developed mild symptoms, from which they recovered. These mice had an increase in body weight similar to that in control animals, and tissue morphology exhibited mild intestinal changes and normal renal histology. All mice that were not prechallenged with the EPEC strain developed mild to severe symptoms after EHEC infection, with weight loss as well as intestinal and renal histopathological changes. These data suggest that EPEC may protect against EHEC infection in this mouse model. PMID:21402761

  1. Functional Characterization of EscK (Orf4), a Sorting Platform Component of the Enteropathogenic Escherichia coli Injectisome.

    PubMed

    Soto, Eduardo; Espinosa, Norma; Díaz-Guerrero, Miguel; Gaytán, Meztlli O; Puente, José L; González-Pedrajo, Bertha

    2017-01-01

    The type III secretion system (T3SS) is a supramolecular machine used by many bacterial pathogens to translocate effector proteins directly into the eukaryotic host cell cytoplasm. Enteropathogenic Escherichia coli (EPEC) is an important cause of infantile diarrheal disease in underdeveloped countries. EPEC virulence relies on a T3SS encoded within a chromosomal pathogenicity island known as the locus of enterocyte effacement (LEE). In this work, we pursued the functional characterization of the LEE-encoded protein EscK (previously known as Orf4). We provide evidence indicating that EscK is crucial for efficient T3S and belongs to the SctK (OrgA/YscK/MxiK) protein family, whose members have been implicated in the formation of a sorting platform for secretion of T3S substrates. Bacterial fractionation studies showed that EscK localizes to the inner membrane independently of the presence of any other T3SS component. Combining yeast two-hybrid screening and pulldown assays, we identified an interaction between EscK and the C-ring/sorting platform component EscQ. Site-directed mutagenesis of conserved residues revealed amino acids that are critical for EscK function and for its interaction with EscQ. In addition, we found that T3S substrate overproduction is capable of compensating for the absence of EscK. Overall, our data suggest that EscK is a structural component of the EPEC T3SS sorting platform, playing a central role in the recruitment of T3S substrates for boosting the efficiency of the protein translocation process.

  2. Isolation of atypical enteropathogenic Escherichia coli from children with and without diarrhoea in Delhi and the National Capital Region, India.

    PubMed

    Ghosh, Pankaj Kumar; Ali, Arif

    2010-10-01

    A total of 17 typical and atypical enteropathogenic Escherichia coli (EPEC) were isolated from 396 children with and without diarrhoea. Out of 12 EPEC isolates from patients with diarrhoea, 3 (25 %) were atypical EPEC while 9 (75 %) were typical EPEC. It was observed that atypical EPEC strains had colonized the intestines of healthy children and its isolation rates were higher in healthy children than in children with diarrhoea. Interestingly all of the atypical EPEC isolates carried a megaplasmid, mostly comparable with the size of EPEC adherence factor (EAF) encoding gene but no virulence gene was detected in this megaplasmid. Studies also indicated that multidrug resistance EPEC are emerging and all the atypical EPEC strains showed significantly less resistance to all antimicrobial agents used in this study than typical EPEC. This study also supports the opinion that Shiga toxin-producing E. coli does not pose a major threat to human health in India. Subtyping analysis reveals that eae-α1, eae-β2 and eae-λ could be common EPEC subtypes prevalent in children with diarrhoea in Delhi. The present study is believed to be the first report of the detection of atypical EPEC from children without diarrhoea and records of isolation of eae-γ1, eae-γ2 and the rare eae-λ subtype in India. The data also indicated that typical EPEC are a common cause of diarrhoea and atypical EPEC are emerging as colonizers of the intestine of children with and without diarrhoea in Delhi and the National Capital Region, India.

  3. Occurrence and Characterization of Enteropathogenic Escherichia coli (EPEC) in Retail Ready-to-Eat Foods in China.

    PubMed

    Zhang, Shuhong; Wu, Qingping; Zhang, Jumei; Zhu, Xuemei

    2016-01-01

    Enteropathogenic Escherichia coli (EPEC) is an important foodborne pathogen that potentially causes infant and adult diarrhea. The occurrence and characteristics of EPEC in retail ready-to-eat (RTE) foods have not been thoroughly investigated in China. This study aimed to investigate EPEC occurrence in retail RTE foods sold in the markets of China and to characterize the isolated EPEC by serotyping, virulence gene analyses, antibiotic susceptibility test, and molecular typing based on enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). From May 2012 to April 2013, 459 RTE food samples were collected from retail markets in 24 cities of China. E. coli in general, and EPEC specifically, were detected in 144 (31.4%) and 39 (8.5%) samples, respectively. Cold vegetable in sauce was the food type most frequently contaminated with EPEC (18.6%). Of 39 EPEC isolates, 38 were atypical EPEC (eae+) and 1 was typical EPEC (eae+bfpA+) by multiplex PCR assays. The virulence genes espA, espB, tir, and iha were detected in 12, 9, 2, and 1 of 39 isolates, respectively, while genes toxB, etpD, katP, and saa were not detected. O-antigen serotyping results showed that among 28 typeable isolates, the most common serotype was O119, followed by O26, O111, and O128. Many isolates were resistant to tetracycline (64.1%; 25/39), ampicillin (48.7%; 19/39), and trimethoprim/sulfamethoxazole (48.7%; 19/39). ERIC-PCR indicated high genetic diversity in EPEC strains, which classified 42 strains (39 isolates and 3 reference strains) into 32 different profiles with a discrimination index of 0.981. The findings of this study highlight the need for close surveillance of the RTE foods at the level of production, packaging, and storage to minimize risks of foodborne disease.

  4. Quantitative Real-time Polymerase Chain Reaction for Enteropathogenic Escherichia coli: A Tool for Investigation of Asymptomatic Versus Symptomatic Infections

    PubMed Central

    Barletta, Francesca; Mercado, Erik; Ruiz, Joaquim; Ecker, Lucie; Lopez, Giovanni; Mispireta, Monica; Gil, Ana I.; Lanata, Claudio F.; Cleary, Thomas G.

    2011-01-01

    Background. Enteropathogenic Escherichia coli (EPEC) strains are pediatric pathogens commonly isolated from both healthy and sick children with diarrhea in areas of endemicity. The aim of this study was to compare the bacterial load of EPEC isolated from stool samples from children with and without diarrhea to determine whether bacterial load might be a useful tool for further study of this phenomenon. Methods. EPEC was detected by polymerase chain reaction (PCR) of colonies isolated on MacConkey plates from 53 diarrheal and 90 healthy children aged <2 years. DNA was isolated from stool samples by cetyltrimethylammonium bromide extraction. To standardize quantification by quantitative real-time PCR (qRT-PCR), the correlation between fluorescence threshold cycle and copy number of the intimin gene of EPEC E2348/69 was determined. Results. The detection limit of qRT-PCR was 5 bacteria/mg stool. The geometric mean load in diarrhea was 299 bacteria/mg (95% confidence interval [CI], 77–1164 bacteria/mg), compared with 29 bacteria/mg (95% CI, 10–87 bacteria/mg) in control subjects (P = .016). Bacterial load was significantly higher in children with diarrhea than in control subjects among children <12 months of age (178 vs 5 bacteria/mg; P = .006) and among children with EPEC as the sole pathogen (463 vs 24 bacteria/mg; P = .006). Conclusions. EPEC load measured by qRT-PCR is higher in diarrheal than in healthy children. qRT-PCR may be useful to study the relationship between disease and colonization in settings of endemicity. PMID:22028433

  5. Characteristics of Escherichia coli strains belonging to enteropathogenic E. coli serogroups isolated in Italy from children with diarrhea.

    PubMed Central

    Giammanco, A; Maggio, M; Giammanco, G; Morelli, R; Minelli, F; Scheutz, F; Caprioli, A

    1996-01-01

    Fifty-five Escherichia coli strains belonging to enteropathogenic E. coli (EPEC) serogroups were examined for phenotypic and genetic factors associated with virulence. The strains were isolated in Italy from children with diarrhea and identified as EPEC by clinical laboratories using commercially available antisera. O:H serotyping showed that 35 strains (27 of O26, O111, and O128 serogroups) belonged to 11 serotypes considered to be classical EPEC O:H serotypes. The other 20 isolates were classified as 15 nonclassical EPEC O:H serotypes. All the potential EPEC virulence factors associated with bacterial adhesion (localized adherence, fluorescentactin staining test positivity, presence of the attaching and effacing [eaeA] gene), the production of verotoxin, and the positivity with the enterohemorrhagic E. coli probe were significantly more frequent among isolates belonging to classical than nonclassical serotypes. Strains displaying an aggregative adhesion and hybridizing with the enteroaggregative DNA probe were found in serogroups O86, O111, and O126. Verotoxin-producing isolates belonged to serogroups O26, O111, and O128. Only one of the isolates hybridized with the EPEC adherence factor (EAF) probe, but 33 strains gave positive results with the eae probe, confirming that the former is more suitable in epidemiological studies in European countries. These results indicate that up to 75% of strains identified as EPEC by commercial antisera may possess potential virulence properties and/or belong to classical EPEC O:H serotypes and suggest that O grouping is still a useful diagnostic tool for presumptive identification of diarrheagenic E. coli in clinical laboratories. PMID:8904439

  6. Estimating the Prevalence of Potential Enteropathogenic Escherichia coli and Intimin Gene Diversity in a Human Community by Monitoring Sanitary Sewage

    PubMed Central

    Yang, Kun; Pagaling, Eulyn

    2014-01-01

    Presently, the understanding of bacterial enteric diseases in the community and their virulence factors relies almost exclusively on clinical disease reporting and examination of clinical pathogen isolates. This study aimed to investigate the feasibility of an alternative approach that monitors potential enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) prevalence and intimin gene (eae) diversity in a community by directly quantifying and characterizing target virulence genes in the sanitary sewage. The quantitative PCR (qPCR) quantification of the eae, stx1, and stx2 genes in sanitary sewage samples collected over a 13-month period detected eae in all 13 monthly sewage samples at significantly higher abundance (93 to 7,240 calibrator cell equivalents [CCE]/100 ml) than stx1 and stx2, which were detected sporadically. The prevalence level of potential EPEC in the sanitary sewage was estimated by calculating the ratio of eae to uidA, which averaged 1.0% (σ = 0.4%) over the 13-month period. Cloning and sequencing of the eae gene directly from the sewage samples covered the majority of the eae diversity in the sewage and detected 17 unique eae alleles belonging to 14 subtypes. Among them, eae-β2 was identified to be the most prevalent subtype in the sewage, with the highest detection frequency in the clone libraries (41.2%) and within the different sampling months (85.7%). Additionally, sewage and environmental E. coli isolates were also obtained and used to determine the detection frequencies of the virulence genes as well as eae genetic diversity for comparison. PMID:24141131

  7. Antimicrobial Resistant Enteropathogenic Escherichia coli and Salmonella spp. in Houseflies Infesting Fish in Food Markets in Zambia

    PubMed Central

    Songe, Mwansa M.; Hang’ombe, Bernard M.; Knight-Jones, Theodore J. D.; Grace, Delia

    2016-01-01

    Diarrhea is one of the most common diseases and is a leading cause of death in developing countries. This is often caused by contaminated food. Poor food hygiene standards are exacerbated by the presence of flies which can transmit a variety of infectious microorganisms, particularly through animal source foods. This fact becomes especially important in developing countries like Zambia, where fish is a highly valued source of protein. Our interest in this study was to identify if the flies that beset food markets in Zambia carry important pathogenic bacteria on their bodies, and subsequently if these bacteria carry resistance genes to commonly used antibiotics, which would indicate problems in eradicating these pathogens. The present study took into account fish vendors’ and consumers’ perception of flies and interest in interventions to reduce their numbers. We conducted semi-structured interviews with (1) traders (comprised of randomly selected males and females) and (2) consumers (including randomly selected males and females). Thereafter, we collected flies found on fish in markets in Mongu and Lusaka districts of Zambia. For the entire study, a total of 418 fly samples were analyzed in the laboratory and Salmonella spp. and enteropathogenic Escherichia coli were isolated from the flies. Further laboratory screening revealed that overall, 17.2% (72/418) (95% CI; 43.2%–65.5%) of total samples analyzed contained Extended-Spectrum Beta-Lactamase (ESBL)-producing E. coli. These significant findings call for a strengthening of the antibiotic administering policy in Zambia and the development of sustainable interventions to reduce fly numbers in food markets and improve food safety and hygiene. PMID:28036049

  8. Crk Adaptors Negatively Regulate Actin Polymerization in Pedestals Formed by Enteropathogenic Escherichia coli (EPEC) by Binding to Tir Effector

    PubMed Central

    Martín-Villa, José Manuel; Benito-León, María; Martinez-Quiles, Narcisa

    2014-01-01

    Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor proteins, which in turn recruit and activate N-WASP, a ubiquitous member of the Wiskott-Aldrich syndrome family of proteins. N-WASP activates the Arp2/3 complex to promote actin polymerization. Other proteins aside from components of the Tir-Nck-N-WASP pathway are recruited to the pedestals but their functions are unknown. Here we investigate the function of two alternatively spliced isoforms of Crk adaptors (CrkI/II) and the paralog protein CrkL during pedestal formation by EPEC. We found that the Crk isoforms act as redundant inhibitors of pedestal formation. The SH2 domain of CrkII and CrkL binds to phosphorylated tyrosine 474 of Tir and competes with Nck to bind Tir, preventing its recruitment to pedestals and thereby inhibiting actin polymerization. EPEC infection induces phosphorylation of the major regulatory tyrosine in CrkII and CrkL, possibly preventing the SH2 domain of these proteins from interacting with Tir. Phosphorylated CrkII and CrkL proteins localize specifically to the plasma membrane in contact with EPEC. Our study uncovers a novel role for Crk adaptors at pedestals, opening a new perspective in how these oncoproteins regulate actin polymerization. PMID:24675776

  9. Characterization of enteropathogenic and Shiga toxin-producing Escherichia coli in cattle and deer in a shared agroecosystem.

    PubMed

    Singh, Pallavi; Sha, Qiong; Lacher, David W; Del Valle, Jacquelyn; Mosci, Rebekah E; Moore, Jennifer A; Scribner, Kim T; Manning, Shannon D

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) is an important foodborne pathogen. Cattle are suggested to be an important reservoir for STEC; however, these pathogens have also been isolated from other livestock and wildlife. In this study we sought to investigate transmission of STEC, enterohemorrhagic E. coli (EHEC) and enteropathogenic E. coli (EPEC) between cattle and white-tailed deer in a shared agroecosystem. Cattle feces were collected from 100 animals in a Michigan dairy farm in July 2012, while 163 deer fecal samples were collected during two sampling periods (March and June). The locations of deer fecal pellets were recorded via geographic information system mapping and microsatellite multi-locus genotyping was used to link the fecal samples to individual deer at both time points. Following subculture to sorbitol MacConkey agar and STEC CHROMagar, the pathogens were characterized by serotyping, stx profiling, and PCR-based fingerprinting; multilocus sequence typing (MLST) was performed on a subset. STEC and EHEC were cultured from 12 to 16% of cattle, respectively, and EPEC was found in 36%. Deer were significantly less likely to have a pathogen in March vs. June where the frequency of STEC, EHEC, and EPEC was 1, 6, and 22%, respectively. PCR fingerprinting and MLST clustered the cattle- and deer-derived strains together in a phylogenetic tree. Two STEC strains recovered from both animal species shared MLST and fingerprinting profiles, thereby providing evidence of interspecies transmission and highlighting the importance of wildlife species in pathogen shedding dynamics and persistence in the environment and cattle herds.

  10. [Epidemic of gastroenteritis in Noumea (New Caledonia) caused by an enterotoxinogenic strain of Escherichia coli (0l26:B16) believed to be enteropathogenic].

    PubMed

    Germani, Y; Amat, F; Brethes, B; Begaud, E; Plassart, H

    1985-01-01

    A strain of enteropathogenic Escherichia coli 0126:B16 has been isolated in fifteen children and one adult during a severe outbreak. One infant is dead. The strain produced heat-stable enterotoxin, attach to rabbit enterocytes but did not have colonization factor antigen CFA/I or CFA/II. Its hemagglutination type was the same that the E. coli H10407, CFA/I+. It presented a resistance at eight antibiotics and, with the loss of enterotoxigenicity, there was a loss of resistance at ampicillin and of the capacity to attach to enterocytes.

  11. Specific Properties of Enteropathogenic Escherichia coli Isolates from Diarrheal Patients and Comparison to Strains from Foods and Fecal Specimens from Cattle, Swine, and Healthy Carriers in Osaka City, Japan

    PubMed Central

    Wang, Lili; Wakushima, Mitsuko; Aota, Tetsu; Yoshida, Yuka; Kita, Toshimasa; Maehara, Tomofumi; Ogasawara, Jun; Choi, Changsun; Kamata, Yoichi; Hara-Kudo, Yukiko

    2013-01-01

    For exhaustive detection of diarrheagenic Escherichia coli, we previously developed a colony-hybridization method using hydrophobic grid-membrane filters in combination with multiplex real-time PCR. To assess the role of domestic animals as the source of atypical enteropathogenic E. coli (aEPEC), a total of 679 samples (333 from foods, fecal samples from 227 domestic animals, and 119 from healthy people) were examined. Combining 48 strains previously isolated from patients and carriers, 159 aEPEC strains were classified by phylogroup, virulence profile, and intimin typing. Phylogroup B1 was significantly more prevalent among aEPEC from patients (50%) and bovine samples (79%) than from healthy carriers (16%) and swine strains (23%), respectively. Intimin type β1 was predominant in phylogroup B1; B1-β1 strains comprised 26% of bovine strains and 25% of patient strains. The virulence profile groups Ia and Ib were also observed more frequently among bovine strains than among porcine strains. Similarly, virulence group Ia was detected more frequently among patient strains than strains of healthy carriers. A total of 85 strains belonged to virulence group I, and 63 of these strains (74%) belonged to phylogroup B1. The present study suggests that the etiologically important aEPEC in diarrheal patients could be distinguished from aEPEC strains indigenous to humans based on type, such as B1, Ia, and β1/γ1, which are shared with bovine strains, while the aEPEC strains in healthy humans are different, and some of these were also present in porcine samples. PMID:23220963

  12. TccP2-mediated subversion of actin dynamics by EPEC 2 - a distinct evolutionary lineage of enteropathogenic Escherichia coli.

    PubMed

    Whale, Andrew D; Hernandes, Rodrigo T; Ooka, Tadasuke; Beutin, Lothar; Schüller, Stephanie; Garmendia, Junkal; Crowther, Lynette; Vieira, Mônica A M; Ogura, Yoshitoshi; Krause, Gladys; Phillips, Alan D; Gomes, Tania A T; Hayashi, Tetsuya; Frankel, Gad

    2007-06-01

    Enteropathogenic Escherichia coli (EPEC) is a major cause of infantile diarrhoea in developing countries. While colonizing the gut mucosa, EPEC triggers extensive actin-polymerization activity at the site of intimate bacterial attachment, which is mediated by avid interaction between the outer-membrane adhesin intimin and the type III secretion system (T3SS) effector Tir. The prevailing dogma is that actin polymerization by EPEC is achieved following tyrosine phosphorylation of Tir, recruitment of Nck and activation of neuronal Wiskott-Aldrich syndrome protein (N-WASP). In closely related enterohaemorrhagic E. coli (EHEC) O157 : H7, actin polymerization is triggered following recruitment of the T3SS effector TccP/EspF(U) (instead of Nck) and local activation of N-WASP. In addition to tccP, typical EHEC O157 : H7 harbour a pseudogene (tccP2). However, it has recently been found that atypical, sorbitol-fermenting EHEC O157 carries functional tccP and tccP2 alleles. Interestingly, intact tccP2 has been identified in the incomplete genome sequence of the prototype EPEC strain B171 (serotype O111 : H-), but it is missing from another prototype EPEC strain E2348/69 (O127 : H7). E2348/69 and B171 belong to two distinct evolutionary lineages of EPEC, termed EPEC 1 and EPEC 2, respectively. Here, it is reported that while both EPEC 1 and EPEC 2 triggered actin polymerization via the Nck pathway, tccP2 was found in 26 of 27 (96.2 %) strains belonging to EPEC 2, and in none of the 34 strains belonging to EPEC 1. It was shown that TccP2 was: (i) translocated by the locus of enterocyte effacement-encoded T3SS; (ii) localized at the tip of the EPEC 2-induced actin-rich pedestals in infected HeLa cells and human intestinal in vitro organ cultures ex vivo; and (iii) essential for actin polymerization in infected Nck-/- cells. Therefore, unlike strains belonging to EPEC 1, strains belonging to EPEC 2 can trigger actin polymerization using both Nck and TccP2 actin

  13. Phenotypic and genotypic characteristics associated with biofilm formation in clinical isolates of atypical enteropathogenic Escherichia coli (aEPEC) strains

    PubMed Central

    2014-01-01

    Background Biofilm formation by enteropathogenic Escherichia coli (EPEC) have been recently described in the prototype typical EPEC E2348/69 strain and in an atypical EPEC O55:H7 strain. In this study, we sought to evaluate biofilm formation in a collection of 126 atypical EPEC strains isolated from 92 diarrheic and 34 nondiarrheic children, belonging to different serotypes. The association of biofilm formation and adhesin-related genes were also investigated. Results Biofilm formation occurred in 37 (29%) strains of different serotypes, when the assays were performed at 26°C and 37°C for 24 h. Among these, four strains (A79, A87, A88, and A111) formed a stronger biofilm than did the others. The frequency of biofilm producers was higher among isolates from patients compared with isolates from controls (34.8% vs 14.7%; P = 0.029). An association was found between biofilm formation and expression of type 1 fimbriae and curli (P < 0.05). Unlike the previously described aEPEC O55:H7, one aEPEC O119:HND strain (A111) formed a strong biofilm and pellicle at the air-liquid interface, but did not express curli. Transposon mutagenesis was used to identify biofilm-deficient mutants. Transposon insertion sequences of six mutants revealed similarity with type 1 fimbriae (fimC, fimD, and fimH), diguanylate cyclase, ATP synthase F1, beta subunit (atpD), and the uncharacterized YjiC protein. All these mutants were deficient in biofilm formation ability. Conclusion This study showed that the ability to adhere to abiotic surfaces and form biofilm is present in an array of aEPEC strains. Moreover, it seems that the ability to form biofilms is associated with the presence of type 1 fimbriae and diguanylate cyclase. Characterization of additional biofilm formation mutants may reveal other mechanisms involved in biofilm formation and bring new insights into aEPEC adhesion and pathogenesis. PMID:25012525

  14. Molecular Profiling of Shiga Toxin-Producing Escherichia coli and Enteropathogenic E. coli Strains Isolated from French Coastal Environments

    PubMed Central

    Balière, C.; Rincé, A.; Delannoy, S.; Fach, P.

    2016-01-01

    ABSTRACT Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) strains may be responsible for food-borne infections in humans. Twenty-eight STEC and 75 EPEC strains previously isolated from French shellfish-harvesting areas and their watersheds and belonging to 68 distinguishable serotypes were characterized in this study. High-throughput real-time PCR was used to search for the presence of 75 E. coli virulence-associated gene targets, and genes encoding Shiga toxin (stx) and intimin (eae) were subtyped using PCR tests and DNA sequencing, respectively. The results showed a high level of diversity between strains, with 17 unique virulence gene profiles for STEC and 56 for EPEC. Seven STEC and 15 EPEC strains were found to display a large number or a particular combination of genetic markers of virulence and the presence of stx and/or eae variants, suggesting their potential pathogenicity for humans. Among these, an O26:H11 stx1a eae-β1 strain was associated with a large number of virulence-associated genes (n = 47), including genes carried on the locus of enterocyte effacement (LEE) or other pathogenicity islands, such as OI-122, OI-71, OI-43/48, OI-50, OI-57, and the high-pathogenicity island (HPI). One O91:H21 STEC strain containing 4 stx variants (stx1a, stx2a, stx2c, and stx2d) was found to possess genes associated with pathogenicity islands OI-122, OI-43/48, and OI-15. Among EPEC strains harboring a large number of virulence genes (n, 34 to 50), eight belonged to serotype O26:H11, O103:H2, O103:H25, O145:H28, O157:H7, or O153:H2. IMPORTANCE The species E. coli includes a wide variety of strains, some of which may be responsible for severe infections. This study, a molecular risk assessment study of E. coli strains isolated from the coastal environment, was conducted to evaluate the potential risk for shellfish consumers. This report describes the characterization of virulence gene profiles and stx/eae polymorphisms of E. coli

  15. Role of Tir and Intimin in the Virulence of Rabbit Enteropathogenic Escherichia coli Serotype O103:H2

    PubMed Central

    Marchès, Olivier; Nougayrède, Jean-Philippe; Boullier, Séverine; Mainil, Jacques; Charlier, Gérard; Raymond, Isabelle; Pohl, Pierre; Boury, Michèle; De Rycke, Jean; Milon, Alain; Oswald, Eric

    2000-01-01

    Attaching and effacing (A/E) rabbit enteropathogenic Escherichia coli (REPEC) strains belonging to serogroup O103 are an important cause of diarrhea in weaned rabbits. Like human EPEC strains, they possess the locus of enterocyte effacement clustering the genes involved in the formation of the A/E lesions. In addition, pathogenic REPEC O103 strains produce an Esp-dependent but Eae (intimin)-independent alteration of the host cell cytoskeleton characterized by the formation of focal adhesion complexes and the reorganization of the actin cytoskeleton into bundles of stress fibers. To investigate the role of intimin and its translocated coreceptor (Tir) in the pathogenicity of REPEC, we have used a newly constructed isogenic tir null mutant together with a previously described eae null mutant. When human HeLa epithelial cells were infected, the tir mutant was still able to induce the formation of stress fibers as previously reported for the eae null mutant. When the rabbit epithelial cell line RK13 was used, REPEC O103 produced a classical fluorescent actin staining (FAS) effect, whereas both the eae and tir mutants were FAS negative. In a rabbit ligated ileal loop model, neither mutant was able to induce A/E lesions. In contrast to the parental strain, which intimately adhered to the enterocytes and destroyed the brush border microvilli, bacteria of both mutants were clustered in the mucus without reaching and damaging the microvilli. The role of intimin and Tir was then analyzed in vivo by oral inoculation of weaned rabbits. Although both mutants were still present in the intestinal flora of the rabbits 3 weeks after oral inoculation, neither mutant strain induced any clinical signs or significant weight loss in the inoculated rabbits whereas the parental strain caused the death of 90% of the inoculated rabbits. Nevertheless, an inflammatory infiltrate was present in the lamina propria of the rabbits infected with both mutants, with an inflammatory response greater

  16. Is Shiga Toxin-Negative Escherichia coli O157:H7 Enteropathogenic or Enterohemorrhagic Escherichia coli? Comprehensive Molecular Analysis Using Whole-Genome Sequencing

    PubMed Central

    Ferdous, Mithila; Zhou, Kai; Morabito, Stefano; Croughs, Peter D.; de Boer, Richard F.; Kooistra-Smid, Anna M. D.; Friedrich, Alexander W.

    2015-01-01

    The ability of Escherichia coli O157:H7 to induce cellular damage leading to disease in humans is related to numerous virulence factors, most notably the stx gene, encoding Shiga toxin (Stx) and carried by a bacteriophage. Loss of the Stx-encoding bacteriophage may occur during infection or culturing of the strain. Here, we collected stx-positive and stx-negative variants of E. coli O157:H7/NM (nonmotile) isolates from patients with gastrointestinal complaints. Isolates were characterized by whole-genome sequencing (WGS), and their virulence properties and phylogenetic relationship were determined. Because of the presence of the eae gene but lack of the bfpA gene, the stx-negative isolates were considered atypical enteropathogenic E. coli (aEPEC). However, they had phenotypic characteristics similar to those of the Shiga toxin-producing E. coli (STEC) isolates and belonged to the same sequence type, ST11. Furthermore, EPEC and STEC isolates shared similar virulence genes, the locus of enterocyte effacement region, and plasmids. Core genome phylogenetic analysis using a gene-by-gene typing approach showed that the sorbitol-fermenting (SF) stx-negative isolates clustered together with an SF STEC isolate and that one non-sorbitol-fermenting (NSF) stx-negative isolate clustered together with NSF STEC isolates. Therefore, these stx-negative isolates were thought either to have lost the Stx phage or to be a progenitor of STEC O157:H7/NM. As detection of STEC infections is often based solely on the identification of the presence of stx genes, these may be misdiagnosed in routine laboratories. Therefore, an improved diagnostic approach is required to manage identification, strategies for treatment, and prevention of transmission of these potentially pathogenic strains. PMID:26311863

  17. Is Shiga Toxin-Negative Escherichia coli O157:H7 Enteropathogenic or Enterohemorrhagic Escherichia coli? Comprehensive Molecular Analysis Using Whole-Genome Sequencing.

    PubMed

    Ferdous, Mithila; Zhou, Kai; Mellmann, Alexander; Morabito, Stefano; Croughs, Peter D; de Boer, Richard F; Kooistra-Smid, Anna M D; Rossen, John W A; Friedrich, Alexander W

    2015-11-01

    The ability of Escherichia coli O157:H7 to induce cellular damage leading to disease in humans is related to numerous virulence factors, most notably the stx gene, encoding Shiga toxin (Stx) and carried by a bacteriophage. Loss of the Stx-encoding bacteriophage may occur during infection or culturing of the strain. Here, we collected stx-positive and stx-negative variants of E. coli O157:H7/NM (nonmotile) isolates from patients with gastrointestinal complaints. Isolates were characterized by whole-genome sequencing (WGS), and their virulence properties and phylogenetic relationship were determined. Because of the presence of the eae gene but lack of the bfpA gene, the stx-negative isolates were considered atypical enteropathogenic E. coli (aEPEC). However, they had phenotypic characteristics similar to those of the Shiga toxin-producing E. coli (STEC) isolates and belonged to the same sequence type, ST11. Furthermore, EPEC and STEC isolates shared similar virulence genes, the locus of enterocyte effacement region, and plasmids. Core genome phylogenetic analysis using a gene-by-gene typing approach showed that the sorbitol-fermenting (SF) stx-negative isolates clustered together with an SF STEC isolate and that one non-sorbitol-fermenting (NSF) stx-negative isolate clustered together with NSF STEC isolates. Therefore, these stx-negative isolates were thought either to have lost the Stx phage or to be a progenitor of STEC O157:H7/NM. As detection of STEC infections is often based solely on the identification of the presence of stx genes, these may be misdiagnosed in routine laboratories. Therefore, an improved diagnostic approach is required to manage identification, strategies for treatment, and prevention of transmission of these potentially pathogenic strains.

  18. Genetic characterization of Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic Escherichia coli (EPEC) isolates from goat's milk and goat farm environment.

    PubMed

    Álvarez-Suárez, María-Elena; Otero, Andrés; García-López, María-Luisa; Dahbi, Ghizlane; Blanco, Miguel; Mora, Azucena; Blanco, Jorge; Santos, Jesús A

    2016-11-07

    The aim of this study was to characterize a collection of 44 Shiga toxin-producing (STEC) and enteropathogenic Escherichia coli (EPEC) isolated from goat milk and goat farm environment. Of the 19 STEC isolates, five (26.3%) carried the stx1 gene, four (21.1%) the stx2 gene and 10 (52.6%) presented both stx genes. Six (31.6%) STEC strains were eae-positive and belonged to serotypes related to severe human disease (O157:H7 and O5:HNM). Another seven STEC strains were of serotype O146:H21 and three of serotype O166:H28, also linked to human disease. The STEC strains isolated from goat milk were of serotypes potentially pathogenic for humans. All the 25 EPEC isolates were considered atypical (aEPEC) and one aEPEC strain was of serotype O26:H11, a serotype frequently isolated in children with diarrhea. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 23 sequence types (ST) were detected, 14 of them newly described. Twelve STs grouped STEC isolates and 11 STs grouped EPEC isolates. Genetic typing by pulsed field gel electrophoresis (PFGE) resulted in 38 patterns which grouped in 10 clusters. Well-defined groups were also observed for strains of pathogenic serotypes. In conclusion, strains of STEC and aEPEC belonging to serotypes related to severe human disease have been detected in goat milk and the goat farm environment. Ruminants are an important reservoir of STEC strains and the role of these animals as carriers of other pathogenic types of E. coli seems to be an emerging concern.

  19. Scanning and transmission electron microscopic study of adherence of Escherichia coli O103 enteropathogenic and/or enterohemorrhagic strain GV in enteric infection in rabbits.

    PubMed Central

    Licois, D; Reynaud, A; Federighi, M; Gaillard-Martinie, B; Guillot, J F; Joly, B

    1991-01-01

    The GV strain (serotype O103:H2:K-), originally isolated from a diarrheic rabbit, is an enteropathogenic Escherichia coli strain that produces diarrhea without synthesizing the classical enterotoxins and that is not invasive. This strain is characterized by a 117-kb plasmid (pREC-1). Histological study of the gut by scanning electron microscopy and transmission electron microscopy was performed on the GV strain, on a derivative strain cured of pREC-1, and on transconjugants obtained by transfer of pREC-1 to nonpathogenic strains E. coli K-12 and 6100, not belonging to the O103 serogroup. The GV strain adhered to the epithelial cells of the ileum and large intestine, whereas the cured GV strain did not. Transfer of plasmid pREC-1 to E. coli K-12 or 6100 allowed the bacteria to attach to the intestinal mucosa in the same manner as that of the wild-type GV strain. Thus, pREC-1 seems to play an important role in attachment to and colonization of the intestinal tract of rabbits by E. coli serogroup O103. Scanning electron microscopy showed numerous bacteria attached together and closely associated with intestinal villi. Transmission electron microscopy revealed effacing lesions characteristic of enteropathogenic E. coli strains: effacing of microvilli and cuplike projections (pedestal formations) associated with an acute inflammatory and hemorrhagic response. In contrast with the results reported for rabbit pathogenic O15 strains, it appeared that the Peyer's patches were not involved in the early stages of infection with the O103 GV strain. This strain may represent a model for the study of the virulence and pathogenic effects of enteropathogenic and enterohemorrhagic E. coli strains. Images PMID:1894377

  20. Survival of multi-drug resistant enteropathogenic Escherichia coli and Salmonella paratyphi in Vembanadu lake as a function of saltwater barrier along southwest coast of India.

    PubMed

    Chandran, Abhirosh; Suson, P S; Thomas, A P; Hatha, Mohamed; Mazumder, Asit

    2013-06-01

    The objective of the study was to evaluate the survival response of multi-drug resistant enteropathogenic Escherichia coli and Salmonella paratyphi to the salinity fluctuations induced by a saltwater barrier constructed in Vembanadu lake, which separates the lake into a freshwater dominated southern and brackish water dominated northern part. Therefore, microcosms containing freshwater, brackish water and microcosms with different saline concentrations (5, 10, 15, 20, 25 ppt) inoculated with E. coli/S. paratyphi were monitored up to 34 days at 20 and 30 °C. E. coli and S. paratyphi exhibited significantly higher (p < 0.05) survival at 20 °C compared to 30 °C in all microcosms. Despite fresh/brackish water, E. coli and S. paratyphi showed prolonged survival up to 34 days at both temperatures. They also demonstrated better survival potential at all tested saline concentrations except 25 ppt where a significantly higher (p < 0.0001) decay was observed. Therefore, enhanced survival exhibited by the multi-drug resistant enteropathogenic E. coli and S. paratyphi over a wide range of salinity levels suggest that they are able to remain viable for a very long time at higher densities in all seasons of the year in Vembanadu lake irrespective of saline concentrations, and may pose potential public health risks during recreational activities.

  1. Involvement of the mannose receptor and p38 mitogen-activated protein kinase signaling pathway of the microdomain of the integral membrane protein after enteropathogenic Escherichia coli infection.

    PubMed

    Liu, Zhihua; Ma, Yanlei; Moyer, Mary Pat; Zhang, Peng; Shi, Chenzhang; Qin, Huanlong

    2012-04-01

    The microdomain of the integral membrane protein (MIMP) has been shown to adhere to mucin and to antagonize the adhesion of enteropathogenic Escherichia coli (EPEC) to epithelial cells; however, the mechanism has not been fully elucidated. In this study, we further identified the receptor of MIMP on NCM460 cells and investigated the mechanism (the p38 mitogen-activated protein kinase [MAPK] pathway) following the interaction of MIMP and its corresponding receptor, mannose receptor. We first identified the target receptor of MIMP on the surfaces of NCM460 cells using immunoprecipitation-mass spectrometry technology. We also verified the mannose receptor and examined the degradation and activation of the p38 MAPK signaling pathway. The results indicated that MIMP adhered to NCM460 cells by binding to the mannose receptor and inhibited the phosphorylation of p38 MAPK stimulated after EPEC infection via inhibition of the Toll-like receptor 5 pathway. These findings indicated that MIMPs relieve the injury of NCM460 cells after enteropathogenic E. coli infection through the mannose receptor and inhibition of the p38 MAPK signaling pathway, both of which may therefore be potential therapeutic targets for intestinal diseases, such as inflammatory bowel disease.

  2. β1-Chain Integrins Are Not Essential for Intimin-Mediated Host Cell Attachment and Enteropathogenic Escherichia coli-Induced Actin Condensation

    PubMed Central

    Liu, Hui; Magoun, Loranne; Leong, John M.

    1999-01-01

    Intimin is a bacterial outer membrane protein required for intimate attachment of enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) to mammalian cells. β1-chain integrins have been proposed as candidate receptors for intimin. We found that binding of mammalian cells to immobilized intimin was not detectable unless mammalian cells were preinfected with EPEC or EHEC. β1-chain integrin antagonists or inactivation of the gene encoding the β1-chain did not affect binding of preinfected mammalian cells to intimin or the actin condensation associated with the attachment of EPEC. The results indicate that β1-chain integrins are not essential for intimin-mediated cell attachment or EPEC-mediated actin polymerization. PMID:10085058

  3. DsbA directs efficient expression of outer membrane secretin EscC of the enteropathogenic Escherichia coli type III secretion apparatus.

    PubMed

    Miki, Tsuyoshi; Okada, Nobuhiko; Kim, Yeongsuk; Abe, Akio; Danbara, Hirofumi

    2008-02-01

    The formation of disulfide bond is essential for the folding, activity, and stability of many secreted proteins of Gram-negative bacteria. The disulfide oxidoreductase, DsbA, introduces disulfide bonds into exported proteins from the cytoplasm. In pathogenic bacteria, DsbA is required to process virulence determinants for their folding and assembly. In this study, we investigated the role of DsbA in enteropathogenic Escherichia coli. Here, we show that the DsbA is required for stable expression of outer membrane secretin EscC. DsbA has no effect on LEE transcription as measured with LEE-lacZ fusions. Replacement of either cysteine residue 136 or 155 of EscC with a serine resulted in reduced level of EscC, similar to the effect of the dsbA mutation. These results demonstrate the role of DsbA in assembly of the type III secretion apparatus.

  4. The Flagella of an Atypical Enteropathogenic Escherichia coli Strain Are Required for Efficient Interaction with and Stimulation of Interleukin-8 Production by Enterocytes In Vitro▿

    PubMed Central

    Sampaio, Suely C. F.; Gomes, Tânia A. T.; Pichon, Christophe; du Merle, Laurence; Guadagnini, Stéphanie; Abe, Cecilia M.; Sampaio, Jorge L. M.; Le Bouguénec, Chantal

    2009-01-01

    The ability of some typical enteropathogenic Escherichia coli (EPEC) strains to adhere to, invade, and increase interleukin-8 (IL-8) production in intestinal epithelial cells in vitro has been demonstrated. However, few studies regarding these aspects have been performed with atypical EPEC (aEPEC) strains, which are emerging enteropathogens in Brazil. In this study, we evaluated a selected aEPEC strain (1711-4) of serotype O51:H40, the most prevalent aEPEC serotype in Brazil, in regard to its ability to adhere to and invade Caco-2 and T84 cells and to elicit IL-8 production in Caco-2 cells. The role of flagella in aEPEC 1711-4 adhesion, invasion, and IL-8 production was investigated by performing the same experiments with an isogenic aEPEC mutant unable to produce flagellin (FliC), the flagellum protein subunit. We demonstrated that this mutant (fliC mutant) had a marked decrease in the ability to adhere to T84 cells and invade both T84 and Caco-2 cells in gentamicin protection assays and by transmission electron microscopy. In addition, the aEPEC 1711-4 fliC mutant had a reduced ability to stimulate IL-8 production by Caco-2 cells in early (3-h) but not in late (24-h) infections. Our findings demonstrate that flagella of aEPEC 1711-4 are required for efficient adhesion, invasion, and early but not late IL-8 production in intestinal epithelial cells in vitro. PMID:19620340

  5. [Annual distribution of serotypes of Salmonella, Shigella, and infantile enteropathogenic Escherichia coli in the Republic of Argentina, 1979-1981].

    PubMed

    Eiguer, T; Butta, N

    1983-01-01

    We report data of isolation of 3,665 strains of Salmonella, 1,855 of Shigella and 697 of E. coli infantile enteropathogenic (EPI) from different sources: human, animal, food and water, in Argentina during the triennium 1979-1981, considering their importance in the chain of transmission of enterobacteria. It appears that S. typhimurium is the most common among all the isolated serotypes of Salmonella, following in order of importance, S. oranienburg, S. derby, S. panama, S. agona, S. anatum, S. newport, S. bredeney and S. montevideo. It is important to emphasize the appearance of new Shigella serotypes in Argentina, particularly Sh. dysenteriae 2. We found that E. coli EPI 0111:B4 was the most frequent serotype and in 1981 the serotype 0112:B13 was also found.

  6. Generation of a restriction minus enteropathogenic Escherichia coli E2348/69 strain that is efficiently transformed with large, low copy plasmids

    PubMed Central

    Hobson, Neil; Price, Nancy L; Ward, Jordan D; Raivio, Tracy L

    2008-01-01

    Background Many microbes possess restriction-modification systems that protect them from parasitic DNA molecules. Unfortunately, the presence of a restriction-modification system in a given microbe also hampers genetic analysis. Although plasmids can be successfully conjugated into the enteropathogenic Escherichia coli strain E2348/69 and optimized protocols for competent cell preparation have been developed, we found that a large, low copy (~15) bioluminescent reporter plasmid, pJW15, that we modified for use in EPEC, was exceedingly difficult to transform into E2348/69. We reasoned that a restriction-modification system could be responsible for the low transformation efficiency of E2348/69 and sought to identify and inactivate the responsible gene(s), with the goal of creating an easily transformable strain of EPEC that could complement existing protocols for genetic manipulation of this important pathogen. Results Using bioinformatics, we identified genes in the unfinished enteropathogenic Escherichia coli (EPEC) strain E2348/69 genome whose predicted products bear homology to the HsdM methyltransferases, HsdS specificity subunits, and HsdR restriction endonucleases of type I restriction-modification systems. We constructed a strain carrying a deletion of the conserved enzymatic domain of the EPEC HsdR homologue, NH4, and showed that its transformation efficiency was up to four orders of magnitude higher than that of the parent strain. Further, the modification capacity of NH4 remained intact, since plasmids that were normally recalcitrant to transformation into E2348/69 could be transformed upon passage through NH4. NH4 was unaffected in virulence factor production, since bundle forming pilus (BFP) subunits and type III secreted (T3S) proteins were present at equivalent levels to those seen in E2348/69. Further, NH4 was indistinguishable from E2348/69 in tissue culture infection model assays of localized adherence and T3S. Conclusion We have shown that EPEC

  7. Genome Sequences and Phylogenetic Analysis of K88- and F18-Positive Porcine Enterotoxigenic Escherichia coli

    PubMed Central

    Shepard, Sara M.; Danzeisen, Jessica L.; Isaacson, Richard E.; Seemann, Torsten; Achtman, Mark

    2012-01-01

    Porcine enterotoxigenic Escherichia coli (ETEC) continues to result in major morbidity and mortality in the swine industry via postweaning diarrhea. The key virulence factors of ETEC strains, their serotypes, and their fimbrial components have been well studied. However, most studies to date have focused on plasmid-encoded traits related to colonization and toxin production, and the chromosomal backgrounds of these strains have been largely understudied. Here, we generated the genomic sequences of K88-positive and F18-positive porcine ETEC strains and examined the phylogenetic distribution of clinical porcine ETEC strains and their plasmid-associated genetic content. The genomes of porcine ETEC strains UMNK88 and UMNF18 were both found to contain remarkable plasmid complements containing known virulence factors, potential novel virulence factors, and antimicrobial resistance-associated elements. The chromosomes of these strains also possessed several unique genomic islands containing hypothetical genes with similarity to classical virulence factors, although phage-associated genomic islands dominated the accessory genomes of these strains. Phylogenetic analysis of 78 clinical isolates associated with neonatal and porcine diarrhea revealed that a limited subset of porcine ETEC lineages exist that generally contain common toxin and fimbrial profiles, with many of the isolates belonging to the ST10, ST23, and ST169 multilocus sequencing types. These lineages were generally distinct from existing human ETEC database isolates. Overall, most porcine ETEC strains appear to have emerged from a limited subset of E. coli lineages that either have an increased propensity to carry plasmid-encoded virulence factors or have the appropriate ETEC core genome required for virulence. PMID:22081385

  8. Characterization of Atypical Enteropathogenic Escherichia coli Strains Harboring the astA Gene That Were Associated with a Waterborne Outbreak of Diarrhea in Japan

    PubMed Central

    Yatsuyanagi, Jun; Saito, Shioko; Miyajima, Yoshimichi; Amano, Ken-Ichi; Enomoto, Katsuhiko

    2003-01-01

    The virulence traits of the Escherichia coli strain associated with a waterborne diarrhea outbreak were examined. Forty-one of 75 students (ages 12 to 15) in Akita Prefecture, Japan, showed clinical symptoms. Seven E. coli Ouk:K-:H45 isolates were isolated from the patients as the causative agent of this outbreak. One isolate (EC-3605) showed the presence of E. coli attaching-and-effacing (eaeA) and enteroaggregative E. coli heat-stable enterotoxin-1 (astA) genes and the absence of Shiga toxin (stx1 and stx2) genes. A polymorphic enteropathogenic E. coli (EPEC) adherence factor plasmid was detected in EC-3605 with a major structural gene deletion and a regulatory gene frameshift mutation, revealing that EC-3605 represents an atypical EPEC strain harboring the astA gene. The role that atypical EPEC strains harboring the astA gene play in human disease is unclear. Our results, along with those of others, present a possibility that these strains comprise a distinct category of diarrheagenic E. coli and that astA affects the age distribution of atypical-EPEC infection. PMID:12734245

  9. [Isolation of enteropathogenic Escherichia coli O157:H16 identified in a diarrhea case in a child and his household contacts in La Pampa Province, Argentina].

    PubMed

    Silveyra, Ivana M; Pereyra, Adriana M; Alvarez, María G; Villagran, Mariana D; Baroni, Andrea B; Deza, Natalia; Carbonari, Claudia C; Miliwebsky, Elizabeth; Rivas, Marta

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) is a major causative agent of acute diarrhea in children in developing countries. This pathotype is divided into typical EPEC (tEPEC) and atypical EPEC (aEPEC), based on the presence of the bfp virulence factor associated with adhesion, encoded in the pEAF plasmid. In the present study, the isolation of aEPEC O157:H16 from a bloody diarrhea case in a child and his household contacts (mother, father and sister) is described. The strain was characterized as E. coli O157:H16 eae-ɛ-positive, sorbitol fermenter with β-glucuronidase activity, susceptible to all antimicrobials tested, and negative for virulence factors stx1, stx2, ehxA and bfp. XbaI-PFGE performed on all isolates showed the AREXHX01.1040 macrorestriction pattern, with 100% similarity. These results highlight the importance of epidemiological surveillance of E. coli O157-associated diarrhea cases identified in children and their family contacts, as well as the incorporation of molecular techniques that allow the detection of the different E. coli pathotypes.

  10. Late Establishment of the Attaching and Effacing Lesion Caused by Atypical Enteropathogenic Escherichia coli Depends on Protein Expression Regulated by Per

    PubMed Central

    Bueris, Vanessa; Huerta-Cantillo, Jazmín; Navarro-Garcia, Fernando; Ruiz, Renato M.; Cianciarullo, Aurora M.

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) is classified as typical (tEPEC) or atypical (aEPEC) based on the presence or absence of the E. coli adherence factor plasmid (pEAF), respectively. The hallmark of EPEC infection is the formation of the attaching and effacing (A/E) lesions on the gut mucosa. We compared the kinetics of A/E lesion formation induced by aEPEC and tEPEC. The examination of infected HEp-2 cells clearly demonstrated delayed A/E lesion formation by aEPEC in comparison to tEPEC. This delay was associated with the expression of locus of enterocyte effacement (LEE)-encoded virulence factors (i.e., intimin and EspD). Indeed, the insertion of a plasmid containing perABC, a transcriptional regulator of virulence factors involved in A/E formation, into aEPEC strains increased and accelerated the formation of A/E lesions. Interestingly, the enhanced expression and translocation of LEE-encoded proteins, such as those expressed in LEE5 (intimin) and LEE4 (EspD), in aEPEC (perABC) was independent of bacterial adhesion. The secretion kinetics of these two proteins representing LEE5 and LEE4 expression correlated with A/E lesion formation. We conclude that the lack of Per in the regulation network of virulence genes is one of the main factors that delay the establishment of A/E lesions induced by aEPEC strains. PMID:25385791

  11. Phenotypic and genetic features of enteropathogenic Escherichia coli isolates from diarrheal children in the Ribeirão Preto metropolitan area, São Paulo State, Brazil.

    PubMed

    Pitondo-Silva, André; Nakazato, Gerson; Falcão, Juliana P; Irino, Kinue; Martinez, Roberto; Darini, Ana Lúcia C; Hernandes, Rodrigo Tavanelli

    2015-02-01

    This study was designed to characterize a collection of 60 enteropathogenic Escherichia coli (EPEC) isolates from diarrheic feces of patients in the Ribeirão Preto metropolitan area regarding different phenotypic and molecular features. We examined antibiotic resistance profiles, occurrence of virulence factors-encoding genes, intimin subtypes and the correlation of serotypes among typical (tEPEC) and atypical (aEPEC) EPEC isolates. The results demonstrated that atypical EPEC was more heterogeneous than typical EPEC concerning the characteristics investigated and 45.2% do not belong to classical EPEC serogroups. Intimin subtype β was the most frequent among the EPEC isolates (46.7%), being detected in both tEPEC and aEPEC. The majority of aEPEC isolates presented localized adherence-like (LAL) pattern to HEp-2 cells, although aEPEC isolates displaying diffuse adherence (DA) or non-adherent were also detected. High prevalence of antimicrobial resistance was found for ampicillin, cephalothin, sulfonamide and tetracycline. In general, tEPEC isolates were more resistant to the antimicrobials tested than aEPEC isolates.

  12. The inhibition of COPII trafficking is important for intestinal epithelial tight junction disruption during enteropathogenic Escherichia coli and Citrobacter rodentium infection.

    PubMed

    Thanabalasuriar, Ajitha; Kim, Jinoh; Gruenheid, Samantha

    2013-01-01

    Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are bacterial pathogens that cause severe illnesses in humans. Citrobacter rodentium is a related mouse pathogen that serves as a small animal model for EPEC and EHEC infections. EPEC, EHEC and C. rodentium translocate bacterial virulence proteins directly into host intestinal cells via a type III secretion system (T3SS). Non-LEE-encoded effector A (NleA) is a T3SS effector that is common to EPEC, EHEC and C. rodentium. NleA interacts with and inhibits the mammalian COPII complex, impairing cellular secretion; this interaction is required for bacterial virulence. Although diarrhea is a hallmark of EPEC, EHEC and C. rodentium infections, the underlying mechanisms are not well characterized. One of the essential functions of the intestine is to maintain a barrier between the lumen and submucosa. Tight junctions seal the space between adjacent epithelial cells creating this barrier. Consequently, it is thought that the disruption of intestinal epithelial tight junctions by EPEC, EHEC, and C. rodentium could result in a loss of barrier function. In this study, we demonstrate that NleA mediated COPII inhibition is required for EPEC- and C. rodentium-mediated disruption of tight junction proteins and increases in fecal water content.

  13. Genetic characterization of atypical enteropathogenic Escherichia coli isolates from ewes' milk, sheep farm environments, and humans by multilocus sequence typing and pulsed-field gel electrophoresis.

    PubMed

    Otero, Verónica; Rodríguez-Calleja, José-María; Otero, Andrés; García-López, María-Luisa; Santos, Jesús A

    2013-10-01

    A collection of 81 isolates of enteropathogenic Escherichia coli (EPEC) was obtained from samples of bulk tank sheep milk (62 isolates), ovine feces (4 isolates), sheep farm environment (water, 4 isolates; air, 1 isolate), and human stool samples (9 isolates). The strains were considered atypical EPEC organisms, carrying the eae gene without harboring the pEAF plasmid. Multilocus sequence typing (MLST) was carried out with seven housekeeping genes and 19 sequence types (ST) were detected, with none of them having been previously reported for atypical EPEC. The most frequent ST included 41 strains isolated from milk and human stool samples. Genetic typing by pulsed-field gel electrophoresis (PFGE) resulted in 57 patterns which grouped in 24 clusters. Comparison of strains isolated from the different samples showed phylogenetic relationships between milk and human isolates and also between milk and water isolates. The results obtained show a possible risk for humans due to the presence of atypical EPEC in ewes' milk and suggest a transmission route for this emerging pathogen through contaminated water.

  14. Presence of Shiga toxin-producing Escherichia coli, Enteroinvasive E. coli, Enteropathogenic E. coli, and Enterotoxigenic E. coli on tomatoes from public markets in Mexico.

    PubMed

    Gómez-Aldapa, Carlos A; Torres-Vitela, M Del Refugio; Acevedo-Sandoval, Otilio A; Rangel-Vargas, Esmeralda; Villarruel-López, Angélica; Castro-Rosas, Andjavier

    2013-09-01

    Diarrheagenic Escherichia coli pathotypes (DEP) are important foodborne pathogens in various countries, including Mexico. However, no data exist on the presence of DEP on fresh tomatoes (Solanum lycopericum) from Mexico. The frequency of fecal coliforms (FC), E. coli, and DEP were determined for two tomato varieties. One hundred samples of a saladette tomato variety and 100 samples of a red round tomato variety were collected from public markets in Pachuca, Mexico. Each tomato sample consisted of four whole tomatoes. For the 100 saladette samples, coliform bacterial, FC, E. coli, and DEP were identified in 100, 70, 60, and 10% of samples, respectively. For the 100 red round samples, coliform bacterial, FC, E. coli, and DEP were identified in 100, 75, 65, and 11% of samples, respectively. Identified DEP included Shiga toxin-producing E. coli (STEC), enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). STEC were isolated from 6% of saladette samples and 5% of red round samples. ETEC were isolated from 3% of saladette samples and 4% of red round samples. EPEC were isolated from 2% of saladette samples and 3% of red round samples, and EIEC were isolated from 1% of saladette samples. Both STEC and ETEC were identified in two saladette samples and 1 red round sample. E. coli O157:H7 was not detected in any STEC-positive samples.

  15. Behavior of non-O157 Shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli strains on alfalfa sprouts.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Torres-Vitela, M Del Refugio; Villarruel-López, Angélica; Castro-Rosas, Javier

    2013-08-01

    Data about the behavior of non-O157 Shiga toxin-producing Escherichia coli (non-O157 STEC), enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC), and enteropathogenic E. coli (EPEC) on seeds and alfalfa sprouts are not available. The behavior of STEC, EIEC, ETEC, and EPEC was determined during germination and sprouting of alfalfa seeds at 20 ± 2°C and 30 ± 2°C and on alfalfa sprouts at 3 ± 2°C. When alfalfa seeds were inoculated with STEC, EIEC, ETEC, or EPEC strains, all these diarrheagenic E. coli pathotypes (DEPs) grew during germination and sprouting of seeds, reaching counts of approximately 5 and 6 log CFU/g after 1 day at 20 ± 2°C and 30 ± 2°C, respectively. However, when the sprouts were inoculated after 1 day of seed germination and stored at 20 ± 2°C or 30 ± 2°C, no growth was observed for any DEP during sprouting at 20 ± 2°C or 30 ± 2°C for 9 days. Refrigeration reduced significantly (P < 0.0.5) the number of viable DEPs on sprouts after 20 days in storage; nevertheless, these decreases have no practical significance for the safety of the sprouts.

  16. The Tip of the Iceberg: On the Roles of Regulatory Small RNAs in the Virulence of Enterohemorrhagic and Enteropathogenic Escherichia coli

    PubMed Central

    Bhatt, Shantanu; Egan, Marisa; Jenkins, Valerie; Muche, Sarah; El-Fenej, Jihad

    2016-01-01

    Enterohemorrhagic and enteropathogenic Escherichia coli are gastrointestinal pathogens that disrupt the intestinal microvilli to form attaching and effacing (A/E) lesions on infected cells and cause diarrhea. This pathomorphological trait is encoded within the pathogenicity island locus of enterocyte effacement (LEE). The LEE houses a type 3 secretion system (T3SS), which upon assembly bridges the bacterial cytosol to that of the host and enables the bacterium to traffic dozens of effectors into the host where they hijack regulatory and signal transduction pathways and contribute to bacterial colonization and disease. Owing to the importance of the LEE to EHEC and EPEC pathogenesis, much of the research on these pathogens has centered on its regulation. To date, over 40 proteinaceous factors have been identified that control the LEE at various hierarchical levels of gene expression. In contrast, RNA-based regulatory mechanisms that converge on the LEE have only just begun to be unraveled. In this minireview, we highlight major breakthroughs in small RNAs (sRNAs)-dependent regulation of the LEE, with an emphasis on their mechanisms of action and/or LEE-encoded targets. PMID:27709103

  17. Action of phosphorylated mannanoligosaccharides on immune and hematological responses and fecal consistency of dogs experimentally infected with enteropathogenic Escherichia coli strains

    PubMed Central

    Gouveia, E.M.M.F.; Silva, I.S.; Nakazato, G.; Onselem, V.J.V.; Corrêa, R.A.C.; Araujo, F.R.; Chang, M.R.

    2013-01-01

    The therapeutic action of phosphorylated mannanoligosaccharides (MOS) was investigated regarding its prebiotic activity on enteropathogenic Escherichia coli (EPEC). Diarrhea was induced in dogs by experimental infection with EPEC strains. Then MOS was supplied once a day, in water for 20 days. Immunological (IgA and IgG), hematological (lymphocytes, neutrophils and monocytes) and bacteriological variables (PCR detection of the eae gene of EPEC recovered from stool culture), as well as occurrence of diarrhea were evaluated. All strains caused diarrhea at 24, 48 and 72 h after infection. PCR results indicated that E. coli isolated from stool culture of all infected animals had the eae gene. There was no significant difference among groups as to number of blood cells in the hemogram and IgA and IgG production. MOS was effective in recovering of EPEC-infected dogs since prebiotic-treated animals recovered more rapidly from infection than untreated ones (p < 0.05). This is an important finding since diarrhea causes intense dehydration and nutrient loss. The use of prebiotics for humans and other animals with diarrhea can be an alternative for the treatment and prophylaxis of EPEC infections. PMID:24294246

  18. Diarrheagenic Escherichia coli pathotypes investigation revealed atypical enteropathogenic E. coli as putative emerging diarrheal agents in children living in Botucatu, São Paulo State, Brazil.

    PubMed

    Dias, Regiane C B; Dos Santos, Bruna C; Dos Santos, Luis F; Vieira, Melissa A; Yamatogi, Ricardo S; Mondelli, Alessandro L; Sadatsune, Terue; Sforcin, José M; Gomes, Tânia A T; Hernandes, Rodrigo T

    2016-04-01

    The aim of the present study was to investigate the prevalence of Diarrheagenic Escherichia coli (DEC) pathotypes, a leading cause of diarrhea worldwide, among diarrheal and healthy children, up to 5 years of age, living in the city of Botucatu, São Paulo, Brazil. DEC, investigated by PCR detection of virulence factor-encoding genes associated with the distinct pathotypes, was isolated from 18.0% of the patients, and 19.0% of the controls, with enteroaggregative E. coli (EAEC), the most frequent pathotype, being detected in equal proportion between patients and controls (10.0%). Among the enteropathogenic E. coli (EPEC) isolates, only one isolate was able to produce the localized adherence pattern to HeLa cells, being thus the only typical EPEC identified. All the remaining EPEC were classified as atypical (aEPEC), and detected in 8.0% and 8.5% of the patients and controls, respectively. Regarding the serotypes, 26.5% of the analyzed EPEC isolates belonged to classical EPEC-serogroups, and the only two STEC found were serotyped as O26:H11 (patient) and O119:H7 (control). Antimicrobial susceptibility tests revealed that 43.6%, 29.5% and 2.6% of the DEC isolates were resistant to ampicillin, cotrimoxazole and gentamicin, respectively. Our data indicate that EAEC remains prevalent among children living in Botucatu, and revealed atypical EPEC as emerging putative diarrheal agents in this geographical region.

  19. A Localized Adherence-Like Pattern as a Second Pattern of Adherence of Classic Enteropathogenic Escherichia coli to HEp-2 Cells That Is Associated with Infantile Diarrhea

    PubMed Central

    Scaletsky, Isabel C. A.; Pedroso, Margareth Z.; Oliva, Carlos A. G.; Carvalho, Rozane L. B.; Morais, Mauro B.; Fagundes-Neto, Ulysses

    1999-01-01

    Escherichia coli strains that cause nonbloody diarrhea in infants are known to present three distinct patterns of adherence to epithelial cells, namely, localized (LA), diffuse (DA), and aggregative (AA) adherence. Strains with LA (typical Enteropathogenic Escherichia coli [EPEC]) are well recognized as a cause of secretory diarrhea, but the role of strains with DA (DAEC) is controversial, and strains with AA (EAEC) have been more frequently related to persistent diarrhea whereas its relationship with acute diarrhea is not well defined. To determine the relationship of the different types of E. coli adherence patterns with acute diarrhea (lasting less than 14 days) and persistent diarrhea (lasting more than 14 days) in São Paulo, Brazil, we studied stool specimens from 40 infants under 1 year of age with diarrhea and 40 age-matched control infants without any gastrointestinal symptoms. Twenty-eight (35.0%) of eighty cases yielded adherent E. coli (HEp-2 cells). Strains with localized and aggregative adherence were associated with acute and persistent diarrhea. A total of 11.2% of the adherent strains were typical EPEC serotypes and hybridized with the enteroadherence factor probe; 5.0% were EAEC and hybridized with the EAEC probe. DAEC strains were isolated from 10.0% of patients and 7.5% of controls and did not hybridize with the two probes used (daaC and AIDA-I). Strains with a localized adherence-like pattern (atypical EPEC) were found significantly more frequently (P = 0.028) in cultures from children with diarrhea (17.5%) than in controls (2.5%). PMID:10377120

  20. Dissection of the Role of Pili and Type 2 and 3 Secretion Systems in Adherence and Biofilm Formation of an Atypical Enteropathogenic Escherichia coli Strain

    PubMed Central

    Hernandes, Rodrigo T.; De la Cruz, Miguel A.; Yamamoto, Denise

    2013-01-01

    Atypical enteropathogenic Escherichia coli (aEPEC) strains are diarrheal pathogens that lack bundle-forming pilus production but possess the virulence-associated locus of enterocyte effacement. aEPEC strain 1551-2 produces localized adherence (LA) on HeLa cells; however, its isogenic intimin (eae) mutant produces a diffuse-adherence (DA) pattern. In this study, we aimed to identify the DA-associated adhesin of the 1551-2 eae mutant. Electron microscopy of 1551-2 identified rigid rod-like pili composed of an 18-kDa protein, which was identified as the major pilin subunit of type 1 pilus (T1P) by mass spectrometry analysis. Deletion of fimA in 1551-2 affected biofilm formation but had no effect on adherence properties. Analysis of secreted proteins in supernatants of this strain identified a 150-kDa protein corresponding to SslE, a type 2 secreted protein that was recently reported to be involved in biofilm formation of rabbit and human EPEC strains. However, neither adherence nor biofilm formation was affected in a 1551-2 sslE mutant. We then investigated the role of the EspA filament associated with the type 3 secretion system (T3SS) in DA by generating a double eae espA mutant. This strain was no longer adherent, strongly suggesting that the T3SS translocon is the DA adhesin. In agreement with these results, specific anti-EspA antibodies blocked adherence of the 1551-2 eae mutant. Our data support a role for intimin in LA, for the T3SS translocon in DA, and for T1P in biofilm formation, all of which may act in concert to facilitate host intestinal colonization by aEPEC strains. PMID:23897608

  1. Prevalence and behavior of multidrug-resistant shiga toxin-producing Escherichia coli, enteropathogenic E. coli and enterotoxigenic E. coli on coriander.

    PubMed

    Gómez-Aldapa, Carlos A; Segovia-Cruz, Jesús A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Salas-Rangel, Laura P; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-10-01

    The prevalence and behavior of multidrug-resistant diarrheagenic Escherichia coli pathotypes on coriander was determined. One hundred coriander samples were collected from markets. Generic E. coli were determined using the most probable number procedure. Diarrheagenic E. coli pathotypes (DEPs) were identified using two multiplex polymerase chain reaction procedures. Susceptibility to sixteen antibiotics was tested for the isolated DEPs strains by standard test. The behavior of multidrug-resistant DEPs isolated from coriander was determined on coriander leaves and chopped coriander at 25°± 2 °C and 3°± 2 °C. Generic E. coli and DEPs were identified, respectively, in 43 and 7% of samples. Nine DEPs strains were isolated from positive coriander samples. The identified DEPs included Shiga toxin-producing E. coli (STEC, 4%) enterotoxigenic E. coli (ETEC, 2%) and enteropathogenic E. coli (EPEC, 1%). All isolated DEPs strains exhibited multi-resistance to antibiotics. On inoculated coriander leaves stored at 25°± 2 °C or 3°± 2 °C, no growth was observed for multidrug-resistant DEPs strains. However, multidrug-resistant DEPs strains grew in chopped coriander: after 24 h at 25° ± 2 °C, DEPs strains had grown to approximately 3 log CFU/g. However, at 3°± 2 °C the bacterial growth was inhibited. To the best of our knowledge, this is the first report of the presence and behavior of multidrug-resistant STEC, ETEC and EPEC on coriander and chopped coriander.

  2. Modelling of infection by enteropathogenic Escherichia coli strains in lineages 2 and 4 ex vivo and in vivo by using Citrobacter rodentium expressing TccP.

    PubMed

    Girard, Francis; Crepin, Valérie F; Frankel, Gad

    2009-04-01

    Enteropathogenic Escherichia coli (EPEC) strains colonize the human gut mucosa via attaching-and-effacing (A/E) lesion formation, while in vitro they employ diverse strategies to trigger actin polymerization. Strains belonging to the EPEC-1 lineage trigger strong actin polymerization via tyrosine phosphorylation of the type III secretion system (T3SS) effector Tir, recruitment of Nck, and activation of N-WASP. Strains belonging to EPEC-2 and EPEC-4 can trigger strong actin polymerization by dual mechanisms, since while employing the Tir-Nck pathway they can additionally activate N-WASP via the T3SS effectors TccP2 and TccP, respectively. It is currently not known if the ability to trigger actin polymerization by twin mechanisms increases in vivo virulence or fitness. Since mice are resistant to EPEC infection, in vivo studies are frequently done using the murine model pathogen Citrobacter rodentium, which shares with EPEC-1 strains the ability to induce A/E lesions and trigger strong actin polymerization via the Tir:Nck pathway. In order to model infections with EPEC-2 and EPEC-4, we constructed C. rodentium strains expressing TccP. Using a mouse intestinal in vitro organ culture model and oral gavage into C57BL/6 mice, we have shown that TccP can cooperate with Tir of C. rodentium. The recombinant strains induced typical A/E lesions ex vivo and in vivo. Expression of TccP did not alter C. rodentium colonization dynamics or pathology. In competition with the wild-type strain, expression of TccP in C. rodentium did not confer a competitive advantage.

  3. RNA-Seq analysis of isolate- and growth phase-specific differences in the global transcriptomes of enteropathogenic Escherichia coli prototype isolates

    PubMed Central

    Hazen, Tracy H.; Daugherty, Sean C.; Shetty, Amol; Mahurkar, Anup A.; White, Owen; Kaper, James B.; Rasko, David A.

    2015-01-01

    Enteropathogenic Escherichia coli (EPEC) are a leading cause of diarrheal illness among infants in developing countries. E. coli isolates classified as typical EPEC are identified by the presence of the locus of enterocyte effacement (LEE) and the bundle-forming pilus (BFP), and absence of the Shiga-toxin genes, while the atypical EPEC also encode LEE but do not encode BFP or Shiga-toxin. Comparative genomic analyses have demonstrated that EPEC isolates belong to diverse evolutionary lineages and possess lineage- and isolate-specific genomic content. To investigate whether this genomic diversity results in significant differences in global gene expression, we used an RNA sequencing (RNA-Seq) approach to characterize the global transcriptomes of the prototype typical EPEC isolates E2348/69, B171, C581-05, and the prototype atypical EPEC isolate E110019. The global transcriptomes were characterized during laboratory growth in two different media and three different growth phases, as well as during adherence of the EPEC isolates to human cells using in vitro tissue culture assays. Comparison of the global transcriptomes during these conditions was used to identify isolate- and growth phase-specific differences in EPEC gene expression. These analyses resulted in the identification of genes that encode proteins involved in survival and metabolism that were coordinately expressed with virulence factors. These findings demonstrate there are isolate- and growth phase-specific differences in the global transcriptomes of EPEC prototype isolates, and highlight the utility of comparative transcriptomics for identifying additional factors that are directly or indirectly involved in EPEC pathogenesis. PMID:26124752

  4. Generation of recombinant bacillus Calmette-Guérin and Mycobacterium smegmatis expressing BfpA and intimin as vaccine vectors against enteropathogenic Escherichia coli.

    PubMed

    Vasconcellos, Halyka Luzorio Franzotti; Scaramuzzi, Karina; Nascimento, Ivan Pereira; Da Costa Ferreira, Jorge M; Abe, Cecilia M; Piazza, Roxane M F; Kipnis, Andre; Dias da Silva, Wilmar

    2012-09-07

    Enteropathogenic Escherichia coli (EPEC) is an important cause of diarrhea in children. EPEC adheres to the intestinal epithelium and causes attaching and effacing (A/E) lesions. Recombinant Mycobacterium smegmatis (Smeg) and Mycobacterium bovis BCG strains were constructed to express either BfpA or intimin. The entire bfpA gene and a portion of the intimin gene were amplified by PCR from EPEC genomic DNA and inserted into the pMIP12 vector at the BamHI/KpnI sites. The pMIP_bfpA and pMIP_intimin vectors were introduced separately into Smeg and BCG. Recombinant clones were selected based on kanamycin resistance and designated rSmeg_pMIP_(bfpA or intimin) and rBCG_pMIP_(bfpA or intimin). The expression of bfpA and intimin was detected by Immunoblotting using polyclonal anti-BfpA and anti-intimin antibodies. The immunogenicity of these proteins was assessed in C57BL/6 mice by assaying the feces and serum for the presence of anti-BfpA and anti-intimin IgA and IgG antibodies. TNF-α and INF-γ were produced in vitro by spleen cells from mice immunized with recombinant BfpA, whereas TNF-γ was produced in mice immunized with recombinant intimin. The adhesion of EPEC (E2348/69) to HEp-2 target cells was blocked by IgA or IgG antibodies from mice immunized with recombinant BfpA or intimin but not by antibodies from non-immunized mice. Immunogenic non-infectious vectors containing relevant EPEC virulence genes may be promising vaccine candidates.

  5. Epidemiology, Antimicrobial Resistance and β-lactamase Genotypic Features of Enteropathogenic Escherichia coli Isolated from Children with Diarrhea in Southern China.

    PubMed

    Huang, Yong; Shan, Xue-feng; Deng, Haijun; Huang, Yu-jun; Mu, Xiao-ping; Huang, Ai-long; Long, Quan-xin

    2015-01-01

    The main objective of this study was to investigate the epidemiology, drug resistance and β-lactamase genotype distribution of enteropathogenic Escherichia coli (EPEC) isolated from pediatric patients with diarrhea in southern China. The prevalence of EPEC in children with diarrhea was 3.53%. The commonest serotypes were O55:K59 and O126:K71, and the typical EPEC were more prevalent than atypical EPEC (51 vs 7). Isolates from this region were most commonly found to be resistant to ampicillin and cotrimoxazole, followed by chloramphenicol, ceftriaxone, and ceftazidime. More than 96% of the strains were susceptible to cefoperazone/sulbactam and imipenem. The most common β-lactamase genotypes identified in 58 strains were blaCTX-M-1 (60.3%), blaTEM (56.9%), blaCTX-M-9 (27.6%), and blaSHV (15.5%). Among 58 isolates, 22 strains were found to harbor one β-lactamase gene, and the proportions of resistance to ampicillin, cotrimoxazole, chloramphenicol, ceftriaxone, and ceftazidime, were 81.8%, 63.6%, 40.9%, 18.2%, and 9.1%, respectively. A further 30 strains carrying multiple β-lactamase genes had increased resistance to the above antimicrobial agents (100%, 83.3%, 70.0%, 60.0%, and 30.0%, respectively). In contrast, antibiotic resistance in the last 6 strains without a detectable β-lactamase gene was substantially reduced. Drug resistance may be associated with the β-lactamase gene number, with a greater the number of β-lactamase genes resulting in higher antibiotic resistance.

  6. Characterization of two virulence proteins secreted by rabbit enteropathogenic Escherichia coli, EspA and EspB, whose maximal expression is sensitive to host body temperature.

    PubMed Central

    Abe, A; Kenny, B; Stein, M; Finlay, B B

    1997-01-01

    Enteropathogenic Escherichia coli (EPEC) and rabbit EPEC (RDEC-1) cause unique histopathological features on intestinal mucosa, including attaching/effacing (A/E) lesions. Due to the human specificity of EPEC, RDEC-1 has been used as an animal model to study EPEC pathogenesis. At least two of the previously identified EPEC-secreted proteins, EspA and EspB, are required for triggering host epithelial signal transduction pathways, intimate adherence, and A/E lesions. However, the functions of these secreted proteins and their roles in pathogenesis have not been characterized. To investigate the function of EspA and EspB in RDEC-1, the espA and espB genes were cloned and their sequences were compared to that of EPEC O127. The EspA proteins showed high similarity (88.5% identity), while EspB was heterogeneous in internal regions (69.8% identity). However, RDEC-1 EspB was identical to that of enterohemorrhagic E. coli serotype O26. Mutations in RDEC-1 espA and espB revealed that the corresponding RDEC-1 gene products are essential for triggering of host signal transduction pathways and invasion into HeLa cells. Complementation with plasmids containing EPEC espA or/and espB genes into RDEC-1 mutant strains demonstrated that they were functionally interchangeable, although the EPEC proteins mediated higher levels of invasion. Furthermore, maximal expression of RDEC-1 and EPEC-secreted proteins occurred at their respective host body temperatures, which may contribute to the lack of EPEC infectivity in rabbits. PMID:9284118

  7. Role of EscP (Orf16) in Injectisome Biogenesis and Regulation of Type III Protein Secretion in Enteropathogenic Escherichia coli

    PubMed Central

    Monjarás Feria, Julia; García-Gómez, Elizabeth; Espinosa, Norma; Minamino, Tohru; Namba, Keiichi

    2012-01-01

    Enteropathogenic Escherichia coli employs a type III secretion system (T3SS) to translocate virulence effector proteins directly into enterocyte host cells, leading to diarrheal disease. The T3SS is encoded within the chromosomal locus of enterocyte effacement (LEE). The function of some of the LEE-encoded proteins remains unknown. Here we investigated the role of the Orf16 protein in T3SS biogenesis and function. An orf16 deletion mutant showed translocator and effector protein secretion profiles different from those of wild-type cells. The orf16 null strain produced T3S structures with abnormally long needles and filaments that caused weak hemolysis of red blood cells. Furthermore, the number of fully assembled T3SSs was also reduced in the orf16 mutant, indicating that Orf16, though not essential, is required for efficient T3SS assembly. Analysis of protein secretion revealed that Orf16 is a T3SS-secreted substrate and regulates the secretion of the inner rod component EscI. Both pulldown and yeast two-hybrid assays showed that Orf16 interacts with the C-terminal domain of an inner membrane component of the secretion apparatus, EscU; the inner rod protein EscI; the needle protein EscF; and the multieffector chaperone CesT. These results suggest that Orf16 regulates needle length and, along with EscU, participates in a substrate specificity switch from early substrates to translocators. Taken together, our results suggest that Orf16 acts as a molecular measuring device in a way similar to that of members of the Yersinia YscP and flagellar FliK protein family. Therefore, we propose that this protein be renamed EscP. PMID:22923600

  8. Nck adaptors, besides promoting N-WASP mediated actin-nucleation activity at pedestals, influence the cellular levels of enteropathogenic Escherichia coli Tir effector

    PubMed Central

    Nieto-Pelegrin, Elvira; Kenny, Brendan; Martinez-Quiles, Narcisa

    2014-01-01

    Enteropathogenic Escherichia coli (EPEC) binding to human intestinal cells triggers the formation of disease-associated actin rich structures called pedestals. The latter process requires the delivery, via a Type 3 secretion system, of the translocated Intimin receptor (Tir) protein into the host plasma membrane where binding of a host kinase-modified form to the bacterial surface protein Intimin triggers pedestal formation. Tir-Intimin interaction recruits the Nck adaptor to a Tir tyrosine phosphorylated residue where it activates neural Wiskott-Aldrich syndrome protein (N-WASP); initiating the major pathway to actin polymerization mediated by the actin-related protein (Arp) 2/3 complex. Previous studies with Nck-deficient mouse embryonic fibroblasts (MEFs) identified a key role for Nck in pedestal formation, presumed to reflect a lack of N-WASP activation. Here, we show the defect relates to reduced amounts of Tir within Nck-deficient cells. Indeed, Tir delivery and, thus, pedestal formation defects were much greater for MEFs than HeLa (human epithelial) cells. Crucially, the levels of two other effectors (EspB/EspF) within Nck-deficient MEFs were not reduced unlike that of Map (Mitochondrial associated protein) which, like Tir, requires CesT chaperone function for efficient delivery. Interestingly, drugs blocking various host protein degradation pathways failed to increase Tir cellular levels unlike an inhibitor of deacetylase activity (Trichostatin A; TSA). Treatments with TSA resulted in significant recovery of Tir levels, potentiation of actin polymerization and improvement in bacterial attachment to cells. Our findings have important implications for the current model of Tir-mediated actin polymerization and opens new lines of research in this area. PMID:25482634

  9. A three-dimensional tissue culture model for the study of attach and efface lesion formation by enteropathogenic and enterohaemorrhagic Escherichia coli.

    PubMed

    Carvalho, Humberto M; Teel, Louise D; Goping, Gertrud; O'Brien, Alison D

    2005-12-01

    We sought to develop a practical and representative model to study the interactions of enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC, respectively) with human intestinal tissue. For this purpose, human intestinal epithelial HCT-8 cells were cultured under low-shear microgravity conditions in a rotating cell culture system. After 10 days, layered cell aggregates, or 'organoids', developed. Three lines of evidence indicated that these organoids exhibited traits characteristic of normal tissue. First, the organoids expressed normal intestinal tissue markers in patterns that suggested greater cellular differentiation in the organoids than conventionally grown monolayers. Second, the organoids produced higher levels of intestinally expressed disaccharidases and alkaline phosphatase on a cell basis than did conventionally cultured monolayers. Third, HCT-8 organoid tissue developed microvilli and desmosomes characteristic of normal tissue, as revealed by electron microscopy. Because the low-shear microgravity condition is proposed by modelling studies to more closely approximate conditions in the intestinal microvilli, we also tested the impact of microgravity of bacterial growth and virulence gene expression. No influence on growth rates was observed but intimin expression by EHEC was elevated during culture in microgravity as compared with normal gravity. That the responses of HCT-8 organoids to infection with wild-type EPEC or EHEC under microgravitational conditions approximated infection of normal tissue was demonstrated by the classical appearance of the resultant attaching and effacing lesions. We concluded that the low shear microgravity environment promoted growth of intestinal cell organoids with greater differentiation than was seen in HCT-8 cells maintained in conventional tissue culture and provided a reduced gravity environment for study of bacterial-host cell interactions.

  10. Identification of Escherichia coli F4ac-binding proteins in porcine milk fat globule membrane.

    PubMed

    Novakovic, Predrag; Huang, Yanyun Y; Lockerbie, Betty; Shahriar, Farshid; Kelly, John; Gordon, John R; Middleton, Dorothy M; Loewen, Matthew E; Kidney, Beverly A; Simko, Elemir

    2015-04-01

    F4ac-positive enterotoxigenic Escherichia coli (ETEC) must attach to the intestinal mucosa to cause diarrhea in piglets. Prevention of bacterial attachment to the intestinal mucosa is the most effective defense against ETEC-induced diarrhea. Porcine milk fat globule membranes (MFGM) were shown to be able to inhibit attachment of ETEC to the intestinal brush border; however, the specific components of porcine MFGM that inhibited attachment of ETEC to enterocytes were not identified. Accordingly, the purpose of this study was to identify F4ac-binding MFGM proteins by overlay Western blot and affinity chromatography. The proteome of porcine MFGM was characterized and the following F4ac-binding proteins were detected by overlay Western blot and affinity chromatography: lactadherin, butyrophilin, adipophilin, acyl-CoA synthetase 3, and fatty acid-binding protein 3. The biological function of these proteins was not investigated but it is possible that their interaction with F4ac fimbria interferes with bacterial attachment and colonization.

  11. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors.

    PubMed Central

    Isaacson, R E; Fusco, P C; Brinton, C C; Moon, H W

    1978-01-01

    Escherichia coli strains with pili (K99 or 987P) known to facilitate intestinal colonization adhered in vitro to porcine intestinal epithelial cells. These strains adhered equally to both ileal and jejunal epithelial cells. A laboratory E. coli strain that has type 1 pili also adhered to porcine intestinal epithelial cells. When nonpiliated cells derived from 987P+, K99+, or type 1 pilus+ strains were used for in vitro adhesion assays, they failed to adhere. The attachment of piliated bacteria to epithelial cells was a saturable process that plateaued at 30 to 40 bacterial cells attached per epithelial cell. Competitive inhibition of bacterial cell attachment to epithelial cells with purified pili showed that only purified 987P competed against the 987P+ strain and only purified type 1 pili competed against the type 1 pilus+ strain. Competition between a K99+ strain and K99 was not consistently achieved. K99+, 987P+, and type 1 pilus+ bacteria could be prevented from adhering to epithelial cells by Fab fragments specific for K99, 987P, or type 1 pili, respectively. Fab fragments specific for non-K99 bacterial surface antigens did not inhibit adhesion of the K99+ strain. It is concluded that adhesion of E. coli to porcine intestinal epithelial cells in vitro is mediated by pili and that the epithelial cells used apparently had different receptors for different pili. PMID:357285

  12. In vitro adhesion of Escherichia coli to porcine small intestinal epithelial cells: pili as adhesive factors.

    PubMed

    Isaacson, R E; Fusco, P C; Brinton, C C; Moon, H W

    1978-08-01

    Escherichia coli strains with pili (K99 or 987P) known to facilitate intestinal colonization adhered in vitro to porcine intestinal epithelial cells. These strains adhered equally to both ileal and jejunal epithelial cells. A laboratory E. coli strain that has type 1 pili also adhered to porcine intestinal epithelial cells. When nonpiliated cells derived from 987P+, K99+, or type 1 pilus+ strains were used for in vitro adhesion assays, they failed to adhere. The attachment of piliated bacteria to epithelial cells was a saturable process that plateaued at 30 to 40 bacterial cells attached per epithelial cell. Competitive inhibition of bacterial cell attachment to epithelial cells with purified pili showed that only purified 987P competed against the 987P+ strain and only purified type 1 pili competed against the type 1 pilus+ strain. Competition between a K99+ strain and K99 was not consistently achieved. K99+, 987P+, and type 1 pilus+ bacteria could be prevented from adhering to epithelial cells by Fab fragments specific for K99, 987P, or type 1 pili, respectively. Fab fragments specific for non-K99 bacterial surface antigens did not inhibit adhesion of the K99+ strain. It is concluded that adhesion of E. coli to porcine intestinal epithelial cells in vitro is mediated by pili and that the epithelial cells used apparently had different receptors for different pili.

  13. Detection and genetic analysis of the enteroaggregative Escherichia coli heat-stable enterotoxin (EAST1) gene in clinical isolates of enteropathogenic Escherichia coli (EPEC) strains

    PubMed Central

    2014-01-01

    Background The enteroaggregative E. coli heat-stable enterotoxin 1 (EAST1) encoded by astA gene has been found in enteropathogenic E. coli (EPEC) strains. However, it is not sufficient to simply probe strains with an astA gene probe due to the existence of astA mutants (type 1 and type 2 SHEAST) and EAST1 variants (EAST1 v1-4). In this study, 222 EPEC (70 typical and 152 atypical) isolates were tested for the presence of the astA gene sequence by PCR and sequencing. Results The astA gene was amplified from 54 strains, 11 typical and 43 atypical. Sequence analysis of the PCR products showed that 25 strains, 7 typical and 18 atypical, had an intact astA gene. A subgroup of 7 atypical strains had a variant type of the astA gene sequence, with four non-synonymous nucleotide substitutions. The remaining 22 strains had mutated astA gene with nucleotide deletions or substitutions in the first 8 codons. The RT-PCR results showed that the astA gene was transcribed only by the strains carrying either the intact or the variant type of the astA gene sequence. Southern blot analysis indicated that astA is located in EAF plasmid in typical strains, and in plasmids of similar size in atypical strains. Strains carrying intact astA genes were more frequently found in diarrheic children than in non-diarrheic children (p < 0.05). Conclusion In conclusion, our data suggest that the presence of an intact astA gene may represent an additional virulence determinant in both EPEC groups. PMID:24884767

  14. Biotype, serotype, and pathogenicity of attaching and effacing enteropathogenic Escherichia coli strains isolated from diarrheic commercial rabbits.

    PubMed Central

    Peeters, J E; Geeroms, R; Orskov, F

    1988-01-01

    A total of 568 strains of Escherichia coli isolated from healthy and diarrheic rabbits were separated into 11 different biotypes according to the fermentation patterns of four carbohydrates. Strains belonging to biotypes 1 to 3, 6, and 8 induced lesions characteristic for attaching and effacing E. coli (AEEC). They attached to the intestinal epithelium of the terminal small intestine and the large intestine of 5-week-old rabbits after experimental infection and caused effacement of the microvillous brush border. However, pathogenicity for weaned rabbits, as judged by diarrhea score, anorexia, and reduced weight gain, varied according to the biotypes of the strains. Strains belonging to biotypes 1 and 6 produced only discrete clinical signs, strains belonging to biotypes 2 and 3+ (motile) induced diarrhea and growth depression, whereas strains belonging to biotypes 3- (immotile) and 8 caused severe clinical signs and high mortality. This confirms evidence from the field. Biotypes 3- and 8, accounting for 35.5 and 7.1% of AEEC strains in weaned diarrheic rabbits, respectively, were not detected in weaned healthy rabbits, while biotype 2 was the predominant strain in weaned healthy rabbits (62.3%). Finally, serotyping showed a close relationship between biotype and serotype of the AEEC examined. Most strains of biotypes 1+ and 2+ tested were O109:K-:H2 and O132:K-:H2, respectively, whereas all strains tested of biotype 3- were O15:K-:H- and those of biotype 8 were O103:K-:H2. These data indicate that specific clones of AEEC might be involved in juvenile rabbit enteritis. It was concluded that determination of biotypes allows the screening of highly pathogenic AEEC in weaned rabbits (biotypes 3- and 8). PMID:3286497

  15. Rapid latex particle agglutination test for Escherichia coli strains of porcine origin producing heat-labile enterotoxin.

    PubMed Central

    Finkelstein, R A; Yang, Z S; Moseley, S L; Moon, H W

    1983-01-01

    A latex particle agglutination test previously shown to be suitable for the rapid identification of Escherichia coli strains of human origin producing heat-labile enterotoxin (R. A. Finkelstein and Z. Yang, J. Clin. Microbiol. 18:23-28) is equally applicable to strains of porcine origin. PMID:6361056

  16. Development of a Multiplex PCR Assay for Detection of Shiga Toxin-Producing Escherichia coli, Enterohemorrhagic E. coli, and Enteropathogenic E. coli Strains

    PubMed Central

    Botkin, Douglas J.; Galli, Lucía; Sankarapani, Vinoth; Soler, Michael; Rivas, Marta; Torres, Alfredo G.

    2012-01-01

    Escherichia coli O157:H7 and other pathogenic E. coli strains are enteric pathogens associated with food safety threats and which remain a significant cause of morbidity and mortality worldwide. In the current study, we investigated whether enterohemorrhagic E. coli (EHEC), Shiga toxin-producing E. coli (STEC), and enteropathogenic E. coli (EPEC) strains can be rapidly and specifically differentiated with multiplex PCR (mPCR) utilizing selected biomarkers associated with each strain’s respective virulence genotype. Primers were designed to amplify multiple intimin (eae) and long polar fimbriae (lpfA) variants, the bundle-forming pilus gene bfpA, and the Shiga toxin-encoding genes stx1 and stx2. We demonstrated consistent amplification of genes specific to the prototype EHEC O157:H7 EDL933 (lpfA1-3, lpfA2-2, stx1, stx2, and eae-γ) and EPEC O127:H6 E2348/69 (eae-α, lpfA1-1, and bfpA) strains using the optimized mPCR protocol with purified genomic DNA (gDNA). A screen of gDNA from isolates in a diarrheagenic E. coli collection revealed that the mPCR assay was successful in predicting the correct pathotype of EPEC and EHEC clones grouped in the distinctive phylogenetic disease clusters EPEC1 and EHEC1, and was able to differentiate EHEC1 from EHEC2 clusters. The assay detection threshold was 2 × 104 CFU per PCR reaction for EHEC and EPEC. mPCR was also used to screen Argentinean clinical samples from hemolytic uremic syndrome and diarrheal patients, resulting in 91% sensitivity and 84% specificity when compared to established molecular diagnostic procedures. In conclusion, our mPCR methodology permitted differentiation of EPEC, STEC and EHEC strains from other pathogenic E. coli; therefore, the assay becomes an additional tool for rapid diagnosis of these organisms. PMID:22919600

  17. Biorecognition of Escherichia coli K88 adhesin for glycated porcine albumin.

    PubMed

    Sarabia-Sainz, Andre-i; Ramos-Clamont, Gabriela; Candia-Plata, Ma María del Carmen; Vázquez-Moreno, Luz

    2009-03-01

    Escherichia coli (E. coli) that expresses galactose-reactive lectins, like K88 adhesin, causes high mortality among piglets. Carbohydrates that compete for adhesion could serve as an alternative for disease prevention. Porcine serum albumin (PSA) was modified by non-enzymatic glycation with lactose to produce PSA-Lac or PSA-Glc beta (1-4) Gal, as confirmed by reduction of available free amino groups, increased molecular mass and by Ricinus communis lectin recognition. E. coli K88 binds to PSA-Lac treatments containing three and four lactoses, respectively. In addition, PSA-Lac partially inhibited K88 strain adherence to mucins. These results suggest that neoglycoconjugates obtained by non-enzymatic glycation of proteins may serve in the prophylaxis of piglets' diarrhea.

  18. Clay mineral type effect on bacterial enteropathogen survival in soil.

    PubMed

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific.

  19. BfpI, BfpJ, and BfpK Minor Pilins Are Important for the Function and Biogenesis of Bundle-Forming Pili Expressed by Enteropathogenic Escherichia coli

    PubMed Central

    Martinez de la Peña, Claudia F.; De Masi, Leon; Nisa, Shahista; Mulvey, George; Tong, Jesse; Donnenberg, Michael S.

    2015-01-01

    ABSTRACT Enteropathogenic Escherichia coli (EPEC) remains a significant cause of infant diarrheal illness and associated morbidity and mortality in developing countries. EPEC strains are characterized by their ability to colonize the small intestines of their hosts by a multistep program involving initial loose attachment to intestinal epithelial cells followed by an intimate adhesion phase. The initial loose interaction of typical EPEC with host intestinal cells is mediated by bundle-forming pili (BFP). BFP are type 4b pili (T4bP) based on structural and functional properties shared with T4bP expressed by other bacteria. The major structural subunit of BFP is called bundlin, a T4b pilin expressed from the bfpA gene in the BFP operon, which contains three additional genes that encode the pilin-like proteins BfpI, BfpJ, and BfpK. In this study, we show that, in the absence of the BFP retraction ATPase (BfpF), BfpI, BfpJ, and BfpK are dispensable for BFP biogenesis. We also demonstrate that these three minor pilins are incorporated along with bundlin into the BFP filament and contribute to its structural integrity and host cell adhesive properties. The results confirm that previous findings in T4aP systems can be extended to a model T4bP such as BFP. IMPORTANCE Bundle-forming pili contribute to the host colonization strategy of enteropathogenic Escherichia coli. The studies described here investigate the role for three minor pilin subunits in the structure and function of BFP in EPEC. The studies also suggest that these subunits could be antigens for vaccine development. PMID:26712935

  20. Differential effects of clathrin and actin inhibitors on internalization of Escherichia coli and Salmonella choleraesuis in porcine jejunal Peyer’s patches

    PubMed Central

    Green, Benedict T.; Brown, David R.

    2008-01-01

    Peyer's patches constitute both an inductive immune site and an enteropathogen invasion route. Peyer's patch mucosae from porcine jejunum were mounted in Ussing chambers, and either Salmonella choleraesuis vaccine strain SC-54 or non-pathogenic rodent and porcine E. coli strains contacted the Peyer's patch mucosa for 90 min. Internalized bacteria were quantified by a gentamicin resistance assay. Monodansylcadaverine (300 µM, luminal addition), an inhibitor of clathrin-mediated endocytosis, significantly inhibited internalization of both E. coli strains relative to tissues untreated with the inhibitor; internalization of SC-54 was unaffected. The actin-disrupting agent cytochalasin D (10 µM, luminal addition), inhibited internalization of pig-adapted E. coli but not that of rodent-adapted E. coli or SC-54. Internalization of SC-54 and non-pathogenic E. coli in Peyer's patches appears to occur through different cellular routes. PMID:16326046

  1. Detection of Secretory Immunoglobulin A in Human Colostrum as Mucosal Immune Response against Proteins of the Type Three Secretion System of Salmonella, Shigella and Enteropathogenic Escherichia Coli

    PubMed Central

    Durand, David; Ochoa, Theresa J.; Bellomo, Sicilia M. E.; Contreras, Carmen A.; Bustamante, Víctor H.; Ruiz, Joaquim; Cleary, Thomas G.

    2013-01-01

    Background Some enteropathogens use the type three secretion system (T3SS) to secrete proteins that allows them to interact with enterocytes and promote bacterial attachment or intracellular survival. These proteins are Salmonella invasion proteins (Sip), invasion plasmid antigens (Ipa) of Shigella and E. coli secreted proteins (Esp) of enteropathogenic E. coli (EPEC). There are no previous studies defining the presence of colostral sIgA against all these three major enteric pathogens. Objective To evaluate the presence of sIgA in colostrum against proteins of the T3SS of Salmonella, Shigella and EPEC. Methods We collected 76 colostrum samples from puerperal women in Lima, Peru. These samples were reacted with T3SS proteins extracted from bacterial culture supernatants and evaluated by Western Blot. Results Antibodies were detected against Salmonella antigens SipA in 75 samples (99%), SipC in 62 (82%) and SipB in 31 (41%); against Shigella antigens IpaC in 70 (92%), IpaB in 68 (89%), IpaA in 66 (87%) and IpaD in 41 (54%); and against EPEC EspC in 70 (92%), EspB-D in 65 (86%) and EspA in 41 (54%). 10% of samples had antibodies against all proteins evaluated; and 42% against all except one protein. There was no sample negative to all these proteins. Conclusions The extraordinarily high frequency of antibodies in colostrum of puerperal women detected in this study against these multiple enteric pathogens, shows evidence of immunological memory and prior exposure to these pathogens, in addition to its possible protective role against infection. PMID:23538526

  2. Intimin, tir, and shiga toxin 1 do not influence enteropathogenic responses to shiga toxin-producing Escherichia coli in bovine ligated intestinal loops.

    PubMed

    Stevens, Mark P; Marchès, Olivier; Campbell, June; Huter, Veronika; Frankel, Gad; Phillips, Alan D; Oswald, Eric; Wallis, Timothy S

    2002-02-01

    Shiga toxin-producing Escherchia coli (STEC) comprises a group of attaching and effacing (A/E) enteric pathogens of animals and humans. Natural and experimental infection of calves with STEC may result in acute enteritis or subclinical infection, depending on serotype- and host-specific factors. To quantify intestinal secretory and inflammatory responses to STEC in the bovine intestine, serotypes that are associated with human disease (O103:H2 and O157:H7) were introduced into ligated mid-ileal loops in gnotobiotic and conventional calves, and fluid accumulation and recruitment of radiolabeled neutrophils were measured after 12 h. STEC serotype O103:H2, but not serotype O157:H7, elicited strong enteropathogenic responses. To determine if the inflammatory response to STEC O103:H2 in calves requires Shiga toxin 1 or intimate bacterial attachment to the intestinal epithelium, defined mutations were made in the stx1, eae, and tir genes. Our data indicate that some STEC induce intestinal inflammatory responses in calves by a mechanism that is independent of A/E-lesion formation, intimin, or Shiga toxin 1. This may have implications for strategies to reduce STEC carriage in cattle.

  3. Intimin, Tir, and Shiga Toxin 1 Do Not Influence Enteropathogenic Responses to Shiga Toxin-Producing Escherichia coli in Bovine Ligated Intestinal Loops

    PubMed Central

    Stevens, Mark P.; Marchès, Olivier; Campbell, June; Huter, Veronika; Frankel, Gad; Phillips, Alan D.; Oswald, Eric; Wallis, Timothy S.

    2002-01-01

    Shiga toxin-producing Escherchia coli (STEC) comprises a group of attaching and effacing (A/E) enteric pathogens of animals and humans. Natural and experimental infection of calves with STEC may result in acute enteritis or subclinical infection, depending on serotype- and host-specific factors. To quantify intestinal secretory and inflammatory responses to STEC in the bovine intestine, serotypes that are associated with human disease (O103:H2 and O157:H7) were introduced into ligated mid-ileal loops in gnotobiotic and conventional calves, and fluid accumulation and recruitment of radiolabeled neutrophils were measured after 12 h. STEC serotype O103:H2, but not serotype O157:H7, elicited strong enteropathogenic responses. To determine if the inflammatory response to STEC O103:H2 in calves requires Shiga toxin 1 or intimate bacterial attachment to the intestinal epithelium, defined mutations were made in the stx1, eae, and tir genes. Our data indicate that some STEC induce intestinal inflammatory responses in calves by a mechanism that is independent of A/E-lesion formation, intimin, or Shiga toxin 1. This may have implications for strategies to reduce STEC carriage in cattle. PMID:11796630

  4. Hfq and three Hfq-dependent small regulatory RNAs-MgrR, RyhB and McaS-coregulate the locus of enterocyte effacement in enteropathogenic Escherichia coli.

    PubMed

    Bhatt, Shantanu; Egan, Marisa; Ramirez, Jasmine; Xander, Christian; Jenkins, Valerie; Muche, Sarah; El-Fenej, Jihad; Palmer, Jamie; Mason, Elisabeth; Storm, Elizabeth; Buerkert, Thomas

    2017-02-01

    Enteropathogenic Escherichia coli (EPEC) is a significant cause of infantile diarrhea and death in developing countries. The pathogenicity island locus of enterocyte effacement (LEE) is essential for EPEC to cause diarrhea. Besides EPEC, the LEE is also present in other gastrointestinal pathogens, most notably enterohemorrhagic E. coli (EHEC). Whereas transcriptional control of the LEE has been meticulously examined, posttranscriptional regulation, including the role of Hfq-dependent small RNAs, remains undercharacterized. However, the past few years have witnessed a surge in the identification of riboregulators of the LEE in EHEC. Contrastingly, the posttranscriptional regulatory landscape of EPEC remains cryptic. Here we demonstrate that the RNA-chaperone Hfq represses the LEE of EPEC by targeting the 5' untranslated leader region of grlR in the grlRA mRNA. Three conserved small regulatory RNAs (sRNAs)-MgrR, RyhB and McaS-are involved in the Hfq-dependent regulation of grlRA MgrR and RyhB exert their effects by directly base-pairing to the 5' region of grlR Whereas MgrR selectively represses grlR but activates grlA, RyhB represses gene expression from the entire grlRA transcript. Meanwhile, McaS appears to target the grlRA mRNA indirectly. Thus, our results provide the first definitive evidence that implicates multiple sRNAs in regulating the LEE and the resulting virulence of EPEC.

  5. The Ruler Protein EscP of the Enteropathogenic Escherichia coli Type III Secretion System Is Involved in Calcium Sensing and Secretion Hierarchy Regulation by Interacting with the Gatekeeper Protein SepL

    PubMed Central

    Shaulov, Lihi; Gershberg, Jenia; Deng, Wanyin; Finlay, B. Brett

    2017-01-01

    ABSTRACT The type III secretion system (T3SS) is a multiprotein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. To ensure that effector proteins are efficiently translocated into the host cell, bacteria must be able to sense their contact with the host cell. In this study, we found that EscP, which was previously shown to function as the ruler protein of the enteropathogenic Escherichia coli T3SS, is also involved in the switch from the secretion of translocator proteins to the secretion of effector proteins. In addition, we demonstrated that EscP can interact with the gatekeeper protein SepL and that the EscP-SepL complex dissociates upon a calcium concentration drop. We suggest a model in which bacterial contact with the host cell is accompanied by a drop in the calcium concentration that causes SepL-EscP complex dissociation and triggers the secretion of effector proteins. PMID:28049143

  6. Behavior of enteroaggregative Escherichia coli, non-O157-shiga toxin-producing E. coli, enteroinvasive E. coli, enteropathogenic E. coli and enterotoxigenic E. coli strains on mung bean seeds and sprout.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Bautista-De León, Haydee; Vázquez-Barrios, Ma Estela; Gordillo-Martínez, Alberto J; Castro-Rosas, Javier

    2013-09-16

    The behavior of enteroaggregative Escherichia coli (EAEC), non-O157 shiga toxin-producing E. coli (non-O157-STEC), enteroinvasive E. coli (EIEC), enterotoxigenic E. coli (ETEC) and enteropathogenic E. coli (EPEC) on mung bean seeds at 25±2 °C and during germination and sprouting of mung bean seeds at 20±2 ° and 30±2 °C and on mung bean sprouts at 3±2 °C was determined. When mung bean seeds were inoculated with EAEC, non-O157 STEC, EIEC, EPEC or ETEC strains, all these diarrheagenic E. coli pathotypes (DEPs) survived at least 90 days on mung bean seeds at 25±2 °C. All DEPs grew during germination and sprouting of seeds, reaching counts of approximately 5 Log and 7 Log CFU/g after 2 days at 20±2 ° and 30±2 °C, respectively. However, when the sprouts were inoculated after 1 day of seeds germination and stored at 20±2 ° or 30±2 °C, no growth was observed for any DEPs during sprouting at 20±2 °C per 9 d; however, a significant increase in the concentration of DEPs of approximately 0.7 log CFU/g was observed during sprouting at 30±2 °C after 1 day of sprout contamination. Refrigeration reduced the number of viable DEPs strains on sprouts after 10 days in storage; nevertheless, these decreases have no practical significance in the safety of the sprouts.

  7. Presence of Multidrug-Resistant Shiga Toxin-Producing Escherichia coli, Enteropathogenic E. coli and Enterotoxigenic E. coli, on Raw Nopalitos (Opuntia ficus-indica L.) and in Nopalitos Salads from Local Retail Markets in Mexico.

    PubMed

    Gómez-Aldapa, Carlos A; Cerna-Cortes, Jorge F; Rangel-Vargas, Esmeralda; Torres-Vitela, Mdel Refugio; Villarruel-López, Angelica; Gutiérrez-Alcántara, Eduardo J; Castro-Rosas, Javier

    2016-05-01

    The presence of multidrug-resistant pathogenic bacteria in food is a significant public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. In Mexico, DEPs have been associated with diarrheal illness. There is no information about the presence of multidrug-resistant DEPs on fresh vegetables and in cooked vegetable salads in Mexico. "Nopalitos" (Opuntia ficus-indica L.) is a Cactacea extensively used as a fresh green vegetable throughout Mexico. The presence of generic E. coli and multidrug-resistant DEPs on raw whole and cut nopalitos and in nopalitos salad samples was determined. One hundred raw whole nopalitos (without prickles) samples, 100 raw nopalitos cut into small square samples, and 100 cooked nopalitos salad samples were collected from markets. Generic E. coli was determined using the most probable number procedures. DEPs were identified using two multiplex polymerase chain reaction procedures. Susceptibility to 16 antibiotics was tested for the isolated DEP strains by standard test. Of the 100 whole nopalitos samples, 100 cut nopalitos samples, and 100 nopalitos salad samples, generic E. coli and DEPs were identified, respectively, in 80% and 10%, 74% and 10%, and 64% and 8%. Eighty-two DEP strains were isolated from positive nopalitos samples. The identified DEPs included Shiga toxin-producing E. coli (STEC), enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). All isolated strains exhibited resistance to at least six antibiotics. To the best of our knowledge, this is the first report of the presence of multidrug-resistant and antibiotic resistance profiles of STEC, ETEC, and EPEC on raw nopalitos and in nopalitos salads in Mexico.

  8. Behavior of shiga toxin-producing Escherichia coli, enteroinvasive E. coli, enteropathogenic E. coli and enterotoxigenic E. coli strains on whole and sliced jalapeño and serrano peppers.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Gordillo-Martínez, Alberto J; Castro-Rosas, Javier

    2014-06-01

    The behavior of enterotoxigenic Escherichia coli (ETEC), enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC) and non-O157 shiga toxin-producing E. coli (non-O157-STEC) on whole and slices of jalapeño and serrano peppers as well as in blended sauce at 25 ± 2 °C and 3 ± 2 °C was investigated. Chili peppers were collected from markets of Pachuca city, Hidalgo, Mexico. On whole serrano and jalapeño stored at 25 ± 2 °C or 3 ± 2 °C, no growth was observed for EPEC, ETEC, EIEC and non-O157-STEC rifampicin resistant strains. After twelve days at 25 ± 2 °C, on serrano peppers all diarrheagenic E. coli pathotypes (DEP) strains had decreased by a total of approximately 3.7 log, whereas on jalapeño peppers the strains had decreased by approximately 2.8 log, and at 3 ± 2 °C they decreased to approximately 2.5 and 2.2 log respectively, on serrano and jalapeño. All E. coli pathotypes grew onto sliced chili peppers and in blended sauce: after 24 h at 25 ± 2 °C, all pathotypes had grown to approximately 3 and 4 log CFU on pepper slices and sauce, respectively. At 3 ± 2 °C the bacterial growth was inhibited.

  9. Characterization of EspC, a 110-kilodalton protein secreted by enteropathogenic Escherichia coli which is homologous to members of the immunoglobulin A protease-like family of secreted proteins.

    PubMed Central

    Stein, M; Kenny, B; Stein, M A; Finlay, B B

    1996-01-01

    Enteropathogenic Escherichia coli (EPEC) secretes at least five proteins. Two of these proteins, EspA and EspB (previously called EaeB), activate signal transduction pathways in host epithelial cells. While the role of the other three proteins (39, 40, and 110 kDa) remains undetermined, secretion of all five proteins is under the control of perA, a known positive regulator of several EPEC virulence factors. On the basis of amino-terminal protein sequence data, we cloned and sequenced the gene which encodes the 110-kDa secreted protein and examined its possible role in EPEC signaling and interaction with epithelial cells. In accordance with the terminology used for espA and espB, we called this gene espC, for EPEC-secreted protein C. We found significant homology between the predicted EspC protein sequence and a family of immunoglobulin A (IgA) protease-like proteins which are widespread among pathogenic bacteria. Members of this protein family are found in avian pathogenic Escherichia coli (Tsh), Haemophilus influenzae (Hap), and Shigella flexneri (SepA). Although these proteins and EspC do not encode IgA protease activity, they have considerable homology with IgA protease from Neisseria gonorrhoeae and H. influenzae and appear to use a export system for secretion. We found that genes homologous to espC also exist in other pathogenic bacteria which cause attaching and effacing lesions, including Hafnia alvei biotype 19982, Citrobacter freundii biotype 4280, and rabbit diarrheagenic E. coli (RDEC-1). Although these strains secrete various proteins similar in molecular size to the proteins secreted by EPEC, we did not detect secretion of a 110-kDa protein by these strains. To examine the possible role of EspC in EPEC interactions with epithelial cells, we constructed a deletion mutant in espC by allelic exchange and characterized the mutant by standard tissue culture assays. We found that EspC is not necessary for mediating EPEC-induced signal transduction in He

  10. Campylobacter hyointestinalis: an opportunistic enteropathogen?

    PubMed Central

    Minet, J; Grosbois, B; Megraud, F

    1988-01-01

    A new case of Campylobacter hyointestinalis-associated diarrhea in a human is reported. The medical history of the patient was significant for immunodeficiency because of an evolutive chronic myeloid leukemia. The diarrhea rapidly stopped after administration of oral erythromycin. No other enteropathogenic agent was found by routine examination of stools. Although neither serology nor autopsy was available, this observation appears to be suggestive of the possible enteropathogenicity of C. hyointestinalis for patients at risk. PMID:3230140

  11. In vitro activity of rifaximin against clinical isolates of Escherichia coli and other enteropathogenic bacteria isolated from travellers returning to the UK.

    PubMed

    Hopkins, Katie L; Mushtaq, Shazad; Richardson, Judith F; Doumith, Michel; de Pinna, Elizabeth; Cheasty, Tom; Wain, John; Livermore, David M; Woodford, Neil

    2014-05-01

    Rifaximin is licensed in the EU and USA for treating travellers' diarrhoea caused by non-invasive bacteria. Selection for resistance mechanisms of public health significance might occur if these are linked to rifamycin resistance. Rifaximin MICs were determined by agar dilution for 90 isolates each of Escherichia coli, Shigella spp., nontyphoidal Salmonella enterica, typhoidal S. enterica and Campylobacter spp., an additional 60 E. coli with CTX-M ESBLs isolated from patients with travellers' diarrhoea, and 30 non-diarrhoeal carbapenemase-producing E. coli. Comparators were rifampicin, ciprofloxacin, azithromycin, trimethoprim/sulfamethoxazole and doxycycline. Isolates with rifaximin MICs>32 mg/L were screened for arr genes, and critical rpoB regions were sequenced. Rifaximin was active at ≤32 mg/L against 436/450 (96.9%) diverse Enterobacteriaceae, whereas 81/90 (90%) Campylobacter spp. were resistant to rifaximin at ≥128 mg/L. Rifaximin MICs were ≥128 mg/L for two Shigella and five MDR E. coli producing NDM (n = 3), OXA-48 (n = 1) or CTX-M-15 (n = 1). Two of the five MDR E. coli had plasmids harbouring arr-2 together with bla(NDM), and two (one each with bla(NDM) and bla(CTX-M-15)) had His526Asn substitutions in RpoB. The rifamycin resistance mechanism remained undefined in one MDR E. coli isolate (with bla(OXA-48)) and the two Shigella isolates. Rifaximin showed good in vitro activity against diverse Enterobacteriaceae but was largely inactive against Campylobacter spp. Rifaximin has potential to co-select MDR E. coli in the gut flora, but much stronger associations were seen between ESBL and/or carbapenemase production and resistance to alternative treatments for travellers' diarrhoea, notably ciprofloxacin and azithromycin.

  12. Characterization of shiga toxin subtypes and virulence genes in Porcine shiga toxin-producing Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a...

  13. Characterization of porcine intestinal receptors for the K88ac fimbrial adhesin of Escherichia coli as mucin-type sialoglycoproteins.

    PubMed Central

    Erickson, A K; Baker, D R; Bosworth, B T; Casey, T A; Benfield, D A; Francis, D H

    1994-01-01

    We have previously identified two K88ac adhesion receptors (210 and 240 kDa) which are present in membrane preparations from adhesive but not nonadhesive porcine intestinal brush border cells; these adhesin receptors are postulated to be important determinants of the susceptibility of pigs to K88ac+ enterotoxigenic Escherichia coli infections (A.K. Erickson, J.A. Willgohs, S.Y. McFarland, D.A. Benfield, and D.F. Francis, Infect. Immun. 60:983-988, 1992). We now describe a procedure for the purification of these two receptors. Receptors were solubilized from adhesive intestinal brush border vesicles using deoxycholate and were purified by gel filtration chromatography on Sepharose CL-4B and then by hydroxyapatite chromatography. Amino acid compositional analyses indicated that the two receptors have similar amino acid compositions. The most distinguishing characteristic of both receptors is a high percentage of threonine and proline residues. Neuraminidase treatment caused the K88ac adhesin receptors to migrate with a slower mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, indicating that these receptors are sialoglycoproteins. Results from lectin-binding studies indicated that the receptors contain O-linked oligosaccharides composed of galactosyl (beta-1,3)N-acetylgalactosamine, alpha-linked fucose, galactosyl(beta-1,4)N-acetylglucosamine, sialic acid, galactose, and N-acetylgalactosamine. Collectively, these characteristics indicate that the K88ac adhesin receptors are mucin-type sialoglycoproteins. Images PMID:7960120

  14. Genetically modified Shiga toxin 2e (Stx2e) producing Escherichia coli is a vaccine candidate for porcine edema disease.

    PubMed

    Makino, S; Watarai, M; Tabuchi, H; Shirahata, T; Furuoka, H; Kobayashi, Y; Takeda, Y

    2001-07-01

    Porcine edema disease (ED) is an enterotoxaemia in pigs after weaning, caused by Shiga toxin 2e (Stx2e) producing Escherichia coli. Recently in Japan, outbreaks of ED are re-emerging in pig production. In this study we constructed a mutant that retained immunogenicity but lost Vero cell cytotoxicity, which produced genetically modified toxin (Stx2e*) by replacing glutamate with glutamine at position 167 and arginine with leucine at position 170 of the A subunit. The stx(2e)* gene was replaced with the stx(2e)gene of the wild type virulent strain by homologous recombination. As the parent wild strain was pathogenic to pigs but the mutant was not, the mutant named as YT106 was given to the pigs to examine its protective immunity against ED. All 20 pigs vaccinated with YT106 survived, but only eight of the 20 non-vaccinated pigs survived after the challenge with a wild strain. Also, the eight pigs that survived had decreased rates of gain relative to those of the controls. Blood IgG and intestinal IgA titres increased 3.3 and 1.6 times more than the control, respectively, showing that YT106 might be a good candidate of a live attenuated vaccine strain to protect against ED.

  15. Towards a vaccine for attaching/effacing Escherichia coli: a LEE encoded regulator (ler) mutant of rabbit enteropathogenic Escherichia coli is attenuated, immunogenic, and protects rabbits from lethal challenge with the wild-type virulent strain.

    PubMed

    Zhu, Chengru; Feng, Shuzhang; Thate, Timothy E; Kaper, James B; Boedeker, Edgar C

    2006-05-01

    The ler (LEE encoded regulator) gene product is a central regulator for the genes encoded on the locus of enterocyte effacement (LEE) pathogenicity island of attaching/effacing (A/E) pathogens, including human enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) as well as animal isolates. Although an in vivo role for Ler in bacterial virulence has not been documented, we hypothesized that a Ler deletion mutant should be attenuated for virulence but might retain immunogenicity. The goals of this study were to genetically characterize ler of a rabbit EPEC (rEPEC) strain (O103:H2), to examine the effect of ler on in vivo virulence, and to determine if intragastric inoculation of an attenuated rEPEC ler mutant was immunogenic and could protect rabbits against subsequent challenge with the wild-type virulent parent strain. The predicted ler gene product of rEPEC strain O103:H2 shares high homology (over 95% amino acid identity) with the Lers of another rEPEC strain RDEC-1 (O15:H-) and human EPEC and EHEC. A defined internal ler deletion mutant of rEPEC O103:H2 showed reduced production of secreted proteins. Although orogastric inoculation of rabbits with the virulent parent O103:H2 strain induced severe diarrhea, significant weight loss and early mortality with adherent mucosal bacteria found at sacrifice, the isogeneic ler mutant strain was well tolerated. Animals gained weight and showed no clinical signs of disease. Examination of histological sections of intestinal segments revealed the absence of mucosal bacterial adherence. This result demonstrates an essential role for Ler in in vivo pathogenicity of A/E E. coli. Single dose orogastric immunization with the rEPEC ler mutant induced serum IgG antibody to whole bacteria (but not to intimin). Immunized animals were protected against enteric infection with the WT virulent parent strain exhibiting normal weight gain, absence of diarrhea and absence of mucosally adherent bacteria at sacrifice. Such

  16. Study of high density Escherichia coli fermentation for production of porcine somatotropin protein.

    PubMed

    Chang, L L; Hwang, L Y; Hwang, C F; Mou, D G

    1991-12-27

    Recombinant E. coli strains and culture conditions were studied for the fermentation expression of porcine somatotropin (PST) inclusion bodies under the control of a pL promoter. Our objective was to achieve high cell density together with a high level of recombinant protein expression. Improved fermentation conditions included oxygen enrichment, yeast extract (YE) effect, optimal specific growth to switch on gene expression, and feeding strategies. To maintain a low residual glucose concentration, a medium feed rate was controlled on a real-time basis by using cell density information estimated from on-line carbon dioxide monitoring of a fermentor's exhaust gas. The optimal specific growth rate required to initiate a temperature shift in our system was found to be around 0.2 hr-1. The cell density and PST expression level could reach 55 OD600 and 35%, respectively, after 16 hours of cultivation under optimal conditions by applying computer-controlled nutrient feed. In our recombinant host/vector system, the location of cl gene appears to affect gene expression under YE-supplemented and/or a high cell density culture condition. With cl gene placed on plasmid, our E. coli host no longer showed sensitivity toward YE in PST gene expression.

  17. Genetic relatedness and virulence properties of enteropathogenic Escherichia coli strains of serotype O119:H6 expressing localized adherence or localized and aggregative adherence-like patterns on HeLa cells.

    PubMed

    Garcia, Bruna G; Ooka, Tadasuke; Gotoh, Yasuhiro; Vieira, Mônica A M; Yamamoto, Denise; Ogura, Yoshitoshi; Girão, Dennys M; Sampaio, Suely C F; Melo, Alexis Bonfim; Irino, Kinue; Hayashi, Tetsuya; Gomes, Tânia A T

    2016-05-01

    Enteropathogenic Escherichia coli (EPEC) induce attaching and effacing (A/E) lesions in enterocytes and produce the bundle-forming pilus (BFP) contributing to the localized adherence (LA) pattern formation on HeLa cells. Enteroaggregative E. coli (EAEC) produce aggregative adherence (AA) on HeLa cells and form prominent biofilms. The ability to produce LA or AA is an important hallmark to classify fecal E. coli isolates as EPEC or EAEC, respectively. E. coli strains of serotype O119:H6 exhibit an LA+ phenotype and have been considered as comprising a clonal group of EPEC strains. However, we have recently identified O119:H6 EPEC strains that produce LA and an AA-like pattern concurrently (LA/AA-like+). In this study, we evaluated the relatedness of three LA/AA-like+ and three LA+ O119:H6 strains by comparing their virulence and genotypic properties. We first found that the LA/AA-like+ strains induced actin accumulation in HeLa cells (indicative of A/E lesions formation) and formed biofilms on abiotic surfaces more efficiently than the LA+ strains. MLST analysis showed that the six strains all belong to the ST28 complex. All strains carried multiple plasmids, but as plasmid profiles were highly variable, this cannot be used to differentiate LA/AA-like+ and LA+ strains. We further obtained their draft genome sequences and the complete sequences of four plasmids harbored by one LA/AA-like+ strain. Analysis of these sequences and comparison with 37 fully sequenced E. coli genomes revealed that both O119:H6 groups belong to the E. coli phylogroup B2 and are very closely related with only 58-67 SNPs found between LA/AA-like+ and LA+ strains. Search of the draft sequences of the six strains for adhesion-related genes known in EAEC and other E. coli pathotypes detected no genes specifically present in LA/AA-like+ strains. Unexpectedly however, we found that a large plasmid distinct from pEAF is responsible for the AA-like phenotype of the LA/AA-like+ strains. Although we

  18. Molecular Characterization of Commensal Escherichia coli Adapted to Different Compartments of the Porcine Gastrointestinal Tract

    PubMed Central

    Abraham, Sam; Gordon, David M.; Chin, James; Brouwers, Huub J. M.; Njuguna, Peter; Groves, Mitchell D.; Zhang, Ren

    2012-01-01

    The role of Escherichia coli as a pathogen has been the focus of considerable study, while much less is known about it as a commensal and how it adapts to and colonizes different environmental niches within the mammalian gut. In this study, we characterize Escherichia coli organisms (n = 146) isolated from different regions of the intestinal tracts of eight pigs (dueodenum, ileum, colon, and feces). The isolates were typed using the method of random amplified polymorphic DNA (RAPD) and screened for the presence of bacteriocin genes and plasmid replicon types. Molecular analysis of variance using the RAPD data showed that E. coli isolates are nonrandomly distributed among different gut regions, and that gut region accounted for 25% (P < 0.001) of the observed variation among strains. Bacteriocin screening revealed that a bacteriocin gene was detected in 45% of the isolates, with 43% carrying colicin genes and 3% carrying microcin genes. Of the bacteriocins observed (H47, E3, E1, E2, E7, Ia/Ib, and B/M), the frequency with which they were detected varied with respect to gut region for the colicins E2, E7, Ia/Ib, and B/M. The plasmid replicon typing gave rise to 25 profiles from the 13 Inc types detected. Inc F types were detected most frequently, followed by Inc HI1 and N types. Of the Inc types detected, 7 were nonrandomly distributed among isolates from the different regions of the gut. The results of this study indicate that not only may the different regions of the gastrointestinal tract harbor different strains of E. coli but also that strains from different regions have different characteristics. PMID:22798360

  19. Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells.

    PubMed

    Wu, Yunpeng; Zhu, Cui; Chen, Zhuang; Chen, Zhongjian; Zhang, Weina; Ma, Xianyong; Wang, Li; Yang, Xuefen; Jiang, Zongyong

    2016-04-01

    Tight junctions (TJs) play an important role in maintaining the mucosal barrier function and gastrointestinal health of animals. Lactobacillus plantarum (L. plantarum) was reported to protect the intestinal barrier function of early-weaned piglets against enterotoxigenic Escherichia coli (ETEC) K88 challenge; however, the underlying cellular mechanism of this protection was unclear. Here, an established intestinal porcine epithelia cell (IPEC-J2) model was used to investigate the protective effects and related mechanisms of L. plantarum on epithelial barrier damages induced by ETEC K88. Epithelial permeability, expression of inflammatory cytokines, and abundance of TJ proteins, were determined. Pre-treatment with L. plantarum for 6h prevented the reduction in transepithelial electrical resistance (TEER) (P<0.05), inhibited the increased transcript abundances of interleukin-8 (IL-8) and tumor necrosis factor (TNF-α) (P<0.05), decreased expression of claudin-1, occludin and zonula occludens (ZO-1) (P<0.05) and protein expression of occludin (P<0.05) of IPEC-J2 cells caused by ETEC K88. Moreover, the mRNA expression of negative regulators of toll-like receptors (TLRs) [single Ig Il-1-related receptor (SIGIRR), B-cell CLL/lymphoma 3 (Bcl3), and mitogen-activated protein kinase phosphatase-1 (MKP-1)] in IPEC-J2 cells pre-treated with L. plantarum were higher (P<0.05) compared with those in cells just exposed to K88. Furthermore, L. plantarum was shown to regulate proteins of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. These results indicated that L. plantarum may improve epithelial barrier function by maintenance of TEER, inhibiting the reduction of TJ proteins, and reducing the expression of proinflammatory cytokines induced by ETEC K88, possibly through modulation of TLRs, NF-κB and MAPK pathways.

  20. Susceptibility of porcine intestine to pilus-mediated adhesion by some isolates of piliated enterotoxigenic Escherichia coli increases with age.

    PubMed Central

    Nagy, B; Casey, T A; Whipp, S C; Moon, H W

    1992-01-01

    Two porcine isolates of enterotoxigenic Escherichia coli (ETEC) (serogroup O157 and O141) derived from fatal cases of postweaning diarrhea and lacking K88, K99, F41, and 987P pili (4P- ETEC) were tested for adhesiveness to small-intestinal epithelia of pigs of different ages. Neither strain adhered to isolated intestinal brush borders of newborn (1-day-old) pigs in the presence of mannose. However, mannose-resistant adhesion occurred when brush borders from 10-day- and 3- and 6-week-old pigs were used. Electron microscopy revealed that both strains produced fine (3.5-nm) and type 1 pili at 37 degrees C but only type 1 pili at 18 degrees C. Mannose-resistant in vitro adhesion to brush borders of older pigs correlated with the presence of fine pili. These strains produced predominantly fine pili in ligated intestinal loops of both older and newborn pigs, but adherence was greater in loops in older pigs. Immunoelectron microscopic studies, using antiserum raised against piliated bacteria and absorbed with nonpiliated bacteria, of samples from brush border adherence studies revealed labelled appendages between adherent bacteria and intestinal microvilli. Orogastric inoculation of pigs weaned at 10 and 21 days of age indicated significantly (P less than 0.001) higher levels of adhesion by the ETEC to the ileal epithelia of older pigs than to that of younger ones. We suggest that small-intestinal adhesion and colonization by these ETEC isolates is dependent on receptors that develop progressively with age during the first 3 weeks after birth. Furthermore, our data are consistent with the hypothesis that the fine pili described mediate intestinal adhesion by the 4P- ETEC strains studied. Images PMID:1347758

  1. Susceptibility of porcine intestine to pilus-mediated adhesion by some isolates of piliated enterotoxigenic Escherichia coli increases with age.

    PubMed

    Nagy, B; Casey, T A; Whipp, S C; Moon, H W

    1992-04-01

    Two porcine isolates of enterotoxigenic Escherichia coli (ETEC) (serogroup O157 and O141) derived from fatal cases of postweaning diarrhea and lacking K88, K99, F41, and 987P pili (4P- ETEC) were tested for adhesiveness to small-intestinal epithelia of pigs of different ages. Neither strain adhered to isolated intestinal brush borders of newborn (1-day-old) pigs in the presence of mannose. However, mannose-resistant adhesion occurred when brush borders from 10-day- and 3- and 6-week-old pigs were used. Electron microscopy revealed that both strains produced fine (3.5-nm) and type 1 pili at 37 degrees C but only type 1 pili at 18 degrees C. Mannose-resistant in vitro adhesion to brush borders of older pigs correlated with the presence of fine pili. These strains produced predominantly fine pili in ligated intestinal loops of both older and newborn pigs, but adherence was greater in loops in older pigs. Immunoelectron microscopic studies, using antiserum raised against piliated bacteria and absorbed with nonpiliated bacteria, of samples from brush border adherence studies revealed labelled appendages between adherent bacteria and intestinal microvilli. Orogastric inoculation of pigs weaned at 10 and 21 days of age indicated significantly (P less than 0.001) higher levels of adhesion by the ETEC to the ileal epithelia of older pigs than to that of younger ones. We suggest that small-intestinal adhesion and colonization by these ETEC isolates is dependent on receptors that develop progressively with age during the first 3 weeks after birth. Furthermore, our data are consistent with the hypothesis that the fine pili described mediate intestinal adhesion by the 4P- ETEC strains studied.

  2. Gene expression profiling of porcine mammary epithelial cells after challenge with Escherichia coli and Staphylococcus aureus in vitro.

    PubMed

    Jaeger, Alexandra; Bardehle, Danilo; Oster, Michael; Günther, Juliane; Muráni, Eduard; Ponsuksili, Siriluck; Wimmers, Klaus; Kemper, Nicole

    2015-05-06

    Postpartum Dysgalactia Syndrome (PDS) represents a considerable health problem of postpartum sows, primarily indicated by mastitis and lactation failure. The poorly understood etiology of this multifactorial disease necessitates the use of the porcine mammary epithelial cell (PMEC) model to identify how and to what extent molecular pathogen defense mechanisms prevent bacterial infections at the first cellular barrier of the gland. PMEC were isolated from three lactating sows and challenged with heat-inactivated potential mastitis-causing pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) for 3 h and 24 h, in vitro. We focused on differential gene expression patterns of PMEC after pathogen challenge in comparison with the untreated control by performing microarray analysis. Our results show that a core innate immune response of PMEC is partly shared by E. coli and S. aureus. But E. coli infection induces much faster and stronger inflammatory response than S. aureus infection. An immediate and strong up-regulation of genes encoding cytokines (IL1A and IL8), chemokines (CCL2, CXCL1, CXCL2, CXCL3, and CXCL6) and cell adhesion molecules (VCAM1, ICAM1, and ITGB3) was explicitly obvious post-challenge with E. coli inducing a rapid recruitment and activation of cells of host defense mediated by IL1B and TNF signaling. In contrast, S. aureus infection rather induces the expression of genes encoding monooxygenases (CYP1A1, CYP3A4, and CYP1B1) initiating processes of detoxification and pathogen elimination. The results indicate that the course of PDS depends on the host recognition of different structural and pathogenic profiles first, which critically determines the extent and effectiveness of cellular immune defense after infection.

  3. Characterization of a cfr-Carrying Plasmid from Porcine Escherichia coli That Closely Resembles Plasmid pEA3 from the Plant Pathogen Erwinia amylovora

    PubMed Central

    Zhang, Rongmin; Sun, Bin; Wang, Yang; Lei, Lei

    2015-01-01

    The multiresistance gene cfr was found in two porcine Escherichia coli isolates, one harboring it on the conjugative 33,885-bp plasmid pFSEC-01, the other harboring it in the chromosomal DNA. Sequence analysis of pFSEC-01 revealed that a 6,769-bp fragment containing the cfr gene bracketed by two IS26 elements was inserted into a plasmid closely related to pEA3 from the plant pathogen Erwinia amylovora, suggesting that pFSEC-01 may be transferred between different bacterial genera of both animal and plant origin. PMID:26525796

  4. Characterization of a cfr-Carrying Plasmid from Porcine Escherichia coli That Closely Resembles Plasmid pEA3 from the Plant Pathogen Erwinia amylovora.

    PubMed

    Zhang, Rongmin; Sun, Bin; Wang, Yang; Lei, Lei; Schwarz, Stefan; Wu, Congming

    2015-11-02

    The multiresistance gene cfr was found in two porcine Escherichia coli isolates, one harboring it on the conjugative 33,885-bp plasmid pFSEC-01, the other harboring it in the chromosomal DNA. Sequence analysis of pFSEC-01 revealed that a 6,769-bp fragment containing the cfr gene bracketed by two IS26 elements was inserted into a plasmid closely related to pEA3 from the plant pathogen Erwinia amylovora, suggesting that pFSEC-01 may be transferred between different bacterial genera of both animal and plant origin.

  5. Association of Escherichia coli with the Small Intestinal Epithelium II. Variations in Association Index and the Relationship Between Association Index and Enterosorption in Pigs

    PubMed Central

    Bertschinger, Hans U.; Moon, Harley W.; Whipp, Shannon C.

    1972-01-01

    The association between small intestinal epithelium and enteropathogenic Escherichia coli (EEC) was studied in ligated intestinal loops of pigs and rabbits. The association indexes (degree of association) for each of two porcine EEC strains varied widely among pigs and independently of each other. Significant litter-to-litter variations in association indexes among colostrum-deprived newborn pigs were interpreted to be the result of congenital resistance to association with specific EEC in some pigs. Since enterosorption occurred in loops with low association indexes, it was not necessary for EEC to establish a high association index for them to cause enterosorption in ligated intestinal loops. Two strains of EEC which are enteropathogenic for humans caused enterosorption in ligated loops in pigs 3 weeks old or less but not in 6-week-old pigs. Images PMID:4564681

  6. Age-specific colonization of porcine intestinal epithelium by 987P-piliated enterotoxigenic Escherichia coli.

    PubMed Central

    Dean, E A; Whipp, S C; Moon, H W

    1989-01-01

    Neonatal (less than 1-day-old), 3- and 7-day old, and older (3-week-old postweaning) pigs were challenged by intragastric inoculation with 987P-piliated (987P+) enterotoxigenic Escherichia coli (ETEC) 987. Neonatal pigs were colonized (i.e., there were greater than or equal to 10(8) CFU of test strain per 10-cm ileal segment) and developed diarrhea. Intestinal colonization and the incidence and severity of diarrhea were lower in 3- and 7-day old pigs than in neonates. Older pigs were not colonized and did not develop diarrhea following oral inoculation with five strains of 987P+ ETEC. Strain 987 (987P+) adhered in vitro to intestinal epithelial cell brush borders isolated from both neonatal (sensitive) and older (resistant) pigs. The in vivo growth and expression of 987P pilus by strain 987 in ligated ileal loops created in neonatal and older pigs were similar. The in vivo adherence of 987P+ ETEC to intestinal epithelium in ligated ileal loops in neonatal and older pigs was compared. In neonatal pigs, most of the bacteria were in layers associated with the villous epithelium. In older pigs, most of the bacteria were associated with mucus-like material in the intestinal lumen. We concluded that swine develop an innate resistance to 987P+ ETEC by 3 weeks of age. This resistance does not appear to be due to an absence of 987P-specific receptors in the intestines of the older pig or to an inability of 987P+ bacteria to grow and express pili in the older pig. We hypothesized that the resistance of older pigs to 987P-mediated disease is due to release of 987P-specific receptors into the intestinal lumen, where these receptors facilitate bacterial clearance rather than bacterial adherence to intestinal epithelium and colonization. Images PMID:2562837

  7. Age-specific colonization of porcine intestinal epithelium by 987P-piliated enterotoxigenic Escherichia coli.

    PubMed

    Dean, E A; Whipp, S C; Moon, H W

    1989-01-01

    Neonatal (less than 1-day-old), 3- and 7-day old, and older (3-week-old postweaning) pigs were challenged by intragastric inoculation with 987P-piliated (987P+) enterotoxigenic Escherichia coli (ETEC) 987. Neonatal pigs were colonized (i.e., there were greater than or equal to 10(8) CFU of test strain per 10-cm ileal segment) and developed diarrhea. Intestinal colonization and the incidence and severity of diarrhea were lower in 3- and 7-day old pigs than in neonates. Older pigs were not colonized and did not develop diarrhea following oral inoculation with five strains of 987P+ ETEC. Strain 987 (987P+) adhered in vitro to intestinal epithelial cell brush borders isolated from both neonatal (sensitive) and older (resistant) pigs. The in vivo growth and expression of 987P pilus by strain 987 in ligated ileal loops created in neonatal and older pigs were similar. The in vivo adherence of 987P+ ETEC to intestinal epithelium in ligated ileal loops in neonatal and older pigs was compared. In neonatal pigs, most of the bacteria were in layers associated with the villous epithelium. In older pigs, most of the bacteria were associated with mucus-like material in the intestinal lumen. We concluded that swine develop an innate resistance to 987P+ ETEC by 3 weeks of age. This resistance does not appear to be due to an absence of 987P-specific receptors in the intestines of the older pig or to an inability of 987P+ bacteria to grow and express pili in the older pig. We hypothesized that the resistance of older pigs to 987P-mediated disease is due to release of 987P-specific receptors into the intestinal lumen, where these receptors facilitate bacterial clearance rather than bacterial adherence to intestinal epithelium and colonization.

  8. Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli

    DOE PAGES

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; ...

    2016-04-21

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using amore » Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. Furthermore, the present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.« less

  9. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli

    PubMed Central

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K.; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-01-01

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections. PMID:27148249

  10. Prospective study of enteropathogens in two communities of Misiones, Argentina.

    PubMed

    Vergara, M; Quiroga, M; Grenon, S; Pegels, E; Oviedo, P; Deschutter, J; Rivas, M; Binsztein, N; Claramount, R

    1996-01-01

    Children under five years of age, from two communities of different socio-economic strata (97 from Zaiman and 55 from Las Dolores) were examined epidemiologically during 2 years, by means of quarterly visits of the working team, who carried out the collection of faecal samples. During the study, one or more enteropathogens were identified in 73.9% of samples in children from Zaiman and in 58.3% of the samples from Las Dolores, being associated to diarrhoea in 70.5% and to asymptomatic infections in 65.7%. The number of diarrheic episodes was higher in Zaiman (15.45%) than in Las Dolores (12.35%), being more frequent in the spring-summer seasons. In Zaiman, the bacterial enteropathogen proportion was relevantly higher (p < 0.005) in children with diarrhoea, whereas the presence of parasites was more frequent in asymptomatic children (p < 0.01). Rotavirus had an even distribution within diarrheic and asymptomatic children. In Las Dolores, no relevant differences were found in the detection of enteroparasites between diarrheic and asymptomatic children. Mixed infections were detected; enterotoxigenic Escherichia coli (ETEC)-rotavirus and ETEC-parasites being the most frequent ones. ETEC was involved in 85% of these infections. These data, together with the high enteropathogen carriage, suggest an elevated level of environmental contamination. The latter plays an important role in diarrheic diseases, and added to the most extreme poverty, it affects children's lives.

  11. Carbohydrate-binding specificities of potential probiotic Lactobacillus strains in porcine jejunal (IPEC-J2) cells and porcine mucin.

    PubMed

    Valeriano, Valerie Diane; Bagon, Bernadette B; Balolong, Marilen P; Kang, Dae-Kyung

    2016-07-01

    Bacterial lectins are carbohydrate-binding adhesins that recognize glycoreceptors in the gut mucus and epithelium of hosts. In this study, the contribution of lectin-like activities to adhesion of Lactobacillus mucosae LM1 and Lactobacillus johnsonii PF01, which were isolated from swine intestine, were compared to those of the commercial probiotic Lactobacillus rhamnosus GG. Both LM1 and PF01 strains have been reported to have good adhesion ability to crude intestinal mucus of pigs. To confirm this, we quantified their adhesion to porcine gastric mucin and intestinal porcine enterocytes isolated from the jejunum of piglets (IPEC-J2). In addition, we examined their carbohydrate-binding specificities by suspending bacterial cells in carbohydrate solutions prior to adhesion assays. We found that the selected carbohydrates affected the adherences of LM1 to IPEC-J2 cells and of LGG to mucin. In addition, compared to adhesion to IPEC-J2 cells, adhesion to mucin by both LM1 and LGG was characterized by enhanced specific recognition of glycoreceptor components such as galactose, mannose, and N-acetylglucosamine. Hydrophobic interactions might make a greater contribution to adhesion of PF01. A similar adhesin profile between a probiotic and a pathogen, suggest a correlation between shared pathogen-probiotic glycoreceptor recognition and the ability to exclude enteropathogens such as Escherichia coli K88 and Salmonella Typhimurium KCCM 40253. These findings extend our understanding of the mechanisms of the intestinal adhesion and pathogen-inhibition abilities of probiotic Lactobacillus strains.

  12. Enteropathogen carriage by healthy individuals living in an area with poor sanitation.

    PubMed Central

    Figueroa, G.; Troncoso, M.; Araya, M.; Espinoza, J.; Brunser, O.

    1983-01-01

    Faecal carriage of bacterial enteropathogens (enteropathogenic Escherichia coli (EPEC), shigellae and salmonellae) was studied in 265 individuals: 65 infants 3-6 months of age (50 bottle-fed and 15 breast-fed), 100 school-age children 8-10 years of age and 100 adults 21-50 years of age. All were apparently healthy, did not have gastrointestinal symptoms, had not received antibiotics in the preceding fortnight and were not malnourished. Enteropathogens were isolated from the faeces of 24 individuals (9.1%). Cultures were positive for enteropathogens in 20% of the infants (both breast- and bottle-fed), 8% of school-age children and 3% of the adults. EPEC was the most frequent isolate. Twelve different serotypes were detected. The highest recoveries were E. coli 026:K60 and 044 . K74. Shigella was detected only in school-age children (2%) and salmonella only in adults (1%). Campylobacter jejuni and Yersinia enterocolitica were studied only in the school-age children: there was one isolate of each of them. Most enteropathogens isolated were susceptible to the majority of the antibiotics tested. Only four E. coli strains, isolated from bottle-fed infants, could be considered multi-resistant. Two of the strains wer E. coli 044:K74 and 020a020c:K61. The remainder were E. coli 0111:K58 and wee capable of transferring some of their antibiotic resistance traits to a recipient strain. PMID:6363528

  13. In Vitro Evaluation of Swine-Derived Lactobacillus reuteri: Probiotic Properties and Effects on Intestinal Porcine Epithelial Cells Challenged with Enterotoxigenic Escherichia coli K88.

    PubMed

    Wang, Zhilin; Wang, Li; Chen, Zhuang; Ma, Xianyong; Yang, Xuefen; Zhang, Jian; Jiang, Zongyong

    2016-06-28

    Probiotics are considered as the best effective alternatives to antibiotics. The aim of this study was to characterize the probiotic potential of lactobacilli for use in swine farming by using in vitro evaluation methods. A total of 106 lactic acid bacterial isolates, originating from porcine feces, were first screened for the capacity to survive stresses considered important for putative probiotic strains. Sixteen isolates showed notable acid and bile resistance, antibacterial activity, and adherence to intestinal porcine epithelial cells (IPEC-1). One isolate, LR1, identified as Lactobacillus reuteri, was selected for extensive study of its probiotic and functional properties in IPEC-1 cell models. L. reuteri LR1 exhibited good adhesion to IPEC-1 cells and could inhibit the adhesion of enterotoxigenic Escherichia coli (ETEC) to IPEC-1 cells. L. reuteri LR1 could also modulate transcript and protein expression of cytokines involved in inflammation in IPEC-1 cells; the Lactobacillus strain inhibited the ETEC-induced expression of proinflammatory transcripts (IL-6 and TNF-α) and protein (IL-6), and increased the level of anti-inflammatory cytokine (IL-10). Measurement of the permeation of FD-4 showed that L. reuteri LR1 could maintain barrier integrity in monolayer IPEC-1 cells exposed to ETEC. Immunolocalization experiments showed L. reuteri LR1 could also prevent ETEC-induced tight junction ZO-1 disruption. Together, these results indicate that L. reuteri LR1 exhibits desirable probiotic properties and could be a potential probiotic for use in swine production.

  14. The chronic enteropathogenic disease schistosomiasis.

    PubMed

    Olveda, David U; Olveda, Remigio M; McManus, Donald P; Cai, Pengfei; Chau, Thao N P; Lam, Alfred K; Li, Yuesheng; Harn, Donald A; Vinluan, Marilyn L; Ross, Allen G P

    2014-11-01

    Schistosomiasis is a chronic enteropathogenic disease caused by blood flukes of the genus Schistosoma. The disease afflicts approximately 240 million individuals globally, causing approximately 70 million disability-adjusted life years lost. Chronic infections with morbidity and mortality occur as a result of granuloma formation in the intestine, liver, or in the case of Schistosoma haematobium, the bladder. Various methods are utilized to diagnose and evaluate liver fibrosis due to schistosomiasis. Liver biopsy is still considered the gold standard, but it is invasive. Diagnostic imaging has proven to be an invaluable method in assessing hepatic morbidity in the hospital setting, but has practical limitations in the field. The potential of non-invasive biological markers, serum antibodies, cytokines, and circulating host microRNAs to diagnose hepatic fibrosis is presently undergoing evaluation. This review provides an update on the recent advances made with respect to gastrointestinal disease associated with chronic schistosomiasis.

  15. Roles of Hcp family proteins in the pathogenesis of the porcine extraintestinal pathogenic Escherichia coli type VI secretion system.

    PubMed

    Peng, Ying; Wang, Xiangru; Shou, Jin; Zong, Bingbing; Zhang, Yanyan; Tan, Jia; Chen, Jing; Hu, Linlin; Zhu, Yongwei; Chen, Huanchun; Tan, Chen

    2016-05-27

    Hcp (hemolysin-coregulated protein) is considered a vital component of the functional T6SS (Type VI Secretion System), which is a newly discovered secretion system. Our laboratory has previously sequenced the whole genome of porcine extraintestinal pathogenic E. coli (ExPEC) strain PCN033, and identified an integrated T6SS encoding three different hcp family genes. In this study, we first identified a functional T6SS in porcine ExPEC strain PCN033, and demonstrated that the Hcp family proteins were involved in bacterial competition and the interactions with other cells. Interestingly, the three Hcp proteins had different functions. Hcp2 functioned predominantly in bacterial competition; all three proteins were involved in the colonization of mice; and Hcp1 and Hcp3 were predominantly contributed to bacterial-eukaryotic cell interactions. We showed an active T6SS in porcine ExPEC strain PCN033, and the Hcp family proteins had different functions in their interaction with other bacteria or host cells.

  16. Mucosally-directed adrenergic nerves and sympathomimetic drugs enhance non-intimate adherence of Escherichia coli O157:H7 to porcine cecum and colon

    PubMed Central

    Chen, Chunsheng; Lyte, Mark; Stevens, Mark P.; Vulchanova, Lucy; Brown, David R.

    2008-01-01

    The sympathetic neurotransmitter norepinephrine has been found to increase mucosal adherence of enterohemorrhagic Escherichia coli O157:H7 in explants of murine cecum and porcine distal colon. In the present study, we tested the hypothesis that norepinephrine augments the initial, loose adherence of this important pathogen to the intestinal mucosa. In mucosal sheets of porcine cecum or proximal, spiral and distal colon mounted in Ussing chambers, norepinephrine (10 µM, contraluminal addition) increased mucosal adherence of wild-type E. coli O157:H7 strain 85–170; in the cecal mucosa, this effect occurred within 15 – 90 min after bacterial inoculation. In addition, norepinephrine transiently increased short-circuit current in cecal and colonic mucosal sheets, a measure of active anion transport. Norepinephrine was effective in promoting cecal adherence of a non-O157 E. coli strain as well as E. coli O157:H7 eae or espA mutant strains that are incapable of intimate mucosal attachment. Nerve fibers immunoreactive for the norepinephrine synthetic enzyme dopamine β-hydroxylase appeared in close proximity to the cecal epithelium, and the norepinephrine reuptake blocker cocaine, like norepinephrine and the selective α2-adrenoceptor agonist UK-14,304, increased E. coli O157:H7 adherence. These results suggest that norepinephrine, acting upon the large bowel mucosa, modulates early, non-intimate adherence of E. coli O157:H7 and probably other mucosa-associated bacteria. Sympathetic nerves innervating the cecocolonic mucosa may link acute stress exposure or psychostimulant abuse with an increased microbial colonization of the intestinal surface. This in turn may alter host susceptibility to enteric infections. PMID:16687138

  17. Effect of Saccharomyces cerevisiae var. Boulardii and β-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88).

    PubMed

    Badia, Roger; Zanello, Galliano; Chevaleyre, Claire; Lizardo, Rosil; Meurens, François; Martínez, Paz; Brufau, Joaquim; Salmon, Henri

    2012-01-25

    Probiotic and prebiotics, often called "immune-enhancing" feed additives, are believed to deal with pathogens, preventing the need of an immune response and reducing tissue damage. In this study, we investigated if a recently developed β-galactomannan (βGM) had a similar protective role compared to Saccharomyces cerevisiae var. Boulardii (Scb), a proven probiotic, in the context of enterotoxigenic Escherichia coli (ETEC) infection. ETEC causes inflammation, diarrhea and intestinal damage in piglets, resulting in large economic loses worldwide. We observed that Scb and βGM products inhibited in vitro adhesion of ETEC on cell surface of porcine intestinal IPI-2I cells. Our data showed that Scb and βGM decreased the mRNA ETEC-induced gene expression of pro-inflammatory cytokines TNF-α, IL-6, GM-CSF and chemokines CCL2, CCL20 and CXCL8 on intestinal IPI-2I. Furthermore, we investigated the putative immunomodulatory role of Scb and βGM on porcine monocyte-derived dendritic cells (DCs) per se and under infection conditions. We observed a slight up-regulation of mRNA for TNF-α and CCR7 receptor after co-incubation of DC with Scb and βGM. However, no differences were found in DC activation upon ETEC infection and Scb or βGM co-culture. Therefore, our results indicate that, similar to probiotic Scb, prebiotic βGM may protect intestinal epithelial cells against intestinal pathogens. Finally, although these products may modulate DC activation, their effect under ETEC challenge conditions remains to be elucidated.

  18. Two or more enteropathogens are associated with diarrhoea in Mexican children

    PubMed Central

    Paniagua, Gloria Luz; Monroy, Eric; García-González, Octavio; Alonso, Javier; Negrete, Erasmo; Vaca, Sergio

    2007-01-01

    Background Diarrhoeal diseases constitute a major public health problem, particularly in the developing world, where the rate of mortality and morbidity is very high. The purpose of this study was to conduct a 2 years and 3 months study in order to determine the prevalence of five enteropathogen diarrheogenic agents in Mexico City. Methods Faecal samples were obtained from 300 Mexican children diagnosed as positive for diarrhoea, aged > 2 to < 12 years old, and from 80 children matched for age but with no symptoms of the disease (control group). Two multiplex PCR were used to detect Escherichia coli, Salmonella spp., and Shigella spp. In addition, the two protozoan parasites Entamoeba histolytica/Entamoeba dispar and Giardia intestinalis were detected by conventional methods. Results All diarrhoeal samples were positive for one or more enteropathogens. The most common enteropathogens in diarrhoeal samples were E. histolytica/E. dispar (70.3%), Salmonella (ohio 28.3%; typhimurium 16.3%; infantis 8%; anatum 0.6%; Newport 0.3%), G. intestinalis (33%), E. coli (ETEC 13.3%; EPEC 9.3%; VTEC 8.6%; EIEC 1%) and Shigella spp. (flexneri 1.6%, sonnei 1%). Infections by two (24%) three (16%) and four (12%) pathogens were observed. Conclusion This study revealed that 52% of the patients were infected by more than one enteropathogen, notably E. histolitica/E. dispar and Salmonella ohio. These results are useful for clinicians to improve the empiric treatment used in such cases. PMID:18162140

  19. Incidence of bacterial enteropathogens in foods from Mexico.

    PubMed Central

    Wood, L V; Ferguson, L E; Hogan, P; Thurman, D; Morgan, D R; DuPont, H L; Ericsson, C D

    1983-01-01

    We examined food consumption patterns of U.S. students temporarily living in Guadalajara, Mexico. Consumption of foods prepared in Mexican homes was associated with an increased risk of acquisition of diarrhea. Foods from commercial sources and private Mexican homes in Guadalajara were subsequently examined for contamination with coliforms, fecal coliforms, and bacterial enteropathogens. For comparison, selected restaurant foods were obtained in Houston, Tex. Food obtained from Mexican homes showed generally higher counts of coliforms and fecal coliforms than those obtained from commercial sources in Mexico and Houston. The foods in Mexico, both from homes and commercial sources, commonly contained Escherichia coli and occasionally enterotoxigenic E. coli. Foods in Houston were not contaminated with E. coli or enterotoxigenic E. coli. Salmonella (17 isolates), Shigella (4 isolates), and Aeromonas hydrophila (1 isolate) were found only in the foods obtained from Mexican homes. Enterotoxigenic non-E. coli Enterobacteriaceae was recovered with approximately equal frequency from all food sources. PMID:6354085

  20. Requirement for capsular antigen KX105 and fimbrial antigen CS1541 in the pathogenicity of porcine enterotoxigenic Escherichia coli O8:KX105 strains.

    PubMed Central

    Broes, A; Fairbrother, J M; Jacques, M; Larivière, S

    1989-01-01

    The requirement for capsular antigen KX105 and fimbrial antigen CS1541 in the pathogenicity of porcine enterotoxigenic Escherichia coli O8:KX105 strains lacking the colonization factor antigens K88, K99, 987P and F41 was investigated using two encapsulated strains and their acapsular variants, one of which produced the fimbrial antigen CS1541 in vitro. None of the strains adhered in vitro to enterocytes isolated from newborn colostrum-deprived piglets. All of the strains caused diarrhea in orally infected, hysterotomy-derived, colostrum-deprived piglets although a great variability in the clinical response of the piglets was observed. Colonization of the small intestine of infected piglets by these strains was only moderate and no differences in the ability to colonize the small intestine was noted between the strains. All of the strains reacted in the indirect fluorescent antibody test with both CS1541 and 987P antisera when applied to organisms in the intestines of infected piglets. A control strain expressing the 987P fimbrial adhesin also reacted with the CS1541 antiserum applied to organisms in the intestines of an infected piglet. It was concluded that capsular antigen KX105 was not essential for intestinal colonization and production of diarrhea in hysterotomy-derived colostrum-deprived pigs, and that fimbrial antigen CS1541 does not promote in vitro adherence to enterocyte brush borders but could be important in bacterial colonization in vivo. Images Fig. 1. Fig. 2. Fig. 3. PMID:2563336

  1. Effect of bovine colostrum, cheese whey, and spray-dried porcine plasma on the in vitro growth of probiotic bacteria and Escherichia coli.

    PubMed

    Champagne, Claude P; Raymond, Yves; Pouliot, Yves; Gauthier, Sylvie F; Lessard, Martin

    2014-05-01

    The aim of this study is to evaluate the effects of defatted colostrum (Col), defatted decaseinated colostrum whey, cheese whey, and spray-dried porcine plasma (SDPP) as supplements of a growth medium (de Man - Rogosa - Sharpe (MRS) broth) on the multiplication of lactic acid bacteria, probiotic bacteria, and potentially pathogenic Escherichia coli. Using automated spectrophotometry (in vitro system), we evaluated the effect of the 4 supplements on maximum growth rate (μ(max)), lag time (LagT), and biomass (OD(max)) of 12 lactic acid bacteria and probiotic bacteria and of an E. coli culture. Enrichment of MRS broth with a Col concentration of 10 g/L increased the μ(max) of 5 of the 12 strains by up to 55%. Negative effects of Col or SDPP on growth rates were also observed with 3 probiotic strains; in one instance μ(max) was reduced by 40%. The most effective inhibitor of E. coli growth was SDPP, and this effect was not linked to its lysozyme content. The positive effect of enrichment with the dairy-based ingredient might be linked to enrichment in sugars and increased buffering power of the medium. These in vitro data suggest that both Col and SDPP could be considered as supplements to animal feeds to improve intestinal health because of their potential to promote growth of probiotic bacteria and to inhibit growth of pathogenic bacteria such as E. coli.

  2. Porcine gonadogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five images submitted for teaching purposes related to porcine gonadogenesis (2), porcine fetal testicular development (2), and porcine fetal ovarian development. Key words include: Egg cell nests, Embryo, GATA4, Genital ridge, Gonad, Leydig cell, Mesonephros, MIS, Ovary, P450c17, Porcine, Sertoli ...

  3. [Enteropathogenicity of hemolysing El Tor Vibrios].

    PubMed

    Zykin, L F; Sviatoĭ, V I; Zotova, R S

    1978-02-01

    The authors studied the enteropathogenic properties of 11 strains of hemolysing E1 Tor vibrios, of which 8 in enteric administration to suckling rabbits caused no death of the animals, and 3 caused the animal death with the phenomena of diarrhea, but without any typical cholerogenicity syndrome. In case of administration with mucine the pathogenic properties were revealed in 6 strains more. Use of strains grown on media with starch for the infection led, in individual cases, to the manifestation of enteropathogenic properties. Consequently, the strains of hemolysing E1 for vibrios under study should be regarded as weakly virulent, and some--as avirulent ones.

  4. Autonomic Neurotransmitters Modulate Immunoglobulin A Secretion in Porcine Colonic Mucosa

    PubMed Central

    Schmidt, Lisa D.; Xie, Yonghong; Lyte, Mark; Vulchanova, Lucy; Brown, David R.

    2007-01-01

    Secretory immunoglobulin A (sIgA) plays a crucial role in mucosal surface defense. We tested the hypothesis that colonic sIgA secretion is under enteric neural control. Immunohistochemistry of the porcine distal colonic mucosa revealed presumptive cholinergic and adrenergic nerve fibers apposed to secretory component (SC)-positive crypt epithelial cells and neighboring IgA+ plasmacytes. The cholinomimetic drug carbamylcholine elicited rapid, atropine-sensitive IgA secretion into the luminal fluid bathing mucosal explants mounted in Ussing chambers. The adrenergic receptor agonist norepinephrine also increased IgA secretion, an action inhibited by phentolamine. These effects were independent of agonist-induced anion secretion. In Western blots of luminal fluid, both agonists increased the density of protein bands co-immunoreactive for IgA and SC. Mucosal exposure to enterohemorrhagic Escherichia coli did not affect IgA secretion, and carbamylcholine treatment did not affect mucosal adherence of this enteropathogen. Acetylcholine and norepinephrine, acting respectively through muscarinic cholinergic and alpha-adrenergic receptors in the colonic mucosa, stimulate sIgA secretion and may enhance mucosal defense in vivo. PMID:17320195

  5. Effect of porcine-derived mucosal competitive exclusion culture on antimicrobial resistance in Escherichia coli from growing piglets.

    PubMed

    Kim, L M; Gray, Jeffery T; Bailey, J Stan; Jones, Richard D; Fedorka-Cray, Paula J

    2005-01-01

    While use of antimicrobial drugs in livestock production has made a significant impact on animal health, welfare, and productivity, interest in suitable alternatives such as pre/probiotics, organic acids, and cultures of normal flora or "competitive exclusion" cultures from young animals has increased significantly in the wake of the antimicrobial resistance issue. The present study was undertaken to determine the effect of porcine-derived mucosal competitive exclusion (PCE) culture on both the antimicrobial susceptibility of commensal E. coli and on growth performance in piglets. Two replicate trials were conducted using growing piglets fed standard antimicrobial-free production diets. Piglets in the treatment group were orally dosed with PCE (10(10) cfu/mL) twice within 24 h of birth, at weaning, and 18-24 h post-weaning; control group piglets were dosed with sterile broth as a placebo. Fecal samples from all piglets were cultured for commensal E. coli at dosing times and when feed type was changed. A significantly higher proportion of E. coli from PCE-treated piglets demonstrated resistance to tetracycline (p < 0.0001), and streptomycin (p < 0.0001) when compared to controls. Resistance to streptomycin resistance in E. coli from piglets treated with PCE culture was variable, returning to baseline levels by day 21 (weaning). Piglets treated with the PCE culture demonstrated improved feed efficiencies when compared to control piglets (p < 0.005) during feeding of the starter and first growth diets. The PCE culture used in the present study had previously been shown to effectively exclude Salmonella in pigs. To the best of the authors' knowledge, this is the first report characterizing the effect of a competitive exclusion culture on antimicrobial resistance of commensal E. coli.

  6. Enteropathogenic and enteroaggregative E. coli in stools of children with acute gastroenteritis in Davidson County, Tennessee

    PubMed Central

    Foster, Monique A.; Iqbal, Junaid; Zhang, Chengxian; McHenry, Rendie; Cleveland, Brent E.; Romero-Herazo, Yesenia; Fonnesbeck, Chris; Payne, Daniel C.; Chappell, James D.; Halasa, Natasha; Gómez-Duarte, Oscar G.

    2015-01-01

    This prospective acute gastroenteritis (AGE) surveillance was conducted in the inpatient and emergency room settings at a referral pediatric hospital to determine the prevalence of diarrheagenic Escherichia coli (DEC) in children<12 years of age with AGE in Davidson County, Tennessee. Subjects 15 days to 11 years of age, who presented with diarrhea and/or vomiting, were enrolled. Stool specimens were processed for detection of DEC using multiplex polymerase chain reaction. From December 1, 2011, to June 30, 2012, a total of 79 (38%) out of 206 stool specimens from children with AGE tested positive for E. coli. A total of 12 (5.8%) out of 206 stool specimens from children with AGE were positive for a DEC. Eight (67%) out of these 12 were positive for enteropathogenic E. coli, and the remaining 4 were positive for enteroaggregative E. coli. DEC clinical isolates clustered with known E. coli enteropathogens according to multilocus sequencing typing. PMID:26298817

  7. [Healthy carriers of enteropathogenic micro-organisms among the child population of Seville].

    PubMed

    García, J L; Márquez, S; Alvarez-Dardet, C; Perea, E J

    1989-11-01

    We have studied for 1-year period a group of 144 children (31 newborn infants, 62 aged 1 year and 51 aged 2 years) who were randomly selected from the registrar's office of Sevilla with the purpose of determining the incidence of diarrhoea and the prevalence of enteropathogenic microorganisms. Two samples of faeces (one at the beginning and the second by the second semester of the 1-year period) were obtained from all children which were processed for culture and parasite and rotavirus examination. We found a prevalence rate of enteropathogenic Escherichia coli carriers (EPEC) of 7%, of Giardia lamblia of 4% and of rotavirus of 14%. The state of EPEC was more frequent among children from high social-economic status. The state of G. lamblia carrier was six-fold higher in children with body weight alterations and in non-vaccinated or incompletely vaccinated children.

  8. Enteropathogenic and enteroaggregative E. coli in stools of children with acute gastroenteritis in Davidson County, Tennessee.

    PubMed

    Foster, Monique A; Iqbal, Junaid; Zhang, Chengxian; McHenry, Rendie; Cleveland, Brent E; Romero-Herazo, Yesenia; Fonnesbeck, Chris; Payne, Daniel C; Chappell, James D; Halasa, Natasha; Gómez-Duarte, Oscar G

    2015-11-01

    This prospective acute gastroenteritis (AGE) surveillance was conducted in the inpatient and emergency room settings at a referral pediatric hospital to determine the prevalence of diarrheagenic Escherichia coli (DEC) in children <12years of age with AGE in Davidson County, Tennessee. Subjects 15 days to 11 years of age, who presented with diarrhea and/or vomiting, were enrolled. Stool specimens were processed for detection of DEC using multiplex polymerase chain reaction. From December 1, 2011, to June 30, 2012, a total of 79 (38%) out of 206 stool specimens from children with AGE tested positive for E. coli. A total of 12 (5.8%) out of 206 stool specimens from children with AGE were positive for a DEC. Eight (67%) out of these 12 were positive for enteropathogenic E. coli, and the remaining 4 were positive for enteroaggregative E. coli. DEC clinical isolates clustered with known E. coli enteropathogens according to multilocus sequencing typing.

  9. Pilus Production, Hemagglutination, and Adhesion by Porcine Strains of Enterotoxigenic Escherichia coli Lacking K88, K99, and 987P Antigens

    PubMed Central

    Awad-Masalmeh, M.; Moon, H. W.; Runnels, P. L.; Schneider, R. A.

    1982-01-01

    Three strains of enterotoxigenic Escherichia coli which adhered, colonized intensively, and caused disease in pig intestine, but which did not produce pili of the K88, K99, or 987P antigen types were designated 3P− ETEC. The 3P− ETEC caused mannose-resistant hemagglutination, adhered to porcine intestinal epithelial cells in vitro, and produced pili. However, most bacteria taken directly from the intestine of pigs infected with 3P− ETEC appeared to be nonpiliated. Two preparations were isolated from the 3P− ETEC. One (material A) contained pili, caused mannose-sensitive hemagglutination, and did not inhibit adhesion of whole bacteria to epithelial cells in vitro. The other (material B) had no demonstrable pili, caused mannose-resistant hemagglutination, and blocked ahesion of bacteria to epithelial cells in vitro. Antiserum against an acapsular mutant (K−) of one 3P− ETEC strain was absorbed to remove antibodies directed against somatic (O) antigen. The absorbed antiserum agglutinated all three 3P− ETEC strains grown in the K− form at 37°C, but not when they were grown at 18°C. The absorbed antiserum blocked the hemagglutinating activity of material B, but not of material A. It also reacted (via indirect immunofluorescence) with all of the 3P− ETEC when they were grown in pig intestine. The results were interpreted to indicate that: (i) the epithelial adhesive and mannose-resistant hemagglutinating activities of the 3P− ETEC strains may be mediated by an antigen contained in material B; (ii) this antigen either is not pilus associated or is associated with pili that are not demonstrable by the methods used here; (iii) the 3P− ETEC strains produce type 1 pili which do not mediate their adhesion to intestinal epithelium of pigs. Images PMID:6119295

  10. The Interplay between Entamoeba and Enteropathogenic Bacteria Modulates Epithelial Cell Damage

    PubMed Central

    Galván-Moroyoqui, José Manuel; del Carmen Domínguez-Robles, M.; Franco, Elizabeth; Meza, Isaura

    2008-01-01

    Background Mixed intestinal infections with Entamoeba histolytica, Entamoeba dispar and bacteria with exacerbated manifestations of disease are common in regions where amoebiasis is endemic. However, amoeba–bacteria interactions remain largely unexamined. Methodology Trophozoites of E. histolytica and E. dispar were co-cultured with enteropathogenic bacteria strains Escherichia coli (EPEC), Shigella dysenteriae and a commensal Escherichia coli. Amoebae that phagocytosed bacteria were tested for a cytopathic effect on epithelial cell monolayers. Cysteine proteinase activity, adhesion and cell surface concentration of Gal/GalNAc lectin were analyzed in amoebae showing increased virulence. Structural and functional changes and induction of IL-8 expression were determined in epithelial cells before and after exposure to bacteria. Chemotaxis of amoebae and neutrophils to human IL-8 and conditioned culture media from epithelial cells exposed to bacteria was quantified. Principal Findings E. histolytica digested phagocytosed bacteria, although S. dysenteriae retained 70% viability after ingestion. Phagocytosis of pathogenic bacteria augmented the cytopathic effect of E. histolytica and increased expression of Gal/GalNAc lectin on the amoebic surface and increased cysteine proteinase activity. E. dispar remained avirulent. Adhesion of amoebae and damage to cells exposed to bacteria were increased. Additional increases were observed if amoebae had phagocytosed bacteria. Co-culture of epithelial cells with enteropathogenic bacteria disrupted monolayer permeability and induced expression of IL-8. Media from these co-cultures and human recombinant IL-8 were similarly chemotactic for neutrophils and E. histolytica. Conclusions Epithelial monolayers exposed to enteropathogenic bacteria become more susceptible to E. histolytica damage. At the same time, phagocytosis of pathogenic bacteria by amoebae further increased epithelial cell damage. Significance The in vitro system

  11. Pathogenicity of porcine enterotoxigenic Escherichia coli that do not express K88, K99, F41, or 987P adhesins.

    PubMed

    Casey, T A; Nagy, B; Moon, H W

    1992-09-01

    Three-week-old weaned and colostrum-deprived neonatal (less than 1 day old) pigs were inoculated to determine the pathogenicity of 2 enterotoxigenic Escherichia coli isolates that do not express K88, K99, F41, or 987P adhesins (strains 2134 and 2171). Strains 2134 and 2171 were isolated from pigs that had diarrhea after weaning attributable to enterotoxigenic E coli infection. We found that both strains of E coli adhered in the ileum and caused diarrhea in pigs of both age groups. In control experiments, adherent bacteria were not seen in the ileum of pigs less than 1 day old or 3 weeks old that were noninoculated or inoculated with a nonpathogenic strain of E coli. These control pigs did not develop diarrhea. Antisera raised against strains 2134 and 2171 and absorbed with the autologous strain, grown at 18 C, were used for bacterial-agglutination and colony-immunoblot assays. Both absorbed antisera reacted with strains 2134 and 2171, but not with strains that express K99, F41, or 987P adhesins. A cross-reaction was observed with 2 wild-type K88 strains, but not with a K12 strain that expresses K88 pili. Indirect immunofluorescence with these absorbed antisera revealed adherent bacteria in frozen sections of ileum from pigs infected with either strain. We concluded that these strains are pathogenic and express a common surface antigen that may be a novel adhesin in E coli strains that cause diarrhea in weaned pigs.

  12. Saccharomyces cerevisiae decreases inflammatory responses induced by F4+ enterotoxigenic Escherichia coli in porcine intestinal epithelial cells.

    PubMed

    Zanello, Galliano; Meurens, François; Berri, Mustapha; Chevaleyre, Claire; Melo, Sandrine; Auclair, Eric; Salmon, Henri

    2011-05-15

    Probiotic yeasts may provide protection against intestinal inflammation induced by enteric pathogens. In piglets, infection with F4+ enterotoxigenic Escherichia coli (ETEC) leads to inflammation, diarrhea and intestinal damage. In this study, we investigated whether the yeast strains Saccharomyces cerevisiae (Sc, strain CNCM I-3856) and S. cerevisiae variety boulardii (Sb, strain CNCM I-3799) decreased the expression of pro-inflammatory cytokines and chemokines in intestinal epithelial IPI-2I cells cultured with F4+ ETEC. Results showed that viable Sc inhibited the ETEC-induced TNF-α gene expression whereas Sb did not. In contrast, killed Sc failed to inhibit the expression of pro-inflammatory genes. This inhibition was dependent on secreted soluble factors. Sc culture supernatant decreased the TNF-α, IL-1α, IL-6, IL-8, CXCL2 and CCL20 ETEC-induced mRNA. Furthermore, Sc culture supernatant filtrated fraction < 10 kDa displayed the same effects excepted for TNF-α. Thus, our results extended to Sc (strain CNCM I-3856) the inhibitory effects of some probiotic yeast strains onto inflammation.

  13. Development of a risk-based methodology for estimating survival and growth of enteropathogenic Escherichia coli on iceberg-lettuce exposed at short-term storage in foodservice centers.

    PubMed

    Rodríguez-Caturla, M Y; Valero, A; García-Gimeno, R M; Zurera, G

    2012-09-01

    Ready-to-eat lettuce is a food commodity prone to contamination by pathogenic microorganisms if processing and distribution conditions as well as handling practices are not effective. A challenge testing protocol was applied to ready-to-eat iceberg-lettuce samples by inoculating different initial contamination levels (4.5, 3.5 and 2.5 log cfu/g) of Escherichia coli strain (serotype O158:H23) subsequently stored at 8, 12, 16, 20 and 24°C for 6h. A polynomial regression model for log difference (log(diff)) was developed at each inoculum level studied through the calculation of the effective static temperature (T(eff)). Furthermore, the developed model was integrated within a risk-based approach with real time/Temperature (t/T) data collected in three Spanish foodservice centers: school canteens, long-term care facilities (LTCF) and hospitals. Statistical distributions were fitted to t/T data and estimated log(diff) values were obtained as model outputs through a Monte Carlo simulation (10,000 iterations). The results obtained at static conditions indicated that the maintenance of the lettuce at 8°C slightly reduced the E. coli population from -0.4 to -0.5 log cfu/g. However, if chill chain is not maintained, E. coli can grow up to 1.1 log cfu/g at temperatures above 16°C, even at low contamination levels. Regarding log(diff) estimated in foodservice centers, very low risk was obtained (log(diff)<1.0 log cfu in all cases). Mean T(eff) values obtained in hospitals were the lowest ones (11.1°C) and no growth of E. coli was predicted in >92% of simulated cases. The results presented in this study could serve food operators to set time/Temperature requirements for ready-to-eat foods in foodservice centers, providing a scientific basis through the use of predictive modeling. These findings may also serve to food safety managers to better define the control measures to be adopted in foodservice centers in order to prevent food-borne infections.

  14. Characterization of Shiga toxin subtypes and virulence genes in porcine Shiga toxin-producing Escherichia coli

    SciTech Connect

    Baranzoni, Gian Marco; Fratamico, Pina M.; Gangiredla, Jayanthi; Patel, Isha; Bagi, Lori K.; Delannoy, Sabine; Fach, Patrick; Boccia, Federica; Anastasio, Aniello; Pepe, Tiziana

    2016-04-21

    Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. Furthermore, the present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles

  15. Effect of Escherichia coli heat-stable enterotoxin, cholera toxin and theophylline on ion transport in porcine colon

    PubMed Central

    Argenzio, R. A.; Whipp, S. C.

    1981-01-01

    1. The effect of heat-stable enterotoxin (ST) of Escherichia coli, cholera toxin (CT), and theophylline (a phosphodiesterase inhibitor) on ion and water transport was studied with an in vivo isolated loop system of the pig colon. 2. All three agents abolished net Na absorption as a result of a decrease in the lumen to blood Na flux alone. With all three agents, net Cl absorption was reduced, but not abolished, and net HCO3 secretion was elicited. Luminal pCO2 was reduced with CT and theophylline from that observed in normal Ringer alone. 3. Theophylline resulted in a prompt and sustained increase in both cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP) levels in colonic mucosa studied in vitro. ST selectively elevated cyclic GMP, whereas CT selectively elevated cyclic AMP. These responses paralleled the time course and magnitude of response of the transepithelial electrical potential difference (ψLB) measured in vivo. 4. Ion replacement studies in the presence or absence of theophylline showed that in the absence of Na, Cl absorption was slightly reduced and HCO3 secretion was elicited; no further additive effects of theophylline in the absence of luminal Na were observed. In the absence of luminal Cl, net Na absorption was abolished and HCO3 was absorbed; theophylline resulted in significant net Na and HCO3 secretion. Theophylline also increased ψLB in the absence of either luminal Na or Cl. 5. Results suggest that in the presence of theophylline or enterotoxin, the coupled Na—H and Cl—HCO3 exchange processes that are normally responsible for at least half of the net NaCl absorption by this tissue are interrupted. Active HCO3 secretion is observed and Cl absorption under these conditions can be entirely explained as a consequence of ψLB. Thus, these studies indicate that the colon may participate in the production of diarrhoea of enterotoxigenic origin. They also suggest an important functional role of cyclic

  16. Prediction of Intra-Species Protein-Protein Interactions in Enteropathogens Facilitating Systems Biology Study

    PubMed Central

    Barman, Ranjan Kumar; Jana, Tanmoy; Das, Santasabuj; Saha, Sudipto

    2015-01-01

    Protein-protein interactions in Escherichia coli (E. coli) has been studied extensively using high throughput methods such as tandem affinity purification followed by mass spectrometry and yeast two-hybrid method. This can in turn be used to understand the mechanisms of bacterial cellular processes. However, experimental characterization of such huge amount of interactions data is not available for other important enteropathogens. Here, we propose a support vector machine (SVM)-based prediction model using the known PPIs data of E. coli that can be used to predict PPIs in other enteropathogens, such as Vibrio cholerae, Salmonella Typhi, Shigella flexneri and Yersinia entrocolitica. Different features such as domain-domain association (DDA), network topology, and sequence information were used in developing the SVM model. The proposed model using DDA, degree and amino acid composition features has achieved an accuracy of 82% and 62% on 5-fold cross validation and blind E. coli datasets, respectively. The predicted interactions were validated by Gene Ontology (GO) semantic similarity measure and String PPIs database (experimental PPIs only). Finally, we have developed a user-friendly webserver named EnPPIpred to predict intra-species PPIs in enteropathogens, which will be of great help for the experimental biologists. The webserver EnPPIpred is freely available at http://bicresources.jcbose.ac.in/ssaha4/EnPPIpred/. PMID:26717407

  17. Prediction of Intra-Species Protein-Protein Interactions in Enteropathogens Facilitating Systems Biology Study.

    PubMed

    Barman, Ranjan Kumar; Jana, Tanmoy; Das, Santasabuj; Saha, Sudipto

    2015-01-01

    Protein-protein interactions in Escherichia coli (E. coli) has been studied extensively using high throughput methods such as tandem affinity purification followed by mass spectrometry and yeast two-hybrid method. This can in turn be used to understand the mechanisms of bacterial cellular processes. However, experimental characterization of such huge amount of interactions data is not available for other important enteropathogens. Here, we propose a support vector machine (SVM)-based prediction model using the known PPIs data of E. coli that can be used to predict PPIs in other enteropathogens, such as Vibrio cholerae, Salmonella Typhi, Shigella flexneri and Yersinia entrocolitica. Different features such as domain-domain association (DDA), network topology, and sequence information were used in developing the SVM model. The proposed model using DDA, degree and amino acid composition features has achieved an accuracy of 82% and 62% on 5-fold cross validation and blind E. coli datasets, respectively. The predicted interactions were validated by Gene Ontology (GO) semantic similarity measure and String PPIs database (experimental PPIs only). Finally, we have developed a user-friendly webserver named EnPPIpred to predict intra-species PPIs in enteropathogens, which will be of great help for the experimental biologists. The webserver EnPPIpred is freely available at http://bicresources.jcbose.ac.in/ssaha4/EnPPIpred/.

  18. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: a review.

    PubMed

    Heaton, J C; Jones, K

    2008-03-01

    Consumption of fruit and vegetable products is commonly viewed as a potential risk factor for infection with enteropathogens such as Salmonella and Escherichia coli O157, with recent outbreaks linked to lettuce, spinach and tomatoes. Routes of contamination are varied and include application of organic wastes to agricultural land as fertilizer, contamination of waters used for irrigation with faecal material, direct contamination by livestock, wild animals and birds and postharvest issues such as worker hygiene. The ability of pathogens to survive in the field environment has been well studied, leading to the implementation of guidelines such as the Safe Sludge Matrix, which aim to limit the likelihood of viable pathogens remaining at point-of-sale. The behaviour of enteropathogens in the phyllosphere is a growing field of research, and it is suggested that inclusion in phyllosphere biofilms or internalization within the plant augments the survival. Improved knowledge of plant-microbe interactions and the interaction between epiphytic and immigrant micro-organisms on the leaf surface will lead to novel methods to limit enteropathogen survival in the phyllosphere.

  19. Salmonellae and other enteropathogenic bacteria in the intestines of wall geckos in Nigeria.

    PubMed

    Gugnani, H C; Oguike, J U; Sakazaki, R

    1986-01-01

    The aerobic bacterial flora of the intestine of 150 wall geckos (Hemidactylus brookei) was investigated. A variety of bacteria was recovered including 35 isolates of Salmonella and several other species of Enterobacteriaceae, viz. Shigella sonnei - 2, Edwardsiella tarda - 4, Enterobacter spp - 8, Citrobacter freudii - 3, Serratia marcescens - 3, Proteus spp - 35, Klebsiella pneumoniae - 13, and Escherichia coli - 17, isolates. Eight Salmonella serotypes were identified, the predominant ones being S. hvittingfoss and S. typhimurium. The significance of these findings for the spread of human enteropathogens is discussed.

  20. Identification of enteropathogens in infantile diarrhea in a study performed in the city of Posadas, Misiones, República Argentina.

    PubMed

    Vergara, M; Quiroga, M; Grenón, S; Villalba, V; Pegels, E; Chade, M; González, C; Binsztein, N; Eiguer, T; Depetris, A

    1992-01-01

    The following work informs of the results of isolation, frequency and distribution of enteropathogens in children under five years old, without previous antibiotic treatment, less than seven days with diarrhoea, ambulatory or in Hospital "Dr. Ramón Madariaga" de Posadas, Misiones, República Argentina, from June 1986 to May 1989. From a total of 972 children with diarrhoea, 78% required to be hospitalized. The greatest number of cases were found during spring and summer in children from 1 to 11 months of age. Distribution of the main enteropathogens was: enteropathogenic Escherichia coli (EPEC) (29.4%), parasites (22%), Shigella (16.3%), enterotoxigenic Escherichia coli (ETEC) (14%) and rotavirus (12.9%). Highest incidence of rotavirus was registered in the coldest months and Shigella, ETEC, Salmonella and parasites in the warm months. The group of most affected children were from 1 to 11 months of age, with higher incidence of EPEC, Salmonella and rotavirus, and parasites were found in older children. ETEC and Shigella had no relationship with the age of children. The most frequent association was EPEC with rotavirus. This is the first finding of Salmonella zaiman in humans and of Salmonella hadar in Argentina. Cryptosporidium, etiological agent of serious diarrhoea in the immunocompetent, was isolated in 3.9% of our cases.

  1. Detection of Zoonotic Enteropathogens in Children and Domestic Animals in a Semirural Community in Ecuador

    PubMed Central

    Vasco, Karla; Graham, Jay P.

    2016-01-01

    ABSTRACT Animals are important reservoirs of zoonotic enteropathogens, and transmission to humans occurs more frequently in low- and middle-income countries (LMICs), where small-scale livestock production is common. In this study, we investigated the presence of zoonotic enteropathogens in stool samples from 64 asymptomatic children and 203 domestic animals of 62 households in a semirural community in Ecuador between June and August 2014. Multilocus sequence typing (MLST) was used to assess zoonotic transmission of Campylobacter jejuni and atypical enteropathogenic Escherichia coli (aEPEC), which were the most prevalent bacterial pathogens in children and domestic animals (30.7% and 10.5%, respectively). Four sequence types (STs) of C. jejuni and four STs of aEPEC were identical between children and domestic animals. The apparent sources of human infection were chickens, dogs, guinea pigs, and rabbits for C. jejuni and pigs, dogs, and chickens for aEPEC. Other pathogens detected in children and domestic animals were Giardia lamblia (13.1%), Cryptosporidium parvum (1.1%), and Shiga toxin-producing E. coli (STEC) (2.6%). Salmonella enterica was detected in 5 dogs and Yersinia enterocolitica was identified in 1 pig. Even though we identified 7 enteric pathogens in children, we encountered evidence of active transmission between domestic animals and humans only for C. jejuni and aEPEC. We also found evidence that C. jejuni strains from chickens were more likely to be transmitted to humans than those coming from other domestic animals. Our findings demonstrate the complex nature of enteropathogen transmission between domestic animals and humans and stress the need for further studies. IMPORTANCE We found evidence that Campylobacter jejuni, Giardia, and aEPEC organisms were the most common zoonotic enteropathogens in children and domestic animals in a region close to Quito, the capital of Ecuador. Genetic analysis of the isolates suggests transmission of some genotypes

  2. Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves.

    PubMed

    Bartels, Chris J M; Holzhauer, Menno; Jorritsma, Ruurd; Swart, Wim A J M; Lam, Theo J G M

    2010-02-01

    Between January and April 2007, 424 calves under 22 days of age from 108 Dutch dairy herds were sampled to estimate the prevalence of non-normal faeces ('custard-like'-yellowish-coloured with custard consistency or diarrhoea: watery-like faeces) and the shedding of enteropathogens Escherichia coli K99 (E. coli), Coronavirus, Cryptosporidium parvum (C. parvum), Rotavirus and Clostridium perfringens (Cl. perfringens). In addition, information was collected on animal characteristics and herd-management practices. The probability of detecting each one of five enteropathogens given a calf with 'custard-like' faeces or diarrhoea was estimated using Bayes' rule and was based on the predicted probabilities from a multinominal model including each of five enteropathogens as independent variables. In addition, putative risk factors for the presence of each of five enteropathogens were analysed using logistic regression models with random herd effects. Fifty-seven percent of calves had faeces of normal colour (brownish) and consistency (firm), 23.8% (95%CI: 19.8-28.2%) had 'custard-like' faeces and 19.1% (95%CI: 15.5-23.2%) had diarrhoea. E. coli was the least detected enteropathogen (2.6% (95%CI: 1.3-4.6%) of calves, 9% (95%CI: 5-16%) of herds) and Cl. perfringens was most detected (54.0% (95%CI: 49.1-58.8%) of calves, 85% (95%CI: 77-91%) of herds). E. coli and Coronavirus were detected incidentally in only one or two calves per herd, whereas C. parvum and Cl. perfringens were frequently detected in up to four calves per herd. For calves with 'custard-like' faeces, the probability of detecting Rotavirus from a calf in its first week of age was 0.31 whereas for a calf in its second week, there was a 0.66 probability of detecting C. parvum. The probabilities of detecting E. coli, Rotavirus and C. parvum in calves with diarrhoea in their first week of age were 0.10, 0.20 and 0.43, respectively. In calves with diarrhoea between 1 and 2 weeks of age, the probability of detecting

  3. A FaeG-FedF-LT192 fusion elicits protective anti-adhesin and antitoxin antibodies against porcine enterotoxigenic Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterotoxigenic Escherichia coli (ETEC) strains expressing K88 or F18 fimbriae and heat-labile (LT) and/or heat-stable (ST) toxins are the major cause of diarrhea in young pigs. Effective vaccines inducing anti-adhesin (anti-K88 & anti-F18) and antitoxin (anti-LT & anti-ST) 5 immunity would provide ...

  4. Enteropathogen Resource Integration Center (ERIC): bioinformatics support for research on biodefense-relevant enterobacteria.

    PubMed

    Glasner, Jeremy D; Plunkett, Guy; Anderson, Bradley D; Baumler, David J; Biehl, Bryan S; Burland, Valerie; Cabot, Eric L; Darling, Aaron E; Mau, Bob; Neeno-Eckwall, Eric C; Pot, David; Qiu, Yu; Rissman, Anna I; Worzella, Sara; Zaremba, Sam; Fedorko, Joel; Hampton, Tom; Liss, Paul; Rusch, Michael; Shaker, Matthew; Shaull, Lorie; Shetty, Panna; Thotakura, Silpa; Whitmore, Jon; Blattner, Frederick R; Greene, John M; Perna, Nicole T

    2008-01-01

    ERIC, the Enteropathogen Resource Integration Center (www.ericbrc.org), is a new web portal serving as a rich source of information about enterobacteria on the NIAID established list of Select Agents related to biodefense-diarrheagenic Escherichia coli, Shigella spp., Salmonella spp., Yersinia enterocolitica and Yersinia pestis. More than 30 genomes have been completely sequenced, many more exist in draft form and additional projects are underway. These organisms are increasingly the focus of studies using high-throughput experimental technologies and computational approaches. This wealth of data provides unprecedented opportunities for understanding the workings of basic biological systems and discovery of novel targets for development of vaccines, diagnostics and therapeutics. ERIC brings information together from disparate sources and supports data comparison across different organisms, analysis of varying data types and visualization of analyses in human and computer-readable formats.

  5. Oral administration of synthetic porcine beta-defensin-2 improves growth performance and cecal microbial flora and down-regulates the expression of intestinal toll-like receptor-4 and inflammatory cytokines in weaned piglets challenged with enterotoxigenic Escherichia coli.

    PubMed

    Tang, Zhiru; Xu, Ling; Shi, Baoshi; Deng, Huang; Lai, Xin; Liu, Jingyan; Sun, Zhihong

    2016-10-01

    Synthetic porcine beta-defensin-2 (pBD-2) was tested as an alternative to antimicrobial growth-promoters in pig production. Thirty 21-day weaned piglets were challenged with enterotoxigenic Escherichia coli, and orally dosed with either sterile water (CON), pBD-2 (BD) or neomycin sulphate (NS) twice daily for 21 days. pBD-2 and NS led to higher growth performance, jejunum villus height and increased expression of insulin-like growth factor-I compared with the CON group (P < 0.05). Hemolytic E. coli scores from rectal swabs, and copy numbers of E. coli, Bacteroides fragilis and Streptococcus in the cecal digesta of the BD- or NS-treated piglets were lower than those in the CON group (P < 0.05). Messenger RNA levels of toll-like receptor 4, tumor necrosis factor-α, interleukin (IL)-1β, and IL-8 in the jejunum mucosa of the BD and NS groups were lower than those in the CON group (P < 0.05). Copy numbers of Lactobacilli and Bifidobacteria in the cecal digesta of the BD group were higher than those of the CON and NS groups (P < 0.05). Therefore, pBD-2 has antimicrobial activity in piglets, and it can improve growth performance, reduce inflammatory cytokine expression and affect intestinal morphological indices in the same way as probiotics. © 2015 Japanese Society of Animal Science.

  6. Binding of Escherichia coli heat-stable enterotoxin to rat intestinal cells and brush border membranes.

    PubMed Central

    Frantz, J C; Jaso-Friedman, L; Robertson, D C

    1984-01-01

    The association of heat-stable enterotoxin (STa) produced by enterotoxigenic Escherichia coli 431 with isolated rat intestinal epithelial cells and brush border membranes was characterized. Specific binding of strain 431 125I-STa to a single class of specific high-affinity receptors was saturable and temperature dependent and reached a maximum between 5 and 10 min. A 1,000-fold excess of unlabeled 431 STa competitively displaced 90 to 95% of radiolabeled enterotoxin bound to brush border membranes. In contrast, specific binding of 431 125I-STa to intestinal cells ranged from 40 to 65%. The number of STa-specific receptors on rat intestinal cells determined by Scatchard analysis was 47,520 +/- 14,352 (mean +/- standard error of the mean) per cell, with affinity constants (KaS) of 2.55 X 10(11)and 4.32 x 10(11) liters/mol determined for intestinal cells and brush border membranes, respectively. Villus intestinal cells appeared to possess about twice as many STa receptors as did crypt cells. Dissociation of specifically bound 431 125I-STa from intestinal cells and brush border membranes was minimal (2 to 5%). In addition, neither the rate nor the extent of dissociation was increased by a 1,000-fold excess of unlabeled homologous 431 Sta. Binding experiments with 431 125I-STa and brush border membranes showed that purified unlabeled STas from enterotoxigenic E. coli strains 667 (class 1 porcine enteropathogen), B-41 (bovine enteropathogen), and human strains 213C2 (Mexico) and 153961-2 (Dacca, Bangledesh) exhibited patterns of competitive inhibition similar to those of homologous unlabeled 431 STa (class 2 enteropathogen). A lipid extract which contained gangliosides and glycolipids exhibited dose-dependent competitive inhibition of heat-labile enterotoxin binding to brush border membranes but did not inhibit binding of 431 125I-STa. Purified heat-labile enterotoxin from strain 286C2 did not inhibit binding of 431 STa to brush border membranes. Pronase treatment of

  7. High Iron-Sequestrating Bifidobacteria Inhibit Enteropathogen Growth and Adhesion to Intestinal Epithelial Cells In vitro

    PubMed Central

    Vazquez-Gutierrez, Pamela; de Wouters, Tomas; Werder, Julia; Chassard, Christophe; Lacroix, Christophe

    2016-01-01

    The gut microbiota plays an important role in host health, in particular by its barrier effect and competition with exogenous pathogenic bacteria. In the present study, the competition of Bifidobacterium pseudolongum PV8-2 (Bp PV8-2) and Bifidobacterium kashiwanohense PV20-2 (Bk PV20-2), isolated from anemic infant gut microbiota and selected for their high iron sequestration properties, was investigated against Salmonella Typhimurium (S. Typhi) and Escherichia coli O157:H45 (EHEC) by using co-culture tests and assays with intestinal cell lines. Single and co-cultures were carried out anaerobically in chemically semi-defined low iron (1.5 μM Fe) medium (CSDLIM) without and with added ferrous iron (30 μM Fe). Surface properties of the tested strains were measured by bacterial adhesion to solvent xylene, chloroform, ethyl acetate, and to extracellular matrix molecules, mucus II, collagen I, fibrinogen, fibronectin. HT29-MTX mucus-secreting intestinal cell cultures were used to study bifidobacteria competition, inhibition and displacement of the enteropathogens. During co-cultures in CSDLIM we observed strain-dependent inhibition of bifidobacterial strains on enteropathogens, independent of pH, organic acid production and supplemented iron. Bp PV8-2 significantly (P < 0.05) inhibited S. Typhi N15 and EHEC after 24 h compared to single culture growth. In contrast Bk PV20-2 showed less inhibition on S. Typhi N15 than Bp PV8-2, and no inhibition on EHEC. Affinity for intestinal cell surface glycoproteins was strain-specific, with high affinity of Bp PV8-2 for mucin and Bk PV20-2 for fibronectin. Bk PV20-2 showed high adhesion potential (15.6 ± 6.0%) to HT29-MTX cell layer compared to Bp PV8-2 (1.4 ± 0.4%). In competition, inhibition and displacement tests, Bp PV8-2 significantly (P < 0.05) reduced S. Typhi N15 and EHEC adhesion, while Bk PV20-2 was only active on S. Typhi N15 adhesion. To conclude, bifidobacterial strains selected for their high iron binding

  8. ENTEROPATHOGENS DETECTED IN A DAYCARE CENTER, SOUTHEASTERN BRAZIL: BACTERIA, VIRUS, AND PARASITE RESEARCH

    PubMed Central

    Castro, Edna Donizetti Rossi; Germini, Marcela Cristina Braga Yassaka; Mascarenhas, Joana D'Arc Pereira; Gabbay, Yvone Benchimol; de Lima, Ian Carlos Gomes; Lobo, Patrícia dos Santos; Fraga, Valéria Daltibari; Conceição, Luciana Moran; Machado, Ricardo Luiz Dantas; Rossit, Andréa Regina Baptista

    2015-01-01

    Introduction: The objective of this study was to determine the prevalence and etiological profile of enteropathogens in children from a daycare center. Methods: From October 2010 to February 2011 stool samples from 100 children enrolled in a government daycare center in the municipality of São José do Rio Preto, in the state of São Paulo, were collected and analyzed. Results: A total of 246 bacteria were isolated in 99% of the fecal samples; 129 were in the diarrheal group and 117 in the non-diarrheal group. Seventy-three strains of Escherichia coli were isolated, 19 of Enterobacter, one of Alcaligenes and one of Proteus. There were 14 cases of mixed colonization with Enterobacter and E. coli. Norovirus and Astrovirus were detected in children with clinical signs suggestive of diarrhea. These viruses were detected exclusively among children residing in urban areas. All fecal samples were negative for the presence of the rotavirus species A and C. The presence of Giardia lamblia, Entamoeba coli, Endolimax nana and hookworm was observed. A significant association was found between food consumption outside home and daycare center and the presence of intestinal parasites. Conclusions: For children of this daycare center, intestinal infection due to pathogens does not seem to have contributed to the occurrence of diarrhea or other intestinal symptoms. The observed differences may be due to the wide diversity of geographical, social and economic characteristics and the climate of Brazil, all of which have been reported as critical factors in the modulation of the frequency of different enteropathogens. PMID:25651323

  9. High Detection Rates of Enteropathogens in Asymptomatic Children Attending Day Care

    PubMed Central

    Enserink, Remko; Scholts, Rianne; Bruijning-Verhagen, Patricia; Duizer, Erwin; Vennema, Harry; de Boer, Richard; Kortbeek, Titia; Roelfsema, Jeroen; Smit, Henriette; Kooistra-Smid, Mirjam; van Pelt, Wilfrid

    2014-01-01

    Background Gastroenteritis morbidity is high among children under the age of four, especially amongst those who attend day care. Objective To determine the prevalence of a range of enteropathogens in the intestinal flora of children attending day care and to relate their occurrence with characteristics of the sampled child and the sampling season. Methods We performed three years of enteropathogen surveillance in a network of 29 child day care centers in the Netherlands. The centers were instructed to take one fecal sample from ten randomly chosen children each month, regardless of gastrointestinal symptoms at time of sampling. All samples were analyzed for the molecular detection of 16 enteropathogenic bacteria, parasites and viruses by real-time multiplex PCR. Results Enteropathogens were detected in 78.0% of the 5197 fecal samples. Of the total, 95.4% of samples were obtained from children who had no gastroenteritis symptoms at time of sampling. Bacterial enteropathogens were detected most often (most prevalent EPEC, 19.9%), followed by parasitic enteropathogens (most prevalent: D. fragilis, 22.1%) and viral enteropathogens (most prevalent: norovirus, 9.5%). 4.6% of samples related to children that experienced symptoms of gastroenteritis at time of sampling. Only rotavirus and norovirus were significantly associated with gastroenteritis among day care attendees. Conclusions Our study indicates that asymptomatic infections with enteropathogens in day care attendees are not a rare event and that gastroenteritis caused by infections with these enteropathogens is only one expression of their presence. PMID:24586825

  10. Effects of the Probiotic Enterococcus faecium and Pathogenic Escherichia coli Strains in a Pig and Human Epithelial Intestinal Cell Model

    PubMed Central

    Lodemann, Ulrike; Strahlendorf, Julia; Schierack, Peter; Klingspor, Shanti; Aschenbach, Jörg R.

    2015-01-01

    The aim of this study has been to elucidate the effect of the probiotic Enterococcus faecium NCIMB 10415 on epithelial integrity in intestinal epithelial cells and whether pre- and coincubation with this strain can reproducibly prevent damage induced by enterotoxigenic (ETEC) and enteropathogenic Escherichia coli (EPEC). Porcine (IPEC-J2) and human (Caco-2) intestinal epithelial cells were incubated with bacterial strains and epithelial integrity was assessed by measuring transepithelial electrical resistance (TEER) and mannitol flux rates. E. faecium alone increased TEER of Caco-2 cells without affecting mannitol fluxes whereas the E. coli strains decreased TEER and concomitantly increased mannitol flux rates in both cell lines. Preincubation with E. faecium had no effect on the TEER decrease induced by E. coli in preliminary experiments. However, in a second set of experiments using a slightly different protocol, E. faecium ameliorated the TEER decrease induced by ETEC at 4 h in IPEC-J2 and at 2, 4, and 6 h in Caco-2 cells. We conclude that E. faecium positively affected epithelial integrity in monoinfected Caco-2 cells and could ameliorate the damage on TEER induced by an ETEC strain. Reproducibility of the results is, however, limited when experiments are performed with living bacteria over longer periods. PMID:25883829

  11. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  12. Enteropathogens associated with diarrhea among military personnel during Operation Bright Star 96, in Alexandria, Egypt.

    PubMed

    Oyofo, B A; Peruski, L F; Ismail, T F; el-Etr, S H; Churilla, A M; Wasfy, M O; Petruccelli, B P; Gabriel, M E

    1997-06-01

    This study investigated the microbial causes of diarrheal disease among U.S. troops deployed near Alexandria, Egypt, during October 1995. Bacterial causes associated with 19 cases of diarrhea included: enterotoxigenic Escherichia coli (ETEC), 42% (21% heat-stable, 11% heat-labile, and 11% heat-stable/ heat-labile producers); enteropathogenic E. coli (5.3%); and enteroadherent E. coli (42%). Four cases of diarrhea were associated with enteroaggregative E. coli based on probe analysis for enteroaggregative heat-stable enterotoxin 1. Protozoan causes included; Entamoeba histolytica (11%), E. hartmanni (5%), E. nana (5%), Blastocystis hominis (5%), Chilomastix mesnili (11%), Dientamoeba fragilis (5%), Entamoeba coli (5%), and Cryptosporidium (5%). Shigella, Aeromonas, Plesiomonas, Vibrio, Campylobacter, and Salmonella were not detected. Of the eight ETEC cases, one was colonization factor antigen (CFA)/I only, one was both CFA/I and CFA/III, three were CFA/II, two were CFA/IV, and two were CFA-negative. Antibiograms of the ETEC and enteroadherent E. coli strains showed that all isolates were susceptible to norfloxacin, ciprofloxacin, and nalidixic acid but resistant to ampicillin, tetracycline, chloramphenicol, and sulfamethoxazole.

  13. Highly selective trapping of enteropathogenic E. coli on Fabry-Pérot sensor mirrors.

    PubMed

    Ivanova, Elena P; Truong, Vi Khanh; Gervinskas, Gediminas; Mitik-Dineva, Natasa; Day, Daniel; Jones, Robert T; Crawford, Russell J; Juodkazis, Saulius

    2012-05-15

    Untreated recycled water, such as sewage and graywater, will almost always contain a wide range of agents that are likely to present risks to human health, including chemicals and pathogenic microorganisms. The microbial hazards, such as large numbers of enteric pathogens that can cause gastroenteric illness if ingested, are the main cause of concern for human health. The presence of the enteropathogenic Escherichia coli (EPEC) serotype is of particular concern, as this group of bacteria is responsible for causing severe infant and travelers' diarrhea, gastroenteritis and hemolytic uremic syndrome. A biosensing system based on an optical Fabry-Pérot (FP) cavity, capable of directly detecting the presence of EPEC within 5 min, has been developed using a simple micro-thin double-sided adhesive tape and two semi-transparent FP mirror plates. The system utilizes a poly(methyl methacrylate) (PMMA) or glass substrates sputtered by 40-nm-thick gold thin films serving as FP mirrors. Mirrors have been activated using 0.1M mercaptopropionic acid, influencing an immobilization density of the translocated intimin receptor (TIR) of 100 ng/cm(2). The specificity of recognition was confirmed by exposing TIR functionalized surfaces to four taxonomically related and/or distantly related bacterial strains. It was found that the TIR-functionalized surfaces did not show any bacterial capture for these other bacterial strains within a 15 min incubation period.

  14. Seroprevalence of enteropathogenic Yersinia spp. in pig batches at slaughter.

    PubMed

    Vanantwerpen, Gerty; Van Damme, Inge; De Zutter, Lieven; Houf, Kurt

    2014-09-01

    Enteropathogenic Yersinia spp. are one of the main causes of foodborne bacterial infections in Europe. Slaughter pigs are the main reservoir and carcasses are contaminated during a sub-optimal hygienically slaughtering-process. Serology is potentially an easy option to test for the Yersinia-status of the pig (batches) before slaughter. A study of the variation in activity values (OD%) of Yersinia spp. in pigs and pig batches when applying a serological test were therefore conducted. In this study, pieces of the diaphragm of 7047 pigs, originating from 100 farms, were collected and meat juice was gathered, where after an enzyme-linked immunosorbent assay (ELISA) Pigtype Yopscreen (Labor Diagnostik Leipzig, Qiagen, Leipzig, Germany) was performed. The results were defined positive if the activity values exceeded the proposed cut-off value of 30 OD%. Results at pig level displayed a bimodal-shaped distribution with modes at 0-10% (n=879) and 50-60% (n=667). The average OD% was 51% and 66% of the animals tested positive. The within-batch seroprevalence ranged from 0 to 100% and also showed a bimodal distribution with modes at 0% (n=7) and 85-90% (n=16). On 7 farms, no single seropositive animal was present and in 22 farms, the mean OD% was below 30%. Based on the results obtained at slaughter, 66% of the pigs had contact with enteropathogenic Yersinia spp. at farm level. The latter occurred in at least 93% of the farms indicating that most farms are harboring enteropathogenic Yersinia spp.

  15. Reassessment of the Enteropathogenicity of Mesophilic Aeromonas Species

    PubMed Central

    Teunis, Peter; Figueras, Maria J.

    2016-01-01

    Cases of Aeromonas diarrhea have been described all over the world. The genus Aeromonas includes ca. 30 species, of which 10 have been isolated in association with gastroenteritis. The dominating species that account for ca. 96% of the identified strains are Aeromonas caviae, A. veronii, A. dhakensis, and A. hydrophila. However, the role of Aeromonas as a true enteropathogen has been questioned on the basis of the lack of outbreaks, the non-fulfillment of Koch’s postulates and the low numbers of acute illnesses in the only existing human challenge study. In the present study we reassess the enteropathogenicity of Aeromonas using dose response models for microbial infection and acute illness. The analysis uses the data from the human challenge study and additional data from selected outbreak investigations where the numbers exposed and the dose were reported, allowing their inclusion as “natural experiments”. In the challenge study several cases of asymptomatic shedding were found (26.3%, 15/57), however, only 3.5% (2/57) of those challenged with Aeromonas developed acute enteric symptoms (i.e., diarrhea). The “natural experiments” showed a much higher risk of illness associated with exposure to Aeromonas, even at moderate to low doses. The median dose required for 1% illness risk, was ~1.4 × 104 times higher in the challenge study (1.24 × 104 cfu) compared to natural exposure events (0.9 cfu). The dose response assessment presented in this study shows that the combined challenge and outbreak data are consistent with high infectivity of Aeromonas, and a wide range of susceptibility to acute enteric illness. To illustrate the outcomes, we simulate the risk associated with concentrations of Aeromonas found in different water and food matrices, indicating the disease burden potentially associated with these bacteria. In conclusion this study showed that Aeromonas is highly infectious, and that human susceptibility to illness may be high, similar to

  16. Single Multiplex Polymerase Chain Reaction To Detect Diverse Loci Associated with Diarrheagenic Escherichia coli

    PubMed Central

    López-Saucedo, Catalina; Cerna, Jorge F.; Villegas-Sepulveda, Nicolas; Thompson, Rocío; Velazquez, F. Raul; Torres, Javier; Tarr, Phillip I.

    2003-01-01

    We developed and tested a single multiplex polymerase chain reaction (PCR) that detects enterotoxigenic, enteropathogenic, enteroinvasive, and Shiga-toxin–producing Escherichia coli. This PCR is specific, sensitive, and rapid in detecting target isolates in stool and food. Because of its simplicity, economy, and efficiency, this protocol warrants further evaluation in large, prospective studies of polymicrobial substances. PMID:12533296

  17. Multiplex PCR for Diagnosis of Enteric Infections Associated with Diarrheagenic Escherichia coli

    PubMed Central

    Vidal, Roberto; Vidal, Maricel; Lagos, Rossana; Levine, Myron; Prado, Valeria

    2004-01-01

    A multiplex PCR for detection of three categories of diarrheagenic Escherichia coli was developed. With this method, enterohemorrhagic E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli were identified in fecal samples from patients with hemorrhagic colitis, watery diarrhea, or hemolytic-uremic syndrome and from food-borne outbreaks. PMID:15071051

  18. Optimization of Quantitative PCR Methods for Enteropathogen Detection.

    PubMed

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen's extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease.

  19. Optimization of Quantitative PCR Methods for Enteropathogen Detection

    PubMed Central

    Liu, Jie; Gratz, Jean; Amour, Caroline; Nshama, Rosemary; Walongo, Thomas; Maro, Athanasia; Mduma, Esto; Platts-Mills, James; Boisen, Nadia; Nataro, James; Haverstick, Doris M.; Kabir, Furqan; Lertsethtakarn, Paphavee; Silapong, Sasikorn; Jeamwattanalert, Pimmada; Bodhidatta, Ladaporn; Mason, Carl; Begum, Sharmin; Haque, Rashidul; Praharaj, Ira; Kang, Gagandeep; Houpt, Eric R.

    2016-01-01

    Detection and quantification of enteropathogens in stool specimens is useful for diagnosing the cause of diarrhea but is technically challenging. Here we evaluate several important determinants of quantification: specimen collection, nucleic acid extraction, and extraction and amplification efficiency. First, we evaluate the molecular detection and quantification of pathogens in rectal swabs versus stool, using paired flocked rectal swabs and whole stool collected from 129 children hospitalized with diarrhea in Tanzania. Swabs generally yielded a higher quantification cycle (Cq) (average 29.7, standard deviation 3.5 vs. 25.3 ± 2.9 from stool, P<0.001) but were still able to detect 80% of pathogens with a Cq < 30 in stool. Second, a simplified total nucleic acid (TNA) extraction procedure was compared to separate DNA and RNA extractions and showed 92% (318/344) sensitivity and 98% (951/968) specificity, with no difference in Cq value for the positive results (ΔCq(DNA+RNA-TNA) = -0.01 ± 1.17, P = 0.972, N = 318). Third, we devised a quantification scheme that adjusts pathogen quantity to the specimen’s extraction and amplification efficiency, and show that this better estimates the quantity of spiked specimens than the raw target Cq. In sum, these methods for enteropathogen quantification, stool sample collection, and nucleic acid extraction will be useful for laboratories studying enteric disease. PMID:27336160

  20. Draft Whole-Genome Sequences of Three Shiga Toxin-Producing Escherichia coli O91:H21 Isolates, Two from Hemolytic Uremic Syndrome Patients and One of Porcine Origin

    PubMed Central

    Zhang, Peng; Morales, Christina Q.

    2014-01-01

    This study presents three genomes of O91:H21 isolates, two from hemolytic uremic syndrome patients and one of porcine origin. Genome analyses reveal that one of the human isolates contains both Shiga toxin-encoding genes (stx1 and stx2), and all three isolates contain putative adhesin (iha and eaeH) and antibiotic resistance (ampC) genes. PMID:25301649

  1. Seasonal variation of enteropathogens in infants and preschoolers with acute diarrhea in western Mexico.

    PubMed

    Larrosa-Haro, Alfredo; Macias-Rosales, Rocío; Sánchez-Ramírez, Carmen A; Cortés-López, M Carmen; Aguilar-Benavides, Sergio

    2010-10-01

    The present study estimates the prevalence of some enteropathogens in infants and preschoolers with acute diarrhea. From 2006 to 2007, 5459 consecutive stool samples were evaluated. Cryptosporidium parvum was the parasite identified with the higher frequency (5.1%), followed by Giardia lamblia (1.2%). Campylobacter jejuni was isolated in 858 cases (15.7%) and was the most frequent enteropathogen overall. The rates of C parvum, Shigella, and Salmonella were higher in the summer. Rotavirus had the expected winter peak and it was the third enteropathogen because of its frequency. Overall frequency of stool-reducing substances was 15.6% and was associated with a rotavirus-positive test.

  2. Mechanisms of DRA recycling in intestinal epithelial cells: effect of enteropathogenic E. coli.

    PubMed

    Gujral, Tarunmeet; Kumar, Anoop; Priyamvada, Shubha; Saksena, Seema; Gill, Ravinder K; Hodges, Kim; Alrefai, Waddah A; Hecht, Gail A; Dudeja, Pradeep K

    2015-12-15

    Enteropathogenic Escherichia coli (EPEC) is a food-borne pathogen that causes infantile diarrhea worldwide. EPEC decreases the activity and surface expression of the key intestinal Cl(-)/HCO3(-) exchanger SLC26A3 [downregulated in adenoma (DRA)], contributing to the pathophysiology of early diarrhea. Little is known about the mechanisms governing membrane recycling of DRA. In the current study, Caco-2 cells were used to investigate DRA trafficking under basal conditions and in response to EPEC. Apical Cl(-)/HCO3(-) exchange activity was measured as DIDS-sensitive (125)I(-) uptake. Cell surface biotinylation was performed to assess DRA endocytosis and exocytosis. Inhibition of clathrin-mediated endocytosis by chlorpromazine (60 μM) increased apical Cl(-)/HCO3(-) exchange activity. Dynasore, a dynamin inhibitor, also increased function and surface levels of DRA via decreased endocytosis. Perturbation of microtubules by nocodazole revealed that intact microtubules are essential for basal exocytic (but not endocytic) DRA recycling. Mice treated with colchicine showed a decrease in DRA surface levels as visualized by confocal microscopy. In response to EPEC infection, DRA surface expression was reduced partly via an increase in DRA endocytosis and a decrease in exocytosis. These effects were dependent on the EPEC virulence genes espG1 and espG2. Intriguingly, the EPEC-induced decrease in DRA function was unaltered in the presence of dynasore, suggesting a clathrin-independent internalization of surface DRA. In conclusion, these studies establish the role of clathrin-mediated endocytosis and microtubules in the basal surface expression of DRA and demonstrate that the EPEC-mediated decrease in DRA function and apical expression in Caco-2 cells involves decreased exocytosis.

  3. Replication of porcine circoviruses.

    PubMed

    Faurez, Florence; Dory, Daniel; Grasland, Béatrice; Jestin, André

    2009-05-18

    Porcine circoviruses are circular single-stranded DNA viruses that infect swine and wild boars. Two species of porcine circoviruses exist. Porcine circovirus type 1 is non pathogenic contrary to porcine circovirus type 2 which is associated with the disease known as Post-weaning Multisystemic Wasting Syndrome. Porcine circovirus DNA has been shown to replicate by a rolling circle mechanism. Other studies have revealed similar mechanisms of rolling-circle replication in plasmids and single-stranded viruses such as Geminivirus. Three elements are important in rolling-circle replication: i) a gene encoding initiator protein, ii) a double strand origin, and iii) a single strand origin. However, differences exist between viruses and plasmids and between viruses. Porcine circovirus replication probably involves a "melting pot" rather than "cruciform" rolling-circle mechanism.This review provides a summary of current knowledge of replication in porcine circoviruses as models of the Circovirus genus. Based on various studies, the factors affecting replication are defined and the mechanisms involved in the different phases of replication are described or proposed.

  4. Single Multiplex PCR Assay To Identify Simultaneously the Six Categories of Diarrheagenic Escherichia coli Associated with Enteric Infections

    PubMed Central

    Vidal, Maricel; Kruger, Eileen; Durán, Claudia; Lagos, Rosanna; Levine, Myron; Prado, Valeria; Toro, Cecilia; Vidal, Roberto

    2005-01-01

    We designed a multiplex PCR for the detection of all categories of diarrheagenic Escherichia coli. This method proved to be specific and rapid in detecting virulence genes from Shiga toxin-producing (stx1, stx2, and eae), enteropathogenic (eae and bfp), enterotoxigenic (stII and lt), enteroinvasive (virF and ipaH), enteroaggregative (aafII), and diffuse adherent (daaE) Escherichia coli in stool samples. PMID:16208019

  5. [Characterization of enteropathogenic Escherichia coli (EPEC) strains isolated during the chicken slaughtering process].

    PubMed

    Alonso, Mónica Z; Sanz, Marcelo E; Padola, Nora L; Lucchesi, Paula M A

    2014-01-01

    In Argentina, EPEC is one of the most prevalent agents isolated from children with diarrhea. Because contamination with this pathotype could occur during slaughter, the aim of this study was to isolate and characterize EPEC strains obtained from live animals (cloacae), eviscerated carcasses, washed carcasses and water from chillers. Twenty nine isolates of atypical EPEC were characterized. These isolates presented a wide variety of serotypes, some of which (O2:H40, O8:H19 and O108:H9) had been reported in other animal species. Serotype O45:H8, previously isolated from children with diarrhea was also found. Isolates of serotypes O2:H40, O108:H9 and O123:H32 were detected at different stages of the slaughtering process, suggesting that the process is not adequately performed. This latter fact highlights the importance of reinforcing control and hygienic measures at different stages of the chicken slaughtering process in order to reduce microbial contamination.

  6. Secretome Biomarkers for the Identification and Differentiation of Enterohemorrhagic and Enteropathogenic Escherichia coli Strains

    DTIC Science & Technology

    2013-09-01

    the proteins were digested with 5 µL of trypsin in 240 µL of ABC solution plus 5 µL of acetonitrile ( ACN ). Proteins were digested overnight at 37 °C...on an orbital shaker set to 90 rpm. To quench the trypsin digestion, 60 µL of 5% ACN /0.5% formic acid (FA) was added to each filter followed by 2...min of vortexing to mix the sample. The tubes were centrifuged for 10 min at 14,100×g. An additional 60 mL of 5% ACN /0.5% FA mixture was added to the

  7. Occurrence and phenotypic properties of verotoxin producing Escherichia coli in sporadic cases of gastroenteritis.

    PubMed

    Burnens, A P; Boss, P; Orskov, F; Orskov, I; Schaad, U B; Müller, F; Heinzle, R; Nicolet, J

    1992-07-01

    Five verotoxin producing Escherichia coli strains were detected in 405 patients with infectious gastroenteritis and 3 such strains were detected in 11 patients with the hemolytic uremic syndrome in Switzerland. Production of verotoxin 2 was associated with the latter three strains. Four strains reacted with the probe for the virulence plasmid of Escherichia coli O157:H7, and six reacted with a recently described probe for the eae gene of enteropathogenic Escherichia coli. None of the strains was of serotype O157:H7. The methods available at present for detecting toxins or toxin genes will reliably detect all such verotoxin producing strains.

  8. Insights into Evolution of Escherichia coli O157:H7 from Complete Genome Sequence of Closely Related O55:H7 Precursor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enteropathogenic Escherichia coli (EPEC) is a leading cause of infant mortality and morbidity in developing countries. In spite of this, only two EPEC genomes have been fully sequenced: the typical, model EPEC strain E2348/69 (O127:H6), and the contemporary, atypical EPEC strain CB9615 (O55:H7, Ger...

  9. Commensal effect of pectate lyases secreted from Dickeya dadantii on the proliferation of Escherichia coli O157:H7 on lettuce leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The outbreaks of enterohemorrhagic Escherichia coli O157:H7 from leafy greens are serious food-safety concerns at the present period. Several phytopathogens have been suggested to help persistence and proliferation of the human enteropathogens in phyllosphere. In this work, influence of virulence ...

  10. Prevalence and genetic diversity of enteropathogenic Yersinia spp. in pigs at farms and slaughter in Lithuania.

    PubMed

    Novoslavskij, Aleksandr; Šernienė, Loreta; Malakauskas, Alvydas; Laukkanen-Ninios, Riikka; Korkeala, Hannu; Malakauskas, Mindaugas

    2013-04-01

    The prevalence of enteropathogenic Yersinia spp. in pigs at farms and slaughter in relation to potential farming risk factors in Lithuania was examined. Pig faeces and carcase swab samples from 11 farms were studied at slaughterhouses. Nine of the 11 farms were visited again 3-5 months later, and pooled feacal samples and environmental samples were collected. Pathogenic Yersinia enterocolitica was found in 64% and Yersinia pseudotuberculosis in 45% of the sampled pig farms. All obtained isolates belonged to bioserotypes 4/O:3 and 2/O:3, respectively. Low biosecurity level was associated with a high prevalence of Y. enterocolitica on farms. Characterization with PFGE of 64 Y. enterocolitica and 27 Y. pseudotuberculosis isolates revealed seven and two different genotypes, respectively. Dominant enteropathogenic Yersinia spp. genotypes were obtained in both pig feacal and carcase samples. The high contamination of pig carcases (25%) with enteropathogenic Yersinia spp. may be an important factor contributing to the high incidence of human yersiniosis in Lithuania.

  11. Potentially pathogenic Escherichia coli in healthy, pasture-raised sheep on farms and at the abattoir in Brazil.

    PubMed

    Maluta, Renato Pariz; Fairbrother, John Morris; Stella, Ariel Eurides; Rigobelo, Everlon Cid; Martinez, Roberto; de Ávila, Fernando Antonio

    2014-02-21

    Sheep harbor pathogenic Escherichia coli, which may cause severe disease in humans. In this study, the prevalence of Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC) was examined in sheep feces and carcasses on three farms and at an abattoir in Brazil. The isolates were further characterized for the presence of markers recently associated with disease in humans, to investigate their possible origin and role as food-borne pathogens. At the abattoir, 99 carcass samples yielded two STEC and 10 EPEC isolates while 101 fecal samples yielded five EPEC and eight STEC isolates. On the other hand, on the farms, 202 samples yielded 44 STEC and eight EPEC isolates. The 77 isolates were typed by PFGE. Isolates with the same PFGE pattern and also those that were not restricted with XbaI were termed as "clones" (n=49). The isolates of any one clone mostly originated from the same sampling site. In addition, seven isolates encoded for novel Stx2 variants and five for Stx2e, the subtype related to porcine edema disease, which was for the first time isolated from sheep feces and carcasses. Also, three stx2-only isolates harbored genes of predicted Stx2 variants that were formed by A and B subunits of different types including Stx2a and Stx2d. The EPEC isolates were heterogeneous, 21 (91.3%) of them possessing efa1, ehxA, lpfAO113 or paa genes associated with diarrhea in humans. Thus, using markers recently associated with disease, we have demonstrated that E. coli similar to those pathogenic for humans are present in the sheep intestinal microflora, particularly at the abattoir, underlining the potential for food-borne transmission.

  12. Expression of interleukin-18 by porcine airway and intestinal epithelium.

    PubMed

    Muneta, Yoshihiro; Goji, Noriko; Tsuji, Noriko M; Mikami, Osamu; Shimoji, Yoshihiro; Nakajima, Yasuyuki; Yokomizo, Yuichi; Mori, Yasuyuki

    2002-08-01

    In this study, we investigated the expression of interleukin-18 (IL-18) in porcine airway and intestinal epithelium. We found constitutive protein expression of precursor IL-18 in primary culture of porcine airway epithelium. Immunohistochemical staining revealed that porcine IL-18 was localized in the porcine airway epithelium and that it was significantly upregulated with experimental endotoxemia induced by Escherichia coli lipopolysaccharide (LPS) inoculation. We also confirmed by immunohistochemical staining that IL-18 was expressed in porcine intestinal epithelial cells. Moreover, the concentration of IL-18 in intestinal cell lysates of 1-day-old piglets was about 3-fold and 6-fold less than that in those of 1-month-old and 6-month-old piglets, respectively. Exogenous IL-18 was able to induce interferon-gamma (IFN-gamma) in the peripheral blood of 1-day-old piglets, whereas concanavalin A (ConA) was not able to induce IFN-gamma in the same condition. These results suggest that mucosal epithelial cells are among the major sources of IL-18 in pig and that IL-18 may be useful as a therapeutic agent for the enhancement of immune responses and as a vaccine adjuvant, especially in neonatal piglets.

  13. Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms.

    PubMed

    Al Mawly, J; Grinberg, A; Prattley, D; Moffat, J; Marshall, J; French, N

    2015-02-01

    To investigate the risk factors for neonatal calf diarrhoea, a cross-sectional study was conducted on 97 New Zealand dairy farms. Faecal specimens from 1283 calves were scored as liquid, semi-solid or solid, and analysed for bovine rotavirus (BRV) and coronavirus (BCV), enterotoxigenic K99(+)Escherichia coli (K99), Salmonella spp. and Cryptosporidium parvum. Calf- and farm-level data were collected by means of a questionnaire and the odds of liquid faeces calculated using mixed effects logistic regression models. Among the infectious agents, only C. parvum (odds ratio [OR] = 2.6; 95% confidence interval [CI], 1.3-5.6; P = 0.02), BRV (OR = 2.7; 95% CI, 1.3-5.9; P = 0.01) and co-infection with more than one agent (compared with mono-infection: OR = 2.5; 95% CI, 1.3-4.8; P = 0.01) were associated with increased odds of liquid faeces in calves which were 9 to 21 days old. Housing of calves in open barns so exposing them to the weather was also associated with increased odds of liquid faeces compared with closed barns (OR = 2.1; 95% CI, 1.1-12.2; P = 0.03). Vaccinating cows against calf enteropathogens (OR = 0.2; 95% CI, 0.1-0.9; P = 0.03), administering waste milk (from mastitis and/or containing antibiotics; OR = 0.4; 95% CI, 0.1-0.8; P = 0.01), the sex of calves (females compared to males OR = 0.2, 95% CI, 0.07-0.7; P <0.01), and the use of straw for bedding (OR = 0.2; 95% CI, 0.03-0.9; P = 0.03) decreased the odds of liquid faeces. Conversely, in calves that were 1 to 5 days old, only K99 was associated with liquid faeces (OR = 4.6; 95% CI, 1.2-16.1; P = 0.02). In this age group, the odds of liquid faeces were smaller on farms where females took care of the calves, compared with males (OR = 0.4; 95% CI, 0.01-0.9; P = 0.04).

  14. Molecular Profiling: Catecholamine Modulation of Gene Expression in Enteropathogenic Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigations of the enteric pathogens Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium and Vibrio parahaemolyticus have demonstrated that these bacteria can respond to the presence of catecholamines, including norepinephrine and/or epinephrine, in their environment by modulating g...

  15. Selected enteropathogens and clinical course in children hospitalized with severe acute gastroenteritis in Barbados

    PubMed Central

    Kumar, Alok; Browne, Chantelle; Scotland, Shauna; Krishnamurthy, Kandamaran; Nielsen, Anders L

    2014-01-01

    Objectives The primary aim of this study was to determine the prevalence of selected bacterial and viral enteropathogens in children hospitalized with acute gastroenteritis and the secondary aim was to characterize the clinical course and the outcome. Methodology A retrospective audit of children (<15 years) admitted with acute gastroenteritis during January 2008 to October 2010. Stool samples were analyzed for bacterial pathogens and for the Rotavirus. Demographics, clinical presentations, hospital course and outcome were extracted from the admission records. Results There were 571 children hospitalized with acute gastroenteritis, which accounted for 11% of all medical hospitalization in children. Overall, 42.9% of these children were ≤12 months in age. Stool test result was documented in 46.6% of children hospitalized with gastroenteritis and an enteropathogen was isolated in 36.8% of cases with documented stool test result. Non-typhoidal Salmonella species was the most commonly isolated enteropathogen accounting for 21.1% of all the documented cases. Rotavirus was identified as an etiological agent in 9.0%. Of the 56 children who had non-typhoidal salmonella gastroenteritis, 54(96.4%) were younger than 5 years. The median duration of hospitalization was 2 days (Range 1 day to 9 days). There were no deaths. Conclusion Non-typhoidal salmonella was the most common enteropathogen isolated and this was followed by the Rotavirus. PMID:25780359

  16. Draft Genome Sequence of the Enteropathogenic Bacterium Campylobacter jejuni Strain cj255.

    PubMed

    Siddiqui, Fariha Masood; Ibrahim, Muhammad; Noureen, Nighat; Noreen, Zobia; Titball, Richard W; Champion, Olivia L; Wren, Brendan W; Studholme, David; Bokhari, Habib

    2015-10-22

    The enteropathogen Campylobacter jejuni is a global health disaster, being one of the leading causes of bacterial gastroenteritis. Here, we present the draft genome sequence of C. jejuni strain cj255, isolated from a chicken source in Islamabad, Pakistan. The draft genome sequence will aid in epidemiological studies and quarantine of this broad-host-range pathogen.

  17. Draft Genome Sequence of the Enteropathogenic Bacterium Campylobacter jejuni Strain cj255

    PubMed Central

    Siddiqui, Fariha Masood; Ibrahim, Muhammad; Noureen, Nighat; Noreen, Zobia; Titball, Richard W.; Champion, Olivia L.; Wren, Brendan W.

    2015-01-01

    The enteropathogen Campylobacter jejuni is a global health disaster, being one of the leading causes of bacterial gastroenteritis. Here, we present the draft genome sequence of C. jejuni strain cj255, isolated from a chicken source in Islamabad, Pakistan. The draft genome sequence will aid in epidemiological studies and quarantine of this broad-host-range pathogen. PMID:26494669

  18. Xenotransplantation and porcine cytomegalovirus.

    PubMed

    Denner, Joachim

    2015-01-01

    Porcine microorganisms may be transmitted to the human recipient when xenotransplantation with pig cells, tissues, and organs will be performed. Most of such microorganisms can be eliminated from the donor pig by specified or designated pathogen-free production of the animals. As human cytomegalovirus causes severe transplant rejection in allotransplantation, considerable concern is warranted on the potential pathogenicity of porcine cytomegalovirus (PCMV) in the setting of xenotransplantation. On the other hand, despite having a similar name, PCMV is different from HCMV. The impact of PCMV infection on pigs is known; however, the influence of PCMV on the human transplant recipient is unclear. However, first transplantations of pig organs infected with PCMV into non-human primates were associated with a significant reduction of the survival time of the transplants. Sensitive detection methods and strategies for elimination of PCMV from donor herds are required.

  19. Detection and Characterization of Shiga Toxin Producing Escherichia coli, Salmonella spp., and Yersinia Strains from Human, Animal, and Food Samples in San Luis, Argentina

    PubMed Central

    Favier, Gabriela Isabel; Lucero Estrada, Cecilia; Cortiñas, Teresa Inés; Escudero, María Esther

    2014-01-01

    Shiga toxin producing Escherichia coli (STEC), Salmonella spp., and Yersinia species was investigated in humans, animals, and foods in San Luis, Argentina. A total of 453 samples were analyzed by culture and PCR. The antimicrobial susceptibility of all the strains was studied, the genomic relationships among isolates of the same species were determined by PFGE, and the potencial virulence of Y. enterocolitica strains was analyzed. Yersinia species showed higher prevalence (9/453, 2.0%, 95% CI, 0.7–3.3%) than STEC (4/453, 0.9%, 95% CI, 0–1.8%) and Salmonella spp. (3/453, 0.7%, 95% CI, 0–1.5%). Y. enterocolitica and Y. intermedia were isolated from chicken carcasses (6/80, 7.5%, 95% CI, 1.5–13.5%) and porcine skin and bones (3/10, 30%, 95% CI, 0–65%). One STEC strain was recovered from human feces (1/70, 1.4%, 95% CI, 0–4.2%) and STEC stx1/stx2 genes were detected in bovine stools (3/129, 2.3%, 95% CI, 0–5.0%). S. Typhimurium was isolated from human feces (1/70, 1.4%, 95% CI, 0–4.2%) while one S. Newport and two S. Gaminara strains were recovered from one wild boar (1/3, 33%, 95% CI, 0–99%). The knowledge of prevalence and characteristics of these enteropathogens in our region would allow public health services to take adequate preventive measures. PMID:25177351

  20. Spectrum of enteropathogens detected by the FilmArray GI Panel in a multicentre study of community-acquired gastroenteritis.

    PubMed

    Spina, A; Kerr, K G; Cormican, M; Barbut, F; Eigentler, A; Zerva, L; Tassios, P; Popescu, G A; Rafila, A; Eerola, E; Batista, J; Maass, M; Aschbacher, R; Olsen, K E P; Allerberger, F

    2015-08-01

    The European, multicentre, quarterly point-prevalence study of community-acquired diarrhoea (EUCODI) analysed stool samples received at ten participating clinical microbiology laboratories (Austria, Finland, France, Germany, Greece, Ireland, Italy, Portugal, Romania, and the UK) in 2014. On four specified days, each local laboratory submitted samples from ≤20 consecutive patients to the Austrian Study Centre for further testing with the FilmArray GI Panel (BioFire Diagnostics, Salt Lake City, UT, USA). Of the 709 samples from as many patients received, 325 (45.8%) tested negative, 268 (37.8%) yielded only one organism, and 116 (16.4%) yielded multiple organisms. Positivity rates ranged from 41% (30 of 73 samples) in France to 74% (59 of 80 samples) in Romania. With the exception of Entamoeba histolytica and Vibrio cholerae, all of the 22 targeted pathogens were detected at least once. Enteropathogenic Escherichia coli, Campylobacter species, toxigenic Clostridium difficile, enteroaggregative E. coli, norovirus and enterotoxigenic E. coli were the six most commonly detected pathogens. When tested according to local protocols, seven of 128 positive samples (5.5%) yielded multiple organisms. Overall, the FilmArray GI Panel detected at least one organism in 54.2% (384/709) of the samples, as compared with 18.1% (128/709) when testing was performed with conventional techniques locally. This underlines the considerable potential of multiplex PCR to improve routine stool diagnostics in community-acquired diarrhoea. Classic culture methods directed at the isolation of specific pathogens are increasingly becoming second-line tools, being deployed when rapid molecular tests give positive results. This optimizes the yield from stool examinations and dramatically improves the timeliness of diagnosis.

  1. Porcine epidemic diarrhea virus infection: Etiology, epidemiology, pathogenesis and immunoprophylaxis.

    PubMed

    Jung, Kwonil; Saif, Linda J

    2015-05-01

    Porcine epidemic diarrhea virus (PEDV), a member of the genera Alphacoronavirus in the family Coronaviridae, causes acute diarrhea/vomiting, dehydration and high mortality in seronegative neonatal piglets. For the last three decades, PEDV infection has resulted in significant economic losses in the European and Asian pig industries, but in 2013-2014 the disease was also reported in the US, Canada and Mexico. The PED epidemic in the US, from April 2013 to the present, has led to the loss of more than 10% of the US pig population. The disappearance and re-emergence of epidemic PED indicates that the virus is able to escape from current vaccination protocols, biosecurity and control systems. Endemic PED is a significant problem, which is exacerbated by the emergence (or potential importation) of multiple PEDV variants. Epidemic PEDV strains spread rapidly and cause a high number of pig deaths. These strains are highly enteropathogenic and acutely infect villous epithelial cells of the entire small and large intestines although the jejunum and ileum are the primary sites. PEDV infections cause acute, severe atrophic enteritis accompanied by viremia that leads to profound diarrhea and vomiting, followed by extensive dehydration, which is the major cause of death in nursing piglets. A comprehensive understanding of the pathogenic characteristics of epidemic or endemic PEDV strains is needed to prevent and control the disease in affected regions and to develop an effective vaccine. This review focuses on the etiology, epidemiology, disease mechanisms and pathogenesis as well as immunoprophylaxis against PEDV infection.

  2. Clinical Implications of Enteroadherent Escherichia coli

    PubMed Central

    Arenas-Hernández, Margarita M.P.; Martínez-Laguna, Ygnacio; Torres, Alfredo G.

    2012-01-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli enteropathogenic E. coli and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including non-intimate adherence mediated by various adhesins. These so called “enteroadherent E. coli ” categories subsequently produced toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  3. Cloning and prokaryotic expression of the porcine lipasin gene.

    PubMed

    Li, M M; Geng, J; Guo, Y J; Jiao, X Q; Lu, W F; Zhu, H S; Wang, Y Y; Yang, G Y

    2015-11-23

    Lipasin has recently been demonstrated to be involved in lipid metabolism. In this study, two specific primers were used to amplify the lipasin open reading frame from porcine liver tissue. The polymerase chain reaction product was cloned to a pGEM®-T Easy Vector, digested by SalI and NotI, and sequenced. The lipasin fragment was then cloned to a pET21(b) vector and digested by the same restriction enzyme. The recombinant plasmid was transferred to Escherichia coli (BL21), and the lipasin protein was induced with isopropyl-β-D-thiogalactopyranoside. The protein obtained was identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting. A pET-lipasin prokaryotic recombinant expression vector was successfully constructed, and a 25.2-kDa protein was obtained. This study provides a basis for further research on the biological function of porcine lipasin.

  4. [Utilization of LIN (lysine-indole-motility) medium for the preliminary identification of enteropathogenic bacteria].

    PubMed

    Bockemühl, J; Bednarek, I

    1975-07-01

    A multiple-test medium for the routine laboratory identification of enteropathogenic bacteria is described. The medium has the following formula: Bacto-peptone (Difco) 5 g; yeast extract (Difco) 3 g; casein tryptic digest peptone (Merek) 15 g; glucose 1 g; L-lysine-monohydrochloride (Merck, No. 5700) 5 g; NaCl 5 g; bromcresol purple 0.016 g; agar 2 g; distilled water 1000 ml; final pH 6.6. The medium is dispensed in amounts of 5 ml into tubes of 14 X 85 mm and autoclaved at 120 degrees C for 10 min. The tubes are tightly closed with rubber stoppers. - The medium is inoculated by stabbing to the bottom of the tube. Readings are made after over-night incubation at 37 degrees C. A scheme for the preliminary identification of enteropathogenic bacteria is given, based on LIM medium in conjunction with Kligler's iron agar, and the oxidase reaction.

  5. [Isolation of enteropathogenic Vibrio in bivalves and mud from the Nicoya Gulf, Costa Rica].

    PubMed

    García Cortés, V; Antillón, F

    1990-11-01

    The presence of enteropathogenic Vibrio was evaluated in 36 sediment samples and 41 bivalve samples obtained from 3 collecting sites in the Golfo de Nicoya, Costa Rica. Isolation methods for halophilic and non halophilic Vibrio were used. The biochemical profiles of the strains obtained revealed the presence of the following isolates: 224 Vibrio parahaemolyticus, 3 V. furnissii, 1 V. damsela and 3 V. fluvialis. V. cholerae was not isolated, due principally to the use of TCBS agar.

  6. Porcine circovirus diseases.

    PubMed

    Segalés, Joaquim; Allan, Gordon M; Domingo, Mariano

    2005-12-01

    Porcine circovirus type 2 (PCV2) is a member of the family Circoviridae, a recently established virus family composed of small, non-enveloped viruses, with a circular, single-stranded DNA genome. PCV2, which is found all over the world in the domestic pig and probably the wild boar, has been recently associated with a number of disease syndromes, which have been collectively named porcine circovirus diseases (PCVD). Postweaning multisystemic wasting syndrome (PMWS), porcine dermatitis and nephropathy syndrome (PDNS) and reproductive disorders are the most relevant ones. Among them, only PMWS is considered to have a severe impact on domestic swine production. PMWS mainly affects nursery and/or fattening pigs; wasting is considered the most representative clinical sign in this disease. Diagnosis of this disease is confirmed by histopathological examination of lymphoid tissues and detection of a moderate to high amount of PCV2 in damaged tissues. Since PMWS is considered a multifactorial disease in which other factors in addition to PCV2 are needed in most cases to trigger the clinical disease, effective control measures have focused on the understanding of the co-factors involved in individual farms and the control or elimination of these triggers. PDNS, an immuno-complex disease characterized by fibrino-necrotizing glomerulonephritis and systemic necrotizing vasculitis, has been linked to PCV2, but a definitive proof of this association is still lacking. PCV2-associated reproductive disease seems to occur very sporadically under field conditions, but it has been characterized by late-term abortions and stillbirths, extensive fibrosing and/or necrotizing myocarditis in fetuses and the presence of moderate to high amounts of PCV2 in these lesions. Taking into account that scientific information on PCV2 and its associated diseases has been markedly expanded in the last 8 years, the objective of this review is to summarize the current state of knowledge of the most

  7. Seasonal Prevalence of Enteropathogenic Vibrio and Their Phages in the Riverine Estuarine Ecosystem of South Bengal

    PubMed Central

    Mookerjee, Subham; Batabyal, Prasenjit; Sarkar, Madhumanti Halder; Palit, Anup

    2015-01-01

    Diarrheal disease remains an unsolved problem in developing countries. The emergence of new etiological agents (non-cholera vibrios) is a major cause of concern for health planners. We attempted to unveil the seasonal dynamics of entero-pathogenic Vibrios in Gangetic riverine-estuarine ecosystem. 120 surface water samples were collected for a period of one year from 3 sampling sites on the Hooghly river. Five enteropathogenic Vibrio species, V. cholerae (35%), V. parahaemolyticus (22.5%), V. mimicus (19.1%), V. alginolyticus (15.8%) and V. vulnificus (11.6%), were present in the water samples. The vibriophages, V. vulnificus ɸ (17.5%), V. alginolyticus ɸ (17.5%), V. parahaemolyticus ɸ (10%), V. cholerae non-O1/O139 ɸ (26.6%) and V. mimicus ɸ (9.1%), were also detected in these samples. The highest number of Vibrios were noted in the monsoon (20–34°C), and to a lesser extent, in the summer (24–36°C) seasons. Samples positive for phages for any of the identified Vibrio species were mostly devoid of that particular bacterial organism and vice versa. The detection of toxin genes and resistance to β-lactam antibiotics in some environmental enteropathogenic Vibrio species in the aquatic niches is a significant outcome. This finding is instrumental in the south Bengal diarrhoeal incidence. PMID:26340543

  8. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia.

    PubMed

    Keto-Timonen, Riikka; Hietala, Nina; Palonen, Eveliina; Hakakorpi, Anna; Lindström, Miia; Korkeala, Hannu

    2016-01-01

    Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp) as a response to rapid temperature downshift (cold shock). During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0°C and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia.

  9. Cold Shock Proteins: A Minireview with Special Emphasis on Csp-family of Enteropathogenic Yersinia

    PubMed Central

    Keto-Timonen, Riikka; Hietala, Nina; Palonen, Eveliina; Hakakorpi, Anna; Lindström, Miia; Korkeala, Hannu

    2016-01-01

    Bacteria have evolved a number of mechanisms for coping with stress and adapting to changing environmental conditions. Many bacteria produce small cold shock proteins (Csp) as a response to rapid temperature downshift (cold shock). During cold shock, the cell membrane fluidity and enzyme activity decrease, and the efficiency of transcription and translation is reduced due to stabilization of nucleic acid secondary structures. Moreover, protein folding is inefficient and ribosome function is hampered. Csps are thought to counteract these harmful effects by serving as nucleic acid chaperons that may prevent the formation of secondary structures in mRNA at low temperature and thus facilitate the initiation of translation. However, some Csps are non-cold inducible and they are reported to be involved in various cellular processes to promote normal growth and stress adaptation responses. Csps have been shown to contribute to osmotic, oxidative, starvation, pH and ethanol stress tolerance as well as to host cell invasion. Therefore, Csps seem to have a wider role in stress tolerance of bacteria than previously assumed. Yersinia enterocolitica and Yersinia pseudotuberculosis are enteropathogens that can spread through foodstuffs and cause an enteric infection called yersiniosis. Enteropathogenic Yersinia are psychrotrophs that are able to grow at temperatures close to 0°C and thus they set great challenges for the modern food industry. To be able to efficiently control psychrotrophic Yersinia during food production and storage, it is essential to understand the functions and roles of Csps in stress response of enteropathogenic Yersinia. PMID:27499753

  10. Seasonal Prevalence of Enteropathogenic Vibrio and Their Phages in the Riverine Estuarine Ecosystem of South Bengal.

    PubMed

    Mookerjee, Subham; Batabyal, Prasenjit; Sarkar, Madhumanti Halder; Palit, Anup

    2015-01-01

    Diarrheal disease remains an unsolved problem in developing countries. The emergence of new etiological agents (non-cholera vibrios) is a major cause of concern for health planners. We attempted to unveil the seasonal dynamics of entero-pathogenic Vibrios in Gangetic riverine-estuarine ecosystem. 120 surface water samples were collected for a period of one year from 3 sampling sites on the Hooghly river. Five enteropathogenic Vibrio species, V. cholerae (35%), V. parahaemolyticus (22.5%), V. mimicus (19.1%), V. alginolyticus (15.8%) and V. vulnificus (11.6%), were present in the water samples. The vibriophages, V. vulnificus ɸ (17.5%), V. alginolyticus ɸ (17.5%), V. parahaemolyticus ɸ (10%), V. cholerae non-O1/O139 ɸ (26.6%) and V. mimicus ɸ (9.1%), were also detected in these samples. The highest number of Vibrios were noted in the monsoon (20-34°C), and to a lesser extent, in the summer (24-36°C) seasons. Samples positive for phages for any of the identified Vibrio species were mostly devoid of that particular bacterial organism and vice versa. The detection of toxin genes and resistance to β-lactam antibiotics in some environmental enteropathogenic Vibrio species in the aquatic niches is a significant outcome. This finding is instrumental in the south Bengal diarrhoeal incidence.

  11. Methods of analysis of enteropathogen infection in the MAL-ED Cohort Study.

    PubMed

    Platts-Mills, James A; McCormick, Benjamin J J; Kosek, Margaret; Pan, William K; Checkley, William; Houpt, Eric R

    2014-11-01

    Studies of diarrheal etiology in low- and middle-income countries have typically focused on children presenting with severe symptoms to health centers and thus are best equipped to describe the pathogens capable of leading to severe diarrheal disease. The Etiology, Risk Factors and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health and Development (MAL-ED) cohort study was designed to evaluate, via intensive community surveillance, the hypothesis that repeated exposure to enteropathogens has a detrimental effect on growth, vaccine response, and cognitive development, which are the primary outcome measures for this study. In the setting of multiple outcomes of interest, a longitudinal cohort design was chosen. Because many or even the majority of enteric infections are asymptomatic, the collection of asymptomatic surveillance stools was a critical element. However, capturing diarrheal stools additionally allowed for the determination of the principle causes of diarrhea at the community level as well as for a comparison between those enteropathogens associated with diarrhea and those that are associated with poor growth, diminished vaccine response, and impaired cognitive development. Here, we discuss the analytical methods proposed for the MAL-ED study to determine the principal causes of diarrhea at the community level and describe the complex interplay between recurrent exposure to enteropathogens and these critical long-term outcomes.

  12. The growing threat of foodborne bacterial enteropathogens of animal origin.

    PubMed

    DuPont, Herbert L

    2007-11-15

    Campylobacter and Salmonella species and Shiga toxin-producing Escherichia coli (STEC; the majority of which are type O157:H7) efficiently enter the human food chain from infected or colonized animals. Poultry contamination with Campylobacter and/or Salmonella species and produce contamination with STEC have become major public health challenges. The global food supply, which allows us to purchase desired items throughout the year, a growing interest in consuming fresh vegetables and fruits, and an increasing number of persons who consume foods at restaurants all assure that the health threats associated with these pathogens will continue. Antibiotic use by humans and food animals selects for the development of resistance among Campylobacter and Salmonella strains, promoting invasive forms of infection and complicating therapy of illness. A comprehensive public health approach is needed that focuses on disease surveillance and infection control in the food industry continuum, from harvesting and processing, to distribution, to later preparation in public eating establishments and in homes. Good Agricultural Practices, including the Hazard Analysis and Critical Control Point Program and validation of critical infection-control points at all stages of the food industry cycle, coupled with other food safety interventions, including irradiation for certain higher-risk foods, should help us improve the quality of food with regard to microbials and reduce human disease.

  13. Porcine prion protein amyloid.

    PubMed

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  14. Porcine prion protein amyloid

    PubMed Central

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    ABSTRACT Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. PMID:26218890

  15. Prevalence of diarrheagenic Escherichia coli in finns with or without diarrhea during a round-the-world trip.

    PubMed

    Keskimäki, M; Mattila, L; Peltola, H; Siitonen, A

    2000-12-01

    The incidence of diarrhea and the prevalence of bacterial enteropathogens, viruses, and parasites in feces of subjects with and without diarrhea were evaluated in 204 Finns traveling round the world (from Finland to China, Malaysia, Australia, Fiji, Chile, and Brazil and back to Finland). Special emphasis was placed on the finding of diarrheagenic Escherichia coli (enterotoxigenic, enteropathogenic, Shiga toxin-producing, and enteroaggregative strains) by PCR from growth on primary culture plates. From the PCR-positive samples, corresponding strains were isolated, confirmed as E. coli, and O serotyped. Of all the subjects, 37% experienced a total of 90 episodes of diarrhea. No adenoviruses or rotaviruses were detected, and findings of parasites were insignificant. In contrast, enteropathogenic bacteria were present in 62% of the 65 diarrheal and in 33% of the 127 nondiarrheal samples (P < 0.001); diarrheagenic E. coli strains were found in 35 and 26% of these, respectively (not statistically significant). As a single pathogen, E. coli was found in 20 and 24% of samples (not significant). Of all diarrheagenic E. coli strains, enteropathogenic strains were the most commonly found independently of the clinical picture of the subjects, whereas Salmonella enterica as a single pathogen was the most common non-E. coli organism found in diarrheal samples. Multiple bacterial pathogens were found 10 times more commonly in diarrheal than in nondiarrheal samples (20 versus 2%; P < 0.001).

  16. Real-Time Sensing of Enteropathogenic E. coli-Induced Effects on Epithelial Host Cell Height, Cell-Substrate Interactions, and Endocytic Processes by Infrared Surface Plasmon Spectroscopy

    PubMed Central

    Zlotkin-Rivkin, Efrat; Rund, David; Melamed-Book, Naomi; Zahavi, Eitan Erez; Perlson, Eran; Mercone, Silvana; Golosovsky, Michael; Davidov, Dan; Aroeti, Benjamin

    2013-01-01

    Enteropathogenic Escherichia coli (EPEC) is an important, generally non-invasive, bacterial pathogen that causes diarrhea in humans. The microbe infects mainly the enterocytes of the small intestine. Here we have applied our newly developed infrared surface plasmon resonance (IR-SPR) spectroscopy approach to study how EPEC infection affects epithelial host cells. The IR-SPR experiments showed that EPEC infection results in a robust reduction in the refractive index of the infected cells. Assisted by confocal and total internal reflection microscopy, we discovered that the microbe dilates the intercellular gaps and induces the appearance of fluid-phase-filled pinocytic vesicles in the lower basolateral regions of the host epithelial cells. Partial cell detachment from the underlying substratum was also observed. Finally, the waveguide mode observed by our IR-SPR analyses showed that EPEC infection decreases the host cell's height to some extent. Together, these observations reveal novel impacts of the pathogen on the host cell architecture and endocytic functions. We suggest that these changes may induce the infiltration of a watery environment into the host cell, and potentially lead to failure of the epithelium barrier functions. Our findings also indicate the great potential of the label-free IR-SPR approach to study the dynamics of host-pathogen interactions with high spatiotemporal sensitivity. PMID:24194932

  17. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  18. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  19. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  20. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  1. 7 CFR 1230.611 - Porcine animal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold...

  2. Antibacterial activity of Lactobacillus spp. isolated from the feces of healthy infants against enteropathogenic bacteria.

    PubMed

    Davoodabadi, Abolfazl; Soltan Dallal, Mohammad Mehdi; Rahimi Foroushani, Abbas; Douraghi, Masoumeh; Sharifi Yazdi, Mohammad Kazem; Amin Harati, Farzaneh

    2015-08-01

    Lactobacilli are normal microflora of the gastrointestinal (GI) tract and are a heterogeneous group of lactic acid bacteria (LAB). Lactobacillus strains with Probiotic activity may have health Benefits for human. This study investigates the probiotic potential of Lactobacillus strains obtained from the feces of healthy infants and also explores antibacterial activity of Lactobacillus strains with probiotic potential against enteropathogenic bacteria. Fecal samples were collected from 95 healthy infants younger than 18 months. Two hundred and ninety Lactobacillus strains were isolated and assessed for probiotic potential properties including ability to survive in gastrointestinal conditions (pH 2.0, 0.3% oxgall), adherence to HT-29 cells and antibiotic resistance. Six strains including Lactobacillus fermentum (4 strains), Lactobacillus paracasei and Lactobacillus plantarum showed good probiotic potential and inhibited the growth of enteropathogenic bacteria including ETEC H10407, Shigella flexneri ATCC 12022, Shigella sonnei ATCC 9290, Salmonella enteritidis H7 and Yersinia enterocolitica ATCC 23715. These Lactobacillus strains with probiotic potential may be useful for prevention or treatment of diarrhea, but further in vitro and in vivo studies on these strains are still required.

  3. Enteroadherent Escherichia coli as a cause of diarrhea among children in Mexico.

    PubMed Central

    Mathewson, J J; Oberhelman, R A; Dupont, H L; Javier de la Cabada, F; Garibay, E V

    1987-01-01

    Enteropathogenic Escherichia coli (EPEC) often exhibits localized adherence or diffuse adherence to HEp-2 cells. We recently provided evidence that HEp-2 cell-adherent or enteroadherent E. coli (EAEC) not belonging to EPEC serogroups was the cause of diarrhea among U.S. travelers to Mexico. In the present study, we looked for EAEC and EPEC in stool specimens from 154 children with acute diarrhea and 137 well children seen at several outpatient clinics in Guadalajara, Mexico. EAEC showing localized adherence (EAEC-L) was isolated from 13.0% of the patients and 0.7% of the controls (P less than 0.0001). EAEC showing diffuse adherence (EAEC-D) was recovered from 20.8% of the patients and 7.3% of the controls (P less than 0.001). EPEC was isolated from 4.5 and 6.7% of the patients and controls, respectively. Among all enteropathogens, only enterotoxigenic E. coli occurred as commonly (21.4%) as EAEC-D and EAEC-L did in children with diarrhea. Of the EAEC-L strains isolated from children with diarrhea, 20% belonged to recognized EPEC serogroups, and 3.1% of EAEC-D strains belonged to recognized EPEC serogroups. This study suggests that EAEC may be an important pediatric enteropathogen in Mexican children with diarrhea and further supports the observation that adherence to HEp-2 cells may be a marker of virulence independent of EPEC serogroup among E. coli strains. PMID:3312288

  4. Concentration and pattern changes of porcine serum apolipoprotein A-I in four different infectious diseases.

    PubMed

    Marco-Ramell, Anna; Hummel, Karin; Razzazi-Fazeli, Ebrahim; Bassols, Anna; Miller, Ingrid

    2015-02-01

    Apolipoprotein A-I (Apo A-I) is a major protein in lipid/lipoprotein metabolism and decreased serum levels have been observed in many species in response to inflammatory and infectious challenges. Little is known about the porcine homologue, therefore in this work we have characterized it through biochemical and proteomic techniques. In 2DE, porcine serum Apo A-I is found as three spots, the two more acidic ones corresponding to the mature protein, the more basic spot to the protein precursor. Despite high sequence coverage in LC-MS/MS, we did not find a sequence or PTM difference between the two mature protein species. Besides this biochemical characterization, we measured overall levels and relative species abundance of serum Apo A-I in four different viral and bacterial porcine infectious diseases. Lower overall amounts of Apo A-I were observed in Salmonella typhimurium and Escherichia coli infections. In the 2DE protein pattern, an increase of the protein precursor together with a lower level of mature protein species were detected in the porcine circovirus type 2-systemic disease and S. typhimurium infection. These results reveal that both the porcine serum Apo A-I concentration and the species pattern are influenced by the nature of the infectious disease.

  5. Radiation sensitivity of bacteria and virus in porcine xenoskin for dressing agent

    NASA Astrophysics Data System (ADS)

    Jo, Eu-Ri; Jung, Pil-Mun; Choi, Jong-il; Lee, Ju-Woon

    2012-08-01

    In this study, gamma irradiation sensitivities of bacteria and viruses in porcine skin were evaluated to establish the optimum sterilization condition for the dressing material and a xenoskin graft. Escherichia coli and Bacillus subtilis were used as model pathogens and inoculated at 106-107 log CFU/g. As model viruses, porcine parvovirus (PPV), bovine viral diarrhea virus (BVDV), and poliovirus were used and inoculated at 105-106 TCID50/g into porcine skin. The D10 value of E. coli was found to be 0.25±0.1 kGy. B. subtilis endospores produced under stressful environmental conditions showed lower radiation sensitivity as D10 was 3.88±0.3 kGy in porcine skin. The D10 values of PPV, BVDV, and poliovirus were found to be 1.73±0.2, 3.81±0.2, and 6.88±0.3 kGy, respectively. These results can offer the basic information required for inactivating pathogens by gamma irradiation and achieving dressing material and porcine skin grafts.

  6. Activity of essential oils from Brazilian medicinal plants on Escherichia coli.

    PubMed

    Duarte, Marta Cristina Teixeira; Leme, Ewerton Eduardo; Delarmelina, Camila; Soares, Andressa Almeida; Figueira, Glyn Mara; Sartoratto, Adilson

    2007-05-04

    Essential oils obtained from leaves of 29 medicinal plants commonly used in Brazil were screened against 13 different Escherichia coli serotypes. The oils were obtained by water-distillation using a Clevenger-type system and their minimal inhibitory concentration (MIC) were determined by microdilution method. Essential oil from Cymbopogon martinii exhibited a broad inhibition spectrum, presenting strong activity (MIC between 100 and 500 microg/mL) against 10 out of 13 Escherichia coli serotypes: three enterotoxigenic, two enteropathogenic, three enteroinvasive and two shiga-toxin producers. C. winterianus inhibited strongly two enterotoxigenic, one enteropathogenic, one enteroinvasive and one shiga-toxin producer serotypes. Aloysia triphylla also shows good potential to kill Escherichia coli with moderate to strong inhibition. Other essential oils showed antimicrobial properties, however with a more restricted action against the serotypes studied. Chemical analysis of Cymbopogon martinii essential oil performed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC-MS) showed the presence of compounds with known antimicrobial activity, including geraniol, geranyl acetate and trans-cariophyllene, which tested separately, indicated geraniol as antimicrobial active compound. The significant antibacterial activity of Cymbopogon martinii oil suggests that they could serve as a source for compounds with therapeutic potential.

  7. Characteristics of Escherichia coli Serotypes in the Yanomama, a Primitive Indian Tribe of South America

    PubMed Central

    Eveland, W. C.; Oliver, W. J.; Neel, J. V.

    1971-01-01

    From stool samples of isolated subjects from members of the Yanomama tribe of South America, 432 isolates of Escherichia coli were obtained from 72 individuals. Two hundred and four of these strains were typable with a standard panel of 147 O antisera; included in the above were eight enteropathogenic strains. From the untypable strains, antisera were produced, and 13 serologically distinct O serotypes were identified. These data substantiate the ubiquity of known strains of E. coli as microhabitants of man's internal environment. The finding of 13 new O serotypes suggests that, in efforts to understand the ecosystem of primitive man, the internal milieu must also be investigated. PMID:4949511

  8. Prevalence and Characterization of Shiga Toxin-Producing and Enteropathogenic Escherichia coli in Shellfish-Harvesting Areas and Their Watersheds

    PubMed Central

    Balière, Charlotte; Rincé, Alain; Blanco, Jorge; Dahbi, Ghizlane; Harel, Josée; Vogeleer, Philippe; Giard, Jean-Christophe; Mariani-Kurkdjian, Patricia; Gourmelon, Michèle

    2015-01-01

    more strains formed a strong biofilm at 18 than at 30°C. Finally, more than 85% of analyzed strains were found to be sensitive to the 16 tested antibiotics. These data suggest the low risk of human infection by STEC if shellfish from these shellfish-harvesting areas were consumed. PMID:26648928

  9. Pathogenicity Island O-122 in enteropathogenic Escherichia coli strains is associated with diarrhea severity in children from Lima Peru.

    PubMed

    Mercado, Erik H; Piscoche, Cristian; Contreras, Carmen; Durand, David; Riveros, Maribel; Ruiz, Joaquim; Ochoa, Theresa J

    2016-06-01

    EPEC is an attaching and effacing diarrheal pathogen that carries a large pathogenicity island, locus for enterocyte effacement (LEE). Recently, the pathogenicity island PAI O-122 was described among non-LEE effectors and found to be associated with diarrhea among atypical EPEC strains. It is unknown if incomplete PAI O-122 could be associated with diarrhea duration and severity. To identify these virulence determinants we analyzed 379 EPEC strains isolated from Peruvian children. EPEC was diagnosed by PCR(eae+, stx-) and classified as typical(t-EPEC) or atypical(a-EPEC). To characterize PAI O-122 we amplified three modules by PCR: Module 1(pagC), Module 2(senA, nleB and nleE) and Module 3(lifA/efa-1). To characterize the large ORF lifA/efa-1 we amplified the regions known as efa-N, efa-M and efa-C. Clinical information was obtained from the cohort study. A total of 379 EPEC strains were able to analyze PAI O-122 genes, 128 (10.4%) EPEC strains were isolated from 1235 diarrhea episodes and 251(9.2%) from 2734 healthy controls. t-EPEC strains were isolated from 14.8% (19/128) of children with diarrhea and 25/251(10.0%) from healthy controls. The most frequent PAI O-122 genes were nleE(37.7%), senA(34.6%) and nleB(37.5%), with similar prevalence among diarrhea and control samples. However, lifA/efa-1 was more common among diarrhea cases than healthy control cases (30.5% vs. 21.1%, p<0.05). The presence of complete PAI O-122 was associated with diarrhea episodes of higher severity among single pathogen infection (33.3% vs. 1.8%, p<0.05) mainly due to the presence of a complete lifA/efa-1 gene. In summary, the gene lifA/efa-1 is significantly associated with diarrheal episodes of higher severity, suggesting to be an important virulent factor.

  10. Tight Junction Disruption Induced by Type 3 Secretion System Effectors Injected by Enteropathogenic and Enterohemorrhagic Escherichia coli

    PubMed Central

    Ugalde-Silva, Paul; Gonzalez-Lugo, Octavio; Navarro-Garcia, Fernando

    2016-01-01

    The intestinal epithelium consists of a single cell layer, which is a critical selectively permeable barrier to both absorb nutrients and avoid the entry of potentially harmful entities, including microorganisms. Epithelial cells are held together by the apical junctional complexes, consisting of adherens junctions, and tight junctions (TJs), and by underlying desmosomes. TJs lay in the apical domain of epithelial cells and are mainly composed by transmembrane proteins such as occludin, claudins, JAMs, and tricellulin, that are associated with the cytoplasmic plaque formed by proteins from the MAGUK family, such as ZO-1/2/3, connecting TJ to the actin cytoskeleton, and cingulin and paracingulin connecting TJ to the microtubule network. Extracellular bacteria such as EPEC and EHEC living in the intestinal lumen inject effectors proteins directly from the bacterial cytoplasm to the host cell cytoplasm, where they play a relevant role in the manipulation of the eukaryotic cell functions by modifying or blocking cell signaling pathways. TJ integrity depends on various cell functions such as actin cytoskeleton, microtubule network for vesicular trafficking, membrane integrity, inflammation, and cell survival. EPEC and EHEC effectors target most of these functions. Effectors encoded inside or outside of locus of enterocyte effacement (LEE) disrupt the TJ strands. EPEC and EHEC exploit the TJ dynamics to open this structure, for causing diarrhea. EPEC and EHEC secrete effectors that mimic host proteins to manipulate the signaling pathways, including those related to TJ dynamics. In this review, we focus on the known mechanisms exploited by EPEC and EHEC effectors for causing TJ disruption. PMID:27606286

  11. Escherichia Coli

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  12. Porcine Reproductive and Respiratory Syndrome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory syndrome (PRRS) is the number one disease affecting US swine. It is caused by the PRRS virus (PRRSV) and is recognized as reproductive failure of sows and respiratory problems of piglets and growing pigs. This book chapter is part of the Office of International E...

  13. Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: Stimulation of interleukin-8 secretion, potentiation of interleukin-1{beta} effect and increase in the transepithelial passage of commensal bacteria

    SciTech Connect

    Maresca, Marc; Yahi, Nouara; Younes-Sakr, Lama; Boyron, Marilyn; Caporiccio, Bertrand; Fantini, Jacques

    2008-04-01

    Mycotoxins are fungal secondary metabolites responsible of food-mediated intoxication in animals and humans. Deoxynivalenol, ochratoxin A and patulin are the best known enteropathogenic mycotoxins able to alter intestinal functions resulting in malnutrition, diarrhea, vomiting and intestinal inflammation in vivo. Although their effects on intestinal barrier and transport activities have been extensively characterized, the mechanisms responsible for their pro-inflammatory effect are still poorly understood. Here we investigated if mycotoxin-induced intestinal inflammation results from a direct and/or indirect pro-inflammatory activity of these mycotoxins on human intestinal epithelial cells, using differentiated Caco-2 cells as model and interleukin 8 (IL-8) as an indicator of intestinal inflammation. Deoxynivalenol was the only mycotoxin able to directly increase IL-8 secretion (10- to 15-fold increase). We also investigated if these mycotoxins could indirectly stimulate IL-8 secretion through: (i) a modulation of the action of pro-inflammatory molecules such as the interleukin-1beta (IL-1{beta}), and/or (ii) an increase in the transepithelial passage of non-invasive commensal Escherichia coli. We found that deoxynivalenol, ochratoxin A and patulin all potentiated the effect of IL-1{beta} on IL-8 secretion (ranging from 35% to 138% increase) and increased the transepithelial passage of commensal bacteria (ranging from 12- to 1544-fold increase). In addition to potentially exacerbate established intestinal inflammation, these mycotoxins may thus participate in the induction of sepsis and intestinal inflammation in vivo. Taken together, our results suggest that the pro-inflammatory activity of enteropathogenic mycotoxins is mediated by both direct and indirect effects.

  14. Enteropathogenic Esch. coli gastroenteritis in premature infants and children treated with fosfomycin.

    PubMed Central

    Baquero, F; Canedo, E; RODRIGUEZ, A; Jaso, E

    1975-01-01

    Forty-two infants, some premature, with enteropathogenic Esch. coli (EPEC) gastroenteritis were treated with an oral suspension of fosfomycin in a dose of 100 and 200 mg/kg per day. After the treatment there were 11 secondary clinical infections (6 reinfections and 5 relapses) which received a second treatment with fosfomycin. In total, 53 treatments were made with fosfomycin and in 92% of the cases there was both clinical and bacteriological cure. 93% of the EPEC strains were sensitive to fosfomycin in vitro, their minimum inhibitory concentrations being less than 64 mug/ml. The concentration of fosfomycin in blood and faeces was assayed by a diffusion plate microbiological method in a group of these children, showing that this antibiotic is partly absorbed and the rest eliminated in the faeces, where its concentration was found to be very high. Tolerance of the product was good, and there were neither toxic nor side effects. PMID:1103749

  15. Diarrheagenic Escherichia coli in Children from Costa Rica

    PubMed Central

    Pérez, Cristian; Gómez-Duarte, Oscar G.; Arias, María L.

    2010-01-01

    More than 5,000 diarrheal cases per year receive medical care at the National Children's Hospital of Costa Rica, and nearly 5% of them require hospitalization. A total of 173 Escherichia coli strains isolated from children with diarrhea were characterized at the molecular, serologic, and phenotypic level. Multiplex and duplex polymerase chain reactions were used to detect the six categories of diarrheagenic E. coli. Thirty percent (n = 52) of the strains were positive, indicating a high prevalence among the pediatric population. Enteropathogenic E. coli and enteroinvasive E. coli pathotypes were the most prevalent (21% and 19%, respectively). Pathogenic strains were distributed among the four E. coli phylogenetic groups A, B1, B2, and D, with groups A and B1 the most commonly found. This study used molecular typing to evaluate the prevalence of diarrheagenic E. coli reported in Costa Rica and demonstrated the importance of these pathotypes in the pediatric population. PMID:20682870

  16. The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium

    PubMed Central

    Read, Hannah M.; Mills, Grant; Johnson, Sarah; Tsai, Peter; Dalton, James; Barquist, Lars; Print, Cristin G.; Patrick, Wayne M.

    2016-01-01

    Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments. PMID:27366640

  17. The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium.

    PubMed

    Read, Hannah M; Mills, Grant; Johnson, Sarah; Tsai, Peter; Dalton, James; Barquist, Lars; Print, Cristin G; Patrick, Wayne M; Wiles, Siouxsie

    2016-01-01

    Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive) light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC) and enterohaemorrhagic E. coli (EHEC) infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169) in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments.

  18. Quantitative detection of residual porcine host cell DNA by real-time PCR.

    PubMed

    Chang, Jen-Ting; Chen, Yu-Chen; Chou, Yu-Chi; Wang, Shih-Rong

    2014-03-01

    All biological products are derived from complex living systems and are often mixed with large numbers of impurities. For reasons of safety, residual host-cell DNA must be eliminated during processing. To assay host-cell DNA content in biopharmaceutical products derived from porcine sources, this study applies the quantitative real-time polymerase chain reaction (Q-PCR) method. The optimized assay in this study is based on the pol region of the porcine endogenous retrovirus (PERV). Assay validation results demonstrate that the proposed assay has appropriate accuracy, preciseness, reproducibility, and sensitivity. Primer and probe specificity are evaluated in real-time Q-PCR reactions using genomic DNA from rabbit, mouse, cat, hamster, monkey, human cell, yeast, and Escherichia coli as templates. The sensitivity of real-time Q-PCR is determined using genomic DNA from the porcine kidney cell line. The reliable detection range is within 0.5-10(5) pg/reaction. The limit of quantitation is 500 fg. The sensitivity of the assay meets the authority criterion. Moreover, the assay is applied to determine the level of host-cell DNA in recombinant human coagulation factor IX (rhFIX) from transgenic pigs. The real-time Q-PCR assay is thus a promising new tool for quantitative detection and clearance validation of residual porcine DNA when manufacturing recombinant therapeutics.

  19. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  20. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  1. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  2. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  3. 7 CFR 1230.18 - Porcine animal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold...

  4. Antimicrobial Resistance of Diarrheagenic Escherichia coli Isolated from Children under the Age of 5 Years from Ifakara, Tanzania

    PubMed Central

    Vila, Jordi; Vargas, Martha; Casals, Climent; Urassa, Honorato; Mshinda, Hassan; Schellemberg, David; Gascon, Joaquim

    1999-01-01

    Diarrhea caused by multidrug-resistant bacteria is an important public health problem among children in developing countries. The prevalence and antimicrobial susceptibility of diarrheagenic Escherichia coli in 346 children under 5 years of age in Ifakara, Tanzania, were studied. Thirty-eight percent of the cases of diarrhea were due to multiresistant enterotoxigenic E. coli, enteroaggregative E. coli, or enteropathogenic E. coli. Strains of all three E. coli categories showed high-level resistance to ampicillin, tetracycline, co-trimoxazole, and chloramphenicol but were highly susceptible to quinolones. Guidelines for appropriate use of antibiotics in developing countries need updating. PMID:10582903

  5. Blocking porcine sialoadhesin improves extracorporeal porcine liver xenoperfusion with human blood

    PubMed Central

    Waldman, Joshua P.; Vogel, Thomas; Burlak, Christopher; Coussios, Constantin; Dominguez, Javier; Friend, Peter; Rees, Michael A.

    2013-01-01

    Patients in fulminant hepatic failure currently do not have a temporary means of support while awaiting liver transplantation. A potential therapeutic approach for such patients is the use of extracorporeal perfusion with porcine livers as a form of “liver dialysis”. During a 72-hour extracorporeal perfusion of porcine livers with human blood, porcine Kupffer cells bind to and phagocytose human red blood cells (hRBC) causing the hematocrit to decrease to 2.5% of the original value. Our laboratory has identified porcine sialoadhesin expressed on Kupffer cells as the lectin responsible for binding N-acetylneuraminic acid on the surface of the hRBC. We evaluated whether blocking porcine sialoadhesin prevents the recognition and subsequent destruction of hRBCs seen during extracorporeal porcine liver xenoperfusion. Ex vivo studies were performed using wild type pig livers perfused with isolated hRBCs for 72-hours in the presence of an anti-porcine sialoadhesin antibody or isotype control. The addition of an anti-porcine sialoadhesin antibody to an extracorporeal porcine liver xenoperfusion model reduces the loss of hRBC over a 72 hour period. Sustained liver function was demonstrated throughout the perfusion. This study illustrates the role of sialoadhesin in mediating the destruction of hRBCs in an extracorporeal porcine liver xenoperfusion model. PMID:23822217

  6. Lactobacillus brevis strains from fermented aloe vera survive gastroduodenal environment and suppress common food borne enteropathogens.

    PubMed

    Kim, Young-Wook; Jeong, Young-Ju; Kim, Ah-Young; Son, Hyun-Hee; Lee, Jong-Am; Jung, Cheong-Hwan; Kim, Chae-Hyun; Kim, Jaeman

    2014-01-01

    Five novel Lactobacillus brevis strains were isolated from naturally fermented Aloe vera leaf flesh. Each strain was identified by Random Amplified Polymorphic DNA (RAPD) analysis and 16S rRNA sequence comparison. These strains were highly tolerant to acid, surviving in pH2.5 for up to 4 hours, and resistant to 5% bile salts at 37°C for 18 hours. Due to its tolerance to acid and bile salts, one strain passed through the gastric barrier and colonised the intestine after oral administration. All five strains inhibited the growth of many harmful enteropathogens without restraining most of normal commensals in the gut and hence named POAL (Probiotics Originating from Aloe Leaf) strains. Additionally, each strain exhibited discriminative resistance to a wide range of antibiotics. The L. brevis POAL strains, moreover, expressed high levels of the glutamate decarboxylase (GAD) gene which produces a beneficial neurotransmitter, γ-aminobutyric acid (GABA). These characteristics in all suggest that the novel L. brevis strains should be considered as potential food additives and resources for pharmaceutical research.

  7. Lactobacillus brevis Strains from Fermented Aloe vera Survive Gastroduodenal Environment and Suppress Common Food Borne Enteropathogens

    PubMed Central

    Kim, Young-Wook; Jeong, Young-Ju; Kim, Ah-Young; Son, Hyun-Hee; Lee, Jong-Am; Jung, Cheong-Hwan; Kim, Chae-Hyun; Kim, Jaeman

    2014-01-01

    Five novel Lactobacillus brevis strains were isolated from naturally fermented Aloe vera leaf flesh. Each strain was identified by Random Amplified Polymorphic DNA (RAPD) analysis and 16S rRNA sequence comparison. These strains were highly tolerant to acid, surviving in pH2.5 for up to 4 hours, and resistant to 5% bile salts at 37°C for 18 hours. Due to its tolerance to acid and bile salts, one strain passed through the gastric barrier and colonised the intestine after oral administration. All five strains inhibited the growth of many harmful enteropathogens without restraining most of normal commensals in the gut and hence named POAL (Probiotics Originating from Aloe Leaf) strains. Additionally, each strain exhibited discriminative resistance to a wide range of antibiotics. The L. brevis POAL strains, moreover, expressed high levels of the glutamate decarboxylase (GAD) gene which produces a beneficial neurotransmitter, γ-aminobutyric acid (GABA). These characteristics in all suggest that the novel L. brevis strains should be considered as potential food additives and resources for pharmaceutical research. PMID:24598940

  8. The prevalence of swine enteropathogens in Brazilian grower and finish herds.

    PubMed

    Viott, A M; Lage, A P; Cruz, E C C; Guedes, R M C

    2013-05-17

    Diarrhoea among growing and finishing pigs is an important problem in many herds. The prevalence of L. intracellularis, B. pilosicoli, B. hyodysenteriae, Salmonella spp., enterotoxigenic E. coli, Trichuris suis and the occurrence of mixed infection were investigated. Fecal samples for forty-six herds with diarrhea or a history of diarrhea were randomly collected in Minas Gerais state, Brazil. The enteric pathogens were detected by culture (E. coli and Salmonella sp.), PCR (L. intracellularis and Brachyspira spp.) and eggs counts (T. suis). The overall herd prevalence of L. intracellularis, Salmonella enterica serotype Typhimurium and enterotoxigenic E. coli were 19.56%, 6.52%, 10.86% respectively. Mixed infection was diagnosed in 30.43% of herds, and L. intracellularis and Salmonella enterica serotype Typhimurium are main pathogens association (10.87%). B. pilosicoli was diagnosed only in two herds, always associated with mixed infections. B. hyodysenteriae and T. suis were not demonstrated in any sample. These pathogens have been reported world-wide but studies regarding epidemiology in Brazil are few. This study contributes to establish of prevention programs for the control enteropathogens in grower finish herds in Brazil.

  9. Inhibitory effects of recombinant feline interferon on the replication of feline enteropathogenic viruses in vitro.

    PubMed

    Mochizuki, M; Nakatani, H; Yoshida, M

    1994-03-01

    Antiviral activities of a recombinant feline interferon (rFeIFN) KT-80 were evaluated against feline enteropathogenic viruses in feline and canine cell lines. Sensitivity to antiviral activities of the rFeIFN varied with cell types; Felis catus whole fetus (fcwf-4) cells were more sensitive than Crandell feline kidney cells, but no sensitivity was found for Madin-Darby canine kidney cells when vesicular stomatitis virus was used as a challenge virus. Reductions were generally IFN dose-dependent and were more consistent when the cells were continuously treated with the rFeIFN than when they were pretreated only before viral challenge. Compared with each virus control culture of fcwf-4 cells, yields of rotavirus, feline panleukopenia virus (FPLV), feline calicivirus and feline infectious peritonitis coronavirus were reduced by ranges of 1.3 to < or = 3.1 log10, 0.6 to 1.6 log2, 0.8 to 3.7 log10 and 0.5 to 0.6 log10, respectively, in the cultures continuously treated with 10 to 10000 U of the rFeIFN. The yield reduction of FPLV was considered to be in part attributable to inhibition of cell growth by the rFeIFN supplemented in the medium.

  10. Enteropathogens Associated with Acute Diarrhea in Children from Households with High Socioeconomic Level in Uruguay

    PubMed Central

    Batthyány, Lara; Bianco, María Noel; Pérez, Walter; Pardo, Lorena; Algorta, Gabriela; Robino, Luciana; Suárez, Ramón; Navarro, Armando; Pírez, María Catalina; Schelotto, Felipe

    2015-01-01

    Infectious diarrhea, a common disease of children, deserves permanent monitoring in all social groups. To know the etiology and clinical manifestations of acute diarrhea in children up to 5 years of age from high socioeconomic level households, we conducted a descriptive, microbiological, and clinical study. Stools from 59 children with acute community-acquired diarrhea were examined, and their parents were interviewed concerning symptoms and signs. Rotavirus, adenovirus, and norovirus were detected by commercially available qualitative immunochromatographic lateral flow rapid tests. Salmonella, Campylobacter, Yersinia, and Shigella were investigated by standard bacteriological methods and diarrheagenic E. coli by PCR assays. We identified a potential enteric pathogen in 30 children. The most frequent causes of diarrhea were enteropathogenic E. coli (EPEC), viruses, Campylobacter, Salmonella, and Shiga-toxin-producing E. coli (STEC). Only 2 patients showed mixed infections. Our data suggest that children with viral or Campylobacter diarrhea were taken to the hospital earlier than those infected with EPEC. One child infected with STEC O26 developed “complete” HUS. The microbiological results highlight the importance of zoonotic bacteria such as atypical EPEC, Campylobacter, STEC, and Salmonella as pathogens associated with acute diarrhea in these children. The findings also reinforce our previous communications about the regional importance of non-O157 STEC strains in severe infant food-borne diseases. PMID:25861274

  11. The prevalence of swine enteropathogens in Brazilian grower and finish herds

    PubMed Central

    Viott, A.M.; Lage, A.P.; Cruz, E.C.C.; Guedes, R.M.C.

    2013-01-01

    Diarrhoea among growing and finishing pigs is an important problem in many herds. The prevalence of L. intracellularis, B. pilosicoli, B. hyodysenteriae, Salmonella spp., enterotoxigenic E. coli, Trichuris suis and the occurrence of mixed infection were investigated. Fecal samples for forty-six herds with diarrhea or a history of diarrhea were randomly collected in Minas Gerais state, Brazil. The enteric pathogens were detected by culture (E. coli and Salmonella sp.), PCR (L. intracellularis and Brachyspira spp.) and eggs counts (T. suis). The overall herd prevalence of L. intracellularis, Salmonella enterica serotype Typhimurium and enterotoxigenic E. coli were 19.56%, 6.52%, 10.86% respectively. Mixed infection was diagnosed in 30.43% of herds, and L. intracellularis and Salmonella enterica serotype Typhimurium are main pathogens association (10.87%). B. pilosicoli was diagnosed only in two herds, always associated with mixed infections. B. hyodysenteriae and T. suis were not demonstrated in any sample. These pathogens have been reported world-wide but studies regarding epidemiology in Brazil are few. This study contributes to establish of prevention programs for the control enteropathogens in grower finish herds in Brazil. PMID:24159297

  12. Rapid CD8+ Function Is Critical for Protection of Neonatal Mice from an Extracellular Bacterial Enteropathogen

    PubMed Central

    Siefker, David T.; Adkins, Becky

    2017-01-01

    Both human and murine neonates are characteristically highly susceptible to bacterial infections. However, we recently discovered that neonatal mice are surprisingly highly resistant to oral infection with Yersinia enterocolitica. This resistance was linked with activation of both innate and adaptive responses, involving innate phagocytes, CD4+ cells, and B cells. We have now extended these studies and found that CD8+ cells also contribute importantly to neonatal protection from Y. enterocolitica. Strikingly, neonatal CD8+ cells in the mesenteric lymph nodes (MLN) are rapidly mobilized, increasing in proportion, number, and IFNγ production as early as 48 h post infection. This early activation appears to be critical for protection since B2m−/− neonates are significantly more susceptible than wt neonates to primary Y. enterocolitica infection. In the absence of CD8+ cells, Y. enterocolitica rapidly disseminated to peripheral tissues. Within 48 h of infection, both the spleens and livers of B2m−/−, but not wt, neonates became heavily colonized, likely leading to their deaths from sepsis. In contrast to primary infection, CD8+ cells were dispensable for the generation of immunological memory protective against secondary infection. These results indicate that CD8+ cells in the neonatal MLN contribute importantly to protection against an extracellular bacterial enteropathogen but, notably, they appear to act during the early innate phase of the immune response. PMID:28119902

  13. [Research advances in porcine bocavirus].

    PubMed

    Zhai, Shao-Lun; Chen, Sheng-Nan; Wei, Wen-Kang

    2012-03-01

    Porcine bocavirus (PBoV) was considered as a new member of the genus Bocavirus of the subfamily Parvovirinae of the family Parvoviridae, which was discovered in Swedish swine herds with postweaning multisystemic wasting syndrome (PMWS) in 2009. At present, as an emerging pathogen, it was paid great attention by researchers at home and abroad. This paper referred to some published literatures and reviewed several aspects of PBoV including its finding, classification, genome structure and replication, epidemiology, associativity with diseases, cultural and diagnostic methods.

  14. Ribavirin efficiently suppresses porcine nidovirus replication.

    PubMed

    Kim, Youngnam; Lee, Changhee

    2013-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine epidemic diarrhea virus (PEDV) are porcine nidoviruses that represent emerging viral pathogens causing heavy economic impacts on the swine industry. Although ribavirin is a well-known antiviral drug against a broad range of both DNA and RNA viruses in vitro, its inhibitory effect and mechanism of action on porcine nidovirus replication remains to be elucidated. Therefore, the present study was conducted to determine whether ribavirin suppresses porcine nidovirus infection. Our results demonstrated that ribavirin treatment dose-dependently inhibited the replication of both nidoviruses. The antiviral activity of ribavirin on porcine nidovirus replication was found to be primarily exerted at early times post-infection. Treatment with ribavirin resulted in marked reduction of viral genomic and subgenomic RNA synthesis, viral protein expression, and progeny virus production in a dose-dependent manner. Investigations into the mechanism of action of ribavirin against PRRSV and PEDV revealed that the addition of guanosine to the ribavirin treatment significantly reversed the antiviral effects, suggesting that depletion of the intracellular GTP pool by inhibiting IMP dehydrogenase may be essential for ribavirin activity. Further sequencing analysis showed that the mutation frequency in ribavirin-treated cells was similar to that in untreated cells, indicating that ribavirin did not induce error-prone replication. Taken together, our data indicate that ribavirin might not only be a good therapeutic agent against porcine nidovirus, but also a potential candidate to be evaluated against other human and animal coronaviruses.

  15. A porcine model of osteosarcoma

    PubMed Central

    Saalfrank, A; Janssen, K-P; Ravon, M; Flisikowski, K; Eser, S; Steiger, K; Flisikowska, T; Müller-Fliedner, P; Schulze, É; Brönner, C; Gnann, A; Kappe, E; Böhm, B; Schade, B; Certa, U; Saur, D; Esposito, I; Kind, A; Schnieke, A

    2016-01-01

    We previously produced pigs with a latent oncogenic TP53 mutation. Humans with TP53 germline mutations are predisposed to a wide spectrum of early-onset cancers, predominantly breast, brain, adrenal gland cancer, soft tissue sarcomas and osteosarcomas. Loss of p53 function has been observed in >50% of human cancers. Here we demonstrate that porcine mesenchymal stem cells (MSCs) convert to a transformed phenotype after activation of latent oncogenic TP53R167H and KRASG12D, and overexpression of MYC promotes tumorigenesis. The process mimics key molecular aspects of human sarcomagenesis. Transformed porcine MSCs exhibit genomic instability, with complex karyotypes, and develop into sarcomas on transplantation into immune-deficient mice. In pigs, heterozygous knockout of TP53 was sufficient for spontaneous osteosarcoma development in older animals, whereas homozygous TP53 knockout resulted in multiple large osteosarcomas in 7–8-month-old animals. This is the first report that engineered mutation of an endogenous tumour-suppressor gene leads to invasive cancer in pigs. Unlike in Trp53 mutant mice, osteosarcoma developed in the long bones and skull, closely recapitulating the human disease. These animals thus promise a model for juvenile osteosarcoma, a relatively uncommon but devastating disease. PMID:26974205

  16. Insights into the pathogenesis of enteropathogenic E. coli using an improved intestinal enterocyte model.

    PubMed

    Dean, Paul; Young, Lorna; Quitard, Sabine; Kenny, Brendan

    2013-01-01

    Enteropathogenic E. coli (EPEC) is a human pathogen that targets the small intestine, causing severe and often fatal diarrhoea in infants. A defining feature of EPEC disease is the loss (effacement) of absorptive microvilli (MV) from the surface of small intestinal enterocytes. Much of our understanding of EPEC pathogenesis is derived from studies using cell lines such as Caco-2 - the most extensively used small intestinal model. However, previous work has revealed fundamental differences between Caco-2 cells and in vivo differentiated enterocytes in relation to MV effacement. This, and the high heterogeneity and low transfection efficiency of the Caco-2 cell line prompted the isolation of several sub-clones (NCL-1-12) to identify a more tractable and improved in vivo-like cell model. Along with established Caco-2 clones (TC-7, BBE1), sub-clones were assessed for growth rate, apical surface morphology, epithelial barrier function and transfection efficiency. TC-7 cells provided the best all-round clone and exhibited highest levels of ectopic gene expression following cell polarisation. Novel alterations in EGFP-labelled mitochondria, that were not previously documented in non-polarised cell types, highlighted the potential of the TC-7 model for defining dynamic enterocyte-specific changes during infection. Crucially, the TC-7 cell line also mimicked ex vivo derived enterocytes with regard to MV effacement, enabling a better dissection of the process. Effacement activity caused by the EPEC protein Map in the Caco-2 but not ex vivo model, was linked to a defect in suppressing its Cdc42-dependent functionality. MV effacement activity of the EPEC protein EspF in the TC-7 model was dependent on its N-WASP binding motif, which is also shown to play an essential role in epithelial barrier dysfunction. Together, this study highlights the many advantages of using TC-7 cells as a small intestinal model to study host-pathogen interactions.

  17. Enteropathogen infections in canine puppies: (Co-)occurrence, clinical relevance and risk factors.

    PubMed

    Duijvestijn, Mirjam; Mughini-Gras, Lapo; Schuurman, Nancy; Schijf, Wim; Wagenaar, Jaap A; Egberink, Herman

    2016-11-15

    Laboratory confirmation of the causative agent(s) of diarrhoea in puppies may allow for appropriate treatment. The presence of potential pathogens however, does not prove a causal relationship with diarrhoea. The aim of this study was to identify specific enteropathogens in ≤12 month old puppies with and without acute diarrhoea and to assess their associations with clinical signs, putative risk factors and pathogen co-occurrence. Faecal samples from puppies with (n=113) and without (n=56) acute diarrhoea were collected and screened for Canine Parvovirus (CPV), Canine Coronavirus (CCoV), Salmonella spp., Campylobacter spp., Clostridium perfringens, Clostridium difficile, β-hemolytic Eschericha coli (hEC), Giardia spp., Toxocara spp., Cystoisospora spp., and Cyniclomyces guttulatus. One or more pathogens were detected in 86.5% of diarrhoeic puppies and in 77.8% of asymptomatic puppies. Significant positive associations were found between CPV and CCoV, CPV and Cystoisospora spp., Toxocara spp. and hEC, Giardia spp. and C. guttulatus. Only CPV and CCoV were significantly associated with diarrhoea, hEC with a subset of puppies that had diarrhoea and severe clinical signs. CPV was more prevalent in puppies under 3 months of age. Puppies from high-volume dog breeders were significantly at increased risk for CPV (OR 4.20), CCoV (OR 4.50) and Cystoisospora spp. (OR 3.60). CCoV occurred significantly more often in winter (OR 3.35), and CPV in winter (OR 3.78) and spring (OR 4.72) as compared to summer. We conclude that routine screening for CPV, CCoV and hEC is recommended in puppies with acute diarrhoea, especially if they are under 3 months of age and originate from high-volume dog breeders. Routine screening for other pathogens may lead to less conclusive results.

  18. Modulation of in vitro natural cell-mediated activity against enteropathogenic bacteria by simple sugars.

    PubMed Central

    Nencioni, L; Villa, L; Boraschi, D; Tagliabue, A

    1985-01-01

    Lymphoid cells from mouse Peyer's patches and spleens were tested in a 2-h in vitro assay for their natural activity against the enteropathogenic bacteria Salmonella typhimurium, Salmonella enteritidis, Salmonella tel aviv, and Shigella sp. X16. The antibacterial activity expressed by normal cells was detected against all the bacterial strains tested with the exception of Peyer's patch lymphocytes against S. tel aviv and splenocytes against Shigella sp. X16. To determine whether the different expression of natural antibacterial activity might be due to lectin-like proteins interacting with the saccharidic moieties of the bacterial wall, 11 simple sugars were preincubated with the effector cells before the in vitro assays. We found that some of them could block the natural antibacterial activity as well as induce antibacterial activity when this was not spontaneously expressed. Interestingly, a different panel of sugars among those employed was observed to affect the antibacterial activities for each of the above-mentioned bacterial targets and each effector cell. However, the same panel of sugars was able to block or stimulate the lymphocyte activity when bacteria with the same somatic antigens as two substrains of S. typhimurium and one strain of Salmonella schottmuelleri were employed. To further investigate the interaction between effector cells and bacteria, effector cells or Shigella sp. X16 targets were treated with proteolytic, glycolytic, and lipolytic enzymes before the in vitro assays. Furthermore, EDTA was used to analyze the role of divalent cations in this experimental system. The results obtained suggest that lectin-like proteins playing a role in this interaction are present not only on lymphocytes but also on bacteria and that divalent cations are essential for the expression of in vitro antibacterial activity. PMID:3967926

  19. (PCG) Protein Crystal Growth Porcine Elastase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Porcine Elastase. This enzyme is associated with the degradation of lung tissue in people suffering from emphysema. It is useful in studying causes of this disease. Principal Investigator on STS-26 was Charles Bugg.

  20. Amino acid residues in the Ler protein critical for derepression of the LEE5 promoter in enteropathogenic E. coli.

    PubMed

    Choi, Su-Mi; Jeong, Jae-Ho; Choy, Hyon E; Shin, Minsang

    2016-08-01

    Enteropathogenic E. coli causes attaching and effacing (A/E) intestinal lesions. The genes involved in the formation of A/E lesions are encoded within a chromosomal island comprising of five major operons, LEE1-5. The global regulator H-NS represses the expression of these operons. Ler, a H-NS homologue, counteracts the H-NS-mediated repression. Using a novel genetic approach, we identified the amino acid residues in Ler that are involved in the interaction with H-NS: I20 and L23 in the C-terminal portion of α-helix 3, and I42 in the following unstructured linker region.

  1. Mycotoxin detoxifiers attenuate deoxynivalenol-induced pro-inflammatory barrier insult in porcine enterocytes as an in vitro evaluation model of feed mycotoxin reduction.

    PubMed

    Park, Seong-Hwan; Kim, Juil; Kim, Dongwook; Moon, Yuseok

    2017-02-01

    Deoxynivalenol (DON), the most prevalent mycotoxin worldwide, leads to economic losses for animal food production. Swine is a most sensitive domestic animal to DON due to rapid absorption and low detoxification by gut microbiota. Specifically, DON can severely damage pig intestinal tissue by disrupting the intestinal barrier and inducing inflammatory responses. We evaluated the effects of several mycotoxin detoxifiers including bentonites, yeast cell wall components, and mixture-typed detoxifier composed of mineral, microorganisms, and phytogenic substances on DON-insulted intestinal barrier and pro-inflammatory responses using in vitro porcine enterocyte culture model. DON-induced disruption of the in vitro gut barrier was attenuated by all three mycotoxin detoxifiers in dose-dependent manners. These mycotoxin detoxifiers also suppressed DON-induced pro-inflammatory chemokine expression to different degrees, which was mediated by downregulation of mitogen-activated kinases and early growth response-1. Of note, the mixture-typed detoxifier was the most prominent mitigating agent at the cellular levels whereas the high dose of bentonite clay also had suppressive action against DON-induced pro-inflammatory insult. The in vitro porcine enterocyte-based assessment of intestinal barrier integrity and inflammatory signals provides sensitive and simplified alternative bioassay of feed additives such as detoxifiers against enteropathogenic mycotoxins with comprehensive mechanistic confirmation.

  2. Porcine models of muscular dystrophy.

    PubMed

    Selsby, Joshua T; Ross, Jason W; Nonneman, Dan; Hollinger, Katrin

    2015-01-01

    Duchenne muscular dystrophy is a progressive, fatal, X-linked disease caused by a failure to accumulate the cytoskeletal protein dystrophin. This disease has been studied using a variety of animal models including fish, mice, rats, and dogs. While these models have contributed substantially to our mechanistic understanding of the disease and disease progression, limitations inherent to each model have slowed the clinical advancement of therapies, which necessitates the development of novel large-animal models. Several porcine dystrophin-deficient models have been identified, although disease severity may be so severe as to limit their potential contributions to the field. We have recently identified and completed the initial characterization of a natural porcine model of dystrophin insufficiency. Muscles from these animals display characteristic focal necrosis concomitant with decreased abundance and localization of dystrophin-glycoprotein complex components. These pigs recapitulate many of the cardinal features of muscular dystrophy, have elevated serum creatine kinase activity, and preliminarily appear to display altered locomotion. They also suffer from sudden death preceded by EKG abnormalities. Pig dystrophinopathy models could allow refinement of dosing strategies in human-sized animals in preparation for clinical trials. From an animal handling perspective, these pigs can generally be treated normally, with the understanding that acute stress can lead to sudden death. In summary, the ability to create genetically modified pig models and the serendipitous discovery of genetic disease in the swine industry has resulted in the emergence of new animal tools to facilitate the critical objective of improving the quality and length of life for boys afflicted with such a devastating disease.

  3. Continuous infusion of porcine factor VIII: stability, microbiological safety and clinical experience.

    PubMed

    DiMichele, D M; Gorman, P O; Kasper, C K; Mannucci, P M; Santagostino, E; Hay, C R M

    2002-01-01

    Porcine factor VIII (pFVIII) is an effective haemostatic treatment for bleeding in selected patients with FVIII inhibitors. Its use is sometimes associated with a transient fall in platelet count and transfusion reactions, the risk of which may be related to the rate of administration. Theoretical considerations suggest that the administration of pFVIII by continuous infusion should be effective, and could have pharmacokinetic advantages that lead to an improvement in the side-effect profile. The results of a retrospective survey of continuous infusion of pFVIII with respect to clinical safety and efficacy are reported. Porcine FVIII stability and microbiological studies are included. It is concluded that pFVIII given by continuous infusion is safe and effective. The risk of transfusion reactions and fall in platelet count appears to be reduced, compared with bolus administration. Stability studies showed that pFVIII activity declined at room temperature, most rapidly in the dilute solution (5-10 U mL(-1)). More concentrated mixtures showed acceptable stability for up to 24 h using a variety of infusion devices. Various concentrations of pFVIII did not support the growth of Escherichia coli or Staphylococcus aureus. These observations suggest that the porcine factor is suitable for continuous infusion (CI).

  4. Fluorescent antibody-viability staining and beta-glucuronidase assay as rapid methods for monitoring Escherichia coli viability in coastal marine waters.

    PubMed

    Caruso, G; De Pasquale, F; Mancuso, M; Zampino, D; Crisafi, E

    2006-01-01

    A faecal pollution monitoring of coastal Messina waters was performed by comparing three (microscopic, enzyme, and culture) methods. Evidence of Escherichia coli cells (29.99 to 96.79% of the total enteropathogenic serotypes) retaining their viability into the marine environment was shown. beta-Glucuronidase activity rates suggested that living cells were also metabolically active. Heavily polluted sites were detected, where improperly treated urban wastes were discharged. Significant relationships between microscopic and enzymatic data proved both methods to be suitable alternatives to the culture method for E. coli detection, improving environmental quality assessment.

  5. Chronic diarrhea among adults in Kigali, Rwanda: association with bacterial enteropathogens, rectocolonic inflammation, and human immunodeficiency virus infection.

    PubMed

    Clerinx, J; Bogaerts, J; Taelman, H; Habyarimana, J B; Nyirabareja, A; Ngendahayo, P; Van de Perre, P

    1995-11-01

    One hundred patients with chronic diarrhea were seen in the Department of Internal Medicine at the Centre Hospitalier de Kigali, Rwanda; stool and/or rectal swab culture was performed for these patients, and they underwent rectoscopy and serological testing for human immunodeficiency virus type 1 (HIV-1). Enteropathogenic bacteria were isolated from 39 (39%) of the patients: Shigella species (22 of 100 patients tested), non-typhi Salmonella (11/100), Aeromonas species (5/60), and Campylobacter species (4/60). Rectocolitis was seen in 70 (70%) of the patients. HIV-1 antibodies were detected in 82 (94%) of 87 patients tested. Cytomegalovirus was not found in rectal biopsy specimens from 29 patients. Entamoeba histolytica was detected in two of 31 rectal smears. Idiopathic ulcerative colitis was diagnosed for two HIV-1-seropositive patients. One or more AIDS-defining diseases were found in 32 (32%) of the patients, and 72 (72%) fulfilled the World Health Organization's clinical case definition criteria for AIDS. Chronic diarrhea, as seen in a hospital setting in a region highly endemic for HIV-1 infection, is strongly associated with HIV-1 infection, with rectocolonic inflammation, and with infection due to enteropathogenic bacteria.

  6. Natural and experimental infection with an attaching and effacing strain of Escherichia coli in calves.

    PubMed Central

    Moxley, R A; Francis, D H

    1986-01-01

    Gnotobiotic calves were inoculated with an O5:K4:H-, urease-positive strain of Escherichia coli isolated from a 2-day-old calf with diarrhea. The calves developed elevated temperatures and passed loose mucoid feces, with or without blood. The E. coli strain was negative for heat-stable and heat-labile enterotoxins but produced high levels of Shiga-like toxin. Bacteria attached diffusely to the epithelium of the large intestine and multifocally to the epithelium of the ileum. The duodenum and jejunum were not affected. At the sites of bacterial attachment, microvilli were effaced, enterocytes were degenerate, and necrosis and exfoliation had occurred. These results confirm a previous report from England that calves may naturally contract infections similar to those caused by enteropathogenic E. coli strains pathogenic to humans or rabbits. This suggests that the calf bacterial strains, like some enteropathogenic E. coli strains, produce high levels of Shiga-like toxin and cause attachment and effacement lesions in the colonic epithelium of the infected host. Images PMID:3525410

  7. Development of colloidal gold-based immunochromatographic assay for rapid detection of Mycoplasma suis in porcine plasma.

    PubMed

    Meng, Kai; Sun, Wenjing; Zhao, Peng; Zhang, Limei; Cai, Dongjie; Cheng, Ziqiang; Guo, Huijun; Liu, Jianzhu; Yang, Dubao; Wang, Shujing; Chai, Tongjie

    2014-05-15

    A one-step immunochromatographic assay using gold nanoparticles coated with polyclonal antibody (pAb) against Mycoplasma suis (M. suis) was developed in this study for the detection of M. suis in porcine plasma. The colloidal gold was prepared by the reduction of gold salt with sodium citrate coupled with pAb against M. suis. The pAb was produced by immunizing the BALB/c mice with recombinant MSG1 (rMSG1) protein from M. suis expressed in Escherichia coli. The optimal concentrations of the capture antibody and the coating antibody were 12 μg/ml and 1.5 mg/ml, respectively, and that of the blocking buffer was 1% bovine serum albumin. The lower detection limit of the immunochromatographic assay test was 100 ng/ml with visual detection under optimal conditions of analysis. Classical swine fever virus, porcine reproductive and respiratory syndrome virus, swine pneumonia mycoplasma, swine toxoplasma, and porcine parvovirus were used to evaluate the specificity of the immunochromatographic strips. No cross-reaction of the antibodies with other related swine pathogens was observed. This qualitative test based on the visual evaluation of the results did not require any equipment. The assay time for M. suis detection was less than 10 min, suitable for rapid detection at the grassroots level. The one-step colloidal gold immunochromatographic strips that we developed had high specificity and sensitivity. Therefore, this method would be feasible, convenient, rapid, and effective for detecting M. suis in porcine plasma.

  8. A study of the prevalence of diarrhoeagenic Escherichia coli in children from Gwagwalada, Federal Capital Territory, Nigeria

    PubMed Central

    Onanuga, Adebola; Igbeneghu, Oluwatoyin; Lamikanra, Adebayo

    2014-01-01

    Introduction Diarrhoeagenic Escherichia coli (DEC) are major causes of diarrhoea in Nigeria. This study was conducted to determine the prevalence of diarrhoea caused by DEC within the Federal Capital Territory, Abuja, Nigeria. Methods A total of 730 rectal swabs obtained from 201 children with diarrhoea and 529 healthy controls aged 0-24 months were cultured for the isolation of Escherichia coli. All E. coli isolates were investigated by PCR to determine their pathotype. Results A total of 61 DEC strains were recovered at a rate of 18.4% and 2.6% from children with diarrhoea and healthy controls respectively. The DEC strains recovered were Enteroaggregative Escherichia coli (34.4%), Shiga-toxin producing Escherichia coli (31.1%), Enterotoxigenic Escherichia coli(18.0%), typical enteropathogenic Escherichia coli (15.0%) and Enteroinvasive Escherichia coli (1.6%). Shiga-toxin producing Escherichia coli andEnteroinvasive Escherichia coli were recovered only from children suffering from diarrhoea and the overall prevalence of DEC strains was significantly higher among the children with diarrhoea (P < 0.0001). The number of DEC strains obtained during the dry season was significantly higher (P = 0.012) than the number obtained in the rainy season. Conclusion Diarrhoea caused by E. coli in the Nigerian children studied is associated with several diarrhoeagenic pathotypes and a significant proportion of the healthy children were found to harbour EAEC and ETEC strains. These asymptomatic carriers may be regarded as potential transmitters of infection to vulnerable children in the study area. PMID:25379115

  9. Porcine epidemic diarrhea virus infection: inhibition by polysaccharide from Ginkgo biloba exocarp and mode of its action.

    PubMed

    Lee, Jung-Hee; Park, Jang-Soon; Lee, Seung-Woong; Hwang, Seock-Yeon; Young, Bae-Eun; Choi, Hwa-Jung

    2015-01-02

    Porcine epidemic diarrhea virus (PEDV) is the predominant cause of severe entero-pathogenic diarrhea in swine. Until now there is no recorded clinically effective antiviral chemotherapeutic agent for treatment of diseases caused by PEDV. This study aimed to investigate in vitro anti-PEDV effect of polysaccharide from Ginkgo biloba exocarp and mode of its action. The polysaccharide exhibited potent antiviral activity against PEDV reducing the formation of a visible CPE [a 50% inhibitory concentration (IC50)=1.7±1.3μg/mL], compared to positive control, ribavirin and it did not show cytotoxicity at 100μg/mL [a 50% cytotoxicity concentration (CC50)=100μg/mL]. Polysaccharide also showed effective inhibitory effects when added at the viral attachment and entry steps. Moreover, polysaccharide effectively inactivated PEDV infection in time-, dose- and temperature-dependent manners. Overall, this research revealed that polysaccharide could inhibit PEDV infection, and that polysaccharide may be involved in PEDV-Vero cell interactions, as the virus attachment and entry to the Vero cells was hindered by the polysaccharide. Therefore, polysaccharide possessing effective inhibitory effect on viral attachment and entry steps of PEDV life cycle is a good candidate for development of antivirals.

  10. Restriction of Porcine Endogenous Retrovirus by Porcine APOBEC3 Cytidine Deaminases ▿

    PubMed Central

    Dörrschuck, Eva; Fischer, Nicole; Bravo, Ignacio G.; Hanschmann, Kay-Martin; Kuiper, Heidi; Spötter, Andreas; Möller, Ronny; Cichutek, Klaus; Münk, Carsten; Tönjes, Ralf R.

    2011-01-01

    Xenotransplantation of porcine cells, tissues, and organs shows promise to surmount the shortage of human donor materials. Among the barriers to pig-to-human xenotransplantation are porcine endogenous retroviruses (PERV) since functional representatives of the two polytropic classes, PERV-A and PERV-B, are able to infect human embryonic kidney cells in vitro, suggesting that a xenozoonosis in vivo could occur. To assess the capacity of human and porcine cells to counteract PERV infections, we analyzed human and porcine APOBEC3 (A3) proteins. This multigene family of cytidine deaminases contributes to the cellular intrinsic immunity and act as potent inhibitors of retroviruses and retrotransposons. Our data show that the porcine A3 gene locus on chromosome 5 consists of the two single-domain genes A3Z2 and A3Z3. The evolutionary relationships of the A3Z3 genes reflect the evolutionary history of mammals. The two A3 genes encode at least four different mRNAs: A3Z2, A3Z3, A3Z2-Z3, and A3Z2-Z3 splice variant A (SVA). Porcine and human A3s have been tested toward their antiretroviral activity against PERV and murine leukemia virus (MuLV) using novel single-round reporter viruses. The porcine A3Z2, A3Z3 and A3Z2-Z3 were packaged into PERV particles and inhibited PERV replication in a dose-dependent manner. The antiretroviral effect correlated with editing by the porcine A3s with a trinucleotide preference for 5′ TGC for A3Z2 and A3Z2-Z3 and 5′ CAC for A3Z3. These results strongly imply that human and porcine A3s could inhibit PERV replication in vivo, thereby reducing the risk of infection of human cells by PERV in the context of pig-to-human xenotransplantation. PMID:21307203

  11. Porcine model of hemophilia A.

    PubMed

    Kashiwakura, Yuji; Mimuro, Jun; Onishi, Akira; Iwamoto, Masaki; Madoiwa, Seiji; Fuchimoto, Daiichiro; Suzuki, Shunichi; Suzuki, Misae; Sembon, Shoichiro; Ishiwata, Akira; Yasumoto, Atsushi; Sakata, Asuka; Ohmori, Tsukasa; Hashimoto, Michiko; Yazaki, Satoko; Sakata, Yoichi

    2012-01-01

    Hemophilia A is a common X chromosome-linked genetic bleeding disorder caused by abnormalities in the coagulation factor VIII gene (F8). Hemophilia A patients suffer from a bleeding diathesis, such as life-threatening bleeding in the brain and harmful bleeding in joints and muscles. Because it could potentially be cured by gene therapy, subhuman animal models have been sought. Current mouse hemophilia A models generated by gene targeting of the F8 have difficulties to extrapolate human disease due to differences in the coagulation and immune systems between mice and humans. Here, we generated a porcine model of hemophilia A by nuclear transfer cloning from F8-targeted fibroblasts. The hemophilia A pigs showed a severe bleeding tendency upon birth, similar to human severe hemophiliacs, but in contrast to hemophilia A mice which rarely bleed under standard breed conditions. Infusion of human factor VIII was effective in stopping bleeding and reducing the bleeding frequency of a hemophilia A piglet but was blocked by the inhibitor against human factor VIII. These data suggest that the hemophilia A pig is a severe hemophilia A animal model for studying not only hemophilia A gene therapy but also the next generation recombinant coagulation factors, such as recombinant factor VIII variants with a slower clearance rate.

  12. Identification and antagonistic activity of lactic acid bacteria occurring in porcine blood from industrial slaughterhouses--a preliminary study.

    PubMed

    Dàvila, Eduard; Zamora, Lucero M; Pla, Maria; Carretero, Carmen; Parés, Dolors

    2006-03-15

    Ninety-seven lactic acid bacteria (LAB) were isolated from slaughterhouse porcine blood in order to select autochthonous LAB strains for use as biopreservatives of this by-product. They were identified by 16S rDNA sequencing; and their inhibition capacity was determined against four bacterial species frequently found in contaminated blood, i.e. Staphylococcus aureus, Escherichia coli, Pseudomonas fluorescens and Bacillus spp. The taxonomic study showed an unexpected low diversity of LAB in blood, i.e. only 8 different species were found, from which just 4, i.e. Enterococcus raffinosus, Lactobacillus murinus, Lactobacillus reuteri and Lactococcus garvieae, amounted to more than 90% of all isolates. Inhibition tests in solid culture media proved that S. aureus and Bacillus spp. were inhibited by most LAB strains obtained from porcine blood. E. coli was the indicator less affected by the isolated LAB species. Several isolates efficiently inhibited the growth of all tested indicators.

  13. Porcine Epidemic Diarrhea Virus 3C-Like Protease Regulates Its Interferon Antagonism by Cleaving NEMO

    PubMed Central

    Wang, Dang; Fang, Liurong; Shi, Yanling; Zhang, Huan; Gao, Li; Peng, Guiqing; Chen, Huanchun; Li, Kui

    2015-01-01

    ABSTRACT Porcine epidemic diarrhea virus (PEDV) is an enteropathogenic coronavirus causing lethal watery diarrhea in piglets. Since 2010, a PEDV variant has spread rapidly in China, and it emerged in the United States in 2013, posing significant economic and public health concerns. The ability to circumvent the interferon (IFN) antiviral response, as suggested for PEDV, promotes viral survival and regulates pathogenesis of PEDV infections, but the underlying mechanisms remain obscure. Here, we show that PEDV-encoded 3C-like protease, nsp5, is an IFN antagonist that proteolytically cleaves the nuclear transcription factor kappa B (NF-κB) essential modulator (NEMO), an essential adaptor bridging interferon-regulatory factor and NF-κB activation. NEMO is cleaved at glutamine 231 (Q231) by PEDV, and this cleavage impaired the ability of NEMO to activate downstream IFN production and to act as a signaling adaptor of the RIG-I/MDA5 pathway. Mutations specifically disrupting the cysteine protease activity of PEDV nsp5 abrogated NEMO cleavage and the inhibition of IFN induction. Structural analysis suggests that several key residues outside the catalytic sites of PEDV nsp5 probably impact NEMO cleavage by modulating potential interactions of nsp5 with their substrates. These data show that PEDV nsp5 disrupts type I IFN signaling by cleaving NEMO. Previously, we and others demonstrated that NEMO is also cleaved by 3C or 3C-like proteinases of picornavirus and artertivirus. Thus, NEMO probably represents a prime target for 3C or 3C-like proteinases of different viruses. IMPORTANCE The continued emergence and reemergence of porcine epidemic diarrhea virus (PEDV) underscore the importance of studying how this virus manipulates the immune responses of its hosts. During coevolution with its hosts, PEDV has acquired mechanisms to subvert host innate immune responses for its survival advantage. At least two proteins encoded by PEDV have been identified as interferon (IFN

  14. Porcine Deltacoronavirus Nsp5 Antagonizes Type I Interferon Signaling by Cleaving STAT2.

    PubMed

    Zhu, Xinyu; Wang, Dang; Zhou, Junwei; Pan, Ting; Chen, Jiyao; Yang, Yuting; Lv, Mengting; Ye, Xu; Peng, Guiqing; Fang, Liurong; Xiao, Shaobo

    2017-03-01

    Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus. The first outbreak of PDCoV was announced from the United States in 2014, followed by reports in Asia. The nonstructural protein nsp5 is a 3C-like protease of coronavirus and our previous study showed that PDCoV nsp5 inhibits type I interferon (IFN) production. In this study, we found that PDCoV nsp5 significantly inhibited IFN-stimulated response element (ISRE) promoter activity and transcription of IFN-stimulated genes (ISGs), suggesting that PDCoV nsp5 also suppresses IFN signaling. Detailed analysis showed that nsp5 cleaved signal transducer and activator of transcription 2 (STAT2), but not Janus kinase 1 (JAK1), tyrosine kinase 2 (TYK2), STAT1 and interferon regulatory factor 9 (IRF9), key molecules of the JAK-STAT pathway. STAT2 cleavage was dependent on the protease activity of nsp5. Interestingly, nsp5 cleaved STAT2 at two sites, glutamine (Q) 685 and Q758, and similar cleavage was observed in PDCoV-infected cells. As expected, cleaved STAT2 impaired the ability to induce ISGs, demonstrating that STAT2 cleavage is an important mechanism utilized by PDCoV nsp5 to antagonize IFN signaling. We also discussed the substrate selection and binding mode of PDCoV nsp5 by homologous modeling of PDCoV nsp5 with the two cleaved peptide substrates. Taken together, our study demonstrates that PDCoV nsp5 antagonizes type I IFN signaling by cleaving STAT2 and provides structural insights to comprehend the cleavage mechanism of PDCoV nsp5, revealing a potential new function for PDCoV nsp5 in type I IFN signaling.IMPORTANCE The 3C-like protease encoded by nsp5 is a major protease of coronaviruses; thus it is an attractive target for development of anti-coronavirus drugs. Previous studies have revealed that the 3C-like protease of coronaviruses, including PDCoV and porcine epidemic diarrhea virus (PEDV), antagonizes type I IFN production by targeting NF-κB essential modulator (NEMO). Here

  15. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection.

    PubMed

    Yang, Bin; Feng, Lu; Wang, Fang; Wang, Lei

    2015-03-20

    Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. Here we identify a virulence-regulating pathway in which the biotin protein ligase BirA signals to the global regulator Fur, which in turn activates LEE (locus of enterocyte effacement) genes to promote EHEC adherence in the low-biotin large intestine. LEE genes are repressed in the high-biotin small intestine, thus preventing adherence and ensuring selective colonization of the large intestine. The presence of this pathway in all nine EHEC serotypes tested indicates that it is an important evolutionary strategy for EHEC. The pathway is incomplete in closely related small-intestinal enteropathogenic E. coli due to the lack of the Fur response to BirA. Mice fed with a biotin-rich diet show significantly reduced EHEC adherence, indicating that biotin might be useful to prevent EHEC infection in humans.

  16. Enterohemorrhagic Escherichia coli senses low biotin status in the large intestine for colonization and infection

    PubMed Central

    Yang, Bin; Feng, Lu; Wang, Fang; Wang, Lei

    2015-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is an important foodborne pathogen that infects humans by colonizing the large intestine. Here we identify a virulence-regulating pathway in which the biotin protein ligase BirA signals to the global regulator Fur, which in turn activates LEE (locus of enterocyte effacement) genes to promote EHEC adherence in the low-biotin large intestine. LEE genes are repressed in the high-biotin small intestine, thus preventing adherence and ensuring selective colonization of the large intestine. The presence of this pathway in all nine EHEC serotypes tested indicates that it is an important evolutionary strategy for EHEC. The pathway is incomplete in closely related small-intestinal enteropathogenic E. coli due to the lack of the Fur response to BirA. Mice fed with a biotin-rich diet show significantly reduced EHEC adherence, indicating that biotin might be useful to prevent EHEC infection in humans. PMID:25791315

  17. Antimicrobial activity of selected synbiotics targeted for the elderly against pathogenic Escherichia coli strains.

    PubMed

    Likotrafiti, E; Tuohy, K M; Gibson, G R; Rastall, R A

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of two synbiotic combinations, Lactobacillus fermentum with short-chain fructooligosaccharides (FOS-LF) and Bifidobacterium longum with isomaltooligosaccharides (IMO-BL), against enterohaemorrhagic Escherichia coli O157:H7 and enteropathogenic E. coli O86. Antimicrobial activity was determined (1) by co-culturing the synbiotics and pathogens in batch cultures, and (2) with the three-stage continuous culture system (gut model), inoculated with faecal slurry from an elderly donor. In the co-culture experiments, IMO-BL was significantly inhibitory to both E. coli strains, while FOS-LF was slightly inhibitory or not inhibitory. Factors other than acid production appeared to play a role in the inhibition. In the gut models, both synbiotics effectively inhibited E. coli O157 in the first vessel, but not in vessels 2 and 3. E. coli O86 was not significantly inhibited.

  18. Survival Times of Selected Enteropathogenic Bacteria in Frozen Passionfruit Nectar Base

    PubMed Central

    Aea, Raymond T. F.; Bushnell, O. A.

    1962-01-01

    Five test organisms were used: Escherichia coli, Salmonella typhosa, Salmonella schottmuelleri, Salmonella enteritidis, and Shigella paradysenteriae. Even when large inocula of these test cultures were introduced into fresh passionfruit nectar base, all test organisms were killed within 1 to 2 hr, provided the nectar base was held at room temperature for more than 1 hr before freezing. If the nectar base was frozen immediately after inoculation, four of the five test organisms were eliminated almost as quickly. But the fifth, Salmonella enteritidis, proved to be exceptional: it was being recovered after 90 days of storage at -20 C, when the last available sample was analyzed. PMID:13859494

  19. Antibiotic Resistance Trends in Enteropathogenic Bacteria Isolated in 1985–1987 and 1995–1998 in Barcelona

    PubMed Central

    Prats, Guillermo; Mirelis, Beatriz; Llovet, Teresa; Muñoz, Carmen; Miró, Elisenda; Navarro, Ferran

    2000-01-01

    Trends in resistance to antimicrobial agents used for therapy have been evaluated with 3,797 enteropathogenic bacteria, Campylobacter, Salmonella, Shigella, and Yersinia, between 1985–1987 and 1995–1998. The greater increase in the rate of resistance was observed in Campylobacter jejuni for quinolones (from 1 to 82%) and tetracycline (from 23 to 72%) and in gastroenteric salmonellae for ampicillin (from 8 to 44%), chloramphenicol (from 1.7 to 26%), and trimethoprim-sulfamethoxazole and nalidixic acid (from less than 0.5 to 11%). Multidrug resistance was detected in several Salmonella serotypes. In the 1995–1998 period, 76% of Shigella strains were resistant to trimethoprim-sulfamethoxazole, 43% were resistant to ampicillin, and 39% were resistant to chloramphenicol. Seventy-two percent of Yersinia enterocolitica O3 strains were resistant to streptomycin, 45% were resistant to sulfonamides, 28% were resistant to trimethoprim-sulfamethoxazole, and 20% were resistant to chloramphenicol. PMID:10770742

  20. Colistin inhibition of mannose-resistant haemagglutination by K88-positive and K99-positive escherichia coli strains. A preliminary report.

    PubMed

    Søgaard, H; Larsen, J L; Christensen, S

    1983-03-01

    Two enteropathogenic E. coli strains isolated from a calf and a piglet succumbed to diarrhoea were studied. The bovine strain carried K99-antigen and the porcine strain was K88-positive. Both strains agglutinated pig erythrocytes in the presence of D-mannose. In the test a bacterial cell density of 3 x 10(9) per ml and doubling dilutions hereof were used. The haemagglutination titres were 16 and 128, respectively. When the bacteria were exposed to colistin before mixing with the red cells, haemagglutination was inhibited completely with 1.0 and 0.5 microgram/mg of colistin. At a colistin concentration of 0.25 microgram/ml (1/4-1/2 of the MIC's) the titres were lowered by a factor of 16-32.

  1. Quantitative proteomics and bioinformatic analysis provide new insight into the dynamic response of porcine intestine to Salmonella Typhimurium

    PubMed Central

    Collado-Romero, Melania; Aguilar, Carmen; Arce, Cristina; Lucena, Concepción; Codrea, Marius C.; Morera, Luis; Bendixen, Emoke; Moreno, Ángela; Garrido, Juan J.

    2015-01-01

    The enteropathogen Salmonella Typhimurium (S. Typhimurium) is the most commonly non-typhoideal serotype isolated in pig worldwide. Currently, one of the main sources of human infection is by consumption of pork meat. Therefore, prevention and control of salmonellosis in pigs is crucial for minimizing risks to public health. The aim of the present study was to use isobaric tags for relative and absolute quantification (iTRAQ) to explore differences in the response to Salmonella in two segment of the porcine gut (ileum and colon) along a time course of 1, 2, and 6 days post infection (dpi) with S. Typhimurium. A total of 298 proteins were identified in the infected ileum samples of which, 112 displayed significant expression differences due to Salmonella infection. In colon, 184 proteins were detected in the infected samples of which 46 resulted differentially expressed with respect to the controls. The higher number of changes in protein expression was quantified in ileum at 2 dpi. Further biological interpretation of proteomics data using bioinformatics tools demonstrated that the expression changes in colon were found in proteins involved in cell death and survival, tissue morphology or molecular transport at the early stages and tissue regeneration at 6 dpi. In ileum, however, changes in protein expression were mainly related to immunological and infection diseases, inflammatory response or connective tissue disorders at 1 and 2 dpi. iTRAQ has proved to be a proteomic robust approach allowing us to identify ileum as the earliest response focus upon S. Typhimurium in the porcine gut. In addition, new functions involved in the response to bacteria such as eIF2 signaling, free radical scavengers or antimicrobial peptides (AMP) expression have been identified. Finally, the impairment at of the enterohepatic circulation of bile acids and lipid metabolism by means the under regulation of FABP6 protein and FXR/RXR and LXR/RXR signaling pathway in ileum has been

  2. Attaching and effacing Escherichia coli and Shiga toxin-producing E. coli in children with acute diarrhoea and controls in Teresina/PI, Brazil.

    PubMed

    Nunes, Maria do Rosário Conceição Moura; Magalhães, Paula Prazeres; Macêdo, Antônio da Silva; Franco, Roger Teixeira; Penna, Francisco José; Mendes, Edilberto Nogueira

    2012-01-01

    This 3.5-year prospective study was conducted to ascertain the level of attaching and effacing Escherichia coli (AEEC) associated diarrhoea in children from Teresina, a northeastern state of Brazil. Passed faecal specimens from 400 patients (250 with and 150 without diarrhoea) up to 60 months of age attending from 2004 to 2007 at two public hospitals were investigated. Conventional microbiology methods and PCR were employed. Escherichia coli was isolated from 390 children, 240 of them with diarrhoea. A total of 117 AEEC strains were cultivated from specimens from 63 children, 37 with and 26 without diarrhoea. No association between AEEC and diarrhoea was observed. Atypical enteropathogenic E. coli (a-EPEC) (79.4%) was more commonly found than typical EPEC (t-EPEC). Association between EPEC and EPEC subtypes and diarrhoea was not detected. Mixed infection by t-EPEC and a-EPEC and infection by Shiga toxin-producing E. coli (STEC) were rare. Enteropathogenic E. coli was more common in males and in children aged less than 12 months. Correlation between serotyping and PCR results was 0.19. High resistance rates of AEEC to ampicillin, cephalotin, and trimethoprim-sulfamethoxazole were found. In conclusion, EPEC is very common in children with diarrhoea and controls in the population we studied, with a-EPEC predominating. This diarrhoeagenic E. coli (DEC) pathotype is more common in infant males and is resistant to drugs frequently used in clinical practice.

  3. Topographic Findings of the Porcine Cornea

    PubMed Central

    HEICHEL, Jens; WILHELM, Frank; KUNERT, Kathleen S.; HAMMER, Thomas

    2016-01-01

    The porcine eye is often used as an ex vivo animal model in ophthalmological research. It is well suited for investigations concerning refractive surgery; however, corneal topography data are scarce. This study investigated the corneal topography and pachymetry of the porcine eye to provide further reproducible data. We evaluated freshly enucleated porcine eyes (n = 16) by performing computerized corneal topographies (Orbscan® IIz, Bausch and Lomb, Rochester, NY, USA). We assessed the steepest and flattest keratometric powers (K1 and K2, units in diopters (D)), astigmatism (D), white-to-white (WTW) diameter (mm), thinnest point pachymetry (µm), anterior and posterior best-fit sphere (BFS) (D), refractive power of the anterior and posterior curvatures, and total refractive power of the cornea (D). The mean keratometric powers were 39.6 ± 0.89 D (K1) and 38.5 ± 0.92 D (K2), and the mean astigmatism was 1.1 ± 0.78 D. The mean WTW diameter was 13.81 ± 0.83 mm, and the mean corneal thickness was 832.6 ± 40.18 µm. The BFSs were 38.14 ± 0.73 D (anterior) and 42.56 ± 1.15 D (posterior), and the mean refractive powers were 43.27 ± 1.08 D (anterior) and -5.15 ± 0.20 D (posterior); therefore, the mean of the total refractive power was 38.16 ± 1.00 D. The topography and pachymetry of the porcine cornea showed a specific configuration differing from the human cornea. When using animal ex vivo models such as porcine corneas for experimental corneal surgery, findings such as these should be considered. PMID:28293660

  4. Identification of diarrheagenic Escherichia coli strains from avian organic fertilizers.

    PubMed

    Puño-Sarmiento, Juan; Gazal, Luis Eduardo; Medeiros, Leonardo P; Nishio, Erick K; Kobayashi, Renata K T; Nakazato, Gerson

    2014-08-28

    The Brazilian poultry industry generates large amounts of organic waste, such as chicken litter, which is often used in agriculture. Among the bacteria present in organic fertilizer are members of the Enterobacteriaceae family. The objective of this study was to detect the presence of diarrheagenic Escherichia coli (DEC) strains in avian organic fertilizer, and assess the potential damage they can cause in humans due to antimicrobial resistance. The presence of DEC pathotypes and phylogenetic groups were detected by multiplex-PCR. Phenotypic assays, such as tests for adhesion, cytotoxicity activity, biofilm formation and especially antimicrobial susceptibility, were performed. Fifteen DEC strains from 64 E. coli were isolated. Among these, four strains were classified as enteropathogenic (EPEC; 6.2%), three strains as Shiga toxin-producing (STEC; 4.7%), 10 strains as enteroaggregative (EAEC; 12.5%), but two of these harbored the eaeA gene too. The low number of isolated strains was most likely due to the composting process, which reduces the number of microorganisms. These strains were able to adhere to HEp-2 and HeLa cells and produce Shiga-toxins and biofilms; in addition, some of the strains showed antimicrobial resistance, which indicates a risk of the transfer of resistance genes to human E. coli. These results showed that DEC strains isolated from avian organic fertilizers can cause human infections.

  5. Calpain Mediates Epithelial Cell Microvillar Effacement by Enterohemorrhagic Escherichia Coli

    PubMed Central

    Lai, YuShuan; Riley, Kathleen; Cai, Andrew; Leong, John M.; Herman, Ira M.

    2011-01-01

    A member of the attaching and effacing (AE) family of pathogens, enterohemorrhagic Escherichia coli (EHEC) induces dramatic changes to the intestinal cell cytoskeleton, including effacement of microvilli. Effacement by the related pathogen enteropathogenic E. coli (EPEC) requires the activity of the Ca+2-dependent host protease, calpain, which participates in a variety of cellular processes, including cell adhesion and motility. We found that EHEC infection results in an increase in epithelial (CaCo-2a) cell calpain activity and that EHEC-induced microvillar effacement was blocked by ectopic expression of calpastatin, an endogenous calpain inhibitor, or by pretreatment of intestinal cells with a cell-penetrating version of calpastatin. In addition, ezrin, a known calpain substrate that links the plasma membrane to axial actin filaments in microvilli, was cleaved in a calpain-dependent manner during EHEC infection and lost from its normal locale within microvilli. Calpain may be a central conduit through which EHEC and other AE pathogens induce enterocyte cytoskeletal remodeling and exert their pathogenic effects. PMID:22073041

  6. A flagellin-producing Lactococcus strain: interactions with mucin and enteropathogens.

    PubMed

    Sánchez, Borja; López, Patricia; González-Rodríguez, Irene; Suárez, Ana; Margolles, Abelardo; Urdaci, María C

    2011-05-01

    Bacillus cereus CH is a probiotic strain used in human nutrition whose adhesion to mucin is dependent on its surface-associated flagellin. Flagellins from the surface of several probiotic Bacillus strains were efficiently extracted with 5 M LiCl and identified by peptide fingerprinting. Based on the proteomic analysis, cloning of the gene coding for the flagellin of B. cereus CH was performed in the lactococcal vector pNZ8110 under the control of a nisin-inducible promoter. The resulting strain, Lactococcus lactis CH, produced a surface-associated flagellin after 6 h of induction with nisin. The recombinant Lactococcus strain adhered strongly to mucin-coated polystyrene plates, whilst inhibiting competitively the adhesion of the pathogens Escherichia coli LMG2092 and Salmonella enterica ssp. enterica LMG15860 to the same molecule. Strain CH could be used in further experimentation for the characterization of the molecular mechanism of action of this probiotic B. cereus CH flagellin.

  7. Extracellular proteins from Lactobacillus plantarum BMCM12 prevent adhesion of enteropathogens to mucin.

    PubMed

    Sánchez, Borja; Urdaci, María C

    2012-06-01

    The aim of this study was to study the interference of the extracellular proteins produced by Lactobacillus plantarum BMCM12 with the adhesion of some well-known gut pathogens. The extracellular proteins secreted by L. plantarum BMCM12 in MRS broth were precipitated, resolved by SDS-PAGE, and identified by tandem mass spectrometry. Discordances between the observed and the theoretical molecular masses of several proteins suggested the presence of protein glycosylation, corroborated with specific glycoprotein staining after protein de-glycosylation using trifluoromethanesulfonic acid. Experiments of exclusion, competition, or prevention of the pathogen adhesion to mucin were performed using BMCM12 extracellular proteins, using Escherichia coli LMG2092 and Salmonella enterica subsp. enterica LMG15860. Extracellular proteins from BMCM12 reduced significantly the adhesion of the pathogens when they were added prior to adhesion assays. These proteins play thus important roles in preventing pathogen adhesion to the mucin layer.

  8. Diarrhoeagenic Escherichia coli detected by 16-plex PCR in children with and without diarrhoea in Burkina Faso.

    PubMed

    Bonkoungou, I J O; Lienemann, T; Martikainen, O; Dembelé, R; Sanou, I; Traoré, A S; Siitonen, A; Barro, N; Haukka, K

    2012-09-01

    The importance of diarrhoeagenic Escherichia coli (DEC) in Africa is poorly understood, and is unknown in Burkina Faso. This study investigated the occurrence of five major DEC pathogroups in primary cultures of stool samples from 658 Burkinabe children under 5 years old using 16-plex PCR for virulence-associated genes. At least one DEC pathogroup was detected in 45% of 471 children with diarrhoea and in 29% of 187 children without diarrhoea (p <0.001). More than one DEC pathogroup was detected in 11% of children with and 1% of children without diarrhoea (p <0.001). Enteroaggregative E. coli was the most common pathogroup in both children with diarrhoea (26%) and children without diarrhoea (21%). Enteropathogenic E. coli and enterotoxigenic E. coli were detected significantly more often in children with diarrhoea (16% and 13%) than in children without diarrhoea (5% and 4%; p <0.001 for both pathogroups). Shiga toxin-producing E. coli and enteroinvasive E. coli were detected only in children with diarrhoea (2% and 1%, respectively). Diarrhoeagenic E. coli, especially enteropathogenic and enterotoxigenic, may be important, unrecognized causes of childhood diarrhoea in Burkina Faso.

  9. Assessment of factors influencing the within-batch seroprevalence of human enteropathogenic Yersinia spp. of pigs at slaughter age and the analogy with microbiology.

    PubMed

    Vanantwerpen, G; Berkvens, D; De Zutter, L; Houf, K

    2017-02-01

    The microbiologically and serologically-based prevalence of human enteropathogenic Yersinia spp. at moment of slaughter varies between pig farms due to different herd-level factors. A face-to-face questionnaire concerning a broad range of farm aspects (e.g., management and housing system, biosecurity, and hygiene measurements) was performed on one hundred farms. Factors influencing the seropositivity of 7047 pigs against human pathogenic Yersinia spp. were determined and compared to the microbiology. At the slaughterhouse, pieces of diafragm of on average 70 slaughter pigs per batch were sampled to determine the level of antibodies against enteropathogenic Yersinia spp. After univariable mixed-effect logistic regressions, variables that were related to the seropositivity (p<0.05) were included in a multivariable model (p<0.1). The factors remaining significantly associated in the latter model were an increasing number of piglet suppliers (zero up to eleven suppliers) (Odds Ratio=1.4), a high density of pig farms in the area (high versus low density) (Odds Ratio=2.3), the use of semislatted floors in the fattening pig unit (semi slatted floor versus fully slatted floor) (Odds Ratio=3.8) and the possibility of snout contact in the fattening pig unit (snout contact or not) (Odds Ratio=0.1). Decreasing the risk of infection with human enteropathogenic Yersinia spp. at moment of slaughter or during rearing is possible by changing farm management factors.

  10. Novel Streptomycin and Spectinomycin Resistance Gene as a Gene Cassette within a Class 1 Integron Isolated from Escherichia coli

    PubMed Central

    Sandvang, Dorthe

    1999-01-01

    The aadA genes, encoding resistance to streptomycin and spectinomycin, have been found as gene cassettes in different gram-negative and gram-positive bacterial species. The present study has revealed the sequence of a new gene, aadA5, integrated as a gene cassette together with the trimethoprim resistance gene dfr7 in a class 1 integron. The integron was located on a plasmid and was identified in a pathogenic porcine Escherichia coli isolate. PMID:10582907

  11. Modulation of porcine intestinal epitheliocytes immunetranscriptome response by Lactobacillus jensenii TL2937.

    PubMed

    Kobayashi, H; Albarracin, L; Sato, N; Kanmani, P; Kober, A K M H; Ikeda-Ohtsubo, W; Suda, Y; Nochi, T; Aso, H; Makino, S; Kano, H; Ohkawara, S; Saito, T; Villena, J; Kitazawa, H

    2016-11-30

    In order to evaluate probiotic strains applicable for the beneficial immunomodulation of the porcine gut (immunobiotics), we previously developed a porcine intestinal epitheliocyte cell line (PIE cells). Here, transcriptomic studies using PIE cells were performed considering that this information would be valuable for understanding the mechanisms involved in the protective activity of the immunobiotic strain Lactobacillus jensenii TL2937 against intestinal inflammatory damage in pigs. In addition, those studies would provide criteria for selecting biomarkers for the screening of new immunobiotic strains. We performed microarray analysis to investigate the transcriptomic response of PIE cells to the challenge with heat-stable enterotoxigenic Escherichia coli (ETEC) pathogen-associated molecular patterns (PAMPs) and, the changes induced by L. jensenii TL2937 in that response. The approach allowed us to obtain a global overview of the immune genes involved in the response of PIE cells to heat-stable ETEC PAMPs. We observed that L. jensenii TL2937 differently modulated gene expression in ETEC PAMPs-challenged PIE cells. Microarray and RT-PCR analysis indicated that the most remarkable changes in PIE cells transcriptomic profile after heat-stable ETEC PAMPs challenge were observed in chemokines, adhesion molecules, complement and coagulation cascades factors. In addition, an anti-inflammatory effect triggered by TL2937 strain in PIE cells was clearly demonstrated. The decrease in the expression of chemokines (CCL8, CXCL5, CXCL9, CXCL10, and CXCL11), complement (C1R, C1S, C3, and CFB), and coagulation factors (F3) by L. jensenii TL2937 supports our previous reports on the immunoregulatory effect of this strain. These results provided clues for the better understanding of the mechanism underlying host-immunobiotic interaction in the porcine host. The comprehensive transcriptomic profiles of PIE cells provided by our analyses successfully identified a group of genes, which

  12. Intimin subtyping of atypical enteropathogenic Escherichia coli isolated from children with and without diarrhea: a possible temporal shift in the distribution of intimin alleles.

    PubMed

    Franco, Roger T; Araújo, Lizandra D R; Penna, Francisco J; Magalhães, Paula P; Mendes, Edilberto N

    2012-09-01

    Intimins of atypical EPEC strains from children with and without diarrhea were genotyped. κ was not found and β was the most common. η- and ζ-alleles prevailed in strains from children without diarrhea and ι-allele among children older than 13 months. ε-allele emerged in 2006 and was the most common in 2007.

  13. Enteropathogens associated with acute diarrhea in community and hospital patients in Jakarta, Indonesia.

    PubMed

    Oyofo, Buhari A; Subekti, Decy; Tjaniadi, Periska; Machpud, Nunung; Komalarini, S; Setiawan, B; Simanjuntak, C; Punjabi, Narain; Corwin, Andrew L; Wasfy, Momtaz; Campbell, James R; Lesmana, Murad

    2002-10-11

    The prevalence of bacteria, parasite and viral pathogens in 3875 patients with diarrhea in community and hospital settings from March 1997 through August 1999 in Jakarta, Indonesia was determined using routine bacteriology and molecular assay techniques. Bacterial pathogens isolated from hospital patients were, in decreasing frequency, Vibrio cholerae O1, Shigella flexneri, Salmonella spp. and Campylobacter jejuni, while S. flexneri, V. cholerae O1, Salmonella spp. and C. jejuni were isolated from the community patients. V. cholerae O1 was isolated more frequently (P<0.005) from the hospital patients than the community patients. Overall, bacterial pathogens were isolated from 538 of 3875 (14%) enrolled cases of diarrhea. Enterotoxigenic Escherichia coli were detected in 218 (18%) of 1244 rectal swabs. A small percentage of enterohemorrhagic E. coli (1%) and of Clostridium difficile (1.3%) was detected. Parasitic examination of 389 samples resulted in 43 (11%) positives comprising Ascaris lumbricoides (1.5%), Blastocystis hominis (5.7%), Giardia lamblia (0.8%), Trichuris trichiura (2.1%) and Endolimax nana (0.5%). Rotavirus (37.5%), adenovirus (3.3%) and Norwalk-like virus (17.6%) were also detected. Antimicrobial resistance was observed among some isolates. Bacterial isolates were susceptible to quinolones, with the exception of some isolates of C. jejuni which were resistant to ciprofloxacin, nalidixic acid and norfloxacin. Data obtained from this community- and hospital-based study will enable the Indonesian Ministry of Health to plan relevant studies on diarrheal diseases in the archipelago.

  14. Probiotics induce resistance to enteropathogens in a re-nourished mouse model.

    PubMed

    Cano, Paola Gauffin; Perdigón, Gabriela

    2003-11-01

    Nutritional deficiency is commonly associated with impaired immune response and the relation between infection and malnutrition is synergic. Probiotics, especially lactic acid bacteria are immunomodulatory. The aim was to determine whether optimal doses of Lactobacillus casei and yogurt, used as adjuvants in a re-nutrition diet in a non-severe malnutrition experimental model, protect against Salmonella typhimurium and Escherichia coli. Groups of malnourished mice were used, which were re-nourished with milk for 7 or 14 d. After that, both groups of mice received the optimal doses of Lb. casei and yogurt supplements. We measured IgA+ and IgG+-B cells and phenotypic markers of T lymphocytes; CD3+, CD4+ and CD8+ cells. We also determined alphabeta and gammabeta T cell receptor (TCR). The ability to protect against Sal. typhimurium and Esch. coli infections and specific S-IgA were assessed. Probiotics complemented the effects of the re-nutrition diet, by stimulating recuperation of the activity of immune cells that improved protection against infections.

  15. Preparation of a porcine plasma protein composite film and its application.

    PubMed

    Lee, Ji-Hyun; Song, Kyung Bin

    2015-01-01

    To use blood released from slaughtering houses, a porcine plasma protein (PPP)/nanoclay composite film was prepared. The tensile strength and elongation at break values of the PPP composite film with 5% nanoclay were 10.01 MPa and 6.55%, respectively. The PPP composite film containing 1% grapefruit seed extract (GSE) was applied to pork meat, and the populations of inoculated Escherichia coli O157:H7 and Listeria monocytogenes in the pork meat packaged with the PPP composite film decreased by 0.8 and 1.0 log CFU/g, respectively, after 7 days of storage compared to the populations of the control. In addition, thiobarbituric acid values in the pork meat packaged with the PPP composite film were less than those of the control sample during storage. These results suggest that the PPP nanocomposite film containing 1% GSE can be used as a packaging material to maintain the quality of pork meat.

  16. Tissue Sampling Guides for Porcine Biomedical Models.

    PubMed

    Albl, Barbara; Haesner, Serena; Braun-Reichhart, Christina; Streckel, Elisabeth; Renner, Simone; Seeliger, Frank; Wolf, Eckhard; Wanke, Rüdiger; Blutke, Andreas

    2016-04-01

    This article provides guidelines for organ and tissue sampling adapted to porcine animal models in translational medical research. Detailed protocols for the determination of sampling locations and numbers as well as recommendations on the orientation, size, and trimming direction of samples from ∼50 different porcine organs and tissues are provided in the Supplementary Material. The proposed sampling protocols include the generation of samples suitable for subsequent qualitative and quantitative analyses, including cryohistology, paraffin, and plastic histology; immunohistochemistry;in situhybridization; electron microscopy; and quantitative stereology as well as molecular analyses of DNA, RNA, proteins, metabolites, and electrolytes. With regard to the planned extent of sampling efforts, time, and personnel expenses, and dependent upon the scheduled analyses, different protocols are provided. These protocols are adjusted for (I) routine screenings, as used in general toxicity studies or in analyses of gene expression patterns or histopathological organ alterations, (II) advanced analyses of single organs/tissues, and (III) large-scale sampling procedures to be applied in biobank projects. Providing a robust reference for studies of porcine models, the described protocols will ensure the efficiency of sampling, the systematic recovery of high-quality samples representing the entire organ or tissue as well as the intra-/interstudy comparability and reproducibility of results.

  17. Porcine sperm vitrification I: cryoloops method.

    PubMed

    Arraztoa, C C; Miragaya, M H; Chaves, M G; Trasorras, V L; Gambarotta, M C; Péndola, C H; Neild, D M

    2016-09-29

    The aims of this study were to evaluate porcine sperm vitrification in cryoloops, with and without two different cryoprotectants and assess two warming procedures. Extended (n = 3; r = 4) and raw (n = 5; r = 2) semen was diluted in media without and with cryoprotectants (4% dimethylformamide and 4% glycerol) to a final concentration of 20 × 10(6) spermatozoa ml(-1) and vitrified using the cryoloops method. Two warming procedures were evaluated: rapid method (30 s at 37°C) and an ultra-rapid method (7 s at 75°C, followed by 30 s at 37°C). Total motility (phase contrast), sperm viability (6-carboxifluorescein diacetate and propidium iodide stain), membrane function (hypo-osmotic swelling test), acrosome integrity (phase contrast), chromatin condensation (toluidine blue stain) and chromatin susceptibility to acid denaturation (acridine orange stain) were evaluated before and after vitrification and analysed using Friedman's test. In all media, the only seminal parameters that were maintained after vitrification were chromatin condensation and integrity. Vitrification of porcine spermatozoon using cryoloops, both in the presence or absence of cryoprotectants and independent of the warming procedure used, permits conservation of sperm chromatin condensation and integrity. It would be interesting to further verify this by producing porcine embryos using vitrified spermatozoon with intracytoplasmic sperm injection.

  18. Porcine sperm vitrification II: Spheres method.

    PubMed

    Arraztoa, C C; Miragaya, M H; Chaves, M G; Trasorras, V L; Gambarotta, M C; Neild, D M

    2016-11-10

    Owing to current problems in boar sperm cryopreservation, this study proposes to evaluate vitrification in spheres as an alternative cryopreservation procedure, comparing the use or not of permeable cryoprotectants and two warming methods. Extended (n = 3; r = 4) and raw (n = 5; r = 2) porcine spermatozoa were diluted in media, in the absence or presence of either 4% dimethylformamide or 4% glycerol, to a final concentration of 5 × 10(6)  spermatozoa/ml and vitrified using the spheres method. Two warming procedures were evaluated: a rapid method (30 s at 37°C) and an ultrarapid method (7 s at 75°C, followed by 30 s at 37°C). Percentages of total motility (phase contrast), membrane function (hypo-osmotic swelling test), acrosome integrity (phase contrast), sperm viability (6-carboxyfluorescein diacetate and propidium iodide stain), chromatin condensation (toluidine blue stain) and chromatin susceptibility to acid denaturation (acridine orange stain) were evaluated in the samples before and after vitrification. Results, analysed using Friedman's test, suggest that rapid warming of raw porcine spermatozoa vitrified without permeable cryoprotectants may preserve DNA condensation and integrity better than the other processing methods studied in this work. Hence, porcine sperm vitrification using spheres could be used to produce embryos with ICSI to further validate this method.

  19. Cloning of Porcine Pituitary Tumor Transforming Gene 1 and Its Expression in Porcine Oocytes and Embryos

    PubMed Central

    Liu, Shuai; Nong, Suqun; Ma, Qingyan; Chen, Baojian; Liu, Mingjun; Pan, Tianbiao; Liao, D. Joshua

    2016-01-01

    The maternal-to-embryonic transition (MET) is a complex process that occurs during early mammalian embryogenesis and is characterized by activation of the zygotic genome, initiation of embryonic transcription, and replacement of maternal mRNA with embryonic mRNA. The objective of this study was to reveal the temporal expression and localization patterns of PTTG1 during early porcine embryonic development and to establish a relationship between PTTG1 and the MET. To achieve this goal, reverse transcription-polymerase chain reaction (RT-PCR) was performed to clone porcine PTTG1. Subsequently, germinal vesicle (GV)- and metaphase II (MII)-stage oocytes, zygotes, 2-, 4-, and 8-cell-stage embryos, morulas, and blastocysts were produced in vitro and their gene expression was analyzed. The results revealed that the coding sequence of porcine PTTG1 is 609-bp in length and that it encodes a 202-aa polypeptide. Using qRT-PCR, PTTG1 mRNA expression was observed to be maintained at high levels in GV- and MII-stage oocytes. The transcript levels in oocytes were also significantly higher than those in embryos from the zygote to blastocyst stages. Immunohistochemical analyses revealed that porcine PTTG1 was primarily localized to the cytoplasm and partially localized to the nucleus. Furthermore, the PTTG1 protein levels in MII-stage oocytes and zygotes were significantly higher than those in embryos from the 2-cell to blastocyst stage. After fertilization, the level of this protein began to decrease gradually until the blastocyst stage. The results of our study suggest that porcine PTTG1 is a new candidate maternal effect gene (MEG) that may participate in the processes of oocyte maturation and zygotic genome activation during porcine embryogenesis. PMID:27058238

  20. Virulence Genes in Expanded-Spectrum-Cephalosporin-Resistant and -Susceptible Escherichia coli Isolates from Treated and Untreated Chickens.

    PubMed

    Baron, S; Delannoy, S; Bougeard, S; Larvor, E; Jouy, E; Balan, O; Fach, P; Kempf, I

    2015-12-14

    This study investigated antimicrobial resistance, screened for the presence of virulence genes involved in intestinal infections, and determined phylogenetic groups of Escherichia coli isolates from untreated poultry and poultry treated with ceftiofur, an expanded-spectrum cephalosporin. Results show that none of the 76 isolates appeared to be Shiga toxin-producing E. coli or enteropathogenic E. coli. All isolates were negative for the major virulence factors/toxins tested (ehxA, cdt, heat-stable enterotoxin [ST], and heat-labile enterotoxin [LT]). The few virulence genes harbored in isolates generally did not correlate with isolate antimicrobial resistance or treatment status. However, some of the virulence genes were significantly associated with certain phylogenetic groups.

  1. Intestinal colonization and adhesion by enteroxigenic Escherichia coli: ultrastructural observations on adherence to ileal epithelium of the pig.

    PubMed

    Moon, H W; Nagy, B; Isaacson, R E

    1977-08-01

    Colonization of pig ileum by enterotoxigenic Escherichia coli that were enteropathogenic for pigs but that lacked K88 antigen (K88-) resulted in morphological characteristics similar to those reported for K88+ strains. Strains of enterotoxigenic E. coli from three different K88-serotypes adhered to the villous epithelium. In sections examined by transmission electron microscopy, adherent bacteria were separated from each other and from epithelial microvilli by peribacterial electron-lucent regions. The enterotoxigenic E. coli had appendages that extended into these regions. The appendages were morphologically characteristic for each strain. It is possible that these appendages were pili, polysaccharide K antigens, or structures resulting from some interaction between pili and polysaccharide. Certain pili or pilus-like structures may be virulence attributes that facilitate adhesion of enterotoxigenic E. coli to the intestinal epithelium.

  2. Preponderance of toxigenic Escherichia coli in stool pathogens correlates with toxin detection in accessible drinking-water sources.

    PubMed

    Igbokwe, H; Bhattacharyya, S; Gradus, S; Khubbar, M; Griswold, D; Navidad, J; Igwilo, C; Masson-Meyers, D; Azenabor, A A

    2015-02-01

    Since early detection of pathogens and their virulence factors contribute to intervention and control strategies, we assessed the enteropathogens in diarrhoea disease and investigated the link between toxigenic strains of Escherichia coli from stool and drinking-water sources; and determined the expression of toxin genes by antibiotic-resistant E. coli in Lagos, Nigeria. This was compared with isolates from diarrhoeal stool and water from Wisconsin, USA. The new Luminex xTAG GPP (Gastroplex) technique and conventional real-time PCR were used to profile enteric pathogens and E. coli toxin gene isolates, respectively. Results showed the pathogen profile of stool and indicated a relationship between E. coli toxin genes in water and stool from Lagos which was absent in Wisconsin isolates. The Gastroplex technique was efficient for multiple enteric pathogens and toxin gene detection. The co-existence of antibiotic resistance with enteroinvasive E. coli toxin genes suggests an additional prognostic burden on patients.

  3. Immunomodulatory and antimicrobial efficacy of Lactobacilli against enteropathogenic infection of Salmonella typhi: In-vitro and in-vivo study.

    PubMed

    Mazaya, Basem; Hamzawy, Mohamed A; Khalil, Mahmoud A F; Tawkol, Wael M; Sabit, Hussein

    2015-12-01

    Salmonellosis-induced diarrhea, is one of the commonest cause of childhood mortality in developing countries. Using of probiotics is viewed as a promising means for reducing the pathogenic loads of bacterial infection. The current study aimed to evaluate the potential antimicrobial and immunomodulatory efficacy of isolated lactobacillus strains against the enteropathogenic effect of S. Typhi. Different Lactobacillus strains were isolated from 13 dairy products. Their antimicrobial activities were tested against different bacterial strains. Six groups of CD1 mice were treated for 8 days as follows: group (1) untreated control; group (2) was challenged with single inoculation S. typhi, and groups (3) and (4) were treated with Lactobacillus plantarum (LA5) or Lactobacillus paracsi (LA7) for 7 days, respectively. Groups (5) and (6) were challenged with S. typhi, and then treated with either LA5 or LA 7 for 7 days, respectively. Isolated Lactobacillus showed antimicrobial activity against wide range of bacterial strains. Salmonellosis showed high widal titer, induced significant disturbance of TNF and IL-1β, while sever changes of the histological patterns of the intestinal villi and hepatocytes have been illustrated. LA5 or LA7 succeeded to eradicate typhoid infection, restore the values of inflammatory cytokines to typical levels of control group, and improve histological pictures of intestinal and hepatic tissues. It can be concluded that lactobacilli are promising candidate in protection and eradication against bacterial infection induced by S. Typhi due to its antimicrobial, anti-inflammatory, and immunomodulatory activities.

  4. Production of a subunit vaccine candidate against porcine post-weaning diarrhea in high-biomass transplastomic tobacco.

    PubMed

    Kolotilin, Igor; Kaldis, Angelo; Devriendt, Bert; Joensuu, Jussi; Cox, Eric; Menassa, Rima

    2012-01-01

    Post-weaning diarrhea (PWD) in piglets is a major problem in piggeries worldwide and results in severe economic losses. Infection with Enterotoxigenic Escherichia coli (ETEC) is the key culprit for the PWD disease. F4 fimbriae of ETEC are highly stable proteinaceous polymers, mainly composed of the major structural subunit FaeG, with a capacity to evoke mucosal immune responses, thus demonstrating a potential to act as an oral vaccine against ETEC-induced porcine PWD. In this study we used a transplastomic approach in tobacco to produce a recombinant variant of the FaeG protein, rFaeG(ntd/dsc), engineered for expression as a stable monomer by N-terminal deletion and donor strand-complementation (ntd/dsc). The generated transplastomic tobacco plants accumulated up to 2.0 g rFaeG(ntd/dsc) per 1 kg fresh leaf tissue (more than 1% of dry leaf tissue) and showed normal phenotype indistinguishable from wild type untransformed plants. We determined that chloroplast-produced rFaeG(ntd/dsc) protein retained the key properties of an oral vaccine, i.e. binding to porcine intestinal F4 receptors (F4R), and inhibition of the F4-possessing (F4+) ETEC attachment to F4R. Additionally, the plant biomass matrix was shown to delay degradation of the chloroplast-produced rFaeG(ntd/dsc) in gastrointestinal conditions, demonstrating a potential to function as a shelter-vehicle for vaccine delivery. These results suggest that transplastomic plants expressing the rFaeG(ntd/dsc) protein could be used for production and, possibly, delivery of an oral vaccine against porcine F4+ ETEC infections. Our findings therefore present a feasible approach for developing an oral vaccination strategy against porcine PWD.

  5. Outbreak investigation of porcine epidemic diarrhea in swine in Ontario.

    PubMed

    Pasma, Tim; Furness, Mary Catherine; Alves, David; Aubry, Pascale

    2016-01-01

    Porcine epidemic diarrhea virus was first diagnosed in Ontario in January of 2014. An outbreak investigation was conducted and it was hypothesized that feed containing spray-dried porcine plasma contaminated with the virus was a risk factor in the introduction and spread of the disease in Ontario.

  6. Expression of the Plague Plasminogen Activator in Yersinia pseudotuberculosis and Escherichia coli

    PubMed Central

    Kutyrev, V.; Mehigh, R. J.; Motin, V. L.; Pokrovskaya, M. S.; Smirnov, G. B.; Brubaker, R. R.

    1999-01-01

    Enteropathogenic yersiniae (Yersinia pseudotuberculosis and Yersinia enterocolitica) typically cause chronic disease as opposed to the closely related Yersinia pestis, the causative agent of bubonic plague. It is established that this difference reflects, in part, carriage by Y. pestis of a unique 9.6-kb pesticin or Pst plasmid (pPCP) encoding plasminogen activator (Pla) rather than distinctions between shared ∼70-kb low-calcium-response, or Lcr, plasmids (pCD in Y. pestis and pYV in enteropathogenic yersiniae) encoding cytotoxic Yops and anti-inflammatory V antigen. Pla is known to exist as a combination of 32.6-kDa (α-Pla) and slightly smaller (β-Pla) outer membrane proteins, of which at least one promotes bacterial dissemination in vivo and degradation of Yops in vitro. We show here that only α-Pla accumulates in Escherichia coli LE392/pPCP1 cultivated in enriched medium and that either autolysis or extraction of this isolate with 1.0 M NaCl results in release of soluble α and β forms possessing biological activity. This process also converted cell-bound α-Pla to β-Pla and smaller forms in Y. pestis KIM/pPCP1 and Y. pseudotuberculosis PB1/+/pPCP1 but did not promote solubilization. Pla-mediated posttranslational hydrolysis of pulse-labeled Yops in Y. pseudotuberculosis PB1/+/pPCP1 occurred more slowly than that in Y. pestis but was otherwise similar except for accumulation of stable degradation products of YadA, a pYV-mediated fibrillar adhesin not encoded in frame by pCD. Carriage of pPCP by Y. pseudotuberculosis did not significantly influence virulence in mice. PMID:10024583

  7. Virulence factors of lactose-negative Escherichia coli strains isolated from children with diarrhea in Somalia.

    PubMed Central

    Nicoletti, M; Superti, F; Conti, C; Calconi, A; Zagaglia, C

    1988-01-01

    Lactose-negative Escherichia coli strains were isolated at high frequency from children with diarrhea in Somalia during a 2-year study on diarrheal diseases. Sixty-four of these strains, considered to be a representative sample, were characterized for virulence factors, plasmid profiles, and antibiotic resistance. Of these strains, 5 were recognized as enteroinvasive E. coli (they were serotyped as O135:K-:H-), 6 belonged to classical enteropathogenic E. coli serotypes, 9 were able to adhere to tissue culture cells (of these, 4 showed a pattern of localized adherence and 1 was an enteropathogenic strain), 18 were both adherent and hemolytic, and 8 were simply hemolytic. None hybridized with 32P-labeled heat-labile or heat-stable (a and b) enterotoxin gene probes or produced moderate or high-level cytotoxic effects on HeLa cells. Of the 64 strains examined, 24 produced mannose-resistant hemagglutination with human, chicken, and monkey erythrocytes. One of these was serotyped as O4:K-:H8, and a rabbit O antiserum raised against this strain allowed us to establish that 23 strains had the same O antigen. The 23 O4 strains were hemolytic and were not enterotoxic for rabbit ileal loops, and intact bacteria were able to destroy tissue culture cell monolayers very rapidly. The uniformity of the antibiotic resistance pattern and of the plasmid DNA content, together with the fact that they were isolated in different years and in different children, suggests that the O4 strains must be epidemiologically relevant in Somalia. A possible diarrheagenic role for the adherent-hemolytic E. coli strains is also discussed. Images PMID:3281977

  8. O serogroups, biotypes, and eae genes in Escherichia coli strains isolated from diarrheic and healthy rabbits.

    PubMed Central

    Blanco, J E; Blanco, M; Blanco, J; Mora, A; Balaguer, L; Mouriño, M; Juarez, A; Jansen, W H

    1996-01-01

    A total of 305 Escherichia coli strains isolated from diarrheic and healthy rabbits in 10 industrial fattening farms from different areas of Spain were serotyped, biotyped, and tested for the presence of the eae gene and toxin production. The characteristics found in strains isolated from healthy rabbits were generally different from those observed in E. coli strains associated with disease. Thus, strains with the eae gene (74% versus 22%); strains belonging to serogroups O26, O49, O92, O103, and O128 (64% versus 12%); rhamnose-negative strains (51% versus 5%); and rhamnose-negative O103 strains with eae genes present (41% versus 1%) were significantly (P < 0.001 in all cases) more frequently detected in isolates from diarrheic animals than in those from healthy rabbits. Whereas a total of 35 serogroups and 17 biotypes were distinguished, the majority of the strains obtained from diarrheic rabbits belonged to only four serobiotypes, which in order of frequency were O103:B14 (72 strains), O103:B6 (16 strains), O26:B13 (12 strains), and O128:B30 (12 strains). These four serobiotypes accounted for 48% (112 of 231) and 5% (4 of 74) of the E. coli strains isolated from diarrheic and healthy rabbits, respectively. Only six strains were toxigenic (three CNF1+, two CNF2+, and one VT1+). We conclude that enteropathogenic E. coli strains that possess the eae gene are a common cause of diarrhea in Spanish rabbit farms and that the rhamnose-negative highly pathogenic strains of serotype O103:K-:H2 and biotype B14 are especially predominant. Detection of the eae gene is a useful method for the identification of enteropathogenic E. coli strains from rabbits. However, a combination of serogrouping and biotyping may be sufficient to accurately identify the highly pathogenic strains for rabbits. PMID:8940455

  9. Isolation, Culture and Identification of Porcine Skeletal Muscle Satellite Cells.

    PubMed

    Li, Bo-Jiang; Li, Ping-Hua; Huang, Rui-Hua; Sun, Wen-Xing; Wang, Han; Li, Qi-Fa; Chen, Jie; Wu, Wang-Jun; Liu, Hong-Lin

    2015-08-01

    The objective of this study was to establish the optimum protocol for the isolation and culture of porcine muscle satellite cells. Mononuclear muscle satellite cells are a kind of adult stem cell, which is located between the basal lamina and sarcolemma of muscle fibers and is the primary source of myogenic precursor cells in postnatal muscle. Muscle satellite cells are a useful model to investigate the mechanisms of muscle growth and development. Although the isolation and culture protocols of muscle satellite cells in some species (e.g. mouse) have been established successfully, the culture system for porcine muscle satellite cells is very limited. In this study, we optimized the isolation procedure of porcine muscle satellite cells and elaborated the isolation and culture process in detail. Furthermore, we characterized the porcine muscle satellite cells using the immunofluorecence. Our study provides a reference for the isolation of porcine muscle satellite cells and will be useful for studying the molecular mechanisms in these cells.

  10. Reactomes of porcine alveolar macrophages infected with porcine reproductive and respiratory syndrome virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory syndrome (PRRS) has devastated pig industries worldwide for many years. It is caused by a small RNA virus (PRRSV), which targets almost exclusively pig monocytes or macrophages. In the present study, five SAGE (serial analysis of gene expression) libraries derive...

  11. Actions of melatonin mixed with collagenized porcine bone versus porcine bone only on osteointegration of dental implants.

    PubMed

    Calvo-Guirado, José Luis; Gómez-Moreno, Gerardo; López-Marí, Laura; Guardia, Javier; Marínez-González, José María; Barone, Antonio; Tresguerres, Isabel F; Paredes, Sergio D; Fuentes-Breto, Lorena

    2010-04-01

    This study evaluated the effect of the topical application of melatonin mixed with collagenized porcine bone on the osteointegration on the rough discrete calcium deposit (DCD) surface implants in Beagle dogs 3 months after their insertion. In preparation for subsequent insertion of dental implants, lower molars were extracted from 12 Beagle dogs. Each mandible received two parallel wall expanded platform implants with a DCD surface of 4 mm in diameter and 10 mm in length. The implants were randomly assigned to the distal sites on each mandible in the molar area and the gaps were filled with 5 mg lyophilized powdered melatonin and porcine bone and collagenized porcine bone alone. Ten histological sections per implant were obtained for histomorphometric studies. After a 4-wk treatment period, melatonin plus porcine bone significantly increased the perimeter of bone that was in direct contact with the treated implants (P < 0.0001), bone density (P < 0.0001), and new bone formation (P < 0.0001) in comparison with porcine bone alone around the implants. Melatonin plus collagenized porcine bone on DCD surface may act as a biomimetic agent in the placement of endo-osseous dental implants and enhance the osteointegration. Melatonin combined with porcine bone on DCD implants reveals more bone in implant contact at 12 wk (84.5 +/- 1.5%) compared with porcine bone alone treated area (67.17 +/- 1.2%).

  12. Wild birds and urban pigeons as reservoirs for diarrheagenic Escherichia coli with zoonotic potential.

    PubMed

    Borges, Clarissa A; Cardozo, Marita V; Beraldo, Livia G; Oliveira, Elisabete S; Maluta, Renato P; Barboza, Kaline B; Werther, Karin; Ávila, Fernando A

    2017-03-09

    In order to describe the role of wild birds and pigeons in the transmission of shiga toxigenic Escherichia coli (STEC) and enteropathogenic Escherichia coli (EPEC) to humans and other animals, samples were collected from cloacae and oropharynx of free-living wild birds and free-living pigeons. Two STEC (0.8%) and five EPEC strains (2.0%) were isolated from wild birds and four EPEC strains (2.0%) were recovered from pigeons. Serogroups, sequence types (STs) and virulence genes, such as saa, iha, lpfA O113, ehxA, espA, nleB and nleE, detected in this study had already been implicated in human and animal diseases. Multidrug resistance (MDR) was found in 25.0% of the pigeon strains and in 57.0% of the wild bird strains; the wild birds also yielded one isolate carrying extended-spectrum β-lactamases (ESBLs) gene bla CTX-M-8. The high variability shown by PFGE demonstrates that there are no prevalent E. coli clones from these avian hosts. Wild birds and pigeons could act as carriers of multidrug-resistant STEC and EPEC and therefore may constitute a considerable hazard to human and animal health by transmission of these strains to the environment.

  13. Evidence for the presence of a type III secretion system in diffusely adhering Escherichia coli (DAEC).

    PubMed

    Kyaw, C M; De Araujo, C R; Lima, M R; Gondim, E G S; Brígido, M M; Giugliano, L G

    2003-07-01

    Diffusely adhering Escherichia coli (E. coli) strains (DAEC) represent a potential cause of diarrhoea in infants, and the detection of type three secretion system (TTSS) genes in DAEC would substantiate their pathogenic nature. In this work, four isolates of DAEC, recovered from stools of diarrhoeic children, were analysed by PCR, in order to detect the presence of TTSS genes. Primers targeted to the escC, escJ, escN and escV, some of the most conserved TTSS genes in enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC), were used in order to verify the occurrence of homologous genes in our DAEC isolates. By this approach, we were able to characterise DNA fragments corresponding to putative escJ and escN genes in all DAEC isolates. Furthermore, DNA fragments homologous to the escC and escV genes were also amplified from all isolates. Besides the similarity found among the DAEC esc homologues with EPEC and EHEC esc genes, the nucleotide sequence analysis of the flanking regions of the amplified DNA fragments suggests that the putative DAEC esc genes are organised in the same manner as observed in EPEC and in EHEC strains. The results described here provide strong evidence for the presence of a TTSS in the DAEC strains analysed, implicating a pathogenic nature of these isolates.

  14. Stability of and Attachment to Lettuce by a Culturable Porcine Sapovirus Surrogate for Human Caliciviruses

    PubMed Central

    Zhang, Zhenwen

    2012-01-01

    Human noroviruses (HuNoVs) are the leading cause of food-borne illness, accounting for 58% of U.S. cases. Because HuNoVs are unculturable, surrogates are needed to investigate transmission routes and evaluate disinfection methods. However, the current surrogates, feline calicivirus (FCV) and murine NoV (MNV), are less tolerant than HuNoVs to acid and chlorine, respectively. Porcine sapovirus (SaV) is the only culturable enteropathogenic calicivirus. In this study, the resistance of SaV to physicochemical treatments was compared to that of HuNoVs (by reverse transcription-PCR), FCV, and MNV (by infectivity assays). Sapovirus and HuNoV (viral RNA) showed similar resistances to heat (56°C) and to different concentrations of chlorine. However, SaV was more resistant than HuNoVs to ethanol treatment (60% and 70%). Like HuNoVs, SaV was stable at pH 3.0 to 8.0, with a <1.0 log10 50% tissue culture infective dose (TCID50) reduction at pH 3.0 compared to the value for pH 4.0 to 8.0. SaV and MNV showed similar resistances, and both were more resistant than FCV to heat inactivation (56°C). FCV was more resistant than MNV and SaV to ethanol, and all three viruses showed similar resistances to treatment with low concentrations of chlorine for 1 min. Those results indicate that SaV is a promising surrogate for HuNoVs. Next, we used SaV as a surrogate to examine virus attachment to lettuce at different pHs. Sapovirus attached to lettuce leaves significantly at its capsid isoelectric point (pH 5.0), and the attached viral particles remained infectious on lettuce after 1 week of storage at 4°C. The culturable SaV is a good surrogate for studying HuNoV contamination and transmission in leafy greens and potential disinfectants. PMID:22447610

  15. Phenotypic map of porcine retinal ganglion cells

    PubMed Central

    Veiga-Crespo, Patricia; del Río, Patricia; Blindert, Marcel; Ueffing, Marius; Hauck, Stefanie M.

    2013-01-01

    Purpose Porcine retina is an excellent model for studying diverse retinal processes and diseases. The morphologies of porcine retinal ganglion cells (RGCs) have, however, not yet been described comprehensively. The aim of the present study was to créate a classification of the RGCs using the 1, 1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI) tracing method. Methods About 170 RGCs were retrogradely labeled by injecting DiI into the optic nerve of postmortem eyes and statistically analyzed by two different clustering methods: Ward’s algorithm and the K-means clustering. Major axis length of the soma, soma area size, and dendritic field area size were selected as main parameters for cluster classification. Results RGC distribution in clusters was achieved according to their morphological parameters. It was feasible to combine both statistical methods, thereby obtaining a robust clustering distribution. Morphological analysis resulted in a classification of RGCs in three groups according to the soma size and dendritic field: A (large somas and large dendritic fields), B (medium to large somas and medium to large dendritic fields), C (medium to small somas and medium to small dendritic fields). Within groups, fine clustering defined several subgroups according to dendritic arborization and level of stratification. Additionally, cells stratifying in two different levels of the inner plexiform layer were observed within the clusters. Conclusions This comprehensive study of RGC morphologies in the porcine retina provides fundamental knowledge about RGC cell types and provides a basis for functional studies toward selective RGC cell degeneration in retinal disorders. PMID:23687427

  16. Enteropathogenic bacteria and enterotoxin-producing Staphylococcus aureus isolated from ready-to-eat foods in Khon Kaen, Thailand.

    PubMed

    Chomvarin, Chariya; Chantarasuk, Yingrit; Srigulbutr, Sugunya; Chareonsudjai, Sorujsiri; Chaicumpar, Kunyaluk

    2006-09-01

    The objective of this study was to investigate the microbiological quality of ready-to-eat food in the Municipality of Khon Kaen, Thailand. Four categories of 186 food samples were collected: (1) high heat food; (2) low heat food; (3) no heat food; and, 4) on-site prepared fruit juices and beverages. Of the food samples, 145 (78%) failed to meet acceptable microbiological standards, including fruit juice and beverages (100%), no heat food (91.7%), low heat food (81.7%) and high heat food (57.9%). The most frequent bacterial indexes indicating unacceptability were the most probable number (MPN) of coliforms (78%), the bacterial colony count (58%), and the MPN of E. coli (46%). Pathogenic bacteria were found in 6.5% of food samples. Salmonella, Vibrio cholerae non O1 and Aeromonas hydrophila were found in 4.3, 1.6 and 0.5% of the total food samples, respectively. The serovars of Salmonella found in food were S. Derby, S. Give, S. Krefield, S. Paratyphi B, S. Verchow, S. Lexington and S. Senftenberg. Staphylococcus aureus concentrations of >10(2) CFU/g and >10(5) CFU/g were found in 10.8% and 1.1% of the food samples. Enterotoxin types AB and A of S. aureus were found in 2.7% of the food samples. These results indicate that more than half of the ready-to-eat foods tested in Khon Kaen municipality did not meet microbiological national standards and many kinds of enteropathogenic bacteria were found, suggesting food stalls may be a source of foodborne disease.

  17. Molecular characterization and expression of porcine Siglec-5.

    PubMed

    Escalona, Z; Álvarez, B; Uenishi, H; Toki, D; Yuste, M; Revilla, C; Gómez del Moral, M; Alonso, F; Ezquerra, A; Domínguez, J

    2014-05-01

    In this study we describe the characterization of the porcine orthologue of Siglec-5. A cDNa clone was obtained from a porcine cDNa library derived from swine small intestine which encodes a 555 a-a type 1 transmembrane protein with sequence homology to human Siglec-5. This protein consists of four Ig-like domains, a transmembrane region, and a cytoplasmic tail with two tyrosine-based signalling motifs. When expressed as a recombinant protein fused to the Fc region of human IgG1, porcine Siglec-5 was able to bind porcine red blood cells in a sialic acid-dependent manner. Monoclonal antibodies (mAb) were developed against porcine Siglec-5 and used to analyse its expression in bone marrow and blood cells, and lymphoid tissues. Porcine Siglec-5 expression was mainly restricted to myelomonocytic cells and their precursors, being detected also, although at low levels, on plasmacytoid dendritic cells and B lymphocytes. In lymphoid tissues, ellipsoids of the spleen and subcapsular and medullar sinuses of lymph nodes were positive for Siglec-5. These mAbs were able to precipitate, from granulocyte lysates, a protein of approximately 85 kDa under non-reducing conditions, indicating that porcine Siglec-5 is expressed as a monomer in the plasma membrane.

  18. PATHOGENIC ESCHERICHIA COLI

    EPA Science Inventory

    Escherichia coli is a bacterial species which inhabits the gastrointestinal tract of man and warm-blooded animals. Because of the ubiquity of this bacterium in the intestinal flora, it serves as an important indicator organism of fecal contamination. E. coli, aside from serving a...

  19. Pathogenic Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli, a member of the Enterobacteriaceae family, is a part of the normal flora of the intestinal tract of humans and a variety of animals. E. coli strains are classified on the basis of antigenic differences in two surface components (serotyping), the somatic antigen (O) of the lipopoly...

  20. Emerging Escherichia Pathogen

    PubMed Central

    Permpalung, Nitipong; Sentochnik, Deborah E.

    2013-01-01

    Escherichia hermannii was first identified as a new species in 1982. It has rarely been reported as a human pathogen. We report the first case of E. hermannii as the sole pathogen in a catheter-related bloodstream infection. PMID:23740732

  1. Candidate chemosensory cells in the porcine stomach.

    PubMed

    Widmayer, Patricia; Breer, Heinz; Hass, Nicole

    2011-07-01

    A continuous chemosensory monitoring of the ingested food is of vital importance for adjusting digestive processes according to diet composition. Although any dysfunction of this surveillance system may be the cause of severe gastrointestinal disorders, information about the cellular and molecular basis of chemosensation in the gastrointestinal tract is limited. The porcine alimentary canal is considered as an appropriate model for the human gastrointestinal tract. Therefore, in this study we have investigated the gastric mucosa of swine for cells which express gustatory transduction elements such as TRPM5 or PLCβ2, and thus may represent candidate "chemosensors". It was found that the porcine stomach indeed contains cells expressing gustatory marker molecules; however, the morphology and topographic distribution of putative chemosensory cells varied significantly from that in mice. Whereas in the murine stomach these cells were clustered at a distinct region near the gastric entrance, no such compact cell cluster was found in the pig stomach. These results indicate substantial differences regarding the phenotype of candidate chemosensory cells of mice and swine and underline the importance of choosing the most suitable model organisms.

  2. Justifying clinical trials for porcine islet xenotransplantation.

    PubMed

    Ellis, Cara E; Korbutt, Gregory S

    2015-01-01

    The development of the Edmonton Protocol encouraged a great deal of optimism that a cell-based cure for type I diabetes could be achieved. However, donor organ shortages prevent islet transplantation from being a widespread solution as the supply cannot possibly equal the demand. Porcine islet xenotransplantation has the potential to address these shortages, and recent preclinical and clinical trials show promising scientific support. Consequently, it is important to consider whether the current science meets the ethical requirements for moving toward clinical trials. Despite the potential risks and the scientific unknowns that remain to be investigated, there is optimism regarding the xenotransplantation of some types of tissue, and enough evidence has been gathered to ethically justify clinical trials for the most safe and advanced area of research, porcine islet transplantation. Researchers must make a concerted effort to maintain a positive image for xenotransplantation, as a few well-publicized failed trials could irrevocably damage public perception of xenotransplantation. Because all of society carries the burden of risk, it is important that the public be involved in the decision to proceed. As new information from preclinical and clinical trials develops, policy decisions should be frequently updated. If at any point evidence shows that islet xenotransplantation is unsafe, then clinical trials will no longer be justified and they should be halted. However, as of now, the expected benefit of an unlimited supply of islets, combined with adequate informed consent, justifies clinical trials for islet xenotransplantation.

  3. Phenol esterase activity of porcine skin.

    PubMed

    Laszlo, Joseph A; Smith, Leslie J; Evans, Kervin O; Compton, David L

    2015-01-01

    The alkyl esters of plant-derived phenols may serve as slow-release sources for cutaneous delivery of antioxidants. The ability of skin esterases to hydrolyze phenolic esters was examined. Esters of tyrosol and hydroxytyrosol were prepared from decanoic and lipoic acids. Ferulic acid was esterified with octadecanol, glycerol, and dioleoylglycerol. These phenolic derivatives were treated in taurodeoxycholate microemulsion and unilamellar liposomes with ex vivo porcine skin and an aqueous extract of the skin. Extracted esterases hydrolyzed the microemulsions at rates in the order: tyrosyl lipoate > tyrosyl decanoate > hydroxytyrosyl lipoate > hydroxytyrosyl decanoate. The tyrosyl decanoate was subject to comparatively little hydrolysis (10-30% after 24h) when incorporated into liposomes, while hydroxytyrosyl decanoate in liposomes was not hydrolyzed at all by the skin extract. Ferulate esters were not hydrolyzed by the extract in aqueous buffer, microemulsion, nor liposomes. Tyrosyl decanoate applied topically to skin explants in microemulsion were readily hydrolyzed within 4h, while hydrolysis was minimal when applied in liposomes. These findings indicate that porcine skin displays a general esterase activity toward medium-chain esters of tyrosol and hydroxytyrosol, which can be moderated by the physiochemical properties of the lipid vehicle, but no feruloyl esterase activity.

  4. Progesterone improves porcine in vitro fertilisation system.

    PubMed

    Malo, Clara; Gil, Lydia; Cano, Rafael; Martinez, Felisa; Gonzalez, Noelia

    2014-03-01

    In an effort to improve the quality of in vitro produced porcine embryos, the effect of progestagens - progesterone analogues - on the in vitro developmental competence of porcine oocytes was studied. A total of 1421 in vitro matured oocytes, from 4 replicates, were inseminated with frozen-thawed spermatozoa. Progestagens were added to late maturation and embryo cultures (10 IU/ml). Fertilisation success (pre-maturation, penetration, monospermy and efficiency) and nuclear maturation were evaluated. There were no differences among prematuration rates between groups (P = 0.221). Penetration rates were higher (P < 0.001) in the presence of progestagens (75.0%) as compared to the control (51.7%). However, no differences were observed in monospermy percentages (P = 0.246). The results indicated that supplementation with progestagens increased the efficiency of the in vitro fertilisation system (P < 0.001). An additional beneficial effect was observed in nuclear maturation with progestagens (P = 0.035). In summary, progestagen supplementation is an important factor to improve the in vitro fertilisation procedure.

  5. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming.

    PubMed

    No, Jin-Gu; Choi, Mi-Kyung; Kwon, Dae-Jin; Yoo, Jae Gyu; Yang, Byoung-Chul; Park, Jin-Ki; Kim, Dong-Hoon

    2015-01-01

    Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.

  6. Genetic Characterization of Porcine Circovirus Type 2 from Pigs with Porcine Circovirus Associated Diseases in Argentina

    PubMed Central

    Pereda, Ariel; Piñeyro, Pablo; Bratanich, Ana; Quiroga, María Alejandra; Bucafusco, Danilo; Craig, María Isabel; Cappuccio, Javier; Machuca, Mariana; Rimondi, Agustina; Dibárbora, Marina; Sanguinetti, Hector Ramón; Perfumo, Carlos Juan

    2011-01-01

    Porcine circovirus type 2 (PCV-2) has been associated with syndromes grouped by the term porcine circovirus associated diseases (PCVAD). The PCV-2 isolates have been grouped into two major groups or genotypes according to their nucleotide sequence of whole genomes and/or ORF-2: PCV-2b, which have, in turn, been subdivided into three clusters (1A–1C), and PCV-2a, which has been subdivided into five clusters (2A–2E). In the present study, we obtained 16 sequences of PCV-2 from different farms from 2003 to 2008, from animals with confirmatory diagnosis of PCVAD. Since results showed an identity of 99.8% among them, they were grouped within a common cluster 1A-B. This preliminary study suggests a stable circulation of PCV-2b among the Argentinean pig population. PMID:23738099

  7. Activation of porcine cytomegalovirus, but not porcine lymphotropic herpesvirus, in pig-to-baboon xenotransplantation.

    PubMed

    Mueller, Nicolas J; Livingston, Christine; Knosalla, Christoph; Barth, Rolf N; Yamamoto, Shin; Gollackner, Bernd; Dor, Frank J M F; Buhler, Leo; Sachs, David H; Yamada, Kazuhiko; Cooper, David K C; Fishman, Jay A

    2004-05-01

    Tissue-invasive disease due to porcine cytomegalovirus (PCMV) has been demonstrated after pig-to-baboon solid-organ xenotransplantation. Porcine lymphotropic herpesvirus (PLHV)-1 is associated with B cell proliferation and posttransplant lymphoproliferative disorder after allogeneic bone marrow transplantation in swine but has not been observed in pig-to-primate xenotransplantation. Activation of PCMV and PLHV-1 was investigated in 22 pig-to-baboon xenotransplants by use of quantitative polymerase chain reaction. PCMV was found in all xenografts; increased viral replication occurred in 68% of xenografts during immunosuppression. PLHV-1 was found in 12 xenografts (55%); no increases in viral replication occurred during immunosuppression. Control immunosuppressed swine coinfected with PCMV and PLHV-1 had activation of PCMV but not PLHV-1. PCMV, but not PLHV-1, is activated in solid-organ xenotransplantation.

  8. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    SciTech Connect

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun; Lv, Xiaonan; Herrler, Georg; Enjuanes, Luis; Zhou, Xingdong; Qu, Bo; Meng, Fandan; Cong, Chengcheng; Ren, Xiaofeng; Li, Guangxing

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  9. Porcine circovirus type 2 detection in in vitro produced porcine blastocysts after virus sperm exposure.

    PubMed

    Galeati, Giovanna; Zannoni, Augusta; Spinaci, Marcella; Bucci, Diego; Ostanello, Fabio; Panarese, Serena; Tamanini, Carlo; Sarli, Giuseppe

    2016-04-01

    This study was aimed at assessing the capability of semen experimentally infected with porcine circovirus type 2 (PCV2) to produce porcine blastocysts PCR positive for PCV2. Embryos were obtained from in vitro maturation (IVM) and in vitro fertilization (IVF) of porcine oocytes or by parthenogenesis. Sperm suspension was exposed to PCV2b and utilized for IVF. PCV2 spiked semen did not reveal any reduction in sperm viability or motility but its ability to produce infected blastocysts was irrelevant as only one out of 15 blastocysts obtained by IVF were PCV2b; however two blastocysts were PCV2a positive. Furthermore, the presence of PCV2 was demonstrated also in embryos obtained by parthenogenesis (one out of 17 was PCV2b and one PCV2a positive). Even if PCV2 firmly attaches to the surface of spermatozoa, experimentally spiked sperm were not effective in infecting oocytes during IVF and in producing PCR positive embryos. The infected blastocysts we obtained derived most probably from infected oocytes recovered at the abattoir.

  10. Functional analysis of the porcine USP18 and its role during porcine arterivirus replication.

    PubMed

    Ait-Ali, Tahar; Wilson, Alison W; Finlayson, Heather; Carré, Wilfrid; Ramaiahgari, Sreenivasa Chakravarthy; Westcott, David G; Waterfall, Martin; Frossard, Jean-Pierre; Baek, Kwang-Hyun; Drew, Trevor W; Bishop, Stephen C; Archibald, Alan L

    2009-06-15

    Emerging evidence places deubiquitylation at the core of a multitude of regulatory processes, ranging from cell growth to innate immune response and health, such as cancer, degenerative and infectious diseases. Little is known about deubiquitylation in pig and arterivirus infection. This report provides information on the biochemical and functional role of the porcine USP18 during innate immune response to the porcine respiratory and reproductive syndrome virus (PRRSV). We have shown that UBP gene is the ortholog of the murine USP18 (Ubp43) gene and the human ubiquitin specific protease 18 (USP18) gene and encodes a biochemically functional de-ubiquitin enzyme which inhibits signalling pathways that lead to IFN-stimulating response element (ISRE) promotor regulation. Furthermore we have demonstrated that overexpression of the porcine USP18 leads to reduced replication and/or growth of PRRSV. Our data contrast with the conclusion of numerous reports demonstrating that USP18-deficient mice are highly resistant to viral and bacterial infections and to oncogenic transformation by BCR-ABL, and highlight USP18 as a potential target gene that promotes reduced replication of PRRSV.

  11. Biological and binding activities of ovine and porcine prolactins in porcine mammary tissue

    SciTech Connect

    Jerry, D.J.

    1987-01-01

    The concentration of prolactin receptors may play a critical role in regulating growth and development of the mammary gland during gestation and tumor development; however, the discrepancy between specific binding of ovine prolactin (oPRL) and porcine prolactin (pPRL) in porcine mammary tissue was disturbing. It was possible that /sup 125/I-oPRL may be an unsuitable ligand for the procine prolactin receptor. The validate the use of oPRL in binding assays, the biological and binding activities of oPRL and pPRL were compared. A lactogenic bioassay of pPRL was developed using porcine mammary explants cultured in Medium 199 containing insulin, cortisol, and pPRL. The potencies of oPRL and pPRL were compared using this bioassay. Oxidation of glucose and incorporation of glucose into lipids were similarly enhanced by physiological concentrations of both oPRL and pPRL. However, specific binding of /sup 125/I-oPRL was 20%, while less than 1% of /sup 125/I-pPRL was bound. /sup 125/I-oPRL bound to high affinity sites.

  12. A new asset for pathogen informatics--the Enteropathogen Resource Integration Center (ERIC), an NIAID Bioinformatics Resource Center for Biodefense and Emerging/Re-emerging Infectious Disease.

    PubMed

    Greene, John M; Plunkett, Guy; Burland, Valerie; Glasner, Jeremy; Cabot, Eric; Anderson, Brad; Neeno-Eckwall, Eric; Qiu, Yu; Mau, Bob; Rusch, Michael; Liss, Paul; Hampton, Thomas; Pot, David; Shaker, Matthew; Shaull, Lorie; Shetty, Panna; Shi, Chuan; Whitmore, Jon; Wong, Mary; Zaremba, Sam; Blattner, Frederick R; Perna, Nicole T

    2007-01-01

    ERIC (Enteropathogen Resource Information Center) is one of the National Institute of Allergy and Infectious Diseases (NIAID) Bioinformatics Resource Centers for Biodefense and Emerging/Re-emerging Infectious Disease. ERIC serves as a comprehensive information resource for five related pathogens: Yersinia enterocolitica, Yersinia pestis, diarrheagenic E. coli, Shigella spp., and Salmonella spp. ERIC integrates genomics, proteomics, biochemical and microbiological information to facilitate the interpretation and understanding of ERIC pathogens and select related non-pathogens for the advancement of diagnostics, therapeutics, and vaccines. ERIC (www.ericbrc.org) is evolving to provide state-of-the-art analysis tools and data types, such as genome sequencing, comparative genomics, genome polymorphisms, gene expression, proteomics, and pathways as well as expertly curated community genome annotation. Genome sequence and genome annotation data and a variety of analysis and tools for eight strains of Yersinia enterocolitica and Yersinia pestis pathogens (Yersinia pestis biovars Mediaevalis KIM, Mediaevalis 91001, Orientalis CO92, Orientalis IP275, Antiqua Angola, Antiqua Antiqua, Antiqua Nepal516, and Yersinia enterocolitica 8081) and two strains of Yersinia pseudotuberculosis (Yersinia pseudotuberculosis IP32953 and IP31758) are currently available through the ERIC portal. ERIC seeks to maintain a strong collaboration with the scientific community so that we can continue to identify and incorporate the latest research data, tools, and training to best meet the current and future needs of the enteropathogen research community. All tools and data developed under this NIAID contract will be freely available. Please contact info@ericbrc.org for more information.

  13. Porcine radial artery decellularization by high hydrostatic pressure.

    PubMed

    Negishi, Jun; Funamoto, Seiichi; Kimura, Tsuyoshi; Nam, Kwangoo; Higami, Tetsuya; Kishida, Akio

    2015-11-01

    Many types of decellularized tissues have been studied and some have been commercially used in clinics. In this study, small-diameter vascular grafts were made using HHP to decellularize porcine radial arteries. One decellularization method, high hydrostatic pressure (HHP), has been used to prepare the decellularized porcine tissues. Low-temperature treatment was effective in preserving collagen and collagen structures in decellularized porcine carotid arteries. The collagen and elastin structures and mechanical properties of HHP-decellularized radial arteries were similar to those of untreated radial arteries. Xenogeneic transplantation (into rats) was performed using HHP-decellularized radial arteries and an untreated porcine radial artery. Two weeks after transplantation into rat carotid arteries, the HHP-decellularized radial arteries were patent and without thrombosis. In addition, the luminal surface of each decellularized artery was covered by recipient endothelial cells and the arterial medium was fully infiltrated with recipient cells.

  14. Porcine skin flow-through diffusion cell system.

    PubMed

    Baynes, R E

    2001-11-01

    Porcine Skin Flow-Through Diffusion Cell System (Ronald E. Baynes, North Carolina State University, Raleigh, North Carolina). Porcine skin can be used in a diffusion cell apparatus to study the rate and extent of absorption of topically applied chemicals through the skin. Although the skin of a number of animals can be used in this system, that of the pig most closely approximates human skin anatomically and physiologically.

  15. Genetic and antigenic changes in porcine rubulavirus.

    PubMed

    Sánchez-Betancourt, José I; Trujillo, María E; Mendoza, Susana E; Reyes-Leyva, Julio; Alonso, Rogelio A

    2012-01-01

    Blue eye disease, caused by a porcine rubulavirus (PoRV), is an emergent viral swine disease that has been endemic in Mexico since 1980. Atypical outbreaks were detected in 1990 and 2003. Growing and adult pigs presented neurological signs, mild neurological signs were observed in piglets, and severe reproductive problems were observed in adults. Amino acid sequence comparisons and phylogenetic analysis of the hemagglutinin-neuraminidase (HN) protein revealed genetically different lineages. We used cross-neutralization assays, with homologous and heterologous antisera, to determine the antigenic relatedness values for the PoRV isolates. We found antigenic changes among several strains and identified a highly divergent one, making up a new serogroup. It seems that genetically and antigenically different PoRV strains are circulating simultaneously in the swine population in the geographical region studied. The cross neutralization studies suggest that the HN is not the only antigenic determinant participating in the antigenic changes among the different PoRV strains.

  16. Tiamulin resistance in porcine Brachyspira pilosicoli isolates.

    PubMed

    Pringle, M; Landén, A; Franklin, A

    2006-02-01

    There are few studies on antimicrobial susceptibility of Brachyspira pilosicoli, therefore this study was performed to investigate the situation among isolates from pigs. The tiamulin and tylosin susceptibility was determined by broth dilution for 93 and 86 porcine B. pilosicoli isolates, respectively. The isolates came from clinical samples taken in Swedish pig herds during the years 2002 and 2003. The tylosin minimal inhibitory concentration (MIC) was >16 microg/ml for 50% (n=43) of the isolates tested. A tiamulin MIC >2 microg/ml was obtained for 14% (n=13) of the isolates and these were also tested against doxycycline, salinomycin, valnemulin, lincomycin and aivlosin. For these isolates the susceptibility to salinomycin and doxycycline was high but the MICs for aivlosin varied. The relationship between the 13 tiamulin resistant isolates was analyzed by pulsed-field gel electrophoresis (PFGE). Among the 13 isolates 10 different PFGE patterns were identified.

  17. Persistence of porcine rubulavirus in experimentally infected boars.

    PubMed

    Rivera-Benitez, José Francisco; Martínez-Bautista, Rebeca; Pérez-Torres, Armando; García-Contreras, Adelfa Del Carmen; Reyes-Leyva, Julio; Hernández, Jesús; Ramírez-Mendoza, Humberto

    2013-03-23

    Porcine rubulavirus is the etiological agent of blue eye disease in pigs. In boars, this virus causes orchitis and epididymitis and reduces seminal quality. The objective of this study was to determine the persistence of porcine rubulavirus in experimentally infected boars. Nine 12-month-old boars were infected with 5 ml of the PAC-3 strain of porcine rubulavirus at 1 × 10(5) TCID(50)/ml and held for 142 days post infection (DPI) to evaluate humoral immune response. The virus was isolated in cell cultures and detected by RT-PCR. Infection with porcine rubulavirus produced clinical signs beginning at 5 DPI. Necropsy results showed that 3 boars had lesions in the testicles and epididymes. Histological analysis showed the characteristic lesions in all infected boars. Porcine rubulavirus antibodies were detected in the second week post infection and increased significantly (P<0.05) over time. Isolation of the virus from semen was achieved between 5 DPI and 48 DPI and from the testicles and epididymes between 64 DPI and 142 DPI. Viral RNA was detected in the serum between 2 DPI and 64 DPI and in the semen until 142 DPI. These results confirm that the RNA of the porcine rubulavirus persists in the semen and that this virus remains in the reproductive tract for prolonged periods of infection. Semen of persistently infected boars, therefore, represents an important source of the virus and a risk factor for the spread of blue eye disease in swine populations.

  18. Expression of bioactive porcine interferon-alpha in Lactobacillus casei.

    PubMed

    Ma, Shi-jie; Li, Kun; Li, Xin-Sheng; Guo, Xiao-Qing; Fu, Peng-Fei; Yang, Ming-Fan; Chen, Hong-Ying

    2014-09-01

    In this study, we constructed an expression cassette containing the inducible lac promoter and the secretion signal from an S-layer protein of Lactobacillus brevis for the expression of porcine interferon-alpha (IFN-α) in Lactobacillus casei (Lb. casei). Reverse-transcriptase PCR verified the presence of porcine IFN-α mRNA in the recombinant Lb. casei. The porcine IFN-α protein expressed in the recombinant Lb. casei was identified by both Western blot analysis and ELISA. We used various pH values and induction times to optimize the yield of IFN-α, and found that induction with 0.8% lactose for 16 h under anaerobic conditions produced the highest concentrations of IFN-α. Furthermore, the activity of porcine IFN-α in the cultural supernatant was evaluated on ST cells infected with pseudorabies virus. The results revealed that porcine IFN-α inhibited virus replication in vitro. The findings of our study indicate that recombinant Lb. casei producing porcine IFN-α has great potential for use as a novel oral antiviral agent in animal healthcare.

  19. How Active Are Porcine Endogenous Retroviruses (PERVs)?

    PubMed Central

    Denner, Joachim

    2016-01-01

    Porcine endogenous retroviruses (PERVs) represent a risk factor if porcine cells, tissues, or organs were to be transplanted into human recipients to alleviate the shortage of human transplants; a procedure called xenotransplantation. In contrast to human endogenous retroviruses (HERVs), which are mostly defective and not replication-competent, PERVs are released from normal pig cells and are infectious. PERV-A and PERV-B are polytropic viruses infecting cells of several species, among them humans; whereas PERV-C is an ecotropic virus infecting only pig cells. Virus infection was shown in co-culture experiments, but also in vivo, in the pig, leading to de novo integration of proviruses in certain organs. This was shown by measurement of the copy number per cell, finding different numbers in different organs. In addition, recombinations between PERV-A and PERV-C were observed and the recombinant PERV-A/C were found to be integrated in cells of different organs, but not in the germ line of the animals. Here, the evidence for such in vivo activities of PERVs, including expression as mRNA, protein and virus particles, de novo infection and recombination, will be summarised. These activities make screening of pigs for provirus number and PERV expression level difficult, especially when only blood or ear biopsies are available for analysis. Highly sensitive methods to measure the copy number and the expression level will be required when selecting pigs with low copy number and low expression of PERV as well as when inactivating PERVs using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (CRISPR/Cas) technology. PMID:27527207

  20. Electromechanical Reshaping of Ex Vivo Porcine Trachea

    PubMed Central

    Hussain, Syed; Manuel, Cyrus T.; Protsenko, Dmitriy E.; Wong, Brian J. F.

    2015-01-01

    Objectives The trachea is a composite cartilaginous structure particularly prone to various forms of convexities. Electromechanical reshaping (EMR) is an emerging technique used to reshape cartilaginous tissues by applying electric current in tandem with imposed mechanical deformation to achieve shape change. In this study, EMR was used to reshape tracheal cartilage rings to demonstrate the feasibility of this technology as a potentially minimally invasive procedure to alter tracheal structure. Study Design Controlled laboratory study using ex vivo porcine tracheae. Methods The natural concavity of each porcine tracheal ring was reversed around a cork mandrel. Two pairs of electrodes were inserted along the long axis of the tracheal ring and placed 1.5 millimeters from the midline. Current was applied over a range of voltages (3 volts [V], 4V, and 5V) for either 2 or 3 minutes. The degree of EMR-induced reshaping was quantified from photographs using digital techniques. Confocal imaging with fluorescent live and dead assays was conducted to determine viability of the tissue after EMR. Results Specimens that underwent EMR for 2 or 3 minutes at 4V or 5V were observed to have undergone significant (P <.05) reshaping relative to the control. Viability results demonstrated that EMR reshaping occurs at the expense of tissue injury, although the extent of injury is modest relative to conventional techniques. Conclusion EMR reshapes tracheal cartilage rings as a function of voltage and application time. It has potential as a minimally invasive and cost-efficient endoscopic technology to treat pathologic tracheal convexities. Given our findings, consideration of EMR for use in larger ex vivo tracheal segments and animal studies is now plausible. Level of Evidence N/A. PMID:25692713

  1. Nursing supports neonatal porcine testicular development.

    PubMed

    Rahman, K M; Lovich, J E; Lam, C; Camp, M E; Wiley, A A; Bartol, F F; Bagnell, C A

    2014-07-01

    The lactocrine hypothesis suggests a mechanism whereby milk-borne bioactive factors delivered to nursing offspring affect development of neonatal tissues. The objective of this study was to assess whether nursing affects testicular development in neonatal boars as reflected by: (1) Sertoli cell number and proliferation measured by GATA-4 expression and proliferating cell nuclear antigen immunostaining patterns; (2) Leydig cell development and steroidogenic activity as reflected by insulin-like factor 3 (INSL3), and P450 side chain cleavage (scc) enzyme expression; and (3) expression of estrogen receptor-alpha (ESR1), vascular endothelial growth factor (VEGF) A, and relaxin family peptide receptor (RXFP) 1. At birth, boars were randomly assigned (n = 6-7/group) to nurse ad libitum or to be pan fed porcine milk replacer for 48 h. Testes were collected from boars at birth, before nursing and from nursed and replacer-fed boars at 50 h on postnatal day (PND) 2. Sertoli cell proliferating cell nuclear antigen labeling index increased (P < 0.01) from birth to PND 2 in nursed, but not in replacer-fed boars. Sertoli cell number and testicular GATA-4 protein levels increased (P < 0.01) from PND 0 to PND 2 only in nursed boars. Neither age nor nursing affected testicular INSL3, P450scc, ESR1, or VEGFA levels. However, testicular relaxin family peptide receptor 1 (RXFP1) levels increased (P < 0.01) with age and were greater in replacer-fed boars on PND 2. Results suggest that nursing supports neonatal porcine testicular development and provide additional evidence for the importance of lactocrine signaling in pigs.

  2. Glycosaminoglycans of the porcine central nervous system†

    PubMed Central

    Liu, Zhenling; Masuko, Sayaka; Solakyildirim, Kemal; Pu, Dennis; Linhardt, Robert J.; Zhang, Fuming

    2010-01-01

    Glycosaminoglycans (GAG) are known to participate in central nervous system processes such as development, cell migration, and neurite outgrowth. In this paper, we report an initial glycomics study on GAGs from porcine central nervous system. GAGs of the porcine central nervous system, brain and spinal cord, were isolated and purified by defating, proteolysis, anion-exchange chromatography and methanol precipitation. The isolated GAG content in brain was 5-times higher than in spinal cord (0.35 mg/g, compared to 0.07 mg/g dry sample). In both tissues, chondroitin sulfate (CS) and heparan sulfate (HS) were the major and the minor GAG. The average molecular weight of CS from brain and spinal cord was 35.5 and 47.1 kDa, respectively, and HS from brain and spinal cord was 56.9 and 34 kDa, respectively. The disaccharide analysis showed that the composition of CS from brain and spinal cords are similar with uronic acid (1→3) 4-O-sulfo-N-acetylgalactosamine residue corresponding to the major disaccharide unit (CS type-A) along with five minor disaccharide units. The major disaccharides of both brain and spinal cord HS were uronic acid (1→4) N-acetylglucosamine and uronic acid (1→4) 6-O-sulfo-N-sulfoglucosamine but their composition of minor disaccharides differed. Analysis by 1H- and two-dimensional-NMR spectroscopy confirmed these disaccharide analyses and provided the glucuronic/iduronic acid ratio. Finally, both purified CS and HS were biotinylated and immobilized on BIAcore SA biochips. Interactions between these GAGs and fibroblast growth factors (FGF1 and FGF2) and sonic hedgehog (Shh) were investigated by surface plasmon resonance. PMID:20954748

  3. Sterilization of Escherichia coli by using near-UV LED and TiO2 nanofibers that were prepared by using electrostatic spray

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Gil; Hong, Ji-Tae; Son, Min-Kyu; Lee, Kyoung-Jun; Xu, Guo-Cheng; Prabakar, Kandasamy; Kim, Hee-je

    2010-05-01

    TiO2 nanofiber films were prepared by a homemade electrostatic spray method at 13 kV using a high power supply. As-prepared TiO2 was used to sterilize enteropathogenic Escherichia coli in polluted water by using near-UV LEDs at three different wavelengths with variable exposure time and frequency of irradiation. Irrespective of the wavelength of the light source used, longer irradiation times such as 1 h completely inactivated the E. coli. However, a wavelength of 375 nm was effective in inactivating in a shorter irradiation time (15 min). When the frequency of irradiation was 1 kHz, almost 95% of the E. coli was inactivated after 30 min exposure.

  4. ISOLATION AND MOLECULAR IDENTIFICATION OF POTENTIALLY PATHOGENIC Escherichia coli AND Campylobacter jejuni IN FERAL PIGEONS FROM AN URBAN AREA IN THE CITY OF LIMA, PERU.

    PubMed

    Caballero, Moisés; Rivera, Isabel; Jara, Luis M; Ulloa-Stanojlovic, Francisco M; Shiva, Carlos

    2015-01-01

    Feral pigeons (Columbia livia) live in close contact with humans and other animals. They can transmit potentially pathogenic and zoonotic agents. The objective of this study was to isolate and detect strains of diarrheagenic Escherichia coli and Campylobacter jejuni of urban feral pigeons from an area of Lima, Peru. Fresh dropping samples from urban parks were collected for microbiological isolation of E. coli strains in selective agar, and Campylobacter by filtration method. Molecular identification of diarrheagenic pathotypes of E.coli and Campylobacter jejuni was performed by PCR. Twenty-two parks were sampled and 16 colonies of Campylobacter spp. were isolated. The 100% of isolates were identified as Campylobacter jejuni. Furthermore, 102 colonies of E. coli were isolated and the 5.88% resulted as Enteropathogenic (EPEC) type and 0.98% as Shiga toxin-producing E. coli (STEC). The urban feral pigeons of Lima in Peru can act as a reservoir or carriers of zoonotic potentially pathogenic enteric agents.

  5. Molecular homogeneity of heat-stable enterotoxins produced by bovine enterotoxigenic Escherichia coli.

    PubMed Central

    Saeed, A M; Magnuson, N S; Sriranganathan, N; Burger, D; Cosand, W

    1984-01-01

    Heat-stable enterotoxins (STs) from four strains of bovine enterotoxigenic Escherichia coli representing four serogroups were purified to homogeneity by utilizing previously published purification schemata. Biochemical characterization of the purified STs showed that they met the basic criteria for the heat-stable enterotoxins of E. coli. Amino acid analysis of the purified STs revealed that they were peptides of identical amino acid composition. This composition consisted of 18 residues of 10 different amino acids, 6 of which were cysteine. The amino acid composition of the four ST peptides was identical to that reported for the STs of human and porcine E. coli. In addition, complete sequence analysis of two of the ST peptides and partial sequencing of several others revealed strong homology to the sequences of STs from human and porcine E. coli and to the sequence predicted from the last 18 codons of the transposon Tn1681. There was also substantial homology to the sequence predicted from the ST-coding genetic element of human E. coli, which may indicate the existence of identical bioactive configuration among ST peptides of E. coli strains of various host origins. These data support the hypothesis that STs produced by human, bovine, and porcine E. coli are coded by a closely related genetic element which may have originated from a single, widely disseminated transposon. Images PMID:6376355

  6. Diarrheagenic Escherichia coli carrying supplementary virulence genes are an important cause of moderate to severe diarrhoeal disease in Mexico.

    PubMed

    Patzi-Vargas, Sandra; Zaidi, Mussaret Bano; Perez-Martinez, Iza; León-Cen, Magda; Michel-Ayala, Alba; Chaussabel, Damien; Estrada-Garcia, Teresa

    2015-03-01

    Diarrheagenic Escherichia coli (DEC) cause acute and persistent diarrhoea worldwide, but little is known about their epidemiology in Mexico. We determined the prevalence of bacterial enteropathogens in 831 children with acute diarrhoea over a four-year period in Yucatan, Mexico. Six DEC supplementary virulence genes (SVG), mainly associated with enteroaggregative E. coli (EAEC), were sought in 3100 E. coli isolates. DEC was the most common bacterial enteropathogen (28%), surpassing Salmonella (12%) and Shigella (9%). Predominant DEC groups were diffusely adherent E. coli (DAEC) (35%), EAEC (24%), and enteropathogenic E. coli (EPEC) (19%). Among children with DEC infections, 14% had severe illness mainly caused by EPEC (26%) and DAEC (18%); 30% had moderate diarrhoea mainly caused by DAEC (36%), mixed DEC infections (33%) and EAEC (32%). DAEC was most prevalent during spring, while ETEC, EAEC and EPEC predominated in summer. EAEC was more frequent in children 6-24 months old than in those younger than 6 months of age (P = 0.008, OR = 4.2, 95% CI, 1.3-13.9). The presence of SVG dispersin, (aatA), dispersin-translocator (aatA), enteroaggregative heat-stable toxin 1 (astA), plasmid encoded toxin (pet), cytolethal distending toxin (cdt) was higher in DEC than non-DEC strains, (36% vs 26%, P <0.0001, OR = 1.5, 95% CI, 1.3-1.8). 98% of EAEC-infected children harboured strains with SVG; 85% carried the aap-aatA gene combination, and 33% of these also carried astA. 28% of both EPEC and ETEC, and 6% of DAEC patients had strains with SVG. 54% of EPEC patients carried pet-positive strains alone or in combination with astA; only this DEC group harboured cdt-positive isolates. All ETEC patients carried astA- or astA-aap-positive strains. astA and aap were the most common SVG in DAEC (3% and 2%) and non-DEC strains (21% and 13%). DEC carrying SVG are an important cause of moderate to severe bacterial diarrhoea in Mexican children.

  7. Escherichia coli biofilms

    PubMed Central

    Beloin, Christophe; Roux, Agnès; Ghigo, Jean-Marc

    2008-01-01

    Escherichia coli is a predominant species among facultative anaerobic bacteria of the gastrointestinal tract. Both its frequent community lifestyle and the availability of a wide array of genetic tools contributed to establish E. coli as a relevant model organism for the study of surface colonization. Several key factors, including different extracellular appendages, are implicated in E. coli surface colonization and their expression and activity are finely regulated, both in space and time, to ensure productive events leading to mature biofilm formation. This chapter will present known molecular mechanisms underlying biofilm development in both commensal and pathogenic E. coli. PMID:18453280

  8. [Enteropathogens and antibiotics].

    PubMed

    González-Torralba, Ana; García-Esteban, Coral; Alós, Juan-Ignacio

    2015-08-12

    Infectious gastroenteritis remains a public health problem. The most severe cases are of bacterial origin. In Spain, Campylobacter and Salmonella are the most prevalent bacterial genus, while Yersinia and Shigella are much less frequent. Most cases are usually self-limiting and antibiotic therapy is not generally indicated, unless patients have risk factors for severe infection and shigellosis. Ciprofloxacin, third generation cephalosporins, azithromycin, ampicillin, cotrimoxazole and doxycycline are the most recommended drugs. The susceptibility pattern of the different bacteria determines the choice of the most appropriate treatment. The aim of this review is to analyse the current situation, developments, and evolution of resistance and multidrug resistance in these 4 enteric pathogens.

  9. Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae.

    PubMed

    Chae, Chanhee

    2016-06-01

    Porcine respiratory disease is a multifactorial and complex disease caused by a combination of infectious pathogens, environmental stressors, differences in production systems, and various management practices; hence the name porcine respiratory disease complex (PRDC) is used. Porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneumoniae are considered to be the most important pathogens that cause PRDC. Although interactions among the three major respiratory pathogens are well documented, it is also necessary to understand the interaction between vaccines and the three major respiratory pathogens. PRRSV and M. hyopneumoniae are well known to potentiate PCV2-associated lesions; however, PRRSV and mycoplasmal vaccines can both enhance PCV2 viraemia regardless of the effects of the actual PRRSV or M. hyopneumoniae infection. On the other hand, M. hyopneumoniae potentiates the severity of pneumonia induced by PRRSV, and vaccination against M. hyopneumoniae alone is also able to decrease PRRSV viraemia and PRRSV-induced lung lesions in dually infected pigs. This review focuses on (1) interactions between PCV2, PRRSV, and M. hyopneumoniae; and (2) interactions between vaccines and the three major respiratory pathogens.

  10. Porcine Rotaviruses: Epidemiology, Immune Responses and Control Strategies

    PubMed Central

    Vlasova, Anastasia N.; Amimo, Joshua O.; Saif, Linda J.

    2017-01-01

    Rotaviruses (RVs) are a major cause of acute viral gastroenteritis in young animals and children worldwide. Immunocompetent adults of different species become resistant to clinical disease due to post-infection immunity, immune system maturation and gut physiological changes. Of the 9 RV genogroups (A–I), RV A, B, and C (RVA, RVB, and RVC, respectively) are associated with diarrhea in piglets. Although discovered decades ago, porcine genogroup E RVs (RVE) are uncommon and their pathogenesis is not studied well. The presence of porcine RV H (RVH), a newly defined distinct genogroup, was recently confirmed in diarrheic pigs in Japan, Brazil, and the US. The complex epidemiology, pathogenicity and high genetic diversity of porcine RVAs are widely recognized and well-studied. More recent data show a significant genetic diversity based on the VP7 gene analysis of RVB and C strains in pigs. In this review, we will summarize previous and recent research to provide insights on historic and current prevalence and genetic diversity of porcine RVs in different geographic regions and production systems. We will also provide a brief overview of immune responses to porcine RVs, available control strategies and zoonotic potential of different RV genotypes. An improved understanding of the above parameters may lead to the development of more optimal strategies to manage RV diarrheal disease in swine and humans. PMID:28335454

  11. Human caliciviruses detected in Mexican children admitted to hospital during 1998-2000, with severe acute gastroenteritis not due to other enteropathogens.

    PubMed

    Gutiérrez-Escolano, Ana Lorena; Velázquez, F Raúl; Escobar-Herrera, Jaime; López Saucedo, Catalina; Torres, Javier; Estrada-García, Teresa

    2010-04-01

    Few studies exist regarding the frequency of human caliciviruses as single etiologic agents in sporadic cases, or in outbreaks occurring in children hospitalized for acute gastroenteritis. In this study, a total of 1,129 children of <5 years of age and hospitalized due to acute diarrhea were enrolled from three main hospitals in Mexico City during a period of 3 years (March 1998 to December 2000). After analyzing all fecal samples for several enteropathogens, 396 stools that remained negative were further screened for human caliciviruses by RT-PCR using a primer set specific to norovirus and sapovirus. Human caliciviruses were detected in 5.6% (22/396) of the children. The minimum incidence rate for 1999 were 5.3% (7/132) for 1999 and 7.8% (13/167) for 2000, since only fecal specimens that tested negative to other enteric pathogens were examined. Positive samples were further characterized using specific GI and GII primers and sequencing. Norovirus GII was detected in 19/22 samples, most of them were GII/4, while sapovirus GI/2 was detected in one sample. Associations between the presence of human calicivirus and clinical and epidemiological data revealed that diarrhea occurred with a seasonal pattern, and that children hospitalized due to human calicivirus disease scored an average of 13 +/- 3.2 (SD) points on the Vesikari scale, which corresponded to severe episodes. These results highlight that human caliciviruses, by themselves, are enteropathogens of acute severe diarrhea among young Mexican children requiring hospitalization and that their detection is important in order to reduce the diagnosis gap.

  12. Detection and Characterization of Diarrheagenic Escherichia coli from Young Children in Hanoi, Vietnam

    PubMed Central

    Nguyen, Trung Vu; Le Van, Phung; Le Huy, Chinh; Gia, Khanh Nguyen; Weintraub, Andrej

    2005-01-01

    Diarrhea continues to be one of the most common causes of morbidity and mortality among infants and children in developing countries. Escherichia coli is an emerging agent among pathogens that cause diarrhea. The development of a highly applicable technique for the detection of different categories of diarrheagenic E. coli is important. We have used multiplex PCR by combining eight primer pairs specific for enteroaggregative E. coli (EAEC), enteroinvasive E. coli (EIEC), enterohemorrhagic E. coli, enteropathogenic E. coli (EPEC), and enterotoxigenic E. coli (ETEC). This facilitates the identification of five different categories of diarrheagenic E. coli from stool samples in a single reaction simultaneously. The prevalences of diarrheagenic E. coli were 22.5 and 12% in the diarrhea group and the control group, respectively. Among 587 fecal samples from Vietnamese children under 5 years of age with diarrhea, this technique identified 132 diarrheagenic E. coli strains. This included 68 samples (11.6%) with EAEC, 12 samples (2.0%) with EIEC, 39 samples (6.6%) with EPEC, and 13 samples (2.2%) with ETEC. Among the 249 age-matched controls, 30 samples were positive for diarrheagenic E. coli. The distribution was 18 samples (7.2%) with EAEC, 11 samples (4.4%) with EPEC, and 1 sample (0.4%) with ETEC. PMID:15695676

  13. Incidence of diarrhoeagenic Escherichia coli isolated from young children with diarrhoea in the west of Iran.

    PubMed

    Alikhani, Mohammad Yousef; Sedighi, Iraj; Zamani, Alireza; Aslani, Mohammad Mehdi; Sadrosadat, Taravat

    2012-09-01

    Diarrhoeagenic Escherichia coli (DEC) represents a main group of enteric pathogens that cause human diarrhoea. Because it is not simply distinguished from normal flora by simple laboratory methods, modern molecular diagnostic assays are necessary. Although it is neither necessary nor applicable to perform PCR for all patients, it is of many advantages to verify the prevalence of DEC in different areas by this method. Knowing the prevalence of DEC in an area, we can focus on few pathogens and narrow our antimicrobial treatment. The aim of this study is to evaluate the contribution of the different DEC categories in children diarrhoea in the west of Iran.The stool specimens of 251 children with diarrhoea were collected from June to September 2007. Polymerase chain reaction (PCR) was performed to determine the presence of enteropathogenic (EPEC), enterotoxigenic (ETEC), entero-invasive (EIEC), Shiga toxin-producing (STEC) and entero-aggregative (EAEC) strains. ETEC strains were isolated from 13 and EAEC strains from 16 children. STEC was detected in 7 children, and no EIEC was isolated. Finally, EPEC strains were isolated in 41 cases. EAEC and EPEC are the most frequent DECs in children less than 10 years of age in West of Iran.

  14. A Survey for Escherichia coli Virulence Factors in Asymptomatic Free-Ranging Parrots.

    PubMed

    Becker Saidenberg, André; Robaldo Guedes, Neiva Maria; Fernandes Seixas, Gláucia Helena; da Costa Allgayer, Mariangela; Pacífico de Assis, Erica; Fabio Silveira, Luis; Anne Melville, Priscilla; Benites, Nilson Roberti

    2012-01-01

    Parrots in captivity are frequently affected by Escherichia coli (E. coli) infections. The objective of this study was to collect information on the carrier state for E. coli pathotypes in asymptomatic free-ranging parrots. Cloacal swabs were collected from nestlings of Hyacinth, Lear's macaws and Blue-fronted Amazon parrots and tested by polymerase chain reaction (PCR) for virulence factors commonly found in enteropathogenic, avian pathogenic, and uropathogenic E. coli strains. In total, 44 samples were cultured and E. coli isolates were yielded, from which DNA was extracted and processed by PCR. Genes commonly found in APEC isolates from Blue-fronted Amazon parrots and Hyacinth macaws were expressed in 14 of these 44 samples. One atypical EPEC isolate was obtained from a sample from Lear's macaw. The most commonly found gene was the increased serum survival (iss) gene. This is the first report, that describes such pathotypes in asymptomatic free-living parrots. The findings of this study suggest the presence of a stable host/parasite relationship at the time of the sampling brings a new understanding to the role that E. coli plays in captive and wild parrots. Such information can be used to improve husbandry protocols as well as help conservation efforts of free-living populations.

  15. Diarrheagenic Escherichia coli and Acute and Persistent Diarrhea in Returned Travelers

    PubMed Central

    Schultsz, C.; van den Ende, J.; Cobelens, F.; Vervoort, T.; van Gompel, A.; Wetsteyn, J. C. F. M.; Dankert, J.

    2000-01-01

    To determine the role of diarrheagenic Escherichia coli in acute and persistent diarrhea in returned travelers, a case control study was performed. Enterotoxigenic E. coli (ETEC) was detected in stool samples from 18 (10.7%) of 169 patients and 4 (3.7%) of 108 controls. Enteroaggregative E. coli (EAggEC) was detected in 16 (9.5%) patients and 7 (6.5%) controls. Diffuse adherent E. coli strains were commonly present in both patients (13%) and controls (13.9). Campylobacter and Shigella species were the other bacterial enteropathogens most commonly isolated (10% of patients, 2% of controls). Multivariate analysis showed that the presence of ETEC was associated with acute diarrhea (odds ratio [OR], 6.7; 95% confidence interval [CI], 1.5 to 29.1; P = 0.005), but not with persistent diarrhea (OR, 1.6; 95% CI, 0.4 to 7.4). EAggEC was significantly more often present in patients with acute diarrhea than in controls (P = 0.009), but no significant association remained after multivariate analysis. ETEC and EAggEC are frequently detected in returned travelers with diarrhea. The presence of ETEC strains is associated with acute but not with persistent diarrhea. PMID:11015362

  16. Escherichia coli pathotypes in Pakistan from consecutive floods in 2010 and 2011.

    PubMed

    Bokhari, Habib; Shah, Muhammad Ali; Asad, Saba; Akhtar, Sania; Akram, Muhammad; Wren, Brendan W

    2013-03-01

    This study compares Escherichia coli pathotypes circulating among children in Pakistan during the floods of 2010 and 2011 and from sporadic cases outside flood affected areas. Using multiplex polymerase chain reaction 115 of 205 stool samples (56.29%) were positive for diarrheagenic E. coli from specimens taken during the floods compared with 50 of 400 (12.5%) stool samples being positive for sporadic cases. The E. coli pathotypes were categorized as Enteropathogenic E. coli 33 (28.69%) and 13 (26%), Enterotoxigenic E. coli 29 (25.21%) and 15 (30%), Enteroaggregative E. coli 21 (18.2%) and 18 (36%), Enterohemorrhagic E. coli 5 (4.34%) and 1 (2%) from flood and sporadic cases, respectively. Furthermore, patients co-infected with more than one pathotype were 26 (22.60%) and 3 (6%) from flood and sporadic cases, respectively. The study shows an unexpectedly high rate of isolation of E. coli pathotypes suggesting Pakistan as an endemic region that requires active surveillance particularly during flood periods.

  17. tir- and stx-Positive Escherichia coli in Stream Waters in a Metropolitan Area

    PubMed Central

    Higgins, James A.; Belt, Kenneth T.; Karns, Jeffrey S.; Russell-Anelli, Jonathan; Shelton, Daniel R.

    2005-01-01

    Diarrheagenic Escherichia coli, which may include the enteropathogenic E. coli and the enterohemorrhagic E. coli, are a significant cause of diarrheal disease among infants and children in both developing and developed areas. Disease outbreaks related to freshwater exposure have been documented, but the presence of these organisms in the urban aquatic environment is not well characterized. From April 2002 through April 2004 we conducted weekly surveys of streams in the metropolitan Baltimore, Md., area for the prevalence of potentially pathogenic E. coli by using PCR assays targeting the tir and stx1 and stx2 genes. Coliforms testing positive for the presence of the tir gene were cultured from 653 of 1,218 samples (53%), with a greater prevalence associated with urban, polluted streams than in suburban and forested watershed streams. Polluted urban streams were also more likely to test positive for the presence of one of the stx genes. Sequence analysis of the tir amplicon, as well as the entire tir gene from three isolates, indicated that the pathogenic E. coli present in the stream waters has a high degree of sequence homology with the E. coli O157:H7 serotype. Our data indicate that pathogenic E. coli are continually deposited into a variety of stream habitats and suggest that this organism may be a permanent member of the gastrointestinal microflora of humans and animals in the metropolitan Baltimore area. PMID:15870341

  18. A Survey for Escherichia coli Virulence Factors in Asymptomatic Free-Ranging Parrots

    PubMed Central

    Becker Saidenberg, André; Robaldo Guedes, Neiva Maria; Fernandes Seixas, Gláucia Helena; da Costa Allgayer, Mariangela; Pacífico de Assis, Erica; Fabio Silveira, Luis; Anne Melville, Priscilla; Benites, Nilson Roberti

    2012-01-01

    Parrots in captivity are frequently affected by Escherichia coli (E. coli) infections. The objective of this study was to collect information on the carrier state for E. coli pathotypes in asymptomatic free-ranging parrots. Cloacal swabs were collected from nestlings of Hyacinth, Lear's macaws and Blue-fronted Amazon parrots and tested by polymerase chain reaction (PCR) for virulence factors commonly found in enteropathogenic, avian pathogenic, and uropathogenic E. coli strains. In total, 44 samples were cultured and E. coli isolates were yielded, from which DNA was extracted and processed by PCR. Genes commonly found in APEC isolates from Blue-fronted Amazon parrots and Hyacinth macaws were expressed in 14 of these 44 samples. One atypical EPEC isolate was obtained from a sample from Lear's macaw. The most commonly found gene was the increased serum survival (iss) gene. This is the first report, that describes such pathotypes in asymptomatic free-living parrots. The findings of this study suggest the presence of a stable host/parasite relationship at the time of the sampling brings a new understanding to the role that E. coli plays in captive and wild parrots. Such information can be used to improve husbandry protocols as well as help conservation efforts of free-living populations. PMID:23738135

  19. Virulence genes, antibiotic resistance and integrons in Escherichia coli strains isolated from synanthropic birds from Spain.

    PubMed

    Sacristán, C; Esperón, F; Herrera-León, S; Iglesias, I; Neves, E; Nogal, V; Muñoz, M J; de la Torre, A

    2014-01-01

    The aim of this study was to determine the presence of virulence genes and antibiotic resistance profiles in 164 Escherichia coli strains isolated from birds (feral pigeons, hybrid ducks, house sparrows and spotless starlings) inhabiting urban and rural environments. A total of eight atypical enteropathogenic E. coli strains were identified: one in a house sparrow, four in feral pigeons and three in spotless starlings. Antibiotic resistance was present in 32.9% (54) of E. coli strains. The dominant type of resistance was to tetracycline (21.3%), ampicillin (19.5%) and sulfamethoxazole (18.9%). Five isolates had class 1 integrons containing gene cassettes encoding for dihydrofolate reductase A (dfrA) and aminoglycoside adenyltransferase A (aadA), one in a feral pigeon and four in spotless starlings. To our knowledge, the present study constitutes the first detection of virulence genes from E. coli in spotless starlings and house sparrows, and is also the first identification worldwide of integrons containing antibiotic resistance gene cassettes in E. coli strains from spotless starlings and pigeons.

  20. Molecular characterization of diarrheagenic Escherichia coli strains from stools samples and food products in Colombia.

    PubMed

    Rúgeles, Laura Cristina; Bai, Jing; Martínez, Aída Juliana; Vanegas, María Consuelo; Gómez-Duarte, Oscar Gilberto

    2010-04-15

    The prevalence of diarrheagenic Escherichia coli in childhood diarrhea and the role of contaminated food products in disease transmission in Colombia are largely unknown. The aim of this study is to identify E. coli pathotypes, including E. coli O157:H7, from 108 stool samples from children with acute diarrhea, 38 meat samples and 38 vegetable samples. Multiplex PCR and Bax Dupont systems were used for E. coli pathotype detection. Eighteen (9.8%) E. coli diarrheagenic pathotypes were detected among all clinical and food product samples tested. Four different pathotypes were identified from clinical samples, including enteroaggregative E. coli, enterotoxigenic E. coli, shiga-toxin producing E. coli, and enteropathogenic E. coli. Food product samples were positive for enteroaggregative and shiga-toxin producing E. coli, suggesting that meat and vegetables may be involved in transmission of these E. coli pathotypes in the community. Most E. coli strains identified belong to the phylogenetic groups A and B1, known to be associated with intestinal rather than extraintestinal E. coli clones. Our data is the first molecular E. coli report that confirms the presence of E. coli pathotypes circulating in Colombia among children with diarrhea and food products for human consumption. Implementation of multiplex PCR technology in Latin America and other countries with limited resources may provide an important epidemiological tool for the surveillance of E. coli pathotypes from clinical isolates as well as from water and food product samples.

  1. Prevalence and characteristics of shiga toxin-producing Escherichia coli from healthy cattle in Japan.

    PubMed

    Kobayashi, H; Shimada, J; Nakazawa, M; Morozumi, T; Pohjanvirta, T; Pelkonen, S; Yamamoto, K

    2001-01-01

    The prevalence of Shiga toxin-producing Escherichia coli (STEC) in Japan was examined by using stool samples from 87 calves, 88 heifers, and 183 cows on 78 farms. As determined by screening with stx-PCR, the prevalence was 46% in calves, 66% in heifers, and 69% in cows; as determined by nested stx-PCR, the prevalence was 100% in all animal groups. Of the 962 isolates picked by colony stx hybridization, 92 isolates from 54 farms were characterized to determine their O serogroups, virulence factor genes, and antimicrobial resistance. Of these 92 isolates, 74 (80%) could be classified into O serogroups; 50% of these 74 isolates belonged to O serogroups O8, O26, O84, O113, and O116 and 1 isolate belonged to O serogroup O157. Locus of enterocyte effacement genes were detected in 24% of the isolates, and enterohemorrhagic E. coli (EHEC) hlyA genes were detected in 72% of the isolates. Neither the bundle-forming pilus gene nor the enteropathogenic E. coli adherence factor plasmid was found. STEC strains with characteristics typical of isolates from human EHEC infections, which were regarded as potential EHEC strains, were present on 11.5% of the farms.

  2. Pathotypes of diarrheagenic Escherichia coli in children attending a tertiary care hospital in South India

    PubMed Central

    Rajendran, Priya; Ajjampur, Sitara Swarna Rao; Chidambaram, Divya; Chandrabose, Gunasekaran; Thangaraj, Bhuvaneswari; Sarkar, Rajiv; Samuel, Prasanna; Rajan, Deva Prasanna; Kang, Gagandeep

    2014-01-01

    The prevalence of diarrheagenic Escherichia coli (DEC) in children under 5 years was studied in children with diarrhea and controls in South India. Four polymerase chain reaction (PCR) “schemes” were used to detect genes of the 6 pathotypes of DEC. In 394 children with diarrhea, 203 (52%) DEC infections were found. Among the 198 controls, 126 (63%) DEC infections were found. Enteroaggregative E. coli was the most common pathotype by multiplex PCR both in cases (58, 14.7%) and controls (47, 23.7%), followed by enteropathogenic E. coli seen in 10% cases and 8% of controls. Enterotoxigenic E. coli (ETEC), enterohemorrhagic E. coli (EHEC), enteroinvasive E. coli (EIEC), and diffusely adherent E. coli (DAEC) were found in 4.1%, 2.0%, 1.0%, and 0.5% of cases, respectively. ETEC was found in 2.5% of controls, but EHEC, EIEC, and DAEC were not detected. Overall, no single assay worked well, but by discounting genes with a pathogenicity index of less than 1, it was possible to use the PCR assays to identify DEC in 75/394 (19%) cases and 12/198 (6.1%) controls, while mixed infection could be identified in 8/394 (2%) cases and 2/198 (1%) controls. PMID:20846583

  3. Rapid identification of enterovirulent Escherichia coli strains using polymerase chain reaction from shrimp farms.

    PubMed

    Roy, Debashis; Biswas, Bhabananda; Islam, H M Rakibul; Ahmed, Md Shamim; Rasheduzzaman, Md; Sarower, Md Golam

    2013-11-01

    Although, Escherichia coli is widely distributed in the environment, only a small percentage is pathogenic to humans. The most commonly encountered are those belonging to the Enterotoxigenic (ETEC), Enteroinvasive (EIEC), Enterohaemorrhagic (EHEC) and Enteropathogenic (EPEC) subtypes. Aquaculture premises specially shrimp farm in tropical and subtropical countries largely susceptive to different types of E. coli strains. With the PCR system, an attempt was taken to identify the virulent E. coli in a rapid basis from water, sediment and live shrimp from different shrimp farms established in the shrimp production areas of southwest part of Bangladesh. The target genes chosen for this investigation included the PhoA, a housekeeping gene in all E. coli and thereafter the virulent genes LT1, LT1 and ST1 of ETEC, the VT of EHEC and EAE of EPEC, which were amplified with the primers designed for their specific genes. The restriction enzyme conformation and the gel electrophoresis bands showed the presence of E. coli, among which ETEC and EPEC groups were present in the environmental and biological samples of shrimp farms, brings up into the human health concern. The sanitation conditions amid farm were also investigated to find the link of pathogenic E. coli, which came into the result of less infection if the farm maintains improved sanitation. This study has clearly urged the exigency of periodical quick check of virulent E. coli with the versatile PCR system from brood management to post-harvest handling of shrimp.

  4. Persistent colonization of sheep by Escherichia coli O157:H7 and other E. coli pathotypes.

    PubMed

    Cornick, N A; Booher, S L; Casey, T A; Moon, H W

    2000-11-01

    Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coli O157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 10(7) or 10(10) CFU/strain/animal. The other strains were given only at 10(10) CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 10(7) or 10(10) CFU. One of the ETEC strains also persisted when inoculated at 10(10) CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 10(7) CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes of E. coli.

  5. Persistence of Escherichia coli O157:H7 in experimentally infected swine.

    PubMed

    Booher, S L; Cornick, N A; Moon, H W

    2002-10-02

    These experiments determined the ability of Escherichia coli O157:H7 to colonize and persist in pigs simultaneously inoculated with other pathogenic E. coli strains. Three-months-old pigs were inoculated with a mixture of five E. coli strains. The mixture included two Shiga toxigenic E. coli (STEC) O157:H7 strains, two enterotoxigenic E. coli (ETEC) strains and one enteropathogenic E. coli (EPEC) strain. A high dose mixture with all five strains at 10(10)CFU/animal (CFU: colony forming units) and a low dose mixture with the STEC strains at 10(7)CFU and the EPEC and ETEC strains remaining at 10(10)CFU were used. The STEC strains persisted in the alimentary tracts of some pigs at 2 months post-inoculation, following inoculation with both the high and low dose mixtures. When all strains were given at 10(10)CFU (high dose) the STEC strains persisted in greater numbers and in more pigs than did the other E. coli strains. The results demonstrated that persistent colonization (> or =2 months) by E. coli O157:H7 can occur in pigs. These findings were similar to those reported from sheep inoculated with the same mixture of E. coli strains. The results are consistent with reports suggesting that pigs have the potential to be reservoir hosts for STEC O157:H7.

  6. Abundance of pathogenic Escherichia coli, Salmonella typhimurium and Vibrio cholerae in Nkonkobe drinking water sources.

    PubMed

    Momba, Maggy N B; Malakate, Veronica K; Theron, Jacques

    2006-09-01

    In order to study the prevalence of enteric pathogens capable of causing infection and disease in the rural communities of Nkonkobe, bacterial isolates were collected from several surface water and groundwater sources used by the community for their daily water needs. By making use of selective culture media and the 20E API kit, presumptive Escherichia coli, Salmonella spp. and Vibrio cholerae isolates were obtained and then analysed by polymerase chain reaction assays (PCR). The PCR successfully amplified from water samples a fragment of E. coli uidA gene that codes for beta-D-glucuronidase which is a highly specific characteristic of enteropathogenic E. coli, enterotoxigenic E. coli and entero-invasive E. coli. The PCR also amplified the epsM gene from water samples containing toxigenic V. cholerae. Although E. coli was mostly detected in groundwater sources, toxigenic V. cholerae was detected in both surface and groundwater sources. There was a possibility of Salmonella typhimurium in Ngqele and Dyamala borehole water samples. The presence of these pathogenic bacteria in the above drinking water sources may pose a serious health risk to consumers.

  7. Seasonal distribution and prevalence of diarrheagenic Escherichia coli in different aquatic environments in Taiwan.

    PubMed

    Huang, Wen-Chien; Hsu, Bing-Mu; Kao, Po-Min; Tao, Chi-Wei; Ho, Ying-Ning; Kuo, Chun-Wei; Huang, Yu-Li

    2016-02-01

    Diarrheagenic Escherichia coli (DEC) are the most common agents of diarrhea. Waterborne DEC could pose a potential health risk to human through agricultural, household, recreational, and industrial use. There are few published reports on the detection of DEC and its seasonal distribution in aquatic environments. The presence of DEC in different types of aquatic environments was investigated in this study. Water samples were collected from major rivers, water reservoirs, and recreational hot springs throughout Taiwan. Moreover, an intensive water sampling plan was carried out along Puzih River. The detection of DEC target genes was used to determine the presence of enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), and Shiga toxin-producing E. coli (STEC). Among the 383 water samples analyzed, DEC was found in 122 (31.8%) samples. The detection rate varied by genotype, raging from 3.6% for STEC to 17.2% for EPEC. The DEC detection rate was higher from river waters than reservoirs and hot springs. In addition, DEC was detected at a higher rate in spring and summer. The presence of EPEC was significantly associated with total coliform levels among hot spring samples. Moreover, the presence of ETEC in river water samples was associated with heterotrophic plate counts. Water with EPEC differed significantly in pH from Puzih River samples. These results suggest that seasonal characteristics may affect the presence of DEC in different aquatic environments, and water quality indicators may be indicative of the presence of DEC.

  8. Establishment and characterisation of a porcine rubulavirus (LPMV) persistent infection in porcine kidney cells.

    PubMed

    Hjertner, B; Linné, T; Moreno-López, J

    1997-01-01

    Porcine rubulavirus (LPMV) can establish persistent infections in porcine kidney cells. Cell cultures characterised at passages 25 and 65 demonstrated haemadsorption, formation of syncytia, and a slower growth rate. The nucleoprotein (NP) and haemagglutinin-neuraminidase (HN) protein were present in all cells, although not to the same extent as in wild type infected cells. Incubation of the cell cultures with virus neutralising antibodies could not cure them from the infection. The cells were resistant to LPMV high multiplicity superinfection, but lysed rapidly upon infection with VSV. These cells thus fulfilled the criteria of a true persistent infection. Viral particles were released into the medium from the persistently infected cells as measured by HA and infection of PK-15 cells with medium from the persistently infected cells. The infectious titer of the virus released from the persistently infected cells was 3 logs lower compared to wild type virus, the HN titer still being comparable. Virus released from the persistently infected cells was unable to cause a lytic infection in PK-15 cells, and showed a reduced ability to spread when compared to a LPMV lytic infection.

  9. Porcine relaxin, a 500 million-year-old hormone? the tunicate Ciona intestinalis has porcine relaxin.

    PubMed

    Georges, D; Schwabe, C

    1999-07-01

    The fossil record of tunicates reaches back to the upper Cambrian period. Ascidians have mobile, tadpole-like juvenile forms with a notochord, which inspired the classification of tunicates as Urochordata, i.e., predecessors of vertebrates. The genome of the tunicate Ciona intestinalis contains a relaxin coding region that is organized like a mammalian gene, i.e., signal peptide, B-chain domain, connecting peptide domain, followed by the A-chain domain with a stop codon after cysteine A-22. RNA-derived cDNA encodes a relaxin that is identical to the circulating form of the porcine hormone. In contrast to the porcine gene, the ascidian gene has no intron in the C-peptide domain, and in that respect is similar to the bombyxin gene of the silkworm. During the spawning period, only enough relaxin could be extracted and isolated from gonads of C. intestinalis for a partial sequence analysis. Remarkable as it may be, these findings suggest that relaxin is identical in pigs, whales, and the tunicate C. intestinalis.

  10. Porcine allergy and IgE.

    PubMed

    Rupa, Prithy; Schmied, Julie; Wilkie, Bruce N

    2009-11-15

    Anaphylaxis was reported in 1963 in pigs experimentally sensitized with ovalbumin and was subsequently associated indirectly with IgE-related antibodies by functional assays to confirm heat-labile passive cutaneous anaphylaxis (PCA), reverse passive anaphylaxis (RPA) and Prausnitz-Küstner (PK) reactions to this and other allergens. The immunoglobulin mediating immediate hypersensitivity could be cross-adsorbed with anti-human IgE. Porcine IgE epsilon chain has been cloned and sequenced. Rabbit anti-pig IgE has been described by two groups, as has cross reactivity with pig IgE of various heterologous polyclonal and monoclonal anti-IgEs. Pigs develop transient post-weaning food allergy to soy allergens which can be prevented by pre-weaning feeding of soy proteins in sufficient quantity. Natural hypersensitivity also occurs to nematodes. Recently, experimental allergy has been induced in outbred pigs to peanut and to egg allergens which manifest as respiratory, cutaneous and enteric signs similar to those of human food allergy. These models are platforms for comparative allergy research as realistic alternatives to use of inbred mice or humans for investigation of pathogenesis, prophylaxis and therapy.

  11. Genetic and antigenic changes in porcine rubulavirus

    PubMed Central

    Sánchez-Betancourt, José I.; Trujillo, María E.; Mendoza, Susana E.; Reyes-Leyva, Julio; Alonso, Rogelio A.

    2012-01-01

    Blue eye disease, caused by a porcine rubulavirus (PoRV), is an emergent viral swine disease that has been endemic in Mexico since 1980. Atypical outbreaks were detected in 1990 and 2003. Growing and adult pigs presented neurological signs, mild neurological signs were observed in piglets, and severe reproductive problems were observed in adults. Amino acid sequence comparisons and phylogenetic analysis of the hemagglutinin-neuraminidase (HN) protein revealed genetically different lineages. We used cross-neutralization assays, with homologous and heterologous antisera, to determine the antigenic relatedness values for the PoRV isolates. We found antigenic changes among several strains and identified a highly divergent one, making up a new serogroup. It seems that genetically and antigenically different PoRV strains are circulating simultaneously in the swine population in the geographical region studied. The cross neutralization studies suggest that the HN is not the only antigenic determinant participating in the antigenic changes among the different PoRV strains. PMID:22754092

  12. Ultrafast laser machining of porcine sclera

    NASA Astrophysics Data System (ADS)

    Góra, W. S.; Carter, R. M.; Dhillon, B.; Hand, D. P.; Shephard, J. D.

    2015-07-01

    The use of ultrafast lasers (pulsed lasers with pulse lengths of a few picoseconds or less) offers the possibility for minimally invasive removal of soft ophthalmic tissue. The potential for using pico- and femtosecond pulses for modification of scleral tissue has been reported elsewhere [1-6] and has resulted in the introduction of new, minimally invasive, procedures into clinical practice [3, 5-10]. Our research is focused on finding optimal parameters for picosecond laser machining of scleral tissue without introducing any unwanted collateral damage to the tissue. Experiments were carried out on hydrated porcine sclera in vitro, which has similar collagen organization, histology and water content (~70%) to human tissue. In this paper we present a 2D finite element ablation model which employs a one-step heating process. It is assumed that the incident laser radiation that is not reflected is absorbed in the tissue according to the Beer-Lambert law and transformed into heat energy. The experimental setup uses an industrial picosecond laser (TRUMPF TruMicro 5x50) with 5.9 ps pulses at 1030 nm, with pulse energies up to 125 μJ and a focused spot diameter of 35 μm. The use of a scan head allows flexibility in designing various scanning patterns. We show that picosecond pulses are capable of modifying scleral tissue without introducing collateral damage. This offers a possible route for minimally invasive sclerostomy. Many scanning patterns including single line ablation, square and circular cavity removal were tested.

  13. Steroid binding domain of porcine estrogen receptor

    SciTech Connect

    Koike, S.; Nii, A.; Sakai, M.; Muramatsu, M.

    1987-05-05

    For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), the authors have made use of affinity labeling of partially purified ER with (/sup 3/H)tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or ..cap alpha..-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.

  14. KBSH parvovirus: comparison with porcine parvovirus.

    PubMed Central

    Molitor, T W; Joo, H S; Collett, M S

    1985-01-01

    We compared the molecular, antigenic, and pathogenic properties of KBSH parvovirus to those of porcine parvovirus (PPV) isolate NADL-8. KBSH, propagated in swine testes cells in culture, possessed two major capsid polypeptides of 83 and 64 kilodaltons that were similar in size to those of PPV. KBSH-infected cells also contained an 86-kilodalton nonstructural polypeptide that was identical in size to the PPV nonstructural polypeptide (NS-1). The KBSH polypeptides were structurally similar but not identical to the corresponding PPV polypeptides, as revealed by partial proteolysis mapping. Viral replicative-form DNA from KBSH-infected cells was similar in size to PPV replicative-form DNA and exhibited similar but not identical restriction endonuclease cleavage patterns to that of PPV replicative-form DNA. Antigenically, the two viruses were also very closely related. By using heterologous and homologous antisera, the two viruses were indistinguishable in hemagglutination inhibition and immunoprecipitation assays. However, pathogenically these viruses were dramatically different. NADL-8 caused fetal death when injected into swine fetuses in utero and viremia and high persisting antibody titers when administered orally to weaning-age swine. KBSH-inoculated fetuses were normal in appearance, and pigs orally exposed to KBSH failed to establish viremia and demonstrated only transient antibody titers. Thus, KBSH appears to be a PPV that is very closely related to a highly pathogenic PPV isolate, yet is itself nonpathogenic in swine. This reduced pathogenic potential of KBSH may be attributable to its poor ability to replicate in swine. Images PMID:2991553

  15. A Genetic Porcine Model of Cancer

    PubMed Central

    Schook, Lawrence B.; Collares, Tiago V.; Hu, Wenping; Liang, Ying; Rodrigues, Fernanda M.; Rund, Laurie A.; Schachtschneider, Kyle M.; Seixas, Fabiana K.; Singh, Kuldeep; Wells, Kevin D.; Walters, Eric M.; Prather, Randall S.; Counter, Christopher M.

    2015-01-01

    The large size of the pig and its similarity in anatomy, physiology, metabolism, and genetics to humans make it an ideal platform to develop a genetically defined, large animal model of cancer. To this end, we created a transgenic “oncopig” line encoding Cre recombinase inducible porcine transgenes encoding KRASG12D and TP53R167H, which represent a commonly mutated oncogene and tumor suppressor in human cancers, respectively. Treatment of cells derived from these oncopigs with the adenovirus encoding Cre (AdCre) led to KRASG12D and TP53R167H expression, which rendered the cells transformed in culture and tumorigenic when engrafted into immunocompromised mice. Finally, injection of AdCre directly into these oncopigs led to the rapid and reproducible tumor development of mesenchymal origin. Transgenic animals receiving AdGFP (green fluorescent protein) did not have any tumor mass formation or altered histopathology. This oncopig line could thus serve as a genetically malleable model for potentially a wide spectrum of cancers, while controlling for temporal or spatial genesis, which should prove invaluable to studies previously hampered by the lack of a large animal model of cancer. PMID:26132737

  16. Nuclear protein extraction from frozen porcine myocardium.

    PubMed

    Kuster, Diederik W D; Merkus, Daphne; Jorna, Huub J J; Dekkers, Dick H W; Duncker, Dirk J; Verhoeven, Adrie J M

    2011-06-01

    Protocols for the extraction of nuclear proteins have been developed for cultured cells and fresh tissue, but sometimes only frozen tissue is available. We have optimized the homogenization procedure and subsequent fractionation protocol for the preparation of nuclear protein extracts from frozen porcine left ventricular (LV) tissue. This method gave a highly reproducible protein yield (6.5±0.7% of total protein; mean±SE, n=9) and a 6-fold enrichment of the nuclear marker protein B23. The nuclear protein extracts were essentially devoid of cytosolic, myofilament, and histone proteins. Compared to nuclear extracts from fresh LV tissue, some loss of nuclear proteins to the cytosolic fraction was observed. Using this method, we studied the distribution of tyrosine phosphorylated signal transducer and activator of transcription 3 (PY-STAT3) in LV tissue of animals treated with the β-agonist dobutamine. Upon treatment, PY-STAT3 increased 30.2±8.5-fold in total homogenates, but only 6.9±2.1-fold (n=4, P=0.03) in nuclear protein extracts. Of all PY-STAT3 formed, only a minor fraction appeared in the nuclear fraction. This simple and reproducible protocol yielded nuclear protein extracts that were highly enriched in nuclear proteins with almost complete removal of cytosolic and myofilament proteins. This nuclear protein extraction protocol is therefore well-suited for nuclear proteome analysis of frozen heart tissue collected in biobanks.

  17. Immunization of swine with heat-stable Escherichia coli enterotoxin coupled to a carrier protein does not protect suckling pigs against an Escherichia coli strain that produces heat-stable enterotoxin.

    PubMed Central

    Moon, H W; Baetz, A L; Giannella, R A

    1983-01-01

    Pregnant swine were immunized parenterally with purified heat-stable Escherichia coli enterotoxin that was made antigenic by coupling it to bovine immunoglobulin G. Immunized swine had high titers of antitoxin in serum and colostrum as measured by radioimmunoassay. However, the heat-stable enterotoxin neutralizing titers of the serum and colostrum from immunized swine were comparatively low. Newborn pigs suckling their immunized dams were not protected against challenge with porcine enterotoxigenic E. coli that produce heat-stable toxin but do not produce heat-labile toxin. PMID:6339398

  18. Half-life of porcine antibodies absorbed from a colostrum supplement containing porcine immunoglobulins.

    PubMed

    Polo, J; Campbell, J M; Crenshaw, J; Rodríguez, C; Pujol, N; Navarro, N; Pujols, J

    2012-12-01

    Absorption of immunoglobulins (Ig) at birth from colostrum is essential for piglet survival. The objective was to evaluate the half-life of antibodies absorbed in the bloodstream of newborn piglets orally fed a colostrum supplement (CS) containing energy (fat and carbohydrates) and IgG from porcine plasma. Viable piglets (n = 23; 900 to 1,800 g BW) from 6 sows were colostrum deprived and blood sampled and within the next 2 h of life randomly allocated to either control group (n = 9) providing 30 mL of Ig-free milk replacer or a group (n = 14) receiving 30 mL of CS by oral gavage. Piglets were transported to a Biosafety Level 3 facility (Centre de Recerca en Sanitat Animal, Spain) and fed Ig-free milk replacer every 3 to 4 h for 15 d. Survival, weight, plasma IgG content by radial immunodiffusion (RID), and antibodies against porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome (PRRS), Mycoplasma hyopneumoniae (Mhy), and swine influenza virus (SIV) were determined by specific ELISA before treatment administration, at 24 h, and weekly for 56 d. Clinical symptoms were not observed for either group. Mortality index was lower (17 vs. 38%; P < 0.02) and BW higher (17.7 vs. 15.3 kg; P = 0.035) for pigs supplemented with CS than piglets in the control group. At 24 h postadministration, the CS group had a plasma IgG mean of 7.6 ± 0.06 vs. 0.14 ± 0.03 mg/mL for the control group. The IgG levels in the CS group decayed until day 21 when de novo synthesis of IgG was detected in 25% of piglets. Half-life of antibody concentration (HLAC) by RID was 6.2 d. In the CS group, efficiency of PCV2 and PPV antibody transfer was high. For PCV2, all animals remained positive by day 56 and the calculated HLAC was 17.7 d. For PPV, 72.7% of piglets were ELISA positive by day 35 and HLAC was 12.0 d. For PRRS, all piglets remained positive by day 14 and the calculated HLAC was 11.9 d. For Mhy and SIV the calculated HLAC were 8.4 and 3.0 d

  19. Comparison of human and porcine skin for characterization of sunscreens

    NASA Astrophysics Data System (ADS)

    Weigmann, Hans-Jürgen; Schanzer, Sabine; Patzelt, Alexa; Bahaban, Virginie; Durat, Fabienne; Sterry, Wolfram; Lademann, Jürgen

    2009-03-01

    The universal sun protection factor (USPF) characterizing sunscreen efficacy based on spectroscopically determined data, which were obtained using the tape stripping procedure. The USPF takes into account the complete ultraviolet (UV) spectral range in contrast to the classical sun protection factor (SPF). Until now, the USPF determination has been evaluated only in human skin. However, investigating new filters not yet licensed excludes in vivo investigation on human skin but requires the utilization of a suitable skin model. The penetration behavior and the protection efficacy of 10 commercial sunscreens characterized by USPF were investigated, comparing human and porcine skin. The penetration behavior found for typical UV filter substances is nearly identical for both skin types. The comparison of the USPF obtained for human and porcine skin results in a linear relation between both USPF values with a correlation factor R2=0.98. The results demonstrate the possibility for the use of porcine skin to determine the protection efficacy of sunscreens.

  20. Spatial Clustering of Porcine Cysticercosis in Mbulu District, Northern Tanzania

    PubMed Central

    Ngowi, Helena A.; Kassuku, Ayub A.; Carabin, Hélène; Mlangwa, James E. D.; Mlozi, Malongo R. S.; Mbilinyi, Boniface P.; Willingham, Arve L.

    2010-01-01

    Background Porcine cysticercosis is caused by a zoonotic tapeworm, Taenia solium, which causes serious disease syndromes in human. Effective control of the parasite requires knowledge on the burden and pattern of the infections in order to properly direct limited resources. The objective of this study was to establish the spatial distribution of porcine cysticercosis in Mbulu district, northern Tanzania, to guide control strategies. Methodology/Principal Findings This study is a secondary analysis of data collected during the baseline and follow-up periods of a randomized community trial aiming at reducing the incidence rate of porcine cysticercosis through an educational program. At baseline, 784 randomly selected pig-keeping households located in 42 villages in 14 wards were included. Lingual examination of indigenous pigs aged 2–12 (median 8) months, one randomly selected from each household, were conducted. Data from the control group of the randomized trial that included 21 of the 42 villages were used for the incidence study. A total of 295 pig-keeping households were provided with sentinel pigs (one each) and reassessed for cysticercosis incidence once or twice for 2–9 (median 4) months using lingual examination and antigen ELISA. Prevalence of porcine cysticercosis was computed in Epi Info 3.5. The prevalence and incidence of porcine cysticercosis were mapped at household level using ArcView 3.2. K functions were computed in R software to assess general clustering of porcine cysticercosis. Spatial scan statistics were computed in SatScan to identify local clusters of the infection. The overall prevalence of porcine cysticercosis was 7.3% (95% CI: 5.6, 9.4; n = 784). The K functions revealed a significant overall clustering of porcine cysticercosis incidence for all distances between 600 m and 5 km from a randomly chosen case household based on Ag-ELISA. Lingual examination revealed clustering from 650 m to 6 km and between 7.5 and 10 km. The

  1. [Recent advance on blood group antigen modification of porcine erythrocytes].

    PubMed

    Wang, Jie-Xi; Zhang, Yang-Pei

    2002-06-01

    Advances in the field of xenotransplantation raise the intriguing possibility of using porcine red blood cells (pRBCs) as an alternative source for blood transfusion. Serologically, pRBCs share a number of characteristics with human red blood cells (RBCs), so pRBCs are considered the most likely donor for xenotransfusion. However, xenoantigens on porcine erythrocytes play major roles in antibody-mediated RBC destruction. Although the alphaGal epitope (Galalpha1, 3Galbeta1, 4GalNAc-R) is the major xenoantigen on porcine erythrocytes and is responsible for the binding of the majority of human natural antibodies, other non-alphaGal xenoantigens have been identified. The importance of these non-alphaGal xenoantigens in binding human natural antibodies and subsequently triggering immunological responses cannot be underestimated.

  2. Temperature profiles of different cooling methods in porcine pancreas procurement.

    PubMed

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  3. Diarrheagenic Escherichia coli.

    PubMed

    Gomes, Tânia A T; Elias, Waldir P; Scaletsky, Isabel C A; Guth, Beatriz E C; Rodrigues, Juliana F; Piazza, Roxane M F; Ferreira, Luís C S; Martinez, Marina B

    2016-12-01

    Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.

  4. Tritiated porcine dynorphin (1-17): synthesis and characterization

    SciTech Connect

    Houghten, R.A.

    1982-10-18

    Tritiated porcine dynorphin (1-17) has been prepared from its corresponding iodinated analog. The iodinated analog (diiodotyrosine at position 1) was synthesized, along with its non-iodinated counterpart, by the solid-phase method. Catalytic exchange of this iodinated analog in the presence of tritium yielded tritiated porcine dynorphin having a specific activity of 42 Ci/mmole. Both the native, iodinated and tritiated dynorphin analogs were shown to be homogenous by chromatography on carboxymethylcellulose, paper chromatography, amino acid analysis, electrophoresis, high performance liquid chromatography and isoelectric focusing on polyacrylamide.

  5. L. plantarum prevents Enteroinvasive Escherichia coli-induced tight junction proteins changes in intestinal epithelial cells

    PubMed Central

    2009-01-01

    Background It is increasingly recognized that Lactobacillus plantarum (L. plantarum) has the ability to protect against Enteropathogenic Escherichia coli (EPEC)-induced damage of the epithelial monolayer barrier function by preventing changes in host cell morphology, attaching/effacing (A/E) lesion formation, monolayer resistance, and macromolecular permeability. However, the cellular mechanism involved in this protective effect still remained to be clarified. Methods This study was to investigate the effect of L. plantarum on the changes of Caco-2 cells responding to Enteroinvasive Escherichia coli (EIEC), the permeability of cell monolayer and the transmissivity of dextran, and the distribution and expression of the tight junction (TJ) proteins, such as Claudin-1, Occludin, JAM-1 and ZO-1 were examined when infected with EIEC or adhesived of L. plantarum after infection by confocal laser scanning microscopy (CLSM), immunohistochemistry and Western blotting, the cytoskeleton protein F-actin were observed with FITC-phalloidin. Results This study demonstrated that the transepithelial electrical resistance (TER) step down and dextran integrated intensity (DII) step up with time after infected with EIEC, but after treating with L. plantarum, the changes of TER and DII were improved as compared with EIEC group. L. plantarum prevented the damage of expression and rearrangement of Claudin-1, Occludin, JAM-1 and ZO-1 proteins induced by EIEC, and could ameliorate the injury of cytoskeleton protein F-actin infected with EIEC. Conclusion L. plantarum exerted a protective effect against the damage to integrity of Caco-2 monolayer cells and the structure and distribution of TJ proteins by EIEC infection. PMID:19331693

  6. Escherichia coli strains colonising the gastrointestinal tract protect germfree mice against Salmonella typhimurium infection

    PubMed Central

    Hudault, S; Guignot, J; Servin, A

    2001-01-01

    BACKGROUND—Escherichia coli is part of the normal gastrointestinal microflora which exerts a barrier effect against enteropathogens. Several E coli strains develop a protective effect against other Enterobacteriaceae.
AIMS—Two E coli strains, EM0, a human faecal strain, and JM105 K-12 were tested for their ability to prevent in vivo and in vitro infection by Salmonella typhimurium C5.
METHODS—Inhibition of C5 cell invasion by E coli was investigated in vitro using Caco-2/TC7 cells. The protective effect of E coli was examined in vivo in germfree or conventional C3H/He/Oujco mice orally infected by the lethal strain C5.
RESULTS—EMO expresses haemolysin and cytotoxic necrotising factor in vitro. In vitro, the two strains did not prevent the growth of C5 by secreted microcins or modified cell invasion of C5. In vivo, establishment of EM0 or JM105 in the gut of germfree mice resulted in a significant increase in the number of surviving mice: 11/12 and 9/12, respectively, at 58 days after infection (2×106/mouse) versus 0/12 in control germfree group at 13 days after infection. Colonisation level and translocation rate of C5 were significantly reduced during the three days after infection. In contrast, no reduction in faecal C5 excretion was observed in C5 infected conventional mice (1×108/mouse) receiving the EM0 or JM105 cultures daily.
CONCLUSIONS—Establishment of E coli strains, which do not display antimicrobial activity, protects germfree mice against infection and delays the establishment of C5 in the gut. Possible mechanisms of defence are discussed.


Keywords: Escherichia coli; gastrointestinal infection; Salmonella; germfree mice; bacterial antagonism PMID:11413110

  7. Protein-free phospholipid emulsion treatment improved cardiopulmonary function and survival in porcine sepsis.

    PubMed

    Goldfarb, Roy D; Parker, Thomas S; Levine, Daniel M; Glock, Dana; Akhter, Imran; Alkhudari, Azzam; McCarthy, Robert J; David, Eric M; Gordon, Bruce R; Saal, Stuart D; Rubin, Albert L; Trenholme, Gordon M; Parrillo, Joseph E

    2003-02-01

    Lipoprotein phospholipid (PL) plays a major role in neutralization of endotoxin. This study tested the hypothesis that prophylactic administration of a PL-enriched emulsion (PRE), which augments PL content of serum lipoproteins and neutralizes endotoxin in vitro, would preserve cardiovascular function and improve survival in porcine septic peritonitis. A control group was compared with low-, mid-, and high-dose treatment groups that received PRE by primed continuous infusion for 48 h. A fibrin clot containing live Escherichia coli 0111.B4 was implanted intraperitoneally 30 min after the priming dose. Survival increased in a dose-dependent manner and was correlated with serum PL. Infused PL was associated with high-density lipoprotein in the low-dose group and all serum lipoproteins at higher doses. Treatment significantly lowered serum endotoxin and tumor necrosis factor (TNF)-alpha, preserved cardiac output and ejection fraction, and attenuated increases in systemic and pulmonary vascular resistances. This study demonstrated that augmentation of lipoprotein PL via administration of PRE improved survival and offered a novel therapeutic approach to sepsis.

  8. Porcine Epidemic Diarrhea Virus among Farmed Pigs, Ukraine

    PubMed Central

    Carr, John; Ellis, Richard J.; Steinbach, Falko; Williamson, Susanna

    2015-01-01

    An outbreak of porcine epidemic diarrhea occurred in the summer of 2014 in Ukraine, severely affecting piglets <10 days of age; the mortality rate approached 100%. Full genome sequencing showed the virus to be closely related to strains reported from North America, showing a sequence identity of up to 99.8%. PMID:26584081

  9. Shotgun proteomic analysis of porcine colostrum and mature milk.

    PubMed

    Ogawa, Shohei; Tsukahara, Takamitsu; Nishibayashi, Ryoichiro; Nakatani, Masako; Okutani, Mie; Nakanishi, Nobuo; Ushida, Kazunari; Inoue, Ryo

    2014-04-01

    The epitheliochorial nature of the porcine placenta prevents the transfer of maternal immunity. Therefore, ingestion of the colostrum immediately after birth is crucial for neonatal piglets to acquire passive immunity from the sow. We performed a shotgun proteomic analysis of porcine milk to reveal in detail the protein composition of porcine milk. On the basis of the Swiss-Prot database, 113 and 118 proteins were identified in the porcine colostrum and mature milk, respectively, and 50 of these proteins were common to both samples. Some immune-related proteins, including interleukin-18 (IL-18), were unique to the colostrum. The IL-18 concentration in the colostrum and mature milk of four sows was measured to validate the proteomic analysis, and IL-18 was only detected in the colostrum (191.0 ± 53.9 pg/mL) and not in mature milk. In addition, some proteins involved in primary defense, such as azurocidin, which has never been detected in any other mammal's milk, were also identified in the colostrum.

  10. Dystrophin deficiency-induced changes in porcine skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel porcine stress syndrome was detected in the U.S. Meat Animal Research Center’s swine research population when two sibling barrows died of apparent stress symptoms (open mouth breathing, vocalization, and refusal to move or stand) after transport at 12 weeks of age. At eight weeks of age, the...

  11. Adenosine modulates LPS-induced cytokine production in porcine monocytes.

    PubMed

    Ondrackova, Petra; Kovaru, Hana; Kovaru, Frantisek; Leva, Lenka; Faldyna, Martin

    2013-03-01

    Adenosine plays an important role during inflammation, particularly through modulation of monocyte function. The objective of the present study was to evaluate the effect of synthetic adenosine analogs on cytokine production by porcine monocytes. The LPS-stimulated cytokine production was measured by flow cytometry and quantitative real-time PCR. Adenosine receptor expression was measured by quantitative real-time PCR. The present study demonstrates that adenosine analog N-ethylcarboxyamidoadenosine (NECA) down-regulates TNF-α production and up-regulates IL-8 production by LPS-stimulated porcine monocytes. The effect was more pronounced in CD163(-) subset of monocytes compared to the CD163(+) subset. Although both monocyte subsets express mRNA for A1, A2A, A2B and A3 adenosine receptors, the treatment of monocytes with various adenosine receptor agonists and antagonists proved that the effect of adenosine is mediated preferentially via A2A adenosine receptor. Moreover, the study suggests that the effect of NECA on porcine monocytes alters the levels of the cytokines which could play a role in the differentiation of naive T cells into Th17 cells. The results suggest that adenosine plays an important role in modulation of cytokine production by porcine monocytes.

  12. Age and nursing affect the neonatal porcine uterine transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lactocrine hypothesis for maternal programming of neonatal development was proposed to describe a mechanism through which milk-borne bioactive factors, delivered from mother to nursing offspring, could affect development of tissues, including the uterus. Porcine uterine development, initiated be...

  13. Porcine reproductive and respiratory syndrome (PRRS): an immune dysregulatory pandemic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory disease syndrome (PRRS) is a viral pandemic that especially affects neonates within the "critical window" of immunological development. PRRS was recognized in 1987 and within a few years became pandemic causing an estimated yearly $600,000 economic loss in the US...

  14. Cryopreservation of primarily isolated porcine hepatocytes with UW solution.

    PubMed

    Kunieda, Takemi; Maruyama, Masanobu; Okitsu, Teru; Shibata, Norikuni; Takesue, Michihiko; Totsugawa, Toshinori; Kosaka, Yoshikazu; Arata, Takashi; Kobayashi, Kazuya; Ikeda, Hideaki; Oshita, Mizuko; Nakaji, Shuhei; Ohmoto, Kenji; Yamamoto, Shinichiro; Kurabayashi, Yuzuru; Kodama, Makoto; Tanaka, Noriaki; Kobayashi, Naoya

    2003-01-01

    Development of liver-targeted cell therapies, such as hepatocyte transplantation and bioartificial livers, requires a large amount of functional hepatocytes as needed. To achieve this development, establishing an excellent cryopreservation method of hepatocytes is an extremely important issue. Therefore, we performed a comparative review of cryoprotective effects of various cryopreservation solutions using primarily isolated porcine hepatocytes. Porcine hepatocytes were isolated with a four-step dispase and collagenase perfusion method. The obtained hepatocytes with the initial viabilities of 76%, 84%, and 96% were assigned to the following four groups for cryopreservation at -80 degrees C: Dulbecco's modified Eagle's medium (DMEM) + 10% fetal bovine serum (FBS) + 12% dimethyl sulfoxide (DMSO) (group A), University of Wisconsin (UW) solution + 12% DMSO (group B), Cell Banker 1 (group C), and Cell Banker 2 (group D). The hepatocytes in each group were thawed at 3 days, 10 days, and 5 months of cryopreservation and subjected to comparative analyses, including viability, plating efficiency, LDH release, ammonia removal test, and lentiviral gene transfer. These parameters were the most favorable in the hepatocytes cryopreserved with UW solution. Approximately 5% of thawed cryopreserved porcine hepatocytes expressed LacZ activity after lentiviral transduction. Intrasplenic transplantation of UW solution-cryopreserved hepatocytes improved the survival of rats treated with D-galactosamine. UW solution maintained the functions of cryopreserved porcine hepatocytes.

  15. Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells.

    PubMed

    Qu, Chang-qing; Zhang, Guo-hua; Zhang, Li-jie; Yang, Gong-she

    2007-02-01

    Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering.

  16. Introduction to porcine red blood cells: implications for xenotransfusion.

    PubMed

    Zhu, A

    2000-04-01

    Advances in the field of xenotransplantation raise the intriguing possibility of using porcine red blood cells (pRBCs) as an alternative source for blood transfusion. The domestic pig is considered the most likely donor species for xenotransplantation. However, identification of xenoantigens on porcine erythrocytes and elucidation of their possible roles in antibody-mediated RBC destruction are necessary for developing clinical strategies to circumvent immunological incompatibility between humans and pigs. Although the alphaGal epitope (Galalpha1,3Galbeta1,4GIcNAc-R) is the major xenoantigen on porcine erythrocytes and is responsible for the binding of the majority of human natural antibodies, other non-alphaGal xenoantigens have been identified. The importance of these non-alphaGal xenoantigens in binding human natural antibodies and subsequently triggering immunological responses cannot be underestimated. Our data suggest that non-alphaGal xenoantigen(s) identified on the porcine erythrocyte membrane are not only recognized by xenoreactive human natural antibodies but are also involved in complement-mediated hemolysis.

  17. Blood gas and hematological changes in experimental peracute porcine pleuropneumonia.

    PubMed Central

    Kiorpes, A L; MacWilliams, P S; Schenkman, D I; Bäckström, L R

    1990-01-01

    The effect of experimental, peracute, porcine pleuropneumonia on arterial blood gases, acid base status, the leukogram, and gross and microscopic lung structure was studied in nine growing pigs (mean weight +/- SD 10.6 +/- 2.0 kg). Pigs were inoculated intranasally with a virulent serotype 5 isolate of Actinobacillus pleuropneumoniae, and all showed signs typical of the disease within four hours. Death occurred in all pigs from 4.5 to 32 hours postinoculation (mean 14 hours). Gross and microscopic changes were typical of porcine pleuropneumonia in all pigs. Changes in the leukogram included a rapid decline in total white cells, segmented neutrophils, lymphocytes, monocytes, and eosinophils. Pigs maintained alveolar ventilation throughout the study as arterial CO2 tension was unchanged; however, arterial O2 tension and pH decreased from (mean +/- SD) 95.2 +/- 5.7 torr and 7.463 +/- 0.018 at baseline to 62.1 +/- 12.3 torr and 7.388 +/- 0.045, respectively, within 90 minutes prior to death. The data showed that in this model of peracute porcine pleuropneumonia, progressive ventilatory failure was not a feature of the disease, and the blood gas values and acid base status were maintained within physiological ranges. The histopathological hematological and physiological findings were consistent with the hypothesis that peracute porcine pleuropneumonia resembles septic shock. Images Fig. 2. Fig. 3. PMID:2106382

  18. Porcine circovirus: transcription and rolling-circle DNA replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review summarizes the molecular studies pertaining to porcine circovirus (PCV) transcription and DNA replication. The genome of PCV is circular, single-stranded DNA and contains 1759-1768 nucleotides. Both the genome-strand (packaged in the virus particle) and the complementary-strand (synthesi...

  19. Detection of a Novel Porcine Parvovirus in Chinese Swine Herds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine whether the recently reported novel porcine parvovirus type 4 (PPV4) is prevalent in China, a set of PPV4 specific primers were designed and used for the molecular survey of PPV4 among clinical samples. The results indicated a positive detection for PPV4 in Chinese swine herds of 1.84% ...

  20. Structural and functional annotation of the porcine immunome

    PubMed Central

    2013-01-01

    Background The domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems. Results The Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated

  1. Polymorphisms in the umuDC region of Escherichia species. [Escherichia coli; Escherichia alkalescens; Escherichia dispar; Escherichia aurescens

    SciTech Connect

    Sedgwick, S.G.; Robson, M.; Malik, F.

    1988-04-01

    The umuDC operon of Escherichia coli encodes mutagenic DNA repair. The umuDC regions of multiple isolates of E. coli, E. alkalescens, and E. dispar and a single stock of E. aurescens were mapped by nucleotide hybridization. umuDC is located at one end of a conserved tract of restriction endonuclease sites either 12.5 or 14 kilobase pairs long. Rearrangements, including possible deletions, were seen in the polymorphic DNA flanking the conserved tract. Restriction site polymorphisms were not found around the DNA repair gene recA or polA. The junctions of the conserved region contain direct repeats of nucleotide sequences resembling the termini of the Tn3 group of transposons. Possible mechanisms for the generation of these variants are discussed.

  2. ANIMAL ENTEROTOXIGENIC ESCHERICHIA COLI

    PubMed Central

    Dubreuil, J. Daniel; Isaacson, Richard E.; Schifferli, Dieter M.

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors; adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17 and F18 fimbriae. Once established in the animal small intestine, ETEC produces enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes; heat-labile toxin that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This chapter describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics and the identification of potential new targets identified by genomics are presented in the context of animal ETEC. PMID:27735786

  3. Kangaroo vs. porcine aortic valves: calcification potential after glutaraldehyde fixation.

    PubMed

    Narine, K; Chéry, Cyrille C; Goetghebeur, Els; Forsyth, R; Claeys, E; Cornelissen, Maria; Moens, L; Van Nooten, G

    2005-01-01

    The aim of this study was to evaluate and compare the calcification potential of kangaroo and porcine aortic valves after glutaraldehyde fixation at both low (0.6%) and high (2.0%) concentrations of glutaraldehyde in the rat subcutaneous model. To our knowledge this is the first report comparing the time-related, progressive calcification of these two species in the rat subcutaneous model. Twenty-two Sprague-Dawley rats were each implanted with two aortic valve leaflets (porcine and kangaroo) after fixation in 0.6% glutaraldehyde and two aortic valve leaflets (porcine and kangaroo) after fixation in 2% glutaraldehyde respectively. Animals were sacrificed after 24 h and thereafter weekly for up to 10 weeks after implantation. Calcium content was determined using inductively coupled plasma-mass spectrometry and confirmed histologically. Mean calcium content per milligram of tissue (dry weight) treated with 0.6 and 2% glutaraldehyde was 116.2 and 110.4 microg/mg tissue for kangaroo and 95.0 and 106.8 microg/mg tissue for porcine valves. Calcium content increased significantly over time (8.8 microg/mg tissue per week) and was not significantly different between groups. Regression analysis of calcification over time showed no significant difference in calcification of valves treated with 0.6 or 2% glutaraldehyde within and between the two species. Using the subcutaneous model, we did not detect a difference in calcification potential between kangaroo and porcine aortic valves treated with either high or low concentrations of glutaraldehyde.

  4. [Construction and specificity of porcine bmp15 gene reporter vector].

    PubMed

    Qin, Mingming; Wei, Jianghua; Yu, Xiaoli; Zhang, Jinglong; Liu, Xiaopeng; Ma, Xiaoling; Wang, Huayan

    2014-02-01

    The aim of this study is to identify the express specificity of bone morphogenetic protein 15 (Bmp15) in porcine. The pBMP15-EGFP reporter vector was constructed from the 2.2 kb fragment of porcine bmp15 promoter to trace the differentiation process of stem cells into oocyte-like cells. We used porcine ovary and Chinese Hamster Ovary cell line (CHO), mouse myoblast cell line (C2C12) and porcine amniotic fluid stem cell (pAFSC) to investigate the expression and regulation of this gene via RT-PCR, immunofluorescence, cell transfection, and microinjection methods. We also used single layer cell differentiation to detect the application potential of bmp15. The results show that bmp15 gene was specifically expressed in the porcine ovary and CHO rather than in C2C12 and pAFSC. In addition, the characteristic of tissue-specific of Bmp15 was detected on CHO instead of other cell lines by transient transfection. We also detected the expression of Bmp15 in oocyte at different development stages by immunofluorescence of fixed paraffin-embedded ovary sections. Furthermore, microinjection results show that bmp15 expressed in oocytes at 18 h of maturation in vitro, and continued up to 4-cell stage embryos. Most importantly, we found that the expression of Bmp15 started at day 12 after inducing pAFSC into oocyte-like cells by transfection; green fluorescent was visible in round cell masses. It indicated that bmp15 has the expression specificity and the pBMP15-EGFP reporter vector can be used to trace Bmp15 action in the differentiation of stem cells into germ cells.

  5. Hsp90 inhibitor reduces porcine circovirus 2 replication in the porcine monocytic line 3D4/31.

    PubMed

    Liu, Jie; Zhang, Xuliang; Ma, Chang; Jiang, Ping; Yun, Shifeng

    2017-02-01

    Porcine circovirus 2 (PCV2) is an important pathogen of swine, which causes porcine circovirus disease and porcine circovirus-associated diseases (PCVD/PCVAD). However, no effective countermeasures exist to combat this virus infection so far. Recently, heat shock protein 90 (Hsp90) was found to be an important host factor for the replication of multiple viruses and the inhibition of Hsp90 showed significant antiviral effects. Inhibition of Hsp90 by treatment of porcine monocytic line 3D4/31 with geldanamycin (GA), a specific inhibitor of Hsp90, caused a 70 % decrease in viral Cap protein expression. Further, individual knockdown targeting Hsp90α or Hsp90β with siRNAs resulted in down to 20-25 % of decrease in viral replication, and inhibited the PCV2 titer by approximately 12- and 15-fold, respectively. In addition, we investigated alteration of several cytokine production in PCV2-infected cells following treatment with GA. Then, we found that GA could decrease IL-1β, IL-6, and IL-12p40 mRNA levels, respectively, by 30, 40, and 40 % in PCV2-infected cells. Our results shed light on the possibility of developing potential therapeutics targeting Hsp90 against PCV2 infection.

  6. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging evidence suggests that swine are a scientifically acceptable intermediate species between rodents and humans to model immune function relevant to humans. The swine genome has recently been sequenced and several preliminary structural and functional analysis of the porcine immunome have been...

  7. In depth global analysis of transcript abundance levels in porcine alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide and causes considerable economic loss. Infection of the primary target cells, porcine alveolar macrophages (PAMs), by PRRSV causes significant changes in their function by mechanisms that are not under...

  8. In depth global analysis of gene expression levels in porcine alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen of swine worldwide. Infection of the preferential target cells, porcine alveolar macrophages (PAMs), by PRRSV causes significant changes in their function by mechanisms that are not understood. Serial Analysis of Gene Ex...

  9. Fluorescence in situ hybridization investigation of potentially pathogenic bacteria involved in neonatal porcine diarrhea

    PubMed Central

    2014-01-01

    Background Neonatal diarrhea is a multifactorial condition commonly present on pig farms and leads to economic losses due to increased morbidity and mortality of piglets. Immature immune system and lack of fully established microbiota at birth predispose neonatal piglets to infection with enteric pathogens. The microorganisms that for decades have been associated with enteritis and diarrhea in suckling piglets are: rotavirus A, coronavirus, enterotoxigenic Escherichia coli (ETEC), Clostridium perfringens type C, Cryptosporidium spp., Giardia spp., Cystoisospora suis and Strongyloides ransomi. However, in recent years, the pig industry has experienced an increased number of neonatal diarrhea cases in which the above mentioned pathogens are no longer detected. Potentially pathogenic bacteria have recently received focus in the research on the possible etiology of neonatal diarrhea not caused by common pathogens. The primary aim of this study was to investigate the role of E. coli, Enterococcus spp., C. perfringens and C. difficile in the pathogenesis of neonatal porcine diarrhea with no established casual agents. Fluorescence in situ hybridization with oligonucleotide probes was applied on the fixed intestinal tissue samples from 51 diarrheic and 50 non-diarrheic piglets collected from four Danish farms during outbreaks of neonatal diarrhea not caused by well-known enteric pathogens. Furthermore, an association between the presence of these bacteria and histological lesions was evaluated. Results The prevalence of fluorescence signals specific for E. coli, C. perfringens and C. difficile was similar in both groups of piglets. However, Enterococcus spp. was primarily detected in the diarrheic piglets. Furthermore, adherent bacteria were detected in 37 % diarrheic and 14 % non-diarrheic piglets. These bacteria were identified as E. coli and Enterococcus spp. and their presence in the intestinal mucosa was associated with histopathological changes. Conclusions The

  10. A survey of porcine picornaviruses and adenoviruses in fecal samples in Spain.

    PubMed

    Buitrago, Dolores; Cano-Gómez, Cristina; Agüero, Montserrat; Fernandez-Pacheco, Paloma; Gómez-Tejedor, Concepción; Jiménez-Clavero, Miguel Angel

    2010-09-01

    In the course of an epidemiologic surveillance program for swine diseases carried out in Spain, 206 cytopathic viruses were isolated from 600 porcine fecal samples between 2004 and 2005. The virus isolates were examined using reverse transcription polymerase chain reaction (RT-PCR) methods specific for different types of porcine picornaviruses, including members of the Teschovirus, Enterovirus, and Sapelovirus genera, and PCR for porcine adenoviruses. Of the 206 isolates, 97 (47%) were identified as teschoviruses, 18 (9%) as sapeloviruses, and 7 (3%) as porcine adenoviruses. Neither Porcine enterovirus B nor Swine vesicular disease virus was found among the isolates. The present study confirms that teschoviruses are highly prevalent in porcine fecal samples, at least in Spain. It also reveals that these viruses commonly circulate among apparently healthy pigs.

  11. Transcription analysis of the porcine alveolar macrophage response to porcine circovirus type 2

    PubMed Central

    2013-01-01

    Background Porcine circovirus type 2 (PCV2) is the causal agent of postweaning multisystemic wasting syndrome (PMWS), which has severely impacted the swine industry worldwide. PCV2 triggers a weak and atypical innate immune response, but the key genes and mechanisms by which the virus interferes with host innate immunity have not yet been elucidated. In this study, genes that control the response of primary porcine alveolar macrophages (PAMs), the main target of PCV2, were profiled in vitro. Results PAMs were successfully infected by PCV2-WH strain, as evidenced quantitative real-time polymerase chain reaction (qPCR) and immunofluorescence assay (IFA) results. Infection-related differential gene expression was investigated using pig microarrays from the US Pig Genome Coordination Program and validated by real-time PCR and enzyme-linked immunosorbent assay (ELISA). Microarray analysis at 24 and 48 hours post-infection (HPI) revealed 266 and 175 unique genes, respectively, that were differentially expressed (false discovery rate <0.05; fold-change >2). Only six genes were differentially expressed between 24 and 48 HPI. The up-regulated genes were principally related to immune response, cytokine activity, locomotion, regulation of cell proliferation, apoptosis, cell growth arrest, and antigen procession and presentation. The down-regulated genes were mainly involved in terpenoid biosynthesis, carbohydrate metabolism, translation, proteasome degradation, signal transducer activity, and ribosomal proteins, which were representative of the reduced vital activity of PCV2-infected cells. Conclusions PCV2 infection of PAMs causes up-regulation of genes related to inflammation, indicating that PCV2 may induce systematic inflammation. PCV2 persistently induced cytokines, mainly through the Toll-like receptor (TLR) 1 and TLR9 pathways, which may promote high levels of cytokine secretion. PCV2 may prevent apoptosis in PAMs by up-regulating SERPINB9 expression, possibly to

  12. Determination of spatial and temporal colonization of enteropathogenic E. coli and enterohemorrhagic E. coli in mice using bioluminescent in vivo imaging.

    PubMed

    Rhee, Ki-Jong; Cheng, Hao; Harris, Antoneicka; Morin, Cara; Kaper, James B; Hecht, Gail

    2011-01-01

    Infectious diarrhea is a major contributor of child morbidity and mortality in developing nations. Murine models to study the pathogenesis of infectious diarrhea caused by organisms such as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are not fully characterized. More emphasis has been placed on infection of mice with the murine specific pathogen Citrobacter rodentium. While these three organisms are genetically related they are not identical. Our goal was to better characterize the murine model of EPEC and EHEC infection by using bioluminescent bacteria to determine temporal and spatial colonization of these two human pathogens. EPEC and EHEC were transformed with a bacterial luciferase expression plasmid containing the constitutive OmpC promoter. C57BL/6 mice were orally inoculated with bioluminescent EPEC or EHEC and bacterial localization in the intestine was monitored ex vivo and in vivo by IVIS. At 3 days after infection, EPEC, EHEC and Citrobacter rodentium were all localized in the cecum and colon. EPEC colonization peaked at day 2-3 and was undetectable by day 7. The bioluminescent EPEC adheres to the cecum and colon of the mouse intestine. However, when EPEC infected mice were administered xylazine/ketamine for in vivo live imaging, the EPEC persisted at high densities for up to 31 days. This is the first report of a bioluminescent imaging of luciferase expressing EPEC in a mouse model.

  13. Lack of correlation between in vitro antibiosis and in vivo protection against enteropathogenic bacteria by probiotic lactobacilli.

    PubMed

    Bujalance, Carmen; Jiménez-Valera, María; Moreno, Encarnación; Ruiz-López, María-Dolores; Lasserrot, Agustín; Ruiz-Bravo, Alfonso

    2014-01-01

    Increased resistance to infection is one of the beneficial effects attributed to probiotic microorganisms. This effect may be due to several mechanisms: production of inhibitory substances, blocking of adhesion sites on the intestinal surface, competition for nutrients and stimulation of mucosal and systemic immunity. The present study aimed to investigate the correlation between in vitro and in vivo antimicrobial activity of probiotic lactobacilli. The agar spot test was used to show that twenty Lactobacillus strains were able to inhibit the enteropathogenic bacterium Yersinia enterocolitica. This inhibition was mainly attributable to a decrease in pH resulting from dextrose fermentation by lactobacilli. The inhibition of Y. enterocolitica, Salmonella enterica serovar Typhimurium and Listeria monocytogenes by two probiotic strains, Lactobacillus casei C1 and Lactobacillus plantarum C4, was also associated with the pH decrease. However, both strains lacked protective effects in mouse experimental infection models, with the exception of long-lasting pre-treatment with L. plantarum C4, which exerted a partial protective effect against S. Typhimurium that was attributable to an immunostimulatory mechanism. Our results show that in vitro antibiosis tests do not provide useful information on the probiotic potential of Lactobacillus strains.

  14. Prevalence and Characteristics of eae- and stx-Positive Strains of Escherichia coli from Wild Birds in the Immediate Environment of Tokyo Bay ▿

    PubMed Central

    Kobayashi, Hideki; Kanazaki, Mika; Hata, Eiji; Kubo, Masanori

    2009-01-01

    The prevalence and characteristics of eae- and stx-positive Escherichia coli strains in wild birds in the immediate environment of Tokyo Bay, Japan, was examined using cloacal swab samples taken from 447 birds belonging to 62 species. PCR screening showed that the prevalences of stx- and eae-positive strains of Escherichia coli were 5% (23/447) and 25% (113/447), respectively. Four strains of stx2f-positive E. coli were isolated from two feral pigeons, an oriental turtle dove and a barn swallow. In contrast, 39 eae-positive E. coli strains were isolated, and most of the strains possessed a subtype of intimin that is classified as a minor group of human intimins, such as intimin υ, κ, and μ. Moreover, these strains did not possess any of the other pathogenic genes tested, such as stxs, ehxA, bfp, or irp. Thus, wild birds were considered to be a reservoir of atypical enteropathogenic E. coli. PMID:18997019

  15. Etiologic diagnosis of diarrheal disease of calves: frequency and methods for detecting enterotoxin and K99 antigen production by Escherichia cola.

    PubMed

    Moon, H W; Whipp, S C; Skartvedt, S M

    1976-09-01

    Escherichia coli isolated from calves in Minnesota and Montana were tested for enterotoxigenicity via bio-assay of cell-free broth culture fluid and for K99 antigen via a serum agglutination test. Infant mice were used to assay for heat-stable enterotoxin (ST), and adrenal cells in culture were used to assay for heat-labile enterotoxin (LT). Forty-six of the 345 E coli isolates produced ST enterotoxin, but none produced LT enterotoxin. Thirty-five of the 46 enterotoxigenic isolates had K99 antigen, and only 9 of 66 nonenterotoxigenic isolates so tested had this antigen. The enterotoxigenicity of 28 additional E coli isolates known or suspected to be calf enteropathogens and provided by investigators from 3 different laboratories was also tested. All isolates from 2 laboratories produced ST but not LT. All isolates from the 3rd laboratory produced LT but not ST. Escherichia coli organisms that were positive in the infant mouse assay also caused positive ligated, jejunal-loop responses in calves and in 9-day-old (but not in 5-week-old) pigs. It was concluded that the infant mouse and adrenal cell tests for ST and LT, combined with the agglutination test for K99, would be useful in the diagnosis of enteric enterotoxic colibacillosis of calves.

  16. Comparative sequence analysis of enteroaggregative Escherichia coli heat-stable enterotoxin 1 identified in Korean and Japanese Escherichia coli strains.

    PubMed

    Seo, Dong Joo; Choi, SunKeum; Jeon, Su Been; Jeong, Suntak; Park, Hyunkyung; Lee, Bog-Hieu; Kim, Geun-Bae; Yang, Soo-Jin; Nishikawa, Yoshikazu; Choi, Changsun

    2017-02-21

    The aim of this study was to compare the sequence of the astA gene found in 8 Korean and 11 Japanese Escherichia coli isolates. Conventional PCR was used to amplify the astA gene from the chromosomal and plasmid DNA preparation samples of each isolate using commercial DNA extraction kits. Cloning of the PCR products, sequence analysis, and pulse field gel electrophoresis (PFGE) were sequentially performed. An identical copy of astA in each isolate were found for 8 Korean and 8 Japanese E. coli strains isolated from bovine, porcine, and healthy human carriers. Among these, 1 Korean and 4 Japanese isolates carried a stop mutation at residue 16. Three Japanese outbreak strains (V199, V638, and 96-127-23) carried multiple clones of astA gene with multiple amino acids changes at residues 11, 16, 20, 23, 30, 33, and 34. Compared with the non-diarrheal isolates, clonal diversity and sequence variations of the astA gene in outbreak isolates may be associated with virulence potential of EAST1.

  17. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells

    PubMed Central

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-01-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell–cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. PMID:25847917

  18. Confocal laser scanning microscopy of porcine skin: implications for human wound healing studies

    PubMed Central

    VARDAXIS, N. J.; BRANS, T. A.; BOON, M. E.; KREIS, R. W.; MARRES, L. M.

    1997-01-01

    The structure of porcine skin as examined by light microscopy is reviewed and its similarities to and differences from human skin are highlighted. Special imaging techniques and staining procedures are described and their use in gathering morphological information in porcine skin is discussed. Confocal laser scanning microscopy (CLSM) was employed to examine the structure of porcine skin and the findings are presented as an adjunct to the information already available in the literature. It is concluded that CLSM provides valuable additional morphological information to material examined by conventional microscopy and is useful for wound healing studies in the porcine model. PMID:9183682

  19. Effects of porcine oocytes on the expression levels of transcripts encoding glycolytic enzymes in granulosa cells.

    PubMed

    Matsuno, Yuta; Onuma, Asuka; Fujioka, Yoshie A; Emori, Chihiro; Fujii, Wataru; Naito, Kunihiko; Sugiura, Koji

    2016-09-01

    Oocytes play critical roles in regulating the expression of transcripts encoding the glycolytic enzymes phosphofructokinase, platelet (PFKP) and lactate dehydrogenase A (LDHA) in granulosa cells in mice, but whether this is the case in pigs or other mammals has not been adequately investigated. Therefore, the aim of this study was to determine whether porcine oocytes regulate the expression levels of these transcripts in granulosa cells in vitro. Porcine cumulus cells expressed higher levels of PFKP and LDHA transcripts than mural granulosa cells (MGCs). However, co-culturing with oocytes had no significant effect on the isolated cumulus cells. While murine oocytes promoted the expression of both Pfkp and Ldha transcripts by murine MGCs, porcine oocytes promoted the expression of only Pfkp, but not Ldha transcripts by murine MGCs. Neither murine nor porcine oocytes affected PFKP and LDHA expression by porcine MGCs. Moreover, in the presence of porcine follicular fluid, porcine oocytes maintained the expression of PFKP, but not LDHA by porcine cumulus cells. Therefore, porcine oocytes are capable of regulating the expression of PFKP but not LDHA in granulosa cells in coordination with unknown factor(s) present in the follicular fluid.

  20. Repression of flagella motility in enterohemorrhagic Escherichia coli O157:H7 by mucin components.

    PubMed

    Kim, Jong Chul; Yoon, Jang W; Kim, Cheorl-Ho; Park, Mi-Sun; Cho, Seung-Hak

    2012-07-13

    Whole genome-scale transcriptome analysis of enterohemorrhagic Escherichia coli (EHEC) O157:H7 EDL933 was performed to investigate the influence of mucin components on the EHEC gene expression. Here we report that the 732 candidate genes were differentially expressed by the presence of 0.5% porcine stomach mucin, including the 8 flagella-related genes. Quantitative real-time PCR analyses revealed that the transcription expression of the flg genes (encoding the structural components for flagella basal body) was down-regulated by the mucin components. Indeed, bacterial swarming motility was drastically reduced when grown on 0.3% trypton agar plates containing the mucin. These results imply that gastrointestinal (GI) mucin is a possible environmental signal which negatively regulates the flagellation of EHEC O157:H7 in the GI tract.

  1. Methionine deficiency reduces autophagy and accelerates death in intestinal epithelial cells infected with enterotoxigenic Escherichia coli.

    PubMed

    Tang, Yulong; Tan, Bie; Xiong, Xia; Li, Fengna; Ren, Wenkai; Kong, Xiangfeng; Qiu, Wei; Hardwidge, Philip R; Yin, Yulong

    2015-10-01

    Infections by enterotoxigenic Escherichia coli (ETEC) result in large economic losses to the swine industry worldwide. Dietary supplementation with amino acids has been considered as a potential mechanism to improve host defenses against infection. The goal of this study was to determine whether methionine deprivation alters ETEC interactions with porcine intestinal epithelial cells. IPEC-1 cells were cultured in media with or without L-methionine. Methionine deprivation resulted in enhanced ETEC adhesion and increased both the cytotoxicity and apoptotic responses of IPEC-1 cells infected with ETEC. Methionine deprivation inhibited IPEC-1 cell autophagic responses, suggesting that the increased cytotoxicity of ETEC to methionine-deprived IPEC-1 cells might be due to defects in autophagy.

  2. Mouse intestinal innate immune responses altered by enterotoxigenic Escherichia coli (ETEC) infection.

    PubMed

    Ren, Wenkai; Yin, Jie; Duan, Jielin; Liu, Gang; Zhu, Xiaoping; Chen, Shuai; Li, Tiejun; Wang, Shengping; Tang, Yulong; Hardwidge, Philip R

    2014-11-01

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of human and porcine morbidity and mortality. The current study was conducted to identify intestinal immunity that is altered in a mouse model of ETEC infection. Innate immune responses and inflammation were analyzed. The activation of signal transduction pathways, including toll like receptor 4 (TLR-4)-nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK), was analyzed using immunoblotting and PCR array analyses. We found that ETEC infection promoted the expression of pro-inflammatory cytokines through the activation of the NF-κB and MAPK pathways. Meanwhile, ETEC infection affected sIgA transportation and Paneth cell function. These data improve our understanding of how ETEC causes disease in animals.

  3. Immunization of suckling pigs against enteric enterotoxigenic Escherichia coli infection by vaccinating dams with purified pili.

    PubMed

    Nagy, B; Moon, H W; Isaacson, R E; To, C C; Brinton, C C

    1978-07-01

    Pregnant swine (gilts) were vaccinated parenterally with a suspension of purified pili from the porcine enterotoxigenic Escherichia coli strain 987 (09:K103::NM). Gilts injected with placebo served as controls. Suckling pigs born to gilts in both groups were challenged intragastrically with virulent strain 987. The percentage of deaths, incidence and duration of diarrhea, numbers of E. coli in the ilea, and E. coli attachment to the villous epithelia were significantly less in suckling pigs of vaccinated gilts than in those of controls. These results are consistent with the hypothesis that pili of some enterotoxigenic E. coli facilitate adhesion to intestinal epithelia. Vaccination of dams with pili appears to be a means of immunizing against diarrheal disease caused by enterotoxigenic E. coli in suckling neonates. This work confirms the role of somatic pili as colonization and virulence factors and provides another example of safe and effective purified pilus vaccines.

  4. Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication.

    PubMed

    Guo, Xiaozhen; Zhang, Mengjia; Zhang, Xiaoqian; Tan, Xin; Guo, Hengke; Zeng, Wei; Yan, Guokai; Memon, Atta Muhammad; Li, Zhonghua; Zhu, Yinxing; Zhang, Bingzhou; Ku, Xugang; Wu, Meizhou; Fan, Shengxian; He, Qigai

    2017-03-19

    The new porcine epidemic diarrhea (PED) has caused devastating economic losses to the swine industry worldwide. Despite extensive research on the relationship between autophagy and virus infection, the concrete role of autophagy in porcine epidemic diarrhea virus (PEDV) infection has not been reported. In this study, autophagy was demonstrated to be triggered by the effective replication of PEDV through transmission electron microscopy, confocal microscopy, and Western blot analysis. Moreover, autophagy was confirmed to benefit PEDV replication by using autophagy regulators and RNA interference. Furthermore, autophagy might be associated with the expression of inflammatory cytokines and have a positive feedback loop with the NF-κB signaling pathway during PEDV infection. This work is the first attempt to explore the complex interplay between autophagy and PEDV infection. Our findings might accelerate our understanding of the pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies.

  5. Thermal stability of porcine circovirus type 2 in cell culture.

    PubMed

    O'Dea, Mark A; Hughes, Andrew P; Davies, Linda J; Muhling, Jillian; Buddle, Ross; Wilcox, G E

    2008-01-01

    International trade in pig meat has resulted in some countries placing restrictions on the importation of pig meat, with requirements for cooking of imported meat to destroy viral agents. This study investigated the in vitro resistance of an Australian strain of porcine circovirus type 2 (PCV2), the causative agent of post-weaning multisystemic wasting syndrome (PMWS), to heat treatment. The viability of the virus in cell cultures was determined by a combination of reverse transcriptase polymerase chain reaction (RT-PCR) to detect viral transcripts, and immunohistochemistry (IHC) to visualize viral capsid antigen. PCV2 retained infectivity when heated at 75 degrees C for 15 min but was inactivated by heating at 80 degrees C and above for 15 min. The results provide important information on the thermal tolerance of PCV2, which can be taken into account in risk assessments for trade in pig meat and porcine-derived biological products.

  6. Porcine Reproductive and Respiratory Syndrome Virus: Origin Hypothesis

    PubMed Central

    2003-01-01

    Porcine reproductive and respiratory syndrome is a serious swine disease that appeared suddenly in the midwestern United States and central Europe approximately 14 years ago; the disease has now spread worldwide. In North America and Europe, the syndrome is caused by two genotypes of porcine reproductive and respiratory syndrome virus (PRRSV), an arterivirus whose genomes diverge by approximately 40%. My hypothesis, which explains the origin and evolution of the two distinct PRRSV genotypes, is that a mutant of a closely related arterivirus of mice (lactate dehydrogenase-elevating virus) infected wild boars in central Europe. These wild boars functioned as intermediate hosts and spread the virus to North Carolina in imported, infected European wild boars in 1912; the virus then evolved independently on the two continents in the prevalent wild hog populations for approximately 70 years until independently entering the domestic pig population. PMID:12967485

  7. Perforation forces of the intact porcine anterior lens capsule.

    PubMed

    Ullrich, Franziska; Lussi, Jonas; Felekis, Dimitrios; Michels, Stephan; Petruska, Andrew J; Nelson, Bradley J

    2016-09-01

    During the first step of cataract surgery, the lens capsule is perforated and a circular hole is created with a sharp instrument, a procedure called capsulorhexis. To develop automated systems that can assist ophthalmologists during capsulorhexis, the forces required must be quantified. This study investigates perforation forces of the central anterior lens capsule in porcine eyes, which are used as a conservative model for the human eye. A micro-mechanical characterisation method is presented that measures capsular bag perforation forces with a high precision positioning and high-resolution force sensing system. The force during perforation of the anterior lens capsule was measured with various sized needles and indentation speeds and is found to be 15-35mN. A bio-mechanical model is identified that describes an exponential correlation between indentation force and depth, indicating strain hardening behaviour of the porcine anterior lens capsule.

  8. Porcine Epidemic Diarrhea Virus Induces Autophagy to Benefit Its Replication

    PubMed Central

    Guo, Xiaozhen; Zhang, Mengjia; Zhang, Xiaoqian; Tan, Xin; Guo, Hengke; Zeng, Wei; Yan, Guokai; Memon, Atta Muhammad; Li, Zhonghua; Zhu, Yinxing; Zhang, Bingzhou; Ku, Xugang; Wu, Meizhou; Fan, Shengxian; He, Qigai

    2017-01-01

    The new porcine epidemic diarrhea (PED) has caused devastating economic losses to the swine industry worldwide. Despite extensive research on the relationship between autophagy and virus infection, the concrete role of autophagy in porcine epidemic diarrhea virus (PEDV) infection has not been reported. In this study, autophagy was demonstrated to be triggered by the effective replication of PEDV through transmission electron microscopy, confocal microscopy, and Western blot analysis. Moreover, autophagy was confirmed to benefit PEDV replication by using autophagy regulators and RNA interference. Furthermore, autophagy might be associated with the expression of inflammatory cytokines and have a positive feedback loop with the NF-κB signaling pathway during PEDV infection. This work is the first attempt to explore the complex interplay between autophagy and PEDV infection. Our findings might accelerate our understanding of the pathogenesis of PEDV infection and provide new insights into the development of effective therapeutic strategies. PMID:28335505

  9. Preparation of Cardiac Extracellular Matrix from an Intact Porcine Heart

    PubMed Central

    Wainwright, John M.; Czajka, Caitlin A.; Patel, Urvi B.; Freytes, Donald O.; Tobita, Kimimasa; Gilbert, Thomas W.

    2010-01-01

    Whole organ engineering would benefit from a three-dimensional scaffold produced from intact organ-specific extracellular matrix (ECM). The microenvironment and architecture provided by such a scaffold would likely support site-appropriate cell differentiation and spatial organization. The methods to produce such scaffolds from intact organs require customized decellularization protocols. In the present study, intact adult porcine hearts were successfully decellularized in less than 10 h using pulsatile retrograde aortic perfusion. Serial perfusion of an enzymatic, nonionic detergent, ionic detergent, and acid solution with hypotonic and hypertonic rinses was used to systematically remove cellular content. The resultant cardiac ECM retained collagen, elastin, and glycosaminoglycans, and mechanical integrity. Cardiac ECM supported the formation of organized chicken cardiomyocyte sarcomere structure in vitro. The intact decellularized porcine heart provides a tissue engineering template that may be beneficial for future preclinical studies and eventual clinical applications. PMID:19702513

  10. Preparation of cardiac extracellular matrix from an intact porcine heart.

    PubMed

    Wainwright, John M; Czajka, Caitlin A; Patel, Urvi B; Freytes, Donald O; Tobita, Kimimasa; Gilbert, Thomas W; Badylak, Stephen F

    2010-06-01

    Whole organ engineering would benefit from a three-dimensional scaffold produced from intact organ-specific extracellular matrix (ECM). The microenvironment and architecture provided by such a scaffold would likely support site-appropriate cell differentiation and spatial organization. The methods to produce such scaffolds from intact organs require customized decellularization protocols. In the present study, intact adult porcine hearts were successfully decellularized in less than 10 h using pulsatile retrograde aortic perfusion. Serial perfusion of an enzymatic, nonionic detergent, ionic detergent, and acid solution with hypotonic and hypertonic rinses was used to systematically remove cellular content. The resultant cardiac ECM retained collagen, elastin, and glycosaminoglycans, and mechanical integrity. Cardiac ECM supported the formation of organized chicken cardiomyocyte sarcomere structure in vitro. The intact decellularized porcine heart provides a tissue engineering template that may be beneficial for future preclinical studies and eventual clinical applications.

  11. Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2

    PubMed Central

    Sun, Na; Sun, Panpan; Lv, Haipeng; Sun, Yaogui; Guo, Jianhua; Wang, Zhirui; Luo, Tiantian; Wang, Shaoyu; Li, Hongquan

    2016-01-01

    The co-infection of porcine reproductive respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) is quite common in clinical settings and no effective treatment to the co-infection is available. In this study, we established the porcine alveolar macrophages (PAM) cells model co-infected with PRRSV/PCV2 with modification in vitro, and investigated the antiviral activity of Matrine on this cell model and further evaluated the effect of Matrine on virus-induced TLR3,4/NF-κB/TNF-α pathway. The results demonstrated PAM cells inoculated with PRRSV followed by PCV2 2 h later enhanced PRRSV and PCV2 replications. Matrine treatment suppressed both PRRSV and PCV2 infection at 12 h post infection. Furthermore, PRRSV/PCV2 co- infection induced IκBα degradation and phosphorylation as well as the translocation of NF-κB from the cytoplasm to the nucleus indicating that PRRSV/PCV2 co-infection induced NF-κB activation. Matrine treatment significantly down-regulated the expression of TLR3, TLR4 and TNF-α although it, to some extent, suppressed p-IκBα expression, suggesting that TLR3,4/NF-κB/TNF-α pathway play an important role of Matrine in combating PRRSV/PCV2 co-infection. It is concluded that Matrine possesses activity against PRRSV/PCV2 co-infection in vitro and suppression of the TLR3,4/NF-κB/TNF-α pathway as an important underlying molecular mechanism. These findings warrant Matrine to be further explored for its antiviral activity in clinical settings. PMID:27080155

  12. A Bacterial Glycoengineered Antigen for Improved Serodiagnosis of Porcine Brucellosis

    PubMed Central

    Cortina, María E.; Balzano, Rodrigo E.; Rey Serantes, Diego A.; Caillava, Ana J.; Elena, Sebastián; Ferreira, A. C.; Nicola, Ana M.; Ugalde, Juan E.

    2016-01-01

    Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide–protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glyco-iELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of “smooth” brucellosis in animals and humans. PMID:26984975

  13. A Bacterial Glycoengineered Antigen for Improved Serodiagnosis of Porcine Brucellosis.

    PubMed

    Cortina, María E; Balzano, Rodrigo E; Rey Serantes, Diego A; Caillava, Ana J; Elena, Sebastián; Ferreira, A C; Nicola, Ana M; Ugalde, Juan E; Comerci, Diego J; Ciocchini, Andrés E

    2016-06-01

    Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glyco-iELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of "smooth" brucellosis in animals and humans.

  14. Identification of a protein glycosylation operon from Campylobacter jejuni JCM 2013 and its heterologous expression in Escherichia coli.

    PubMed

    Srichaisupakit, Akkaraphol; Ohashi, Takao; Fujiyama, Kazuhito

    2014-09-01

    Campylobacter jejuni is a human enteropathogenic bacterium possessing an N-glycosylation system. In this work, a protein glycosylation (pgl) operon conferring prokaryotic N-glycosylation in C. jejuni JCM 2013 was cloned and identified. Fourteen open reading frames (ORFs) were found in the pgl operon. The operon organization was similar to that of C. jejuni NCTC 11168, with 98% and 99% identities in overall nucleotide sequence and amino acid sequence, respectively. The pgl operon was heterologously co-expressed with model protein CmeA in the Escherichia coli BL21 ΔwaaL mutant. The immuno- and lectin-blotting analysis indicated the protein glycosylation on the recombinant CmeA. In addition, to analyze the glycan composition, the recombinant CmeA was purified and subjected to in-gel trypsin digestion followed by mass spectrometry analysis. The mass spectrometry analysis showed the presence of the N-acetylhexosamine residue at the reducing end but not the predicted di-N-acetylbacillosamine (diNAcBac) residue. Further glycan structural study using the conventional fluorophore-labeling method revealed the GalNAcα-GalNAcα-(Hex-)HexNAc-HexNAc-HexNAc-HexNAc structure. Transcriptional analysis showed that UDP-diNAcBac synthases and diNAcBac transferase are transcribed but might not function in the constructed system. In conclusion, a pgl operon from C. jejuni JCM 2013 successfully functioned in E. coli, resulting in the observed prokaryotic glycosylation.

  15. Application of DNA hybridization techniques in the assessment of diarrheal disease among refugess in Thailand. [Shigella; Escherichia coli; Campylobacter; Cryptosporidium

    SciTech Connect

    Taylor, D.N.; Echeverria, P.; Pitarangsi, C.; Seriwatana, J.; Sethabutr, O.; Bodhidatta, L.; Brown, C.; Herrmann, J.E.; Blacklow, N.R.

    1988-01-01

    The epidemiology and etiology of acute diarrheal disease were determined in a Hmong refugee camp on the Thai-Laotian border from April 11 to May 14, 1985. DNA hybridization techniques were used to detect Shigella species, enteroinvasive Escherichia coli, and enterotoxigenic E. coli. A monoclonal enzyme-linked immunosorbent assay was used to detect rotavirus, and standard microbiology was used to detect other enteropathogens. The age-specific diarrheal disease rates were 47 episodes per month per 1000 children less than five years old and 113 episodes per month per 1000 children less than one year old. Rotavirus, enterotoxigenic E. coli, Campylobacter, and Cryptosporidium were the predominant pathogens in children less than two years old. The DNA probe hybridized with 94% of 31 specimens identified as enterotoxigenic E. coli by the standard assays and with none of the specimens in which the standard assays were negative. The probe for Shigella and enteroinvasive E. coli hybridized in eight of 10 stools that contained Shigella and four of 314 stools from which Shigella and enteroinvasive E. coli were not isolated. The use of DNA probes allows specimens to be collected in remote areas with a minimum amount of equipment and technical expertise so that they can be easily transported to a central laboratory for further processing.

  16. Temporospatial fate of bacteria and immune effector expression in house flies fed GFP-Escherichia coli O157:H7.

    PubMed

    Fleming, A; Kumar, H V; Joyner, C; Reynolds, A; Nayduch, D

    2014-12-01

    The house fly Musca domestica L. (Diptera: Muscidae) harbours and transmits a variety of human enteropathogens including Escherichia coli (Enterobacteriales: Enterobacteriaceae) O157:H7. Interactions between ingested bacteria and the fly gut directly impact bacterial persistence, survival and ultimately fly vector competence. We assessed the temporospatial fate of green fluorescent protein (GFP)-expressing E. coli O157:H7 (GFP-ECO157) in house flies along with fly antimicrobial responses up to 12 h post-ingestion. In flies fed GFP-ECO157, culture and microscopy revealed a steady decrease in bacterial load over 12 h, which is likely to be attributable to the combined effects of immobilization within the peritrophic matrix, lysis and peristaltic excretion. However, flies can putatively transmit this pathogen in excreta because intact bacteria were observed in the crop and rectum. Quantitative reverse-transcriptase polymerase chain reaction analysis of antimicrobial peptides (AMPs) and lysozyme gene expression showed minimal upregulation in both the gut and carcass of house flies fed GFP-ECO157. However, these genes were upregulated in fly heads and salivary glands, and effector proteins were detected in the gut in some flies. Collectively, these data indicate that house flies can serve as reservoirs of E. coli O157:H7 for up to 12 h, and factors in addition to AMPs and lysozyme may contribute to bacteria destruction in the gut.

  17. Prevalence and antibiogram profiling of Escherichia coli pathotypes isolated from the Kat River and the Fort Beaufort abstraction water.

    PubMed

    Nontongana, Nolonwabo; Sibanda, Timothy; Ngwenya, Elvis; Okoh, Anthony I

    2014-08-12

    Escherichia coli is a widespread bacterium encompassing a variety of strains, ranging from highly pathogenic strains, causing worldwide outbreaks of severe diseases to avirulent, well characterized safe laboratory strains. This study evaluated the prevalence and antibiogram profiles of E. coli pathotypes isolated from the Kat River and Fort Beaufort abstraction water. A total of 171 out of 278 confirmed E. coli isolates were positive for at least one pathogenic determinant and these included enteropathogenic E. coli (6%), enterotoxigenic E. coli (47%), uropathogenic E. coli (2%), neonatal meningitis E. coli (5%), diffusely adherent E. coli (1%) and enterohaemorrhagic E. coli (1%). Interestingly, enteroinvasive and enteroaggregative E. coli were not detected. The phenotypic antibiogram profiles of the isolates revealed that all were resistant to penicillin G, while 98% and 38% of the pathotypes were resistant to ampicillin and trimethoprim-sulphamethoxazole, respectively. About 8% of the isolates were resistant to streptomycin. More than half of the isolates exhibited multiple antibiotic resistance with 44% being resistant to three antibiotics and 8% resistant to four antibiotics. We conclude that the Kat River is a reservoir of potentially virulent antibiotic resistant E. coli strains that can cause serious health risks to humans who drink raw water from this river, or in the case that consumption of treated drinking water coincides with failed drinking water processes.

  18. Age-specific prevalence of Escherichia coli with localized and aggregative adherence in Venezuelan infants with acute diarrhea.

    PubMed

    González, R; Díaz, C; Mariño, M; Cloralt, R; Pequeneze, M; Pérez-Schael, I

    1997-05-01

    To evaluate the epidemiological significance of HEp-2 cell-adherent Escherichia coli isolates in diarrheal disease, we performed a study with 513 Venezuelan infants with diarrhea and 241 age-matched controls to determine the prevalence of enteropathogenic E. coli (enteroadherent E. coli, enterotoxigenic E. coli, enteroinvasive E. coli, and enterohemorrhagic E. coli) and their correlation with O:H serotypes. E. coli isolates exhibiting localized and aggregative adherence in the HEp-2 cell assay were significantly more frequently isolated from the patients (8.5 and 26.9%, respectively) than from the controls (1.7 and 15%, respectively). This difference was significant for the group 0 to 2 months of age but for older infants. Regardless of age, E. coli isolates with diffuse adherence were found at similar frequencies in both the patients and the controls. A striking correlation between classic O serogroups and localized adherence was also observed. These findings confirm the pathogenic role of E. coli with localized and aggregative adherence in diarrheal disease, as well as the epidemiological importance of O:H serotyping for characterizing localized-adhering E. coli.

  19. Prevalence and Antibiogram Profiling of Escherichia coli Pathotypes Isolated from the Kat River and the Fort Beaufort Abstraction Water

    PubMed Central

    Nontongana, Nolonwabo; Sibanda, Timothy; Ngwenya, Elvis; Okoh, Anthony I.

    2014-01-01

    Escherichia coli is a widespread bacterium encompassing a variety of strains, ranging from highly pathogenic strains, causing worldwide outbreaks of severe diseases to avirulent, well characterized safe laboratory strains. This study evaluated the prevalence and antibiogram profiles of E. coli pathotypes isolated from the Kat River and Fort Beaufort abstraction water. A total of 171 out of 278 confirmed E. coli isolates were positive for at least one pathogenic determinant and these included enteropathogenic E. coli (6%), enterotoxigenic E. coli (47%), uropathogenic E. coli (2%), neonatal meningitis E. coli (5%), diffusely adherent E. coli (1%) and enterohaemorrhagic E. coli (1%). Interestingly, enteroinvasive and enteroaggregative E. coli were not detected. The phenotypic antibiogram profiles of the isolates revealed that all were resistant to penicillin G, while 98% and 38% of the pathotypes were resistant to ampicillin and trimethoprim-sulphamethoxazole, respectively. About 8% of the isolates were resistant to streptomycin. More than half of the isolates exhibited multiple antibiotic resistance with 44% being resistant to three antibiotics and 8% resistant to four antibiotics. We conclude that the Kat River is a reservoir of potentially virulent antibiotic resistant E. coli strains that can cause serious health risks to humans who drink raw water from this river, or in the case that consumption of treated drinking water coincides with failed drinking water processes. PMID:25119699

  20. Biotypes and O serogroups of Escherichia coli involved in intestinal infections of weaned rabbits: clues to diagnosis of pathogenic strains.

    PubMed Central

    Camguilhem, R; Milon, A

    1989-01-01

    A total of 575 Escherichia coli strains isolated from weaned rabbits experiencing diarrhea in 119 French commercial farms were tested for O serogroups. The results showed a strong predominance of serogroup O103 strains. A sample of 126 strains were further checked for simplified biotypes by using five carbohydrate fermentation reactions. Of 72 O103 strains, 70 were shown to belong to biotypes characterized by a rhamnose-negative reaction. Four of nine serogroup O68 strains also showed this type of reaction. Thirty-nine strains, representative of the serotypes and biotypes found, were further tested for experimental pathogenicity in weaned rabbits and for antibiotic susceptibility. All the rhamnose-negative strains produced life-threatening watery or hemorrhagic diarrhea, whereas rhamnose-positive strains induced only mild diarrheic syndrome without any mortality or no clinical signs at all. Rhamnose-negative, highly pathogenic strains did not belong to related antibiotypes. We think that O serogrouping together with biotyping, or even rhamnose fermentation testing, may be an important clue in the diagnosis of enteropathogenic strains from rabbits in France, permitting rapid identification of highly pathogenic strains and leading to improved prognosis and treatment. PMID:2656746

  1. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* sialic acid-binding domain of porcine rotavirus strain OSU

    SciTech Connect

    Zhang, Yang-De Li, Hao; Liu, Hui; Pan, Yi-Feng

    2007-02-01

    Porcine rotavirus strain OSU VP8* domain has been expressed, purified and crystallized. X-ray diffraction data from different crystal forms of the VP8* domain have been collected to 2.65 and 2.2 Å resolution, respectively. The rotavirus outer capsid spike protein VP4 is utilized in the process of rotavirus attachment to and membrane penetration of host cells. VP4 is cleaved by trypsin into two domains: VP8* and VP5*. The VP8* domain is implicated in initial interaction with sialic acid-containing cell-surface carbohydrates and triggers subsequent virus invasion. The VP8* domain from porcine OSU rotavirus was cloned and expressed in Escherichia coli. Different crystal forms (orthorhombic P2{sub 1}2{sub 1}2{sub 1} and tetragonal P4{sub 1}2{sub 1}2) were harvested from two distinct crystallization conditions. Diffraction data have been collected to 2.65 and 2.2 Å resolution and the VP8*{sub 65–224} structure was determined by molecular replacement.

  2. Development of porcine ficolin-alpha monoclonal and polyclonal antibodies for determining the binding capacity of multiple GlcNAc-binding proteins to bacterial danger components.

    PubMed

    Nahid, M Abu; Ross, Steven J; Umiker, Benjamin R; Li, Huapeng; Sugii, Sunji; Bari, Latiful

    2016-02-01

    Ficolins are a group of oligomeric defense proteins assembled from collagen-like stalks and fibrinogen-like domains that have common biochemical specificity for N-acetyl-d-glucose amine (GlcNAc) and can function as opsonins. In this report, GlcNAc-binding protein (GBP) purified from porcine nonimmune serum was biochemically characterized as ficolin-α. Ficolin-α was used as an immunogen to generate both rabbit polyclonal and murine monoclonal anti-ficolin-α antibodies, which are not yet commercially available. GBPs have been shown to be present in many animals, including humans; however, their functions are largely unknown. GBPs from chicken, dog, horse, bovine, and human sera were isolated using various chromatography methods. Interestingly, anti-ficolin-α antibody showed cross-reaction with those animal sera GBPs. Furthermore, anti-ficolin-α antibody was reactive with the GlcNAc eluate of Escherichia coli O26-bound and Salmonella-bound porcine serum proteins. Functionally, GBPs and bacteria-reactive pig serum proteins were able to bind with pathogen-associated molecular patterns such as lipopolysaccharides and lipoteichoic acids. Our studies demonstrate that ficolin-α specific antibody was reactive with GBPs from many species as well as bacteria-reactive serum proteins. These proteins may play important roles in innate immunity by sensing danger components that can lead to antibacterial activity.

  3. Toll-like receptor-2-activating bifidobacteria strains differentially regulate inflammatory cytokines in the porcine intestinal epithelial cell culture system: finding new anti-inflammatory immunobiotics.

    PubMed

    Fujie, Hitomi; Villena, Julio; Tohno, Masanori; Morie, Kyoko; Shimazu, Tomoyuki; Aso, Hisashi; Suda, Yoshihito; Shimosato, Takeshi; Iwabuchi, Noriyuki; Xiao, Jin-Zhong; Yaeshima, Tomoko; Iwatsuki, Keiji; Saito, Tadao; Numasaki, Muneo; Kitazawa, Haruki

    2011-10-01

    A total of 23 strains of bifidobacteria taxonomically belonging to five species were tested for their potent immunomodulatory effect using a combination of two methods: the NF-κB-reporter assay using a toll-like receptor 2-expressing transfectant (HEK(pTLR2) system) and the mitogenic assay using porcine Peyer's patches immunocompetent cells. Among the four preselected strains from different immunomodulatory groups, Bifidobacterium breve MCC-117 was able to efficiently modulate the inflammatory response triggered by enterotoxigenic Escherichia coli (ETEC) in a porcine intestinal epithelial (PIE) cell line. Moreover, using PIE cells and swine Peyer's patches immunocompetent cell co-culture system, we demonstrated that the immunoregulatory effect of B. breve MCC-117 was related to the capacity of the strain to influence PIE and immune cell interactions, leading to the stimulation of regulatory T cells. The results suggested that bifidobacteria that express high activity in both the HEK(pTLR2) and the mitogenic assays may behave like potential anti-inflammatory strains. The combination of the HEK(pTLR2) system, the evaluation of mitogenic activity and PIE cells will be of value for the development of new immunologically functional foods and feeds that could prevent inflammatory intestinal disorders. Although our findings should be proven in appropriate experiments in vivo, the results of the present work provide a scientific rationale for the use of B. breve MCC-117 to prevent ETEC-induced intestinal inflammation.

  4. Experimental porcine model of complex fistula-in-ano

    PubMed Central

    A Ba-Bai-Ke-Re, Ma-Mu-Ti-Jiang; Chen, Hui; Liu, Xue; Wang, Yun-Hai

    2017-01-01

    AIM To establish and evaluate an experimental porcine model of fistula-in-ano. METHODS Twelve healthy pigs were randomly divided into two groups. Under general anesthesia, the experimental group underwent rubber band ligation surgery, and the control group underwent an artificial damage technique. Clinical magnetic resonance imaging (MRI) and histopathological evaluation were performed on the 38th d and 48th d after surgery in both groups, respectively. RESULTS There were no significant differences between the experimental group and the control group in general characteristics such as body weight, gender, and the number of fistula (P > 0.05). In the experimental group, 15 fistulas were confirmed clinically, 13 complex fistulas were confirmed by MRI, and 11 complex fistulas were confirmed by histopathology. The success rate in the porcine complex fistula model establishment was 83.33%. Among the 18 fistulas in the control group, 5 fistulas were confirmed clinically, 4 complex fistulas were confirmed by MRI, and 3 fistulas were confirmed by histopathology. The success rate in the porcine fistula model establishment was 27.78%. Thus, the success rate of the rubber band ligation group was significantly higher than the control group (P < 0.05). CONCLUSION Rubber band ligation is a stable and reliable method to establish complex fistula-in-ano models. Large animal models of complex anal fistulas can be used for the diagnosis and treatment of anal fistulas. PMID:28348488

  5. Immunodiagnosis of porcine cysticercosis: identification of candidate antigens through immunoproteomics.

    PubMed

    Diaz-Masmela, Yuliet; Fragoso, Gladis; Ambrosio, Javier R; Mendoza-Hernández, Guillermo; Rosas, Gabriela; Estrada, Karel; Carrero, Julio César; Sciutto, Edda; Laclette, Juan P; Bobes, Raúl J

    2013-12-01

    Cysticercosis, caused by the larval stage of Taenia solium, is a zoonotic disease affecting pigs and humans that is endemic to developing countries in Latin America, Africa and South East Asia. The prevalence of infection in pigs, the intermediate host for T. solium, has been used as an indicator for monitoring disease transmission in endemic areas. However, accurate and specific diagnostic tools for porcine cysticercosis remain to be established. Using proteomic approaches and the T. solium genome sequence, seven antigens were identified as specific for porcine cysticercosis, namely, tropomyosin 2, alpha-1 tubulin, beta-tubulin 2, annexin B1, small heat-shock protein, 14-3-3 protein, and cAMP-dependent protein kinase. None of these proteins were cross-reactive when tested with sera from pigs infected with Ascaris spp., Cysticercus tenuicollis and hydatid cysts of Echinococcus spp. or with serum from a Taenia saginata-infected cow. Comparison with orthologues, indicated that the amino acid sequences of annexin B1 and cAMP-dependent protein kinase possessed highly specific regions, which might make them suitable candidates for development of a specific diagnostic assay for porcine cysticercosis.

  6. Progesterone influences cytoplasmic maturation in porcine oocytes developing in vitro

    PubMed Central

    Jin, Yong-Xun; Kwon, Jeong-Woo

    2016-01-01

    Progesterone (P4), an ovarian steroid hormone, is an important regulator of female reproduction. In this study, we explored the influence of progesterone on porcine oocyte nuclear maturation and cytoplasmic maturation and development in vitro. We found that the presence of P4 during oocyte maturation did not inhibit polar body extrusions but significantly increased glutathione and decreased reactive oxygen species (ROS) levels relative to that in control groups. The incidence of parthenogenetically activated oocytes that could develop to the blastocyst stage was higher (p < 0.05) when oocytes were exposed to P4 as compared to that in the controls. Cell numbers were increased in the P4-treated groups. Further, the P4-specific inhibitor mifepristone (RU486) prevented porcine oocyte maturation, as represented by the reduced incidence (p < 0.05) of oocyte first polar body extrusions. RU486 affected maturation promoting factor (MPF) activity and maternal mRNA polyadenylation status. In general, these data show that P4 influences the cytoplasmic maturation of porcine oocytes, at least partially, by decreasing their polyadenylation, thereby altering maternal gene expression. PMID:27672508

  7. Characterization of porcine eyes based on autofluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2015-03-01

    Multiphoton microscopy is a non-invasive imaging technique with ideal characteristics for biological applications. In this study, we propose to characterize three major structures of the porcine eye, the cornea, crystalline lens, and retina using two-photon excitation fluorescence lifetime imaging microscopy (2PE-FLIM). Samples were imaged using a laser-scanning microscope, consisting of a broadband sub-15 femtosecond (fs) near-infrared laser. Signal detection was performed using a 16-channel photomultiplier tube (PMT) detector (PML-16PMT). Therefore, spectral analysis of the fluorescence lifetime data was possible. To ensure a correct spectral analysis of the autofluorescence lifetime data, the spectra of the individual endogenous fluorophores were acquired with the 16-channel PMT and with a spectrometer. All experiments were performed within 12h of the porcine eye enucleation. We were able to image the cornea, crystalline lens, and retina at multiple depths. Discrimination of each structure based on their autofluorescence intensity and lifetimes was possible. Furthermore, discrimination between different layers of the same structure was also possible. To the best of our knowledge, this was the first time that 2PE-FLIM was used for porcine lens imaging and layer discrimination. With this study we further demonstrated the feasibility of 2PE-FLIM to image and differentiate three of the main components of the eye and its potential as an ophthalmologic technique.

  8. Recombinant Human Factor IX Produced from Transgenic Porcine Milk

    PubMed Central

    Lee, Meng-Hwan; Lin, Yin-Shen; Tu, Ching-Fu; Yen, Chon-Ho

    2014-01-01

    Production of biopharmaceuticals from transgenic animal milk is a cost-effective method for highly complex proteins that cannot be efficiently produced using conventional systems such as microorganisms or animal cells. Yields of recombinant human factor IX (rhFIX) produced from transgenic porcine milk under the control of the bovine α-lactalbumin promoter reached 0.25 mg/mL. The rhFIX protein was purified from transgenic porcine milk using a three-column purification scheme after a precipitation step to remove casein. The purified protein had high specific activity and a low ratio of the active form (FIXa). The purified rhFIX had 11.9 γ-carboxyglutamic acid (Gla) residues/mol protein, which approached full occupancy of the 12 potential sites in the Gla domain. The rhFIX was shown to have a higher isoelectric point and lower sialic acid content than plasma-derived FIX (pdFIX). The rhFIX had the same N-glycosylation sites and phosphorylation sites as pdFIX, but had a higher specific activity. These results suggest that rhFIX produced from porcine milk is physiologically active and they support the use of transgenic animals as bioreactors for industrial scale production in milk. PMID:24955355

  9. Measurement of the anisotropic thermal conductivity of the porcine cornea.

    PubMed

    Barton, Michael D; Trembly, B Stuart

    2013-10-01

    Accurate thermal models for the cornea of the eye support the development of thermal techniques for reshaping the cornea and other scientific purposes. Heat transfer in the cornea must be quantified accurately so that a thermal treatment does not destroy the endothelial layer, which cannot regenerate, and yet is responsible for maintaining corneal transparency. We developed a custom apparatus to measure the thermal conductivity of ex vivo porcine corneas perpendicular to the surface and applied a commercial apparatus to measure thermal conductivity parallel to the surface. We found that corneal thermal conductivity is 14% anisotropic at the normal state of corneal hydration. Small numbers of ex vivo feline and human corneas had a thermal conductivity perpendicular to the surface that was indistinguishable from the porcine corneas. Aqueous humor from ex vivo porcine, feline, and human eyes had a thermal conductivity nearly equal to that of water. Including the anisotropy of corneal thermal conductivity will improve the predictive power of thermal models of the eye.

  10. Natural interspecies recombinant bovine/porcine enterovirus in sheep.

    PubMed

    Boros, Akos; Pankovics, Péter; Knowles, Nick J; Reuter, Gábor

    2012-09-01

    Members of the genus Enterovirus (family Picornaviridae) are believed to be common and widespread among humans and different animal species, although only a few enteroviruses have been identified from animal sources. Intraspecies recombination among human enteroviruses is a well-known phenomenon, but only a few interspecies examples have been reported and, to our current knowledge, none of these have involved non-primate enteroviruses. In this study, we report the detection and complete genome characterization (using RT-PCR and long-range PCR) of a natural interspecies recombinant bovine/porcine enterovirus (ovine enterovirus type 1; OEV-1) in seven (44 %) of 16 faecal samples from 3-week-old domestic sheep (Ovis aries) collected in two consecutive years. Phylogenetic analysis of the complete coding region revealed that OEV-1 (ovine/TB4-OEV/2009/HUN; GenBank accession no. JQ277724) was a novel member of the species Porcine enterovirus B (PEV-B), implying the endemic presence of PEV-B viruses among sheep. However, the 5' UTR of OEV-1 showed a high degree of sequence and structural identity to bovine enteroviruses. The presumed recombination breakpoint was mapped to the end of the 5' UTR at nucleotide position 814 using sequence and SimPlot analyses. The interspecies-recombinant nature of OEV-1 suggests a closer relationship among bovine and porcine enteroviruses, enabling the exchange of at least some modular genetic elements that may evolve independently.

  11. Laser tissue interaction in the porcine otic capsule tissue model

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; Lee, Jon P.; Berns, Michael W.; White, Joel M.; Neev, Joseph

    1996-01-01

    The absence of a hard tissue model reflecting the properties of the inner and middle ear has made it difficult to draw consistent conclusions on the many experimental laser studies in ear surgery. Porcine otic capsule tissue has been studied by our group extensively in a wide variety of laser-tissue interaction studies and is an economically attractive and simple to use hard tissue source. Porcine otic capsule was harvested from the temporal bone of freshly sacrificed domestic pigs via a craniotomy approach. The technique when performed with power instruments takes less than 5 minutes and the entire otic capsule bone is removed intact as the suture line is not fused to the remaining petrous apex. The tissue specimen contains a vestibule, cochlea, oval and round windows, and internal auditory canals which can be used as an intact middle ear/inner ear system. The tissue can also be micromachined into thin slabs of bone varying for 100 - 1000 micrometers in thickness. In order to quantify more precisely the laser-tissue interactions in otic capsule, optical properties (absorption and scattering) and physical properties were determined (acoustic impedance). The tissue has been used in a wide variety of basic studies investigating the laser-tissue interactions with argon, KTP, (Nd:YAG), carbon dioxide, Ho:YAG, Er:YAG, and XeCl lasers. Porcine otic capsule is an ideal tissue on which standardized test can be performed to compare the relative effects of various laser in otosurgical models.

  12. Prevalence of qnr, aac(6′)-Ib-cr, qepA, and oqxAB in Escherichia coli Isolates from Humans, Animals, and the Environment

    PubMed Central

    Chen, Xiang; Zhang, Weiqiu; Pan, Weijuan; Yin, Jiajun; Pan, Zhiming; Gao, Song

    2012-01-01

    qnr, aac(6′)-Ib-cr, qepA, and oqxAB genes were detected in 5.7%, 4.9%, 2.6%, and 20.2% of 1,022 Escherichia coli isolates from humans, animals, and the environment, respectively, collected between 1993 and 2010 in China. The prevalence of oqxAB in porcine isolates (51.0%) was significantly higher than that in other isolates. This is the first report of oqxAB-positive isolates from ducks and geese and as early as 1994 from chickens. PMID:22391545

  13. Cloning, expression and characterization of potential immunogenic recombinant hemagglutinin-neuraminidase protein of Porcine rubulavirus.

    PubMed

    Cuevas-Romero, Julieta Sandra; Rivera-Benítez, José Francisco; Hernández-Baumgarten, Eliseo; Hernández-Jaúregui, Pablo; Vega, Marco; Blomström, Anne-Lie; Berg, Mikael; Baule, Claudia

    2016-12-01

    Blue eye disease caused by Porcine rubulavirus (PorPV) is an endemic viral infection of swine causing neurological and respiratory disease in piglets, and reproductive failure in sows and boars. The hemagglutinin-neuraminidase (HN) glycoprotein of PorPV is the most abundant component in the viral envelope and the main target of the immune response in infected animals. In this study, we expressed the HN-PorPV-recombinant (rHN-PorPV) protein in an Escherichia coli system and analyzed the immune responses in mice. The HN gene was cloned from the reference strain PorPV-La Piedad Michoacan Virus (GenBank accession number BK005918), into the pDual expression vector. The expressed protein was identified at a molecular weight of 61.7 kDa. Three-dimensional modeling showed that the main conformational and functional domains of the rHN-PorPV protein were preserved. The antigenicity of the expressed protein was confirmed by Western blot with a monoclonal antibody recognizing the HN, and by testing against serum samples from pigs experimentally infected with PorPV. The immunogenicity of the rHN-PorPV protein was tested by inoculation of BALB/c mice with AbISCO-100(®) as adjuvant. Analysis of the humoral immune responses in mice showed an increased level of specific antibodies 14 days after the first immunization, compared to the control group (P < 0.0005). The results show the ability of the rHN-PorPV protein to induce an antibody response in mice. Due to its immunogenic potential, the rHN-PorPV protein will be further evaluated in pig trials for its suitability for prevention and control of blue eye disease.

  14. Postnatal regulation of MAMDC4 in the porcine intestinal epithelium is influenced by bacterial colonization.

    PubMed

    Pasternak, Alex J; Hamonic, Glenn M; Van Kessel, Andrew; Wilson, Heather L

    2016-11-01

    The MAM domain-containing 4 (MAMDC4) protein is associated with the unique endocytotic mechanism observed in the intestine of mammals during the immediate postnatal period. Transcriptional expression of MAMDC4 was substantially upregulated at birth in both the piglet jejunum and ileum and its expression decreases after birth. The protein was found localized specifically to the apical region of the luminal epithelium, however, MAMDC4 protein expression was lost at day 10 and 15 in the jejunum and ileum, respectively, and was not associated with "fetal" enterocyte replacement. Although spatial variation in the subcellular localization of Claudin 1 (CLDN1) was noted at day 3, the loss of MAMDC4 at later stages of development did not appear to have any effect on the tight junction structure. Germ-free (GF) piglets and piglets whose gastrointestinal flora consists exclusively of Escherichia coli (EC) or Lactobacillus fermentum (LF) maintained MAMDC4 protein expression to 14 days of age in distal regions of the small intestine whereas those with conventionalized intestinal flora (CV) showed no MAMDC4 protein at this age. MAMDC4 protein expression was most pronounced in the LF and GF colonized piglets which showed staining in the epithelial cells at 75% and 95% of the length of the small intestine, respectively, which matched that of the newborn. In contrast, EC animals showed only a low abundance at these regions as well as a discontinuous staining pattern. Collectively these results suggest that maturation of MAMDC4 expression in the porcine epithelium occurs more rapidly than what is reported in previously studied rodent species. Furthermore, intestinal bacterial colonization is a major regulator of MAMDC4 in a manner specific to bacterial species and independent of enterocyte turnover.

  15. Vaccination with a porcine reproductive and respiratory syndrome modified live virus vaccine followed by challenge with PRRSV and porcine circovirus type 2 protects against PRRS but enhances PCV2 replication and parthogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Co-infections involving porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) contribute to a group of disease syndromes known as porcine circovirus-associated disease (PCVAD). Presumably, PRRSV infection enhances PCV2 replication as a result of modulation...

  16. Silencing porcine CMAH and GGTA1 genes significantly reduces xenogeneic consumption of human platelets by porcine livers

    PubMed Central

    Butler, James R.; Paris, Leela L.; Blankenship, Ross L.; Sidner, Richard A.; Martens, Gregory R.; Ladowski, Joeseph M.; Li, Ping; Estrada, Jose L; Tector, Matthew; Tector, A. Joseph

    2015-01-01

    Background A profound thrombocytopenia limits hepatic xenotransplantation in the pig-to-primate model. Porcine livers also have shown the ability to phagocytose human platelets in the absence of immune-mediate injury. Recently, inactivation of the porcine ASGR1 gene has been shown to decrease this phenomenon. Inactivating GGTA1 and CMAH genes has reduced the antibody-mediated barrier to xenotransplantation; herein we describe the effect that these modifications have on xenogeneic consumption of human platelets in the absence of immune-mediated graft injury. Methods WT, ASGR1−/−, GGTA1−/−, and GGTA1−/−CMAH−/− knockout pigs were compared for their xenogeneic hepatic consumption of human platelets. An in vitro assay was established to measure the association of human platelets with liver sinusoidal endothelial cells (LSECs) by immunohistochemistry. Perfusion models were used to measure human platelet uptake in livers from WT, ASGR1−/−, GGTA1−/−, and GGTA1−/− CMAH−/− pigs. Results GGTA1−/−, CMAH−/− LSECs exhibited reduced levels of human platelet binding in vitro, when compared to GGTA1−/− and WT LSECs. In a continuous perfusion model, GGTA1−/− CMAH−/− livers consumed fewer human platelets than GGTA1−/− and WT livers. GGTA1−/− CMAH−/− livers also consumed fewer human platelets than ASGR1−/− livers in a single pass model. Conclusions Silencing the porcine carbohydrate genes necessary to avoid antibody-mediated rejection in a pig-to-human model also reduces the xenogeneic consumption of human platelets by the porcine liver. The combination of these genetic modifications may be an effective strategy to limit the thrombocytopenia associated with pig-to-human hepatic xenotransplantation. PMID:26906939

  17. Different virulence of porcine and porcine-like bovine rotavirus strains with genetically nearly identical genomes in piglets and calves.

    PubMed

    Park, Jun-Gyu; Kim, Hyun-Jeong; Matthijnssens, Jelle; Alfajaro, Mia Madel; Kim, Deok-Song; Son, Kyu-Yeol; Kwon, Hyoung-Jun; Hosmillo, Myra; Ryu, Eun-Hye; Kim, Ji-Yun; Cena, Rohani B; Lee, Ju-Hwan; Kang, Mun-Il; Park, Sang-Ik; Cho, Kyoung-Oh

    2013-10-01

    Direct interspecies transmissions of group A rotaviruses (RVA) have been reported under natural conditions. However, the pathogenicity of RVA has never been directly compared in homologous and heterologous hosts. The bovine RVA/Cow-tc/KOR/K5/2004/G5P[7] strain, which was shown to possess a typical porcine-like genotype constellation similar to that of the G5P[7] prototype RVA/Pig-tc/USA/OSU/1977/G5P9[7] strain, was examined for its pathogenicity and compared with the porcine G5P[7] RVA/Pig-tc/KOR/K71/2006/G5P[7] strain possessing the same genotype constellation. The bovine K5 strain induced diarrhea and histopathological changes in the small intestine of piglets and calves, whereas the porcine K71 strain caused diarrhea and histopathological changes in the small intestine of piglets, but not in calves. Furthermore, the bovine K5 strain showed extra-intestinal tropisms in both piglets and calves, whereas the porcine K71 strain had extra-intestinal tropisms in piglets, but not in calves. Therefore, we performed comparative genomic analysis of the K71 and K5 RVA strains to determine whether specific mutations could be associated with these distinct clinical and pathological phenotypes. Full-length sequencing analyses for the 11 genomic segments for K71 and K5 revealed that these strains were genetically nearly identical to each other. Two nucleotide mutations were found in the 5' untranslated region (UTR) of NSP5 and the 3' UTR of NSP3, and eight amino acid mutations in VP1-VP4 and NSP2. Some of these mutations may be critical molecular determinants for RVA virulence and/or pathogenicity.

  18. Use of polarized light microscopy in porcine reproductive technologies.

    PubMed

    Caamaño, J N; Maside, C; Gil, M A; Muñoz, M; Cuello, C; Díez, C; Sánchez-Osorio, J R; Martín, D; Gomis, J; Vazquez, J M; Roca, J; Carrocera, S; Martinez, E A; Gómez, E

    2011-09-01

    The meiotic spindle in the oocyte is composed of microtubules and plays an important role during chromosome alignment and separation at meiosis. Polarized light microscopy (PLM) could be useful for a non-invasive evaluation of the meiotic spindle and may allow removal of nuclear structures without fluorochrome staining and ultraviolet exposure. In this study, PLM was used to assess its potential application in porcine reproductive technologies. The objectives of the present study were to assess the efficie