Science.gov

Sample records for porcine prion protein

  1. Porcine prion protein amyloid.

    PubMed

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  2. Porcine prion protein amyloid

    PubMed Central

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    ABSTRACT Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions. PMID:26218890

  3. Prions and prion-like proteins.

    PubMed

    Fraser, Paul E

    2014-07-18

    Prions are self-replicating protein aggregates and are the primary causative factor in a number of neurological diseases in mammals. The prion protein (PrP) undergoes a conformational transformation leading to aggregation into an infectious cellular pathogen. Prion-like protein spreading and transmission of aggregates between cells have also been demonstrated for other proteins associated with Alzheimer disease and Parkinson disease. This protein-only phenomenon may therefore have broader implications in neurodegenerative disorders. The minireviews in this thematic series highlight the recent advances in prion biology and the roles these unique proteins play in disease.

  4. Prions and Prion-like Proteins

    PubMed Central

    Fraser, Paul E.

    2014-01-01

    Prions are self-replicating protein aggregates and are the primary causative factor in a number of neurological diseases in mammals. The prion protein (PrP) undergoes a conformational transformation leading to aggregation into an infectious cellular pathogen. Prion-like protein spreading and transmission of aggregates between cells have also been demonstrated for other proteins associated with Alzheimer disease and Parkinson disease. This protein-only phenomenon may therefore have broader implications in neurodegenerative disorders. The minireviews in this thematic series highlight the recent advances in prion biology and the roles these unique proteins play in disease. PMID:24860092

  5. Prion protein and cancers.

    PubMed

    Yang, Xiaowen; Zhang, Yan; Zhang, Lihua; He, Tianlin; Zhang, Jie; Li, Chaoyang

    2014-06-01

    The normal cellular prion protein, PrP(C) is a highly conserved and widely expressed cell surface glycoprotein in all mammals. The expression of PrP is pivotal in the pathogenesis of prion diseases; however, the normal physiological functions of PrP(C) remain incompletely understood. Based on the studies in cell models, a plethora of functions have been attributed to PrP(C). In this paper, we reviewed the potential roles that PrP(C) plays in cell physiology and focused on its contribution to tumorigenesis.

  6. Aptamers against prion proteins and prions.

    PubMed

    Gilch, Sabine; Schätzl, Hermann M

    2009-08-01

    Prion diseases are fatal neurodegenerative and infectious disorders of humans and animals, characterized by structural transition of the host-encoded cellular prion protein (PrP(c)) into the aberrantly folded pathologic isoform PrP(Sc). RNA, DNA or peptide aptamers are classes of molecules which can be selected from complex combinatorial libraries for high affinity and specific binding to prion proteins and which might therefore be useful in diagnosis and therapy of prion diseases. Nucleic acid aptamers, which can be chemically synthesized, stabilized and immobilized, appear more suitable for diagnostic purposes, allowing use of PrP(Sc) as selection target. Peptide aptamers facilitate appropriate intracellular expression, targeting and re-routing without losing their binding properties to PrP, a requirement for potential therapeutic gene transfer experiments in vivo. Elucidation of structural properties of peptide aptamers might be used as basis for rational drug design, providing another attractive application of peptide aptamers in the search for effective anti-prion strategies.

  7. Prion protein and aging

    PubMed Central

    Gasperini, Lisa; Legname, Giuseppe

    2014-01-01

    The cellular prion protein (PrPC) has been widely investigated ever since its conformational isoform, the prion (or PrPSc), was identified as the etiological agent of prion disorders. The high homology shared by the PrPC-encoding gene among mammals, its high turnover rate and expression in every tissue strongly suggest that PrPC may possess key physiological functions. Therefore, defining PrPC roles, properties and fate in the physiology of mammalian cells would be fundamental to understand its pathological involvement in prion diseases. Since the incidence of these neurodegenerative disorders is enhanced in aging, understanding PrPC functions in this life phase may be of crucial importance. Indeed, a large body of evidence suggests that PrPC plays a neuroprotective and antioxidant role. Moreover, it has been suggested that PrPC is involved in Alzheimer disease, another neurodegenerative pathology that develops predominantly in the aging population. In prion diseases, PrPC function is likely lost upon protein aggregation occurring in the course of the disease. Additionally, the aging process may alter PrPC biochemical properties, thus influencing its propensity to convert into PrPSc. Both phenomena may contribute to the disease development and progression. In Alzheimer disease, PrPC has a controversial role because its presence seems to mediate β-amyloid toxicity, while its down-regulation correlates with neuronal death. The role of PrPC in aging has been investigated from different perspectives, often leading to contrasting results. The putative protein functions in aging have been studied in relation to memory, behavior and myelin maintenance. In aging mice, PrPC changes in subcellular localization and post-translational modifications have been explored in an attempt to relate them to different protein roles and propensity to convert into PrPSc. Here we provide an overview of the most relevant studies attempting to delineate PrPC functions and fate in aging

  8. Treatment of Prion Disease with Heterologous Prion Proteins

    PubMed Central

    Skinner, Pamela J.; Kim, Hyeon O.; Bryant, Damani; Kinzel, Nikilyn J.; Reilly, Cavan; Priola, Suzette A.; Ward, Anne E.; Goodman, Patricia A.; Olson, Katherine; Seelig, Davis M.

    2015-01-01

    Prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy in cattle, and scrapie in sheep are fatal neurodegenerative diseases for which there is no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPsc or PrPres). Both in vitro (cell culture and cell free conversion assays) and in vivo (animal) studies have demonstrated the strong dependence of this conversion process on protein sequence homology between the initial prion inoculum and the host’s own cellular prion protein. The presence of non-homologous (heterologous) proteins is often inhibitory to this conversion process. We hypothesize that the presence of heterologous prion proteins from one species might therefore constitute an effective treatment for prion disease in another species. To test this hypothesis, we infected mice intracerebrally with murine adapted RML-Chandler scrapie and treated them with heterologous prion protein (purified bacterially expressed recombinant hamster prion protein) or vehicle alone. Treated animals demonstrated reduced disease associated pathology, decreased accumulation of protease-resistant disease-associated prion protein, with delayed onset of clinical symptoms and motor deficits. This was concomitant with significantly increased survival times relative to mock-treated animals. These results provide proof of principle that recombinant hamster prion proteins can effectively and safely inhibit prion disease in mice, and suggest that hamster or other non-human prion proteins may be a viable treatment for prion diseases in humans. PMID:26134409

  9. The prion protein binds thiamine.

    PubMed

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction.

  10. Prion proteins leading to neurodegeneration.

    PubMed

    La Mendola, D; Mendola, D L; Pietropaolo, A; Pappalardo, G; Zannoni, C; Rizzarelli, E

    2008-12-01

    Prion diseases are fatal neurodegenerative disorders related to the conformational alteration of the prion protein (PrP C) into a pathogenic and protease-resistant isoform PrP(Sc). PrP(C) is a cell surface glycoprotein expressed mainly in the central nervous system and despite numerous efforts to elucidate its physiological role, the exact biological function remains unknown. Many lines of evidences indicate that prion is a copper binding protein and thus involved in the copper metabolism. Prion protein is not expressed only in mammals but also in other species such as birds, reptiles and fishes. However, it is noteworthy to point out that prion diseases are only observed in mammals while they seem to be spared to other species. The chicken prion protein (chPrP C) shares about 30% of identity in its primary sequence with mammal PrP C. Both types of proteins have an N-terminal domain endowed with tandem amino acid repeats (PHNPGY in the avian protein, PHGGGWQ in mammals), followed by a highly conserved hydrophobic core. Furthermore, NMR studies have highlighted a similar globular domain containing three alpha-helices, one short 3(10)-helix and a short antiparallel beta-sheet. Despite this structural similarity, it should be noted that the normal isoform of mammalian PrP C is totally degraded by proteinase K, while avian PrP C is not, thereby producing N-terminal domain peptide fragments stable to further proteolysis. Notably, the hexarepeat domain is considered essential for protein endocytosis, and it is supposed to be the analogous copper-binding octarepeat region of mammalian prion proteins. The number of copper binding sites, the affinity and the coordination environment of metal ions are still matter of discussion for both mammal and avian proteins. In this review, we summarize the similarities and the differences between mammalian and avian prion proteins, as revealed by studies carried out on the entire protein and related peptide fragments, using a range of

  11. Prions: The Chemistry of Infectious Proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prion is pathological protein that causes a set of rare fatal neurological diseases called transmissible spongiform encephalopathies (TSE). TSE diseases occur in humans, sheep, goats, deer, elk, mink, cows and other mammals. A prion and the normal cellular prion protein (PrPC) have the same primar...

  12. Prion protein in ESC regulation.

    PubMed

    Miranda, Alberto; Pericuesta, Eva; Ramírez, Miguel Ángel; Gutiérrez-Adán, Alfonso

    2011-01-01

    A large number of studies have analysed the putative functions of the prion protein (PrP(C)) in mammals. Although its sequence conservation over a wide range of different animals may indicate that this protein could have a key role in prion diseases, an absolutely accepted involvement has not been found so far. We have recently reported that PrP(C) regulates Nanog mRNA expression, the first non-redundant function of PrP(C) in embryonic stem cells (ESC), which translates into control of pluripotency and early differentiation. Contrary to what it is believed, the other two members of the prion protein family, Doppel and Shadoo, cannot replace the absence of PrP(C), causing the appearance of a new embryoid body (EB) population in our in vitro culture. The similarities between EB and an early post-implantation embryo suggest that this might also occur in vivo, enhancing the importance of this finding. On the other hand, our data may support the hypothesis of a relationship between the loss of PrP(C) function and neuronal degeneration in prion diseases. A reduction in brain stem cells pluripotency after PrP(C) is misfolded into the pathological conformation (PrP(Sc)) could lead to a delay or a disappearance of the normal brain damage recovery.

  13. Prion protein self-interaction in prion disease therapy approaches.

    PubMed

    Rigter, Alan; Priem, Jan; Langeveld, Jan P M; Bossers, Alex

    2011-09-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are unique disorders that are not caused by infectious micro-organisms (bacteria or fungi), viruses or parasites, but rather seem to be the result of an infectious protein. TSEs are comprised of fatal neurodegenerative disorders affecting both human and animals. Prion diseases cause sponge-like degeneration of neuronal tissue and include (among others) Creutzfeldt-Jacob disease in humans, bovine spongiform encephalopathy (BSE) in cattle and scrapie in sheep. TSEs are characterized by the formation and accumulation of transmissible (infectious) disease-associated protease-resistant prion protein (PrP(Sc)), mainly in tissues of the central nervous system. The exact molecular processes behind the conversion of PrP(C) into PrP(Sc) are not clearly understood. Correlations between prion protein polymorphisms and disease have been found, however in what way these polymorphisms influence the conversion processes remains an enigma; is stabilization or destabilization of the prion protein the basis for a higher conversion propensity? Apart from the disease-associated polymorphisms of the prion protein, the molecular processes underlying conversion are not understood. There are some notions as to which regions of the prion protein are involved in refolding of PrP(C) into PrP(Sc) and where the most drastic structural changes take place. Direct interactions between PrP(C) molecules and/or PrP(Sc) are likely at the basis of conversion, however which specific amino acid domains are involved and to what extent these domains contribute to conversion resistance/sensitivity of the prion protein or the species barrier is still unknown.

  14. Quinacrine reactivity with prion proteins and prion-derived peptides.

    PubMed

    Zawada, Zbigniew; Šafařík, Martin; Dvořáková, Eva; Janoušková, Olga; Březinová, Anna; Stibor, Ivan; Holada, Karel; Bouř, Petr; Hlaváček, Jan; Sebestík, Jaroslav

    2013-05-01

    Quinacrine is a drug that is known to heal neuronal cell culture infected with prions, which are the causative agents of neurodegenerative diseases called transmissible spongiform encephalopathies. However, the drug fails when it is applied in vivo. In this work, we analyzed the reason for this failure. The drug was suggested to "covalently" modify the prion protein via an acridinyl exchange reaction. To investigate this hypothesis more closely, the acridine moiety of quinacrine was covalently attached to the thiol groups of cysteines belonging to prion-derived peptides and to the full-length prion protein. The labeled compounds were conveniently monitored by fluorescence and absorption spectroscopy in the ultraviolet and visible spectral regions. The acridine moiety demonstrated characteristic UV-vis spectrum, depending on the substituent at the C-9 position of the acridine ring. These results confirm that quinacrine almost exclusively reacts with the thiol groups present in proteins and peptides. The chemical reaction alters the prion properties and increases the concentration of the acridine moiety in the prion protein.

  15. Alzheimer's Disease and Prion Protein

    PubMed Central

    Zhou, Jiayi; Liu, Bingqian

    2013-01-01

    Summary Alzheimer's disease (AD) is a devastating neurodegenerative disease with progressive loss of memory and cognitive function, pathologically hallmarked by aggregates of the amyloid-beta (Aβ) peptide and hyperphosphorylated tau in the brain. Aggregation of Aβ under the form of amyloid fibrils has long been considered central to the pathogenesis of AD. However, recent evidence has indicated that soluble Aβ oligomers, rather than insoluble fibrils, are the main neurotoxic species in AD. The cellular prion protein (PrPC) has newly been identified as a cell surface receptor for Aβ oligomers. PrPC is a cell surface glycoprotein that plays a key role in the propagation of prions, proteinaceous infectious agents that replicate by imposing their abnormal conformation to PrPC molecules. In AD, PrPC acts to transduce the neurotoxic signals arising from Aβ oligomers, leading to synaptic failure and cognitive impairment. Interestingly, accumulating evidence has also shown that aggregated Aβ or tau possesses prion-like activity, a property that would allow them to spread throughout the brain. In this article, we review recent findings regarding the function of PrPC and its role in AD, and discuss potential therapeutic implications of PrPC-based approaches in the treatment of AD. PMID:25343100

  16. Controlling the prion propensity of glutamine/asparagine-rich proteins.

    PubMed

    Paul, Kacy R; Ross, Eric D

    2015-01-01

    The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have been linked to degenerative diseases, including amyotrophic lateral sclerosis. Here, we discuss a recent study in which we utilized two strategies to generate prion activity in non-prion Q/N-rich domains. First, we made targeted mutations in four non-prion Q/N-rich domains, replacing predicted prion-inhibiting amino acids with prion-promoting amino acids. All four mutants formed foci when expressed in yeast, and two acquired bona fide prion activity. Prion activity could be generated with as few as two mutations, suggesting that many non-prion Q/N-rich proteins may be just a small number of mutations from acquiring aggregation or prion activity. Second, we created tandem repeats of short prion-prone segments, and observed length-dependent prion activity. These studies demonstrate the considerable progress that has been made in understanding the sequence basis for aggregation of prion and prion-like domains, and suggest possible mechanisms by which new prion domains could evolve.

  17. Production of cattle lacking prion protein.

    PubMed

    Richt, Jürgen A; Kasinathan, Poothappillai; Hamir, Amir N; Castilla, Joaquin; Sathiyaseelan, Thillai; Vargas, Francisco; Sathiyaseelan, Janaki; Wu, Hua; Matsushita, Hiroaki; Koster, Julie; Kato, Shinichiro; Ishida, Isao; Soto, Claudio; Robl, James M; Kuroiwa, Yoshimi

    2007-01-01

    Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrP(C), such as PrP(BSE) in bovine spongiform encephalopathy (BSE) in cattle and PrP(CJD) in Creutzfeldt-Jakob disease (CJD) in humans. Disruption of PrP(C) expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities. However, the impact of ablating PrP(C) function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrP(C)-deficient cattle produced by a sequential gene-targeting system. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification. PrP(C)-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins.

  18. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein.

    PubMed

    Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John

    2013-11-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.

  19. Yeast prions and human prion-like proteins: sequence features and prediction methods.

    PubMed

    Cascarina, Sean M; Ross, Eric D

    2014-06-01

    Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis. This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms.

  20. Prion search and cellular prion protein expression in stranded dolphins.

    PubMed

    Di Guardo, G; Cocumelli, C; Meoli, R; Barbaro, K; Terracciano, G; Di Francesco, C E; Mazzariol, S; Eleni, C

    2012-01-01

    The recent description of a prion disease (PD) case in a free-ranging bottlenose dolphin (Tursiops truncatus) prompted us to carry out an extensive search for the disease-associated isoform (PrPSc) of the cellular prion protein (PrPC) in the brain and in a range of lymphoid tissues from 23 striped dolphins (Stenella coeruleoalba), 5 bottlenose dolphins and 2 Risso s dolphins (Grampus griseus) found stranded between 2007 and 2012 along the Italian coastline. Three striped dolphins and one bottlenose dolphin showed microscopic lesions of encephalitis, with no evidence of spongiform brain lesions being detected in any of the 30 free-ranging cetaceans investigated herein. Nevertheless, we could still observe a prominent PrPC immunoreactivity in the brain as well as in lymphoid tissues from these dolphins. Although immunohistochemical and Western blot investigations yielded negative results for PrPSc deposition in all tissues from the dolphins under study, the reported occurrence of a spontaneous PD case in a wild dolphin is an intriguing issue and a matter of concern for both prion biology and intra/inter-species transmissibility, as well as for cetacean conservation medicine.

  1. Prions: Protein assemblies that convey biological information

    PubMed Central

    Sanders, David W.; Kaufman, Sarah K.; Holmes, Brandon B.; Diamond, Marc I.

    2016-01-01

    Prions derived from the prion protein (PrP) were first characterized as infectious agents that transmit pathology between individuals. However, the majority of cases of neurodegeneration caused by PrP prions occur sporadically. Proteins that self-assemble as cross-beta sheet amyloids are a defining pathological feature of infectious prion disorders and all major age-associated neurodegenerative diseases. In fact, multiple non-infectious proteins exhibit properties of template-driven self-assembly that are strikingly similar to PrP. Evidence suggests that like PrP, many proteins form aggregates that propagate between cells and convert cognate monomer into ordered assemblies. We now recognize that numerous proteins assemble into macromolecular complexes as part of normal physiology, some of which are self-amplifying. This review highlights similarities among infectious and non-infectious neurodegenerative diseases associated with prions, emphasizing the normal and pathogenic roles of higher-order protein assemblies. We propose that studies of the structural and cellular biology of pathological vs. physiological aggregates will be mutually informative. PMID:26844828

  2. Cyclic Amplification of Prion Protein Misfolding

    PubMed Central

    Barria, Marcelo A; Gonzalez-Romero, Dennisse; Soto, Claudio

    2014-01-01

    Protein Misfolfing Cyclic amplification (PMCA) is a technique that take advantage of the nucleation-dependent prion replication process to accelerate the conversion of PrPC into PrPSc in the test tube. PMCA uses ultrasound waves to fragment the PrPSc polymers, increasing the amount of seeds present in the infected sample without affecting their ability to act as conversion nucleus. Over the past 5 years PMCA has became an invaluable technique to study diverse aspects of prions. The PMCA technology has been used by several groups to understand the molecular mechanism of prion replication, the cellular factors involved in prion propagation, the intriguing phenomena of prion strains and species barriers, to detect PrPSc in tissues and biological fluids and to screen for inhibitors against prion replication. In this article we describe a detailed protocol of the PMCA technique, highlighting some of the important technical aspects to obtain a successful and reproducible application of the technology. PMID:22528092

  3. Cellular Prion Protein: From Physiology to Pathology

    PubMed Central

    Yusa, Sei-ichi; Oliveira-Martins, José B.; Sugita-Konishi, Yoshiko; Kikuchi, Yutaka

    2012-01-01

    The human cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI) anchored membrane glycoprotein with two N-glycosylation sites at residues 181 and 197. This protein migrates in several bands by Western blot analysis (WB). Interestingly, PNGase F treatment of human brain homogenates prior to the WB, which is known to remove the N-glycosylations, unexpectedly gives rise to two dominant bands, which are now known as C-terminal (C1) and N-terminal (N1) fragments. This resembles the β-amyloid precursor protein (APP) in Alzheimer disease (AD), which can be physiologically processed by α-, β-, and γ-secretases. The processing of APP has been extensively studied, while the identity of the cellular proteases involved in the proteolysis of PrPC and their possible role in prion biology has remained limited and controversial. Nevertheless, there is a strong correlation between the neurotoxicity caused by prion proteins and the blockade of their normal proteolysis. For example, expression of non-cleavable PrPC mutants in transgenic mice generates neurotoxicity, even in the absence of infectious prions, suggesting that PrPC proteolysis is physiologically and pathologically important. As many mouse models of prion diseases have recently been developed and the knowledge about the proteases responsible for the PrPC proteolysis is accumulating, we examine the historical experimental evidence and highlight recent studies that shed new light on this issue. PMID:23202518

  4. Prion protein self-peptides modulate prion interactions and conversion

    PubMed Central

    2009-01-01

    Background Molecular mechanisms underlying prion agent replication, converting host-encoded cellular prion protein (PrPC) into the scrapie associated isoform (PrPSc), are poorly understood. Selective self-interaction between PrP molecules forms a basis underlying the observed differences of the PrPC into PrPSc conversion process (agent replication). The importance of previously peptide-scanning mapped ovine PrP self-interaction domains on this conversion was investigated by studying the ability of six of these ovine PrP based peptides to modulate two processes; PrP self-interaction and conversion. Results Three peptides (octarepeat, binding domain 2 -and C-terminal) were capable of inhibiting self-interaction of PrP in a solid-phase PrP peptide array. Three peptides (N-terminal, binding domain 2, and amyloidogenic motif) modulated prion conversion when added before or after initiation of the prion protein misfolding cyclic amplification (PMCA) reaction using brain homogenates. The C-terminal peptides (core region and C-terminal) only affected conversion (increased PrPres formation) when added before mixing PrPC and PrPSc, whereas the octarepeat peptide only affected conversion when added after this mixing. Conclusion This study identified the putative PrP core binding domain that facilitates the PrPC-PrPSc interaction (not conversion), corroborating evidence that the region of PrP containing this domain is important in the species-barrier and/or scrapie susceptibility. The octarepeats can be involved in PrPC-PrPSc stabilization, whereas the N-terminal glycosaminoglycan binding motif and the amyloidogenic motif indirectly affected conversion. Binding domain 2 and the C-terminal domain are directly implicated in PrPC self-interaction during the conversion process and may prove to be prime targets in new therapeutic strategy development, potentially retaining PrPC function. These results emphasize the importance of probable PrPC-PrPC and required Pr

  5. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein.

    PubMed

    Sandberg, Malin K; Al-Doujaily, Huda; Sigurdson, Christina J; Glatzel, Markus; O'Malley, Catherine; Powell, Caroline; Asante, Emmanuel A; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2010-10-01

    Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized.

  6. Relation between duration of incubation period of prion infections and prion protein conformation.

    PubMed

    Stadnyk, Vitalii; Mayor, Chrystyna; Izyumova, Lyudmyla; Vlizlo, Vasyl

    2011-08-01

    In this paper, we propose the hypothesis that the long incubation period of prion infections is dependent upon a low rate of pathological prion formation and accumulation. Reduced pathological prion formation might be caused by the high content of β-sheets in the molecule. β-Sheet folding appears to proceed more slowly than folding of α-helices; the former are a major component of the prion secondary structure. This hypothesis strongly agrees with the data about folding of the artificial protein l-polylysine. This protein exists in two subforms: a rapidly folding α-helix-enriched form and a β-sheet-rich form having a very slow speed of secondary and tertiary structure formation. According to our hypothesis, the limiting factor for prion infection propagation is the speed of β-sheet folding in molecules of pathological prion but not the speed of migration of this protein through the host organism.

  7. Lipopolysaccharide induced conversion of recombinant prion protein

    PubMed Central

    Saleem, Fozia; Bjorndahl, Trent C; Ladner, Carol L; Perez-Pineiro, Rolando; Ametaj, Burim N; Wishart, David S

    2014-01-01

    The conformational conversion of the cellular prion protein (PrPC) to the β-rich infectious isoform PrPSc is considered a critical and central feature in prion pathology. Although PrPSc is the critical component of the infectious agent, as proposed in the “protein-only” prion hypothesis, cellular components have been identified as important cofactors in triggering and enhancing the conversion of PrPC to proteinase K resistant PrPSc. A number of in vitro systems using various chemical and/or physical agents such as guanidine hydrochloride, urea, SDS, high temperature, and low pH, have been developed that cause PrPC conversion, their amplification, and amyloid fibril formation often under non-physiological conditions. In our ongoing efforts to look for endogenous and exogenous chemical mediators that might initiate, influence, or result in the natural conversion of PrPC to PrPSc, we discovered that lipopolysaccharide (LPS), a component of gram-negative bacterial membranes interacts with recombinant prion proteins and induces conversion to an isoform richer in β sheet at near physiological conditions as long as the LPS concentration remains above the critical micelle concentration (CMC). More significant was the LPS mediated conversion that was observed even at sub-molar ratios of LPS to recombinant ShPrP (90–232). PMID:24819168

  8. Role of Prion Protein Aggregation in Neurotoxicity

    PubMed Central

    Corsaro, Alessandro; Thellung, Stefano; Villa, Valentina; Nizzari, Mario; Florio, Tullio

    2012-01-01

    In several neurodegenerative diseases, such as Parkinson, Alzheimer’s, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP), the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126) and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death. PMID:22942726

  9. De novo generation of infectious prions with bacterially expressed recombinant prion protein.

    PubMed

    Zhang, Zhihong; Zhang, Yi; Wang, Fei; Wang, Xinhe; Xu, Yuanyuan; Yang, Huaiyi; Yu, Guohua; Yuan, Chonggang; Ma, Jiyan

    2013-12-01

    The prion hypothesis is strongly supported by the fact that prion infectivity and the pathogenic conformer of prion protein (PrP) are simultaneously propagated in vitro by the serial protein misfolding cyclic amplification (sPMCA). However, due to sPMCA's enormous amplification power, whether an infectious prion can be formed de novo with bacterially expressed recombinant PrP (rPrP) remains to be satisfactorily resolved. To address this question, we performed unseeded sPMCA with rPrP in a laboratory that has never been exposed to any native prions. Two types of proteinase K (PK)-resistant and self-perpetuating recombinant PrP conformers (rPrP-res) with PK-resistant cores of 17 or 14 kDa were generated. A bioassay revealed that rPrP-res(17kDa) was highly infectious, causing prion disease in wild-type mice with an average survival time of about 172 d. In contrast, rPrP-res(14kDa) completely failed to induce any disease. Our findings reveal that sPMCA is sufficient to initiate various self-perpetuating PK-resistant rPrP conformers, but not all of them possess in vivo infectivity. Moreover, generating an infectious prion in a prion-free environment establishes that an infectious prion can be formed de novo with bacterially expressed rPrP.

  10. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils

    PubMed Central

    Terry, Cassandra; Wenborn, Adam; Gros, Nathalie; Sells, Jessica; Joiner, Susan; Hosszu, Laszlo L. P.; Tattum, M. Howard; Panico, Silvia; Clare, Daniel K.; Collinge, John; Saibil, Helen R.

    2016-01-01

    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP. PMID:27249641

  11. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils.

    PubMed

    Terry, Cassandra; Wenborn, Adam; Gros, Nathalie; Sells, Jessica; Joiner, Susan; Hosszu, Laszlo L P; Tattum, M Howard; Panico, Silvia; Clare, Daniel K; Collinge, John; Saibil, Helen R; Wadsworth, Jonathan D F

    2016-05-01

    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP.

  12. TIA-1 Is a Functional Prion-Like Protein.

    PubMed

    Rayman, Joseph B; Kandel, Eric R

    2016-12-21

    Prions are self-propagating protein conformations that are traditionally regarded as agents of neurodegenerative disease in animals. However, it has become evident that prion-like aggregation of endogenous proteins can also occur under normal physiological conditions (e.g., during memory storage or activation of the immune response). In this review, we focus on the functional prion-related protein TIA-1, an RNA-binding protein that is involved in multiple aspects of RNA metabolism but is best understood in terms of its role in stress granule assembly during the cellular stress response. We propose that stress granule formation provides a useful conceptual framework with which to address the positive role of TIA-1 prion-like aggregation. Elucidating the function of TIA-1 prion-like aggregation will advance our understanding of how prion-based molecular switches are used in normal physiological settings.

  13. Prions, prionoids and pathogenic proteins in Alzheimer disease.

    PubMed

    Ashe, Karen H; Aguzzi, Adriano

    2013-01-01

    Like patients with prion disease, Alzheimer patients suffer from a fatal, progressive form of dementia. There is growing evidence that amyloid-β (Aβ) aggregates may be transmissible similar to prions, at least under extreme experimental conditions. However, unlike mice infected with prion protein (PrP) prions, those inoculated with Aβ do not die. The transmission of Aβ and PrP thus differs conspicuously in the neurological effects they induce in their hosts, the difference being no less than a matter of life and death. Far from being a mere academic nuance, this distinction between Aβ and PrP begs the crucial questions of what, exactly, controls prion toxicity and how prion toxicity relates to prion infectivity.

  14. Prions, prionoids and pathogenic proteins in Alzheimer disease

    PubMed Central

    Ashe, Karen H.; Aguzzi, Adriano

    2013-01-01

    Like patients with prion disease, Alzheimer patients suffer from a fatal, progressive form of dementia. There is growing evidence that amyloid-β (Aβ) aggregates may be transmissible similar to prions, at least under extreme experimental conditions. However, unlike mice infected with prion protein (PrP) prions, those inoculated with Aβ do not die. The transmission of Aβ and PrP thus differs conspicuously in the neurological effects they induce in their hosts, the difference being no less than a matter of life and death. Far from being a mere academic nuance, this distinction between Aβ and PrP begs the crucial questions of what, exactly, controls prion toxicity and how prion toxicity relates to prion infectivity. PMID:23208281

  15. Prion Variants and Species Barriers Among Saccharomyces Ure2 Proteins

    PubMed Central

    Edskes, Herman K.; McCann, Lindsay M.; Hebert, Andrea M.; Wickner, Reed B.

    2009-01-01

    As hamster scrapie cannot infect mice, due to sequence differences in their PrP proteins, we find “species barriers” to transmission of the [URE3] prion in Saccharomyces cerevisiae among Ure2 proteins of S. cerevisiae, paradoxus, bayanus, cariocanus, and mikatae on the basis of differences among their Ure2p prion domain sequences. The rapid variation of the N-terminal Ure2p prion domains results in protection against the detrimental effects of infection by a prion, just as the PrP residue 129 Met/Val polymorphism may have arisen to protect humans from the effects of cannibalism. Just as spread of bovine spongiform encephalopathy prion variant is less impaired by species barriers than is sheep scrapie, we find that some [URE3] prion variants are infectious to another yeast species while other variants (with the identical amino acid sequence) are not. The species barrier is thus prion variant dependent as in mammals. [URE3] prion variant characteristics are maintained even on passage through the Ure2p of another species. Ure2p of Saccharomyces castelli has an N-terminal Q/N-rich “prion domain” but does not form prions (in S. cerevisiae) and is not infected with [URE3] from Ure2p of other Saccharomyces. This implies that conservation of its prion domain is not for the purpose of forming prions. Indeed the Ure2p prion domain has been shown to be important, though not essential, for the nitrogen catabolism regulatory role of the protein. PMID:19124570

  16. Disturbed vesicular trafficking of membrane proteins in prion disease.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  17. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    USGS Publications Warehouse

    Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2009-01-01

    Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.

  18. Novel strain properties distinguishing sporadic prion diseases sharing prion protein genotype and prion type

    PubMed Central

    Cracco, Laura; Notari, Silvio; Cali, Ignazio; Sy, Man-Sun; Chen, Shu G.; Cohen, Mark L.; Ghetti, Bernardino; Appleby, Brian S.; Zou, Wen-Quan; Caughey, Byron; Safar, Jiri G.; Gambetti, Pierluigi

    2017-01-01

    In most human sporadic prion diseases the phenotype is consistently associated with specific pairings of the genotype at codon 129 of the prion protein gene and conformational properties of the scrapie PrP (PrPSc) grossly identified types 1 and 2. This association suggests that the 129 genotype favours the selection of a distinct strain that in turn determines the phenotype. However, this mechanism cannot play a role in the phenotype determination of sporadic fatal insomnia (sFI) and a subtype of sporadic Creutzfeldt-Jakob disease (sCJD) identified as sCJDMM2, which share 129 MM genotype and PrPSc type 2 but are associated with quite distinct phenotypes. Our detailed comparative study of the PrPSc conformers has revealed major differences between the two diseases, which preferentially involve the PrPSc component that is sensitive to digestion with proteases (senPrPSc) and to a lesser extent the resistant component (resPrPSc). We conclude that these variations are consistent with two distinct strains in sFI and sCJDMM2, and that the rarer sFI is the result of a variant strain selection pathway that might be favoured by a different brain site of initial PrPSc formation in the two diseases. PMID:28091514

  19. A systematic investigation of production of synthetic prions from recombinant prion protein

    PubMed Central

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K.; Edgeworth, Julie A.; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M.; Brandner, Sebastian; Hosszu, Laszlo L. P.; Tattum, M. Howard; Jat, Parmjit; Clarke, Anthony R.; Klöhn, Peter C.; Wadsworth, Jonathan D. F.; Jackson, Graham S.; Collinge, John

    2015-01-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. PMID:26631378

  20. A systematic investigation of production of synthetic prions from recombinant prion protein.

    PubMed

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K; Edgeworth, Julie A; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M; Brandner, Sebastian; Hosszu, Laszlo L P; Tattum, M Howard; Jat, Parmjit; Clarke, Anthony R; Klöhn, Peter C; Wadsworth, Jonathan D F; Jackson, Graham S; Collinge, John

    2015-12-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20,000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved.

  1. A naturally occurring variant of the human prion protein completely prevents prion disease.

    PubMed

    Asante, Emmanuel A; Smidak, Michelle; Grimshaw, Andrew; Houghton, Richard; Tomlinson, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Richard-Londt, Angela; Linehan, Jacqueline M; Brandner, Sebastian; Alpers, Michael; Whitfield, Jerome; Mead, Simon; Wadsworth, Jonathan D F; Collinge, John

    2015-06-25

    Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP). A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru--an acquired prion disease epidemic of the Fore population in Papua New Guinea--and appeared to provide strong protection against disease in the heterozygous state. Here we have investigated the protective role of this variant and its interaction with the common, worldwide M129V PrP polymorphism. V127 was seen exclusively on a M129 PRNP allele. We demonstrate that transgenic mice expressing both variant and wild-type human PrP are completely resistant to both kuru and classical Creutzfeldt-Jakob disease (CJD) prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to bovine spongiform encephalopathy prions to which the Fore were not exposed. Notably, mice expressing only PrP V127 were completely resistant to all prion strains, demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed, this single amino acid substitution (G→V) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild-type PrP indicates that not only is PrP V127 completely refractory to prion conversion but acts as a potent dose-dependent inhibitor of wild-type prion propagation.

  2. Prion protein induced signaling cascades in monocytes

    SciTech Connect

    Krebs, Bjarne; Dorner-Ciossek, Cornelia; Vassallo, Neville; Herms, Jochen; Kretzschmar, Hans A. . E-mail: Hans.Kretzschmar@med.uni-muenchen.de

    2006-02-03

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP{sup C}), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP{sup C} fusion proteins synthesized with a human Fc-tag. PrP{sup C} fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK{sub 1,2} and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP{sup C} in monocytes and macrophages.

  3. Engineering the prion protein using chemical synthesis.

    PubMed

    Ball, H L; King, D S; Cohen, F E; Prusiner, S B; Baldwin, M A

    2001-11-01

    In recent years, the technology of solid-phase peptide synthesis (SPPS) has improved to the extent that chemical synthesis of small proteins may be a viable complementary strategy to recombinant expression. We have prepared several modified and wild-type prion protein (PrP) polypeptides, of up to 112 residues, that demonstrate the flexibility of a chemical approach to protein synthesis. The principal event in prion disease is the conformational change of the normal, alpha-helical cellular protein (PrPc) into a beta-sheet-rich pathogenic isoform (PrP(Sc)). The ability to form PrP(Sc) in transgenic mice is retained by a 106 residue 'mini-prion' (PrP106), with the deletions 23-88 and 141-176. Synthetic PrP106 (sPrP106) and a His-tagged analog (sPrP106HT) have been prepared successfully using a highly optimized Fmoc chemical methodology involving DCC/HOBt activation and an efficient capping procedure with N-(2-chlorobenzyloxycarbonyloxy) succinimide. A single reversed-phase purification step gave homogeneous protein, in excellent yield. With respect to its conformational and aggregational properties and its response to proteinase digestion, sPrP106 was indistinguishable from its recombinant analog (rPrP106). Certain sequences that proved to be more difficult to synthesize using the Fmoc approach, such as bovine (Bo) PrP(90-200), were successfully prepared using a combination of the highly activated coupling reagent HATU and t-Boc chemistry. To mimic the glycosylphosphatidyl inositol (GPI) anchor and target sPrP to cholesterol-rich domains on the cell surface, where the conversion of PrPc is believed to occur, a lipophilic group or biotin, was added to an orthogonally side-chain-protected Lys residue at the C-terminus of sPrP sequences. These groups enabled sPrP to be immobilized on either the cell surface or a streptavidin-coated ELISA plate, respectively, in an orientation analogous to that of membrane-bound, GPI-anchored PrPc. The chemical manipulation of such

  4. Prions: protein only or something more? Overview of potential prion cofactors.

    PubMed

    Fasano, Carlo; Campana, Vincenza; Zurzolo, Chiara

    2006-01-01

    Transmissible spongiform encephalopathies (TSEs) in humans and animals are attributed to protein-only infectious agents, called prions. Prions have been proposed to arise from the conformational conversion of the cellular protein PrP(C) into a misfolded form (e.g., PrP(Sc) for scrapie), which precipitates into aggregates and fibrils. It has been proposed that the conversion process is triggered by the interaction of the infectious form (PrP(Sc)) with the cellular form (PrP(C)) or might result from a mutation in the gene for PrP(C). However, until recently, all efforts to reproduce this process in vitro had failed, suggesting that host factors are necessary for prion replication. In this review we discuss recent findings such as the cellular factors that might be involved in the conformational conversion of prion proteins and the potential mechanisms by which they could operate.

  5. Protein Misfolding in Prion and Prion-Like Diseases: Reconsidering a Required Role for Protein Loss-of-Function.

    PubMed

    Leighton, Patricia L A; Allison, W Ted

    2016-07-06

    Prion disease research has contributed much toward understanding other neurodegenerative diseases, including recent demonstrations that Alzheimer's disease (AD) and other neurodegenerative diseases are prion-like. Prion-like diseases involve the spread of degeneration between individuals and/or among cells or tissues via template directed misfolding, wherein misfolded protein conformers propagate disease by causing normal proteins to misfold. Here we use the premise that AD, amyotrophic lateral sclerosis, Huntington's disease, and other similar diseases are prion-like and ask: Can we apply knowledge gained from studies of these prion-like diseases to resolve debates about classical prion diseases? We focus on controversies about what role(s) protein loss-of-function might have in prion diseases because this has therapeutic implications, including for AD. We examine which loss-of-function events are recognizable in prion-like diseases by considering the normal functions of the proteins before their misfolding and aggregation. We then delineate scenarios wherein gain-of-function and/or loss-of-function would be necessary or sufficient for neurodegeneration. We consider roles of PrPC loss-of-function in prion diseases and in AD, and conclude that the conventional wisdom that prion diseases are 'toxic gain-of-function diseases' has limitations. While prion diseases certainly have required gain-of-function components, we propose that disease phenotypes are predominantly caused by deficits in the normal physiology of PrPC and its interaction partners as PrPC converts to PrPSc. In this model, gain-of-function serves mainly to spread disease, and loss-of-function directly mediates neuron dysfunction. We propose experiments and predictions to assess our conclusion. Further study on the normal physiological roles of these key proteins is warranted.

  6. Prion neuropathology follows the accumulation of alternate prion protein isoforms after infective titre has peaked

    PubMed Central

    Sandberg, Malin K.; Al-Doujaily, Huda; Sharps, Bernadette; De Oliveira, Michael Wiggins; Schmidt, Christian; Richard-Londt, Angela; Lyall, Sarah; Linehan, Jacqueline M.; Brandner, Sebastian; Wadsworth, Jonathan D. F.; Clarke, Anthony R.; Collinge, John

    2014-01-01

    Prions are lethal infectious agents thought to consist of multi-chain forms (PrPSc) of misfolded cellular prion protein (PrPC). Prion propagation proceeds in two distinct mechanistic phases: an exponential phase 1, which rapidly reaches a fixed level of infectivity irrespective of PrPC expression level, and a plateau (phase 2), which continues until clinical onset with duration inversely proportional to PrPC expression level. We hypothesized that neurotoxicity relates to distinct neurotoxic species produced following a pathway switch when prion levels saturate. Here we show a linear increase of proteinase K-sensitive PrP isoforms distinct from classical PrPSc at a rate proportional to PrPC concentration, commencing at the phase transition and rising until clinical onset. The unaltered level of total PrP during phase 1, when prion infectivity increases a million-fold, indicates that prions comprise a small minority of total PrP. This is consistent with PrPC concentration not being rate limiting to exponential prion propagation and neurotoxicity relating to critical concentrations of alternate PrP isoforms whose production is PrPC concentration dependent. PMID:25005024

  7. Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions.

    PubMed

    Nyström, Sofie; Hammarström, Per

    2015-05-11

    Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aβ1-40, Aβ1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers.

  8. Morphine Withdrawal Modifies Prion Protein Expression in Rat Hippocampus

    PubMed Central

    Mattei, Vincenzo; Martellucci, Stefano; Santilli, Francesca; Manganelli, Valeria; Garofalo, Tina; Candelise, Niccolò; Caruso, Alessandra; Sorice, Maurizio; Scaccianoce, Sergio

    2017-01-01

    The hippocampus is a vulnerable brain structure susceptible to damage during aging and chronic stress. Repeated exposure to opioids may alter the brain so that it functions normally when the drugs are present, thus, a prolonged withdrawal might lead to homeostatic changes headed for the restoration of the physiological state. Abuse of morphine may lead to Reacting Oxygen Species-induced neurodegeneration and apoptosis. It has been proposed that during morphine withdrawal, stress responses might be responsible, at least in part, for long-term changes of hippocampal plasticity. Since prion protein is involved in both, Reacting Oxygen Species mediated stress responses and synaptic plasticity, in this work we investigate the effect of opiate withdrawal in rats after morphine treatment. We hypothesize that stressful stimuli induced by opiate withdrawal, and the subsequent long-term homeostatic changes in hippocampal plasticity, might modulate the Prion protein expression. Our results indicate that abstinence from the opiate induced a time-dependent and region-specific modification in Prion protein content, indeed during morphine withdrawal a selective unbalance of hippocampal Prion Protein is observable. Moreover, Prion protein overexpression in hippocampal tissue seems to generate a dimeric structure of Prion protein and α-cleavage at the hydrophobic domain. Stress factors or toxic insults can induce cytosolic dimerization of Prion Protein through the hydrophobic domain, which in turn, it stimulates the α-cleavage and the production of neuroprotective Prion protein fragments. We speculate that this might be the mechanism by which stressful stimuli induced by opiate withdrawal and the subsequent long-term homeostatic changes in hippocampal plasticity, modulate the expression and the dynamics of Prion protein. PMID:28081197

  9. Prions and the Potential Transmissibility of Protein Misfolding Diseases*

    PubMed Central

    Kraus, Allison; Groveman, Bradley R.; Caughey, Byron

    2016-01-01

    Prions, or infectious proteins, represent a major frontier in the study of infectious agents. The prions responsible for mammalian transmissible spongiform encephalopathies (TSEs) are due primarily to infectious self-propagation of misfolded prion proteins. TSE prion structures remain ill-defined, other than being highly structured, self-propagating, and often fibrillar protein multimers with the capacity to seed, or template, the conversion of their normal monomeric precursors into a pathogenic form. Purified TSE prions usually take the form of amyloid fibrils, which are self-seeding ultrastructures common to many serious protein misfolding diseases such as Alzheimer’s, Parkinson’s, Huntington’s and Lou Gehrig’s (amytrophic lateral sclerosis). Indeed, recent reports have now provided evidence of prion-like propagation of several misfolded proteins from cell to cell, if not from tissue to tissue or individual to individual. These findings raise concerns that various protein misfolding diseases might have spreading, prion-like etiologies that contribute to pathogenesis or prevalence. PMID:23808331

  10. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    PubMed

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein.

  11. Green fluorescent protein as a reporter of prion protein folding

    PubMed Central

    Vasiljevic, Snezana; Ren, Junyuan; Yao, YongXiu; Dalton, Kevin; Adamson, Catherine S; Jones, Ian M

    2006-01-01

    Background The amino terminal half of the cellular prion protein PrPc is implicated in both the binding of copper ions and the conformational changes that lead to disease but has no defined structure. However, as some structure is likely to exist we have investigated the use of an established protein refolding technology, fusion to green fluorescence protein (GFP), as a method to examine the refolding of the amino terminal domain of mouse prion protein. Results Fusion proteins of PrPc and GFP were expressed at high level in E.coli and could be purified to near homogeneity as insoluble inclusion bodies. Following denaturation, proteins were diluted into a refolding buffer whereupon GFP fluorescence recovered with time. Using several truncations of PrPc the rate of refolding was shown to depend on the prion sequence expressed. In a variation of the format, direct observation in E.coli, mutations introduced randomly in the PrPc protein sequence that affected folding could be selected directly by recovery of GFP fluorescence. Conclusion Use of GFP as a measure of refolding of PrPc fusion proteins in vitro and in vivo proved informative. Refolding in vitro suggested a local structure within the amino terminal domain while direct selection via fluorescence showed that as little as one amino acid change could significantly alter folding. These assay formats, not previously used to study PrP folding, may be generally useful for investigating PrPc structure and PrPc-ligand interaction. PMID:16939649

  12. Crucial role for prion protein membrane anchoring in the neuroinvasion and neural spread of prion infection.

    PubMed

    Klingeborn, Mikael; Race, Brent; Meade-White, Kimberly D; Rosenke, Rebecca; Striebel, James F; Chesebro, Bruce

    2011-02-01

    In nature prion diseases are usually transmitted by extracerebral prion infection, but clinical disease results only after invasion of the central nervous system (CNS). Prion protein (PrP), a host-encoded glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein, is necessary for prion infection and disease. Here, we investigated the role of the anchoring of PrP on prion neuroinvasion by studying various inoculation routes in mice expressing either anchored or anchorless PrP. In control mice with anchored PrP, intracerebral or sciatic nerve inoculation resulted in rapid CNS neuroinvasion and clinical disease (154 to 156 days), and after tongue, ocular, intravenous, or intraperitoneal inoculation, CNS neuroinvasion was only slightly slower (193 to 231 days). In contrast, in anchorless PrP mice, these routes resulted in slow and infrequent CNS neuroinvasion. Only intracerebral inoculation caused brain PrPres, a protease-resistant isoform of PrP, and disease in both types of mice. Thus, anchored PrP was an essential component for the rapid neural spread and CNS neuroinvasion of prion infection.

  13. Altered prion protein glycosylation in the aging mouse brain.

    PubMed

    Goh, Angeline Xi-Hua; Li, Chaoyang; Sy, Man-Sun; Wong, Boon-Seng

    2007-02-01

    The normal cellular prion protein (PrP(C)) is a glycoprotein with two highly conserved potential N-linked glycosylation sites. All prion diseases, whether inherited, infectious or sporadic, are believed to share the same pathogenic mechanism that is based on the conversion of the normal cellular prion protein (PrP(C)) to the pathogenic scrapie prion protein (PrP(Sc)). However, the clinical and histopathological presentations of prion diseases are heterogeneous, depending not only on the strains of PrP(Sc) but also on the mechanism of diseases, such as age-related sporadic vs. infectious prion diseases. Accumulated evidence suggests that N-linked glycans on PrP(C) are important in disease phenotype. A better understanding of the nature of the N-linked glycans on PrP(C) during the normal aging process may provide new insights into the roles that N-linked glycans play in the pathogenesis of prion diseases. By using a panel of 19 lectins in an antibody-lectin enzyme-linked immunosorbent assay (ELISA), we found that the lectin binding profiles of PrP(C) alter significantly during aging. There is an increasing prevalence of complex oligosaccharides on the aging PrP(C), which are features of PrP(Sc). Taken together, this study suggests a link between the glycosylation patterns on PrP(C) during aging and PrP(Sc).

  14. New insights into structural determinants of prion protein folding and stability.

    PubMed

    Benetti, Federico; Legname, Giuseppe

    2015-01-01

    Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.

  15. Unique Properties of the Rabbit Prion Protein Oligomer

    PubMed Central

    Yu, Ziyao; Huang, Pei; Yu, Yuanhui; Zheng, Zhen; Huang, Zicheng; Guo, Chenyun; Lin, Donghai

    2016-01-01

    Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders infecting both humans and animals. Recent works have demonstrated that the soluble prion protein oligomer (PrPO), the intermediate of the conformational transformation from the host-derived cellular form (PrPC) to the disease-associated Scrapie form (PrPSc), exerts the major neurotoxicity in vitro and in vivo. Rabbits show strong resistance to TSEs, the underlying mechanism is unclear to date. It is expected that the relative TSEs-resistance of rabbits is closely associated with the unique properties of rabbit prion protein oligomer which remain to be addressed in detail. In the present work, we prepared rabbit prion protein oligomer (recRaPrPO) and human prion protein oligomer (recHuPrPO) under varied conditions, analyzed the effects of pH, NaCl concentration and incubation temperature on the oligomerization, and compared the properties of recRaPrPO and recHuPrPO. We found that several factors facilitated the formation of prion protein oligomers, including low pH, high NaCl concentration, high incubation temperature and low conformational stability of monomeric prion protein. RecRaPrPO was formed more slowly than recHuPrPO at physiological-like conditions (< 57°C, < 150 mM NaCl). Furthermore, recRaPrPO possessed higher susceptibility to proteinase K and lower cytotoxicity in vitro than recHuPrPO. These unique properties of recRaPrPO might substantially contribute to the TSEs-resistance of rabbits. Our work sheds light on the oligomerization of prion proteins and is of benefit to mechanistic understanding of TSEs-resistance of rabbits. PMID:27529173

  16. Elucidation of Prion Protein Conformational Changes Associated with Infectivity by Fluorescence Spectroscopy

    DTIC Science & Technology

    2006-06-01

    diseases are fatal neurodegenerative diseases of mammals and include Creutzfeld-Jacob disease (humans), scrapie (sheep), chronic wasting disease (elk...magnetic resonance; PN, peroxynitrite; PrP, prion protein; PrP90, residues 90-232 of hamster prion protein; PrPC, cellular prion; PrPSc, scrapie prion...cow) in cows, chronic wasting in deer and elk, and scrapie in sheep. Prion diseases belong to the larger category of amyloidoses that also includes

  17. Protease resistance of infectious prions is suppressed by removal of a single atom in the cellular prion protein.

    PubMed

    Leske, Henning; Hornemann, Simone; Herrmann, Uli Simon; Zhu, Caihong; Dametto, Paolo; Li, Bei; Laferriere, Florent; Polymenidou, Magdalini; Pelczar, Pawel; Reimann, Regina Rose; Schwarz, Petra; Rushing, Elisabeth Jane; Wüthrich, Kurt; Aguzzi, Adriano

    2017-01-01

    Resistance to proteolytic digestion has long been considered a defining trait of prions in tissues of organisms suffering from transmissible spongiform encephalopathies. Detection of proteinase K-resistant prion protein (PrPSc) still represents the diagnostic gold standard for prion diseases in humans, sheep and cattle. However, it has become increasingly apparent that the accumulation of PrPSc does not always accompany prion infections: high titers of prion infectivity can be reached also in the absence of protease resistant PrPSc. Here, we describe a structural basis for the phenomenon of protease-sensitive prion infectivity. We studied the effect on proteinase K (PK) resistance of the amino acid substitution Y169F, which removes a single oxygen atom from the β2-α2 loop of the cellular prion protein (PrPC). When infected with RML or the 263K strain of prions, transgenic mice lacking wild-type (wt) PrPC but expressing MoPrP169F generated prion infectivity at levels comparable to wt mice. The newly generated MoPrP169F prions were biologically indistinguishable from those recovered from prion-infected wt mice, and elicited similar pathologies in vivo. Surprisingly, MoPrP169F prions showed greatly reduced PK resistance and density gradient analyses showed a significant reduction in high-density aggregates. Passage of MoPrP169F prions into mice expressing wt MoPrP led to full recovery of protease resistance, indicating that no strain shift had taken place. We conclude that a subtle structural variation in the β2-α2 loop of PrPC affects the sensitivity of PrPSc to protease but does not impact prion replication and infectivity. With these findings a specific structural feature of PrPC can be linked to a physicochemical property of the corresponding PrPSc.

  18. Protease resistance of infectious prions is suppressed by removal of a single atom in the cellular prion protein

    PubMed Central

    Hornemann, Simone; Herrmann, Uli Simon; Zhu, Caihong; Dametto, Paolo; Li, Bei; Laferriere, Florent; Polymenidou, Magdalini; Pelczar, Pawel; Schwarz, Petra; Rushing, Elisabeth Jane; Wüthrich, Kurt; Aguzzi, Adriano

    2017-01-01

    Resistance to proteolytic digestion has long been considered a defining trait of prions in tissues of organisms suffering from transmissible spongiform encephalopathies. Detection of proteinase K-resistant prion protein (PrPSc) still represents the diagnostic gold standard for prion diseases in humans, sheep and cattle. However, it has become increasingly apparent that the accumulation of PrPSc does not always accompany prion infections: high titers of prion infectivity can be reached also in the absence of protease resistant PrPSc. Here, we describe a structural basis for the phenomenon of protease-sensitive prion infectivity. We studied the effect on proteinase K (PK) resistance of the amino acid substitution Y169F, which removes a single oxygen atom from the β2–α2 loop of the cellular prion protein (PrPC). When infected with RML or the 263K strain of prions, transgenic mice lacking wild-type (wt) PrPC but expressing MoPrP169F generated prion infectivity at levels comparable to wt mice. The newly generated MoPrP169F prions were biologically indistinguishable from those recovered from prion-infected wt mice, and elicited similar pathologies in vivo. Surprisingly, MoPrP169F prions showed greatly reduced PK resistance and density gradient analyses showed a significant reduction in high-density aggregates. Passage of MoPrP169F prions into mice expressing wt MoPrP led to full recovery of protease resistance, indicating that no strain shift had taken place. We conclude that a subtle structural variation in the β2–α2 loop of PrPC affects the sensitivity of PrPSc to protease but does not impact prion replication and infectivity. With these findings a specific structural feature of PrPC can be linked to a physicochemical property of the corresponding PrPSc. PMID:28207746

  19. The suppression of prion propagation using poly-L-lysine by targeting plasminogen that stimulates prion protein conversion

    PubMed Central

    Ryou, Chongsuk; Titlow, William B.; Mays, Charles E.; Bae, Younsoo; Kim, Sehun

    2011-01-01

    Poly-L-lysine (PLL), a homopolymer of amino acid L-lysine (LL), has been frequently used for drug delivery. Here, we report that PLL is an effective agent to inhibit propagation of prions that cause fatal and incurable neurologic disorders in humans and animals, termed prion diseases. In our recent investigation on prion propagation facilitated by conversion of the cellular prion protein (PrP) to the misfolded, disease-associated PrP (PrPSc), we demonstrated that plasminogen stimulates PrP conversion as a cellular cofactor. In the current study, we targeted plasminogen using PLL and assessed its anti-prion efficacy. The results showed that PLL strongly inhibited PrPSc propagation in the cell-free, cell culture, and mouse models of prion disease. These results confirm the role of plasminogen in PrPSc propagation, validates plasminogen as a therapeutic target to combat prion disease, and suggests PLL as a potential anti-prion agent. Therefore, our study represents a proof-of-concept that targeting plasminogen, a cofactor for PrP conversion, using PLL results in suppression of prion propagation, which represents a successful translation of our understanding on details of prion propagation into a potential therapeutic strategy for prion diseases. PMID:21288569

  20. Analysis of the prion protein gene in multiple system atrophy.

    PubMed

    Chelban, Viorica; Manole, Andreea; Pihlstrøm, Lasse; Schottlaender, Lucia; Efthymiou, Stephanie; OConnor, Emer; Meissner, Wassilios G; Holton, Janice L; Houlden, Henry

    2017-01-01

    Neurodegenerative diseases are a very diverse group of disorders but they share some common mechanisms such as abnormally misfolded proteins with prion-like propagation and aggregation. Creutzfeldt-Jakob disease (CJD) is the most prevalent prion disease in humans. In the sporadic form of CJD the only known risk factor is the codon 129 polymorphism. Recent reports suggested that α-synuclein in multiple system atrophy (MSA) has similar pathogenic mechanisms as the prion protein. Here we present 1 Italian family with MSA and prion disease. Also, cases of concurrent MSA and prion pathology in the same individual or family suggest the possibility of molecular interaction between prion protein and α-synuclein in the process of protein accumulation and neurodegeneration, warranting further investigations. We assessed the PRNP gene by whole-exome sequencing in 264 pathologically confirmed MSA cases and 462 healthy controls to determine whether the 2 diseases share similar risk factors. We then analyzed codon 129 polymorphism by Sanger sequencing and compared with previously published results in sporadic CJD. Homozygosity at codon 129 was present in 50% of pathologically confirmed MSA cases and in 58% of normal controls (odds ratio, 0.7 (95% confidence interval of 0.5-0.9)) compared with 88.2% in sporadic CJD. Our data show that the homozygous state of position 129 in the PRNP is not a risk factor for MSA. No other variants in the PRNP gene were associated with increased risk for MSA.

  1. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  2. Bovine spongiform encephalopathy induces misfolding of alleged prion-resistant species cellular prion protein without altering its pathobiological features.

    PubMed

    Vidal, Enric; Fernández-Borges, Natalia; Pintado, Belén; Ordóñez, Montserrat; Márquez, Mercedes; Fondevila, Dolors; Torres, Juan María; Pumarola, Martí; Castilla, Joaquín

    2013-05-01

    Bovine spongiform encephalopathy (BSE) prions were responsible for an unforeseen epizootic in cattle which had a vast social, economic, and public health impact. This was primarily because BSE prions were found to be transmissible to humans. Other species were also susceptible to BSE either by natural infection (e.g., felids, caprids) or in experimental settings (e.g., sheep, mice). However, certain species closely related to humans, such as canids and leporids, were apparently resistant to BSE. In vitro prion amplification techniques (saPMCA) were used to successfully misfold the cellular prion protein (PrP(c)) of these allegedly resistant species into a BSE-type prion protein. The biochemical and biological properties of the new prions generated in vitro after seeding rabbit and dog brain homogenates with classical BSE were studied. Pathobiological features of the resultant prion strains were determined after their inoculation into transgenic mice expressing bovine and human PrP(C). Strain characteristics of the in vitro-adapted rabbit and dog BSE agent remained invariable with respect to the original cattle BSE prion, suggesting that the naturally low susceptibility of rabbits and dogs to prion infections should not alter their zoonotic potential if these animals became infected with BSE. This study provides a sound basis for risk assessment regarding prion diseases in purportedly resistant species.

  3. Characterization of Antibody Specific for Disease Associated Prion Protein

    DTIC Science & Technology

    2004-07-01

    Distribution Unlimited 13. ABSTRACT (Maximum 200 Words) Prion diseases are characterized by the presence of the abnormal scrapie isoform of prion protein...areas of Task 2. Our main research findings have been published recently (Zou W, Zheng J, Gray D, Gambetti P, Chen SG. Antibody to DNA detects scrapie ...chemiluminescence. (B) Immunocapture of PrP by OCD4 following incubation with nuclease and salmon DNA. 2 1 I Scrapie -infected hamster BH (2 pi each) was either

  4. Infectious Prion Protein Alters Manganese Transport and Neurotoxicity in a Cell Culture Model of Prion Disease

    PubMed Central

    Martin, Dustin P.; Anantharam, Vellareddy; Jin, Huajun; Witte, Travis; Houk, Robert; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2011-01-01

    Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrPC). Although the exact function of PrPC has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrPC protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC50 = 428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases. PMID:21871919

  5. Targeting cellular prion protein reverses early cognitive deficits and neurophysiological dysfunction in prion-infected mice.

    PubMed

    Mallucci, Giovanna R; White, Melanie D; Farmer, Michael; Dickinson, Andrew; Khatun, Husna; Powell, Andrew D; Brandner, Sebastian; Jefferys, John G R; Collinge, John

    2007-02-01

    Currently, no treatment can prevent the cognitive and motor decline associated with widespread neurodegeneration in prion disease. However, we previously showed that targeting endogenous neuronal prion protein (PrP(C)) (the precursor of its disease-associated isoform, PrP(Sc)) in mice with early prion infection reversed spongiform change and prevented clinical symptoms and neuronal loss. We now show that cognitive and behavioral deficits and impaired neurophysiological function accompany early hippocampal spongiform pathology. Remarkably, these behavioral and synaptic impairments recover when neuronal PrP(C) is depleted, in parallel with reversal of spongiosis. Thus, early functional impairments precede neuronal loss in prion disease and can be rescued. Further, they occur before extensive PrP(Sc) deposits accumulate and recover rapidly after PrP(C) depletion, supporting the concept that they are caused by a transient neurotoxic species, distinct from aggregated PrP(Sc). These data suggest that early intervention in human prion disease may lead to recovery of cognitive and behavioral symptoms.

  6. Cellular prion protein transduces neuroprotective signals

    PubMed Central

    Chiarini, Luciana B.; Freitas, Adriana R.O.; Zanata, Silvio M.; Brentani, Ricardo R.; Martins, Vilma R.; Linden, Rafael

    2002-01-01

    To test for a role for the cellular prion protein (PrPc) in cell death, we used a PrPc-binding peptide. Retinal explants from neonatal rats or mice were kept in vitro for 24 h, and anisomycin (ANI) was used to induce apoptosis. The peptide activated both cAMP/protein kinase A (PKA) and Erk pathways, and partially prevented cell death induced by ANI in explants from wild-type rodents, but not from PrPc-null mice. Neuroprotection was abolished by treatment with phosphatidylinositol-specific phospholipase C, with human peptide 106–126, with certain antibodies to PrPc or with a PKA inhibitor, but not with a MEK/Erk inhibitor. In contrast, antibodies to PrPc that increased cAMP also induced neuroprotection. Thus, engagement of PrPc transduces neuroprotective signals through a cAMP/PKA-dependent pathway. PrPc may function as a trophic receptor, the activation of which leads to a neuroprotective state. PMID:12093733

  7. Endogenous prion protein attenuates experimentally induced colitis.

    PubMed

    Martin, Gary R; Keenan, Catherine M; Sharkey, Keith A; Jirik, Frank R

    2011-11-01

    Although the cellular prion protein (PrP(C)) is expressed in the enteric nervous system and lamina propria, its function(s) in the gut is unknown. Because PrP(C) may exert a cytoprotective effect in response to various physiologic stressors, we hypothesized that PrP(C) expression levels might modulate the severity of experimental colitis. We evaluated the course of dextran sodium sulfate (DSS)-induced colitis in hemizygous Tga20 transgenic mice (approximately sevenfold overexpression of PrP(C)), Prnp(-/-) mice, and wild-type mice. On day 7, colon length, disease severity, and histologic activity indices were determined. Unlike DSS-treated wild-type and Prnp(-/-) animals, PrP(C) overexpressing mice were resistant to colitis induction, exhibited much milder histopathologic features, and did not exhibit weight loss or colonic shortening. In keeping with these results, pro-survival molecule expression and/or phosphorylation levels were elevated in DSS-treated Tga20 mice, whereas pro-inflammatory cytokine production and pSTAT3 levels were reduced. In contrast, DSS-treated Prnp(-/-) mice exhibited increased BAD protein expression and a cytokine expression profile predicted to favor inflammation and differentiation. PrP(C) expression from both the endogenous Prnp locus or the Tga20 transgene was increased in the colons of DSS-treated mice. Considered together, these findings demonstrate that PrP(C) has a previously unrecognized cytoprotective and/or anti-inflammatory function within the murine colon.

  8. HEPES inhibits the conversion of prion protein in cell culture.

    PubMed

    Delmouly, Karine; Belondrade, Maxime; Casanova, Danielle; Milhavet, Ollivier; Lehmann, Sylvain

    2011-05-01

    HEPES is a well-known buffering reagent used in cell-culture medium. Interestingly, this compound is also responsible for significant modifications of biological parameters such as uptake of organic molecules, alteration of oxidative stress mechanisms or inhibition of ion channels. While using cell-culture medium supplemented with HEPES on prion-infected cells, it was noticed that there was a significant concentration-dependent inhibition of accumulation of the abnormal isoform of the prion protein (PrP(Sc)). This effect was present only in live cells and was thought to be related to modification of the PrP environment or biology. These results could modify the interpretation of cell-culture assays of prion therapeutic agents, as well as of previous cell biology results obtained in the field using HEPES buffers. This inhibitory effect of HEPES could also be exploited to prevent contamination or propagation of prions in cell culture.

  9. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  10. Strain-dependent profile of misfolded prion protein aggregates

    PubMed Central

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V.; Soto, Claudio

    2016-01-01

    Prions are composed of the misfolded prion protein (PrPSc) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrPSc aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrPSc aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrPSc aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrPSc aggregates and the incubation periods for the strains studied. The relative presence of PrPSc in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrPSc aggregates in prion-induced neurodegeneration. PMID:26877167

  11. Strain-dependent profile of misfolded prion protein aggregates.

    PubMed

    Morales, Rodrigo; Hu, Ping Ping; Duran-Aniotz, Claudia; Moda, Fabio; Diaz-Espinoza, Rodrigo; Chen, Baian; Bravo-Alegria, Javiera; Makarava, Natallia; Baskakov, Ilia V; Soto, Claudio

    2016-02-15

    Prions are composed of the misfolded prion protein (PrP(Sc)) organized in a variety of aggregates. An important question in the prion field has been to determine the identity of functional PrP(Sc) aggregates. In this study, we used equilibrium sedimentation in sucrose density gradients to separate PrP(Sc) aggregates from three hamster prion strains (Hyper, Drowsy, SSLOW) subjected to minimal manipulations. We show that PrP(Sc) aggregates distribute in a wide range of arrangements and the relative proportion of each species depends on the prion strain. We observed a direct correlation between the density of the predominant PrP(Sc) aggregates and the incubation periods for the strains studied. The relative presence of PrP(Sc) in fractions of different sucrose densities was indicative of the protein deposits present in the brain as analyzed by histology. Interestingly, no association was found between sensitivity to proteolytic degradation and aggregation profiles. Therefore, the organization of PrP molecules in terms of the density of aggregates generated may determine some of the particular strain properties, whereas others are independent from it. Our findings may contribute to understand the mechanisms of strain variation and the role of PrP(Sc) aggregates in prion-induced neurodegeneration.

  12. (PCG) Protein Crystal Growth Porcine Elastase

    NASA Technical Reports Server (NTRS)

    1989-01-01

    (PCG) Protein Crystal Growth Porcine Elastase. This enzyme is associated with the degradation of lung tissue in people suffering from emphysema. It is useful in studying causes of this disease. Principal Investigator on STS-26 was Charles Bugg.

  13. What Makes a Protein Sequence a Prion?

    PubMed Central

    Sabate, Raimon; Rousseau, Frederic; Schymkowitz, Joost; Ventura, Salvador

    2015-01-01

    Typical amyloid diseases such as Alzheimer's and Parkinson's were thought to exclusively result from de novo aggregation, but recently it was shown that amyloids formed in one cell can cross-seed aggregation in other cells, following a prion-like mechanism. Despite the large experimental effort devoted to understanding the phenomenon of prion transmissibility, it is still poorly understood how this property is encoded in the primary sequence. In many cases, prion structural conversion is driven by the presence of relatively large glutamine/asparagine (Q/N) enriched segments. Several studies suggest that it is the amino acid composition of these regions rather than their specific sequence that accounts for their priogenicity. However, our analysis indicates that it is instead the presence and potency of specific short amyloid-prone sequences that occur within intrinsically disordered Q/N-rich regions that determine their prion behaviour, modulated by the structural and compositional context. This provides a basis for the accurate identification and evaluation of prion candidate sequences in proteomes in the context of a unified framework for amyloid formation and prion propagation. PMID:25569335

  14. Prion Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prion diseases comprise a set of rare fatal neurological diseases found in humans and other mammals. A prion is a protein capable of converting a normal cellular protein (PrPC) into a prion and thereby propagating an infection. A prion and PrPC differ solely in their conformation. There are differen...

  15. Yeast prion architecture explains how proteins can be genes

    NASA Astrophysics Data System (ADS)

    Wickner, Reed

    2013-03-01

    Prions (infectious proteins) transmit information without an accompanying DNA or RNA. Most yeast prions are self-propagating amyloids that inactivate a normally functional protein. A single protein can become any of several prion variants, with different manifestations due to different amyloid structures. We showed that the yeast prion amyloids of Ure2p, Sup35p and Rnq1p are folded in-register parallel beta sheets using solid state NMR dipolar recoupling experiments, mass-per-filament-length measurements, and filament diameter measurements. The extent of beta sheet structure, measured by chemical shifts in solid-state NMR and acquired protease-resistance on amyloid formation, combined with the measured filament diameters, imply that the beta sheets must be folded along the long axis of the filament. We speculate that prion variants of a single protein sequence differ in the location of these folds. Favorable interactions between identical side chains must hold these structures in-register. The same interactions must guide an unstructured monomer joining the end of a filament to assume the same conformation as molecules already in the filament, with the turns at the same locations. In this way, a protein can template its own conformation, in analogy to the ability of a DNA molecule to template its sequence by specific base-pairing. Bldg. 8, Room 225, NIH, 8 Center Drive MSC 0830, Bethesda, MD 20892-0830, wickner@helix.nih.gov, 301-496-3452

  16. The expanded octarepeat domain selectively binds prions and disrupts homomeric prion protein interactions.

    PubMed

    Leliveld, Sirik Rutger; Dame, Remus Thei; Wuite, Gijs J L; Stitz, Lothar; Korth, Carsten

    2006-02-10

    Insertion of additional octarepeats into the prion protein gene has been genetically linked to familial Creutzfeldt Jakob disease and hence to de novo generation of infectious prions. The pivotal event during prion formation is the conversion of the normal prion protein (PrPC) into the pathogenic conformer PrPSc, which subsequently induces further conversion in an autocatalytic manner. Apparently, an expanded octarepeat domain directs folding of PrP toward the PrPSc conformation and initiates a self-replicating conversion process. Here, based on three main observations, we have provided a model on how altered molecular interactions between wild-type and mutant PrP set the stage for familial Creutzfeldt Jakob disease with octarepeat insertions. First, we showed that wild-type octarepeat domains interact in a copper-dependent and reversible manner, a "copper switch." This interaction becomes irreversible upon domain expansion, possibly reflecting a loss of function. Second, expanded octarepeat domains of increasing length gradually form homogenous globular multimers of 11-21 nm in the absence of copper ions when expressed as soluble glutathione S-transferase fusion proteins. Third, octarepeat domain expansion causes a gain of function with at least 10 repeats selectively binding PrPSc in a denaturant-resistant complex in the absence of copper ions. Thus, the combination of both a loss and gain of function profoundly influences homomeric interaction behavior of PrP with an expanded octarepeat domain. A multimeric cluster of prion proteins carrying expanded octarepeat domains may therefore capture and incorporate spontaneously arising short-lived PrPSc-like conformers, thereby providing a matrix for their conversion.

  17. Discovering DNA encodes heredity and prions are infectious proteins.

    PubMed

    Prusiner, Stanley B; McCarty, Maclyn

    2006-01-01

    The resemblance between the discoveries that DNA is the basis of heredity and that prions are infectious proteins is remarkable. Though four decades separated these two discoveries, the biochemical methodologies and scientific philosophies that were employed are surprisingly similar. In both cases, bioassays available at the time that the projects were initiated proved to be inadequate to support purification studies. Improved bioassays allowed the transforming principle (TP) to be purified from pneumococci and prions from scrapie-infected hamster brains. Publications describing TP as composed of DNA prompted some scientists to contend that undetected proteins must contaminate TP enriched fractions. The simplicity of DNA was thought to prevent it from encoding genetic information. By the time prions were discovered, the genomes of all infectious pathogens including viruses, bacteria, fungi and parasites had been shown to be comprised of nucleic acids and so an antithetical refrain became widely echoed: DNA or RNA molecules must be hiding among the proteins of prions. Finding the unexpected and being asked to demonstrate unequivocally the absence of a possible contaminant represent uncanny parallels between the discoveries that DNA encodes the genotype and that prions are infectious proteins.

  18. Prion protein accumulation in lipid rafts of mouse aging brain.

    PubMed

    Agostini, Federica; Dotti, Carlos G; Pérez-Cañamás, Azucena; Ledesma, Maria Dolores; Benetti, Federico; Legname, Giuseppe

    2013-01-01

    The cellular form of the prion protein (PrP(C)) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrP(C). In old mice, this change favors PrP(C) accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrP(C) translocation into detergent-resistant membranes (DRMs), we looked at PrP(C) compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrP(C) in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases.

  19. Prion Protein Accumulation in Lipid Rafts of Mouse Aging Brain

    PubMed Central

    Agostini, Federica; Dotti, Carlos G.; Pérez-Cañamás, Azucena; Ledesma, Maria Dolores; Benetti, Federico; Legname, Giuseppe

    2013-01-01

    The cellular form of the prion protein (PrPC) is a normal constituent of neuronal cell membranes. The protein misfolding causes rare neurodegenerative disorders known as transmissible spongiform encephalopathies or prion diseases. These maladies can be sporadic, genetic or infectious. Sporadic prion diseases are the most common form mainly affecting aging people. In this work, we investigate the biochemical environment in which sporadic prion diseases may develop, focusing our attention on the cell membrane of neurons in the aging brain. It is well established that with aging the ratio between the most abundant lipid components of rafts undergoes a major change: while cholesterol decreases, sphingomyelin content rises. Our results indicate that the aging process modifies the compartmentalization of PrPC. In old mice, this change favors PrPC accumulation in detergent-resistant membranes, particularly in hippocampi. To confirm the relationship between lipid content changes and PrPC translocation into detergent-resistant membranes (DRMs), we looked at PrPC compartmentalization in hippocampi from acid sphingomyelinase (ASM) knockout (KO) mice and synaptosomes enriched in sphingomyelin. In the presence of high sphingomyelin content, we observed a significant increase of PrPC in DRMS. This process is not due to higher levels of total protein and it could, in turn, favor the onset of sporadic prion diseases during aging as it increases the PrP intermolecular contacts into lipid rafts. We observed that lowering sphingomyelin in scrapie-infected cells by using fumonisin B1 led to a 50% decrease in protease-resistant PrP formation. This may suggest an involvement of PrP lipid environment in prion formation and consequently it may play a role in the onset or development of sporadic forms of prion diseases. PMID:24040215

  20. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  1. Guinea Pig Prion Protein Supports Rapid Propagation of Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease Prions.

    PubMed

    Watts, Joel C; Giles, Kurt; Saltzberg, Daniel J; Dugger, Brittany N; Patel, Smita; Oehler, Abby; Bhardwaj, Sumita; Sali, Andrej; Prusiner, Stanley B

    2016-11-01

    The biochemical and neuropathological properties of bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) prions are faithfully maintained upon transmission to guinea pigs. However, primary and secondary transmissions of BSE and vCJD in guinea pigs result in long incubation periods of ∼450 and ∼350 days, respectively. To determine if the incubation periods of BSE and vCJD prions could be shortened, we generated transgenic (Tg) mice expressing guinea pig prion protein (GPPrP). Inoculation of Tg(GPPrP) mice with BSE and vCJD prions resulted in mean incubation periods of 210 and 199 days, respectively, which shortened to 137 and 122 days upon serial transmission. In contrast, three different isolates of sporadic CJD prions failed to transmit disease to Tg(GPPrP) mice. Many of the strain-specified biochemical and neuropathological properties of BSE and vCJD prions, including the presence of type 2 protease-resistant PrP(Sc), were preserved upon propagation in Tg(GPPrP) mice. Structural modeling revealed that two residues near the N-terminal region of α-helix 1 in GPPrP might mediate its susceptibility to BSE and vCJD prions. Our results demonstrate that expression of GPPrP in Tg mice supports the rapid propagation of BSE and vCJD prions and suggest that Tg(GPPrP) mice may serve as a useful paradigm for bioassaying these prion isolates.

  2. Highly neurotoxic monomeric α-helical prion protein

    PubMed Central

    Zhou, Minghai; Ottenberg, Gregory; Sferrazza, Gian Franco; Lasmézas, Corinne Ida

    2012-01-01

    Prion diseases are infectious and belong to the group of protein misfolding neurodegenerative diseases. In these diseases, neuronal dysfunction and death are caused by the neuronal toxicity of a particular misfolded form of their cognate protein. The ability to specifically target the toxic protein conformer or the neuronal death pathway would provide powerful therapeutic approaches to these diseases. The neurotoxic forms of the prion protein (PrP) have yet to be defined but there is evidence suggesting that at least some of them differ from infectious PrP (PrPSc). Herein, without making an assumption about size or conformation, we searched for toxic forms of recombinant PrP after dilution refolding, size fractionation, and systematic biological testing of all fractions. We found that the PrP species most neurotoxic in vitro and in vivo (toxic PrP, TPrP) is a monomeric, highly α-helical form of PrP. TPrP caused autophagy, apoptosis, and a molecular signature remarkably similar to that observed in the brains of prion-infected animals. Interestingly, highly α-helical intermediates have been described for other amyloidogenic proteins but their biological significance remains to be established. We provide unique experimental evidence that a monomeric α-helical form of an amyloidogenic protein represents a cytotoxic species. Although toxic PrP has yet to be purified from prion-infected brains, TPrP might be the equivalent of one highly neurotoxic PrP species generated during prion replication. Because TPrP is a misfolded, highly neurotoxic form of PrP reproducing several features of prion-induced neuronal death, it constitutes a useful model to study PrP-induced neurodegenerative mechanisms. PMID:22323583

  3. Vaccination with prion peptide-displaying papillomavirus-like particles induces autoantibodies to normal prion protein that interfere with pathologic prion protein production in infected cells.

    PubMed

    Handisurya, Alessandra; Gilch, Sabine; Winter, Dorian; Shafti-Keramat, Saeed; Maurer, Dieter; Schätzl, Hermann M; Kirnbauer, Reinhard

    2007-04-01

    Prion diseases are fatal neurodegenerative disorders caused by proteinaceous infectious pathogens termed prions (PrP(Sc)). To date, there is no prophylaxis or therapy available for these transmissible encephalopathies. Passive immunization with monclonal antibodies recognizing the normal host-encoded prion protein (PrP(C)) has been reported to abolish PrP(Sc) infectivity and to delay onset of disease. Because of established immunologic tolerance against the widely expressed PrP(C), active immunization appears to be difficult to achieve. To overcome this limitation, papillomavirus-like particles were generated that display a nine amino acid B-cell epitope, DWEDRYYRE, of the murine/rat prion protein in an immunogenic capsid surface loop, by insertion into the L1 major capsid protein of bovine papillomavirus type 1. The PrP peptide was selected on the basis of its previously suggested central role in prion pathogenesis. Immunization with PrP-virus-like particles induced high-titer antibodies to PrP in rabbit and in rat, without inducing overt adverse effects. As determined by peptide-specific ELISA, rabbit immune sera recognized the inserted murine/rat epitope and also cross-reacted with the homologous rabbit/human epitope differing in one amino acid residue. In contrast, rat immune sera recognized the murine/rat peptide only. Sera of both species reacted with PrP(C) in its native conformation in mouse brain and on rat pheochromocytoma cells, as determined by immunoprecipitation and fluorescence-activated cell sorting analysis. Importantly, rabbit anti-PrP serum contained high-affinity antibody that inhibited de novo synthesis of PrP(Sc) in prion-infected cells. If also effective in vivo, PrP-virus-like particle vaccination opens a unique possibility for immunologic prevention of currently fatal and incurable prion-mediated diseases.

  4. Inherited prion disease A117V is not simply a proteinopathy but produces prions transmissible to transgenic mice expressing homologous prion protein.

    PubMed

    Asante, Emmanuel A; Linehan, Jacqueline M; Smidak, Michelle; Tomlinson, Andrew; Grimshaw, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Powell, Caroline; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2013-01-01

    Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrP(Sc)), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP ((Ctm)PrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrP(Sc) was demonstrated in the brains of recipient transgenic mice. This PrP(Sc) rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of (Ctm)PrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.

  5. Humic substances interfere with detection of pathogenic prion protein

    USGS Publications Warehouse

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  6. Reversible symptoms and clearance of mutant prion protein in an inducible model of a genetic prion disease in Drosophila melanogaster.

    PubMed

    Murali, A; Maue, R A; Dolph, P J

    2014-07-01

    Prion diseases are progressive disorders that affect the central nervous system leading to memory loss, personality changes, ataxia and neurodegeneration. In humans, these disorders include Creutzfeldt-Jakob disease, kuru and Gerstmann-Straüssler-Scheinker (GSS) syndrome, the latter being a dominantly inherited prion disease associated with missense mutations in the gene that codes for the prion protein. The exact mechanism by which mutant prion proteins affect the central nervous system and cause neurological disease is not well understood. We have generated an inducible model of GSS disease in Drosophila melanogaster by temporally expressing a misfolded form of the murine prion protein in cholinergic neurons. Flies accumulating this mutant protein develop motor abnormalities which are associated with electrophysiological defects in cholinergic neurons. We find that, upon blocking the expression of the mutant protein, both behavioral and electrophysiological defects can be reversed. This represents the first case of reversibility reported in a model of genetic prion disease. Additionally, we observe that endogenous mechanisms exist within Drosophila that are capable of clearing the accumulated prion protein.

  7. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure.

    PubMed

    Wan, William; Stöhr, Jan; Kendall, Amy; Stubbs, Gerald

    2015-01-01

    Self-propagation of aberrant protein folds is the defining characteristic of prions. Knowing the structural basis of self-propagation is essential to understanding prions and their related diseases. Prion rods are amyloid fibrils, but not all amyloids are prions. Prions have been remarkably intractable to structural studies, so many investigators have preferred to work with peptide fragments, particularly in the case of the mammalian prion protein PrP. We compared the structures of a number of fragments of PrP by X-ray fiber diffraction, and found that although all of the peptides adopted amyloid conformations, only the larger fragments adopted conformations that modeled the complexity of self-propagating prions, and even these fragments did not always adopt the PrP structure. It appears that the relatively complex structure of the prion form of PrP is not accessible to short model peptides, and that self-propagation may be tied to a level of structural complexity unobtainable in simple model systems. The larger fragments of PrP, however, are useful to illustrate the phenomenon of deformed templating (heterogeneous seeding), which has important biological consequences.

  8. The Role of a Novel Topological Form of the Prion Protein in Prion Disease

    DTIC Science & Technology

    2006-07-01

    CtmPrP [designated Tg(L9R-3AV)], and these mice develop a spontaneous neurological illness similar to scrapie [Stewart et al. 2005]. We are...that CtmPrP is not produced at appreciable levels in scrapie -infected animals. Task 2: Characterization of the CtmPrP-induced neurotoxic pathway in...Caughey, E. Masliah, and M.Oldstone (2005). Anchorless Prion Protein Results in Infectious Amyloid Disease Without Clinical Scrapie . Science 308:1435

  9. Prion protein in Alzheimer's pathogenesis: a hot and controversial issue.

    PubMed

    Benilova, Iryna; De Strooper, Bart

    2010-08-01

    The role for cellular prion protein PrP(c) in beta-amyloid (Abeta) oligomer-induced synaptic impairment is a topic of great interest and some controversy. In this issue of EMBO Molecular Medicine Aguzzi and co-workers explore the contribution of PrP(c) to deficient long term potentiation (LTP) and soluble Abeta levels in an Alzheimer's disease mouse model and show that the role of prions in Abeta related toxicity is far from 'black and white' suggesting complex interpretations of the data available thus far.

  10. Human prion protein-induced autophagy flux governs neuron cell damage in primary neuron cells.

    PubMed

    Moon, Ji-Hong; Lee, Ju-Hee; Nazim, Uddin Md; Lee, You-Jin; Seol, Jae-Won; Eo, Seong-Kug; Lee, John-Hwa; Park, Sang-Youel

    2016-05-24

    An unusual molecular structure of the prion protein, PrPsc is found only in mammals with transmissible prion diseases. Prion protein stands for either the infectious pathogen itself or a main component of it. Recent studies suggest that autophagy is one of the major functions that keep cells alive and has a protective effect against the neurodegeneration. In this study, we investigated that the effect of human prion protein on autophagy-lysosomal system of primary neuronal cells. The treatment of human prion protein induced primary neuron cell death and decreased both LC3-II and p62 protein amount indicating autophagy flux activation. Electron microscope pictures confirmed the autophagic flux activation in neuron cells treated with prion protein. Inhibition of autophagy flux using pharmacological and genetic tools prevented neuron cell death induced by human prion protein. Autophagy flux induced by prion protein is more activated in prpc expressing cells than in prpc silencing cells. These data demonstrated that prion protein-induced autophagy flux is involved in neuron cell death in prion disease and suggest that autophagy flux might play a critical role in neurodegenerative diseases including prion disease.

  11. Biological and biochemical characterization of mice expressing prion protein devoid of the octapeptide repeat region after infection with prions.

    PubMed

    Yamaguchi, Yoshitaka; Miyata, Hironori; Uchiyama, Keiji; Ootsuyama, Akira; Inubushi, Sachiko; Mori, Tsuyoshi; Muramatsu, Naomi; Katamine, Shigeru; Sakaguchi, Suehiro

    2012-01-01

    Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp(0/0) mice, which express mouse PrP missing only the OR region on the PrP-null background. Incubation times of these mice were not extended. Protease-resistant PrPΔOR, or PrP(Sc)ΔOR, was easily detectable but lower in the brains of these mice, compared to that in control wild-type mice. Consistently, prion titers were slightly lower and astrogliosis was milder in their brains. However, in their spinal cords, PrP(Sc)ΔOR and prion titers were abundant and astrogliosis was as strong as in control wild-type mice. These results indicate that the role of the OR region in prion susceptibility and pathogenesis of the disease is limited. We also found that the PrP(Sc)ΔOR, including the pre-OR residues 23-50, was unusually protease-resistant, indicating that deletion of the OR region could cause structural changes to the pre-OR region upon prion infection, leading to formation of a protease-resistant structure for the pre-OR region.

  12. Melanin or a Melanin-Like Substance Interacts with the N-Terminal Portion of Prion Protein and Inhibits Abnormal Prion Protein Formation in Prion-Infected Cells.

    PubMed

    Hamanaka, Taichi; Nishizawa, Keiko; Sakasegawa, Yuji; Oguma, Ayumi; Teruya, Kenta; Kurahashi, Hiroshi; Hara, Hideyuki; Sakaguchi, Suehiro; Doh-Ura, Katsumi

    2017-03-15

    Prion diseases are progressive fatal neurodegenerative illnesses caused by the accumulation of transmissible abnormal prion protein (PrP). To find treatments for prion diseases, we searched for substances from natural resources that inhibit abnormal PrP formation in prion-infected cells. We found that high-molecular-weight components from insect cuticle extracts reduced abnormal PrP levels. The chemical nature of these components was consistent with that of melanin. In fact, synthetic melanin produced from tyrosine or 3-hydroxy-l-tyrosine inhibited abnormal PrP formation. Melanin did not modify cellular or cell surface PrP levels, nor did it modify lipid raft or cellular cholesterol levels. Neither did it enhance autophagy or lysosomal function. Melanin was capable of interacting with PrP at two N-terminal domains. Specifically, it strongly interacted with the PrP region of amino acids 23 to 50 including a positively charged amino acid cluster and weakly interacted with the PrP octarepeat peptide region of residues 51 to 90. However, the in vitro and in vivo data were inconsistent with those of prion-infected cells. Abnormal PrP formation in protein misfolding cyclic amplification was not inhibited by melanin. Survival after prion infection was not significantly altered in albino mice or exogenously melanin-injected mice compared with that of control mice. These data suggest that melanin, a main determinant of skin color, is not likely to modify prion disease pathogenesis, even though racial differences in the incidence of human prion diseases have been reported. Thus, the findings identify an interaction between melanin and the N terminus of PrP, but the pathophysiological roles of the PrP-melanin interaction remain unclear.IMPORTANCE The N-terminal region of PrP is reportedly important for neuroprotection, neurotoxicity, and abnormal PrP formation, as this region is bound by many factors, such as metal ions, lipids, nucleic acids, antiprion compounds, and several

  13. Prion protein NMR structures of chickens, turtles, and frogs

    PubMed Central

    Calzolai, Luigi; Lysek, Dominikus A.; Pérez, Daniel R.; Güntert, Peter; Wüthrich, Kurt

    2005-01-01

    The NMR structures of the recombinant prion proteins from chicken (Gallus gallus; chPrP), the red-eared slider turtle (Trachemys scripta; tPrP), and the African clawed frog (Xenopus laevis; xlPrP) are presented. The amino acid sequences of these prion proteins show ≈30% identity with mammalian prion proteins. All three species form the same molecular architecture as mammalian PrPC, with a long, flexibly disordered tail attached to the N-terminal end of a globular domain. The globular domain in chPrP and tPrP contains three α-helices, one short 310-helix, and a short antiparallel β-sheet. In xlPrP, the globular domain includes three α-helices and a somewhat longer β-sheet than in the other species. The spatial arrangement of these regular secondary structures coincides closely with that of the globular domain in mammalian prion proteins. Based on the low sequence identity to mammalian PrPs, comparison of chPrP, tPrP, and xlPrP with mammalian PrPC structures is used to identify a set of essential amino acid positions for the preservation of the same PrPC fold in birds, reptiles, amphibians, and mammals. There are additional conserved residues without apparent structural roles, which are of interest for the ongoing search for physiological functions of PrPC in healthy organisms. PMID:15647366

  14. Yeast prions are useful for studying protein chaperones and protein quality control.

    PubMed

    Masison, Daniel C; Reidy, Michael

    2015-01-01

    Protein chaperones help proteins adopt and maintain native conformations and play vital roles in cellular processes where proteins are partially folded. They comprise a major part of the cellular protein quality control system that protects the integrity of the proteome. Many disorders are caused when proteins misfold despite this protection. Yeast prions are fibrous amyloid aggregates of misfolded proteins. The normal action of chaperones on yeast prions breaks the fibers into pieces, which results in prion replication. Because this process is necessary for propagation of yeast prions, even small differences in activity of many chaperones noticeably affect prion phenotypes. Several other factors involved in protein processing also influence formation, propagation or elimination of prions in yeast. Thus, in much the same way that the dependency of viruses on cellular functions has allowed us to learn much about cell biology, the dependency of yeast prions on chaperones presents a unique and sensitive way to monitor the functions and interactions of many components of the cell's protein quality control system. Our recent work illustrates the utility of this system for identifying and defining chaperone machinery interactions.

  15. Effects of prion protein devoid of the N-terminal residues 25-50 on prion pathogenesis in mice.

    PubMed

    Das, Nandita Rani; Miyata, Hironori; Hara, Hideyuki; Uchiyama, Keiji; Chida, Junji; Yano, Masashi; Watanabe, Hitomi; Kondoh, Gen; Sakaguchi, Suehiro

    2017-03-02

    The N-terminal polybasic region of the normal prion protein, PrP(C), which encompasses residues 23-31, is important for prion pathogenesis by affecting conversion of PrP(C) into the pathogenic isoform, PrP(Sc). We previously reported transgenic mice expressing PrP with residues 25-50 deleted in the PrP-null background, designated as Tg(PrP∆preOR)/Prnp (0/0) mice. Here, we produced two new lines of Tg(PrP∆preOR)/Prnp (0/0) mice, each expressing the mutant protein, PrP∆preOR, 1.1 and 1.6 times more than PrP(C) in wild-type mice, and subsequently intracerebrally inoculated RML and 22L prions into them. The lower expresser showed slightly reduced susceptibility to RML prions but not to 22L prions. The higher expresser exhibited enhanced susceptibility to both prions. No prion transmission barrier was created in Tg(PrP∆preOR)/Prnp (0/0) mice against full-length PrP(Sc). PrP(Sc)∆preOR accumulated in the brains of infected Tg(PrP∆preOR)/Prnp (0/0) mice less than PrP(Sc) in control wild-type mice, although lower in RML-infected Tg(PrP∆preOR)/Prnp (0/0) mice than in 22L-infected mice. Prion infectivity in infected Tg(PrP∆preOR)/Prnp (0/0) mice was also lower than that in wild-type mice. These results indicate that deletion of residues 25-50 only slightly affects prion susceptibility, the conversion of PrP(C) into PrP(Sc), and prion infectivity in a strain-specific way. PrP∆preOR retains residues 23-24 and lacks residues 25-31 in the polybasic region. It is thus conceivable that residues 23-24 rather than 25-31 are important for the polybasic region to support prion pathogenesis. However, other investigators have reported that residues 27-31 not 23-24 are important to support prion pathogenesis. Taken together, the polybasic region might support prion pathogenesis through multiple sites including residues 23-24 and 27-31.

  16. Kinetics of Ozone Inactivation of Infectious Prion Protein

    PubMed Central

    Ding, Ning; Price, Luke M.; Braithwaite, Shannon L.; Balachandran, Aru; Mitchell, Gordon; Belosevic, Miodrag

    2013-01-01

    The kinetics of ozone inactivation of infectious prion protein (PrPSc, scrapie 263K) was investigated in ozone-demand-free phosphate-buffered saline (PBS). Diluted infectious brain homogenates (IBH) (0.01%) were exposed to a predetermined ozone dose (10.8 ± 2.0 mg/liter) at three pHs (pH 4.4, 6.0, and 8.0) and two temperatures (4°C and 20°C). The inactivation of PrPSc was quantified by determining the in vitro destruction of PrPSc templating properties using the protein misfolding cyclic amplification (PMCA) assay and bioassay, which were shown to correlate well. The inactivation kinetics were characterized by both Chick-Watson (CW) and efficiency factor Hom (EFH) models. It was found that the EFH model fit the experimental data more appropriately. The efficacy of ozone inactivation of PrPSc was both pH and temperature dependent. Based on the EFH model, CT (disinfectant concentration multiplied by contact time) values were determined for 2-log10, 3-log10, and 4-log10 inactivation at the conditions under which they were achieved. Our results indicated that ozone is effective for prion inactivation in ozone-demand-free water and may be applied for the inactivation of infectious prion in prion-contaminated water and wastewater. PMID:23416994

  17. Prion protein degradation by lichens of the genus Cladonia

    USGS Publications Warehouse

    Bennett, James P.; Rodriguez, Cynthia M.; Johnson, Christopher J.

    2012-01-01

    It has recently been discovered that lichens contain a serine protease capable of degrading the pathogenic prion protein, the etiological agent of prion diseases such as sheep scrapie and cervid chronic wasting disease. Limited methods are available to degrade or inactivate prion disease agents, especially in the environment, and lichens or their serine protease could prove important for management of these diseases. Scant information is available regarding the presence or absence of the protease responsible for degrading prion protein (PrP) in lichen species and, in this study, we tested the hypothesis that PrP degradation activity in lichens is phylogenetically-based by testing 44 species of Cladonia lichens, a genus for which a significant portion of the phylogeny is well established. We categorized PrP degradation activity among the 44 species (high, moderate, low or none) and found that activity in Cladonia species did not correspond with phylogenetic position of the species. Degradation of PrP did correspond, however, with three classical taxonomic characters within the genus: species with brown apothecia, no usnic acid, and the presence of a cortex. Of the 44 species studied, 18 (41%) had either high or moderate PrP degradation activity, suggesting the protease may be frequent in this genus of lichens.

  18. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

    NASA Astrophysics Data System (ADS)

    Giachin, Gabriele; Mai, Phuong Thao; Tran, Thanh Hoa; Salzano, Giulia; Benetti, Federico; Migliorati, Valentina; Arcovito, Alessandro; Longa, Stefano Della; Mancini, Giordano; D'Angelo, Paola; Legname, Giuseppe

    2015-10-01

    The conversion of the prion protein (PrPC) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrPC interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrPC constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrPC coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation.

  19. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    PubMed

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.

  20. Characterization of prion proteins with monospecific antisera to synthetic peptides.

    PubMed

    Barry, R A; Vincent, M T; Kent, S B; Hood, L E; Prusiner, S B

    1988-02-15

    The prion protein (PrP) 27-30 is the major macromolecular component in highly purified preparations of prions derived from scrapie-infected hamster brain. Immunoblotting studies demonstrated that this protein is generated by partial protease digestion of a larger precursor (PrPSc) with an apparent Mr of 33 to 35 kDa, and that a protease-sensitive cellular PrP isoform, designated PrPC, is present in normal hamster brain. To characterize the relationships among these proteins, ELISA and immunoblotting studies were undertaken with rabbit antisera raised against three synthetic PrP peptides. All three antisera were found to specifically react with the prion proteins, and failed to identify other lower or higher m.w. PrP proteins. Our results provide evidence that the primary structures of PrP 27-30, PrPSc, and PrPC are related; this conclusion supports molecular cloning studies indicating that these proteins are encoded by the same chromosomal gene.

  1. PrionW: a server to identify proteins containing glutamine/asparagine rich prion-like domains and their amyloid cores

    PubMed Central

    Zambrano, Rafael; Conchillo-Sole, Oscar; Iglesias, Valentin; Illa, Ricard; Rousseau, Frederic; Schymkowitz, Joost; Sabate, Raimon; Daura, Xavier; Ventura, Salvador

    2015-01-01

    Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-like conversion underlies important biological processes but is also connected to human disease. Yeast prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an evolutionary conserved mechanism. We have recently shown that the identification and evaluation of the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine prions. PrionW is a web application that exploits this principle to scan sequences in order to identify proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the complete yeast proteome, PrionW identifies previously experimentally validated prions with high accuracy. Users can analyze up to 10 000 sequences at a time, PrLD-containing proteins are identified and their putative PrLDs and amyloid nucleating cores visualized and scored. The output files can be downloaded for further analysis. PrionW server can be accessed at http://bioinf.uab.cat/prionw/. PMID:25977297

  2. Differential Toxicity of Antibodies to the Prion Protein

    PubMed Central

    Hornemann, Simone; Herrmann, Uli S.; Arand, Michael; Hawke, Simon; Aguzzi, Adriano

    2016-01-01

    Antibodies against the prion protein PrPC can antagonize prion replication and neuroinvasion, and therefore hold promise as possible therapeutics against prion diseases. However, the safety profile of such antibodies is controversial. It was originally reported that the monoclonal antibody D13 exhibits strong target-related toxicity, yet a subsequent study contradicted these findings. We have reported that several antibodies against certain epitopes of PrPC, including antibody POM1, are profoundly neurotoxic, yet antibody ICSM18, with an epitope that overlaps with POM1, was reported to be innocuous when injected into mouse brains. In order to clarify this confusing situation, we assessed the neurotoxicity of antibodies D13 and ICSM18 with dose-escalation studies using diffusion-weighted magnetic resonance imaging and various histological techniques. We report that both D13 and ICSM18 induce rapid, dose-dependent, on-target neurotoxicity. We conclude that antibodies directed to this region may not be suitable as therapeutics. No such toxicity was found when antibodies against the flexible tail of PrPC were administered. Any attempt at immunotherapy or immunoprophylaxis of prion diseases should account for these potential untoward effects. PMID:26821311

  3. Glycosaminoglycan sulfation determines the biochemical properties of prion protein aggregates.

    PubMed

    Ellett, Laura J; Coleman, Bradley M; Shambrook, Mitch C; Johanssen, Vanessa A; Collins, Steven J; Masters, Colin L; Hill, Andrew F; Lawson, Victoria A

    2015-07-01

    Prion diseases are transmissible neurodegenerative disorders associated with the conversion of the cellular prion protein, PrP(C), to a misfolded isoform called PrP(Sc). Although PrP(Sc) is a necessary component of the infectious prion, additional factors, or cofactors, have been shown to contribute to the efficient formation of transmissible PrP(Sc). Glycosaminoglycans (GAGs) are attractive cofactor candidates as they can be found associated with PrP(Sc) deposits, have been shown to enhance PrP misfolding in vitro, are found in the same cellular compartments as PrP(C) and have been shown to be disease modifying in vivo. Here we investigated the effects of the sulfated GAGs, heparin and heparan sulfate (HS), on disease associated misfolding of full-length recombinant PrP. More specifically, the degree of sulfation of these molecules was investigated for its role in modulating the disease-associated characteristics of PrP. Both heparin and HS induced a β-sheet conformation in recombinant PrP that was associated with the formation of aggregated species; however, the biochemical properties of the aggregates formed in the presence of heparin or HS varied in solubility and protease resistance. Furthermore, these properties could be modified by changes in GAG sulfation, indicating that subtle changes in the properties of prion disease cofactors could initiate disease associated misfolding.

  4. Ion channels induced by the prion protein: mediators of neurotoxicity.

    PubMed

    Solomon, Isaac H; Biasini, Emiliano; Harris, David A

    2012-01-01

    Prion diseases comprise a group of rapidly progressive and invariably fatal neurodegenerative disorders for which there are no effective treatments. While conversion of the cellular prion protein (PrP(C)) to a β-sheet rich isoform (PrP(Sc) ) is known to be a critical event in propagation of infectious prions, the identity of the neurotoxic form of PrP and its mechanism of action remain unclear. Insights into this mechanism have been provided by studying PrP molecules harboring deletions and point mutations in the conserved central region, encompassing residues 105-125. When expressed in transgenic mice, PrP deleted for these residues (Δ105-125) causes a spontaneous neurodegenerative illness that is reversed by co-expression of wild-type PrP. In cultured cells, Δ105-125 PrP confers hypersensitivity to certain cationic antibiotics and induces spontaneous ion channel activity that can be recorded by electrophysiological techniques. We have utilized these drug-hypersensitization and current-inducing activities to identify which PrP domains and subcellular locations are required for toxicity. We present an ion channel model for the toxicity of Δ105-125 PrP and related mutants and speculate how a similar mechanism could mediate PrP(Sc)-associated toxicity. Therapeutic regimens designed to inhibit prion-induced toxicity, as well as formation of PrP(Sc) , may prove to be the most clinically beneficial.

  5. Chicken antibody against a restrictive epitope of prion protein distinguishes normal and abnormal prion proteins.

    PubMed

    Miyamoto, Kazuyoshi; Kimura, Sota; Nakamura, Naoto; Yokoyama, Takashi; Horiuchi, Hiroyuki; Furusawa, Shuichi; Matsuda, Haruo

    2007-10-01

    Recently, we reported the application of a recombinant chicken IgY monoclonal antibody, Ab3-15, against mammalian prion protein (PrP), for the diagnosis of bovine spongiform encephalopathy in cattle. In this study, we have characterized a soluble, single-chain variable fragment (scFv) form of this antibody, sphAb3-15 using brain homogenates from mice. This sphAb3-15 antibody recognized denatured forms of both PrP(C) and PrP(Sc), and PrP(Sc) after PK-treatment, on Western blotting. In sandwich ELISAs, on dot blots and by immunoprecipitation, sphAb3-15 efficiently bound to PrP from normal brain homogenates, but weakly bound PrP from scrapie-infected brain homogenates. These results suggest that sphAb3-15 selectively recognizes PrP(C) under native conditions and that the epitope recognized by sphAb3-15 may undergo conformational changes during the conversion of PrP(C) into PrP(Sc).

  6. Functional diversification of hsp40: distinct j-protein functional requirements for two prions allow for chaperone-dependent prion selection.

    PubMed

    Harris, Julia M; Nguyen, Phil P; Patel, Milan J; Sporn, Zachary A; Hines, Justin K

    2014-07-01

    Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or 'strains'. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have

  7. Prion Diseases

    MedlinePlus

    ... nerve cells use for communicating with adjacent cells. Biology & Genetics Scientists are examining how abnormal prion protein ... the abnormal form. Read more about prion diseases biology and genetics Therapeutic Approaches Although there are no ...

  8. The Role of a Novel Topological Form of the Prion Protein in Prion Disease

    DTIC Science & Technology

    2005-07-01

    experimental scrapie infection, which suggests that CtmPrP may be the ultimate toxic trigger. We have identified mutations in the prion protein sequence...which express CtmPrP [designated Tg(L9R-3AV)], and these mice develop a spontaneous neurological illness similar to scrapie . We are characterizing the...for the presence of CtmPrP in terminally ill scrapie -infected mice, and did not detect any CtmPrP [Stewart and Harris 2003]. We have proposed

  9. Novel polymorphisms in ovine prion protein gene.

    PubMed

    Meydan, H; Ozkan, M M; Yildiz, M A; Goldmann, W

    2013-08-01

    The aim of this study was to identify the PRNP polymorphisms outside the standard codons 136, 154 and 171 in 1110 sheep with no clinical sign of scrapie from all 18 Turkish native sheep breeds and compare our results with published data on ovine PRNP polymorphism from other regions of the world. Among the 22 amino acid polymorphisms and three silent mutations, 10 were novel for ovine PRNP: p.Gly94Gly, p.Leu128Ile, p.Met132Leu, p.Ser135Arg, p.Met137Val, p.Asn146Lys, p.Arg159Arg, p.Tyr160Asn, p.Gln163His and p.Thr193Ser. These data reveal that sheep breeds close to the historic center of small ruminant domestication have remained highly diverse in the prion gene locus, with distinctive genetic similarities to both Asian and European sheep breeds.

  10. The Role of Functional Prion-Like Proteins in the Persistence of Memory.

    PubMed

    Si, Kausik; Kandel, Eric R

    2016-04-01

    Prions are a self-templating amyloidogenic state of normal cellular proteins, such as prion protein (PrP). They have been identified as the pathogenic agents, contributing to a number of diseases of the nervous system. However, the discovery that the neuronal RNA-binding protein, cytoplasmic polyadenylation element-binding protein (CPEB), has a prion-like state that is involved in the stabilization of memory raised the possibility that prion-like proteins can serve normal physiological functions in the nervous system. Here, we review recent experimental evidence of prion-like properties of neuronal CPEB in various organisms and propose a model of how the prion-like state may stabilize memory.

  11. Sensitive detection of aggregated prion protein via proximity ligation

    PubMed Central

    Hammond, Maria; Wik, Lotta; Deslys, Jean-Philippe; Comoy, Emmanuel; Linné, Tommy; Landegren, Ulf; Kamali-Moghaddam, Masood

    2014-01-01

    The DNA assisted solid-phase proximity ligation assay (SP-PLA) provides a unique opportunity to specifically detect prion protein (PrP) aggregates by investigating the collocation of 3 or more copies of the specific protein. We have developed an SP-PLA that can detect PrP aggregates in brain homogenates from infected hamsters even after a 107-fold dilution. In contrast, brain homogenate from uninfected animals did not generate a detectable signal at 100-fold higher concentration. Using either of the 2 monoclonal anti-PrP antibodies, 3F4 and 6H4, we successfully detected low concentrations of aggregated PrP. The presented results provide a proof of concept that this method might be an interesting tool in the development of diagnostic approaches of prion diseases. PMID:25482604

  12. Sensitive detection of aggregated prion protein via proximity ligation.

    PubMed

    Hammond, Maria; Wik, Lotta; Deslys, Jean-Philippe; Comoy, Emmanuel; Linné, Tommy; Landegren, Ulf; Kamali-Moghaddam, Masood

    2014-01-01

    The DNA assisted solid-phase proximity ligation assay (SP-PLA) provides a unique opportunity to specifically detect prion protein (PrP) aggregates by investigating the collocation of 3 or more copies of the specific protein. We have developed an SP-PLA that can detect PrP aggregates in brain homogenates from infected hamsters even after a 10(7)-fold dilution. In contrast, brain homogenate from uninfected animals did not generate a detectable signal at 100-fold higher concentration. Using either of the 2 monoclonal anti-PrP antibodies, 3F4 and 6H4, we successfully detected low concentrations of aggregated PrP. The presented results provide a proof of concept that this method might be an interesting tool in the development of diagnostic approaches of prion diseases.

  13. Transition-metal prion protein attachment: Competition with copper

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  14. Copper and the Prion Protein: Methods, Structures, Function, and Disease

    NASA Astrophysics Data System (ADS)

    Millhauser, Glenn L.

    2007-05-01

    The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrPC to PrPSc. Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrPC in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrPC, with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrPC function, and emerging connections between copper and prion disease.

  15. Prion protein expression in bovine podocytes and extraglomerular mesangial cells.

    PubMed

    Amselgruber, W M; Steffl, M; Didier, A; Märtlbauer, E; Pfaff, E; Büttner, M

    2006-06-01

    The cellular form of the prion protein (PrP(c)) is thought to be a substrate for an abnormal isoform of the prion protein (PrP(sc)). One emerging hypothesis is that the proposed conversion phenomenon takes place at the site at which the infectious agent meets PrP(c). PrP(c) is abundant in the central nervous system, but little is known about the cell-type-specific distribution of PrP(c) in non-neuronal tissues of cattle. We have studied whether PrP(c), a protein found predominantly in neurons, also exists in bovine podocytes, since neurons and podocytes share a large number of similarities. We have therefore examined the expression of PrP(c) by immunohistochemistry, reverse transcription/polymerase chain reaction and enzyme-linked immunosorbent analysis. Immunostained serial sections and specific antibodies against PrP(c) have revealed that PrP(c) is selectively localized in podocytes and is particularly strongly expressed in extraglomerular mesangial cells but not in endothelial or intraglomerular mesangial cells. The selective expression of PrP(c) in podocytes is of special importance, as it suggests that these cells represent possible targets for peripheral infection with prions and demonstrates that PrP(c) can be added to the list of neuronal factors expressed in mammalian podocytes.

  16. Molecular modeling of the conformational dynamics of the cellular prion protein

    NASA Astrophysics Data System (ADS)

    Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia

    2014-03-01

    Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.

  17. Polythiophenes Inhibit Prion Propagation by Stabilizing Prion Protein (PrP) Aggregates*

    PubMed Central

    Margalith, Ilan; Suter, Carlo; Ballmer, Boris; Schwarz, Petra; Tiberi, Cinzia; Sonati, Tiziana; Falsig, Jeppe; Nyström, Sofie; Hammarström, Per; Åslund, Andreas; Nilsson, K. Peter R.; Yam, Alice; Whitters, Eric; Hornemann, Simone; Aguzzi, Adriano

    2012-01-01

    Luminescent conjugated polymers (LCPs) interact with ordered protein aggregates and sensitively detect amyloids of many different proteins, suggesting that they may possess antiprion properties. Here, we show that a variety of anionic, cationic, and zwitterionic LCPs reduced the infectivity of prion-containing brain homogenates and of prion-infected cerebellar organotypic cultured slices and decreased the amount of scrapie isoform of PrPC (PrPSc) oligomers that could be captured in an avidity assay. Paradoxically, treatment enhanced the resistance of PrPSc to proteolysis, triggered the compaction, and enhanced the resistance to proteolysis of recombinant mouse PrP(23–231) fibers. These results suggest that LCPs act as antiprion agents by transitioning PrP aggregates into structures with reduced frangibility. Moreover, ELISA on cerebellar organotypic cultured slices and in vitro conversion assays with mouse PrP(23–231) indicated that poly(thiophene-3-acetic acid) may additionally interfere with the generation of PrPSc by stabilizing the conformation of PrPC or of a transition intermediate. Therefore, LCPs represent a novel class of antiprion agents whose mode of action appears to rely on hyperstabilization, rather than destabilization, of PrPSc deposits. PMID:22493452

  18. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein

    PubMed Central

    Massignan, Tania; Cimini, Sara; Stincardini, Claudia; Cerovic, Milica; Vanni, Ilaria; Elezgarai, Saioa R.; Moreno, Jorge; Stravalaci, Matteo; Negro, Alessandro; Sangiovanni, Valeria; Restelli, Elena; Riccardi, Geraldina; Gobbi, Marco; Castilla, Joaquín; Borsello, Tiziana; Nonno, Romolo; Biasini, Emiliano

    2016-01-01

    Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer’s Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity. PMID:26976106

  19. Cyclodextrins inhibit replication of scrapie prion protein in cell culture.

    PubMed

    Prior, Marguerite; Lehmann, Sylvain; Sy, Man-Sun; Molloy, Brendan; McMahon, Hilary E M

    2007-10-01

    Prion diseases are fatal neurodegenerative disorders that are caused by the conversion of a normal host-encoded protein, PrP(C), to an abnormal, disease-causing form, PrP(Sc). This paper reports that cyclodextrins have the ability to reduce the pathogenic isoform of the prion protein PrP(Sc) to undetectable levels in scrapie-infected neuroblastoma cells. Beta-cyclodextrin removed PrP(Sc) from the cells at a concentration of 500 microM following 2 weeks of treatment. Structure activity studies revealed that antiprion activity was dependent on the size of the cyclodextrin. The half-maximal inhibitory concentration (IC(50)) for beta-cyclodextrin was 75 microM, whereas alpha-cyclodextrin, which possessed less antiprion activity, had an IC(50) of 750 microM. This report presents cyclodextrins as a new class of antiprion compound. For decades, the pharmaceutical industry has successfully used cyclodextrins for their complex-forming ability; this ability is due to the structural orientation of the glucopyranose units, which generate a hydrophobic cavity that can facilitate the encapsulation of hydrophobic moieties. Consequently, cyclodextrins could be ideal candidates for the treatment of prion diseases.

  20. Alzheimer disease and the prion disorders amyloid beta-protein and prion protein amyloidoses.

    PubMed Central

    Price, D L; Borchelt, D R; Sisodia, S S

    1993-01-01

    Alzheimer disease and the prion disorders/spongiform encephalopathies share many common features. These chronic, progressive, sometimes familial diseases of the central nervous system are characterized by the presence of different types of amyloid deposits in the brain. This review provides a perspective on these two types of neurodegenerative disorders. PMID:8101988

  1. Pathogenic Mutations within the Hydrophobic Domain of the Prion Protein Lead to the Formation of Protease-Sensitive Prion Species with Increased Lethality

    PubMed Central

    Coleman, Bradley M.; Harrison, Christopher F.; Guo, Belinda; Masters, Colin L.; Barnham, Kevin J.; Lawson, Victoria A.

    2014-01-01

    ABSTRACT Prion diseases are a group of fatal and incurable neurodegenerative diseases affecting both humans and animals. The principal mechanism of these diseases involves the misfolding the host-encoded cellular prion protein, PrPC, into the disease-associated isoform, PrPSc. Familial forms of human prion disease include those associated with the mutations G114V and A117V, which lie in the hydrophobic domain of PrP. Here we have studied the murine homologues (G113V and A116V) of these mutations using cell-based and animal models of prion infection. Under normal circumstances, the mutant forms of PrPC share similar processing, cellular localization, and physicochemical properties with wild-type mouse PrP (MoPrP). However, upon exposure of susceptible cell lines expressing these mutants to infectious prions, very low levels of protease-resistant aggregated PrPSc are formed. Subsequent mouse bioassay revealed high levels of infectivity present in these cells. Thus, these mutations appear to limit the formation of aggregated PrPSc, giving rise to the accumulation of a relatively soluble, protease sensitive, prion species that is highly neurotoxic. Given that these mutations lie next to the glycine-rich region of PrP that can abrogate prion infection, these findings provide further support for small, protease-sensitive prion species having a significant role in the progression of prion disease and that the hydrophobic domain is an important determinant of PrP conversion. IMPORTANCE Prion diseases are transmissible neurodegenerative diseases associated with an infectious agent called a prion. Prions are comprised of an abnormally folded form of the prion protein (PrP) that is normally resistant to enzymes called proteases. In humans, prion disease can occur in individuals who inherited mutations in the prion protein gene. Here we have studied the effects of two of these mutations and show that they influence the properties of the prions that can be formed. We show that

  2. Characterizing affinity epitopes between prion protein and β-amyloid using an epitope mapping immunoassay

    PubMed Central

    Kang, Mino; Kim, Su Yeon; An, Seong Soo A; Ju, Young Ran

    2013-01-01

    Cellular prion protein, a membrane protein, is expressed in all mammals. Prion protein is also found in human blood as an anchorless protein, and this protein form is one of the many potential sources of misfolded prion protein replication during transmission. Many studies have suggested that β-amyloid1–42 oligomer causes neurotoxicity associated with Alzheimer's disease, which is mediated by the prion protein that acts as a receptor and regulates the hippocampal potentiation. The prevention of the binding of these proteins has been proposed as a possible preventative treatment for Alzheimer's disease; therefore, a greater understanding of the binding hot-spots between the two molecules is necessary. In this study, the epitope mapping immunoassay was employed to characterize binding epitopes within the prion protein and complementary epitopes in β-amyloid. Residues 23–39 and 93–119 in the prion protein were involved in binding to β-amyloid1–40 and 1–42, and monomers of this protein interacted with prion protein residues 93–113 and 123–166. Furthermore, β-amyloid antibodies against the C-terminus detected bound β-amyloid1–42 at residues 23–40, 104–122 and 159–175. β-Amyloid epitopes necessary for the interaction with prion protein were not determined. In conclusion, charged clusters and hydrophobic regions of the prion protein were involved in binding to β-amyloid1–40 and 1–42. The 3D structure appears to be necessary for β-amyloid to interact with prion protein. In the future, these binding sites may be utilized for 3D structure modeling, as well as for the pharmaceutical intervention of Alzheimer's disease. PMID:23907583

  3. Prion-like transmission of protein aggregates in neurodegenerative diseases

    PubMed Central

    Brundin, Patrik; Melki, Ronald; Kopito, Ron

    2010-01-01

    Neurodegenerative diseases are commonly associated with the accumulation of intracellular or extracellular protein aggregates. Recent studies suggest that these aggregates are capable of crossing cellular membranes and can directly contribute to the propagation of neurodegenerative disease pathogenesis. We propose that, once initiated, neuropathological changes might spread in a ‘prion-like’ manner and that disease progression is associated with the intercellular transfer of pathogenic proteins. The transfer of naked infectious particles between cells could therefore be a target for new disease-modifying therapies. PMID:20308987

  4. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies.

    PubMed

    Heppner, F L; Musahl, C; Arrighi, I; Klein, M A; Rülicke, T; Oesch, B; Zinkernagel, R M; Kalinke, U; Aguzzi, A

    2001-10-05

    Variant Creutzfeldt-Jakob disease and bovine spongiform encephalopathy are initiated by extracerebral exposure to prions. Although prion transmission from extracerebral sites to the brain represents a potential target for prophylaxis, attempts at vaccination have been limited by the poor immunogenicity of prion proteins. To circumvent this, we expressed an anti-prion protein (anti-PrP) mu chain in Prnp(o/o) mice. Transgenic mice developed sustained anti-PrP titers, which were not suppressed by introduction of Prnp+ alleles. Transgene expression prevented pathogenesis of prions introduced by intraperitoneal injection in the spleen and brain. Expression of endogenous PrP (PrP(C)) in the spleen and brain was unaffected, suggesting that immunity was responsible for protection. This indicates the feasibility of immunological inhibition of prion disease in vivo.

  5. Antiprion properties of prion protein-derived cell-penetrating peptides.

    PubMed

    Löfgren, Kajsa; Wahlström, Anna; Lundberg, Pontus; Langel, Ulo; Gräslund, Astrid; Bedecs, Katarina

    2008-07-01

    In prion diseases, the cellular prion protein (PrP(C)) becomes misfolded into the pathogenic scrapie isoform (PrP(Sc)) responsible for prion infectivity. We show here that peptides derived from the prion protein N terminus have potent antiprion effects. These peptides are composed of a hydrophobic sequence followed by a basic segment. They are known to have cell-penetrating ability like regular cell-penetrating peptides (CPPs), short peptides that can penetrate cellular membranes. Healthy (GT1-1) and scrapie-infected (ScGT1-1) mouse neuronal hypothalamic cells were treated with various CPPs, including the prion protein-derived CPPs. Lysates were analyzed for altered protein levels of PrP(C) or PrP(Sc). Treatment with the prion protein-derived CPPs mouse mPrP(1-28) or bovine bPrP(1-30) significantly reduced PrP(Sc) levels in prion-infected cells but had no effect on PrP(C) levels in noninfected cells. Further, presence of prion protein-derived CPPs significantly prolonged the time before infection was manifested when infecting GT1-1 cells with scrapie. Treatment with other CPPs (penetratin, transportan-10, or poly-L-arginine) or prion protein-derived peptides lacking CPP function (mPrP(23-28,) mPrP(19-30,) or mPrP(23-50)) had no effect on PrP(Sc) levels. The results suggest a mechanism by which the signal sequence guides the prion protein-derived CPP into a cellular compartment, where the basic segment binds specifically to PrP(Sc) and disables formation of prions.

  6. Classifying prion and prion-like phenomena.

    PubMed

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  7. Almost a century of prion protein(s): From pathology to physiology, and back to pathology.

    PubMed

    Peggion, Caterina; Bertoli, Alessandro; Sorgato, M Catia

    2017-02-19

    Prions are one of the few pathogens whose name is renowned at all population levels, after the dramatic years pervaded by the fear of eating prion-infected food. If now this, somehow irrational, scare of bovine meat inexorably transmitting devastating brain disorders is largely subdued, several prion-related issues are still unsolved, precluding the design of therapeutic approaches that could slow, if not halt, prion diseases. One unsolved issue is, for example, the role of the prion protein (PrP(C)), whole conformational misfolding originates the prion but whose physiologic reason d'etre in neurons, and in cells at large, remains enigmatic. Preceded by a historical outline, the present review will discuss the functional pleiotropicity ascribed to PrP(C), and whether this aspect could fall, at least in part, into a more concise framework. It will also be devoted to radically different perspectives for PrP(C), which have been recently brought to the attention of the scientific world with unexpected force. Finally, it will discuss the possible reasons allowing an evolutionary conserved and benign protein, as PrP(C) is, to turn into a high affinity receptor for pathologic misfolded oligomers, and to transmit their toxic message into neurons.

  8. Molecular interactions between prions as seeds and recombinant prion proteins as substrates resemble the biological interspecies barrier in vitro.

    PubMed

    Panza, Giannantonio; Luers, Lars; Stöhr, Jan; Nagel-Steger, Luitgard; Weiss, Jürgen; Riesner, Detlev; Willbold, Dieter; Birkmann, Eva

    2010-12-09

    Prion diseases like Creutzfeldt-Jakob disease in humans, Scrapie in sheep or bovine spongiform encephalopathy are fatal neurodegenerative diseases, which can be of sporadic, genetic, or infectious origin. Prion diseases are transmissible between different species, however, with a variable species barrier. The key event of prion amplification is the conversion of the cellular isoform of the prion protein (PrP(C)) into the pathogenic isoform (PrP(Sc)). We developed a sodiumdodecylsulfate-based PrP conversion system that induces amyloid fibril formation from soluble α-helical structured recombinant PrP (recPrP). This approach was extended applying pre-purified PrP(Sc) as seeds which accelerate fibrillization of recPrP. In the present study we investigated the interspecies coherence of prion disease. Therefore we used PrP(Sc) from different species like Syrian hamster, cattle, mouse and sheep and seeded fibrillization of recPrP from the same or other species to mimic in vitro the natural species barrier. We could show that the in vitro system of seeded fibrillization is in accordance with what is known from the naturally occurring species barriers.

  9. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-type bovine spongiform encephalopathy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from normal cellular prion protein to pathogenic misfolded conformation. This conversion has been used for in vitro assays including serial protein misfolding amplification...

  10. Prion protein and Aβ-related synaptic toxicity impairment

    PubMed Central

    Calella, Anna Maria; Farinelli, Mélissa; Nuvolone, Mario; Mirante, Osvaldo; Moos, Rita; Falsig, Jeppe; Mansuy, Isabelle M; Aguzzi, Adriano

    2010-01-01

    Alzheimer's disease (AD), the most common neurodegenerative disorder, goes along with extracellular amyloid-β (Aβ) deposits. The cognitive decline observed during AD progression correlates with damaged spines, dendrites and synapses in hippocampus and cortex. Numerous studies have shown that Aβ oligomers, both synthetic and derived from cultures and AD brains, potently impair synaptic structure and functions. The cellular prion protein (PrPC) was proposed to mediate this effect. We report that ablation or overexpression of PrPC had no effect on the impairment of hippocampal synaptic plasticity in a transgenic model of AD. These findings challenge the role of PrPC as a mediator of Aβ toxicity. PMID:20665634

  11. The Antemortem Detection and Conformational Switches of Prion Proteins

    DTIC Science & Technology

    2005-07-01

    Wisniewski, T. (2001) Infected splenic dendritic cells are sufficient for prion transmission to the CNS in mouse scrapie . J. Clin. Invest. 108, 703-708...21, 1031-1040. Caughey, B.W., Dong, A., Bhat, K.S., Ernst, D., Hayes, S.F. and Caughey, W.S. (1991) Secondary structure analysis of the scrapie ...associated protein PrP 27-30 in water by infrared spectroscopy. Biochemistry. 30, 7672-7680. Caughey, B. and Race, R.E. (1992) Potent inhibition of scrapie

  12. Nuclear protein extraction from frozen porcine myocardium.

    PubMed

    Kuster, Diederik W D; Merkus, Daphne; Jorna, Huub J J; Dekkers, Dick H W; Duncker, Dirk J; Verhoeven, Adrie J M

    2011-06-01

    Protocols for the extraction of nuclear proteins have been developed for cultured cells and fresh tissue, but sometimes only frozen tissue is available. We have optimized the homogenization procedure and subsequent fractionation protocol for the preparation of nuclear protein extracts from frozen porcine left ventricular (LV) tissue. This method gave a highly reproducible protein yield (6.5±0.7% of total protein; mean±SE, n=9) and a 6-fold enrichment of the nuclear marker protein B23. The nuclear protein extracts were essentially devoid of cytosolic, myofilament, and histone proteins. Compared to nuclear extracts from fresh LV tissue, some loss of nuclear proteins to the cytosolic fraction was observed. Using this method, we studied the distribution of tyrosine phosphorylated signal transducer and activator of transcription 3 (PY-STAT3) in LV tissue of animals treated with the β-agonist dobutamine. Upon treatment, PY-STAT3 increased 30.2±8.5-fold in total homogenates, but only 6.9±2.1-fold (n=4, P=0.03) in nuclear protein extracts. Of all PY-STAT3 formed, only a minor fraction appeared in the nuclear fraction. This simple and reproducible protocol yielded nuclear protein extracts that were highly enriched in nuclear proteins with almost complete removal of cytosolic and myofilament proteins. This nuclear protein extraction protocol is therefore well-suited for nuclear proteome analysis of frozen heart tissue collected in biobanks.

  13. Recombinant Prion Protein Refolded with Lipid and RNA Has the Biochemical Hallmarks of a Prion but Lacks In Vivo Infectivity

    PubMed Central

    Timmes, Andrew G.; Moore, Roger A.; Fischer, Elizabeth R.; Priola, Suzette A.

    2013-01-01

    During prion infection, the normal, protease-sensitive conformation of prion protein (PrPC) is converted via seeded polymerization to an abnormal, infectious conformation with greatly increased protease-resistance (PrPSc). In vitro, protein misfolding cyclic amplification (PMCA) uses PrPSc in prion-infected brain homogenates as an initiating seed to convert PrPC and trigger the self-propagation of PrPSc over many cycles of amplification. While PMCA reactions produce high levels of protease-resistant PrP, the infectious titer is often lower than that of brain-derived PrPSc. More recently, PMCA techniques using bacterially derived recombinant PrP (rPrP) in the presence of lipid and RNA but in the absence of any starting PrPSc seed have been used to generate infectious prions that cause disease in wild-type mice with relatively short incubation times. These data suggest that lipid and/or RNA act as cofactors to facilitate the de novo formation of high levels of prion infectivity. Using rPrP purified by two different techniques, we generated a self-propagating protease-resistant rPrP molecule that, regardless of the amount of RNA and lipid used, had a molecular mass, protease resistance and insolubility similar to that of PrPSc. However, we were unable to detect prion infectivity in any of our reactions using either cell-culture or animal bioassays. These results demonstrate that the ability to self-propagate into a protease-resistant insoluble conformer is not unique to infectious PrP molecules. They suggest that the presence of RNA and lipid cofactors may facilitate the spontaneous refolding of PrP into an infectious form while also allowing the de novo formation of self-propagating, but non-infectious, rPrP-res. PMID:23936256

  14. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization

    SciTech Connect

    Nieznanski, Krzysztof . E-mail: k.nieznanski@nencki.gov.pl; Podlubnaya, Zoya A.; Nieznanska, Hanna

    2006-10-13

    A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for First time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of {approx}50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers.

  15. New Structural Approaches to Understanding the Disease Related Forms of the Prion Protein

    DTIC Science & Technology

    2006-07-01

    amyloidogenic proteins. Prion diseases are different from other amyloid diseases in that pathogenic (also called scrapie or PrPSc) forms of the prion...that some residues in the 89–145 segment are required for the conformational change to the infectious, scrapie form [16]. A ‘mini-prion’ containing

  16. Genetic variation of the prion protein gene (PRNP) in alpaca (Vicugna pacos)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transmissible spongiform encephalopathies (TSE) are caused by accumulation of a misfolded form of the prion protein (PrP). The normal cellular isoform of PrP is produced by the prion gene (PRNP) and is highly expressed in the central nervous system. Currently, there is an absence of information rega...

  17. Curcumin Reduces Amyloid Fibrillation of Prion Protein and Decreases Reactive Oxidative Stress

    PubMed Central

    Lin, Chi-Fen; Yu, Kun-Hua; Jheng, Cheng-Ping; Chung, Raymond; Lee, Cheng-I

    2013-01-01

    Misfolding and aggregation into amyloids of the prion protein (PrP) is responsible for the development of fatal transmissible neurodegenerative diseases. Various studies on curcumin demonstrate promise for the prevention of Alzheimer’s disease and inhibition of PrPres accumulation. To evaluate the effect of curcumin on amyloid fibrillation of prion protein, we first investigated the effect of curcumin on mouse prion protein (mPrP) in a cell-free system. Curcumin reduced the prion fibril formation significantly. Furthermore, we monitored the change in apoptosis and reactive oxygen species (ROS) level upon curcumin treatment in mouse neuroblastoma cells (N2a). Curcumin effectively rescues the cells from apoptosis and decreases the ROS level caused by subsequent co-incubation with prion amyloid fibrils. The assays in cell-free mPrP and in N2a cells of this work verified the promising effect of curcumin on the prevention of transmissible neurodegenerative diseases. PMID:25437204

  18. Prion formation, but not clearance, is supported by protein misfolding cyclic amplification.

    PubMed

    Shikiya, Ronald A; Eckland, Thomas E; Young, Alan J; Bartz, Jason C

    2014-01-01

    Prion diseases are fatal transmissible neurodegenerative disorders that affect animals including humans. The kinetics of prion infectivity and PrP(Sc) accumulation can differ between prion strains and within a single strain in different tissues. The net accumulation of PrP(Sc) in animals is controlled by the relationship between the rate of PrP(Sc) formation and clearance. Protein misfolding cyclic amplification (PMCA) is a powerful technique that faithfully recapitulates PrP(Sc) formation and prion infectivity in a cell-free system. PMCA has been used as a surrogate for animal bioassay and can model species barriers, host range, strain co-factors and strain interference. In this study we investigated if degradation of PrP(Sc) and/or prion infectivity occurs during PMCA. To accomplish this we performed PMCA under conditions that do not support PrP(Sc) formation and did not observe either a reduction in PrP(Sc) abundance or an extension of prion incubation period, compared to untreated control samples. These results indicate that prion clearance does not occur during PMCA. These data have significant implications for the interpretation of PMCA based experiments such as prion amplification rate, adaptation to new species and strain interference where production and clearance of prions can affect the outcome.

  19. Prion-like characteristics of the bacterial protein Microcin E492

    PubMed Central

    Shahnawaz, Mohammad; Park, Kyung-Won; Mukherjee, Abhisek; Diaz-Espinoza, Rodrigo; Soto, Claudio

    2017-01-01

    Microcin E492 (Mcc) is a pore-forming bacteriotoxin. Mcc activity is inhibited at the stationary phase by formation of amyloid-like aggregates in the culture. Here we report that, in a similar manner as prions, Mcc naturally exists as two conformers: a β-sheet-rich, protease-resistant, aggregated, inactive form (Mccia), and a soluble, protease-sensitive, active form (Mcca). The exogenous addition of culture medium containing Mccia or purified in vitro-generated Mccia into the culture induces the rapid and efficient conversion of Mcca into Mccia, which is maintained indefinitely after passaging, changing the bacterial phenotype. Mccia prion-like activity is conformation-dependent and could be reduced by immunodepleting Mccia. Interestingly, an internal region of Mcc shares sequence similarity with the central domain of the prion protein, which is key to the formation of mammalian prions. A synthetic peptide spanning this sequence forms amyloid-like fibrils in vitro and is capable of inducing the conversion of Mcca into Mccia in vivo, suggesting that this region corresponds to the prion domain of Mcc. Our findings suggest that Mcc is the first prokaryotic protein with prion properties which harnesses prion-like transmission to regulate protein function, suggesting that propagation of biological information using a prion-based conformational switch is an evolutionary conserved mechanism. PMID:28361921

  20. Computational analysis of candidate prion-like proteins in bacteria and their role

    PubMed Central

    Iglesias, Valentin; de Groot, Natalia S.; Ventura, Salvador

    2015-01-01

    Prion proteins were initially associated with diseases such as Creutzfeldt Jakob and transmissible spongiform encephalopathies. However, deeper research revealed them as versatile tools, exploited by the cells to execute fascinating functions, acting as epigenetic elements or building membrane free compartments in eukaryotes. One of the most intriguing properties of prion proteins is their ability to propagate a conformational assembly, even across species. In this context, it has been observed that bacterial amyloids can trigger the formation of protein aggregates by interacting with host proteins. As our life is closely linked to bacteria, either through a parasitic or symbiotic relationship, prion-like proteins produced by bacterial cells might play a role in this association. Bioinformatics is helping us to understand the factors that determine conformational conversion and infectivity in prion-like proteins. We have used PrionScan to detect prion domains in 839 different bacteria proteomes, detecting 2200 putative prions in these organisms. We studied this set of proteins in order to try to understand their functional role and structural properties. Our results suggest that these bacterial polypeptides are associated to peripheral rearrangement, macromolecular assembly, cell adaptability, and invasion. Overall, these data could reveal new threats and therapeutic targets associated to infectious diseases. PMID:26528269

  1. Transport of the Pathogenic Prion Protein through Landfill Materials

    PubMed Central

    Jacobson, Kurt H.; Lee, Seunghak; McKenzie, Debbie; Benson, Craig H.; Pedersen, Joel A.

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrPTSE) is the major, if not sole, component of the infectious agent. Recent TSE outbreaks in domesticated and wild animal populations has created the need for safe and effective disposal of large quantities of potentially infected materials. Here, we report the results of a study to evaluate the potential for transport of PrPTSE derived from carcasses and associated wastes in a municipal solid waste (MSW) landfill. Column experiments were conducted to evaluate PrPTSE transport in quartz sand, two fine-textured burial soils currently used in landfill practice, a green waste residual material (a potential burial material), and fresh and aged MSW. PrPTSE was retained by quartz sand and the fine-textured burial soils, with no detectable PrPTSE eluted over more than 40 pore volumes. In contrast, PrPTSE was more mobile in MSW and green waste residual. Transport parameters were estimated from the experimental data and used to model PrPTSE migration in a MSW landfill. To the extent that the PrPTSE used mimics that released from decomposing carcasses, burial of CWD-infected materials at MSW landfills could provide secure containment of PrPTSE provided reasonable burial strategies (e.g., encasement in soil) are used. PMID:19368208

  2. Cellular prion protein is present in mitochondria of healthy mice

    PubMed Central

    Faris, Robert; Moore, Roger A.; Ward, Anne; Race, Brent; Dorward, David W.; Hollister, Jason R.; Fischer, Elizabeth R.; Priola, Suzette A.

    2017-01-01

    Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycophosphatidylinositol (GPI) anchor. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. The precise function of PrPC remains elusive but may depend upon its cellular localization. Here we show that PrPC is present in brain mitochondria from 6–12 week old wild-type and transgenic mice in the absence of disease. Mitochondrial PrPC was fully processed with mature N-linked glycans and did not require the GPI anchor for localization. Protease treatment of purified mitochondria suggested that mitochondrial PrPC exists as a transmembrane isoform with the C-terminus facing the mitochondrial matrix and the N-terminus facing the intermembrane space. Taken together, our data suggest that PrPC can be found in mitochondria in the absence of disease, old age, mutation, or overexpression and that PrPC may affect mitochondrial function. PMID:28148964

  3. Characterization of Conformation-dependent Prion Protein Epitopes*

    PubMed Central

    Kang, Hae-Eun; Weng, Chu Chun; Saijo, Eri; Saylor, Vicki; Bian, Jifeng; Kim, Sehun; Ramos, Laylaa; Angers, Rachel; Langenfeld, Katie; Khaychuk, Vadim; Calvi, Carla; Bartz, Jason; Hunter, Nora; Telling, Glenn C.

    2012-01-01

    Whereas prion replication involves structural rearrangement of cellular prion protein (PrPC), the existence of conformational epitopes remains speculative and controversial, and PrP transformation is monitored by immunoblot detection of PrP(27–30), a protease-resistant counterpart of the pathogenic scrapie form (PrPSc) of PrP. We now describe the involvement of specific amino acids in conformational determinants of novel monoclonal antibodies (mAbs) raised against randomly chimeric PrP. Epitope recognition of two mAbs depended on polymorphisms controlling disease susceptibility. Detection by one, referred to as PRC5, required alanine and asparagine at discontinuous mouse PrP residues 132 and 158, which acquire proximity when residues 126–218 form a structured globular domain. The discontinuous epitope of glycosylation-dependent mAb PRC7 also mapped within this domain at residues 154 and 185. In accordance with their conformational dependence, tertiary structure perturbations compromised recognition by PRC5, PRC7, as well as previously characterized mAbs whose epitopes also reside in the globular domain, whereas conformation-independent epitopes proximal or distal to this region were refractory to such destabilizing treatments. Our studies also address the paradox of how conformational epitopes remain functional following denaturing treatments and indicate that cellular PrP and PrP(27–30) both renature to a common structure that reconstitutes the globular domain. PMID:22948149

  4. Isolation and characterization of a polymerized prion protein.

    PubMed Central

    Lu, Bao-Yuan; Chang, Jui-Yoa

    2002-01-01

    A polymerized form of recombinant mouse prion protein (mPrP) domain 23-231 [mPrP-(23-231)], designated mPrP-z, was generated at acidic pH (pH 2-5) in the presence of selected concentrations of denaturant (2 M guanidinium chloride or 5 M urea). This isoform of mPrP is stable in acidic solution after removal of denaturant. It can be isolated and purified using reversed-phase HPLC or size-exclusion HPLC. mPrP-z bears structural properties that partially resemble those of scrapie prion. Unlike the native mPrP-(23-231) (mPrP-N), mPrP-z exhibits a high content of beta-sheet structure, as shown by CD spectroscopy, and exists as an oligomer with an approximate molecular mass of 340000 Da, as measured by light scattering. However, similarly to mPrP-N, mPrP-z contains the intact disulphide bond and is sensitive to digestion by proteinase K. PMID:11988079

  5. To develop with or without the prion protein

    PubMed Central

    Halliez, Sophie; Passet, Bruno; Martin-Lannerée, Séverine; Hernandez-Rapp, Julia; Laude, Hubert; Mouillet-Richard, Sophie; Vilotte, Jean-Luc; Béringue, Vincent

    2014-01-01

    The deletion of the cellular form of the prion protein (PrPC) in mouse, goat, and cattle has no drastic phenotypic consequence. This stands in apparent contradiction with PrPC quasi-ubiquitous expression and conserved primary and tertiary structures in mammals, and its pivotal role in neurodegenerative diseases such as prion and Alzheimer's diseases. In zebrafish embryos, depletion of PrP ortholog leads to a severe loss-of-function phenotype. This raises the question of a potential role of PrPC in the development of all vertebrates. This view is further supported by the early expression of the PrPC encoding gene (Prnp) in many tissues of the mouse embryo, the transient disruption of a broad number of cellular pathways in early Prnp−/− mouse embryos, and a growing body of evidence for PrPC involvement in the regulation of cell proliferation and differentiation in various types of mammalian stem cells and progenitors. Finally, several studies in both zebrafish embryos and in mammalian cells and tissues in formation support a role for PrPC in cell adhesion, extra-cellular matrix interactions and cytoskeleton. In this review, we summarize and compare the different models used to decipher PrPC functions at early developmental stages during embryo- and organo-genesis and discuss their relevance. PMID:25364763

  6. Structural Studies of Truncated Forms of the Prion Protein PrP

    PubMed Central

    Wan, William; Wille, Holger; Stöhr, Jan; Kendall, Amy; Bian, Wen; McDonald, Michele; Tiggelaar, Sarah; Watts, Joel C.; Prusiner, Stanley B.; Stubbs, Gerald

    2015-01-01

    Prions are proteins that adopt self-propagating aberrant folds. The self-propagating properties of prions are a direct consequence of their distinct structures, making the understanding of these structures and their biophysical interactions fundamental to understanding prions and their related diseases. The insolubility and inherent disorder of prions have made their structures difficult to study, particularly in the case of the infectious form of the mammalian prion protein PrP. Many investigators have therefore preferred to work with peptide fragments of PrP, suggesting that these peptides might serve as structural and functional models for biologically active prions. We have used x-ray fiber diffraction to compare a series of different-sized fragments of PrP, to determine the structural commonalities among the fragments and the biologically active, self-propagating prions. Although all of the peptides studied adopted amyloid conformations, only the larger fragments demonstrated a degree of structural complexity approaching that of PrP. Even these larger fragments did not adopt the prion structure itself with detailed fidelity, and in some cases their structures were radically different from that of pathogenic PrPSc. PMID:25809267

  7. Cooperative binding modes of Cu(II) in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Chisnell, Robin; Lu, Wenchang; Bernholc, Jerry

    2007-03-01

    The misfolding of the prion protein, PrP, is responsible for a group of neurodegenerative diseases including mad cow disease and Creutzfeldt-Jakob disease. It is known that the PrP can efficiently bind copper ions; four high-affinity binding sites located in the octarepeat region of PrP are now well known. Recent experiments suggest that at low copper concentrations new binding modes, in which one copper ion is shared between two or more binding sites, are possible. Using our hybrid Thomas-Fermi/DFT computational scheme, which is well suited for simulations of biomolecules in solution, we investigate the geometries and energetics of two, three and four binding sites cooperatively binding one copper ion. These geometries are then used as inputs for classical molecular dynamics simulations. We find that copper binding affects the secondary structure of the PrP and that it stabilizes the unstructured (unfolded) part of the protein.

  8. Prion Diseases

    PubMed Central

    Geschwind, Michael D.

    2016-01-01

    Purpose of Review This article presents an update on the clinical aspects of human prion disease, including the wide spectrum of their presentations. Recent Findings Prion diseases, a group of disorders caused by abnormally shaped proteins called prions, occur in sporadic (Jakob-Creutzfeldt disease), genetic (genetic Jakob-Creutzfeldt disease, Gerstmann-Sträussler-Scheinker syndrome, and fatal familial insomnia), and acquired (kuru, variant Jakob-Creutzfeldt disease, and iatrogenic Jakob-Creutzfeldt disease) forms. This article presents updated information on the clinical features and diagnostic methods for human prion diseases. New antemortem potential diagnostic tests based on amplifying prions in order to detect them are showing very high specificity. Understanding of the diversity of possible presentations of human prion diseases continues to evolve, with some genetic forms progressing slowly over decades, beginning with dysautonomia and neuropathy and progressing to a frontal-executive dementia with pathology of combined prionopathy and tauopathy. Unfortunately, to date, all human prion disease clinical trials have failed to show survival benefit. A very rare polymorphism in the prion protein gene recently has been identified that appears to protect against prion disease; this finding, in addition to providing greater understanding of the prionlike mechanisms of neurodegenerative disorders, might lead to potential treatments. Summary Sporadic Jakob-Creutzfeldt disease is the most common form of human prion disease. Genetic prion diseases, resulting from mutations in the prion-related protein gene (PRNP), are classified based on the mutation, clinical phenotype, and neuropathologic features and can be difficult to diagnose because of their varied presentations. Perhaps most relevant to this Continuum issue on neuroinfectious diseases, acquired prion diseases are caused by accidental transmission to humans, but fortunately, they are the least common form and

  9. New Structural Approaches to Understand the Disease Related Forms of the Prion Protein

    DTIC Science & Technology

    2005-07-01

    AD Award Number: DAMD17-03-1-0476 TITLE: New Structural Approaches to Understand the Disease Related Forms of the Prion Protein PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER New Structural Approaches to Understand the Disease Related Forms of the Prion Protein 5b. GRANT NUMBER DAMD17...Understanding these fundamental steps in the processes of initiation and propagation of the disease related state of the protein may lead to new

  10. Oxidation of methionine 216 in sheep and elk prion protein is highly dependent upon the amino acid at position 218 but is not important for prion propagation.

    PubMed

    Silva, Christopher J; Dynin, Irina; Erickson, Melissa L; Requena, Jesús R; Balachandran, Aru; Hui, Colleen; Onisko, Bruce C; Carter, John Mark

    2013-03-26

    We employed a sensitive mass spectrometry-based method to deconstruct, confirm, and quantitate the prions present in elk naturally infected with chronic wasting disease and sheep naturally infected with scrapie. We used this approach to study the oxidation of a methionine at position 216 (Met216), because this oxidation (MetSO216) has been implicated in prion formation. Three polymorphisms (Ile218, Val218, and Thr218) of sheep recombinant prion protein were prepared. Our analysis showed the novel result that the proportion of MetSO216 was highly dependent upon the amino acid residue at position 218 (I > V > T), indicating that Ile218 in sheep and elk prion protein (PrP) renders the Met216 intrinsically more susceptible to oxidation than the Val218 or Thr218 analogue. We were able to quantitate the prions in the attomole range. The presence of prions was verified by the detection of two confirmatory peptides: GENFTETDIK (sheep and elk) and ESQAYYQR (sheep) or ESEAYYQR (elk). This approach required much smaller amounts of tissue (600 μg) than traditional methods of detection (enzyme-linked immunosorbent assay, Western blot, and immunohistochemical analysis) (60 mg). In sheep and elk, a normal cellular prion protein containing MetSO216 is not actively recruited and converted to prions, although we observed that this Met216 is intrinsically more susceptible to oxidation.

  11. The formation of bioactive amyloid species by prion proteins in vitro and in cells.

    PubMed

    Liu, Yuanbin; Ritter, Christiane; Riek, Roland; Schubert, David

    2006-10-09

    Amyloid proteins are a group of proteins that can polymerize into cross beta-sheeted amyloid species. We have found that enhancing cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formazan exocytosis is a common property of bioactive amyloid species formed from all of the amyloid proteins tested to date. In this report, we show that the infectious amyloid species of the prion protein HET-s of the filamentous fungus Podospora anserina, like other amyloidogenic proteins, also enhances MTT formazan exocytosis. More strikingly, cellular MTT formazan exocytosis revealed the formation of bioactive amyloid species in prion-infected mouse N2a neuroblastoma cells. These findings suggest that cellular MTT formazan exocytosis can be useful for studying the roles of bioactive amyloid species in prion infectivity and prion-induced neurodegeneration.

  12. Distribution of Misfolded Prion Protein Seeding Activity Alone Does Not Predict Regions of Neurodegeneration

    PubMed Central

    Alibhai, James; Blanco, Richard A.; Barria, Marcelo A.; Piccardo, Pedro; Caughey, Byron; Perry, V. Hugh; Freeman, Tom C.; Manson, Jean C.

    2016-01-01

    Protein misfolding is common across many neurodegenerative diseases, with misfolded proteins acting as seeds for "prion-like" conversion of normally folded protein to abnormal conformations. A central hypothesis is that misfolded protein accumulation, spread, and distribution are restricted to specific neuronal populations of the central nervous system and thus predict regions of neurodegeneration. We examined this hypothesis using a highly sensitive assay system for detection of misfolded protein seeds in a murine model of prion disease. Misfolded prion protein (PrP) seeds were observed widespread throughout the brain, accumulating in all brain regions examined irrespective of neurodegeneration. Importantly, neither time of exposure nor amount of misfolded protein seeds present determined regions of neurodegeneration. We further demonstrate two distinct microglia responses in prion-infected brains: a novel homeostatic response in all regions and an innate immune response restricted to sites of neurodegeneration. Therefore, accumulation of misfolded prion protein alone does not define targeting of neurodegeneration, which instead results only when misfolded prion protein accompanies a specific innate immune response. PMID:27880767

  13. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton.

    PubMed

    Stephan, Joseph S; Fioriti, Luana; Lamba, Nayan; Colnaghi, Luca; Karl, Kevin; Derkatch, Irina L; Kandel, Eric R

    2015-06-23

    The mouse cytoplasmic polyadenylation element-binding protein 3 (CPEB3) is a translational regulator implicated in long-term memory maintenance. Invertebrate orthologs of CPEB3 in Aplysia and Drosophila are functional prions that are physiologically active in the aggregated state. To determine if this principle applies to the mammalian CPEB3, we expressed it in yeast and found that it forms heritable aggregates that are the hallmark of known prions. In addition, we confirm in the mouse the importance of CPEB3's prion formation for CPEB3 function. Interestingly, deletion analysis of the CPEB3 prion domain uncovered a tripartite organization: two aggregation-promoting domains surround a regulatory module that affects interaction with the actin cytoskeleton. In all, our data provide direct evidence that CPEB3 is a functional prion in the mammalian brain and underline the potential importance of an actin/CPEB3 feedback loop for the synaptic plasticity underlying the persistence of long-term memory.

  14. The prion protein preference of sporadic Creutzfeldt-Jakob disease subtypes.

    PubMed

    Klemm, Helen M J; Welton, Jeremy M; Masters, Colin L; Klug, Genevieve M; Boyd, Alison; Hill, Andrew F; Collins, Steven J; Lawson, Victoria A

    2012-10-19

    Sporadic Creutzfeldt-Jakob disease (CJD) is the most prevalent manifestation of the transmissible spongiform encephalopathies or prion diseases affecting humans. The disease encompasses a spectrum of clinical phenotypes that have been correlated with molecular subtypes that are characterized by the molecular mass of the protease-resistant fragment of the disease-related conformation of the prion protein and a polymorphism at codon 129 of the gene encoding the prion protein. A cell-free assay of prion protein misfolding was used to investigate the ability of these sporadic CJD molecular subtypes to propagate using brain-derived sources of the cellular prion protein (PrP(C)). This study confirmed the presence of three distinct sporadic CJD molecular subtypes with PrP(C) substrate requirements that reflected their codon 129 associations in vivo. However, the ability of a sporadic CJD molecular subtype to use a specific PrP(C) substrate was not determined solely by codon 129 as the efficiency of prion propagation was also influenced by the composition of the brain tissue from which the PrP(C) substrate was sourced, thus indicating that nuances in PrP(C) or additional factors may determine sporadic CJD subtype. The results of this study will aid in the design of diagnostic assays that can detect prion disease across the diversity of sporadic CJD subtypes.

  15. The story of stolen chaperones: how overexpression of Q/N proteins cures yeast prions.

    PubMed

    Derkatch, Irina L; Liebman, Susan W

    2013-01-01

    Prions are self-seeding alternate protein conformations. Most yeast prions contain glutamine/asparagine (Q/N)-rich domains that promote the formation of amyloid-like prion aggregates. Chaperones, including Hsp104 and Sis1, are required to continually break these aggregates into smaller "seeds." Decreasing aggregate size and increasing the number of growing aggregate ends facilitates both aggregate transmission and growth. Our previous work showed that overexpression of 11 proteins with Q/N-rich domains facilitates the de novo aggregation of Sup35 into the [PSI(+)] prion, presumably by a cross-seeding mechanism. We now discuss our recent paper, in which we showed that overexpression of most of these same 11 Q/N-rich proteins, including Pin4C and Cyc8, destabilized pre-existing Q/N rich prions. Overexpression of both Pin4C and Cyc8 caused [PSI(+)] aggregates to enlarge. This is incompatible with a previously proposed "capping" model where the overexpressed Q/N-rich protein poisons, or "caps," the growing aggregate ends. Rather the data match what is expected of a reduction in prion severing by chaperones. Indeed, while Pin4C overexpression does not alter chaperone levels, Pin4C aggregates sequester chaperones away from the prion aggregates. Cyc8 overexpression cures [PSI(+)] by inducing an increase in Hsp104 levels, as excess Hsp104 binds to [PSI(+)] aggregates in a way that blocks their shearing.

  16. Prion Protein Expression and Functional Importance in Skeletal Muscle

    PubMed Central

    Smith, Jeffrey D.; Moylan, Jennifer S.; Hardin, Brian J.; Chambers, Melissa A.; Estus, Steven; Telling, Glenn C.

    2011-01-01

    Abstract Skeletal muscle expresses prion protein (PrP) that buffers oxidant activity in neurons. Aims We hypothesize that PrP deficiency would increase oxidant activity in skeletal muscle and alter redox-sensitive functions, including contraction and glucose uptake. We used real-time polymerase chain reaction and Western blot analysis to measure PrP mRNA and protein in human diaphragm, five murine muscles, and muscle-derived C2C12 cells. Effects of PrP deficiency were tested by comparing PrP-deficient mice versus wild-type mice and morpholino-knockdown versus vehicle-treated myotubes. Oxidant activity (dichlorofluorescin oxidation) and specific force were measured in murine diaphragm fiber bundles. Results PrP content differs among mouse muscles (gastrocnemius>extensor digitorum longus, EDL>tibialis anterior, TA; soleus>diaphragm) as does glycosylation (di-, mono-, nonglycosylated; gastrocnemius, EDL, TA=60%, 30%, 10%; soleus, 30%, 40%, 30%; diaphragm, 30%, 30%, 40%). PrP is predominantly di-glycosylated in human diaphragm. PrP deficiency decreases body weight (15%) and EDL mass (9%); increases cytosolic oxidant activity (fiber bundles, 36%; C2C12 myotubes, 7%); and depresses specific force (12%) in adult (8–12 mos) but not adolescent (2 mos) mice. Innovation This study is the first to directly assess a role of prion protein in skeletal muscle function. Conclusions PrP content varies among murine skeletal muscles and is essential for maintaining normal redox homeostasis, muscle size, and contractile function in adult animals. Antioxid. Redox Signal. 15, 2465—2475. PMID:21453198

  17. Molecular dynamics simulation of temperature induced unfolding of animal prion protein.

    PubMed

    Chen, Xin; Duan, Danhui; Zhu, Shuyan; Zhang, Jinglai

    2013-10-01

    To elucidate the structural stability and the unfolding dynamics of the animal prion protein, the temperature induced structural evolution of turtle prion protein (tPrPc) and bank vole prion protein (bvPrPc) have been performed with molecular dynamics (MD) simulation. The unfolding behaviors of secondary structures showed that the α-helix was more stable than β-sheet. Extension and disruption of β-sheet commonly appeared in the temperature induced unfolding process. The conversion of α-helix to π-helix occurred more readily at the elevating temperature. Furthermore, it was suggested in this work that the unfolding of prion protein could be regulated by the temperature.

  18. Prion protein and Abeta-related synaptic toxicity impairment.

    PubMed

    Calella, Anna Maria; Farinelli, Mélissa; Nuvolone, Mario; Mirante, Osvaldo; Moos, Rita; Falsig, Jeppe; Mansuy, Isabelle M; Aguzzi, Adriano

    2010-08-01

    Alzheimer's disease (AD), the most common neurodegenerative disorder, goes along with extracellular amyloid-beta (Abeta) deposits. The cognitive decline observed during AD progression correlates with damaged spines, dendrites and synapses in hippocampus and cortex. Numerous studies have shown that Abeta oligomers, both synthetic and derived from cultures and AD brains, potently impair synaptic structure and functions. The cellular prion protein (PrP(C)) was proposed to mediate this effect. We report that ablation or overexpression of PrP(C) had no effect on the impairment of hippocampal synaptic plasticity in a transgenic model of AD. These findings challenge the role of PrP(C) as a mediator of Abeta toxicity.

  19. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    PubMed

    Miranda, Alberto; Pericuesta, Eva; Ramírez, Miguel Ángel; Gutierrez-Adan, Alfonso

    2011-04-04

    Cellular prion protein (PRNP) is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB) differentiation in mouse Prnp-null (KO) and WT embryonic stem cell (ESC) lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC) markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5) in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel) and SPRN (Shadoo), whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  20. Cell-surface prion protein interacts with glycosaminoglycans.

    PubMed

    Pan, Tao; Wong, Boon-Seng; Liu, Tong; Li, Ruliang; Petersen, Robert B; Sy, Man-Sun

    2002-11-15

    We used ELISA and flow cytometry to study the binding of prion protein PrP to glycosaminoglycans (GAGs). We found that recombinant human PrP (rPrP) binds GAGs including chondroitin sulphate A, chondroitin sulphate B, hyaluronic acid, and heparin. rPrP binding to GAGs occurs via the N-terminus, a region known to bind divalent cations. Additionally, rPrP binding to GAGs is enhanced in the presence of Cu2+ and Zn2+, but not Ca2+ and Mn2+. rPrP binds heparin strongest, and the binding is inhibited by certain heparin analogues, including heparin disaccharide and sulphate-containing monosaccharides, but not by acetylated heparin. Full-length normal cellular prion protein (PrPC), but not N-terminally truncated PrPC species, from human brain bind GAGs in a similar Cu2+/Zn2+-enhanced fashion. We found that GAGs specifically bind to a synthetic peptide corresponding to amino acid residues 23-35 in the N-terminus of rPrP. We further demonstrated that while both wild-type PrPC and an octapeptide-repeat-deleted mutant PrP produced by transfected cells bound heparin at the cell surface, the PrP N-terminal deletion mutant and non-transfectant control failed to bind heparin. Binding of heparin to wild-type PrPC on the cell surface results in a reduction of the level of cell-surface PrPC. These results provide strong evidence that PrPC is a surface receptor for GAGs.

  1. Chimeric elk/mouse prion proteins in transgenic mice.

    PubMed

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B

    2013-02-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.

  2. Chimeric elk/mouse prion proteins in transgenic mice

    PubMed Central

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L.; DeArmond, Stephen J.

    2013-01-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions. PMID:23100369

  3. Crystallographic Studies of Prion Protein (PrP) Segments Suggest How Structural Changes Encoded by Polymorphism at Residue 129 Modulate Susceptibility to Human Prion Disease

    SciTech Connect

    Apostol, Marcin I.; Sawaya, Michael R.; Cascio, Duilio; Eisenberg, David

    2010-09-23

    A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are 'steric zippers,' pairs of interacting {beta}-sheets. Both structures of these 'homozygous steric zippers' reveal direct intermolecular interactions between Met or Val in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.

  4. Prion protein amyloid: separation of scrapie infectivity from PrP polymers.

    PubMed

    Wille, H; Baldwin, M A; Cohen, F E; DeArmond, S J; Prusiner, S B

    1996-01-01

    The prion protein (PrP) undergoes a profound conformational change when the cellular isoform (PrPc) is converted into the scrapie form (PrPSc). Limited proteolysis of PrPSc produces PrP27-30 which readily polymerizes into amyloid. To study the structure of PrP amyloid, we employed organic solvents that perturb protein conformation. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP), which promotes alpha-helix formation, modified the ultrastructure of rod-shaped PrP amyloids, producing flattened ribbons with a more regular substructure. As the concentration of HFIP was increased, the beta-sheet content and proteinase K resistance of PrP27-30 as well as prion infectivity diminished. HFIP reversibly decreased the binding of Congo red dye to the rods, whereas inactivation of prion infectivity was irreversible. In contrast to 10% HFIP, 1,1,1-trifluoro-2-propanol (TFIP) did not inactivate prion infectivity but, similarly to HFIP, TFIP did alter the morphology of the rods and abolished Congo red binding. Our studies separate prion infectivity from the amyloid properties of PrP27-30 and underscore the dependence of prion infectivity on PrPSc conformation. Our results also demonstrate that the specific beta-sheet-rich structures required for prion infectivity are different from those needed for amyloid formation.

  5. Rapid and Highly Sensitive Detection of Variant Creutzfeldt - Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies

    PubMed Central

    Belondrade, Maxime; Nicot, Simon; Béringue, Vincent; Coste, Joliette; Lehmann, Sylvain; Bougard, Daisy

    2016-01-01

    The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10−8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions. PMID:26800081

  6. Identification of the heparan sulfate binding sites in the cellular prion protein.

    PubMed

    Warner, Richard G; Hundt, Christoph; Weiss, Stefan; Turnbull, Jeremy E

    2002-05-24

    Data from cell culture and animal models of prion disease support the separate involvement of both heparan sulfate proteoglycans and copper (II) ions in prion (PrP) metabolism. Though direct interactions between prion protein and heparin have been recorded, little is known of the structural features implicit in this interaction or of the involvement of copper (II) ions. Using biosensor and enzyme-linked immunosorbent assay methodology we report direct heparin and heparan sulfate-binding activity in recombinant cellular prion protein (PrP(c)). We also demonstrate that the interaction of recombinant PrP(c) with heparin is weakened in the presence of Cu(II) ions and is particularly sensitive to competition with dextran sulfate. Competitive inhibition experiments with chemically modified heparins also indicate that 2-O-sulfate groups (but not 6-O-sulfate groups) are essential for heparin recognition. We have also identified three regions of the prion protein capable of independent binding to heparin and heparan sulfate: residues 23-52, 53-93, and 110-128. Interestingly, the interaction of an octapeptide-spanning peptide motif amino acids 53-93 with heparin is enhanced by Cu(II) ions. Significantly, a peptide of this sequence is able to inhibit the binding of full-length prion molecule to heparin, suggesting a direct role in heparin recognition within the intact protein. The collective data suggest a complex interaction between prion protein and heparin/heparan sulfate and has implications for the cellular and pathological functions of prion proteins.

  7. De Novo Generation of a Unique Cervid Prion Strain Using Protein Misfolding Cyclic Amplification

    PubMed Central

    Meyerett-Reid, Crystal; Wyckoff, A. Christy; Spraker, Terry; Pulford, Bruce; Bender, Heather

    2017-01-01

    ABSTRACT Substantial evidence supports the hypothesis that prions are misfolded, infectious, insoluble, and protease-resistant proteins (PrPRES) devoid of instructional nucleic acid that cause transmissible spongiform encephalopathies (TSEs). Protein misfolding cyclic amplification (PMCA) has provided additional evidence that PrPRes acts as a template that can convert the normal cellular prion protein (PrPC) present in uninfected normal brain homogenate (NBH) into the infectious misfolded PrPRES isoform. Human PrPC has been shown to spontaneously convert to a misfolded pathological state causing sporadic Creutzfeldt-Jakob disease (sCJD). Several investigators have reported spontaneous generation of prions by in vitro assays, including PMCA. Here we tested the rate of de novo generation of cervid prions in our laboratory using our standard PMCA protocol and NBH from transgenic mice expressing cervid PrPC (TgCerPrP mice). We generated de novo prions in rounds 4, 5, and 7 at low cumulative rates of 1.6, 5.0, and 6.7%, respectively. The prions caused infectious chronic wasting disease (CWD) upon inoculation into normal uninfected TgCerPrP mice and displayed unique biochemical characteristics compared to other cervid prion strains. We conclude that PMCA of cervid PrPC from normal brain homogenate spontaneously generated a new cervid prion strain. These data support the potential for cervids to develop sporadic CWD. IMPORTANCE CWD is the only known TSE that affects free-ranging wildlife, specifically cervids such as elk, deer, moose, caribou, and reindeer. CWD has become endemic in both free-ranging and captive herds in North America, South Korea, and, most recently, northern Europe. The prion research community continues to debate the origins of CWD. Original foci of CWD emergence in Colorado and Wyoming coincident with the sheep TSE scrapie suggest that scrapie prions may have adapted to cervids to cause CWD. However, emerging evidence supports the idea that cervid Pr

  8. Prion domain of yeast Ure2 protein adopts a completely disordered structure: a solid-support EPR study.

    PubMed

    Ngo, Sam; Chiang, Vicky; Ho, Elaine; Le, Linh; Guo, Zhefeng

    2012-01-01

    Amyloid fibril formation is associated with a range of neurodegenerative diseases in humans, including Alzheimer's, Parkinson's, and prion diseases. In yeast, amyloid underlies several non-Mendelian phenotypes referred to as yeast prions. Mechanism of amyloid formation is critical for a complete understanding of the yeast prion phenomenon and human amyloid-related diseases. Ure2 protein is the basis of yeast prion [URE3]. The Ure2p prion domain is largely disordered. Residual structures, if any, in the disordered region may play an important role in the aggregation process. Studies of Ure2p prion domain are complicated by its high aggregation propensity, which results in a mixture of monomer and aggregates in solution. Previously we have developed a solid-support electron paramagnetic resonance (EPR) approach to address this problem and have identified a structured state for the Alzheimer's amyloid-β monomer. Here we use solid-support EPR to study the structure of Ure2p prion domain. EPR spectra of Ure2p prion domain with spin labels at every fifth residue from position 10 to position 75 show similar residue mobility profile for denaturing and native buffers after accounting for the effect of solution viscosity. These results suggest that Ure2p prion domain adopts a completely disordered structure in the native buffer. A completely disordered Ure2p prion domain implies that the amyloid formation of Ure2p, and likely other Q/N-rich yeast prion proteins, is primarily driven by inter-molecular interactions.

  9. Expression of Tyrosine Hydroxylase is Negatively Regulated Via Prion Protein.

    PubMed

    da Luz, Marcio Henrique Mello; Glezer, Isaias; Xavier, Andre Machado; da Silva, Marcelo Alberti Paiva; Pino, Jessica Monteiro Volejnik; Zamith, Thiago Panaro; Vieira, Taynara Fernanda; Antonio, Bruno Brito; Antunes, Hanna Karen Moreira; Martins, Vilma Regina; Lee, Kil Sun

    2016-07-01

    Cellular prion protein (PrP(C)) is a glycoprotein of the plasma membrane that plays pleiotropic functions by interacting with multiple signaling complexes at the cell surface. Recently, a number of studies have reported the involvement of PrP(C) in dopamine metabolism and signaling, including its interactions with tyrosine hydroxylase (TH) and dopamine receptors. However, the outcomes reported by independent studies are still debatable. Therefore in this study, we investigated the effects of PrP(C) on the TH expression during the differentiation of N2a cells with dibutyryl-cAMP, a well-known cAMP analog that activates TH transcription. Upon differentiation, TH was induced with concomitant reduction of PrP(C) at protein level, but not at mRNA level. shRNA-mediated PrP(C) reduction increased the basal level of TH at both mRNA and protein levels without dibutyryl-cAMP treatment. This phenotype was reversed by re-expression of PrP(C). PrP(C) knockdown also potentiated the effect of dibutyryl-cAMP on TH expression. Our findings suggest that PrP(C) has suppressive effects on TH expression. As a consequence, altered PrP(C) functions may affect the regulation of dopamine metabolism and related neurological disorders.

  10. Cloning and expression of prion protein encoding gene of flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwen; Sun, Xiuqin; Zhang, Jinxing; Zan, Jindong

    2008-02-01

    The prion protein (PrP) encoding gene of flounder ( Paralichthys olivaceus) was cloned. It was not interrupted by an intron. This gene has two promoters in its 5' upstream, indicating that its transcription may be intensive, and should have an important function. It was expressed in all 14 tissues tested, demonstrating that it is a house-keeping gene. Its expression in digestion and reproduction systems implies that the possible prions of fish may transfer horizontally.

  11. Systemic Delivery of siRNA Down Regulates Brain Prion Protein and Ameliorates Neuropathology in Prion Disorder

    PubMed Central

    Resina, Sarah; Brillaud, Elsa; Casanova, Danielle; Vincent, Charles; Hamela, Claire; Poupeau, Sophie; Laffont, Mathieu; Gabelle, Audrey; Delaby, Constance; Belondrade, Maxime; Arnaud, Jacques-Damien; Alvarez, Maria-Teresa; Maurel, Jean-Claude; Maurel, Patrick; Crozet, Carole

    2014-01-01

    One of the main challenges for neurodegenerative disorders that are principally incurable is the development of new therapeutic strategies, which raises important medical, scientific and societal issues. Creutzfeldt-Jakob diseases are rare neurodegenerative fatal disorders which today remain incurable. The objective of this study was to evaluate the efficacy of the down-regulation of the prion protein (PrP) expression using siRNA delivered by, a water-in-oil microemulsion, as a therapeutic candidate in a preclinical study. After 12 days rectal mucosa administration of Aonys/PrP-siRNA in mice, we observed a decrease of about 28% of the brain PrPC level. The effect of Aonys/PrP-siRNA was then evaluated on prion infected mice. Several mice presented a delay in the incubation and survival time compared to the control groups and a significant impact was observed on astrocyte reaction and neuronal survival in the PrP-siRNA treated groups. These results suggest that a new therapeutic scheme based an innovative delivery system of PrP-siRNA can be envisioned in prion disorders. PMID:24551164

  12. A pitfall in diagnosis of human prion diseases using detection of protease-resistant prion protein in urine. Contamination with bacterial outer membrane proteins.

    PubMed

    Furukawa, Hisako; Doh-ura, Katsumi; Okuwaki, Ryo; Shirabe, Susumu; Yamamoto, Kazuo; Udono, Heiichiro; Ito, Takashi; Katamine, Shigeru; Niwa, Masami

    2004-05-28

    Because a definite diagnosis of prion diseases relies on the detection of the abnormal isoform of prion protein (PrPSc), it has been urgently necessary to establish a non-invasive diagnostic test to detect PrPSc in human prion diseases. To evaluate diagnostic usefulness and reliability of the detection of protease-resistant prion protein in urine, we extensively analyzed proteinase K (PK)-resistant proteins in patients affected with prion diseases and control subjects by Western blot, a coupled liquid chromatography and mass spectrometry analysis, and N-terminal sequence analysis. The PK-resistant signal migrating around 32 kDa previously reported by Shaked et al. (Shaked, G. M., Shaked, Y., Kariv-Inbal, Z., Halimi, M., Avraham, I., and Gabizon, R. (2001) J. Biol. Chem. 276, 31479-31482) was not observed in this study. Instead, discrete protein bands with an apparent molecular mass of approximately 37 kDa were detected in the urine of many patients affected with prion diseases and two diseased controls. Although these proteins also gave strong signals in the Western blot using a variety of anti-PrP antibodies as a primary antibody, we found that the signals were still detectable by incubation of secondary antibodies alone, i.e. in the absence of the primary anti-PrP antibodies. Mass spectrometry and N-terminal protein sequencing analysis revealed that the majority of the PK-resistant 37-kDa proteins in the urine of patients were outer membrane proteins (OMPs) of the Enterobacterial species. OMPs isolated from these bacteria were resistant to PK and the PK-resistant OMPs from the Enterobacterial species migrated around 37 kDa on SDS-PAGE. Furthermore, nonspecific binding of OMPs to antibodies could be mistaken for PrPSc. These findings caution that bacterial contamination can affect the immunological detection of prion protein. Therefore, the presence of Enterobacterial species should be excluded in the immunological tests for PrPSc in clinical samples, in

  13. Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases.

    PubMed

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2015-09-02

    Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases.

  14. Superoxide dismutase activity of Cu-bound prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2009-03-01

    Misfolding of the prion protein, PrP, has been linked to a group of neurodegenerative diseases, including the mad cow disease in cattle and the Creutzfeldt-Jakob disease in humans. The normal function of PrP is still unknown, but it was found that the PrP can efficiently bind Cu(II) ions. Early experiments suggested that Cu-PrP complex possesses significant superoxide dismutase (SOD) activity, but later experiments failed to confirm it and at present this issue remains unresolved. Using a recently developed hybrid DFT/DFT method, which combines Kohn-Sham DFT for the solute and its first solvation shells with orbital-free DFT for the remainder of the solvent, we have investigated SOD activity of PrP. The PrP is capable of incorporating Cu(II) ions in several binding modes and our calculations find that each mode has a different SOD activity. The highest activity found is comparable to those of well-known SOD proteins, suggesting that the conflicting experimental results may be due to different bindings of Cu(II) in those experiments.

  15. Combined copper/zinc attachment to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2013-03-01

    Misfolding of prion protein (PrP) is responsible for diseases such as ``mad-cow disease'' in cattle and Creutzfeldt-Jacob in humans. Extensive experimental investigation has established that this protein strongly interacts with copper ions, and this ability has been linked to its still unknown function. Attachment of other metal ions (zinc, iron, manganese) have been demonstrated as well, but none of them could outcompete copper. Recent finding, however, indicates that at intermediate concentrations both copper and zinc ions can attach to the PrP at the octarepeat region, which contains high affinity metal binding sites. Based on this evidence, we have performed density functional theory simulations to investigate the combined Cu/Zn attachment. We consider all previously reported binding modes of copper at the octarepeat region and examine a possibility simultaneous Cu/Zn attachment. We find that this can indeed occur for only one of the known binding sites, when copper changes its coordination mode to allow for attachment of zinc ion. The implications of the simultaneous attachment on neural function remain to be explored.

  16. Production of a recombinant full-length prion protein in a soluble form without refolding or detergents.

    PubMed

    Arii, Yasuhiro; Oshiro, Satoshi; Wada, Keita; Fukuoka, Shin-ichi

    2011-01-01

    Recombinant prion protein has been produced in insoluble form and refolded following solubilization with denaturants. It is, however, preferable to use a soluble recombinant protein prepared without artificial solubilization. In this study, a soluble recombinant prion protein was produced in Escherichia coli cells by coexpression of neuregulin I-β1 and purified to high purity.

  17. Expression of the Prion Protein Family Member Shadoo Causes Drug Hypersensitivity That Is Diminished by the Coexpression of the Wild Type Prion Protein*

    PubMed Central

    Nyeste, Antal; Bencsura, Petra; Vida, István; Hegyi, Zoltán; Homolya, László; Fodor, Elfrieda; Welker, Ervin

    2016-01-01

    The prion protein (PrP) seems to exert both neuroprotective and neurotoxic activities. The toxic activities are associated with the C-terminal globular parts in the absence of the flexible N terminus, specifically the hydrophobic domain (HD) or the central region (CR). The wild type prion protein (PrP-WT), having an intact flexible part, exhibits neuroprotective qualities by virtue of diminishing many of the cytotoxic effects of these mutant prion proteins (PrPΔHD and PrPΔCR) when coexpressed. The prion protein family member Doppel, which possesses a three-dimensional fold similar to the C-terminal part of PrP, is also harmful to neuronal and other cells in various models, a phenotype that can also be eliminated by the coexpression of PrP-WT. In contrast, another prion protein family member, Shadoo (Sho), a natively disordered protein possessing structural features similar to the flexible N-terminal tail of PrP, exhibits PrP-WT-like protective properties. Here, we report that, contrary to expectations, Sho expression in SH-SY5Y or HEK293 cells induces the same toxic phenotype of drug hypersensitivity as PrPΔCR. This effect is exhibited in a dose-dependent manner and is also counteracted by the coexpression of PrP-WT. The opposing effects of Shadoo in different model systems revealed here may be explored to help discern the relationship of the various toxic activities of mutant PrPs with each other and the neurotoxic effects seen in neurodegenerative diseases, such as transmissible spongiform encephalopathy and Alzheimer disease. PMID:26721882

  18. Normal Cellular Prion Protein Protects against Manganese-induced Oxidative Stress and Apoptotic Cell Death

    PubMed Central

    Choi, Christopher J.; Anantharam, Vellareddy; Saetveit, Nathan J.; Houk, Robert. S.; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2012-01-01

    The normal prion protein is abundantly expressed in the CNS, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxic metals. In the present study, we systematically examined whether prion protein modifies the neurotoxicity of manganese (Mn) by comparing the effect of Mn on mouse neural cells expressing prion protein (PrPC -cells) and prion-knockout (PrPKO -cells). Exposure to Mn (10 μM-1 mM) for 24 hr produced a dose-dependent cytotoxic response in both PrPC -cells and PrPKO -cells. Interestingly, PrPC -cells (EC50 117.6μM) were more resistant to Mn-induced cytotoxicity, as compared to PrPKO -cells (EC50 59.9μM), suggesting a protective role for PrPC against Mn neurotoxicity. Analysis of intracellular Mn levels showed less Mn accumulation in PrPC -cells as compared to PrPKO -cells. Furthermore, Mn-induced mitochondrial depolarization and ROS generation were significantly attenuated in PrPC -cells as compared to PrPKO -cells. Measurement of antioxidant status revealed similar basal levels of glutathione (GSH) in PrPC -cells and PrPKO -cells; however, Mn treatment caused greater depletion of GSH in PrPKO -cells. Mn-induced mitochondrial depolarization and ROS production were followed by time- and dose-dependent activation of the apoptotic cell death cascade involving caspase-9 and -3. Notably, DNA fragmentation induced by both Mn treatment and oxidative stress-inducer hydrogen peroxide (100μM) was significantly suppressed in PrPC -cells as compared to PrPKO -cells. Together, these results demonstrate that prion protein interferes with divalent metal Mn uptake and protects against Mn-induced oxidative stress and apoptotic cell death. PMID:17483122

  19. Regional heterogeneity of cellular prion protein isoforms in the mouse brain.

    PubMed

    Beringue, Vincent; Mallinson, Gary; Kaisar, Maria; Tayebi, Mourad; Sattar, Zahid; Jackson, Graham; Anstee, David; Collinge, John; Hawke, Simon

    2003-09-01

    Prion diseases are a group of invariably fatal neurodegenerative disorders that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, and bovine spongiform encephalopathy in cattle. The infectious agent or prion is largely composed of an abnormal isoform (PrPSc) of a host encoded normal cellular protein (PrPc). The conversion of PrPc to PrPSc is a dynamic process and, for reasons that are not clear, the distribution of spongiform change and PrPSc deposition varies among prion strains. An obvious explanation for this would be that the transformation efficiency in any given brain region depends on favourable interactions between conformations of PrPc and the prion strain being propagated within it. However, identification of specific PrPc conformations has until now been hampered by a lack of suitable panels of antibodies that discriminate PrPc subspecies under native conditions. In this study, we show that monoclonal antibodies raised against recombinant human prion protein folded into alpha or beta conformations exhibit striking heterogeneity in their specificity for truncations and glycoforms of mouse brain PrPc. We then show that some of these PrPc isoforms are expressed differentially in certain mouse brain regions. This suggests that variation in the expression of PrPc conformations in different brain regions may dictate the pattern of PrPSc deposition and vacuolation, characteristic for different prion strains.

  20. Rapid detection of Creutzfeldt-Jakob disease and scrapie prion proteins.

    PubMed

    Serban, D; Taraboulos, A; DeArmond, S J; Prusiner, S B

    1990-01-01

    Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler syndrome (GSS) of humans as well as scrapie of animals are caused by prions. The scrapie prion protein isoform (PrPSc) is the only macromolecule identified to date which is a component of the infectious prion particle. PrPSc is converted to PrP 27-30 by limited proteolysis while the cellular isoform, designated PrPC, is completely digested under the same conditions. ELISA studies demonstrated that native PrP 27-30 bound to plastic surfaces resisted proteolysis and exhibited little or no immunoreactivity but after denaturation with guanidinium thiocyanate (GdnSCN), immunoreactivity was greatly enhanced. PrPSc bound to nitrocellulose also exhibited enhanced immunoreactivity after denaturation. PrPSc was readily detected in brain extracts from scrapie-infected hamsters, mice, and sheep by dot-blot immunoassays using limited proteolysis followed by GdnSCN denaturation. The high sensitivity and specificity of the immunoassay allowed detection of regional differences in PrPSc in sheep brain. CJD prion protein isoform (PrPCJD) was also detected in the brains of all 10 patients tested with neuropathologically confirmed CJD and in 1 patient with GSS. Enhanced immunoreactivity of PrPSc or PrPCJD after denaturation cannot only be used for immunodiagnosis of prion diseases but may also form the basis of new assays in experimental studies directed at the chemical structure of the prion particle.

  1. Assessing Transmissible Spongiform Encephalopathy Species Barriers with an In Vitro Prion Protein Conversion Assay

    PubMed Central

    Johnson, Christopher J.; Carlson, Christina M.; Morawski, Aaron R.; Manthei, Alyson; Cashman, Neil R.

    2015-01-01

    Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitro prion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host’s species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host’s species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent. PMID:25867521

  2. Glycosaminoglycan Sulphation Affects the Seeded Misfolding of a Mutant Prion Protein

    PubMed Central

    Lawson, Victoria A.; Lumicisi, Brooke; Welton, Jeremy; Machalek, Dorothy; Gouramanis, Katrina; Klemm, Helen M.; Stewart, James D.; Masters, Colin L.; Hoke, David E.; Collins, Steven J.; Hill, Andrew F.

    2010-01-01

    Background The accumulation of protease resistant conformers of the prion protein (PrPres) is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. Methodology/Principal Finding In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrPres formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS) from the PrPC substrate was found to specifically prevent PrPres formation seeded by mouse derived PrPSc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrPres formation, while having no effect on PrPres formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. Conclusions/Significance Cofactor requirements for PrPres formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains. PMID:20808809

  3. Characterization of variant Creutzfeldt-Jakob disease prions in prion protein-humanized mice carrying distinct codon 129 genotypes.

    PubMed

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-07-26

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype.

  4. Targeting prion-like protein doppel selectively suppresses tumor angiogenesis

    PubMed Central

    Al-Hilal, Taslim A.; Chung, Seung Woo; Choi, Jeong Uk; Kim, Seong Who; Kim, Sang Yoon; Ahsan, Fakhrul; Kim, In-San

    2016-01-01

    Controlled and site-specific regulation of growth factor signaling remains a major challenge for current antiangiogenic therapies, as these antiangiogenic agents target normal vasculature as well tumor vasculature. In this article, we identified the prion-like protein doppel as a potential therapeutic target for tumor angiogenesis. We investigated the interactions between doppel and VEGFR2 and evaluated whether blocking the doppel/VEGFR2 axis suppresses the process of angiogenesis. We discovered that tumor endothelial cells (TECs), but not normal ECs, express doppel; tumors from patients and mouse xenografts expressed doppel in their vasculatures. Induced doppel overexpression in ECs enhanced vascularization, whereas doppel constitutively colocalized and complexed with VEGFR2 in TECs. Doppel inhibition depleted VEGFR2 from the cell membrane, subsequently inducing the internalization and degradation of VEGFR2 and thereby attenuating VEGFR2 signaling. We also synthesized an orally active glycosaminoglycan (LHbisD4) that specifically binds with doppel. We determined that LHbisD4 concentrates over the tumor site and that genetic loss of doppel in TECs decreases LHbisD4 binding and targeting both in vitro and in vivo. Moreover, LHbisD4 eliminated VEGFR2 from the cell membrane, prevented VEGF binding in TECs, and suppressed tumor growth. Together, our results demonstrate that blocking doppel can control VEGF signaling in TECs and selectively inhibit tumor angiogenesis. PMID:26950422

  5. Transport of the Pathogenic Prion Protein through Soils

    PubMed Central

    Jacobson, Kurt H.; Lee, Seunghak; Somerville, Robert A.; McKenzie, Debbie; Benson, Craig H.; Pedersen, Joel A.

    2011-01-01

    Transmissible spongiform encephalopathies (TSEs) are progressive neurodegenerative diseases and include bovine spongiform encephalopathy of cattle, chronic wasting disease (CWD) of deer and elk, scrapie in sheep and goats, and Creutzfeldt-Jakob disease in humans. An abnormally folded form of the prion protein (designated PrPTSE) is typically associated with TSE infectivity and may constitute the major, if not sole, component of the infectious agent. Transmission of CWD and scrapie is mediated in part by an environmental reservoir of infectivity. Soil appears to be a plausible candidate for this reservoir. TSE agent transport through soil is expected to influence the accessibility of the pathogen to animals after deposition and must be understood to assess the risks associated with burial of infected carcasses. We report results of saturated column experiments designed to evaluate PrPTSE transport through five soils with relatively high sand or silt contents. Protease-treated TSE-infected brain homogenate was used as a model for PrPTSE present in decomposing infected tissue. Synthetic rainwater was used as the eluent. PrPTSE was retained by all five soils; no detectable PrPTSE was eluted over more than 40 pore volumes of flow. Lower bound apparent attachment coefficients were estimated for each soil. Our results suggest that TSE agent released from decomposing tissues would remain near the site of initial deposition. In the case of infected carcasses deposited on the land surface, this may result in local sources of infectivity to other animals. PMID:20830901

  6. Ovine prion protein genotype frequencies in northwestern China.

    PubMed

    Zhao, C-L; Wu, R; Liu, L; Li, F-D; Zhang, X-L; Wang, C; Wang, F; Diao, X-L; Guan, H-W; Wang, X; Zhou, L

    2012-06-21

    Anti-scrapie breeding programs have been initiated to screen for scrapie-resistant sheep based on ovine prion protein gene (PRNP) genotypes at codons 136, 154 and 171 in many countries, especially European Union member states. However, investigation of sheep PRNP genotypes is limited in China, despite the large number of sheep breeds. We analyzed 432 sheep of five different breeds from farms in northwestern China, using PCR-single-strand conformational polymorphism analysis (PCR-SSCP); the corresponding haplotypes of different PRNP alleles were cloned. PRNP allele genotyping was done by amplification refractory mutation system-PCR (ARMS-PCR), according to the haplotype clones of each PRNP allele. The validity of ARMS-PCR was checked by PCR-SSCP. Another 325 unknown PRNP genotypes of other sheep breeds were analyzed according to the established ARMS-PCR. Genotype frequencies of 757 sheep were analyzed with these two methods to evaluate susceptibility to scrapie in northwestern China. Relevant mutations were also detected at other sites. Both methods were effective for ovine PRNP allele genotyping, and the results of the analysis completely coincided. Scrapie-resistant genotypes were found to be uncommon, indicating a high risk for ovine scrapie in northwest China. In addition to codons 136, 154 and 171, we found numerous new mutations; nearly half of them were previously unreported. These sheep populations have a high degree of polymorphism at the PRNP locus.

  7. [Modification of [PSI+] prion properties by the combination of amino acid changes within Sup35 protein N-domain].

    PubMed

    Bondarev, S A; Shirokolobova, E D; Trubitsyna, N P; Zhuravleva, G A

    2014-01-01

    [PSI+] prion is an amyloid isoform of a release factor Sup35p (eRF3). The structure of these protein aggregates remains unclear despite a long term history of prion amyloids investigations. The N-terminal domain of Sup35p (which is responsible for a propagation of prion) shapes superpleated beta-structure, according to modern concepts. Recently we constructed five double mutations within SUP35 sequence encoding the N-terminal prion-forming domain and investigated properties of mutant proteins. Mutations sup35-M1 (YQ46-47KK) and sup35-M2 (QQ61-62KK) lead to [PSI+] prion loss, while other mutant alleles (sup35-M3 QQ70-71KK; sup35-M4 QQ80-81KK; sup35-M5 QQ89-90KK) maintained prion. For the detail analysis of effects of mutant alleles on Sup35p aggregation we characterized propagation and properties of [PSI] prion in yeast strains bearing different mutant allele combinations. The data obtained have refined a supposed organization of beta-sheets forming by different regions of Sup35p prion-forming domain within amyloid. Also we obtained evidences that mutant sup35-M2 and sup35-M4 alleles change structure of prion aggregates. The prion destabilization by these mutations possibly is connected with decrease of heteroaggregate fragmentation by chaperones.

  8. Contributions of the Prion Protein Sequence, Strain, and Environment to the Species Barrier*

    PubMed Central

    Sharma, Aditi; Bruce, Kathryn L.; Chen, Buxin; Gyoneva, Stefka; Behrens, Sven H.; Bommarius, Andreas S.; Chernoff, Yury O.

    2016-01-01

    Amyloid propagation requires high levels of sequence specificity so that only molecules with very high sequence identity can form cross-β-sheet structures of sufficient stringency for incorporation into the amyloid fibril. This sequence specificity presents a barrier to the transmission of prions between two species with divergent sequences, termed a species barrier. Here we study the relative effects of protein sequence, seed conformation, and environment on the species barrier strength and specificity for the yeast prion protein Sup35p from three closely related species of the Saccharomyces sensu stricto group; namely, Saccharomyces cerevisiae, Saccharomyces bayanus, and Saccharomyces paradoxus. Through in vivo plasmid shuffle experiments, we show that the major characteristics of the transmission barrier and conformational fidelity are determined by the protein sequence rather than by the cellular environment. In vitro data confirm that the kinetics and structural preferences of aggregation of the S. paradoxus and S. bayanus proteins are influenced by anions in accordance with their positions in the Hofmeister series, as observed previously for S. cerevisiae. However, the specificity of the species barrier is primarily affected by the sequence and the type of anion present during the formation of the initial seed, whereas anions present during the seeded aggregation process typically influence kinetics rather than the specificity of prion conversion. Therefore, our work shows that the protein sequence and the conformation variant (strain) of the prion seed are the primary determinants of cross-species prion specificity both in vivo and in vitro. PMID:26565023

  9. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    PubMed Central

    Black, Stefanie A. G.; Stys, Peter K.; Zamponi, Gerald W.; Tsutsui, Shigeki

    2014-01-01

    Although it is well established that misfolding of the cellular prion protein (PrPC) into the β-sheet-rich, aggregated scrapie conformation (PrPSc) causes a variety of transmissible spongiform encephalopathies (TSEs), the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (Aβ) peptides, suggesting a role for PrPC in Alzheimer's disease (AD). Our recent findings suggest that Aβ peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s) on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for AD and other neurodegenerative disorders involving dysfunction of PrPC. PMID:25364752

  10. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation

    PubMed Central

    Blondel, Marc; Soubigou, Flavie; Evrard, Justine; Nguyen, Phu hai; Hasin, Naushaba; Chédin, Stéphane; Gillet, Reynald; Contesse, Marie-Astrid; Friocourt, Gaëlle; Stahl, Guillaume; Jones, Gary W.; Voisset, Cécile

    2016-01-01

    6AP and GA are potent inhibitors of yeast and mammalian prions and also specific inhibitors of PFAR, the protein-folding activity borne by domain V of the large rRNA of the large subunit of the ribosome. We therefore explored the link between PFAR and yeast prion [PSI+] using both PFAR-enriched mutants and site-directed methylation. We demonstrate that PFAR is involved in propagation and de novo formation of [PSI+]. PFAR and the yeast heat-shock protein Hsp104 partially compensate each other for [PSI+] propagation. Our data also provide insight into new functions for the ribosome in basal thermotolerance and heat-shocked protein refolding. PFAR is thus an evolutionarily conserved cell component implicated in the prion life cycle, and we propose that it could be a potential therapeutic target for human protein misfolding diseases. PMID:27633137

  11. Flexibility damps macromolecular crowding effects on protein folding dynamics: Application to the murine prion protein (121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2014-01-01

    A model of protein folding kinetics is applied to study the combined effects of protein flexibility and macromolecular crowding on protein folding rate and stability. It is found that the increase in stability and folding rate promoted by macromolecular crowding is damped for proteins with highly flexible native structures. The model is applied to the folding dynamics of the murine prion protein (121-231). It is found that the high flexibility of the native isoform of the murine prion protein (121-231) reduces the effects of macromolecular crowding on its folding dynamics. The relevance of these findings for the pathogenic mechanism are discussed.

  12. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease

    PubMed Central

    Haas, Laura T.; Salazar, Santiago V.; Kostylev, Mikhail A.; Um, Ji Won; Kaufman, Adam C.

    2016-01-01

    Alzheimer’s disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer’s disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer’s disease transgenes or by human Alzheimer’s disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp–Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer’s disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer’s disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279

  13. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease.

    PubMed

    Haas, Laura T; Salazar, Santiago V; Kostylev, Mikhail A; Um, Ji Won; Kaufman, Adam C; Strittmatter, Stephen M

    2016-02-01

    Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer's disease transgenes or by human Alzheimer's disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp-Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer's disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer's disease pathogenesis, and the complex is a potential target for disease-modifying intervention.

  14. Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins.

    PubMed

    Zhang, Jiapu; Zhang, Yuanli

    2014-02-07

    Prion diseases, traditionally referred to as transmissible spongiform encephalopathies (TSEs), are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species, manifesting as scrapie in sheep and goats, bovine spongiform encephalopathy (BSE or mad-cow disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and kulu in humans, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)) into insoluble abnormally folded infectious prions (PrP(Sc)), and the conversion of PrP(C) to PrP(Sc) is believed to involve conformational change from a predominantly α-helical protein to one rich in β-sheet structure. Such a conformational change may be amenable to study by molecular dynamics (MD) techniques. For rabbits, classical studies show that they have a low susceptibility to be infected by PrP(Sc), but recently it was reported that rabbit prions can be generated through saPMCA (serial automated Protein Misfolding Cyclic Amplification) in vitro and the rabbit prion is infectious and transmissible. In this paper, we first do a detailed survey on the research advances of rabbit prion protein (RaPrP) and then we perform MD simulations on the NMR and X-ray molecular structures of rabbit prion protein wild-type and mutants. The survey shows to us that rabbits were not challenged directly in vivo with other known prion strains and the saPMCA result did not pass the test of the known BSE strain of cattle. Thus, we might still look rabbits as a prion resistant species. MD results indicate that the three α-helices of the wild-type are stable under the neutral pH environment (but under low pH environment the three α-helices have been unfolded into β-sheets), and the three α-helices of the mutants (I214V and S173N) are unfolded into rich β-sheet structures under

  15. Investigating the Spreading and Toxicity of Prion-like Proteins Using the Metazoan Model Organism C. elegans

    PubMed Central

    Nussbaum-Krammer, Carmen I.; Neto, Mário F.; Brielmann, Renée M.; Pedersen, Jesper S.; Morimoto, Richard I.

    2015-01-01

    Prions are unconventional self-propagating proteinaceous particles, devoid of any coding nucleic acid. These proteinaceous seeds serve as templates for the conversion and replication of their benign cellular isoform. Accumulating evidence suggests that many protein aggregates can act as self-propagating templates and corrupt the folding of cognate proteins. Although aggregates can be functional under certain circumstances, this process often leads to the disruption of the cellular protein homeostasis (proteostasis), eventually leading to devastating diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Amyotrophic lateral sclerosis (ALS), or transmissible spongiform encephalopathies (TSEs). The exact mechanisms of prion propagation and cell-to-cell spreading of protein aggregates are still subjects of intense investigation. To further this knowledge, recently a new metazoan model in Caenorhabditis elegans, for expression of the prion domain of the cytosolic yeast prion protein Sup35 has been established. This prion model offers several advantages, as it allows direct monitoring of the fluorescently tagged prion domain in living animals and ease of genetic approaches. Described here are methods to study prion-like behavior of protein aggregates and to identify modifiers of prion-induced toxicity using C. elegans. PMID:25591151

  16. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease.

    PubMed

    King, Oliver D; Gitler, Aaron D; Shorter, James

    2012-06-26

    Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable 'prion domain' enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer's disease and Huntington's disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the prion

  17. Cellular prion protein protects from inflammatory and neuropathic pain.

    PubMed

    Gadotti, Vinicius M; Zamponi, Gerald W

    2011-08-16

    Cellular prion protein (PrPC) inhibits N-Methyl-D-Aspartate (NMDA) receptors. Since NMDA receptors play an important role in the transmission of pain signals in the dorsal horn of spinal cord, we thus wanted to determine if PrPC null mice show a reduced threshold for various pain behaviours.We compared nociceptive thresholds between wild type and PrPC null mice in models of inflammatory and neuropathic pain, in the presence and the absence of a NMDA receptor antagonist. 2-3 months old male PrPC null mice exhibited an MK-801 sensitive decrease in the paw withdrawal threshold in response both mechanical and thermal stimuli. PrPC null mice also exhibited significantly longer licking/biting time during both the first and second phases of formalin-induced inflammation of the paw, which was again prevented by treatment of the mice with MK-801, and responded more strongly to glutamate injection into the paw. Compared to wild type animals, PrPC null mice also exhibited a significantly greater nociceptive response (licking/biting) after intrathecal injection of NMDA. Sciatic nerve ligation resulted in MK-801 sensitive neuropathic pain in wild-type mice, but did not further augment the basal increase in pain behaviour observed in the null mice, suggesting that mice lacking PrPC may already be in a state of tonic central sensitization. Altogether, our data indicate that PrPC exerts a critical role in modulating nociceptive transmission at the spinal cord level, and fit with the concept of NMDA receptor hyperfunction in the absence of PrPC.

  18. Hematological shift in goat kids naturally devoid of prion protein.

    PubMed

    Reiten, Malin R; Bakkebø, Maren K; Brun-Hansen, Hege; Lewandowska-Sabat, Anna M; Olsaker, Ingrid; Tranulis, Michael A; Espenes, Arild; Boysen, Preben

    2015-01-01

    The physiological role of the cellular prion protein (PrP(C)) is incompletely understood. The expression of PrP(C) in hematopoietic stem cells and immune cells suggests a role in the development of these cells, and in PrP(C) knockout animals altered immune cell proliferation and phagocytic function have been observed. Recently, a spontaneous nonsense mutation at codon 32 in the PRNP gene in goats of the Norwegian Dairy breed was discovered, rendering homozygous animals devoid of PrP(C). Here we report hematological and immunological analyses of homozygous goat kids lacking PrP(C) (PRNP(Ter/Ter) ) compared to heterozygous (PRNP (+/Ter)) and normal (PRNP (+/+)) kids. Levels of cell surface PrP(C) and PRNP mRNA in peripheral blood mononuclear cells (PBMCs) correlated well and were very low in PRNP (Ter/Ter), intermediate in PRNP (+/Ter) and high in PRNP (+/+) kids. The PRNP (Ter/Ter) animals had a shift in blood cell composition with an elevated number of red blood cells (RBCs) and a tendency toward a smaller mean RBC volume (P = 0.08) and an increased number of neutrophils (P = 0.068), all values within the reference ranges. Morphological investigations of blood smears and bone marrow imprints did not reveal irregularities. Studies of relative composition of PBMCs, phagocytic ability of monocytes and T-cell proliferation revealed no significant differences between the genotypes. Our data suggest that PrP(C) has a role in bone marrow physiology and warrant further studies of PrP(C) in erythroid and immune cell progenitors as well as differentiated effector cells also under stressful conditions. Altogether, this genetically unmanipulated PrP(C)-free animal model represents a unique opportunity to unveil the enigmatic physiology and function of PrP(C).

  19. Variation in the prion protein sequence in Dutch goat breeds.

    PubMed

    Windig, J J; Hoving, R A H; Priem, J; Bossers, A; van Keulen, L J M; Langeveld, J P M

    2016-10-01

    Scrapie is a neurodegenerative disease occurring in goats and sheep. Several haplotypes of the prion protein increase resistance to scrapie infection and may be used in selective breeding to help eradicate scrapie. In this study, frequencies of the allelic variants of the PrP gene are determined for six goat breeds in the Netherlands. Overall frequencies in Dutch goats were determined from 768 brain tissue samples in 2005, 766 in 2008 and 300 in 2012, derived from random sampling for the national scrapie surveillance without knowledge of the breed. Breed specific frequencies were determined in the winter 2013/2014 by sampling 300 breeding animals from the main breeders of the different breeds. Detailed analysis of the scrapie-resistant K222 haplotype was carried out in 2014 for 220 Dutch Toggenburger goats and in 2015 for 942 goats from the Saanen derived White Goat breed. Nine haplotypes were identified in the Dutch breeds. Frequencies for non-wild type haplotypes were generally low. Exception was the K222 haplotype in the Dutch Toggenburger (29%) and the S146 haplotype in the Nubian and Boer breeds (respectively 7 and 31%). The frequency of the K222 haplotype in the Toggenburger was higher than for any other breed reported in literature, while for the White Goat breed it was with 3.1% similar to frequencies of other Saanen or Saanen derived breeds. Further evidence was found for the existence of two M142 haplotypes, M142 /S240 and M142 /P240 . Breeds vary in haplotype frequencies but frequencies of resistant genotypes are generally low and consequently selective breeding for scrapie resistance can only be slow but will benefit from animals identified in this study. The unexpectedly high frequency of the K222 haplotype in the Dutch Toggenburger underlines the need for conservation of rare breeds in order to conserve genetic diversity rare or absent in other breeds.

  20. A comparative molecular dynamics study on thermostability of human and chicken prion proteins

    SciTech Connect

    Ji, Hong-Fang; Zhang, Hong-Yu . E-mail: zhanghy@sdut.edu.cn

    2007-08-03

    To compare the thermostabilities of human and chicken normal cellular prion proteins (HuPrP{sup C} and CkPrP{sup C}), molecular dynamics (MD) simulations were performed for both proteins at an ensemble level (10 parallel simulations at 400 K and 5 parallel simulations at 300 K as a control). It is found that the thermostability of HuPrP{sup C} is comparable with that of CkPrP{sup C}, which implicates that the non-occurrence of prion diseases in non-mammals cannot be completely attributed to the thermodynamic properties of non-mammalian PrP{sup C}.

  1. [Protective Activity of Prion Protein Fragments after Immunization of Annimals with Experimentally Induced Alzheimer's Disease].

    PubMed

    Volpina, O M; Volkova, T D; Medvinskaya, N I; Kamynina, A V; Zaporozhskaya, Y V; Aleksandrova, I J; Koroev, D O; Samokhin, A N; Nesterova, I V; Deygin, V I; Bobkova, N V

    2015-01-01

    The prion protein is considered as one of the membrane targets of neurotoxic beta-amyloid during Alzheimer's disease development. We have chosen and synthesized 17-33, 23-33, 95-110 and 101-115 prion fragments involved in beta-amyloid binding. The effect of immunization with the peptides on the features of Alzheimer's disease was investigated in animals with an experimentally induced form of the disease. It was shown that immunization either with peptide 17-33 or with protein conjugates of peptides 23-33 and 101-115 increases the level of brain beta-amyloid and improves morfofunctional state of the brain.

  2. The copper transport-associated protein Ctr4 can form prion-like epigenetic determinants in Schizosaccharomyces pombe

    PubMed Central

    Sideri, Theodora; Yashiroda, Yoko; Ellis, David A.; Rodríguez-López, María; Yoshida, Minoru; Tuite, Mick F.; Bähler, Jürg

    2017-01-01

    Prions are protein-based infectious entities associated with fatal brain diseases in animals, but also modify a range of host-cell phenotypes in the budding yeast, Saccharomyces cerevisiae. Many questions remain about the evolution and biology of prions. Although several functionally distinct prion-forming proteins exist in S. cerevisiae, [HET-s] of Podospora anserina is the only other known fungal prion. Here we investigated prion-like, protein-based epigenetic transmission in the fission yeast Schizosaccharomyces pombe. We show that S. pombe cells can support the formation and maintenance of the prion form of the S. cerevisiae Sup35 translation factor [PSI+], and that the formation and propagation of these Sup35 aggregates is inhibited by guanidine hydrochloride, indicating commonalities in prion propagation machineries in these evolutionary diverged yeasts. A proteome-wide screen identified the Ctr4 copper transporter subunit as a putative prion with a predicted prion-like domain. Overexpression of the ctr4 gene resulted in large Ctr4 protein aggregates that were both detergent and proteinase-K resistant. Cells carrying such [CTR+] aggregates showed increased sensitivity to oxidative stress, and this phenotype could be transmitted to aggregate-free [ctr-] cells by transformation with [CTR+] cell extracts. Moreover, this [CTR+] phenotype was inherited in a non-Mendelian manner following mating with naïve [ctr-] cells, but intriguingly the [CTR+] phenotype was not eliminated by guanidine-hydrochloride treatment. Thus, Ctr4 exhibits multiple features diagnostic of other fungal prions and is the first example of a prion in fission yeast. These findings suggest that transmissible protein-based determinants of traits may be more widespread among fungi. PMID:28191457

  3. Detecting and discriminating among pathogenic protein conformers(prions), using mass spectrometry-based and antibody-based approaches(Abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A set of fatal neurological diseases that includes scrapie and chronic wasting disease (CWD) are caused by a pathological protein referred to as a prion (PrPSc). A prion propagates an infection by converting a normal cellular protein (PrPC) into a prion. Unlike viral, bacterial, or fungal pathogens,...

  4. Assessing transmissible spongiform encephalopathy species barriers with an in vitro prion protein conversion assay

    USGS Publications Warehouse

    Johnson, Christopher J.; Carlson, Christina M.; Morawski, Aaron R.; Manthei, Alyson; Cashman, Neil R.

    2015-01-01

    Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitroprion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host’s species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host’s species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

  5. Pathogenic prion protein is degraded by a manganese oxide mineral found in soils

    USGS Publications Warehouse

    Russo, F.; Johnson, C.J.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2009-01-01

    Prions, the aetiological agents of transmissible spongiform encephalopathies, exhibit extreme resistance to degradation. Soil can retain prion infectivity in the environment for years. Reactive soil components may, however, contribute to the inactivation of prions in soil. Members of the birnessite family of manganese oxides (MnO2) rank among the strongest natural oxidants in soils. Here, we report the abiotic degradation of pathogenic prion protein (PrPTSE) by a synthetic analogue of naturally occurring birnessite minerals. Aqueous MnO2 suspensions degraded the PrPTSE as evidenced by decreased immunoreactivity and diminished ability to seed protein misfolding cyclic amplification reactions. Birnessite-mediated PrPTSE degradation increased as a solution's pH decreased, consistent with the pH-dependence of the redox potential of MnO2. Exposure to 5.6 mg MnO2 ml-1 (PrPTSE:MnO2=1 : 110) decreased PrPTSE levels by ???4 orders of magnitude. Manganese oxides may contribute to prion degradation in soil environments rich in these minerals. ?? 2009 SGM.

  6. Prion protein-coated magnetic beads: Synthesis, characterization and development of a new ligands screening method☆

    PubMed Central

    de Moraes, Marcela Cristina; Santos, Juliana Bosco; dos Anjos, Daniel Meira; Rangel, Luciana Pereira; Vieira, Tuane Cristine Ramos Gonçalves; Moaddel, Ruin; da Silva, Jerson Lima

    2016-01-01

    Prion diseases are characterized by protein aggregation and neurodegeneration. Conversion of the native prion protein (PrPC) into the abnormal scrapie PrP isoform (PrPSc), which undergoes aggregation and can eventually form amyloid fibrils, is a critical step leading to the characteristic path morphological hallmark of these diseases. However, the mechanism of conversion remains unclear. It is known that ligands can act as cofactors or inhibitors in the conversion mechanism of PrPC into PrPSc. Within this context, herein, we describe the immobilization of PrPC onto the surface of magnetic beads and the morphological characterization of PrPC-coated beads by fluorescence confocal microscopy. PrPC-coated magnetic beads were used to identify ligands from a mixture of compounds, which were monitored by UHPLC–ESI-MS/MS. This affinity-based method allowed the isolation of the anti-prion compound quinacrine, an inhibitor of PrP aggregation. The results indicate that this approach can be applied to not only “fish” for anti-prion compounds from complex matrixes, but also to screening for and identify possible cellular cofactors involved in the deflagration of prion diseases. PMID:25576041

  7. Mechanisms of triggering H1 helix in prion proteins unfolding revealed by molecular dynamic simulation

    NASA Astrophysics Data System (ADS)

    Tseng, Chih-Yuan; Lee, H. C.

    2006-03-01

    In template-assistance model, normal Prion protein (PrP^C), the pathogen to cause several prion diseases such as Creutzfeldt-Jakob (CJD) in human, Bovine Spongiform Encephalopathy (BSE) in cow, and scrapie in sheep, converts to infectious prion (PrP^Sc) through a transient interaction with PrP^Sc. Furthermore, conventional studies showed S1-H1-S2 region in PrP^C to be the template of S1-S2 β-sheet in PrP^Sc, and Prion protein's conformational conversion may involve an unfolding of H1 and refolding into β-sheet. Here we prepare several mouse prion peptides that contain S1-H1-S2 region with specific different structures, which are corresponding to specific interactions, to investigate possible mechanisms to trigger H1 α-helix unfolding process via molecular dynamic simulation. Three properties, conformational transition, salt-bridge in H1, and hydrophobic solvent accessible surface (SAS) are analyzed. From these studies, we found the interaction that triggers H1 unfolding to be the one that causes dihedral angle at residue Asn^143 changes. Whereas interactions that cause S1 segment's conformational changes play a minor in this process. These studies offers an additional evidence for template-assistance model.

  8. The role of the unusual threonine string in the conversion of prion protein

    PubMed Central

    Abskharon, Romany; Wang, Fei; Vander Stel, Kayla J.; Sinniah, Kumar; Ma, Jiyan

    2016-01-01

    The conversion of normal prion protein (PrP) into pathogenic PrP conformers is central to prion disease, but the mechanism remains unclear. The α-helix 2 of PrP contains a string of four threonines, which is unusual due to the high propensity of threonine to form β-sheets. This structural feature was proposed as the basis for initiating PrP conversion, but experimental results have been conflicting. We studied the role of the threonine string on PrP conversion by analyzing mouse Prnpa and Prnpb polymorphism that contains a polymorphic residue at the beginning of the threonine string, and PrP mutants in which threonine 191 was replaced by valine, alanine, or proline. The PMCA (protein misfolding cyclic amplification) assay was able to recapitulate the in vivo transmission barrier between PrPa and PrPb. Relative to PMCA, the amyloid fibril growth assay is less restrictive, but it did reflect certain properties of in vivo prion transmission. Our results suggest a plausible theory explaining the apparently contradictory results in the role of the threonine string in PrP conversion and provide novel insights into the complicated relationship among PrP stability, seeded conformational change, and prion structure, which is critical for understanding the molecular basis of prion infectivity. PMID:27982059

  9. The role of the unusual threonine string in the conversion of prion protein.

    PubMed

    Abskharon, Romany; Wang, Fei; Vander Stel, Kayla J; Sinniah, Kumar; Ma, Jiyan

    2016-12-16

    The conversion of normal prion protein (PrP) into pathogenic PrP conformers is central to prion disease, but the mechanism remains unclear. The α-helix 2 of PrP contains a string of four threonines, which is unusual due to the high propensity of threonine to form β-sheets. This structural feature was proposed as the basis for initiating PrP conversion, but experimental results have been conflicting. We studied the role of the threonine string on PrP conversion by analyzing mouse Prnp(a) and Prnp(b) polymorphism that contains a polymorphic residue at the beginning of the threonine string, and PrP mutants in which threonine 191 was replaced by valine, alanine, or proline. The PMCA (protein misfolding cyclic amplification) assay was able to recapitulate the in vivo transmission barrier between PrP(a) and PrP(b). Relative to PMCA, the amyloid fibril growth assay is less restrictive, but it did reflect certain properties of in vivo prion transmission. Our results suggest a plausible theory explaining the apparently contradictory results in the role of the threonine string in PrP conversion and provide novel insights into the complicated relationship among PrP stability, seeded conformational change, and prion structure, which is critical for understanding the molecular basis of prion infectivity.

  10. Insight into Early-Stage Unfolding of GPI-Anchored Human Prion Protein

    PubMed Central

    Wu, Emilia L.; Qi, Yifei; Park, Soohyung; Mallajosyula, Sairam S.; MacKerell, Alexander D.; Klauda, Jeffery B.; Im, Wonpil

    2015-01-01

    Prion diseases are fatal neurodegenerative disorders, which are characterized by the accumulation of misfolded prion protein (PrPSc) converted from a normal host cellular prion protein (PrPC). Experimental studies suggest that PrPC is enriched with α-helical structure, whereas PrPSc contains a high proportion of β-sheet. In this study, we report the impact of N-glycosylation and the membrane on the secondary structure stability utilizing extensive microsecond molecular dynamics simulations. Our results reveal that the HB (residues 173 to 194) C-terminal fragment undergoes conformational changes and helix unfolding in the absence of membrane environments because of the competition between protein backbone intramolecular and protein-water intermolecular hydrogen bonds as well as its intrinsic instability originated from the amino acid sequence. This initiation of the unfolding process of PrPC leads to a subsequent increase in the length of the HB-HC loop (residues 195 to 199) that may trigger larger rigid body motions or further unfolding around this region. Continuous interactions between prion protein and the membrane not only constrain the protein conformation but also decrease the solvent accessibility of the backbone atoms, thereby stabilizing the secondary structure, which is enhanced by N-glycosylation via additional interactions between the N-glycans and the membrane surface. PMID:26588568

  11. Disparate evolution of prion protein domains and the distinct origin of Doppel- and prion-related loci revealed by fish-to-mammal comparisons.

    PubMed

    Rivera-Milla, Eric; Oidtmann, Birgit; Panagiotidis, Cynthia H; Baier, Michael; Sklaviadis, Theodoros; Hoffmann, Rudolf; Zhou, Yi; Solis, Gonzalo P; Stuermer, Claudia A O; Málaga-Trillo, Edward

    2006-02-01

    Prions result from the misfolding and selective accumulation of the host-encoded prion protein (PrP) in the brain. Despite intensive research on mammalian models, basic questions about the biological role of PrP and the evolutionary origin of prion disease remain unanswered. Following our previous identification of novel fish PrP homologues, here we generated new fish PrP sequences and performed genomic analysis to demonstrate the existence of two homologous PrP loci in bony fish, which display extensive molecular variation and are highly expressed in adult and developing fish brains. The fish PrP genomic regions contain PrP-related loci directly downstream of each PrP locus, suggesting an independent origin of prion-related proteins in fish and mammals. Our structural prediction analysis uncovers a conserved molecular "bauplan" for all vertebrate PrPs. The C- and N-terminal protein domains have evolved independently from one another, the former having retained its basic globular structure despite high sequence divergence and the latter having undergone differential expansion-degeneration cycles in its repetitive domains. Our evolutionary analysis redefines fundamental concepts on the functional significance of PrP domains and opens up new possibilities for the experimental analysis of prion misfolding and neurodegeneration in a non-mammalian model like the zebrafish.

  12. A prion primer

    PubMed Central

    Cashman, N R

    1997-01-01

    By biological and medical criteria, prions are infectious agents; however, many of their properties differ profoundly from those of conventional microbes. Prions are "encoded" by alterations in protein conformation rather than in nucleic acid or amino acid sequence. New epidemic prion diseases (bovine spongiform encephalopathy and new variant Creutzfeldt-Jakob disease) have recently emerged under the active surveillance of the modern world. The risk of contracting prion disease from blood products or other biologicals is now a focus of worldwide concern. Much has been discovered about prions and prion diseases, but much remains to be done. PMID:9371069

  13. Divalent metals stabilize cellular prion proteins and alter the rate of proteinase-K dependent limited proteolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: The key biochemical event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent ca...

  14. Role of Prion Disease-Linked Mutations in the Intrinsically Disordered N-Terminal Domain of the Prion Protein.

    PubMed

    Cong, Xiaojing; Casiraghi, Nicola; Rossetti, Giulia; Mohanty, Sandipan; Giachin, Gabriele; Legname, Giuseppe; Carloni, Paolo

    2013-11-12

    Prion diseases are fatal neurodegenerative disorders in mammals and other animal species. In humans, about 15% of these maladies are caused by pathogenic mutations (PMs) in the gene encoding for the prion protein (PrP(C)). Seven PMs are located in the naturally unfolded PrP(C) N-terminal domain, which constitutes about half of the protein. Intriguingly and in sharp contrast to other PMs clustered in the folded domain, N-terminal PMs barely affect the conversion to the pathogenic (scrapie, or PrP(Sc)) isoform of PrP(C). Here, we hypothesize that the neurotoxicity of these PMs arises from changes in structural determinants of the N-terminal domain, affecting the protein binding with its cellular partners and/or the cotranslational translocation during the PrP(C) biosynthesis. We test this idea by predicting the conformational ensemble of the wild-type (WT) and mutated mouse PrP(C) N-terminal domain, whose sequence is almost identical to that of the human one and for which the largest number of in vivo data is available. The conformational properties of the WT are consistent with those inferred experimentally. Importantly, the PMs turn out to affect in a subtle manner the intramolecular contacts in the putative N-terminal domain binding sites for Cu(2+) ions, sulphated glycosaminoglycans, and other known PrP(C) cellular partners. The PMs also alter the local structural features of the transmembrane domain and adjacent stop transfer effector, which act together to regulate the protein topology. These results corroborate the hypothesis that N-terminal PMs affect the PrP(C) binding to functional interactors and/or the translocation.

  15. Physical studies of conformational plasticity in a recombinant prion protein.

    PubMed

    Zhang, H; Stockel, J; Mehlhorn, I; Groth, D; Baldwin, M A; Prusiner, S B; James, T L; Cohen, F E

    1997-03-25

    PrP(Sc) is known to be the major, if not the only, component of the infectious prion. Limited proteolysis of PrP(Sc) produces an N-terminally truncated polypeptide of about 142 residues, designated PrP 27-30. Recently, a recombinant protein (rPrP) of 142 residues corresponding to the Syrian hamster PrP 27-30 was expressed in Escherichia coli and purified (Mehlhorn et al., 1996). rPrP has been refolded into both alpha-helical and beta-sheet structures as well as various intermediates in aqueous buffers. The beta-sheet state and two pH-dependent alpha-helical states were characterized by CD and NMR. The alpha-helical conformation occurred only after the formation of an intramolecular disulfide bond, whereas the beta-sheet form was accessible either with or without the disulfide. Of the different alpha-helical forms studied, only those refolded in the pH range 5-8 were substantially soluble at physiological pH, exhibiting similar conformations and monomeric analytical sedimentation profiles throughout the above pH range. Furthermore, refolded alpha-rPrP showed NMR chemical shift dispersion typical of proteins with native conformations, although 2D NMR indicated large segments of conformational flexibility. It displayed a cooperative thermal denaturation transition; at elevated temperatures, it converted rapidly and irreversibly to the thermodynamically more stable beta-sheet form. Unfolding of alpha-rPrP by GdnHCl revealed a two-phase transition with a relatively stable folding intermediate at 2 M GdnHCl. The deltaG values were estimated to be 1.9 +/- 0.4 kcal/mol for the first phase and 6.5 +/- 1.2 kcal/mol for the second, consistent with a folding core surrounded by significant segments of flexible conformation. By NMR, alpha-rPrP(acid) isolated at pH 2 without refolding exhibited heterogeneous line widths, consistent with an acid-denatured molten globular state. We conclude that to the extent that rPrP constitutes a relevant folding domain of PrP(C), the various

  16. Molecular cloning and sequence analysis of prion protein gene in Xiji donkey in China.

    PubMed

    Zhang, Zhuming; Wang, Renli; Xu, Lihua; Yuan, Fangzhong; Zhou, Xiangmei; Yang, Lifeng; Yin, Xiaomin; Xu, Binrui; Zhao, Deming

    2013-10-25

    Prion diseases are a group of human and animal neurodegenerative disorders caused by the deposition of an abnormal isoform prion protein (PrP(Sc)) encoded by a single copy prion protein gene (PRNP). Prion disease has been reported in many herbivores but not in Equus and the species barrier might be playing a role in resistance of these species to the disease. Therefore, analysis of genotype of prion protein (PrP) in these species may help understand the transmission of the disease. Xiji donkey is a rare species of Equus not widely reared in Ningxia, China, for service, food and medicine, but its PRNP has not been studied. Based on the reported PrP sequence in GenBank we designed primers and amplified, cloned and sequenced the PRNP of Xiji donkey. The sequence analysis showed that the Xiji donkey PRNP was consisted of an open reading frame of 768 nucleotides encoding 256 amino acids. Amino acid residues unique to donkey as compared with some Equus animals, mink, cow, sheep, human, dog, sika deer, rabbit and hamster were identified. The results showed that the amino acid sequence of Xiji donkey PrP starts with the consensus sequence MVKSH, with almost identical amino acid sequence to the PrP of other Equus species in this study. Amino acid sequence analysis showed high identity within species and close relation to the PRNP of sika deer, sheep, dog, camel, cow, mink, rabbit and hamster with 83.1-99.7% identity. The results provided the PRNP data for an additional Equus species, which should be useful to the study of the prion disease pathogenesis, resistance and cross species transmission.

  17. Possible role for Ca2+ in the pathophysiology of the prion protein?

    PubMed

    Peggion, Caterina; Bertoli, Alessandro; Sorgato, M Catia

    2011-01-01

    Transmissible spongiform encephalopathies, or prion diseases, are lethal neurodegenerative disorders caused by the infectious agent named prion, whose main constituent is an aberrant conformational isoform of the cellular prion protein, PrP(C) . The mechanisms of prion-associated neurodegeneration and the physiologic function of PrP(C) are still unclear, although it is now increasingly acknowledged that PrP(C) plays a role in cell differentiation and survival. PrP(C) thus exhibits dichotomic attributes, as it can switch from a benign function under normal conditions to the triggering of neuronal death during disease. By reviewing data from models of prion infection and PrP-knockout paradigms, here we discuss the possibility that Ca(2+) is the hidden factor behind the multifaceted behavior of PrP(C) . By featuring in almost all processes of cell signaling, Ca(2+) might explain diverse aspects of PrP(C) pathophysiology, including the recently proposed one in which PrP(C) acts as a mediator of synaptic degeneration in Alzheimer's disease.

  18. Heterogeneity of the Abnormal Prion Protein (PrPSc) of the Chandler Scrapie Strain

    PubMed Central

    Kasai, Kazuo; Iwamaru, Yoshifumi; Masujin, Kentaro; Imamura, Morikazu; Mohri, Shirou; Yokoyama, Takashi

    2013-01-01

    The pathological prion protein, PrPSc, displays various sizes of aggregates. In this study, we investigated the conformation, aggregation stability and proteinase K (PK)-sensitivity of small and large PrPSc aggregates of mouse-adapted prion strains. We showed that small PrPSc aggregates, previously thought to be PK-sensitive, are resistant to PK digestion. Furthermore, we showed that small PrPSc aggregates of the Chandler scrapie strain have greater resistance to PK digestion and aggregation-denaturation than large PrPSc aggregates of this strain. We conclude that this strain consists of heterogeneous PrPSc. PMID:25436883

  19. Uncontrolled SFK-mediated protein trafficking in prion and Alzheimer's disease.

    PubMed

    Málaga-Trillo, Edward; Ochs, Katharina

    2016-09-02

    Prions and Amyloid beta (Aβ) peptides induce synaptic damage via complex mechanisms that include the pathological alteration of intracellular signaling cascades. The host-encoded cellular prion protein (PrP(C)) acts as a high-affinity cell surface receptor for both toxic species and it can modulate the endocytic trafficking of the N-methyl D-aspartate (NMDA) receptor and E-cadherin adhesive complexes via Src family kinases (SFKs). Interestingly, SFK-mediated control of endocytosis is a widespread mechanism used to regulate the activity of important transmembrane proteins, including neuroreceptors for major excitatory and inhibitory neurotransmitters. Here we discuss our recent work in zebrafish and accumulating evidence suggesting that subversion of this pleiotropic regulatory mechanism by Aβ oligomers and prions explains diverse neurotransmission deficits observed in human patients and mouse models of prion and Alzheimer's neurodegeneration. While Aβ, PrP(C) and SFKs constitute potential therapeutic targets on their own, drug discovery efforts might benefit significantly from aiming at protein-protein interactions that modulate the endocytosis of specific SFK targets.

  20. Prion Protein M129V Polymorphism Affects Retrieval-Related Brain Activity

    ERIC Educational Resources Information Center

    Buchmann, Andreas; Mondadori, Christian R. A.; Hanggi, Jurgen; Aerni, Amanda; Vrticka, Pascal; Luechinger, Roger; Boesiger, Peter; Hock, Christoph; Nitsch, Roger M.; de Quervain, Dominique J.-F.; Papassotiropoulos, Andreas; Henke, Katharina

    2008-01-01

    The prion protein Met129Val polymorphism has recently been related to human long-term memory with carriers of either the 129[superscript MM] or the 129[superscript MV] genotype recalling 17% more words than 129[superscript VV] carriers at 24 h following learning. Here, we sampled genotype differences in retrieval-related brain activity at 30 min…

  1. Detection of Prion Protein Particles in Blood Plasma of Scrapie Infected Sheep

    PubMed Central

    Reinartz, Elke; Jaeger, Karl-Erich; Langeveld, Jan P. M.; Rohwer, Robert G.; Gregori, Luisa; Terry, Linda A.; Willbold, Dieter; Riesner, Detlev

    2012-01-01

    Prion diseases are transmissible neurodegenerative diseases affecting humans and animals. The agent of the disease is the prion consisting mainly, if not solely, of a misfolded and aggregated isoform of the host-encoded prion protein (PrP). Transmission of prions can occur naturally but also accidentally, e.g. by blood transfusion, which has raised serious concerns about blood product safety and emphasized the need for a reliable diagnostic test. In this report we present a method based on surface-FIDA (fluorescence intensity distribution analysis), that exploits the high state of molecular aggregation of PrP as an unequivocal diagnostic marker of the disease, and show that it can detect infection in blood. To prepare PrP aggregates from blood plasma we introduced a detergent and lipase treatment to separate PrP from blood lipophilic components. Prion protein aggregates were subsequently precipitated by phosphotungstic acid, immobilized on a glass surface by covalently bound capture antibodies, and finally labeled with fluorescent antibody probes. Individual PrP aggregates were visualized by laser scanning microscopy where signal intensity was proportional to aggregate size. After signal processing to remove the background from low fluorescence particles, fluorescence intensities of all remaining PrP particles were summed. We detected PrP aggregates in plasma samples from six out of ten scrapie-positive sheep with no false positives from uninfected sheep. Applying simultaneous intensity and size discrimination, ten out of ten samples from scrapie sheep could be differentiated from uninfected sheep. The implications for ante mortem diagnosis of prion diseases are discussed. PMID:22567169

  2. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine or cervid prion protein

    PubMed Central

    Schneider, David A.; Zhuang, Dongyue; Dassanayake, Rohana P.; Balachandran, Aru; Mitchell, Gordon B.; O'Rourke, Katherine I.

    2016-01-01

    Development of mice expressing either ovine (Tg338) or cervid (TgElk) prion protein (PrP) have aided in characterization of scrapie and chronic wasting disease (CWD), respectively. Experimental inoculation of sheep with CWD prions has demonstrated the potential for interspecies transmission but, infection with CWD versus classical scrapie prions may be difficult to differentiate using validated diagnostic platforms. In this study, mouse bioassay in Tg338 and TgElk was utilized to evaluate transmission of CWD versus scrapie prions from small ruminants. Mice (≥5 per homogenate) were inoculated with brain homogenates from clinically affected sheep or goats with naturally acquired classical scrapie, white-tailed deer with naturally acquired CWD (WTD-CWD) or sheep with experimentally acquired CWD derived from elk (sheep-passaged-CWD). Survival time (time to clinical disease) and attack rates (brain accumulation of protease resistant PrP, PrPres) were determined. Inoculation with classical scrapie prions resulted in clinical disease and 100 % attack rates in Tg338, but no clinical disease at endpoint (>300 days post-inoculation, p.i.) and low attack rates (6.8 %) in TgElk. Inoculation with WTD-CWD prions yielded no clinical disease or brain PrPres accumulation in Tg338 at endpoint (>500 days p.i.), but rapid onset of clinical disease (~121 days p.i.) and 100 % attack rate in TgElk. Sheep-passaged-CWD resulted in transmission to both mouse lines with 100 % attack rates at endpoint in Tg338 and an attack rate of ~73 % in TgElk with some culled due to clinical disease. These primary transmission observations demonstrate the potential of bioassay in Tg338 and TgElk to help differentiate possible infection with CWD versus classical scrapie prions in sheep and goats. PMID:27393736

  3. Development of techniques in magnetic resonance and structural studies of the prion protein

    SciTech Connect

    Bitter, Hans-Marcus L.

    2000-07-01

    Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of biological and pathological interest since conformational changes in the prion protein are believed to cause prion diseases. Finally, an ultra-low field magnetic resonance imaging technique is described that enables imaging and characterization of heterogeneous and porous media. The notion of imaging gases at ultra-low fields would appear to be very difficult due to the prohibitively low polarization and spin densities as well as the low sensitivities of conventional Faraday coil detectors. However, Chapter 5 describes how gas imaging

  4. Role of lipid rafts and GM1 in the segregation and processing of prion protein.

    PubMed

    Botto, Laura; Cunati, Diana; Coco, Silvia; Sesana, Silvia; Bulbarelli, Alessandra; Biasini, Emiliano; Colombo, Laura; Negro, Alessandro; Chiesa, Roberto; Masserini, Massimo; Palestini, Paola

    2014-01-01

    The prion protein (PrPC) is highly expressed within the nervous system. Similar to other GPI-anchored proteins, PrPC is found in lipid rafts, membrane domains enriched in cholesterol and sphingolipids. PrPC raft association, together with raft lipid composition, appears essential for the conversion of PrPC into the scrapie isoform PrPSc, and the development of prion disease. Controversial findings were reported on the nature of PrPC-containing rafts, as well as on the distribution of PrPC between rafts and non-raft membranes. We investigated PrPC/ganglioside relationships and their influence on PrPC localization in a neuronal cellular model, cerebellar granule cells. Our findings argue that in these cells at least two PrPC conformations coexist: in lipid rafts PrPC is present in the native folding (α-helical), stabilized by chemico-physical condition, while it is mainly present in other membrane compartments in a PrPSc-like conformation. We verified, by means of antibody reactivity and circular dichroism spectroscopy, that changes in lipid raft-ganglioside content alters PrPC conformation and interaction with lipid bilayers, without modifying PrPC distribution or cleavage. Our data provide new insights into the cellular mechanism of prion conversion and suggest that GM1-prion protein interaction at the cell surface could play a significant role in the mechanism predisposing to pathology.

  5. The 14-3-3 protein forms a molecular complex with heat shock protein Hsp60 and cellular prion protein.

    PubMed

    Satoh, Jun-ichi; Onoue, Hiroyuki; Arima, Kunimasa; Yamamura, Takashi

    2005-10-01

    The 14-3-3 protein family consists of acidic 30-kDa proteins composed of 7 isoforms expressed abundantly in neurons and glial cells of the central nervous system (CNS). The 14-3-3 protein identified in the cerebrospinal fluid provides a surrogate marker for premortem diagnosis of Creutzfeldt-Jakob disease, although an active involvement of 14-3-3 in the pathogenesis of prion diseases remains unknown. By protein overlay and mass spectrometric analysis of protein extract of NTera2-derived differentiated neurons, we identified heat shock protein Hsp60 as a 14-3-3-interacting protein. The 14-3-3zeta and gamma isoforms interacted with Hsp60, suggesting that the interaction is not isoform-specific. Furthermore, the interaction was identified in SK-N-SH neuroblastoma, U-373MG astrocytoma, and HeLa cervical carcinoma cells. The cellular prion protein (PrPC) along with Hsp60 was coimmunoprecipitated with 14-3-3 in the human brain protein extract. By protein overlay, 14-3-3 interacted with both recombinant human Hsp60 and PrPC produced by Escherichia coli, indicating that the molecular interaction is phosphorylation-independent. The 14-3-3-binding domain was located in the N-terminal half (NTF) of Hsp60 spanning amino acid residues 27-287 and the NTF of PrPC spanning amino acid residues 23-137. By immunostaining, the 14-3-3 protein Hsp60 and PrPC were colocalized chiefly in the mitochondria of human neuronal progenitor cells in culture, and were coexpressed most prominently in neurons and reactive astrocytes in the human brain. These observations indicate that the 14-3-3 protein forms a molecular complex with Hsp60 and PrPC in the human CNS under physiological conditions and suggest that this complex might become disintegrated in the pathologic process of prion diseases.

  6. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes.

    PubMed

    Guo, Belinda B; Bellingham, Shayne A; Hill, Andrew F

    2015-02-06

    Prion diseases are a group of transmissible, fatal neurodegenerative disorders associated with the misfolding of the host-encoded prion protein, PrP(C), into a disease-associated form, PrP(Sc). The transmissible prion agent is principally formed of PrP(Sc) itself and is associated with extracellular vesicles known as exosomes. Exosomes are released from cells both in vitro and in vivo, and have been proposed as a mechanism by which prions spread intercellularly. The biogenesis of exosomes occurs within the endosomal system, through formation of intraluminal vesicles (ILVs), which are subsequently released from cells as exosomes. ILV formation is known to be regulated by the endosomal sorting complexes required for transport (ESCRT) machinery, although an alternative neutral sphingomyelinase (nSMase) pathway has been suggested to also regulate this process. Here, we investigate a role for the nSMase pathway in exosome biogenesis and packaging of PrP into these vesicles. Inhibition of the nSMase pathway using GW4869 revealed a role for the nSMase pathway in both exosome formation and PrP packaging. In agreement, targeted knockdown of nSMase1 and nSMase2 in mouse neurons using lentivirus-mediated RNAi also decreases exosome release, demonstrating the nSMase pathway regulates the biogenesis and release of exosomes. We also demonstrate that PrP(C) packaging is dependent on nSMase2, whereas the packaging of disease-associated PrP(Sc) into exosomes occurs independently of nSMase2. These findings provide further insight into prion transmission and identify a pathway which directly assists exosome-mediated transmission of prions.

  7. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine and cervid prion protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying transmissible spongiform encephalopathy (TSE) reservoirs that could lead to disease re-emergence is imperative to U.S. scrapie eradication efforts. Transgenic mice expressing the cervid (TgElk) or ovine (Tg338) prion protein have aided characterization of chronic wasting disease (CWD) an...

  8. From cell protection to death: may Ca2+ signals explain the chameleonic attributes of the mammalian prion protein?

    PubMed

    Sorgato, M Catia; Bertoli, Alessandro

    2009-02-06

    It is now accepted that a conformational change of the cellular prion protein (PrP(C)) generates the prion, the infectious agent responsible for lethal neurodegenerative disorders, named transmissible spongiform encephalopathies, or prion diseases. The mechanisms of prion-associated neurodegeneration are still obscure, as is the cell role of PrP(C), although increasing evidence attributes to PrP(C) important functions in cell survival. Such a behavioral dichotomy thus enables the prion protein to switch from a benign role under normal conditions, to the execution of neurons during disease. By reviewing data from models of prion disease and PrP(C)-null paradigms, which suggest a relation between the prion protein and Ca(2+) homeostasis, here we discuss the possibility that Ca(2+) is the factor behind the enigma of the pathophysiology of PrP(C). Ca(2+) features in almost all processes of cell signaling, and may thus tell us much about a protein that pivots between health and disease.

  9. Production and characterization of a panel of monoclonal antibodies against native human cellular prion protein.

    PubMed

    Jones, Michael; McLoughlin, Victoria; Connolly, John G; Farquhar, Christine F; MacGregor, Ian R; Head, Mark W

    2009-02-01

    The human prion diseases, such as variant Creutzfeldt-Jakob disease (vCJD), are characterized by the conversion of the normal cellular prion protein (PrP(C)) into an abnormal disease associated form (PrP(Sc)). Monoclonal antibodies (MAbs) that recognize these different PrP isoforms are valuable reagents both in the diagnosis of these diseases and in prion disease research in general but we know of no attempts to raise MAbs against native human PrP(C). We immunized prion protein gene ablated (PrP(-/-)) mice with native human PrP(C) purified from platelets (pHuPrP) generating a predominantly IgG isotype anti-pHuPrP polyclonal antibody response in all mice. Following fusion of splenocytes from the immunized mice with SP2/0 myeloma cells, we were able to identify single cell clone and cryopreserve 14 stable hybridoma cell lines producing MAbs that reacted with pHuPrP. The properties of these MAbs (such as isotype, binding to native/denatured pHuPrP, and HuPrP epitopes recognized) are described. Furthermore, several of these MAbs showed a selectivity in their ability to immunoprecipitate disease associated PrP(Sc) and its corresponding protease resistant core (PrP(res)).

  10. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification

    PubMed Central

    Moudjou, Mohammed; Chapuis, Jérôme; Mekrouti, Mériem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andréoletti, Olivier; Rezaei, Human; Dron, Michel; Béringue, Vincent

    2016-01-01

    Prions are formed of misfolded assemblies (PrPSc) of the variably N-glycosylated cellular prion protein (PrPC). In infected species, prions replicate by seeding the conversion and polymerization of host PrPC. Distinct prion strains can be recognized, exhibiting defined PrPSc biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrPSc assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrPC glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrPC species of interest as substrate. Applying the technique to PrPC glycosylation mutants expressing cells revealed that neither PrPC nor PrPSc glycoform stoichiometry was instrumental to PrPSc formation and strainness perpetuation. Our study supports the view that strain properties, including PrPSc glycotype are enciphered within PrPSc structural backbone, not in the attached glycans. PMID:27384922

  11. Glycoform-independent prion conversion by highly efficient, cell-based, protein misfolding cyclic amplification.

    PubMed

    Moudjou, Mohammed; Chapuis, Jérôme; Mekrouti, Mériem; Reine, Fabienne; Herzog, Laetitia; Sibille, Pierre; Laude, Hubert; Vilette, Didier; Andréoletti, Olivier; Rezaei, Human; Dron, Michel; Béringue, Vincent

    2016-07-07

    Prions are formed of misfolded assemblies (PrP(Sc)) of the variably N-glycosylated cellular prion protein (PrP(C)). In infected species, prions replicate by seeding the conversion and polymerization of host PrP(C). Distinct prion strains can be recognized, exhibiting defined PrP(Sc) biochemical properties such as the glycotype and specific biological traits. While strain information is encoded within the conformation of PrP(Sc) assemblies, the storage of the structural information and the molecular requirements for self-perpetuation remain uncertain. Here, we investigated the specific role of PrP(C) glycosylation status. First, we developed an efficient protein misfolding cyclic amplification method using cells expressing the PrP(C) species of interest as substrate. Applying the technique to PrP(C) glycosylation mutants expressing cells revealed that neither PrP(C) nor PrP(Sc) glycoform stoichiometry was instrumental to PrP(Sc) formation and strainness perpetuation. Our study supports the view that strain properties, including PrP(Sc) glycotype are enciphered within PrP(Sc) structural backbone, not in the attached glycans.

  12. Polar substitutions in helix 3 of the prion protein produce transmembrane isoforms that disturb vesicle trafficking

    PubMed Central

    Sanchez-Garcia, Jonatan; Arbelaez, Daniela; Jensen, Kurt; Rincon-Limas, Diego E.; Fernandez-Funez, Pedro

    2013-01-01

    Prion diseases encompass a diverse group of neurodegenerative conditions characterized by the accumulation of misfolded prion protein (PrP) isoforms. Other conformational variants of PrP have also been proposed to contribute to neurotoxicity in prion diseases, including misfolded intermediates as well as cytosolic and transmembrane isoforms. To better understand PrP neurotoxicity, we analyzed the role of two highly conserved methionines in helix 3 on PrP biogenesis, folding and pathogenesis. Expression of the PrP-M205S and -M205,212S mutants in Drosophila led to hyperglycosylation, intracellular accumulation and widespread conformational changes due to failure of oxidative folding. Surprisingly, PrP-M205S and -M205,212S acquired a transmembrane topology (Ctm) previously linked to mutations in the signal peptide (SP) and the transmembrane domain (TMD). PrP-M205,212S also disrupted the accumulation of key neurodevelopmental proteins in lipid rafts, resulting in shortened axonal projections. These results uncover a new role for the hydrophobic domain in promoting oxidative folding and preventing the formation of neurotoxic Ctm PrP, mechanisms that may be relevant in the pathogenesis of both inherited and sporadic prion diseases. PMID:23771030

  13. Polar substitutions in helix 3 of the prion protein produce transmembrane isoforms that disturb vesicle trafficking.

    PubMed

    Sanchez-Garcia, Jonatan; Arbelaez, Daniela; Jensen, Kurt; Rincon-Limas, Diego E; Fernandez-Funez, Pedro

    2013-11-01

    Prion diseases encompass a diverse group of neurodegenerative conditions characterized by the accumulation of misfolded prion protein (PrP) isoforms. Other conformational variants of PrP have also been proposed to contribute to neurotoxicity in prion diseases, including misfolded intermediates as well as cytosolic and transmembrane isoforms. To better understand PrP neurotoxicity, we analyzed the role of two highly conserved methionines in helix 3 on PrP biogenesis, folding and pathogenesis. Expression of the PrP-M205S and -M205,212S mutants in Drosophila led to hyperglycosylation, intracellular accumulation and widespread conformational changes due to failure of oxidative folding. Surprisingly, PrP-M205S and -M205,212S acquired a transmembrane topology (Ctm) previously linked to mutations in the signal peptide (SP) and the transmembrane domain (TMD). PrP-M205,212S also disrupted the accumulation of key neurodevelopmental proteins in lipid rafts, resulting in shortened axonal projections. These results uncover a new role for the hydrophobic domain in promoting oxidative folding and preventing the formation of neurotoxic Ctm PrP, mechanisms that may be relevant in the pathogenesis of both inherited and sporadic prion diseases.

  14. In silico comparative analysis of DNA and amino acid sequences for prion protein gene.

    PubMed

    Kim, Y; Lee, J; Lee, C

    2008-01-01

    Genetic variability might contribute to species specificity of prion diseases in various organisms. In this study, structures of the prion protein gene (PRNP) and its amino acids were compared among species of which sequence data were available. Comparisons of PRNP DNA sequences among 12 species including human, chimpanzee, monkey, bovine, ovine, dog, mouse, rat, wallaby, opossum, chicken and zebrafish allowed us to identify candidate regulatory regions in intron 1 and 3'-untranslated region (UTR) in addition to the coding region. Highly conserved putative binding sites for transcription factors, such as heat shock factor 2 (HSF2) and myocite enhancer factor 2 (MEF2), were discovered in the intron 1. In 3'-UTR, the functional sequence (ATTAAA) for nucleus-specific polyadenylation was found in all the analysed species. The functional sequence (TTTTTAT) for maturation-specific polyadenylation was identically observed only in ovine, and one or two nucleotide mismatches in the other species. A comparison of the amino acid sequences in 53 species revealed a large sequence identity. Especially the octapeptide repeat region was observed in all the species but frog and zebrafish. Functional changes and susceptibility to prion diseases with various isoforms of prion protein could be caused by numeric variability and conformational changes discovered in the repeat sequences.

  15. Yeast prions: evolution of the prion concept.

    PubMed

    Wickner, Reed B; Edskes, Herman K; Shewmaker, Frank; Nakayashiki, Toru; Engel, Abbi; McCann, Linsay; Kryndushkin, Dmitry

    2007-01-01

    Prions (infectious proteins) analogous to the scrapie agent have been identified in Saccharomyces cerevisiae and Podospora anserina based on their special genetic characteristics. Each is a protein acting as a gene, much like nucleic acids have been shown to act as enzymes. The [URE3], [PSI(+)], [PIN(+)] and [Het-s] prions are self-propagating amyloids of Ure2p, Sup35p, Rnq1p and the HET-s protein, respectively. The [beta] and [C] prions are enzymes whose precursor activation requires their own active form. [URE3] and [PSI(+)] are clearly diseases, while [Het-s] and [beta] carry out normal cell functions. Surprisingly, the prion domains of Ure2p and Sup35p can be randomized without loss of ability to become a prion. Thus amino acid content and not sequence determine these prions. Shuffleability also suggests amyloids with a parallel in-register beta-sheet structure.

  16. In vitro prion protein conversion suggests risk of bighorn sheep (Ovis canadensis) to transmissible spongiform encephalopathies

    USGS Publications Warehouse

    Johnson, Christopher J.; Morawski, A.R.; Carlson, C.M.; Chang, H.

    2013-01-01

    Background: Transmissible spongiform encephalopathies (TSEs) affect both domestic sheep (scrapie) and captive and free-ranging cervids (chronic wasting disease; CWD). The geographical range of bighorn sheep (Ovis canadensis; BHS) overlaps with states or provinces that have contained scrapie-positive sheep or goats and areas with present epizootics of CWD in cervids. No TSEs have been documented in BHS, but the susceptibility of this species to TSEs remains unknown. Results: We acquired a library of BHS tissues and found no evidence of preexisting TSEs in these animals. The prion protein gene (Prnp) in all BHS in our library was identical to scrapie-susceptible domestic sheep (A136R 154Q171). Using an in vitro prion protein conversion assay, which has been previously used to assess TSE species barriers and, in our study appears to recollect known species barriers in mice, we assessed the potential transmissibility of TSEs to BHS. As expected based upon Prnp genotype, we observed BHS prion protein conversion by classical scrapie agent and evidence for a species barrier between transmissible mink encephalopathy (TME) and BHS. Interestingly, our data suggest that the species barrier of BHS to white-tailed deer or wapiti CWD agents is likely low. We also used protein misfolding cyclic amplification to confirm that CWD, but not TME, can template prion protein misfolding in A136R 154Q171genotype sheep. Conclusions: Our results indicate the in vitro conversion assay used in our study does mimic the species barrier of mice to the TSE agents that we tested. Based on Prnp genotype and results from conversion assays, BHS are likely to be susceptible to infection by classical scrapie. Despite mismatches in amino acids thought to modulate prion protein conversion, our data indicate that A136R154Q171 genotype sheep prion protein is misfolded by CWD agent, suggesting that these animals could be susceptible to CWD. Further investigation of TSE transmissibility to BHS, including

  17. Molecular Cross-talk between Misfolded Proteins in Animal Models of Alzheimer’s and Prion Diseases

    PubMed Central

    Morales, Rodrigo; Estrada, Lisbell D.; Diaz-Espinoza, Rodrigo; Morales-Scheihing, Diego; Jara, Maria C.; Castilla, Joaquin; Soto, Claudio

    2010-01-01

    The central event in Protein Misfolding Disorders (PMDs) is the accumulation of a misfolded form of a naturally expressed protein. Despite the diversity of clinical symptoms associated to different PMDs, many similarities in their mechanism suggest that distinct pathologies may cross-talk at the molecular level. The main goal of this study was to analyze the interaction of the protein misfolding processes implicated in Alzheimer’s and prion diseases. For this purpose we inoculated prions in an Alzheimer’s transgenic mouse model that develop typical amyloid plaques and followed the progression of pathological changes over time. Our findings show a dramatic acceleration and exacerbation of both pathologies. The onset of prion disease symptoms in transgenic mice appeared significantly faster with a concomitant increase on the level of misfolded prion protein in the brain. A striking increase in amyloid plaque deposition was observed in prion infected mice compared with their non-inoculated counterparts. Histological and biochemical studies showed the association of the two misfolded proteins in the brain and in vitro experiments showed that protein misfolding can be enhanced by a cross-seeding mechanism. These results suggest a profound interaction between Alzheimer’s and prion pathologies, indicating that one protein misfolding process may be an important risk factor for the development of a second one. Our findings may have important implications to understand the origin and progression of PMDs. PMID:20357103

  18. Monitoring Conformational Landscape of Ovine Prion Protein Monomer Using Ion Mobility Coupled to Mass Spectrometry.

    PubMed

    Van der Rest, Guillaume; Rezaei, Human; Halgand, Frédéric

    2017-02-01

    Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (α-helix to β-strand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways, which hints towards different conformers that might coexist in solution. To gain insights on the plasticity of the ovine prion protein (PrP) monomer, wild type (A136, R154, Q171), mutants and deletions of ARQ were studied by traveling wave ion mobility experiments coupled to mass spectrometry. In order to perform the analysis of a large body of data sets, we designed and evaluated the performance of a processing pipeline based on Driftscope peak detection and a homemade script for automated peak assignment, annotation, and quantification on specific multiply charged protein data. Using this approach, we showed that in the gas phase, PrPs are represented by at least three conformer families differing in both charge state distribution and collisional cross-section, in agreement with the work of Hilton et al. (2010). We also showed that this plasticity is borne both by the N- and C-terminal domains. Effect of protein concentration, pH and temperature were also assessed, showing that (1) pH does not affect conformer distributions, (2) protein concentration modifies the conformational landscape of one mutant (I208M) only, and (3) heating leads to other unfolded species and to a modification of the conformer intensity ratios. Graphical Abstract ᅟ.

  19. Monitoring Conformational Landscape of Ovine Prion Protein Monomer Using Ion Mobility Coupled to Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Van der Rest, Guillaume; Rezaei, Human; Halgand, Frédéric

    2017-02-01

    Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (α-helix to β-strand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways, which hints towards different conformers that might coexist in solution. To gain insights on the plasticity of the ovine prion protein (PrP) monomer, wild type (A136, R154, Q171), mutants and deletions of ARQ were studied by traveling wave ion mobility experiments coupled to mass spectrometry. In order to perform the analysis of a large body of data sets, we designed and evaluated the performance of a processing pipeline based on Driftscope peak detection and a homemade script for automated peak assignment, annotation, and quantification on specific multiply charged protein data. Using this approach, we showed that in the gas phase, PrPs are represented by at least three conformer families differing in both charge state distribution and collisional cross-section, in agreement with the work of Hilton et al. (2010). We also showed that this plasticity is borne both by the N- and C-terminal domains. Effect of protein concentration, pH and temperature were also assessed, showing that (1) pH does not affect conformer distributions, (2) protein concentration modifies the conformational landscape of one mutant (I208M) only, and (3) heating leads to other unfolded species and to a modification of the conformer intensity ratios.

  20. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-Type bovine spongiform encephalopathy.

    PubMed

    Hwang, Soyoun; Greenlee, Justin J; Nicholson, Eric M

    2017-01-01

    Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from the normal cellular prion protein to the pathogenic misfolded conformation (PrPSc). This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. Extensive work has been done to demonstrate that RT-QuIC is a rapid, specific, and highly sensitive prion detection assay. RT-QuIC uses recombinant prion protein to detect minute amounts of PrPSc. RT-QuIC has been successfully used to detect PrPSc from different prion diseases with a variety of substrates including hamster, human, sheep, bank vole, bovine and chimeric forms of prion protein. However, recombinant bovine prion protein has not been used to detect transmissible mink encephalopathy (TME) or to differentiate types of bovine spongiform encephalopathy (BSE) in samples from cattle. We evaluated whether PrPSc from TME and BSE infected cattle can be detected with RT-QuIC using recombinant bovine prion proteins, and optimized the reaction conditions to specifically detect cattle TME and to discriminate between classical and atypical BSE by conversion efficiency. We also found that substrate composed of the disease associated E211K mutant protein can be effective for the detection of TME in cattle and that wild type prion protein appears to be a practical substrate to discriminate between the different types of BSEs.

  1. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-Type bovine spongiform encephalopathy

    PubMed Central

    Hwang, Soyoun; Greenlee, Justin J.

    2017-01-01

    Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from the normal cellular prion protein to the pathogenic misfolded conformation (PrPSc). This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. Extensive work has been done to demonstrate that RT-QuIC is a rapid, specific, and highly sensitive prion detection assay. RT-QuIC uses recombinant prion protein to detect minute amounts of PrPSc. RT-QuIC has been successfully used to detect PrPSc from different prion diseases with a variety of substrates including hamster, human, sheep, bank vole, bovine and chimeric forms of prion protein. However, recombinant bovine prion protein has not been used to detect transmissible mink encephalopathy (TME) or to differentiate types of bovine spongiform encephalopathy (BSE) in samples from cattle. We evaluated whether PrPSc from TME and BSE infected cattle can be detected with RT-QuIC using recombinant bovine prion proteins, and optimized the reaction conditions to specifically detect cattle TME and to discriminate between classical and atypical BSE by conversion efficiency. We also found that substrate composed of the disease associated E211K mutant protein can be effective for the detection of TME in cattle and that wild type prion protein appears to be a practical substrate to discriminate between the different types of BSEs. PMID:28225797

  2. Efficient Uptake and Dissemination of Scrapie Prion Protein by Astrocytes and Fibroblasts from Adult Hamster Brain

    PubMed Central

    Hollister, Jason R.; Lee, Kil Sun; Dorward, David W.; Baron, Gerald S.

    2015-01-01

    Prion infections target neurons and lead to neuronal loss. However, the role of non-neuronal cells in the initiation and spread of infection throughout the brain remains unclear despite the fact these cells can also propagate prion infectivity. To evaluate how different brain cells process scrapie prion protein (PrPres) during acute infection, we exposed neuron-enriched and non-neuronal cell cultures from adult hamster brain to fluorescently-labeled purified PrPres and followed the cultures by live cell confocal imaging over time. Non-neuronal cells present in both types of cultures, specifically astrocytes and fibroblasts, internalized PrPres more efficiently than neurons. PrPres was trafficked to late endosomal/lysosomal compartments and rapidly transported throughout the cell bodies and processes of all cell types, including contacts between astrocytes and neurons. These observations suggest that astrocytes and meningeal fibroblasts play an as yet unappreciated role in prion infections via efficient uptake and dissemination of PrPres. PMID:25635871

  3. Efficient uptake and dissemination of scrapie prion protein by astrocytes and fibroblasts from adult hamster brain.

    PubMed

    Hollister, Jason R; Lee, Kil Sun; Dorward, David W; Baron, Gerald S

    2015-01-01

    Prion infections target neurons and lead to neuronal loss. However, the role of non-neuronal cells in the initiation and spread of infection throughout the brain remains unclear despite the fact these cells can also propagate prion infectivity. To evaluate how different brain cells process scrapie prion protein (PrPres) during acute infection, we exposed neuron-enriched and non-neuronal cell cultures from adult hamster brain to fluorescently-labeled purified PrPres and followed the cultures by live cell confocal imaging over time. Non-neuronal cells present in both types of cultures, specifically astrocytes and fibroblasts, internalized PrPres more efficiently than neurons. PrPres was trafficked to late endosomal/lysosomal compartments and rapidly transported throughout the cell bodies and processes of all cell types, including contacts between astrocytes and neurons. These observations suggest that astrocytes and meningeal fibroblasts play an as yet unappreciated role in prion infections via efficient uptake and dissemination of PrPres.

  4. Unique structural properties associated with mouse prion Δ105–125 protein

    PubMed Central

    Patel, Avnish; Vasiljevic, Snezana; Jones, Ian M.

    2013-01-01

    Murine prion protein deleted for residues 105–125 is intrinsically neurotoxic and mediates a TSE-like phenotype in transgenic mice. Equivalent and overlapping deletions were expressed in E.coli, purified and analyzed. Among mutants spanning the region 95–135, a construct lacking solely residues 105–125 had distinct properties when compared with the full-length prion protein 23–231 or other deletions. This distinction was also apparent followed expression in eukaryotic cells. Unlike the full-length protein, all deletion mutants failed to bind to synthetic membranes in vitro. These data suggest a novel structure for the 105–125 deleted variant that may relate to its biological properties. PMID:23764837

  5. Yeast Prions: Structure, Biology, and Prion-Handling Systems

    PubMed Central

    Shewmaker, Frank P.; Bateman, David A.; Edskes, Herman K.; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E.

    2015-01-01

    SUMMARY A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. PMID:25631286

  6. Yeast prions: structure, biology, and prion-handling systems.

    PubMed

    Wickner, Reed B; Shewmaker, Frank P; Bateman, David A; Edskes, Herman K; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E

    2015-03-01

    A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants.

  7. Smart protein biogate as a mediator to regulate competitive host-guest interaction for sensitive ratiometric electrochemical assay of prion

    NASA Astrophysics Data System (ADS)

    Yu, Peng; Zhang, Xiaohua; Zhou, Jiawan; Xiong, Erhu; Li, Xiaoyu; Chen, Jinhua

    2015-11-01

    A novel competitive host-guest strategy regulated by protein biogate was developed for sensitive and selective analysis of prion protein. The methylene blue (MB)-tagged prion aptamer (MB-Apt) was introduced to the multiwalled carbon nanotubes-β-cyclodextrins (MWCNTs-β-CD) composites-modified glassy carbon (GC) electrode through the host-guest interaction between β-CD and MB. In the absence of prion, MB-Apt could be displaced by ferrocenecarboxylic acid (FCA) due to its stronger binding affinity to β-CD, resulting in a large oxidation peak of FCA. However, in the presence of prion, the specific prion-aptamer interaction drove the formation of protein biogate to seal the cavity of β-CD, which hindered the guest displacement of MB by FCA and resulted in the oxidation peak current of MB (IMB) increased and that of FCA (IFCA) decreased. The developed aptasensor showed good response towards the target (prion protein) with a low detection limit of 160 fM. By changing the specific aptamers, this strategy could be easily extended to detect other proteins, showing promising potential for extensive applications in bioanalysis.

  8. Conformational stability of mammalian prion protein amyloid fibrils is dictated by a packing polymorphism within the core region.

    PubMed

    Cobb, Nathan J; Apostol, Marcin I; Chen, Shugui; Smirnovas, Vytautas; Surewicz, Witold K

    2014-01-31

    Mammalian prion strains are believed to arise from the propagation of distinct conformations of the misfolded prion protein PrP(Sc). One key operational parameter used to define differences between strains has been conformational stability of PrP(Sc) as defined by resistance to thermal and/or chemical denaturation. However, the structural basis of these stability differences is unknown. To bridge this gap, we have generated two strains of recombinant human prion protein amyloid fibrils that show dramatic differences in conformational stability and have characterized them by a number of biophysical methods. Backbone amide hydrogen/deuterium exchange experiments revealed that, in sharp contrast to previously studied strains of infectious amyloid formed from the yeast prion protein Sup35, differences in β-sheet core size do not underlie differences in conformational stability between strains of mammalian prion protein amyloid. Instead, these stability differences appear to be dictated by distinct packing arrangements (i.e. steric zipper interfaces) within the amyloid core, as indicated by distinct x-ray fiber diffraction patterns and large strain-dependent differences in hydrogen/deuterium exchange kinetics for histidine side chains within the core region. Although this study was limited to synthetic prion protein amyloid fibrils, a similar structural basis for strain-dependent conformational stability may apply to brain-derived PrP(Sc), especially because large strain-specific differences in PrP(Sc) stability are often observed despite a similar size of the PrP(Sc) core region.

  9. Smart protein biogate as a mediator to regulate competitive host-guest interaction for sensitive ratiometric electrochemical assay of prion

    PubMed Central

    Yu, Peng; Zhang, Xiaohua; Zhou, Jiawan; Xiong, Erhu; Li, Xiaoyu; Chen, Jinhua

    2015-01-01

    A novel competitive host-guest strategy regulated by protein biogate was developed for sensitive and selective analysis of prion protein. The methylene blue (MB)-tagged prion aptamer (MB-Apt) was introduced to the multiwalled carbon nanotubes-β-cyclodextrins (MWCNTs-β-CD) composites-modified glassy carbon (GC) electrode through the host-guest interaction between β-CD and MB. In the absence of prion, MB-Apt could be displaced by ferrocenecarboxylic acid (FCA) due to its stronger binding affinity to β-CD, resulting in a large oxidation peak of FCA. However, in the presence of prion, the specific prion-aptamer interaction drove the formation of protein biogate to seal the cavity of β-CD, which hindered the guest displacement of MB by FCA and resulted in the oxidation peak current of MB (IMB) increased and that of FCA (IFCA) decreased. The developed aptasensor showed good response towards the target (prion protein) with a low detection limit of 160 fM. By changing the specific aptamers, this strategy could be easily extended to detect other proteins, showing promising potential for extensive applications in bioanalysis. PMID:26531259

  10. Expanding the yeast prion world

    PubMed Central

    Suzuki, Genjiro; Tanaka, Motomasa

    2013-01-01

    Mammalian and fungal prion proteins form self-perpetuating β-sheet-rich fibrillar aggregates called amyloid. Prion inheritance is based on propagation of the regularly oriented amyloid structures of the prion proteins. All yeast prion proteins identified thus far contain aggregation-prone glutamine/asparagine (Gln/Asn)-rich domains, although the mammalian prion protein and fungal prion protein HET-s do not contain such sequences. In order to fill this gap, we searched for novel yeast prion proteins lacking Gln/Asn-rich domains via a genome-wide screen based on cross-seeding between two heterologous proteins and identified Mod5, a yeast tRNA isopentenyltransferase, as a novel non-Gln/Asn-rich yeast prion protein. Mod5 formed self-propagating amyloid fibers in vitro and the introduction of Mod5 amyloids into non-prion yeast induced dominantly and cytoplasmically heritable prion state [MOD+], which harbors aggregates of endogenous Mod5. [MOD+] yeast showed an increased level of membrane lipid ergosterol and acquired resistance to antifungal agents. Importantly, enhanced de novo formation of [MOD+] was observed when non-prion yeast was grown under selective pressures from antifungal drugs. Our findings expand the family of yeast prions to non-Gln/Asn-rich proteins and reveal the acquisition of a fitness advantage for cell survival through active prion conversion. PMID:23117914

  11. Inactivation of template-directed misfolding of infectious prion protein by ozone.

    PubMed

    Ding, Ning; Neumann, Norman F; Price, Luke M; Braithwaite, Shannon L; Balachandran, Aru; Belosevic, Miodrag; El-Din, Mohamed Gamal

    2012-02-01

    Misfolded prions (PrP(Sc)) are well known for their resistance to conventional decontamination processes. The potential risk of contamination of the water environment, as a result of disposal of specified risk materials (SRM), has raised public concerns. Ozone is commonly utilized in the water industry for inactivation of microbial contaminants and was tested in this study for its ability to inactivate prions (263K hamster scrapie = PrP(Sc)). Treatment variables included initial ozone dose (7.6 to 25.7 mg/liter), contact time (5 s and 5 min), temperature (4°C and 20°C), and pH (pH 4.4, 6.0, and 8.0). Exposure of dilute suspensions of the infected 263K hamster brain homogenates (IBH) (0.01%) to ozone resulted in the in vitro destruction of the templating properties of PrP(Sc), as measured by the protein misfolding cyclic amplification (PMCA) assay. The highest levels of prion inactivation (≥4 log(10)) were observed with ozone doses of 13.0 mg/liter, at pH 4.4 and 20°C, resulting in a CT (the product of residual ozone concentration and contact time) value as low as 0.59 mg · liter(-1) min. A comparison of ozone CT requirements among various pathogens suggests that prions are more susceptible to ozone degradation than some model bacteria and protozoa and that ozone treatment may be an effective solution for inactivating prions in water and wastewater.

  12. Involvement of Cellular Prion Protein in α-Synuclein Transport in Neurons.

    PubMed

    Urrea, Laura; Segura-Feliu, Miriam; Masuda-Suzukake, Masami; Hervera, Arnau; Pedraz, Lucas; Aznar, José Manuel García; Vila, Miquel; Samitier, Josep; Torrents, Eduard; Ferrer, Isidro; Gavín, Rosalina; Hagesawa, Masato; Del Río, José Antonio

    2017-02-22

    The cellular prion protein, encoded by the gene Prnp, has been reported to be a receptor of β-amyloid. Their interaction is mandatory for neurotoxic effects of β-amyloid oligomers. In this study, we aimed to explore whether the cellular prion protein participates in the spreading of α-synuclein. Results demonstrate that Prnp expression is not mandatory for α-synuclein spreading. However, although the pathological spreading of α-synuclein can take place in the absence of Prnp, α-synuclein expanded faster in PrP(C)-overexpressing mice. In addition, α-synuclein binds strongly on PrP(C)-expressing cells, suggesting a role in modulating the effect of α-synuclein fibrils.

  13. Protein Transmission, Seeding and Degradation: Key Steps for α-Synuclein Prion-Like Propagation

    PubMed Central

    Ximerakis, Methodios; Vekrellis, Kostas

    2014-01-01

    Converging lines of evidence suggest that cell-to-cell transmission and the self-propagation of pathogenic amyloidogenic proteins play a central role in the initiation and the progression of several neurodegenerative disorders. This "prion-like" hypothesis has been recently reported for α-synuclein, a presynaptic protein implicated in the pathogenesis of Parkinson's disease (PD) and related disorders. This review summarizes recent findings on α-synuclein prion-like propagation, focusing on its transmission, seeding and degradation and discusses some key questions that remain to be explored. Understanding how α-synuclein exits cells and propagates from one brain region to another will lead to the development of new therapeutic strategies for the treatment of PD, aiming at slowing or stopping the disease progression. PMID:25548532

  14. Molecular dynamics studies on the NMR structures of rabbit prion protein wild type and mutants: surface electrostatic charge distributions.

    PubMed

    Zhang, Jiapu; Wang, Feng; Zhang, Yuanli

    2015-01-01

    Prion diseases are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species such as sheep and goats, cattle, deer and elk, and humans. But for rabbits, studies have shown that they have a low susceptibility to be infected by prion diseases. This paper does molecular dynamics (MD) studies of rabbit NMR structures (of the wild type and its two mutants of two surface residues), in order to understand the specific mechanism of rabbit prion proteins (RaPrP(C)). Protein surface electrostatic charge distributions are specially focused to analyze the MD trajectories. This paper can conclude that surface electrostatic charge distributions indeed contribute to the structural stability of wild-type RaPrP(C); this may be useful for the medicinal treatment of prion diseases.

  15. Functional Role of Tia1/Pub1 and Sup35 Prion Domains: Directing Protein Synthesis Machinery to the Tubulin Cytoskeleton

    PubMed Central

    Li, Xiang; Rayman, Joseph B.; Kandel, Eric R; Derkatch, Irina L.

    2014-01-01

    SUMMARY Tia1/Pub1 is a stress granule component carrying a Q/N-rich prion domain. We provide direct evidence that Tia1 forms a prion in yeast. Moreover, Tia1/Pub1 acts co-operatively with release factor Sup35/eRF3 to establish a two-protein self-propagating state. This two-protein prion driven by the Q/N-rich prion domains of Sup35 and Tia1/Pub1 can be visualized as distinctive line structures along tubulin cytoskeleton. Furthermore, we find that tubulin-associated complex containing Pub1 and Sup35 oligomers normally exists in yeast, and its assembly depends on prion domains of Pub1 and Sup35. This Sup35/Pub1 complex, which also contains TUB1 mRNA and components of translation machinery, is important for the integrity of the tubulin cytoskeleton: PUB1 disruption and Sup35 depletion from the complex lead to cytoskeletal defects. We propose that the complex is implicated in protein synthesis at the site of microtubule assembly. Thus our study identifies the role for prion domains in the assembly of multi-protein complexes. PMID:24981173

  16. Dissociation of Prion Protein Amyloid Seeding from Transmission of a Spongiform Encephalopathy

    PubMed Central

    Piccardo, Pedro; King, Declan; Telling, Glenn; Manson, Jean C.

    2013-01-01

    Misfolding and aggregation of proteins are common pathogenic mechanisms of a group of diseases called proteinopathies. The formation and spread of proteinaceous lesions within and between individuals were first described in prion diseases and proposed as the basis of their infectious nature. Recently, a similar “prion-like” mechanism of transmission has been proposed in other neurodegenerative diseases such as Alzheimer's disease. We investigated if misfolding and aggregation of corrupted prion protein (PrPTSE) are always associated with horizontal transmission of disease. Knock-in transgenic mice (101LL) expressing mutant PrP (PrP-101L) that are susceptible to disease but do not develop any spontaneous neurological phenotype were inoculated with (i) brain extracts containing PrPTSE from healthy 101LL mice with PrP plaques in the corpus callosum or (ii) brain extracts from mice overexpressing PrP-101L with neurological disease, severe spongiform encephalopathy, and formation of proteinase K-resistant PrPTSE. In all instances, 101LL mice developed PrP plaques in the area of inoculation and vicinity in the absence of clinical disease or spongiform degeneration of the brain. Importantly, 101LL mice did not transmit disease on serial passage, ruling out the presence of subclinical infection. Thus, in both experimental models the formation of PrPTSE is not infectious. These results have implications for the interpretation of tests based on the detection of protein aggregates and suggest that de novo formation of PrPTSE in the host does not always result in a transmissible prion disease. In addition, these results question the validity of assuming that all diseases due to protein misfolding can be transmitted between individuals. PMID:24027305

  17. Ultra-Sensitive Detection of Prion Protein in Blood Using Isothermal Amplification Technology

    DTIC Science & Technology

    2005-12-01

    to be 100attograms/mL of recombinant prion protein, and detection levels using scrapie infected hamster brain homogenates down to 10-100 infectious...digested scrapie infected hamster brain homogenates at 10 - 100 infectious units (down to 10,000 PrPSc molecules). Because capture antibodies that...biotinylation of the DNA template to increase efficiency of binding to the linker streptavidin molecule. Dilutions of PK- digested Scrapie infected

  18. Mice Deficient for Prion Protein Exhibit Normal Neuronal Excitability and Synaptic Transmission in the Hippocampus

    NASA Astrophysics Data System (ADS)

    Lledo, Pierre-Marie; Tremblay, Patrick; Dearmond, Stephen J.; Prusiner, Stanley B.; Nicoll, Roger A.

    1996-03-01

    We recorded in the CA1 region from hippocampal slices of prion protein (PrP) gene knockout mice to investigate whether the loss of the normal form of prion protein (PrPC) affects neuronal excitability as well as synaptic transmission in the central nervous system. No deficit in synaptic inhibition was found using field potential recordings because (i) responses induced by stimulation in stratum radiatum consisted of a single population spike in PrP gene knockout mice similar to that recorded from control mice and (ii) the plot of field excitatory postsynaptic potential slope versus the population spike amplitude showed no difference between the two groups of mice. Intracellular recordings also failed to detect any difference in cell excitability and the reversal potential for inhibitory postsynaptic potentials. Analysis of the kinetics of inhibitory postsynaptic current revealed no modification. Finally, we examined whether synaptic plasticity was altered and found no difference in long-term potentiation between control and PrP gene knockout mice. On the basis of our findings, we propose that the loss of the normal form of prion protein does not alter the physiology of the CA1 region of the hippocampus.

  19. Nonenzymatic glycation at the N terminus of pathogenic prion protein in transmissible spongiform encephalopathies.

    PubMed

    Choi, Yeong-Gon; Kim, Jae-Il; Jeon, Yong-Chul; Park, Seok-Joo; Choi, Eun-Kyoung; Rubenstein, Richard; Kascsak, Richard J; Carp, Richard I; Kim, Yong-Sun

    2004-07-16

    Transmissible spongiform encephalopathies (TSEs) are transmissible neurodegenerative diseases characterized by the accumulation of an abnormally folded prion protein, termed PrPSc, and the development of pathological features of astrogliosis, vacuolation, neuronal cell loss, and in some cases amyloid plaques. Although considerable structural characterization of prion protein has been reported, neither the method of conversion of cellular prion protein, PrPC, into the pathogenic isoform nor the post-translational modification processes involved is known. We report that in animal and human TSEs, one or more lysines at residues 23, 24, and 27 of PrPSc are covalently modified with advanced glycosylation end products (AGEs), which may be carboxymethyl-lysine (CML), one of the structural varieties of AGEs. The arginine residue at position 37 may also be modified with AGE, but not the arginine residue at position 25. This result suggests that nonenzymatic glycation is one of the post-translational modifications of PrP(Sc). Furthermore, immunostaining studies indicate that, at least in clinically affected hamsters, astrocytes are the first site of this glycation process.

  20. SIRPα polymorphisms, but not the prion protein, control phagocytosis of apoptotic cells

    PubMed Central

    Nuvolone, Mario; Kana, Veronika; Hutter, Gregor; Sakata, Daiji; Mortin-Toth, Steven M.; Russo, Giancarlo

    2013-01-01

    Prnp−/− mice lack the prion protein PrPC and are resistant to prion infections, but variable phenotypes have been reported in Prnp−/− mice and the physiological function of PrPC remains poorly understood. Here we examined a cell-autonomous phenotype, inhibition of macrophage phagocytosis of apoptotic cells, previously reported in Prnp−/− mice. Using formal genetic, genomic, and immunological analyses, we found that the regulation of phagocytosis previously ascribed to PrPC is instead controlled by a linked locus encoding the signal regulatory protein α (Sirpa). These findings indicate that control of phagocytosis was previously misattributed to the prion protein and illustrate the requirement for stringent approaches to eliminate confounding effects of flanking genes in studies modeling human disease in gene-targeted mice. The plethora of seemingly unrelated functions attributed to PrPC suggests that additional phenotypes reported in Prnp−/− mice may actually relate to Sirpa or other genetic confounders. PMID:24145514

  1. Life cycle of cytosolic prions.

    PubMed

    Hofmann, Julia; Vorberg, Ina

    2013-01-01

    Prions are self-templating protein aggregates that were originally identified as the causative agent of prion diseases in mammals, but have since been discovered in other kingdoms. Mammalian prions represent a unique class of infectious agents that are composed of misfolded prion protein. Prion proteins usually exist as soluble proteins but can refold and assemble into highly ordered, self-propagating prion polymers. The prion concept is also applicable to a growing number of non-Mendelian elements of inheritance in lower eukaryotes. While prions identified in mammals are clearly pathogens, prions in lower eukaryotes can be either detrimental or beneficial to the host. Prion phenotypes in fungi are transmitted vertically from mother to daughter cells during cell division and horizontally during mating or abortive mating, but extracellular phases have not been reported. Recent findings now demonstrate that in a mammalian cell environment, protein aggregates derived from yeast prion domains exhibit a prion life cycle similar to mammalian prions propagated ex vivo. This life cycle includes a soluble state of the protein, an induction phase by exogenous prion fibrils, stable replication of prion entities, vertical transmission to progeny and natural horizontal transmission to neighboring cells. Our data reveal that mammalian cells contain all co-factors required for cytosolic prion propagation and dissemination. This has important implications for understanding prion-like properties of disease-related protein aggregates. In light of the growing number of identified functional amyloids, cell-to-cell propagation of cytosolic protein conformers might not only be relevant for the spreading of disease-associated proteins, but might also be of more general relevance under non-disease conditions.

  2. Life cycle of cytosolic prions

    PubMed Central

    Hofmann, Julia; Vorberg, Ina

    2013-01-01

    Prions are self-templating protein aggregates that were originally identified as the causative agent of prion diseases in mammals, but have since been discovered in other kingdoms. Mammalian prions represent a unique class of infectious agents that are composed of misfolded prion protein. Prion proteins usually exist as soluble proteins but can refold and assemble into highly ordered, self-propagating prion polymers. The prion concept is also applicable to a growing number of non-Mendelian elements of inheritance in lower eukaryotes. While prions identified in mammals are clearly pathogens, prions in lower eukaryotes can be either detrimental or beneficial to the host. Prion phenotypes in fungi are transmitted vertically from mother to daughter cells during cell division and horizontally during mating or abortive mating, but extracellular phases have not been reported. Recent findings now demonstrate that in a mammalian cell environment, protein aggregates derived from yeast prion domains exhibit a prion life cycle similar to mammalian prions propagated ex vivo. This life cycle includes a soluble state of the protein, an induction phase by exogenous prion fibrils, stable replication of prion entities, vertical transmission to progeny and natural horizontal transmission to neighboring cells. Our data reveal that mammalian cells contain all co-factors required for cytosolic prion propagation and dissemination. This has important implications for understanding prion-like properties of disease-related protein aggregates. In light of the growing number of identified functional amyloids, cell-to-cell propagation of cytosolic protein conformers might not only be relevant for the spreading of disease-associated proteins, but might also be of more general relevance under non-disease conditions. PMID:24021964

  3. The role of metals in protein conformational disorders - The case of prion protein and Aβ -peptide

    NASA Astrophysics Data System (ADS)

    De Santis, E.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2016-02-01

    Protein conformational disorders are members of a vast class of pathologies in which endogenous proteins or peptides undergo a misfolding process by switching from the physiological soluble configuration to a pathological fibrillar insoluble state. An important, but not yet fully elucidated, role in the process appears to be played by transition metal ions, mainly copper and zinc. X-ray absorption spectroscopy is one of the most suitable techniques for the structural characterization of biological molecules in complex with metal. Owing to its chemical selectivity and sensitivity to the local atomic geometry around the absorber, it can be successfully used to study the environment of metal ions in complex with proteins and peptides in physiological conditions. In this paper we present X-ray absorption spectroscopy studies of the metal ions coordination modes in systems where metals are complexed with specific amyloidogenic proteins and peptides. In particular, we show results concerning the Amyloid β peptide, that is involved in Alzheimer's disease, and the Prion protein, that is responsible for the Transmissible Spongiform Encephalopathy. Our findings suggest that the copper and zinc ions may play a crucial role in the aggregation and fibril formation process of these two biomolecules. Elucidating this kind of interaction could be a key preliminary step before any viable therapy can be conceived or designed.

  4. The Distribution of Prion Protein Allotypes Differs Between Sporadic and Iatrogenic Creutzfeldt-Jakob Disease Patients.

    PubMed

    Moore, Roger A; Head, Mark W; Ironside, James W; Ritchie, Diane L; Zanusso, Gianluigi; Choi, Young Pyo; Pyo Choi, Young; Priola, Suzette A

    2016-02-01

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent of the human prion diseases, which are fatal and transmissible neurodegenerative diseases caused by the infectious prion protein (PrP(Sc)). The origin of sCJD is unknown, although the initiating event is thought to be the stochastic misfolding of endogenous prion protein (PrP(C)) into infectious PrP(Sc). By contrast, human growth hormone-associated cases of iatrogenic CJD (iCJD) in the United Kingdom (UK) are associated with exposure to an exogenous source of PrP(Sc). In both forms of CJD, heterozygosity at residue 129 for methionine (M) or valine (V) in the prion protein gene may affect disease phenotype, onset and progression. However, the relative contribution of each PrP(C) allotype to PrP(Sc) in heterozygous cases of CJD is unknown. Using mass spectrometry, we determined that the relative abundance of PrP(Sc) with M or V at residue 129 in brain specimens from MV cases of sCJD was highly variable. This result is consistent with PrP(C) containing an M or V at residue 129 having a similar propensity to misfold into PrP(Sc) thus causing sCJD. By contrast, PrP(Sc) with V at residue 129 predominated in the majority of the UK human growth hormone associated iCJD cases, consistent with exposure to infectious PrP(Sc) containing V at residue 129. In both types of CJD, the PrP(Sc) allotype ratio had no correlation with CJD type, age at clinical onset, or disease duration. Therefore, factors other than PrP(Sc) allotype abundance must influence the clinical progression and phenotype of heterozygous cases of CJD.

  5. The Distribution of Prion Protein Allotypes Differs Between Sporadic and Iatrogenic Creutzfeldt-Jakob Disease Patients

    PubMed Central

    Moore, Roger A.; Head, Mark W.; Ironside, James W.; Ritchie, Diane L.; Zanusso, Gianluigi; Pyo Choi, Young; Priola, Suzette A.

    2016-01-01

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent of the human prion diseases, which are fatal and transmissible neurodegenerative diseases caused by the infectious prion protein (PrPSc). The origin of sCJD is unknown, although the initiating event is thought to be the stochastic misfolding of endogenous prion protein (PrPC) into infectious PrPSc. By contrast, human growth hormone-associated cases of iatrogenic CJD (iCJD) in the United Kingdom (UK) are associated with exposure to an exogenous source of PrPSc. In both forms of CJD, heterozygosity at residue 129 for methionine (M) or valine (V) in the prion protein gene may affect disease phenotype, onset and progression. However, the relative contribution of each PrPC allotype to PrPSc in heterozygous cases of CJD is unknown. Using mass spectrometry, we determined that the relative abundance of PrPSc with M or V at residue 129 in brain specimens from MV cases of sCJD was highly variable. This result is consistent with PrPC containing an M or V at residue 129 having a similar propensity to misfold into PrPSc thus causing sCJD. By contrast, PrPSc with V at residue 129 predominated in the majority of the UK human growth hormone associated iCJD cases, consistent with exposure to infectious PrPSc containing V at residue 129. In both types of CJD, the PrPSc allotype ratio had no correlation with CJD type, age at clinical onset, or disease duration. Therefore, factors other than PrPSc allotype abundance must influence the clinical progression and phenotype of heterozygous cases of CJD. PMID:26840342

  6. The prion protein M129V polymorphism: longevity and cognitive impairment among Polish centenarians.

    PubMed

    Golanska, Ewa; Sieruta, Monika; Corder, Elizabeth; Gresner, Sylwia M; Pfeffer, Anna; Chodakowska-Zebrowska, Malgorzata; Sobow, Tomasz M; Klich, Izabela; Mossakowska, Malgorzata; Szybinska, Aleksandra; Barcikowska, Maria; Liberski, Pawel P

    2013-01-01

    The PRNP gene encodes the cellular isoform of prion protein (PrP (c) ). The M129V polymorphism influences the risk of prion diseases and may modulate the rate of neurodegeneration with age. We present the first study of the polymorphism among Polish centenarians. In the control group (n = 165, ages 18 to 56 years) the observed M129V genotype frequencies agreed with those expected according to the Hardy-Weinberg equilibrium (MM, MV, VV): 43%, 44%, 13% (HWE p > 0.05). Among centenarians (n = 150, ages 100 to 107) both homozygotes were more common than expected and HWE was rejected: 46%, 37%, 17% (expected 42%, 46%, 13%; HWE p = 0.025). This finding is consistent with a higher mortality rate among heterozygotes. However, the observed allele and genotype frequencies did not differ significantly between the oldest-old and the young controls. The genotypic frequencies were not related to severe cognitive impairment among the centenarians.

  7. Consequences of manganese replacement of copper for prion protein function and proteinase resistance

    PubMed Central

    Brown, David R.; Hafiz, Farida; Glasssmith, Leslie L.; Wong, Boon-Seng; Jones, Ian M.; Clive, Christine; Haswell, Stephen J.

    2000-01-01

    The prion protein (PrP) binds copper and has antioxidant activity enhancing the survival of neurones in culture. The ability of the PrP to bind other cations was tested and it was found that only manganese could substitute for copper. Although initially manganese-loaded PrP exhibited similar structure and activity to copper-loaded PrP, after aging, manganese-loaded PrP became proteinase resistant and lost function. It was also found that manganese could be incorporated into PrP expressed by astrocytes and that this PrP was partially proteinase resistant. These results show that it is possible to generate proteinase-resistant PrP from cells and suggest a possible mechanism for the formation of the scrapie isoform of the PrP as generated in sporadic prion disease. PMID:10716918

  8. Prion and prion-like diseases in animals.

    PubMed

    Aguilar-Calvo, Patricia; García, Consolación; Espinosa, Juan Carlos; Andreoletti, Olivier; Torres, Juan María

    2015-09-02

    Transmissible spongiform encephalopaties (TSEs) are fatal neurodegenerative diseases characterized by the aggregation and accumulation of the misfolded prion protein in the brain. Other proteins such as β-amyloid, tau or Serum Amyloid-A (SAA) seem to share with prions some aspects of their pathogenic mechanism; causing a variety of so called prion-like diseases in humans and/or animals such as Alzheimer's, Parkinson's, Huntington's, Type II diabetes mellitus or amyloidosis. The question remains whether these misfolding proteins have the ability to self-propagate and transmit in a similar manner to prions. In this review, we describe the prion and prion-like diseases affecting animals as well as the recent findings suggesting the prion-like transmissibility of certain non-prion proteins.

  9. Caffeine prevents human prion protein-mediated neurotoxicity through the induction of autophagy.

    PubMed

    Moon, Ji-Hong; Lee, Ju-Hee; Park, Jin-Young; Kim, Sung-Wook; Lee, You-Jin; Kang, Seog-Jin; Seol, Jae-Won; Ahn, Dong-Choon; Park, Sang-Youel

    2014-08-01

    The human prion protein (PrP) fragment PrP(106‑126) possesses the majority of the pathogenic properties associated with the infectious scrapie isoform of PrP, known as PrPSc. The accumulation of PrPSc in the brain of humans and animals affects the central nervous system. Recent epidemiological studies have suggested that caffeine, one of the major components of coffee, exerts protective effects against the development of neurodegeneration. However, the protective effects of caffeine against prion disease have not been reported to date. In this study, we therefore investigated the effects of caffeine on PrP-mediated neurotoxicity. The protein expression of the autophagosomal marker, LC3-II, was increased by caffeine in a dose-dependent manner, and the autophagy induced by caffeine protected the neuronal cells against PrP(106‑126)‑induced cell death. On the contrary, the downregulation of LC3-II using the autophagy inhibitors, 3-methyladenine (3-ΜΑ) and wortmannin, prevented the caffeine-mediated neuroprotective effects. To the best of our knowledge, the present study provides the first evidence that treatment with caffeine protects human neuronal cells against prion‑mediated neurotoxicity and these neuroprotective effects are mediated by caffeine-induced autophagy signals. Our data suggest that treatment with caffeine may be a novel therapeutic strategy for prion peptide‑induced apoptosis.

  10. Prion protein is ubiquitinated after developing protease resistance in the brains of scrapie-infected mice.

    PubMed

    Kang, Shin-Chung; Brown, David R; Whiteman, Matthew; Li, Ruliang; Pan, Tao; Perry, George; Wisniewski, Thomas; Sy, Man-Sun; Wong, Boon-Seng

    2004-05-01

    Although the key event in the pathology of prion diseases is thought to be the conversion of cellular prion protein (PrP(C)) to the protease-resistant scrapie species termed PrP(Sc), the factors that contribute to neurodegeneration in scrapie-infected animals are poorly understood. One probable determinant could be when the accumulation of PrP(Sc) in infected brain overwhelms the ubiquitin-proteasome system and triggers the degenerative cascade. In the present study, it was found that in mouse brains infected with the ME7 scrapie strain, the level of ubiquitin protein conjugates increased significantly at approximately 144 days post-infection (pi) when clinical signs first become apparent. This elevation correlated with the detection of protease-resistant PrP(Sc) and a decline in two endopeptidase activities associated with proteasome function. However, ubiquitination of PrP was only detected at the terminal stage, 3 weeks after the development of clinical symptoms (approximately 165 days pi). These results suggest that ubiquitination of PrP is a late event phenomenon and this conjugation occurs after the formation of protease-resistant PrP(Sc). Whether this post-translational modification and the impairment of proteasome function are pivotal events in the pathogenesis of prion diseases remains to be determined.

  11. Heterogeneity of normal prion protein in two- dimensional immunoblot: presence of various glycosylated and truncated forms.

    PubMed

    Pan, Tao; Li, Ruliang; Wong, Boon-Seng; Liu, Tong; Gambetti, Pierluigi; Sy, Man-Sun

    2002-06-01

    The common use of one-dimensional (1-D) immunoblot with a single monoclonal antibody (Mab) engenders the notion that the normal or cellular prion protein (PrP(C) ) comprises few and simple forms. In this study we used two-dimensional (2-D) immunoblot with a panel Mabs to various regions of the prion protein to demonstrate the complexity of the PrP(C) present in human brain. We distinguished over 50 immunoblot spots, each representing a distinct PrP(C) species based on combinations of different molecular weights and isoelectric points (pIs). The PrP(C) heterogeneity is due to the presence of a full-length and two major truncated forms as well as to the diversity of the glycans linked to most of these forms. The two major truncated forms result from distinct cleavage sites located at the N-terminus. In addition, enzymatic removal of sialic acid and lectin binding studies indicate that the glycans linked to the full-length and truncated PrP(C) forms differ in their structure and ratios of the glycoforms. The truncation of PrP(C) and the heterogeneity of the linked glycans may play a role in regulating PrP(C) function. Furthermore, the presence of relatively large quantities of different PrP(C) species may provide additional mechanisms by which the diversity of prion strains could be generated.

  12. Mapping the prion protein distribution in marsupials: insights from comparing opossum with mouse CNS.

    PubMed

    Poggiolini, Ilaria; Legname, Giuseppe

    2012-01-01

    The cellular form of the prion protein (PrP(C)) is a sialoglycoprotein widely expressed in the central nervous system (CNS) of mammalian species during neurodevelopment and in adulthood. The location of the protein in the CNS may play a role in the susceptibility of a species to fatal prion diseases, which are also known as the transmissible spongiform encephalopathies (TSEs). To date, little is known about PrP(C) distribution in marsupial mammals, for which no naturally occurring prion diseases have been reported. To extend our understanding of varying PrP(C) expression profiles in different mammals we carried out a detailed expression analysis of PrP(C) distribution along the neurodevelopment of the metatherian South American short-tailed opossum (Monodelphis domestica). We detected lower levels of PrP(C) in white matter fiber bundles of opossum CNS compared to mouse CNS. This result is consistent with a possible role for PrP(C) in the distinct neurodevelopment and neurocircuitry found in marsupials compared to other mammalian species.

  13. The prion protein family member Shadoo induces spontaneous ionic currents in cultured cells

    PubMed Central

    Nyeste, Antal; Stincardini, Claudia; Bencsura, Petra; Cerovic, Milica; Biasini, Emiliano; Welker, Ervin

    2016-01-01

    Some mutant forms of the cellular prion protein (PrPC) carrying artificial deletions or point mutations associated with familial human prion diseases are capable of inducing spontaneous ionic currents across the cell membrane, conferring hypersensitivity to certain antibiotics to a wide range of cultured cells and primary cerebellar granular neurons (CGNs). These effects are abrogated when the wild type (WT) form is co-expressed, suggesting that they might be related to a physiological activity of PrPC. Interestingly, the prion protein family member Shadoo (Sho) makes cells hypersensitive to the same antibiotics as mutant PrP-s, an effect that is diminished by the co-expression of WT-PrP. Here, we report that Sho engages in another mutant PrP-like activity: it spontaneously induces large ionic currents in cultured SH-SY5Y cells, as detected by whole-cell patch clamping. These currents are also decreased by the co-expression of WT-PrP. Furthermore, deletion of the N-terminal (RXXX)8 motif of Sho, mutation of the eight arginine residues of this motif to glutamines, or replacement of the hydrophobic domain by that of PrP, also diminish Sho-induced ionic currents. Our results suggest that the channel activity that is also characteristic to some pathogenic PrP mutants may be linked to a physiological function of Sho. PMID:27819308

  14. Phosphorylation of native porcine olfactory binding proteins.

    PubMed

    Nagnan-Le Meillour, Patricia; Le Danvic, Chrystelle; Brimau, Fanny; Chemineau, Philippe; Michalski, Jean-Claude

    2009-07-01

    The identification of various isoforms of olfactory binding proteins is of major importance to elucidate their involvement in detection of pheromones and other odors. Here, we report the characterization of the phosphorylation of OBP (odorant binding protein) and Von Ebner's gland protein (VEG) from the pig, Sus scrofa. After labeling with specific antibodies raised against the three types of phosphorylation (Ser, Thr, Tyr), the phosphate-modified residues were mapped by using the beta-elimination followed by Michael addition of dithiothreitol (BEMAD) method. Eleven phosphorylation sites were localized in the pOBP sequence and nine sites in the VEG sequence. OBPs are secreted by Bowman's gland cells in the extracellular mucus lining the nasal cavity. After tracking the secretion pathway in the rough endoplasmic reticulum of these cells, we hypothesize that these proteins may be phosphorylated by ectokinases that remain to be characterized. The existence of such a regulatory mechanism theoretically increases the number of OBP variants, and it suggests a more specific role for OBPs in odorant coding than the one of odorant solubilizer and transporter.

  15. IDENTIFICATION AND REMOVAL OF PROTEINS THAT CO-PURIFY WITH INFECTIOUS PRION PROTEIN IMPROVES THE ANALYSIS OF ITS SECONDARY STRUCTURE

    PubMed Central

    Moore, Roger A.; Timmes, Andrew; Wilmarth, Phillip A.; Safronetz, David; Priola, Suzette A.

    2013-01-01

    Prion diseases are neurodegenerative disorders associated with the accumulation of an abnormal isoform of the mammalian prion protein (PrP). Fourier transform infrared spectroscopy (FTIR) has previously been used to show that the conformation of aggregated, infectious PrP (PrPSc) varies between prion strains and these unique conformations may determine strain-specific disease phenotypes. However, the relative amounts of α-helix, β-sheet and other secondary structures have not always been consistent between studies suggesting that other proteins might be confounding the analysis of PrPSc secondary structure. We have used FTIR and tandem mass spectrometry to analyze enriched PrPSc from mouse and hamster prion strains both before and after the removal of protein contaminants that commonly co-purify with PrPSc. Our data show that non-PrP proteins do contribute to absorbances that have been associated with α-helical, loop, turn, and β-sheet structures attributed to PrPSc. The major contaminant, the α-helical protein ferritin, absorbs strongly at 1652cm−1 in the FTIR spectrum associated with PrPSc. However, even the removal of greater than 99% of the ferritin from PrPSc did not completely abolish absorbance at 1652cm−1. Our results show that contaminating proteins alter the FTIR spectrum attributed to PrPSc and suggest that the α-helical, loop/turn, and β-sheet secondary structure that remains following their removal are derived from PrPSc itself. PMID:21805638

  16. A simple quantitative model of macromolecular crowding effects on protein folding: Application to the murine prion protein(121-231)

    NASA Astrophysics Data System (ADS)

    Bergasa-Caceres, Fernando; Rabitz, Herschel A.

    2013-06-01

    A model of protein folding kinetics is applied to study the effects of macromolecular crowding on protein folding rate and stability. Macromolecular crowding is found to promote a decrease of the entropic cost of folding of proteins that produces an increase of both the stability and the folding rate. The acceleration of the folding rate due to macromolecular crowding is shown to be a topology-dependent effect. The model is applied to the folding dynamics of the murine prion protein (121-231). The differential effect of macromolecular crowding as a function of protein topology suffices to make non-native configurations relatively more accessible.

  17. X-ray structural and molecular dynamical studies of the globular domains of cow, deer, elk and Syrian hamster prion proteins.

    PubMed

    Baral, Pravas Kumar; Swayampakula, Mridula; Aguzzi, Adriano; James, Michael N G

    2015-10-01

    Misfolded prion proteins are the cause of neurodegenerative diseases that affect many mammalian species, including humans. Transmission of the prion diseases poses a considerable public-health risk as a specific prion disease such as bovine spongiform encephalopathy can be transferred to humans and other mammalian species upon contaminant exposure. The underlying mechanism of prion propagation and the species barriers that control cross species transmission has been investigated quite extensively. So far a number of prion strains have been characterized and those have been intimately linked to species-specific infectivity and other pathophysiological manifestations. These strains are encoded by a protein-only agent, and have a high degree of sequence identity across mammalian species. The molecular events that lead to strain differentiation remain elusive. In order to contribute to the understanding of strain differentiation, we have determined the crystal structures of the globular, folded domains of four prion proteins (cow, deer, elk and Syrian hamster) bound to the POM1 antibody fragment Fab. Although the overall structural folds of the mammalian prion proteins remains extremely similar, there are several local structural variations observed in the misfolding-initiator motifs. In additional molecular dynamics simulation studies on these several prion proteins reveal differences in the local fluctuations and imply that these differences have possible roles in the unfolding of the globular domains. These local variations in the structured domains perpetuate diverse patterns of prion misfolding and possibly facilitate the strain selection and adaptation.

  18. Mouse-hamster chimeric prion protein (PrP) devoid of N-terminal residues 23-88 restores susceptibility to 22L prions, but not to RML prions in PrP-knockout mice.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Yano, Masashi; Yamaguchi, Yoshitaka; Imamura, Morikazu; Muramatsu, Naomi; Das, Nandita Rani; Chida, Junji; Hara, Hideyuki; Sakaguchi, Suehiro

    2014-01-01

    Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp 0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp 0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp 0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice, compared with RML- and 22L-inoculated Prnp 0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.

  19. Mouse-Hamster Chimeric Prion Protein (PrP) Devoid of N-Terminal Residues 23-88 Restores Susceptibility to 22L Prions, but Not to RML Prions in PrP-Knockout Mice

    PubMed Central

    Yano, Masashi; Yamaguchi, Yoshitaka; Imamura, Morikazu; Muramatsu, Naomi; Das, Nandita Rani; Chida, Junji; Hara, Hideyuki; Sakaguchi, Suehiro

    2014-01-01

    Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice, compared with RML- and 22L-inoculated Prnp0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc. PMID:25330286

  20. Generating recombinant C-terminal prion protein fragments of exact native sequence.

    PubMed

    Johanssen, V A; Barnham, K J; Masters, C L; Hill, A F; Collins, S J

    2012-02-01

    Transmissibility and distinctive neuropathology are hallmark features of prion diseases differentiating them from other neurodegenerative disorders, with pathogenesis and transmission appearing closely linked to misfolded conformers (PrP(Sc)) of the ubiquitously expressed cellular form of the prion protein (PrP(C)). Given the apparent pathogenic primacy of misfolded PrP, the utilisation of peptides based on the prion protein has formed an integral approach for providing insights into misfolding pathways and pathogenic mechanisms. In parallel with studies employing prion peptides, similar approaches in other neurodegenerative disorders such as Alzheimer Disease, have demonstrated that differential processing of parent proteins and quite minor variations in the primary sequence of cognate peptides generated from the same constitutive processing (such as Aβ1-40 versus Aβ1-42 produced from γ-secretase activity) can be associated with very different pathogenic consequences. PrP(C) also undergoes constitutive α- or β-cleavage yielding C1 (residues 112-231 human sequence) or C2 (residues 90-231), respectively, with the full cell biological significance of such processing unresolved; however, it is noteworthy that in prion diseases, such as Creutzfeldt-Jakob disease (CJD) and murine models, the moderately extended C2 fragment predominates in the brain suggesting that the two cleavage events and the consequent C-terminal fragments may differ in their pathogenic significance. Accordingly, studies characterising biologically relevant peptides like C1 and C2, would be most valid if undertaken using peptides completely free of any inherent non-native sequence that arises as a by-product of commonly employed recombinant production techniques. To achieve this aim and thereby facilitate more representative biophysical and neurotoxicity studies, we adapted the combination of high fidelity Taq TA cloning with a SUMO-Hexa-His tag-type approach, incorporating the SUMO protease

  1. In vitro strain adaptation of CWD prions by serial protein misfolding cyclic amplification.

    PubMed

    Meyerett, Crystal; Michel, Brady; Pulford, Bruce; Spraker, Terry R; Nichols, Traci A; Johnson, Theodore; Kurt, Timothy; Hoover, Edward A; Telling, Glenn C; Zabel, Mark D

    2008-12-20

    We used serial protein misfolding cyclic amplification (sPMCA) to amplify the D10 strain of CWD prions in a linear relationship over two logs of D10 dilutions. The resultant PMCA-amplified D10 induced terminal TSE disease in CWD-susceptible Tg(cerPrP)1536 mice with a survival time approximately 80 days shorter than the original D10 inoculum, similar to that produced by in vivo sub-passage of D10 in Tg(cerPrP)1536 mice. Both in vitro-amplified and mouse-passaged D10 produced brain lesion profiles, glycoform ratios and conformational stabilities significantly different than those produced by the original D10 inoculum in Tg(cerPrP)1536 mice. These findings demonstrate that sPMCA can amplify and adapt prion strains in vitro as effectively and much more quickly than in vivo strain adaptation by mouse passage. Thus sPMCA may represent a powerful tool to assess prion strain adaptation and species barriers in vitro.

  2. Physiopathologic implications of the structural and functional domains of the prion protein.

    PubMed

    Sorgato, M Catia; Bertoli, Alessandro

    2006-01-01

    Prion diseases are invariably fatal neurodegenerative disorders affecting man and various animal species. A large body of evidence supports the notion that the causative agent of these diseases is the prion, which, devoid of nucleic acids, is composed largely, if not entirely, of a conformationally abnormal isoform (PrP(Sc) of the cellular prion protein (PrPc). PrPc is a highly conserved and ubiquitously expressed sialoglycoprotein, the normal function of which is, however, still ill defined. Several modules have been recognised in PrPc structure. Their extensive analysis by different experimental approaches, including transgenic animal models, has allowed to assigning to several modules a putative role in PrPc physiology. Concurrently, it has underscored the possibility that alteration of specific domains may determine the switching from a beneficial role of PrPc into one that becomes detrimental to neurons, and/or promote the conversion of PrPc into the pathogenic PrP(Sc) conformer.

  3. Screening of DNA aptamer against mouse prion protein by competitive selection.

    PubMed

    Ogasawara, Daisuke; Hasegawa, Hijiri; Kaneko, Kiyotoshi; Sode, Koji; Ikebukuro, Kazunori

    2007-01-01

    Prion disease is a neurodegenerative disorder, in which the normal prion protein (PrP) changes structurally into an abnormal form and accumulates in the brain. There is a great demand for the development of a viable approach to diagnosis and therapy. Not only has the ligand against PrP been used for diagnosis, but it has also become a promising tool for therapy, as an antibody. Aptamers are a novel type of ligand composed of nucleic acids. DNA aptamers in particular have many advantages over antibodies. Therefore, we tried to isolate the DNA aptamer for mouse PrP. We developed a competitive selection method and tried to screen the DNA aptamer with it. In the fourth round of selection, several clones of the aptamer with an affinity to PrP were enriched, and clone 4-9 showed the highest affinity of all. The investigation by aptamer blotting and Western blotting showed that clone 4-9 was specifically able to recognize both alpha-PrP and beta-PrP. Moreover, it was indicated that clone 4-9 could recognize the flexible region of the N-terminal domain of PrP. These characteristics suggest that clone 4-9 might be a useful tool in prion-disease diagnosis and research.

  4. Difference in redox behaviors between copper-binding octarepeat and nonoctarepeat sites in prion protein.

    PubMed

    Yamamoto, Norifumi; Kuwata, Kazuo

    2009-11-01

    We studied the redox behavior of copper-binding sites in prion protein (PrP) to clarify copper's role in the pathological mechanism underlying prion diseases. We investigated the coordination structures, binding affinities, and redox potentials of copper-binding peptide fragments derived from the N-terminal domain of PrP by density functional theory calculations. We used four models for copper-binding moieties in PrP(60-96): two were derived from the PHGGGWGQ octapeptide repeat region of PrP(60-91), and the others were tripeptide Gly-Thr-His fragments derived from the copper-binding nonoctarepeat site around His96. We found that such PrP-derived copper-binding complexes exhibit conformationally dependent redox behavior; for example, the copper-binding complex derived from the octarepeat region tends to possess high reduction potential for the Cu(II)/Cu(I) couple, exceeding 0 V versus the standard hydrogen electrode, whereas the copper-binding nonoctarepeat model around His96 tends to possess high oxidation potential for the Cu(II)/Cu(III) couple and stabilize the higher-valent Cu(III) state. It is possible that such distinct redox activities of a copper-binding PrP are involved in the mechanism underlying prion diseases.

  5. Copper-induced structural conversion templates prion protein oligomerization and neurotoxicity

    PubMed Central

    Yen, Chi-Fu; Harischandra, Dilshan S.; Kanthasamy, Anumantha; Sivasankar, Sanjeevi

    2016-01-01

    Prion protein (PrP) misfolding and oligomerization are key pathogenic events in prion disease. Copper exposure has been linked to prion pathogenesis; however, its mechanistic basis is unknown. We resolve, with single-molecule precision, the molecular mechanism of Cu2+-induced misfolding of PrP under physiological conditions. We also demonstrate that misfolded PrPs serve as seeds for templated formation of aggregates, which mediate inflammation and degeneration of neuronal tissue. Using a single-molecule fluorescence assay, we demonstrate that Cu2+ induces PrP monomers to misfold before oligomer assembly; the disordered amino-terminal region mediates this structural change. Single-molecule force spectroscopy measurements show that the misfolded monomers have a 900-fold higher binding affinity compared to the native isoform, which promotes their oligomerization. Real-time quaking-induced conversion demonstrates that misfolded PrPs serve as seeds that template amyloid formation. Finally, organotypic slice cultures show that misfolded PrPs mediate inflammation and degeneration of neuronal tissue. Our study establishes a direct link, at the molecular level, between copper exposure and PrP neurotoxicity. PMID:27419232

  6. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment

    PubMed Central

    Zhou, Minghai; Ottenberg, Gregory; Sferrazza, Gian Franco; Hubbs, Christopher; Fallahi, Mohammad; Rumbaugh, Gavin; Brantley, Alicia F.

    2015-01-01

    The mechanisms of neuronal death in protein misfolding neurodegenerative diseases such as Alzheimer’s, Parkinson’s and prion diseases are poorly understood. We used a highly toxic misfolded prion protein (TPrP) model to understand neurotoxicity induced by prion protein misfolding. We show that abnormal autophagy activation and neuronal demise is due to severe, neuron-specific, nicotinamide adenine dinucleotide (NAD+) depletion. Toxic prion protein-exposed neuronal cells exhibit dramatic reductions of intracellular NAD+ followed by decreased ATP production, and are completely rescued by treatment with NAD+ or its precursor nicotinamide because of restoration of physiological NAD+ levels. Toxic prion protein-induced NAD+ depletion results from PARP1-independent excessive protein ADP-ribosylations. In vivo, toxic prion protein-induced degeneration of hippocampal neurons is prevented dose-dependently by intracerebral injection of NAD+. Intranasal NAD+ treatment of prion-infected sick mice significantly improves activity and delays motor impairment. Our study reveals NAD+ starvation as a novel mechanism of autophagy activation and neurodegeneration induced by a misfolded amyloidogenic protein. We propose the development of NAD+ replenishment strategies for neuroprotection in prion diseases and possibly other protein misfolding neurodegenerative diseases. PMID:25678560

  7. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment.

    PubMed

    Zhou, Minghai; Ottenberg, Gregory; Sferrazza, Gian Franco; Hubbs, Christopher; Fallahi, Mohammad; Rumbaugh, Gavin; Brantley, Alicia F; Lasmézas, Corinne I

    2015-04-01

    The mechanisms of neuronal death in protein misfolding neurodegenerative diseases such as Alzheimer's, Parkinson's and prion diseases are poorly understood. We used a highly toxic misfolded prion protein (TPrP) model to understand neurotoxicity induced by prion protein misfolding. We show that abnormal autophagy activation and neuronal demise is due to severe, neuron-specific, nicotinamide adenine dinucleotide (NAD(+)) depletion. Toxic prion protein-exposed neuronal cells exhibit dramatic reductions of intracellular NAD(+) followed by decreased ATP production, and are completely rescued by treatment with NAD(+) or its precursor nicotinamide because of restoration of physiological NAD(+) levels. Toxic prion protein-induced NAD(+) depletion results from PARP1-independent excessive protein ADP-ribosylations. In vivo, toxic prion protein-induced degeneration of hippocampal neurons is prevented dose-dependently by intracerebral injection of NAD(+). Intranasal NAD(+) treatment of prion-infected sick mice significantly improves activity and delays motor impairment. Our study reveals NAD(+) starvation as a novel mechanism of autophagy activation and neurodegeneration induced by a misfolded amyloidogenic protein. We propose the development of NAD(+) replenishment strategies for neuroprotection in prion diseases and possibly other protein misfolding neurodegenerative diseases.

  8. The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent

    PubMed Central

    Tixador, Philippe; Herzog, Laëtitia; Reine, Fabienne; Jaumain, Emilie; Chapuis, Jérôme; Le Dur, Annick; Laude, Hubert; Béringue, Vincent

    2010-01-01

    Prions are unconventional infectious agents thought to be primarily composed of PrPSc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrPSc conformation could encode this ‘strain’ diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrPSc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrPSc aggregates from PrPC. The distribution of PrPSc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrPSc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12–30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrPSc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics. PMID:20419156

  9. The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein.

    PubMed

    Sonati, Tiziana; Reimann, Regina R; Falsig, Jeppe; Baral, Pravas Kumar; O'Connor, Tracy; Hornemann, Simone; Yaganoglu, Sine; Li, Bei; Herrmann, Uli S; Wieland, Barbara; Swayampakula, Mridula; Rahman, Muhammad Hafizur; Das, Dipankar; Kav, Nat; Riek, Roland; Liberski, Pawel P; James, Michael N G; Aguzzi, Adriano

    2013-09-05

    Prion infections cause lethal neurodegeneration. This process requires the cellular prion protein (PrP(C); ref. 1), which contains a globular domain hinged to a long amino-proximal flexible tail. Here we describe rapid neurotoxicity in mice and cerebellar organotypic cultured slices exposed to ligands targeting the α1 and α3 helices of the PrP(C) globular domain. Ligands included seven distinct monoclonal antibodies, monovalent Fab1 fragments and recombinant single-chain variable fragment miniantibodies. Similar to prion infections, the toxicity of globular domain ligands required neuronal PrP(C), was exacerbated by PrP(C) overexpression, was associated with calpain activation and was antagonized by calpain inhibitors. Neurodegeneration was accompanied by a burst of reactive oxygen species, and was suppressed by antioxidants. Furthermore, genetic ablation of the superoxide-producing enzyme NOX2 (also known as CYBB) protected mice from globular domain ligand toxicity. We also found that neurotoxicity was prevented by deletions of the octapeptide repeats within the flexible tail. These deletions did not appreciably compromise globular domain antibody binding, suggesting that the flexible tail is required to transmit toxic signals that originate from the globular domain and trigger oxidative stress and calpain activation. Supporting this view, various octapeptide ligands were not only innocuous to both cerebellar organotypic cultured slices and mice, but also prevented the toxicity of globular domain ligands while not interfering with their binding. We conclude that PrP(C) consists of two functionally distinct modules, with the globular domain and the flexible tail exerting regulatory and executive functions, respectively. Octapeptide ligands also prolonged the life of mice expressing the toxic PrP(C) mutant, PrP(Δ94-134), indicating that the flexible tail mediates toxicity in two distinct PrP(C)-related conditions. Flexible tail-mediated toxicity may conceivably

  10. Amyloid-β Receptors: The Good, the Bad, and the Prion Protein*

    PubMed Central

    Jarosz-Griffiths, Heledd H.; Noble, Elizabeth; Rushworth, Jo V.; Hooper, Nigel M.

    2016-01-01

    Several different receptor proteins have been identified that bind monomeric, oligomeric, or fibrillar forms of amyloid-β (Aβ). “Good” receptors internalize Aβ or promote its transcytosis out of the brain, whereas “bad” receptors bind oligomeric forms of Aβ that are largely responsible for the synapticloss, memory impairments, and neurotoxicity that underlie Alzheimer disease. The prion protein both removes Aβ from the brain and transduces the toxic actions of Aβ. The clustering of distinct receptors in cell surface signaling platforms likely underlies the actions of distinct oligomeric species of Aβ. These Aβ receptor-signaling platforms provide opportunities for therapeutic intervention in Alzheimer disease. PMID:26719327

  11. Prion Protein and Shadoo Are Involved in Overlapping Embryonic Pathways and Trophoblastic Development

    PubMed Central

    Makhzami, Samira; Vilotte, Marthe; Jaffrezic, Florence; Halliez, Sophie; Bouet, Stéphan; Marthey, Sylvain; Khalifé, Manal; Kanellopoulos-Langevin, Colette; Béringue, Vincent; Le Provost, Fabienne; Laude, Hubert; Vilotte, Jean-Luc

    2012-01-01

    The potential requirement of either the Prion or Shadoo protein for early mouse embryogenesis was recently suggested. However, the current data did not allow to precise the developmental process that was affected in the absence of both proteins and that led to the observed early lethal phenotype. In the present study, using various Prnp transgenic mouse lines and lentiviral vectors expressing shRNAs that target the Shadoo-encoding mRNA, we further demonstrate the specific requirement of at least one of these two PrP-related proteins at early developmental stages. Histological analysis reveals developmental defect of the ectoplacental cone and important hemorrhage surrounding the Prnp-knockout-Sprn-knockdown E7.5 embryos. By restricting the RNA interference to the trophoblastic cell lineages, the observed lethal phenotype could be attributed to the sole role of these proteins in this trophectoderm-derived compartment. RNAseq analysis performed on early embryos of various Prnp and Sprn genotypes indicated that the simultaneous down-regulation of these two proteins affects cell-adhesion and inflammatory pathways as well as the expression of ectoplacental-specific genes. Overall, our data provide biological clues in favor of a crucial and complementary embryonic role of the prion protein family in Eutherians and emphasizes the need to further evaluate its implication in normal and pathological human placenta biology. PMID:22860039

  12. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules

    PubMed Central

    Linden, Rafael

    2017-01-01

    The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling

  13. Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments.

    PubMed

    Ben-Gedalya, Tziona; Lyakhovetsky, Roman; Yedidia, Yifat; Bejerano-Sagie, Michal; Kogan, Natalya M; Karpuj, Marcela Viviana; Kaganovich, Daniel; Cohen, Ehud

    2011-06-01

    Despite the activity of cellular quality-control mechanisms, subsets of mature and newly synthesized polypeptides fail to fold properly and form insoluble aggregates. In some cases, protein aggregation leads to the development of human neurodegenerative maladies, including Alzheimer's and prion diseases. Aggregates of misfolded prion protein (PrP), which appear in cells after exposure to the drug cyclosporin A (CsA), and disease-linked PrP mutants have been found to accumulate in juxtanuclear deposition sites termed 'aggresomes'. Recently, it was shown that cells can contain at least two types of deposition sites for misfolded proteins: a dynamic quality-control compartment, which was termed 'JUNQ', and a site for terminally aggregated proteins called 'IPOD'. Here, we show that CsA-induced PrP aggresomes are dynamic structures that form despite intact proteasome activity, recruit chaperones and dynamically exchange PrP molecules with the cytosol. These findings define the CsA-PrP aggresome as a JUNQ-like dynamic quality-control compartment that mediates the refolding or degradation of misfolded proteins. Together, our data suggest that the formation of PrP aggresomes protects cells from proteotoxic stress.

  14. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution.

    PubMed

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments.

  15. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution

    PubMed Central

    Gasperini, Lisa; Meneghetti, Elisa; Legname, Giuseppe; Benetti, Federico

    2016-01-01

    Essential elements as copper and iron modulate a wide range of physiological functions. Their metabolism is strictly regulated by cellular pathways, since dysregulation of metal homeostasis is responsible for many detrimental effects. Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and prion diseases are characterized by alterations of metal ions. These neurodegenerative maladies involve proteins that bind metals and mediate their metabolism through not well-defined mechanisms. Prion protein, for instance, interacts with divalent cations via multiple metal-binding sites and it modulates several metal-dependent physiological functions, such as S-nitrosylation of NMDA receptors. In this work we focused on the effect of prion protein absence on copper and iron metabolism during development and adulthood. In particular, we investigated copper and iron functional values in serum and several organs such as liver, spleen, total brain and isolated hippocampus. Our results show that iron content is diminished in prion protein-null mouse serum, while it accumulates in liver and spleen. Our data suggest that these alterations can be due to impairments in copper-dependent cerulopalsmin activity which is known to affect iron mobilization. In prion protein-null mouse total brain and hippocampus, metal ion content shows a fluctuating trend, suggesting the presence of homeostatic compensatory mechanisms. However, copper and iron functional values are likely altered also in these two organs, as indicated by the modulation of metal-binding protein expression levels. Altogether, these results reveal that the absence of the cellular prion protein impairs copper metabolism and copper-dependent oxidase activity, with ensuing alteration of iron mobilization from cellular storage compartments. PMID:27729845

  16. Interaction between a recombinant prion protein and organo-mineral complexes as evidenced by CPMAS 13C-NMR

    NASA Astrophysics Data System (ADS)

    Russo, F.; Scotti, R.; Gianfreda, L.; Conte, P.; Rao, M. A.

    2009-04-01

    Prion proteins (PrP) are the main responsible for Transmissible Spongiform Encephalopathies (TSE). The TSE etiological agent is a misfolded form of the normal cellular prion protein. The amyloidal aggregates accumulated in the brain of infected animals and mainly composed of PrPSc exhibit resistance to protease attack and many conventional inactivating procedures. The prion protein diseases cause an environmental issue because the environment and in particular the soil compartment can be contaminated and then become a potential reservoir and diffuser of TSEs infectivity as a consequence of (i) accidental dispersion from storage plants of meat and bone meal, (ii) incorporation of contaminated material in fertilizers, (iii) possible natural contamination of pasture soils by grazing herds, and (v) burial of carcasses. The environmental problem can be even more relevant because very low amounts of PrPSc are able to propagate the disease. Several studies evidenced that infectious prion protein remains active in soils for years. Contaminated soils result, thus, a possible critical route of TSE transmission in wild animals. Soil can also protect prion protein toward degradation processes due to the presence of humic substances and inorganic components such as clays. Mineral and organic colloids and the more common association between clay minerals and humic substances can contribute to the adsorption/entrapment of molecules and macromolecules. The polymerization of organic monomeric humic precursors occurring in soil in the presence of oxidative enzymes or manganese and iron oxides, is considered one of the most important processes contributing to the formation of humic substances. The process is very fast and produces a population of polymeric products of different molecular structures, sizes, shapes and complexity. Other molecules and possibly biomacromolecules such as proteins may be involved. The aim of the present work was to study by CPMAS 13C-NMR the interactions

  17. An antibody to the aggregated synthetic prion protein peptide (PrP106-126) selectively recognizes disease-associated prion protein (PrP) from human brain specimens.

    PubMed

    Jones, Michael; Wight, Darren; McLoughlin, Victoria; Norrby, Katherine; Ironside, James W; Connolly, John G; Farquhar, Christine F; MacGregor, Ian R; Head, Mark W

    2009-04-01

    Human prion diseases are characterized by the conversion of the normal host cellular prion protein (PrP(C)) into an abnormal misfolded form [disease-associated prion protein (PrP(Sc))]. Antibodies that are capable of distinguishing between PrP(C) and PrP(Sc) may prove to be useful, not only for the diagnosis of these diseases, but also for a better understanding of the molecular mechanisms involved in disease pathogenesis. In an attempt to produce such antibodies, we immunized mice with an aggregated peptide spanning amino acid residues 106 to 126 of human PrP (PrP106-126). We were able to isolate and single cell clone a hybridoma cell line (P1:1) which secreted an IgM isotype antibody [monoclonal antibody (mAb P1:1)] that recognized the aggregated, but not the monomeric form of the immunogen. When used in immunoprecipitation assays, the antibody did not recognize normal PrP(C) from non-prion disease brain specimens, but did selectively immunoprecipitate full-length PrP(Sc) from cases of variant and sporadic Creutzfeldt-Jakob disease and Gerstmann-Straussler-Scheinker disease. These results suggest that P1:1 recognizes an epitope formed during the structural rearrangement or aggregation of the PrP that is common to the major PrP(Sc) types found in the most common forms of human prion disease.

  18. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, Christopher J.; Bennett, James P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, Cynthia M.; Bessen, R.A.; Rocke, Tonie E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  19. Degradation of the disease-associated prion protein by a serine protease from lichens.

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  20. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J.C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.; Bartz, Jason C.

    2011-01-01

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  1. Degradation of the disease-associated prion protein by a serine protease from lichens.

    PubMed

    Johnson, Christopher J; Bennett, James P; Biro, Steven M; Duque-Velasquez, Juan Camilo; Rodriguez, Cynthia M; Bessen, Richard A; Rocke, Tonie E

    2011-05-11

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  2. Degradation of the Disease-Associated Prion Protein by a Serine Protease from Lichens

    PubMed Central

    Johnson, Christopher J.; Bennett, James P.; Biro, Steven M.; Duque-Velasquez, Juan Camilo; Rodriguez, Cynthia M.; Bessen, Richard A.; Rocke, Tonie E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted. PMID:21589935

  3. Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrPc for the cytoskeleton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cellular prion protein (PrPC) is a highly conserved protein, which is anchored to the outer surface of the plasma membrane. Even though its physiological function has already been investigated in different cell or mouse models where PrPC expression is either up-regulated or depleted, its exact p...

  4. Ophthalmic Surgery in Prion Diseases

    PubMed Central

    Hamaguchi, Tsuyoshi; Noguchi-Shinohara, Moeko; Nakamura, Yosikazu; Sato, Takeshi; Kitamoto, Tetsuyuki; Mizusawa, Hidehiro

    2007-01-01

    Eleven (1.8%) of 597 patients underwent ophthalmic surgery within 1 month before the onset of prion disease or after the onset. All ophthalmologists reused surgical instruments that had been incompletely sterilized to eliminate infectious prion protein. Ophthalmologists should be aware of prion diseases as a possible cause of visual symptoms and use disposable instruments whenever possible. PMID:17370537

  5. Prion-like spread of protein aggregates in neurodegeneration.

    PubMed

    Polymenidou, Magdalini; Cleveland, Don W

    2012-05-07

    Protein misfolding is common to most neurodegenerative diseases, including Alzheimer's and Parkinson's diseases. Recent work using animal models with intracellular α-synuclein and tau inclusions adds decisively to a growing body of evidence that misfolded protein aggregates can induce a self-perpetuating process that leads to amplification and spreading of pathological protein assemblies. When coupled with the progressive nature of neurodegeneration, recognition of such cell-to-cell aggregate spread suggests a unifying mechanism underlying the pathogenesis of these disorders.

  6. Cooperative binding of dominant-negative prion protein to kringle domains.

    PubMed

    Ryou, Chongsuk; Prusiner, Stanley B; Legname, Giuseppe

    2003-05-30

    Conversion of the cellular prion protein (PrP(C)) to the pathogenic isoform (PrP(Sc)) is a major biochemical alteration in the progression of prion disease. This conversion process is thought to require interaction between PrP(C) and an as yet unidentified auxiliary factor, provisionally designated protein X. In searching for protein X, we screened a phage display cDNA expression library constructed from prion-infected neuroblastoma (ScN2a) cells and identified a kringle protein domain using full-length recombinant mouse PrP (recMoPrP(23-231), hereafter recMoPrP) expressing a dominant-negative mutation at codon 218 (recMoPrP(Q218K)). In vitro binding analysis using ELISA verified specific interaction of recMoPrP to kringle domains (K(1+2+3)) with higher binding by recMoPrP(Q218K) than by full-length recMoPrP without the mutation. This interaction was confirmed by competitive binding analysis, in which the addition of either a specific anti-kringle antibody or L-lysine abolished the interaction. Biochemical studies of the interactions between K(1+2+3) and various concentrations of both recMoPrP molecules demonstrated binding in a dose-dependent manner. A Hill plot analysis of the data indicates positive cooperative binding of both recMoPrP(Q218K) and recMoPrP to K(1+2+3) with stronger binding by recMoPrP(Q218K). Using full-length and an N-terminally truncated MoPrP(89-231), we demonstrate that N-terminal sequences enable PrP to bind strongly to K(1+2+3). Further characterization with truncated MoPrP(89-231) refolded in different conformations revealed that both alpha-helical and beta-sheet conformations bind to K(1+2+3). Our data demonstrate specific, high-affinity binding of a dominant-negative PrP as well as binding of other PrPs to K(1+2+3). The relevance of such interactions during prion pathogenesis remains to be established.

  7. NMR structure of the human prion protein with the pathological Q212P mutation reveals unique structural features.

    PubMed

    Ilc, Gregor; Giachin, Gabriele; Jaremko, Mariusz; Jaremko, Łukasz; Benetti, Federico; Plavec, Janez; Zhukov, Igor; Legname, Giuseppe

    2010-07-22

    Prion diseases are fatal neurodegenerative disorders caused by an aberrant accumulation of the misfolded cellular prion protein (PrP(C)) conformer, denoted as infectious scrapie isoform or PrP(Sc). In inherited human prion diseases, mutations in the open reading frame of the PrP gene (PRNP) are hypothesized to favor spontaneous generation of PrP(Sc) in specific brain regions leading to neuronal cell degeneration and death. Here, we describe the NMR solution structure of the truncated recombinant human PrP from residue 90 to 231 carrying the Q212P mutation, which is believed to cause Gerstmann-Sträussler-Scheinker (GSS) syndrome, a familial prion disease. The secondary structure of the Q212P mutant consists of a flexible disordered tail (residues 90-124) and a globular domain (residues 125-231). The substitution of a glutamine by a proline at the position 212 introduces novel structural differences in comparison to the known wild-type PrP structures. The most remarkable differences involve the C-terminal end of the protein and the beta(2)-alpha(2) loop region. This structure might provide new insights into the early events of conformational transition of PrP(C) into PrP(Sc). Indeed, the spontaneous formation of prions in familial cases might be due to the disruptions of the hydrophobic core consisting of beta(2)-alpha(2) loop and alpha(3) helix.

  8. Simple method of monoclonal antibody production against mammalian cellular prion protein.

    PubMed

    Liu, Yong-sheng; Ding, Yao-zhong; Zhang, Jie; Chen, Hao-tai; Zhu, Xiao-ling; Cai, Xue-peng; Liu, Xiang-tao; Xie, Qing-ge

    2010-02-01

    Monoclonal antibodies (MAbs) against prion protein (PrP) are powerful tools for diagnosis and research in transmissible spongiform encephalopathies. Ten MAbs to recombinant/native cellular PrP (PrPc) in mammals were prepared with a simple method and identified in detail. Normal BALB/c mice were immunized with the recombinant bovine mature PrP (rbomPrP) and PrP27-30 (rboPrP27-30) expressed in Escherichia coli. The immunized splenocytes were fused with SP2/0 mouse myeloma cells, and positive hybridomas were selected by indirect enzyme-linked immunosorbent assay (ELISA). The characterizations of these MAbs, such as Ig, Ig subclass, titer, affinity index, specificity, epitopes recognized, and binding to recombinant/native PrPc of cattle, sheep, or human beings, were evaluated by Western blotting and indirect or sandwich ELISA. Ten MAbs could be divided into five groups depending on the results of indirect ELISA additivity test and their reaction to E. coli-expressed truncated-PrPs. Isotyping of the MAbs revealed that they belong to IgG1, IgG2a, and IgG2b subclass. Their indirect ELISA titers were between 10(3) and 10(6). Affinity constants were between 10(9) and 10(12) M(-1). Ten MAbs specifically reacted with the rbomPrP, without binding to prion-like protein Doppel and the lysates of E. coli. These MAbs could also respond to the recombinant mature PrP (rmPrP) of sheep and human beings. Also of interest was the ability of the MAbs to bind with dimer of rmPrP and PrP extracted from the brain tissue of cattle or sheep. We conclude that anti-PrP MAbs successfully prepared with a simple method could potentially be useful in mammalian prion research.

  9. Conformational transitions in peptides containing two putative alpha-helices of the prion protein.

    PubMed

    Zhang, H; Kaneko, K; Nguyen, J T; Livshits, T L; Baldwin, M A; Cohen, F E; James, T L; Prusiner, S B

    1995-07-21

    Prions are composed largely, if not entirely, of the scrapie isoform of the prion protein (PrPSc). Conversion of the cellular isoform (PrPC) to PrPSc is accompanied by a diminution in the alpha-helical content and an increase in the beta-sheet structure. To investigate the structural basis of this transition, peptide fragments corresponding to Syrian hamster PrP residues 90 to 145 and 109 to 141, which contain the most conserved residues of the prion protein and the first two putative alpha-helical regions in a PrPC model, were studied using infrared spectroscopy and circular dichroism. The peptides could be induced to form alpha-helical structures in aqueous solutions in the presence of organic solvents, such as trifluoroethanol and hexafluoroisopropanol, or detergents, such as sodium dodecyl sulfate and dodecyl phosphocholine. NaCl at physiological concentration or acetonitrile induced the peptides to acquire substantial beta-sheet. The intermolecular nature of the beta-sheet was evident in the formation of rod-shaped polymers as detected by electron microscopy. Resistance to hydrolysis by proteinase K and epitope mapping argue that the beta-sheet structures were formed by the interaction of residues lying between 109 and 141. A similar range of residues was shown by nuclear magnetic resonance spectroscopy to be capable of forming alpha-helices. The alpha-helical structures seem to require a hydrophobic support from either intermolecular interactions or the hydrophobic environment provided by micelles, in agreement with the predicted hydrophobic nature of the packing surface among the four putative helices of PrPC and the outer surfaces of the first two helices. Our results suggest that perturbation of the packing environment of the highly conserved residues is a possible mechanism for triggering the conversion of PrPC to PrPSc where alpha-helices appear to be converted into beta-sheets.

  10. The prion protein constitutively controls neuronal store-operated Ca(2+) entry through Fyn kinase.

    PubMed

    De Mario, Agnese; Castellani, Angela; Peggion, Caterina; Massimino, Maria Lina; Lim, Dmitry; Hill, Andrew F; Sorgato, M Catia; Bertoli, Alessandro

    2015-01-01

    The prion protein (PrP(C)) is a cell surface glycoprotein mainly expressed in neurons, whose misfolded isoforms generate the prion responsible for incurable neurodegenerative disorders. Whereas PrP(C) involvement in prion propagation is well established, PrP(C) physiological function is still enigmatic despite suggestions that it could act in cell signal transduction by modulating phosphorylation cascades and Ca(2+) homeostasis. Because PrP(C) binds neurotoxic protein aggregates with high-affinity, it has also been proposed that PrP(C) acts as receptor for amyloid-β (Aβ) oligomers associated with Alzheimer's disease (AD), and that PrP(C)-Aβ binding mediates AD-related synaptic dysfunctions following activation of the tyrosine kinase Fyn. Here, use of gene-encoded Ca(2+) probes targeting different cell domains in primary cerebellar granule neurons (CGN) expressing, or not, PrP(C), allowed us to investigate whether PrP(C) regulates store-operated Ca(2+) entry (SOCE) and the implication of Fyn in this control. Our findings show that PrP(C) attenuates SOCE, and Ca(2+) accumulation in the cytosol and mitochondria, by constitutively restraining Fyn activation and tyrosine phosphorylation of STIM1, a key molecular component of SOCE. This data establishes the existence of a PrP(C)-Fyn-SOCE triad in neurons. We also demonstrate that treating cerebellar granule and cortical neurons with soluble Aβ(1-42) oligomers abrogates the control of PrP(C) over Fyn and SOCE, suggesting a PrP(C)-dependent mechanizm for Aβ-induced neuronal Ca(2+) dyshomeostasis.

  11. The Volumetric Diversity of Misfolded Prion Protein Oligomers Revealed by Pressure Dissociation*

    PubMed Central

    Torrent, Joan; Lange, Reinhard; Rezaei, Human

    2015-01-01

    Protein oligomerization has been associated with a wide range of diseases. High pressure approaches offer a powerful tool for deciphering the underlying molecular mechanisms by revealing volume changes associated with the misfolding and assembly reactions. We applied high pressure to induce conformational changes in three distinct β-sheet-rich oligomers of the prion protein PrP, a protein characterized by a variety of infectious quaternary structures that can propagate stably and faithfully and cause diseases with specific phenotypic traits. We show that pressure induces dissociation of the oligomers and leads to a lower volume monomeric PrP state that refolds into the native conformation after pressure release. By measuring the different pressure and temperature sensitivity of the tested PrP oligomers, we demonstrate significantly different void volumes in their quaternary structure. In addition, by focusing on the kinetic and energetic behavior of the pressure-induced dissociation of one specific PrP oligomer, we reveal a large negative activation volume and an increase in both apparent activation enthalpy and entropy. This suggests a transition state ensemble that is less structured and significantly more hydrated than the oligomeric state. Finally, we found that site-specific fluorescent labeling allows monitoring of the transient population of a kinetic intermediate in the dissociation reaction. Our results indicate that defects in atomic packing may deserve consideration as a new factor that influences differences between PrP assemblies and that could be relevant also for explaining the origin of prion strains. PMID:26126829

  12. Single-particle tracking of quantum dot-conjugated prion proteins inside yeast cells

    SciTech Connect

    Tsuji, Toshikazu; Kawai-Noma, Shigeko; Pack, Chan-Gi; Terajima, Hideki; Yajima, Junichiro; Nishizaka, Takayuki; Kinjo, Masataka; Taguchi, Hideki

    2011-02-25

    Research highlights: {yields} We develop a method to track a quantum dot-conjugated protein in yeast cells. {yields} We incorporate the conjugated quantum dot proteins into yeast spheroplasts. {yields} We track the motions by conventional or 3D tracking microscopy. -- Abstract: Yeast is a model eukaryote with a variety of biological resources. Here we developed a method to track a quantum dot (QD)-conjugated protein in the budding yeast Saccharomyces cerevisiae. We chemically conjugated QDs with the yeast prion Sup35, incorporated them into yeast spheroplasts, and tracked the motions by conventional two-dimensional or three-dimensional tracking microscopy. The method paves the way toward the individual tracking of proteins of interest inside living yeast cells.

  13. The chemistry of prions: small molecules, protein conformers and mass spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Introduction. Prions propagate by converting a normal cellular isoform (PrPC) into the prion isoform (PrPSc) in a template-driven process. The lysines in PrPC are highly conserved and strongly influence prion propagation, based on studies using natural polymorphisms of PrPC and transg...

  14. Prions and neurodegenerative diseases.

    PubMed

    Hope, J

    2000-10-01

    The long-term, progressive decay of the central nervous system typifies prion diseases, a group of rare, transmissible maladies affecting humans, sheep, cattle and some other types of mammal. Little is known about the early molecular events in its pathogenesis but the diverse roles of PrP, the prion protein, in its destructive action have recently been re-emphasised.

  15. Prion diseases: New considerations.

    PubMed

    Annus, Ádám; Csáti, Anett; Vécsei, László

    2016-11-01

    The transmissible spongiform encephalopathies, which include Creutzfeldt-Jakob disease, are fatal neurodegenerative disorders caused by the pathological accumulation of abnormal prion protein. The diagnosis of Creutzfeldt-Jakob disease is complex. The electroencephalogram, magnetic resonance imaging, lumbar puncture and genetic testing findings can help in the differential diagnosis of rapidly progressive dementia. There has recently been considerable debate as to whether proteins involved in the development of neurodegenerative diseases should be regarded as prions or only share prion-like mechanisms. Two recent reports described the detection of abnormal prion protein in the nasal mucosa and urine of patients with Creutzfeldt-Jakob disease. These findings raise major health concerns regarding the transmissibility of human prion diseases. We set out to address this neurological hot topic and to draw conclusions on the basis of what is known in the literature thus far.

  16. Temporal resolution of misfolded prion protein transport, accumulation, glial activation, and neuronal death in the retinas of mice inoculated with scrapie

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there is a lack of pathologic landmarks to describe the progression of prion disease in vivo. The goal of this work was to determine the temporal relationship between the transport of misfolded prion protein from the brain to the retina, the accumulation of PrPSc in the retina, the respon...

  17. Cavitation during the protein misfolding cyclic amplification (PMCA) method – The trigger for de novo prion generation?

    SciTech Connect

    Haigh, Cathryn L.; Drew, Simon C.

    2015-06-05

    The protein misfolding cyclic amplification (PMCA) technique has become a widely-adopted method for amplifying minute amounts of the infectious conformer of the prion protein (PrP). PMCA involves repeated cycles of 20 kHz sonication and incubation, during which the infectious conformer seeds the conversion of normally folded protein by a templating interaction. Recently, it has proved possible to create an infectious PrP conformer without the need for an infectious seed, by including RNA and the phospholipid POPG as essential cofactors during PMCA. The mechanism underpinning this de novo prion formation remains unknown. In this study, we first establish by spin trapping methods that cavitation bubbles formed during PMCA provide a radical-rich environment. Using a substrate preparation comparable to that employed in studies of de novo prion formation, we demonstrate by immuno-spin trapping that PrP- and RNA-centered radicals are generated during sonication, in addition to PrP-RNA cross-links. We further show that serial PMCA produces protease-resistant PrP that is oxidatively modified. We suggest a unique confluence of structural (membrane-mimetic hydrophobic/hydrophilic bubble interface) and chemical (ROS) effects underlie the phenomenon of de novo prion formation by PMCA, and that these effects have meaningful biological counterparts of possible relevance to spontaneous prion formation in vivo. - Highlights: • Sonication during PMCA generates free radicals at the surface of cavitation bubbles. • PrP-centered and RNA-centered radicals are formed in addition to PrP-RNA adducts. • De novo prions may result from ROS and structural constraints during cavitation.

  18. The sequential development of abnormal prion protein accumulation in mice with Creutzfeldt-Jakob disease.

    PubMed Central

    Muramoto, T.; Kitamoto, T.; Tateishi, J.; Goto, I.

    1992-01-01

    The distribution and sequential development of prion protein (PrP) accumulation in the central nervous system (CNS) and non-neuronal organs of mice infected with Creutzfeldt-Jakob disease (CJD) were investigated immunohistochemically using a new pretreatment method that greatly enhanced the immunoreactivity of PrP. Prion protein accumulation in the CNS was first detected at 30 days after inoculation and then developed near the inoculation site or periventricular area, and later spread to the whole cerebrum and then to the pons. Its staining took some characteristic forms. Among non-neuronal organs, PrP accumulated in the follicular dendritic cells (FDCs) in spleen, lymph node, Peyer's patch, and thymus. FDCs staining appeared in spleen, lymph node, and Peyer's patch at 21 or 30 days after inoculation, and in thymus at 90 days. Germinal centers developed in the thymus of some CJD-infected mice. No PrP staining was detected in any examined organs of age-matched control mice. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1376559

  19. β-sheet-like formation during the mechanical unfolding of prion protein

    NASA Astrophysics Data System (ADS)

    Tao, Weiwei; Yoon, Gwonchan; Cao, Penghui; Eom, Kilho; Park, Harold S.

    2015-09-01

    Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrPC, whose misfolded form PrPSc can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220.

  20. Expression of the prion-like protein Shadoo in the developing mouse embryo.

    PubMed

    Young, Rachel; Bouet, Stéphan; Polyte, Jacqueline; Le Guillou, Sandrine; Passet, Bruno; Vilotte, Marthe; Castille, Johan; Beringue, Vincent; Le Provost, Fabienne; Laude, Hubert; Vilotte, Jean-Luc

    2011-12-09

    The prion-like protein Shadoo has been suggested to compensate for the lack of PrP in Prnp-knockout mice, explaining their lack of extreme phenotype. In adult mice, both PrP and Shadoo have shown overlapping expression patterns and shared functions. Their expression in the mouse embryo has also been suggested to be complementary, as invalidation of both genes results in embryonic lethality. The developmental expression profile of PrP has been described from post-implantation stages up until birth. However the spatial expression pattern of Shadoo in the developing mouse embryo is not known. We previously described the expression profile of the prion-like protein Shadoo in adult mice using Sprn reporter mice (Sprn-GFP and Sprn-LacZ). Here we used these mice to describe the developmental expression of Shadoo between 10.5 and 14.5 dpc. The observed pattern in specific embryonic cell lineages and in extra-embryonic tissues is consistent with the previously reported phenotype resulting from its knockdown.

  1. Involvement of the cellular prion protein in the migration of brain microvascular endothelial cells.

    PubMed

    Watanabe, Takuya; Yasutaka, Yuki; Nishioku, Tsuyoshi; Kusakabe, Sae; Futagami, Koujiro; Yamauchi, Atsushi; Kataoka, Yasufumi

    2011-06-01

    The conversion of cellular prion protein (PrP(C)) to its protease-resistant isoform is involved in the pathogenesis of prion disease. Although PrP(C) is a ubiquitous glycoprotein that is present in various cell types, the physiological role of PrP(C) remains obscure. The present study aimed to determine whether PrP(C) mediates migration of brain microvascular endothelial cells. Small interfering RNAs (siRNAs) targeting PrP(C) were transfected into a mouse brain microvascular endothelial cell line (bEND.3 cells). siPrP1, selected among three siRNAs, reduced mRNA and protein levels of PrP(C) in bEND.3 cells. Cellular migration was evaluated with a scratch-wound assay. siPrP1 suppressed migration without significantly affecting cellular proliferation. This study provides the first evidence that PrP(C) may be necessary for brain microvascular endothelial cells to migrate into damaged regions in the brain. This function of PrP(C) in the brain endothelium may be a mechanism by which the neurovascular unit recovers from an injury such as an ischemic insult.

  2. Proteolysis of abnormal prion protein with a thermostable protease from Thermococcus kodakarensis KOD1.

    PubMed

    Koga, Yuichi; Tanaka, Shun-ichi; Sakudo, Akikazu; Tobiume, Minoru; Aranishi, Mutsuo; Hirata, Azumi; Takano, Kazufumi; Ikuta, Kazuyoshi; Kanaya, Shigenori

    2014-03-01

    The abnormal prion protein (scrapie-associated prion protein, PrP(Sc)) is considered to be included in the group of infectious agents of transmissible spongiform encephalopathies. Since PrP(Sc) is highly resistant to normal sterilization procedures, the decontamination of PrP(Sc) is a significant public health issue. In the present study, a hyperthermostable protease, Tk-subtilisin, was used to degrade PrP(Sc). Although PrP(Sc) is known to be resistant toward proteolytic enzymes, Tk-subtilisin was able to degrade PrP(Sc) under extreme conditions. The level of PrP(Sc) in brain homogenates was found to decrease significantly in vitro following Tk-subtilisin treatment at 100 °C, whereas some protease-resistant fractions remain after proteinase K treatment. Rather small amounts of Tk-subtilisin (0.3 U) were required to degrade PrP(Sc) at 100 °C and pH 8.0. In addition, Tk-subtilisin was observed to degrade PrP(Sc) in the presence of sodium dodecyl sulfate or other industrial surfactants. Although several proteases degrading PrP(Sc) have been reported, practical decontamination procedures using enzymes are not available. This report aims to provide basic information for the practical use of a proteolytic enzyme for PrP(Sc) degradation.

  3. Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9

    PubMed Central

    Kaczmarczyk, Lech; Mende, Ylva; Zevnik, Branko; Jackson, Walker S.

    2016-01-01

    The mammalian prion protein (PrP, encoded by Prnp) is most infamous for its central role in prion diseases, invariably fatal neurodegenerative diseases affecting humans, food animals, and animals in the wild. However, PrP is also hypothesized to be an important receptor for toxic protein conformers in Alzheimer's disease, and is associated with other clinically relevant processes such as cancer and stroke. Thus, key insights into important clinical areas, as well as into understanding PrP functions in normal physiology, can be obtained from studying transgenic mouse models and cell culture systems. However, the Prnp locus is difficult to manipulate by homologous recombination, making modifications of the endogenous locus rarely attempted. Fortunately in recent years genome engineering technologies, like TALENs or CRISPR/Cas9 (CC9), have brought exceptional new possibilities for manipulating Prnp. Herein, we present our observations made during systematic experiments with the CC9 system targeting the endogenous mouse Prnp locus, to either modify sequences or to boost PrP expression using CC9-based synergistic activation mediators (SAMs). It is our hope that this information will aid and encourage researchers to implement gene-targeting techniques into their research program. PMID:27128441

  4. β-sheet-like formation during the mechanical unfolding of prion protein

    SciTech Connect

    Tao, Weiwei; Cao, Penghui; Park, Harold S.; Yoon, Gwonchan; Eom, Kilho

    2015-09-28

    Single molecule experiments and simulations have been widely used to characterize the unfolding and folding pathways of different proteins. However, with few exceptions, these tools have not been applied to study prion protein, PrP{sup C}, whose misfolded form PrP{sup Sc} can induce a group of fatal neurodegenerative diseases. Here, we apply novel atomistic modeling based on potential energy surface exploration to study the constant force unfolding of human PrP at time scales inaccessible with standard molecular dynamics. We demonstrate for forces around 100 pN, prion forms a stable, three-stranded β-sheet-like intermediate configuration containing residues 155-214 with a lifetime exceeding hundreds of nanoseconds. A mutant without the disulfide bridge shows lower stability during the unfolding process but still forms the three-stranded structure. The simulations thus not only show the atomistic details of the mechanically induced structural conversion from the native α-helical structure to the β-rich-like form but also lend support to the structural theory that there is a core of the recombinant PrP amyloid, a misfolded form reported to induce transmissible disease, mapping to C-terminal residues ≈160-220.

  5. The cellular prion protein traps Alzheimer's Aβ in an oligomeric form and disassembles amyloid fibers

    PubMed Central

    Younan, Nadine D.; Sarell, Claire J.; Davies, Paul; Brown, David R.; Viles, John H.

    2013-01-01

    There is now strong evidence to show that the presence of the cellular prion protein (PrPC) mediates amyloid-β (Aβ) neurotoxicity in Alzheimer's disease (AD). Here, we probe the molecular details of the interaction between PrPC and Aβ and discover that substoichiometric amounts of PrPC, as little as 1/20, relative to Aβ will strongly inhibit amyloid fibril formation. This effect is specific to the unstructured N-terminal domain of PrPC. Electron microscopy indicates PrPC is able to trap Aβ in an oligomeric form. Unlike fibers, this oligomeric Aβ contains antiparallel β sheet and binds to a oligomer specific conformational antibody. Our NMR studies show that a specific region of PrPC, notably residues 95–113, binds to Aβ oligomers, but only once Aβ misfolds. The ability of PrPC to trap and concentrate Aβ in an oligomeric form and disassemble mature fibers suggests a mechanism by which PrPC might confer Aβ toxicity in AD, as oligomers are thought to be the toxic form of Aβ. Identification of a specific recognition site on PrPC that traps Aβ in an oligomeric form is potentially a therapeutic target for the treatment of Alzheimer's disease.—Younan, N. D., Sarell, C. J., Davies, P., Brown, D. R., Viles, J. H. The cellular prion protein traps Alzheimer's Aβ in an oligomeric form and disassembles amyloid fibers. PMID:23335053

  6. Conformational detection of prion protein with biarsenical labeling and FlAsH fluorescence

    SciTech Connect

    Coleman, Bradley M.; Nisbet, Rebecca M.; Han, Sen; Cappai, Roberto; Hatters, Danny M.; Hill, Andrew F.

    2009-03-13

    Prion diseases are associated with the misfolding of the host-encoded cellular prion protein (PrP{sup C}) into a disease associated form (PrP{sup Sc}). Recombinant PrP can be refolded into either an {alpha}-helical rich conformation ({alpha}-PrP) resembling PrP{sup C} or a {beta}-sheet rich, protease resistant form similar to PrP{sup Sc}. Here, we generated tetracysteine tagged recombinant PrP, folded this into {alpha}- or {beta}-PrP and determined the levels of FlAsH fluorescence. Insertion of the tetracysteine tag at three different sites within the 91-111 epitope readily distinguished {beta}-PrP from {alpha}-PrP upon FlAsH labeling. Labelling of tetracysteine tagged PrP in the {alpha}-helical form showed minimal fluorescence, whereas labeling of tagged PrP in the {beta}-sheet form showed high fluorescence indicating that this region is exposed upon conversion. This highlights a region of PrP that can be implicated in the development of diagnostics and is a novel, protease free mechanism for distinguishing PrP{sup Sc} from PrP{sup C}. This technique may also be applied to any protein that undergoes conformational change and/or misfolding such as those involved in other neurodegenerative disorders including Alzheimer's, Huntington's and Parkinson's diseases.

  7. Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion

    PubMed Central

    Elmallah, Mohammed IY; Borgmeyer, Uwe; Betzel, Christian; Redecke, Lars

    2013-01-01

    Prion diseases comprise a group of fatal neurodegenerative disorders characterized by the autocatalytic conversion of the cellular prion protein PrPC into the infectious misfolded isoform PrPSc. Increasing evidence supports a specific role of oxidative stress in the onset of pathogenesis. Although the associated molecular mechanisms remain to be elucidated in detail, several studies currently suggest that methionine oxidation already detected in misfolded PrPSc destabilizes the native PrP fold as an early event in the conversion pathway. To obtain more insights about the specific impact of surface-exposed methionine residues on the oxidative-induced conversion of human PrP we designed, produced, and comparatively investigated two new pseudosulfoxidation mutants of human PrP 121–231 that comprises the well-folded C-terminal domain. Applying circular dichroism spectroscopy and dynamic light scattering techniques we showed that pseudosulfoxidation of all surface exposed Met residues formed a monomeric molten globule-like species with striking similarities to misfolding intermediates recently reported by other groups. However, individual pseudosulfoxidation at the polymorphic M129 site did not significantly contribute to the structural destabilization. Further metal-induced oxidation of the partly unfolded pseudosulfoxidation mutant resulted in the formation of an oligomeric state that shares a comparable size and stability with PrP oligomers detected after the application of different other triggers for structural conversion, indicating a generic misfolding pathway of PrP. The obtained results highlight the specific importance of methionine oxidation at surface exposed residues for PrP misfolding, strongly supporting the hypothesis that increased oxidative stress could be one causative event for sporadic prion diseases and other neurodegenerative disorders. PMID:24121542

  8. Impact of methionine oxidation as an initial event on the pathway of human prion protein conversion.

    PubMed

    Elmallah, Mohammed I Y; Borgmeyer, Uwe; Betzel, Christian; Redecke, Lars

    2013-01-01

    Prion diseases comprise a group of fatal neurodegenerative disorders characterized by the autocatalytic conversion of the cellular prion protein PrP(C) into the infectious misfolded isoform PrP(Sc). Increasing evidence supports a specific role of oxidative stress in the onset of pathogenesis. Although the associated molecular mechanisms remain to be elucidated in detail, several studies currently suggest that methionine oxidation already detected in misfolded PrP(Sc) destabilizes the native PrP fold as an early event in the conversion pathway. To obtain more insights about the specific impact of surface-exposed methionine residues on the oxidative-induced conversion of human PrP we designed, produced, and comparatively investigated two new pseudosulfoxidation mutants of human PrP 121-231 that comprises the well-folded C-terminal domain. Applying circular dichroism spectroscopy and dynamic light scattering techniques we showed that pseudosulfoxidation of all surface exposed Met residues formed a monomeric molten globule-like species with striking similarities to misfolding intermediates recently reported by other groups. However, individual pseudosulfoxidation at the polymorphic M129 site did not significantly contribute to the structural destabilization. Further metal-induced oxidation of the partly unfolded pseudosulfoxidation mutant resulted in the formation of an oligomeric state that shares a comparable size and stability with PrP oligomers detected after the application of different other triggers for structural conversion, indicating a generic misfolding pathway of PrP. The obtained results highlight the specific importance of methionine oxidation at surface exposed residues for PrP misfolding, strongly supporting the hypothesis that increased oxidative stress could be one causative event for sporadic prion diseases and other neurodegenerative disorders.

  9. Prion protein helix1 promotes aggregation but is not converted into beta-sheet.

    PubMed

    Watzlawik, Jens; Skora, Lukasz; Frense, Dieter; Griesinger, Christian; Zweckstetter, Markus; Schulz-Schaeffer, Walter J; Kramer, Michael L

    2006-10-06

    Prion diseases are caused by the aggregation of the native alpha-helical prion protein PrP(C) into its pathological beta-sheet-rich isoform PrP(Sc). In current models of PrP(Sc), helix1 is assumed to be preferentially converted into beta-sheet during aggregation of PrP(C). This was supported by the NMR structure of PrP(C) since, in contrast to the isolated helix1, helix2 and helix3 are connected by a small loop and are additionally stabilized by an interhelical disulfide bond. However, helix1 is extremely hydrophilic and has a high helix propensity. This prompted us to investigate the role of helix1 in prion aggregation using humPrP(23-159) including helix1 (144-156) compared with the C-terminal-truncated isoform humPrP(23-144) corresponding to the pathological human stop mutations Q160Stop and Y145Stop, respectively. Most unexpectedly, humPrP(23-159) aggregated significantly faster compared with the truncated fragment humPrP(23-144), clearly demonstrating that helix1 is involved in the aggregation process. However, helix1 is not resistant to digestion with proteinase K in fibrillar humPrP(23-159), suggesting that helix1 is not converted to beta-sheet. This is confirmed by Fourier transformation infrared spectroscopy since there is almost no difference in beta-sheet content of humPrP(23-159) fibrils compared with humPrP(23-144). In conclusion, we provide strong direct evidence that in contrast to earlier assumptions helix1 is not converted into beta-sheet during aggregation of PrP(C) to PrP(Sc).

  10. Uptake and Degradation of Protease-Sensitive and -Resistant Forms of Abnormal Human Prion Protein Aggregates by Human Astrocytes

    PubMed Central

    Choi, Young Pyo; Head, Mark W.; Ironside, James W.; Priola, Suzette A.

    2015-01-01

    Sporadic Creutzfeldt-Jakob disease is the most common of the human prion diseases, a group of rare, transmissible, and fatal neurologic diseases associated with the accumulation of an abnormal form (PrPSc) of the host prion protein. In sporadic Creutzfeldt-Jakob disease, disease-associated PrPSc is present not only as an aggregated, protease-resistant form but also as an aggregated protease-sensitive form (sPrPSc). Although evidence suggests that sPrPSc may play a role in prion pathogenesis, little is known about how it interacts with cells during prion infection. Here, we show that protease-sensitive abnormal PrP aggregates derived from patients with sporadic Creutzfeldt-Jakob disease are taken up and degraded by immortalized human astrocytes similarly to abnormal PrP aggregates that are resistant to proteases. Our data suggest that relative proteinase K resistance does not significantly influence the astrocyte's ability to degrade PrPSc. Furthermore, the cell does not appear to distinguish between sPrPSc and protease-resistant PrPSc, suggesting that sPrPSc could contribute to prion infection. PMID:25280631

  11. Proline and lysine residues provide modulatory switches in amyloid formation: Insights from prion protein.

    PubMed

    Kraus, Allison

    2016-01-01

    Amyloidogenic proteins have an increased propensity to reorganize into the highly structured, β sheet rich structures that characterize amyloid. The probability of attaining these highly structured assemblies is influenced by multiple factors, including amino acid composition and environmental conditions. Evolutionary selection for amino acid sequences that prevent amyloid formation could further modulate amyloid-forming propensity. Indeed, we have recently identified specific proline and lysine residues, contained within a highly conserved central region of prion protein (PrP), that impede PrP amyloid formation in vitro. These prolines are mutated in certain forms of the human familial genetic disease, Gerstmann-Straüssler-Schneiker (GSS) syndrome. Here, I discuss the influence of these proline and lysine residues on PrP amyloid formation and how such anti-amyloidogenic primary amino acid sequences might be modulated to influence protein amyloidogenicity.

  12. PrionHome: a database of prions and other sequences relevant to prion phenomena.

    PubMed

    Harbi, Djamel; Parthiban, Marimuthu; Gendoo, Deena M A; Ehsani, Sepehr; Kumar, Manish; Schmitt-Ulms, Gerold; Sowdhamini, Ramanathan; Harrison, Paul M

    2012-01-01

    Prions are units of propagation of an altered state of a protein or proteins; prions can propagate from organism to organism, through cooption of other protein copies. Prions contain no necessary nucleic acids, and are important both as both pathogenic agents, and as a potential force in epigenetic phenomena. The original prions were derived from a misfolded form of the mammalian Prion Protein PrP. Infection by these prions causes neurodegenerative diseases. Other prions cause non-Mendelian inheritance in budding yeast, and sometimes act as diseases of yeast. We report the bioinformatic construction of the PrionHome, a database of >2000 prion-related sequences. The data was collated from various public and private resources and filtered for redundancy. The data was then processed according to a transparent classification system of prionogenic sequences (i.e., sequences that can make prions), prionoids (i.e., proteins that propagate like prions between individual cells), and other prion-related phenomena. There are eight PrionHome classifications for sequences. The first four classifications are derived from experimental observations: prionogenic sequences, prionoids, other prion-related phenomena, and prion interactors. The second four classifications are derived from sequence analysis: orthologs, paralogs, pseudogenes, and candidate-prionogenic sequences. Database entries list: supporting information for PrionHome classifications, prion-determinant areas (where relevant), and disordered and compositionally-biased regions. Also included are literature references for the PrionHome classifications, transcripts and genomic coordinates, and structural data (including comparative models made for the PrionHome from manually curated alignments). We provide database usage examples for both vertebrate and fungal prion contexts. Using the database data, we have performed a detailed analysis of the compositional biases in known budding-yeast prionogenic sequences, showing

  13. PrionHome: A Database of Prions and Other Sequences Relevant to Prion Phenomena

    PubMed Central

    Harbi, Djamel; Parthiban, Marimuthu; Gendoo, Deena M. A.; Ehsani, Sepehr; Kumar, Manish; Schmitt-Ulms, Gerold; Sowdhamini, Ramanathan; Harrison, Paul M.

    2012-01-01

    Prions are units of propagation of an altered state of a protein or proteins; prions can propagate from organism to organism, through cooption of other protein copies. Prions contain no necessary nucleic acids, and are important both as both pathogenic agents, and as a potential force in epigenetic phenomena. The original prions were derived from a misfolded form of the mammalian Prion Protein PrP. Infection by these prions causes neurodegenerative diseases. Other prions cause non-Mendelian inheritance in budding yeast, and sometimes act as diseases of yeast. We report the bioinformatic construction of the PrionHome, a database of >2000 prion-related sequences. The data was collated from various public and private resources and filtered for redundancy. The data was then processed according to a transparent classification system of prionogenic sequences (i.e., sequences that can make prions), prionoids (i.e., proteins that propagate like prions between individual cells), and other prion-related phenomena. There are eight PrionHome classifications for sequences. The first four classifications are derived from experimental observations: prionogenic sequences, prionoids, other prion-related phenomena, and prion interactors. The second four classifications are derived from sequence analysis: orthologs, paralogs, pseudogenes, and candidate-prionogenic sequences. Database entries list: supporting information for PrionHome classifications, prion-determinant areas (where relevant), and disordered and compositionally-biased regions. Also included are literature references for the PrionHome classifications, transcripts and genomic coordinates, and structural data (including comparative models made for the PrionHome from manually curated alignments). We provide database usage examples for both vertebrate and fungal prion contexts. Using the database data, we have performed a detailed analysis of the compositional biases in known budding-yeast prionogenic sequences, showing

  14. Iatrogenic and sporadic Creutzfeldt-Jakob disease in 2 sisters without mutation in the prion protein gene.

    PubMed

    Frontzek, Karl; Moos, Rita; Schaper, Elke; Jann, Lukas; Herfs, Gregor; Zimmermann, Dieter R; Aguzzi, Adriano; Budka, Herbert

    2015-01-01

    Human genetic prion diseases have invariably been linked to alterations of the prion protein (PrP) gene PRNP. Two sisters died from probable Creutzfeldt-Jakob disease (CJD) in Switzerland within 14 y. At autopsy, both patients had typical spongiform change in their brains accompanied by punctuate deposits of PrP. Biochemical analyses demonstrated proteinase K-resistant PrP. Sequencing of PRNP showed 2 wild-type alleles in both siblings. Retrospectively, clinical data revealed a history of dural transplantation in the initially deceased sister, compatible with a diagnosis of iatrogenic CJD. Clinical and familial histories provided no evidence for potential horizontal transmission. This observation of 2 siblings suffering from CJD without mutations in the PRNP gene suggests potential involvement of non-PRNP genes in prion disease etiology.

  15. Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study,...

  16. Computational Calculation Of The Ionization Energies Of The Human Prion Protein By The Coarse-grain Method

    NASA Astrophysics Data System (ADS)

    Lyu, Justin; Andrianarijaona, V. M.

    2016-05-01

    The causes of the misfolding of prion protein -i.e. the transformation of PrPC to PrPSc - have not been clearly elucidated. Many studies have focused on identifying possible chemical conditions, such as pH, temperature and chemical denaturation, that may trigger the pathological transformation of prion proteins (Weiwei Tao, Gwonchan Yoon, Penghui Cao, `` β-sheet-like formation during the mechanical unfolding of prion protein'', The Journal of Chemical Physics, 2015, 143, 125101). Here, we attempt to calculate the ionization energies of the prion protein, which will be able to shed light onto the possible causes of the misfolding. We plan on using the coarse-grain method which allows for a more feasible calculation time by means of approximation. We believe that by being able to approximate the ionization potential, particularly that of the regions known to form stable β-strands of the PrPSc form, the possible sources of denaturation, be it chemical or mechanical, may be narrowed down.

  17. Genetic algorithms as a tool for helix design - computational and experimental studies on prion protein helix 1

    NASA Astrophysics Data System (ADS)

    Ziegler, Jan; Schwarzinger, Stephan

    2006-01-01

    Evolutionary computing is a general optimization mechanism successfully implemented for a variety of numeric problems in a variety of fields, including structural biology. We here present an evolutionary approach to optimize helix stability in peptides and proteins employing the AGADIR energy function for helix stability as scoring function. With the ability to apply masks determining positions, which are to remain constant or fixed to a certain class of amino acids, our algorithm is capable of developing stable helical scaffolds containing a wide variety of structural and functional amino acid patterns. The algorithm showed good convergence behaviour in all tested cases and can be parameterized in a wide variety of ways. We have applied our algorithm for the optimization of the stability of prion protein helix 1, a structural element of the prion protein which is thought to play a crucial role in the conformational transition from the cellular to the pathogenic form of the prion protein, and which therefore poses an interesting target for pharmacological as well as genetic engineering approaches to counter the as of yet uncurable prion diseases. NMR spectroscopic investigations of selected stabilizing and destabilizing mutations found by our algorithm could demonstrate its ability to create stabilized variants of secondary structure elements.

  18. The Antemortem Detection and Conformational Switches of Prion Proteins

    DTIC Science & Technology

    2006-07-01

    distribution of di-, mono-, and unglycosylated PrPC molecules (Fig. 7B, lane 2). Subsequent elution of the column with N-acetyl glucosamine yielded...pellet was washed in 50 mM Tris, pH 8.0, 150 mM NaCl, and then solubilized in 6 M guanidinium hydrochloride , 50 mM Tris pH 8.0, 150 mM NaCl. The...and 150mM sodium chloride (TCl) containing 6M guanidinium hydrochloride . The supernatant was centrifuged for 30min at 18,000g. The protein was

  19. Identification of lipopolysaccharide-binding proteins in porcine milk

    PubMed Central

    Shahriar, Farshid; Gordon, John R.; Simko, Elemir

    2006-01-01

    Septicemia and endotoxemia initiated by bacterial lipopolysaccharide (LPS) are relatively common in suckling and weaned piglets. Maternal milk is a source of both nutrition and immune protection for piglets. Passive transfer of colostral antibodies is necessary for protection of neonatal piglets against diseases, but the concentration of immunoglobulins in milk rapidly declines during the 1st wk of lactation in all mammals. We hypothesized, therefore, that nonimmunoglobulin substances in milk contribute to the innate protection of neonates against septicemia during the suckling period. Using LPS-affinity chromatography for isolation of LPS-binding proteins and liquid chromatography–mass spectrometry for their identification, we identified in porcine milk the following proteins with LPS-binding capacity: lactoferrin, soluble CD14, serum amyloid A, α-S1 casein, β-casein, and κ-casein. For lactoferrin, α-S1 casein, and κ-casein, in vitro pepsin digestion did not inhibit LPS-binding activity, whereas combined digestion with pepsin and pancreatin abolished it. The biologic functions of these LPS-binding proteins and peptides were not determined. PMID:17042375

  20. Copper attachment to a non-octarepeat site in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2010-03-01

    Prion protein, PrP, plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The PrP is known to efficiently bind copper ions and this ability has been linked to its function. PrP contains up to six binding sites, four of which are located in the so-called octarepeat region and are now well known. The binding sites outside this region are still largely undetermined, despite evidence of their relevance to prion diseases. Using a hybrid DFT/DFT, which combines Kohn-Sham DFT with orbital-free DFT to achieve accurate and efficient description of solvent effects in ab initio calculations, we have investigated copper attachment to the sequence GGGTH, which represents the copper binding site located at His96. We have considered both NNNN and NNNO types of copper coordination, as suggested by experiments. Our calculations have determined the geometry of copper attachment site and its energetics. Comparison to the already known binding sites provides insight into the process of copper uptake in PrP.

  1. Proteinase K enhanced immunoreactivity of the prion protein-specific monoclonal antibody 2A11.

    PubMed

    Brun, Alejandro; Castilla, Joaquín; Ramírez, Miguel A; Prager, Kai; Parra, Beatriz; Salguero, Francisco J; Shiveral, Diane; Sánchez, Carmen; Sánchez-Vizcaíno, José M; Douglas, Alastair; Torres, Juan M

    2004-01-01

    Here, we report the development and further characterisation of a novel PrP-specific monoclonal antibody: 2A11. By Western blot analysis, 2A11 reacts with PrPC from a variety of species including cow, sheep, pig, hamster, rabbit, cat, dog, deer and mouse but fails to react with human, chicken and turtle PrP. Reactivity to PrPC in Western blot was found to be dependent on the redox state of the protein since binding of mAb 2A11 to its epitope was more effective in reducing conditions. 2A11 binding site was mapped within a region comprised by residues 171-179 (six octarepeats bovine PrP notation; 163-171 for the ovine PrP notation). Interestingly, in immunohistochemistry (IHC) analysis, immunoreactivity was greatly enhanced after proteinase K (PK) sample treatment, while little or no reaction was observed in non-PK-treated BSE samples and samples from healthy animals. Quantitative differences in reactivity to BSE prions after PK treatment were also observed, to a lesser extent, by Western blot analysis. Since definitive diagnosis of prion diseases rely on IHC assays of proteinase K-treated samples, the use of mAb 2A11 might contribute to reduce the occurrence of false positive detection due to incomplete proteinase K digestion.

  2. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis

    SciTech Connect

    Magzoub, Mazin; Sandgren, Staffan; Lundberg, Pontus; Oglecka, Kamila; Lilja, Johanna; Wittrup, Anders; Goeran Eriksson, L.E.; Langel, Ulo; Belting, Mattias . E-mail: mattias.belting@med.lu.se; Graeslund, Astrid . E-mail: astrid@dbb.su.se

    2006-09-22

    A peptide derived from the N-terminus of the unprocessed bovine prion protein (bPrPp), incorporating the hydrophobic signal sequence (residues 1-24) and a basic domain (KKRPKP, residues 25-30), internalizes into mammalian cells, even when coupled to a sizeable cargo, and therefore functions as a cell-penetrating peptide (CPP). Confocal microscopy and co-localization studies indicate that the internalization of bPrPp is mainly through macropinocytosis, a fluid-phase endocytosis process, initiated by binding to cell-surface proteoglycans. Electron microscopy studies show internalized bPrPp-DNA-gold complexes residing in endosomal vesicles. bPrPp induces expression of a complexed luciferase-encoding DNA plasmid, demonstrating the peptide's ability to transport the cargo across the endosomal membrane and into the cytosol and nucleus. The novel CPP activity of the unprocessed N-terminal domain of PrP could be important for the retrotranslocation of partly processed PrP and for PrP trafficking inside or between cells, with implications for the infectivity associated with prion diseases.

  3. A mutant prion protein sensitizes neurons to glutamate-induced excitotoxicity.

    PubMed

    Biasini, Emiliano; Unterberger, Ursula; Solomon, Isaac H; Massignan, Tania; Senatore, Assunta; Bian, Hejiao; Voigtlaender, Till; Bowman, Frederick P; Bonetto, Valentina; Chiesa, Roberto; Luebke, Jennifer; Toselli, Paul; Harris, David A

    2013-02-06

    Growing evidence suggests that a physiological activity of the cellular prion protein (PrP(C)) plays a crucial role in several neurodegenerative disorders, including prion and Alzheimer's diseases. However, how the functional activity of PrP(C) is subverted to deliver neurotoxic signals remains uncertain. Transgenic (Tg) mice expressing PrP with a deletion of residues 105-125 in the central region (referred to as ΔCR PrP) provide important insights into this problem. Tg(ΔCR) mice exhibit neonatal lethality and massive degeneration of cerebellar granule neurons, a phenotype that is dose dependently suppressed by the presence of wild-type PrP. When expressed in cultured cells, ΔCR PrP induces large, ionic currents that can be detected by patch-clamping techniques. Here, we tested the hypothesis that abnormal ion channel activity underlies the neuronal death seen in Tg(ΔCR) mice. We find that ΔCR PrP induces abnormal ionic currents in neurons in culture and in cerebellar slices and that this activity sensitizes the neurons to glutamate-induced, calcium-mediated death. In combination with ultrastructural and biochemical analyses, these results demonstrate a role for glutamate-induced excitotoxicity in PrP-mediated neurodegeneration. A similar mechanism may operate in other neurodegenerative disorders attributable to toxic, β-rich oligomers that bind to PrP(C).

  4. Comparative analysis of the prion protein (PrP) gene in cetacean species.

    PubMed

    Acutis, Pier Luigi; Peletto, Simone; Grego, Elena; Colussi, Silvia; Riina, Maria Vittoria; Rosati, Sergio; Mignone, Walter; Caramelli, Maria

    2007-05-01

    The partial PrP gene sequence and the deduced protein of eight cetacean species, seven of which have never been reported so far, have been determined in order to extend knowledge of sequence variability of the PrP genes in different species and to aid in speculation on cetacean susceptibility to prions. Both the nucleotide and the deduced amino acid sequences have been analysed in comparison with some of the known mammalian PrPs. Cetacean PrPs present typical features of eutherian PrPs. The PrP gene from the species of the family Delphinidae gave identical nucleic acid sequences, while differences in the PrP gene were found in Balaenopteridae and Ziphidae. The phylogenetic tree resulting from analysis of the cetacean PrP gene sequences, together with reported sequences of some ungulates, carnivores and primates, showed that the PrP gene phylogenesis mirrors the species phylogenesis. The PrP gene of cetaceans is very close to species where natural forms of TSEs are known. From an analysis of the sequences and the phylogenesis of the PrP gene, susceptibility to or occurrence of prion diseases in cetaceans can not be excluded.

  5. Crystal Structures of Polymorphic Prion Protein β1 Peptides Reveal Variable Steric Zipper Conformations.

    PubMed

    Yu, Lu; Lee, Seung-Joo; Yee, Vivien C

    2015-06-16

    The pathogenesis of prion diseases is associated with the conformational conversion of normal, predominantly α-helical prion protein (PrP(C)) into a pathogenic form that is enriched with β-sheets (PrP(Sc)). Several PrP(C) crystal structures have revealed β1-mediated intermolecular sheets, suggesting that the β1 strand may contribute to a possible initiation site for β-sheet-mediated PrP(Sc) propagation. This β1 strand contains the polymorphic residue 129 that influences disease susceptibility and phenotype. To investigate the effect of the residue 129 polymorphism on the conformation of amyloid-like continuous β-sheets formed by β1, crystal structures of β1 peptides containing each of the polymorphic residues were determined. To probe the conformational influence of the peptide construct design, four different lengths of β1 peptides were studied. From the 12 peptides studied, 11 yielded crystal structures ranging in resolution from 0.9 to 1.4 Å. This ensemble of β1 crystal structures reveals conformational differences that are influenced by both the nature of the polymorphic residue and the extent of the peptide construct, indicating that comprehensive studies in which peptide constructs vary are a more rigorous approach to surveying conformational possibilities.

  6. A MUTANT PRION PROTEIN SENSITIZES NEURONS TO GLUTAMATE-INDUCED EXCITOTOXICITY

    PubMed Central

    Biasini, Emiliano; Unterberger, Ursula; Solomon, Isaac H.; Massignan, Tania; Senatore, Assunta; Bian, Hejiao; Voigtlaender, Till; Bowman, Frederick P.; Bonetto, Valentina; Chiesa, Roberto; Luebke, Jennifer; Toselli, Paul; Harris, David A.

    2013-01-01

    Growing evidence suggests that a physiological activity of the cellular prion protein (PrPC) plays a crucial role in several neurodegenerative disorders, including prion and Alzheimer’s diseases. However, how the functional activity of PrPC is subverted to deliver neurotoxic signals remains uncertain. Transgenic mice expressing PrP with a deletion of residues 105–125 in the central region (referred to as ΔCR PrP) provide important insights into this problem. Tg(ΔCR) mice exhibit neonatal lethality and massive degeneration of cerebellar granule neurons, a phenotype that is dose-dependently suppressed by the presence of wild-type PrP. When expressed in cultured cells, ΔCR PrP induces large, ionic currents that can be detected by patch-clamping techniques. Here, we have tested the hypothesis that abnormal ion channel activity underlies the neuronal death seen in Tg(ΔCR) mice. We find that ΔCR PrP induces abnormal ionic currents in neurons in culture and in cerebellar slices, and that this activity sensitizes the neurons to glutamate-induced, calcium-mediated death. In combination with ultrastructural and biochemical analyses, these results demonstrate a role for glutamate-induced excitotoxicity in PrP-mediated neurodegeneration. A similar mechanism may operate in other neurodegenerative disorders due to toxic, β-rich oligomers that bind to PrPC. PMID:23392670

  7. Cellular prion protein controls stem cell-like properties of human glioblastoma tumor-initiating cells

    PubMed Central

    Corsaro, Alessandro; Bajetto, Adriana; Thellung, Stefano; Begani, Giulia; Villa, Valentina; Nizzari, Mario; Pattarozzi, Alessandra; Solari, Agnese; Gatti, Monica; Pagano, Aldo; Würth, Roberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2016-01-01

    Prion protein (PrPC) is a cell surface glycoprotein whose misfolding is responsible for prion diseases. Although its physiological role is not completely defined, several lines of evidence propose that PrPC is involved in self-renewal, pluripotency gene expression, proliferation and differentiation of neural stem cells. Moreover, PrPC regulates different biological functions in human tumors, including glioblastoma (GBM). We analyzed the role of PrPC in GBM cell pathogenicity focusing on tumor-initiating cells (TICs, or cancer stem cells, CSCs), the subpopulation responsible for development, progression and recurrence of most malignancies. Analyzing four GBM CSC-enriched cultures, we show that PrPC expression is directly correlated with the proliferation rate of the cells. To better define its role in CSC biology, we knocked-down PrPC expression in two of these GBM-derived CSC cultures by specific lentiviral-delivered shRNAs. We provide evidence that CSC proliferation rate, spherogenesis and in vivo tumorigenicity are significantly inhibited in PrPC down-regulated cells. Moreover, PrPC down-regulation caused loss of expression of the stemness and self-renewal markers (NANOG, Sox2) and the activation of differentiation pathways (i.e. increased GFAP expression). Our results suggest that PrPC controls the stemness properties of human GBM CSCs and that its down-regulation induces the acquisition of a more differentiated and less oncogenic phenotype. PMID:27229535

  8. Free energy and hidden barriers of the β-sheet structure of prion protein.

    PubMed

    Paz, S Alexis; Abrams, Cameron F

    2015-10-13

    On-the-fly free-energy parametrization is a new collective variable biasing approach akin to metadynamics with one important distinction: rather than acquiring an accelerated distribution via a history-dependent bias potential, sampling on this distribution is achieved from the beginning of the simulation using temperature-accelerated molecular dynamics. In the present work, we compare the performance of both approaches to compute the free-energy profile along a scalar collective variable measuring the H-bond registry of the β-sheet structure of the mouse Prion protein. Both methods agree on the location of the free-energy minimum, but free-energy profiles from well-tempered metadynamics are subject to a much higher degree of statistical noise due to hidden barriers. The sensitivity of metadynamics to hidden barriers is shown to be a consequence of the history dependence of the bias potential, and we detail the nature of these barriers for the prion β-sheet. In contrast, on-the-fly parametrization is much less sensitive to these barriers and thus displays improved convergence behavior relative to that of metadynamics. While hidden barriers are a frequent and central issue in free-energy methods, on-the-fly free-energy parametrization appears to be a robust and preferable method to confront this issue.

  9. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice*

    PubMed Central

    Beckman, Danielle; Santos, Luis E.; Americo, Tatiana A.; Ledo, Jose H.; de Mello, Fernando G.; Linden, Rafael

    2015-01-01

    We sought to examine interactions of the prion protein (PrPC) with monoaminergic systems due to: the role of PrPC in both Prion and Alzheimer diseases, which include clinical depression among their symptoms, the implication of monoamines in depression, and the hypothesis that PrPC serves as a scaffold for signaling systems. To that effect we compared both behavior and monoaminergic markers in wild type (WT) and PrPC-null (PrP−/−) mice. PrP−/− mice performed poorly when compared with WT in forced swimming, tail suspension, and novelty suppressed feeding tests, typical of depressive-like behavior, but not in the control open field nor rotarod motor tests; cyclic AMP responses to stimulation of D1 receptors by dopamine was selectively impaired in PrP−/− mice, and responses to serotonin, but not to norepinephrine, also differed between genotypes. Contents of dopamine, tyrosine hydroxylase, and the 5-HT5A serotonin receptor were increased in the cerebral cortex of PrP−/−, as compared with WT mice. Microscopic colocalization, as well as binding in overlay assays were found of PrPC with both the 5HT5A and D1, but not D4 receptors. The data are consistent with the scaffolding of monoaminergic signaling modules by PrPC, and may help understand the pathogenesis of clinical depression and neurodegenerative disorders. PMID:26152722

  10. Copper-binding peptides from human prion protein and newly designed peroxidative biocatalysts.

    PubMed

    Kagenishi, Tomoko; Yokawa, Ken; Kadono, Takashi; Uezu, Kazuya; Kawano, Tomonori

    2011-01-01

    A previous work suggested that peptides from the histidine-containing copper-binding motifs in human prion protein (PrP) function as peroxidase-like biocatalysts catalyzing the generation of superoxide anion radicals in the presence of neurotransmitters (aromatic monoamines) and phenolics such as tyrosine and tyrosyl residues on proteins. In this study, using various phenolic substrates, the phenol-dependent superoxide-generating activities of PrP-derived peptide sequences were compared. Among the peptides tested, the GGGTH pentapeptide was shown to be the most active catalyst for phenol-dependent reactions. Based on these results, we designed a series of oligoglycyl-histidines as novel peroxidative biocatalysts, and their catalytic performances including kinetics, heat tolerance, and freezing tolerance were analysed.

  11. Cloning and expression analysis of a prion protein encoding gene in guppy ( Poecilia reticulata)

    NASA Astrophysics Data System (ADS)

    Wu, Suihan; Wei, Qiwei; Yang, Guanpin; Wang, Dengqiang; Zou, Guiwei; Chen, Daqing

    2008-11-01

    The full length cDNA of a prion protein (PrP) encoding gene of guppy ( Poecilia reticulata) and the corresponding genomic DNA were cloned. The cDNA was 2245 bp in length and contained an open reading frame (ORF) of 1545 bp encoding a protein of 515 amino acids, which held all typical structural characteristics of the functional PrP. The cloned genomic DNA fragment corresponding to the cDNA was 3720 bp in length, consisting of 2 introns and 2 exons. The 5' untranslated region of cDNA originated from the 2 exons, while the ORF originated from the second exon. Although the gene was transcribed in diverse tissues including brain, eye, liver, intestine, muscle and tail, its transcript was most abundant in the brain. In addition, the transcription of the gene was enhanced by 5 salinity, implying that it was associated with the response of guppy to saline stress.

  12. Long-term memory consolidation: The role of RNA-binding proteins with prion-like domains.

    PubMed

    Sudhakaran, Indulekha P; Ramaswami, Mani

    2016-10-11

    Long-term and short-term memories differ primarily in the duration of their retention. At a molecular level, long-term memory (LTM) is distinguished from short-term memory (STM) by its requirement for new gene expression. In addition to transcription (nuclear gene expression) the translation of stored mRNAs is necessary for LTM formation. The mechanisms and functions for temporal and spatial regulation of mRNAs required for LTM is a major contemporary problem, of interest from molecular, cell biological, neurobiological and clinical perspectives. This review discusses primary evidence in support for translational regulatory events involved in LTM and a model in which different phases of translation underlie distinct phases of consolidation of memories. However, it focuses largely on mechanisms of memory persistence and the role of prion-like domains in this defining aspect of long-term memory. We consider primary evidence for the concept that Cytoplasmic Polyadenylation Element Binding (CPEB) protein enables the persistence of formed memories by transforming in prion-like manner from a soluble monomeric state to a self-perpetuating and persistent polymeric translationally active state required for maintaining persistent synaptic plasticity. We further discuss prion-like domains prevalent on several other RNA-binding proteins involved in neuronal translational control underlying LTM. Growing evidence indicates that such RNA regulatory proteins are components of mRNP (RiboNucleoProtein) granules. In these proteins, prion-like domains, being intrinsically disordered, could mediate weak transient interactions that allow the assembly of RNP granules, a source of silenced mRNAs whose translation is necessary for LTM. We consider the structural bases for RNA granules formation as well as functions of disordered domains and discuss how these complicate the interpretation of existing experimental data relevant to general mechanisms by which prion-domain containing RBPs

  13. The many shades of prion strain adaptation.

    PubMed

    Baskakov, Ilia V

    2014-01-01

    In several recent studies transmissible prion disease was induced in animals by inoculation with recombinant prion protein amyloid fibrils produced in vitro. Serial transmission of amyloid fibrils gave rise to a new class of prion strains of synthetic origin. Gradual transformation of disease phenotypes and PrP(Sc) properties was observed during serial transmission of synthetic prions, a process that resembled the phenomenon of prion strain adaptation. The current article discusses the remarkable parallels between phenomena of prion strain adaptation that accompanies cross-species transmission and the evolution of synthetic prions occurring within the same host. Two alternative mechanisms underlying prion strain adaptation and synthetic strain evolution are discussed. The current article highlights the complexity of the prion transmission barrier and strain adaptation and proposes that the phenomenon of prion adaptation is more common than previously thought.

  14. The sensitive [SWI (+)] prion: new perspectives on yeast prion diversity.

    PubMed

    Hines, Justin K; Craig, Elizabeth A

    2011-01-01

    Yeast prions are heritable protein-based genetic elements which rely on molecular chaperone proteins for stable transmission to cell progeny. Within the past few years, five new prions have been validated and 18 additional putative prions identified in Saccharomyces cerevisiae. The exploration of the physical and biological properties of these "nouveau prions" has begun to reveal the extent of prion diversity in yeast. We recently reported that one such prion, [SWI(+)], differs from the best studied, archetypal prion [PSI(+)] in several significant ways. ( 1) Notably, [SWI(+)] is highly sensitive to alterations in Hsp70 system chaperone activity and is lost upon growth at elevated temperatures. In that report we briefly noted a correlation amongst prions regarding amino acid composition, seed number and sensitivity to the activity of the Hsp70 chaperone system. Here we extend that analysis and put forth the idea that [SWI(+)] may be representative of a class of asparagine-rich yeast prions which also includes [URE3], [MOT3(+)] and [ISP(+)], distinct from the glutamine-rich prions such as [PSI(+)] and [RNQ(+)]. While much work remains, it is apparent that our understanding of the extent of the diversity of prion characteristics is in its infancy.

  15. Is the prevalent human prion protein 129M/V mutation a living fossil from a Paleolithic panzootic superprion pandemic?

    PubMed

    Nyström, Sofie; Hammarström, Per

    2014-01-01

    Prion diseases are consistently associated with prion protein (PrP(C)) misfolding rendering a cascade of auto-catalytic self-perpetuation of misfolded PrP in an afflicted individual. The molecular process is intriguingly similar to all known amyloid diseases both local and systemic. The prion disease is also infectious by the transfer of misfolded PrP from one individual to the next. Transmissibility is surprisingly efficient in prion diseases and given the rapid disease progression following initial symptoms the prionoses stand out from other amyloidoses, which all may be transmissible under certain circumstances. The nature of the infectious prion as well as the genotype of the host is important for transmissibility. For hitherto unexplained reasons the majority of Europeans carry a missense mutation on one or both alleles of the PrP gene (PRNP), and hence express a variant of PrP with a substitution for valine (V) instead of methionine (M) in position 129. In fact the 129M/V variant is very common in all populations except for the Japanese. Sporadic Creutzfeldt-Jakob disease is a disease rarely striking people below the age of 60, where homozygosity especially 129MM is a very strong risk factor. Paradoxically, the 129M/V polymorphism suggestive of heterozygote advantage is one of the most clear cut disease associated traits of the human population, yet prion disease is extraordinarily rare. The genetic basis for how this trait spread with such prevalence within human populations is still target to investigations and deserves attention. This short essay represents a somewhat provocative hypothetical notion of a possible ancient significance of this polymorphism.

  16. Junction-mediating and regulatory protein (JMY) is essential for early porcine embryonic development.

    PubMed

    Lin, Zi Li; Cui, Xiang-Shun; Namgoong, Suk; Kim, Nam-Hyung

    2015-01-01

    Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. JMY is a critical nucleation-promoting factor (NPF); however, its role in the development of mammalian embryos is poorly understood. In the current study, we investigated the functional roles of the NPF JMY in porcine embryos. Porcine embryos expressed JMY mRNA and protein, and JMY protein moved from the cytoplasm to the nucleus at later embryonic developmental stages. Knockdown of JMY by RNA interference markedly decreased the rate of blastocyst development, validating its role in the development of porcine embryos. Furthermore, injection of JMY dsRNA also impaired actin and Arp2 expression, and co-injection of actin and Arp2 mRNA partially rescued blastocyst development. Taken together, our results show that the NPF JMY is involved in the development of porcine embryos by regulating the NPF-Arp2-actin pathway.

  17. Junction-mediating and regulatory protein (JMY) is essential for early porcine embryonic development

    PubMed Central

    LIN, Zi Li; CUI, Xiang-Shun; NAMGOONG, Suk; KIM, Nam-Hyung

    2015-01-01

    Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. JMY is a critical nucleation-promoting factor (NPF); however, its role in the development of mammalian embryos is poorly understood. In the current study, we investigated the functional roles of the NPF JMY in porcine embryos. Porcine embryos expressed JMY mRNA and protein, and JMY protein moved from the cytoplasm to the nucleus at later embryonic developmental stages. Knockdown of JMY by RNA interference markedly decreased the rate of blastocyst development, validating its role in the development of porcine embryos. Furthermore, injection of JMY dsRNA also impaired actin and Arp2 expression, and co-injection of actin and Arp2 mRNA partially rescued blastocyst development. Taken together, our results show that the NPF JMY is involved in the development of porcine embryos by regulating the NPF-Arp2-actin pathway. PMID:26052154

  18. The Protein-disulfide Isomerase ERp57 Regulates the Steady-state Levels of the Prion Protein*

    PubMed Central

    Torres, Mauricio; Medinas, Danilo B.; Matamala, José Manuel; Woehlbier, Ute; Cornejo, Víctor Hugo; Solda, Tatiana; Andreu, Catherine; Rozas, Pablo; Matus, Soledad; Muñoz, Natalia; Vergara, Carmen; Cartier, Luis; Soto, Claudio; Molinari, Maurizio; Hetz, Claudio

    2015-01-01

    Although the accumulation of a misfolded and protease-resistant form of the prion protein (PrP) is a key event in prion pathogenesis, the cellular factors involved in its folding and quality control are poorly understood. PrP is a glycosylated and disulfide-bonded protein synthesized at the endoplasmic reticulum (ER). The ER foldase ERp57 (also known as Grp58) is highly expressed in the brain of sporadic and infectious forms of prion-related disorders. ERp57 is a disulfide isomerase involved in the folding of a subset of glycoproteins in the ER as part of the calnexin/calreticulin cycle. Here, we show that levels of ERp57 increase mainly in neurons of Creutzfeldt-Jacob patients. Using gain- and loss-of-function approaches in cell culture, we demonstrate that ERp57 expression controls the maturation and total levels of wild-type PrP and mutant forms associated with human disease. In addition, we found that PrP physically interacts with ERp57, and also with the closest family member PDIA1, but not ERp72. Furthermore, we generated a conditional knock-out mouse for ERp57 in the nervous system and detected a reduction in the steady-state levels of the mono- and nonglycosylated forms of PrP in the brain. In contrast, ERp57 transgenic mice showed increased levels of endogenous PrP. Unexpectedly, ERp57 expression did not affect the susceptibility of cells to ER stress in vitro and in vivo. This study identifies ERp57 as a new modulator of PrP levels and may help with understanding the consequences of ERp57 up-regulation observed in human disease. PMID:26170458

  19. The Persistence of Hippocampal-Based Memory Requires Protein Synthesis Mediated by the Prion-like Protein CPEB3.

    PubMed

    Fioriti, Luana; Myers, Cory; Huang, Yan-You; Li, Xiang; Stephan, Joseph S; Trifilieff, Pierre; Colnaghi, Luca; Kosmidis, Stylianos; Drisaldi, Bettina; Pavlopoulos, Elias; Kandel, Eric R

    2015-06-17

    Consolidation of long-term memories depends on de novo protein synthesis. Several translational regulators have been identified, and their contribution to the formation of memory has been assessed in the mouse hippocampus. None of them, however, has been implicated in the persistence of memory. Although persistence is a key feature of long-term memory, how this occurs, despite the rapid turnover of its molecular substrates, is poorly understood. Here we find that both memory storage and its underlying synaptic plasticity are mediated by the increase in level and in the aggregation of the prion-like translational regulator CPEB3 (cytoplasmic polyadenylation element-binding protein). Genetic ablation of CPEB3 impairs the maintenance of both hippocampal long-term potentiation and hippocampus-dependent spatial memory. We propose a model whereby persistence of long-term memory results from the assembly of CPEB3 into aggregates. These aggregates serve as functional prions and regulate local protein synthesis necessary for the maintenance of long-term memory.

  20. Context-dependent perturbation of neural systems in transgenic mice expressing a cytosolic prion protein.

    PubMed

    Faas, Henryk; Jackson, Walker S; Borkowski, Andrew W; Wang, Xinhe; Ma, Jiyan; Lindquist, Susan; Jasanoff, Alan

    2010-02-01

    We analyzed the relationship between pathogenic protein expression and perturbations to brain anatomy and physiology in a genetic model of prion disease. In this model, the mouse line 1D4, neuropathology is promoted by accumulation of a cytosolic form of the prion protein (cyPrP). CyPrP distribution was determined and compared with anatomical magnetic resonance imaging (MRI) data, a form of functional MRI based on manganese labeling, and immediate early gene mapping with an antibody to c-Fos. Significant discrepancies between 1D4 and control mice became apparent well in advance of overt behavioral pathology in the mutant mice. Alterations to brain structure and function in the mutants varied among brain regions, however, and differed strikingly even among regions with the highest levels of cyPrP expression. In the cerebellum, gross neurodegeneration was accompanied by increased Mn(2+)-enhanced MRI signal, raising the possibility that compensatory mechanisms act to preserve cerebellar function in the face of massive atrophy. In the hippocampus of 1D4 mice, no significant structural alterations were observed, but both Mn(2+)-enhanced MRI and c-Fos data indicated perturbations to neurophysiology. In the neocortex, there were no clear neural activity differences between 1D4 and control animals, but mutant mice showed significant reduction in cortical thickness. Our finding that distinct combinations of anatomical and functional abnormalities accompanied cyPrP overexpression in different parts of the brain indicates the importance of context in conditioning effects of protein pathogens, and exemplifies the notion that neurodegenerative phenotypes extend beyond cell death and the immediate consequences of atrophy for particular neural systems.

  1. Soluble Prion Protein Binds Isolated Low Molecular Weight Amyloid-β Oligomers Causing Cytotoxicity Inhibition.

    PubMed

    Williams, Thomas L; Choi, Jin-Kyu; Surewicz, Krystyna; Surewicz, Witold K

    2015-12-16

    A growing number of observations indicate that soluble amyloid-β (Aβ) oligomers play a major role in Alzheimer's disease. Recent studies strongly suggest that at least some of the neurotoxic effects of these oligomers are mediated by cellular, membrane-anchored prion protein and that Aβ neurotoxicity can be inhibited by soluble recombinant prion protein (rPrP) and its fragments. However, the mechanism by which rPrP interacts with Aβ oligomers and prevents their toxicity is largely unknown, and studies in this regard are hindered by the large structural heterogeneity of Aβ oligomers. To overcome this difficulty, here we used photoinduced cross-linking of unmodified proteins (PICUP) to isolate well-defined oligomers of Aβ42 and characterize these species with regard to their cytotoxicity and interaction with rPrP, as well the mechanism by which rPrP inhibits Aβ42 cytotoxicity. Our data shows that the addition of rPrP to the assembling Aβ42 results in a shift in oligomer size distribution, decreasing the population of toxic tetramers and higher order oligomers and increasing the population of nontoxic (and possibly neuroprotective) monomers. Isolated oligomeric species of Aβ42 are cytotoxic to primary neurons and cause permeation of model lipid bilayers. These toxic effects, which are oligomer size-dependent, can be inhibited by the addition of rPrP, and our data suggest potential mechanisms of this inhibitory action. This insight should help in current efforts to develop PrP-based therapeutics for Alzheimer's disease.

  2. Truncated prion protein PrP226* - A structural view on its role in amyloid disease.

    PubMed

    Kovač, Valerija; Zupančič, Blaž; Ilc, Gregor; Plavec, Janez; Čurin Šerbec, Vladka

    2017-02-26

    In the brain of patients with transmissible spongiform encephalopathies, besides PrP(Sc) aggregates, deposition of truncated PrP molecules was described. Jansen et al. reported two clinical cases with deposition of C-terminally truncated PrP, one of them ending with Tyr226. We have previously described the discovery of monoclonal antibody V5B2 that selectively recognizes this version of the prion protein, which we called PrP226*. Using monoclonal antibody V5B2 we showed that accumulation of PrP226* is characteristic for most types of human and animal TSEs. Its distribution correlates to the distribution of PrP(Sc) aggregates. To gain insight into the structural basis of its presence and distribution in PrP aggregates, we have determined the NMR structure of recombinant PrP226*. The structure of the protein consists of a disordered N-terminal part (residues 90-125) and a structured C-terminal part (residues 126-226). The C-terminal segment consists of four α-helices and a short antiparallel β-sheet. Our model predicts a break in the C-terminal helix and reorganized hydrophobic interactions between helix α3 and β2-α2 loop due to the shorter C-terminus. The structural model gives information on the possible role of the protein in the development of amyloid disease and can serve as a foundation to develop tools for prevention and treatment of prion diseases.

  3. Cellular prion protein directly interacts with and enhances lactate dehydrogenase expression under hypoxic conditions.

    PubMed

    Ramljak, Sanja; Schmitz, Matthias; Zafar, Saima; Wrede, Arne; Schenkel, Sara; Asif, Abdul R; Carimalo, Julie; Doeppner, Thorsten R; Schulz-Schaeffer, Walter J; Weise, Jens; Zerr, Inga

    2015-09-01

    Although a physiological function of the cellular prion protein (PrP(c)) is still not fully clarified, a PrP(c)-mediated neuroprotection against hypoxic/ischemic insult is intriguing. After ischemic stroke prion protein knockout mice (Prnp(0/0)) display significantly greater lesions as compared to wild-type (WT) mice. Earlier reports suggested an interaction between the glycolytic enzyme lactate dehydrogenase (LDH) and PrP(c). Since hypoxic environment enhances LDH expression levels and compels neurons to rely on lactate as an additional oxidative substrate for energy metabolism, we examined possible differences in LDH protein expression in WT and Prnp(0/0) knockout models under normoxic/hypoxic conditions in vitro and in vivo, as well as in a HEK293 cell line. While no differences are observed under normoxic conditions, LDH expression is markedly increased after 60-min and 90-min of hypoxia in WT vs. Prnp(0/0) primary cortical neurons with concurrent less hypoxia-induced damage in the former group. Likewise, cerebral ischemia significantly increases LDH levels in WT vs. Prnp(0/0) mice with accompanying smaller lesions in the WT group. HEK293 cells overexpressing PrP(c) show significantly higher LDH expression/activity following 90-min of hypoxia as compared to control cells. Moreover, a cytoplasmic co-localization of LDH and PrP(c) was recorded under both normoxic and hypoxic conditions. Interestingly, an expression of monocarboxylate transporter 1, responsible for cellular lactate uptake, increases with PrP(c)-overexpression under normoxic conditions. Our data suggest LDH as a direct PrP(c) interactor with possible physiological relevance under low oxygen conditions.

  4. Prions are affected by evolution at two levels.

    PubMed

    Wickner, Reed B; Kelly, Amy C

    2016-03-01

    Prions, infectious proteins, can transmit diseases or be the basis of heritable traits (or both), mostly based on amyloid forms of the prion protein. A single protein sequence can be the basis for many prion strains/variants, with different biological properties based on different amyloid conformations, each rather stably propagating. Prions are unique in that evolution and selection work at both the level of the chromosomal gene encoding the protein, and on the prion itself selecting prion variants. Here, we summarize what is known about the evolution of prion proteins, both the genes and the prions themselves. We contrast the one known functional prion, [Het-s] of Podospora anserina, with the known disease prions, the yeast prions [PSI+] and [URE3] and the transmissible spongiform encephalopathies of mammals.

  5. Prions are Affected by Evolution at Two Levels

    PubMed Central

    Wickner, Reed B.; Kelly, Amy C.

    2015-01-01

    Prions, infectious proteins, can transmit diseases or be the basis of heritable traits (or both), most based on amyloid forms of the prion protein. A single protein sequence can be the basis for many prion strains/variants, with different biological properties based on different amyloid conformations, each rather stably propagating. Prions are unique in that evolution and selection work at both the level of the chromosomal gene encoding the protein, and on the prion itself selecting prion variants. Here we summarize what is known about the evolution of prion proteins, both the genes and the prions themselves. We contrast the one known functional prion, [Het-s] of Podospora anserina, with the known disease prions, the yeast prions [PSI+] and [URE3] and the transmissible spongiform encephalopathies of mammals. PMID:26713322

  6. Are the interactions between recombinant prion proteins and polymeric surfaces related to the hydrophilic/hydrophobic balance?

    PubMed

    Vrlinic, Tjasa; Debarnot, Dominique; Legeay, Gilbert; Coudreuse, Arnaud; El Moualij, Benaissa; Zorzi, Willy; Perret-Liaudet, Armand; Quadrio, Isabelle; Mozetic, Miran; Poncin-Epaillard, Fabienne

    2012-06-01

    New non-fouling tubes are developed and their influence on the adhesion of neuroproteins is studied. Recombinant prion proteins are considered as a single component representative of hydrophobic proteins. Samples are stored for 24 h at 4 °C in tubes coated with two different coatings: poly(N-isopropylacrylamide) as a hydrophilic surface and a plasma-fluorinated coating as a hydrophobic one. The protein adhesion is monitored by ELISA tests, XPS and confocal microscopy. It appears that the highest recovery of recombinant prion protein in the liquid phase is obtained with the hydrophilic surface while the hydrophobic character of the storage tube induces an important amount of biological loss. However, the recovery is not complete even for tubes coated with poly(N-isopropylacrylamide).

  7. Comparison of cattle and sheep colonic permeabilities to horseradish peroxidase and hamster scrapie prion protein in vitro

    PubMed Central

    McKie, A; Zammit, P; Naftalin, R

    1999-01-01

    BACKGROUND—Paracellular permeability to solutes across the descending colon is much higher in cattle than sheep. This is a possible route for transmission of infective materials, such as scrapie prion.
AIMS—To compare the permeabilities of labelled scrapie prion protein and other macromolecules in bovine and ovine descending colons in vitro.
METHODS—Using fresh slaughterhouse material, transepithelial fluxes of macromolecules across colonic mucosae mounted in Ussing chambers were measured by monitoring transport of either enzyme activity or radioactivity.
RESULTS—The comparative bovine to ovine permeability ratio of the probes increased with molecular weight: from 3.1 (0.13) for PEG400 to 10.67 (0.20) (p<0.001) for PEG4000; and from 1.64 (0.17) for microperoxidase to 7.03 (0.20) (p<0.001) for horseradish peroxidase (HRP). The permeability of 125I-labelled inactivated Syrian hamster scrapie prion protein (ShaPrPsc) was 7.02 (0.33)-fold higher in bovine than ovine colon (p<0.0025). In each species, the probe permeabilities decreased according to the formula: P = Po.exp(−K.ra). The "ideal" permeabilities, Po are similar, however, K(ovine) = 2.46 (0.20) cm/h/nm exceeds K(bovine) = 0.85 (0.15) cm/h/nm (p<0.001) indicating that bovine colon has a higher proportion of wide pores than ovine. Image analysis confirmed that HRP permeated through the bovine mucosal layer via a pericryptal paracellular route much more rapidly than in sheep.
CONCLUSIONS—These data may imply that scrapie prion is transmitted in vivo more easily across the low resistance bovine colonic barrier than in other species.


Keywords: cattle; sheep; colon; paracellular permeability; horseradish peroxidase; hamster scrapie prion protein PMID:10562587

  8. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1.

    PubMed

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    Prion diseases involve the conversion of the endogenous cellular prion protein, PrP(C), into a misfolded infectious isoform, PrP(Sc). Several functions have been attributed to PrP(C), and its role has also been investigated in the olfactory system. PrP(C) is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp(-/-) mice showed impaired behavior in olfactory tests. Given the high PrP(C) expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrP(C)-binding partners. Ten different putative PrP(C) ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrP(C) with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrP(C)-Stub1 interaction are under investigation. The PrP(C)-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrP(C) is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein.

  9. Cellular prion protein in the bovine mammary gland is selectively expressed in active lactocytes.

    PubMed

    Didier, Andrea; Dietrich, Richard; Steffl, Martin; Gareis, Manfred; Groschup, Martin H; Müller-Hellwig, Simone; Märtlbauer, Erwin; Amselgruber, Werner M

    2006-11-01

    The cellular prion protein (PrP(c)) is a highly conserved glycoprotein with a still enigmatic physiological function. It is mainly expressed in the central nervous system but accumulating data suggest that PrP(c) is also found in a broad spectrum of non-neuronal tissue. Here we investigated the cell-type-related PrP(c) expression in the bovine mammary gland by using immunohistochemistry (IHC), ELISA, Western blot, and real-time RT-PCR. Specific immunostaining of serial sections revealed that PrP(c) is selectively localized in mammary gland epithelial cells. Particularly strong expression was found at the basolateral surface of those cells showing active secretion. Results obtained by RT-PCR and ELISA complemented IHC findings. No correlation was found between the level of PrP(c) expression and other parameters such as age of the animals under study or stage of lactation.

  10. Polymorphism of the prion protein gene (PRNP) in Polish cattle affected by classical bovine spongiform encephalopathy.

    PubMed

    Gurgul, Artur; Czarnik, Urszula; Urszula, Czarnik; Larska, Magdalena; Polak, Mirosław P; Strychalski, Janusz; Słota, Ewa

    2012-05-01

    Recent attempts to discover genetic factors affecting cattle resistance/susceptibility to bovine spongiform encephalopathy (BSE) have led to the identification of two insertion/deletion (indel) polymorphisms, located within the promoter and intron 1 of the prion protein gene PRNP, showing a significant association with the occurrence of classical form of the disease. Because the effect of the polymorphisms was studied only in few populations, in this study we investigated whether previously described association of PRNP indel polymorphisms with BSE susceptibility in cattle is also present in Polish cattle population. We found a significant relation between the investigated PRNP indel polymorphisms (23 and 12 bp indels), and susceptibility of Polish Holstein-Friesian cattle to classical BSE (P < 0.05). The deletion variants of both polymorphisms were related to increased susceptibility, whereas insertion variants were protective against BSE.

  11. Interplays Between Covalent Modifications in the Endoplasmic Reticulum Increase Conformational Diversity in Nascent Prion Protein

    PubMed Central

    Orsi, Andrea

    2007-01-01

    Prion protein (PrP), the causative agent of transmissible spongiform encephalopathies, is synthesized in the endoplasmic reticulum (ER) where it undergoes numerous covalent modifications. Here we investigate the interdependence and regulation of PrP oxidative folding, N-glycosylation and GPI addition in diverse ER conditions. Our results show that formation of the single disulphide bond is a pivotal event, essential for PrP transport, and can occur post-translationally. Retarding its formation enhances N-glycosylation and GPI-anchoring. In contrast, lowering ER Ca2+ concentration inhibits N-glycosylation and GPI-anchoring. These data reveal tight interplays between the different ER covalent modifications, which collectively increase of PrP conformational diversity and may be important for its propagation. PMID:19164910

  12. Detection, quantification, and glycotyping of prion protein in specifically activated enzyme-linked immunosorbent assay plates.

    PubMed

    Triantaphyllidou, I E; Sklaviadis, T; Vynios, D H

    2006-12-15

    The conversion of a normal glycoprotein, prion protein (PrP(C)), to its abnormal protease-resistant isoform (PrP(Sc)) seems to be one of the main factors underlying the pathogenesis of spongiform encephalopathies. There are many studies indicating that PrP interacts with glycosaminoglycans, and we exploited this interaction to develop a sensitive solid phase assay for detection of both PrP forms. Glycosaminoglycans, such as chondroitin sulfate and heparin, were immobilized by their negative charge to enzyme-linked immunosorbent assay (ELISA) plate wells activated by glutaraldehyde and spermine. PrP in the samples examined (recombinant PrP or tissue homogenate) was allowed to interact with glycans. The interaction of recombinant PrP was more efficient against immobilized chondroitin sulfate of type A, and a linear correlation with concentration was demonstrated. From this curve, the concentration of each one of the PrP isoforms in biological samples can be determined. In addition, and taking into account that glycosylation of prion protein is species specific, we used similarly activated ELISA plate wells to determine different PrP glycoforms. A monoclonal antibody against PrP was immobilized, and PrP present in the samples (brain homogenates) was bound and visualized by various lectins. The most interesting outcome of the study is the differential binding of ricinus communis agglutinin I to the normal and scrapie brain homogenates. Dattura stramonium lectin and wheat germ agglutinin seem to bind almost equally to both samples, and all three have an increased sensitivity to PrP(Sc) after proteinase K digestion.

  13. Cellular prion protein in blood platelets associates with both lipid rafts and the cytoskeleton.

    PubMed

    Brouckova, Adela; Holada, Karel

    2009-11-01

    The recently shown transmissibility of variant Creutzfeldt-Jakob disease (vCJD) by blood transfusion emphasises the need for better understanding of the cellular prion protein (PrPc) in blood. A substantial amount of cell-associated PrPc in blood resides in platelets. Platelet activation leads to up-regulation of PrPc on the platelet surface and its release on exosomes and microparticles. The sub-cellular localisation and function of platelet PrPc, however, is poorly understood. In the present study, we investigated the association of PrPc with platelet lipid rafts and the platelet cytoskeleton. Immuno-fluorescence microscopy showed that the signals of PrPc and P-selectin, both of which occupy intracellular alpha granules, were separated on the membrane, suggesting organisation in different membrane domains. A flotation assay of platelet lysates demonstrated that a relatively small portion of platelet PrPc floats with lipid rafts, regardless of platelet activation status. This was reversed by depolymerisation of the platelet cytoskeleton, which led to flotation of most platelet PrPc, suggesting that interactions with the cytoskeleton prevent flotation of PrPc rafts. This association of PrPc with the platelet cytoskeleton was confirmed by its presence in both the isolated membrane skeleton and actin cytoskeleton. Platelet activation significantly increased the amount of PrPc associated with the cytoskeleton. Our results indicate that the localisation of PrPc in platelets is complex, with the majority of PrPc present within platelet lipid rafts linked to the platelet cytoskeleton. This localisation places PrPc in a position where it can interact with proteins involved in platelet signalling and eventually with vCJD prions.

  14. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    PubMed

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  15. A Multistage Pathway for Human Prion Protein Aggregation in Vitro: From Multimeric Seeds to β-Oligomers and Nonfibrillar Structures

    PubMed Central

    Cho, Kang R.; Yu, Shuiliang; Yin, Shaoman; Plomp, Marco; Qiu, S. Roger; Lakshminarayanan, Rajamani; Moradian-Oldak, Janet; Sy, Man-Sun

    2015-01-01

    Aberrant protein aggregation causes numerous neurological diseases including Creutzfeldt—Jakob disease (CJD), but the aggregation mechanisms remain poorly understood. Here, we report AFM results on the formation pathways of β-oligomers and nonfibrillar aggregates from wild-type full-length recombinant human prion protein (WT) and an insertion mutant (10OR) with five additional octapeptide repeats linked to familial CJD. Upon partial denaturing, seeds consisting of 3–4 monomers quickly appeared. Oligomers of ∼11–12 monomers then formed through direct interaction of seeds, rather than by subsequent monomer attachment. All larger aggregates formed through association of these β-oligomers. Although both WT and 10OR exhibited identical aggregation mechanisms, the latter oligomerized faster due to lower solubility and, hence, thermodynamic stability. This novel aggregation pathway has implications for prion diseases as well as others caused by protein aggregation. PMID:21534611

  16. How Does Domain Replacement Affect Fibril Formation of the Rabbit/Human Prion Proteins

    PubMed Central

    Yan, Xu; Huang, Jun-Jie; Zhou, Zheng; Chen, Jie; Liang, Yi

    2014-01-01

    Background It is known that in vivo human prion protein (PrP) have the tendency to form fibril deposits and are associated with infectious fatal prion diseases, while the rabbit PrP does not readily form fibrils and is unlikely to cause prion diseases. Although we have previously demonstrated that amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary structures and macromolecular crowding has different effects on fibril formation of the rabbit/human PrPs, we do not know which domains of PrPs cause such differences. In this study, we have constructed two PrP chimeras, rabbit chimera and human chimera, and investigated how domain replacement affects fibril formation of the rabbit/human PrPs. Methodology/Principal Findings As revealed by thioflavin T binding assays and Sarkosyl-soluble SDS-PAGE, the presence of a strong crowding agent dramatically promotes fibril formation of both chimeras. As evidenced by circular dichroism, Fourier transform infrared spectroscopy, and proteinase K digestion assays, amyloid fibrils formed by human chimera have secondary structures and proteinase K-resistant features similar to those formed by the human PrP. However, amyloid fibrils formed by rabbit chimera have proteinase K-resistant features and secondary structures in crowded physiological environments different from those formed by the rabbit PrP, and secondary structures in dilute solutions similar to the rabbit PrP. The results from transmission electron microscopy show that macromolecular crowding caused human chimera but not rabbit chimera to form short fibrils and non-fibrillar particles. Conclusions/Significance We demonstrate for the first time that the domains beyond PrP-H2H3 (β-strand 1, α-helix 1, and β-strand 2) have a remarkable effect on fibrillization of the rabbit PrP but almost no effect on the human PrP. Our findings can help to explain why amyloid fibrils formed by the rabbit PrP and the human PrP have different secondary

  17. RNA-binding proteins with prion-like domains in ALS and FTLD-U.

    PubMed

    Gitler, Aaron D; Shorter, James

    2011-01-01

    Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease) is a debilitating, and universally fatal, neurodegenerative disease that devastates upper and lower motor neurons. The causes of ALS are poorly understood. A central role for RNA-binding proteins and RNA metabolism in ALS has recently emerged. The RNA-binding proteins, TDP-43 and FUS, are principal components of cytoplasmic inclusions found in motor neurons of ALS patients and mutations in TDP-43 and FUS are linked to familial and sporadic ALS. Pathology and genetics also connect TDP-43 and FUS with frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). It was unknown whether mechanisms of FUS aggregation and toxicity were similar or different to those of TDP-43. To address this issue, we have employed yeast models and pure protein biochemistry to define mechanisms underlying TDP-43 and FUS aggregation and toxicity, and to identify genetic modifiers relevant for human disease. We have identified prion-like domains in FUS and TDP-43 and provide evidence that these domains are required for aggregation. Our studies have defined key similarities as well as important differences between the two proteins. Collectively, however, our findings lead us to suggest that FUS and TDP-43, though similar RNA-binding proteins, likely aggregate and confer disease phenotypes via distinct mechanisms.

  18. Prion Protein Deficiency Causes Diverse Proteome Shifts in Cell Models That Escape Detection in Brain Tissue

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Williams, Declan; Wang, Hansen; Arnould, Hélène; Schneider, Benoit; Schmitt-Ulms, Gerold

    2016-01-01

    A popular method for studying the function of a given protein is to generate and characterize a suitable model deficient for its expression. For the prion protein (PrP), best known for its role in several invariably fatal neurodegenerative diseases, a natural choice, therefore, would be to undertake such studies with brain samples. We recently documented the surprising observation that PrP deficiency caused a loss or enhancement of NCAM1 polysialylation, dependent on the cell model used. To identify possible causes for this disparity, we set out to systematically investigate the consequence of PrP deficiency on the global proteome in brain tissue and in four distinct cell models. Here we report that PrP deficiency causes robust but surprisingly divergent changes to the global proteomes of cell models but has no discernible impact on the global brain proteome. Amongst >1,500 proteins whose levels were compared in wild-type and PrP-deficient models, members of the MARCKS protein family exhibited pronounced, yet cell model-dependent changes to their steady-state levels. Follow-up experiments revealed that PrP collaborates with members of the MARCKS protein family in its control of NCAM1 polysialylation. We conclude that the physiological function of PrP may be masked in analyses of complex brain samples but its cell-type specific influence on a lipid raft-based NCAM1-related cell biology comes to the fore in investigations of specific cell types. PMID:27327609

  19. Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles

    PubMed Central

    Hennig, Sven; Kong, Geraldine; Mannen, Taro; Sadowska, Agata; Kobelke, Simon; Blythe, Amanda; Knott, Gavin J.; Iyer, K. Swaminathan; Ho, Diwei; Newcombe, Estella A.; Hosoki, Kana; Goshima, Naoki; Kawaguchi, Tetsuya; Hatters, Danny; Trinkle-Mulcahy, Laura; Hirose, Tetsuro; Bond, Charles S.

    2015-01-01

    Prion-like domains (PLDs) are low complexity sequences found in RNA binding proteins associated with the neurodegenerative disorder amyotrophic lateral sclerosis. Recently, PLDs have been implicated in mediating gene regulation via liquid-phase transitions that drive ribonucleoprotein granule assembly. In this paper, we report many PLDs in proteins associated with paraspeckles, subnuclear bodies that form around long noncoding RNA. We mapped the interactome network of paraspeckle proteins, finding enrichment of PLDs. We show that one protein, RBM14, connects key paraspeckle subcomplexes via interactions mediated by its PLD. We further show that the RBM14 PLD, as well as the PLD of another essential paraspeckle protein, FUS, is required to rescue paraspeckle formation in cells in which their endogenous counterpart has been knocked down. Similar to FUS, the RBM14 PLD also forms hydrogels with amyloid-like properties. These results suggest a role for PLD-mediated liquid-phase transitions in paraspeckle formation, highlighting this nuclear body as an excellent model system for understanding the perturbation of such processes in neurodegeneration. PMID:26283796

  20. Genetics of prions.

    PubMed

    Prusiner, S B; Scott, M R

    1997-01-01

    Prions are unprecedented infectious pathogens that cause a group of invariably fatal, neurodegenerative diseases by an entirely novel mechanism. Prion diseases may present as genetic, infectious, or sporadic disorders, all of which involve modification of the prion protein (PrP). The human prion disease Creutzfeldt-Jakob disease (CJD) generally presents as a progressive dementia, whereas scrapie of sheep and bovine spongiform encephalopathy (BSE) are manifest as ataxic illnesses. Prions are devoid of nucleic acid and seem to be composed exclusively of a modified isoform of PrP designated PrPSc. The normal, cellular PrP designated PrPC is converted into PrPSc through a process whereby some of its alpha-helical structure is converted into beta-sheet. The species of a particular prion is encoded by the sequence of the chromosomal PrP gene of the mammals in which it last replicated. In contrast to pathogens with a nucleic acid genome, prions encipher strain-specific properties in the tertiary structure of PrPSc. Transgenetic studies argue that PrPSc acts as a template upon which PrPC is refolded into a nascent PrPSc molecule through a process facilitated by another protein.

  1. Physiological and environmental control of yeast prions

    PubMed Central

    Chernova, Tatiana A.; Wilkinson, Keith D.; Chernoff, Yury O.

    2014-01-01

    Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions. PMID:24236638

  2. Functional Prions in the Brain.

    PubMed

    Rayman, Joseph B; Kandel, Eric R

    2017-01-03

    Prions are proteins that can adopt self-perpetuating conformations and are traditionally regarded as etiological agents of infectious neurodegenerative diseases in humans, such as Creutzfeldt-Jakob disease, kuru, and transmissible encephalopathies. More recently, a growing consensus has emerged that prion-like, self-templating mechanisms also underlie a variety of neurodegenerative disorders, including amyotrophic lateral sclerosis, Alzheimer's disease, and Huntington's disease. Perhaps most surprising, not all prion-like aggregates are associated with pathological changes. There are now several examples of prion-like proteins in mammals that serve positive biological functions in their aggregated state. In this review, we discuss functional prions in the nervous system, with particular emphasis on the cytoplasmic polyadenylation element-binding protein (CPEB) and the role of its prion-like aggregates in synaptic plasticity and memory. We also mention a more recent example of a functional prion-like protein in the brain, TIA-1, and its role during stress. These studies of functional prion-like proteins have provided a number of generalizable insights on how prion-based protein switches may operate to serve physiological functions in higher eukaryotes.

  3. Prions, prion-like prionoids, and neurodegenerative disorders

    PubMed Central

    Verma, Ashok

    2016-01-01

    Prion diseases or transmissible spongiform encephalopathies are fatal neurodegenerative diseases characterized by the aggregation and deposition of the misfolded prion protein in the brain. α-synuclein (α-syn)-associated multiple system atrophy has been recently shown to be caused by a bona fide α-syn prion strain. Several other misfolded native proteins such as β-amyloid, tau and TDP-43 share some aspects of prions although none of them is shown to be transmissible in nature or in experimental animals. However, these prion-like “prionoids” are causal to a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The remarkable recent discovery of at least two new α-syn prion strains and their transmissibility in transgenic mice and in vitro cell models raises a distinct question as to whether some specific strain of other prionoids could have the capability of disease transmission in a manner similar to prions. In this overview, we briefly describe human and other mammalian prion diseases and comment on certain similarities between prion and prionoid and the possibility of prion-like transmissibility of some prionoid strains. PMID:27293325

  4. Altered Prion Protein Expression Pattern in CSF as a Biomarker for Creutzfeldt-Jakob Disease

    PubMed Central

    Torres, Mauricio; Cartier, Luis; Matamala, José Manuel; Hernández, Nancy; Woehlbier, Ute; Hetz, Claudio

    2012-01-01

    Creutzfeldt-Jakob disease (CJD) is the most frequent human Prion-related disorder (PrD). The detection of 14-3-3 protein in the cerebrospinal fluid (CSF) is used as a molecular diagnostic criterion for patients clinically compatible with CJD. However, there is a pressing need for the identification of new reliable disease biomarkers. The pathological mechanisms leading to accumulation of 14-3-3 protein in CSF are not fully understood, however neuronal loss followed by cell lysis is assumed to cause the increase in 14-3-3 levels, which also occurs in conditions such as brain ischemia. Here we investigated the relation between the levels of 14-3-3 protein, Lactate dehydrogenase (LDH) activity and expression of the prion protein (PrP) in CSF of sporadic and familial CJD cases. Unexpectedly, we found normal levels of LDH activity in CJD cases with moderate levels of 14-3-3 protein. Increased LDH activity was only observed in a percentage of the CSF samples that also exhibited high 14-3-3 levels. Analysis of the PrP expression pattern in CSF revealed a reduction in PrP levels in all CJD cases, as well as marked changes in its glycosylation pattern. PrP present in CSF of CJD cases was sensitive to proteases. The alterations in PrP expression observed in CJD cases were not detected in other pathologies affecting the nervous system, including cases of dementia and tropical spastic paraparesis/HTLV-1 associated myelopathy (HAM/TSP). Time course analysis in several CJD patients revealed that 14-3-3 levels in CSF are dynamic and show a high degree of variability during the end stage of the disease. Post-mortem analysis of brain tissue also indicated that 14-3-3 protein is upregulated in neuronal cells, suggesting that its expression is modulated during the course of the disease. These results suggest that a combined analysis of 14-3-3 and PrP expression pattern in CSF is a reliable biomarker to confirm the clinical diagnosis of CJD patients and follow disease progression

  5. Assessing the Role of Oxidized Methionine at Position 213 in the Formation of Prions in Hamsters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions are infectious proteins that are able to recruit a normal cellular prion protein and convert it into a prion. The mechanism of this conversion is unknown. Detailed mass spectrometric analysis of the normal cellular prion protein and a corresponding prion has shown they possess identical post-...

  6. Prion protein gene sequence and chronic wasting disease susceptibility in white-tailed deer (Odocoileus virginianus)

    PubMed Central

    Brandt, Adam L; Kelly, Amy C; Green, Michelle L; Shelton, Paul; Novakofski, Jan; Mateus-Pinilla, Nohra E

    2015-01-01

    ABSTRACT The sequence of the prion protein gene (PRNP) affects susceptibility to spongiform encephalopathies, or prion diseases in many species. In white-tailed deer, both coding and non-coding single nucleotide polymorphisms have been identified in this gene that correlate to chronic wasting disease (CWD) susceptibility. Previous studies examined individual nucleotide or amino acid mutations; here we examine all nucleotide polymorphisms and their combined effects on CWD. A 626 bp region of PRNP was examined from 703 free-ranging white-tailed deer. Deer were sampled between 2002 and 2010 by hunter harvest or government culling in Illinois and Wisconsin. Fourteen variable nucleotide positions were identified (4 new and 10 previously reported). We identified 68 diplotypes comprised of 24 predicted haplotypes, with the most common diplotype occurring in 123 individuals. Diplotypes that were found exclusively among positive or negative animals were rare, each occurring in less than 1% of the deer studied. Only one haplotype (C, odds ratio 0.240) and 2 diplotypes (AC and BC, odds ratios of 0.161 and 0.108 respectively) has significant associations with CWD resistance. Each contains mutations (one synonymous nucleotide 555C/T and one nonsynonymous nucleotide 286G/A) at positions reported to be significantly associated with reduced CWD susceptibility. Results suggest that deer populations with higher frequencies of haplotype C or diplotypes AC and BC might have a reduced risk for CWD infection – while populations with lower frequencies may have higher risk for infection. Understanding the genetic basis of CWD has improved our ability to assess herd susceptibility and direct management efforts within CWD infected areas. PMID:26634768

  7. Neutron Reflectometry Studies Define Prion Protein N-terminal Peptide Membrane Binding

    PubMed Central

    Le Brun, Anton P.; Haigh, Cathryn L.; Drew, Simon C.; James, Michael; Boland, Martin P.; Collins, Steven J.

    2014-01-01

    The prion protein (PrP), widely recognized to misfold into the causative agent of the transmissible spongiform encephalopathies, has previously been shown to bind to lipid membranes with binding influenced by both membrane composition and pH. Aside from the misfolding events associated with prion pathogenesis, PrP can undergo various posttranslational modifications, including internal cleavage events. Alpha- and beta-cleavage of PrP produces two N-terminal fragments, N1 and N2, respectively, which interact specifically with negatively charged phospholipids at low pH. Our previous work probing N1 and N2 interactions with supported bilayers raised the possibility that the peptides could insert deeply with minimal disruption. In the current study we aimed to refine the binding parameters of these peptides with lipid bilayers. To this end, we used neutron reflectometry to define the structural details of this interaction in combination with quartz crystal microbalance interrogation. Neutron reflectometry confirmed that peptides equivalent to N1 and N2 insert into the interstitial space between the phospholipid headgroups but do not penetrate into the acyl tail region. In accord with our previous studies, interaction was stronger for the N1 fragment than for the N2, with more peptide bound per lipid. Neutron reflectometry analysis also detected lengthening of the lipid acyl tails, with a concurrent decrease in lipid area. This was most evident for the N1 peptide and suggests an induction of increased lipid order in the absence of phase transition. These observations stand in clear contrast to the findings of analogous studies of Ab and α-synuclein and thereby support the possibility of a functional role for such N-terminal fragment-membrane interactions. PMID:25418300

  8. Prion protein gene sequence and chronic wasting disease susceptibility in white-tailed deer (Odocoileus virginianus).

    PubMed

    Brandt, Adam L; Kelly, Amy C; Green, Michelle L; Shelton, Paul; Novakofski, Jan; Mateus-Pinilla, Nohra E

    2015-01-01

    The sequence of the prion protein gene (PRNP) affects susceptibility to spongiform encephalopathies, or prion diseases in many species. In white-tailed deer, both coding and non-coding single nucleotide polymorphisms have been identified in this gene that correlate to chronic wasting disease (CWD) susceptibility. Previous studies examined individual nucleotide or amino acid mutations; here we examine all nucleotide polymorphisms and their combined effects on CWD. A 626 bp region of PRNP was examined from 703 free-ranging white-tailed deer. Deer were sampled between 2002 and 2010 by hunter harvest or government culling in Illinois and Wisconsin. Fourteen variable nucleotide positions were identified (4 new and 10 previously reported). We identified 68 diplotypes comprised of 24 predicted haplotypes, with the most common diplotype occurring in 123 individuals. Diplotypes that were found exclusively among positive or negative animals were rare, each occurring in less than 1% of the deer studied. Only one haplotype (C, odds ratio 0.240) and 2 diplotypes (AC and BC, odds ratios of 0.161 and 0.108 respectively) has significant associations with CWD resistance. Each contains mutations (one synonymous nucleotide 555C/T and one nonsynonymous nucleotide 286G/A) at positions reported to be significantly associated with reduced CWD susceptibility. Results suggest that deer populations with higher frequencies of haplotype C or diplotypes AC and BC might have a reduced risk for CWD infection--while populations with lower frequencies may have higher risk for infection. Understanding the genetic basis of CWD has improved our ability to assess herd susceptibility and direct management efforts within CWD infected areas.

  9. Role of polysaccharide and lipid in lipopolysaccharide induced prion protein conversion

    PubMed Central

    LeVatte, Marcia; Wishart, David S.

    2016-01-01

    ABSTRACT Conversion of native cellular prion protein (PrPc) from an α-helical structure to a toxic and infectious β-sheet structure (PrPSc) is a critical step in the development of prion disease. There are some indications that the formation of PrPSc is preceded by a β-sheet rich PrP (PrPβ) form which is non-infectious, but is an intermediate in the formation of infectious PrPSc. Furthermore the presence of lipid cofactors is thought to be critical in the formation of both intermediate-PrPβ and lethal, infectious PrPSc. We previously discovered that the endotoxin, lipopolysaccharide (LPS), interacts with recombinant PrPc and induces rapid conformational change to a β-sheet rich structure. This LPS induced PrPβ structure exhibits PrPSc-like features including proteinase K (PK) resistance and the capacity to form large oligomers and rod-like fibrils. LPS is a large, complex molecule with lipid, polysaccharide, 2-keto-3-deoxyoctonate (Kdo) and glucosamine components. To learn more about which LPS chemical constituents are critical for binding PrPc and inducing β-sheet conversion we systematically investigated which chemical components of LPS either bind or induce PrP conversion to PrPβ. We analyzed this PrP conversion using resolution enhanced native acidic gel electrophoresis (RENAGE), tryptophan fluorescence, circular dichroism, electron microscopy and PK resistance. Our results indicate that a minimal version of LPS (called detoxified and partially de-acylated LPS or dLPS) containing a portion of the polysaccharide and a portion of the lipid component is sufficient for PrP conversion. Lipid components, alone, and saccharide components, alone, are insufficient for conversion. PMID:27906600

  10. Biochemical typing of pathological prion protein in aging cattle with BSE

    PubMed Central

    Tester, Seraina; Juillerat, Valerie; Doherr, Marcus G; Haase, Bianca; Polak, Miroslaw; Ehrensperger, Felix; Leeb, Tosso; Zurbriggen, Andreas; Seuberlich, Torsten

    2009-01-01

    Background The broad enforcement of active surveillance for bovine spongiform encephalopathy (BSE) in 2000 led to the discovery of previously unnoticed, atypical BSE phenotypes in aged cattle that differed from classical BSE (C-type) in biochemical properties of the pathological prion protein. Depending on the molecular mass and the degree of glycosylation of its proteinase K resistant core fragment (PrPres), mainly determined in samples derived from the medulla oblongata, these atypical cases are currently classified into low (L)-type or high (H)-type BSE. In the present study we address the question to what extent such atypical BSE cases are part of the BSE epidemic in Switzerland. Results To this end we analyzed the biochemical PrPres type by Western blot in a total of 33 BSE cases in cattle with a minimum age of eight years, targeting up to ten different brain regions. Our work confirmed H-type BSE in a zebu but classified all other cases as C-type BSE; indicating a very low incidence of H- and L-type BSE in Switzerland. It was documented for the first time that the biochemical PrPres type was consistent across different brain regions of aging animals with C-type and H-type BSE, i.e. independent of the neuroanatomical structure investigated. Conclusion Taken together this study provides further characteristics of the BSE epidemic in Switzerland and generates new baseline data for the definition of C- and H-type BSE phenotypes, thereby underpinning the notion that they indeed represent distinct prion disease entities. PMID:19470160

  11. Structure of the flexible amino terminal domain of prion protein bound to a sulfated glycan

    PubMed Central

    Taubner, Lara M.; Bienkiewicz, Ewa A.; Copié, Valérie; Caughey, Byron

    2010-01-01

    The intrinsically disordered amino-proximal domain of hamster prion protein (PrP) contains four copies of a highly conserved octapeptide sequence PHGGGWGQ that is flanked by two polycationic residue clusters. This N-terminal domain mediates the binding of sulfated glycans, which can profoundly influence the conversion of PrP to pathological forms and the progression of prion disease. To investigate the structural consequences of sulfated glycan binding, we performed multidimensional heteronuclear (1H, 13C, 15N) nuclear magnetic resonance (NMR), circular dichroism (CD), and fluorescence studies on hamster PrP residues 23–106 (PrP 23–106) and fragments thereof when bound to pentosan polysulfate (PPS). While the majority of PrP 23–106 remains disordered upon PPS binding, the octarepeat region adopts a repeating loop-turn structure that we have determined by NMR. The β-like turns within the repeats are corroborated by CD data, which demonstrate that these turns are also present, although less pronounced, without PPS. Binding to PPS exposes a hydrophobic surface composed of aligned tryptophan sidechains, the spacing and orientation of which are consistent with a self-association or ligand binding site. The unique tryptophan motif was probed by intrinsic tryptophan fluorescence, which displayed enhanced fluorescence of PrP 23–106 when bound to PPS, consistent with the alignment of tryptophan sidechains. Chemical shift mapping identified binding sites on PrP 23–106 for PPS, which include the octarepeat histidine and an N-terminal basic cluster previously linked to sulfated glycan binding. These data may in part explain how sulfated glycans modulate PrP conformational conversions and oligomerizations. PMID:19913031

  12. Instability of buried hydration sites increases protein subdomains fluctuations in the human prion protein by the pathogenic mutation T188R

    NASA Astrophysics Data System (ADS)

    Tomobe, Katsufumi; Yamamoto, Eiji; Akimoto, Takuma; Yasui, Masato; Yasuoka, Kenji

    2016-05-01

    The conformational change from the cellular prion protein (PrPc) to scrapie prion protein (PrPsc) is a key process in prion diseases. The prion protein has buried water molecules which significantly contribute to the stability of the protein; however, there has been no report investigating the influence on the buried hydration sites by a pathogenic mutation not adjacent to the buried hydration sites. Here, we perform molecular dynamics simulations of wild type (WT) PrPc and pathogenic point mutant T188R to investigate conformational changes and the buried hydration sites. In WT-PrPc, four buried hydration sites are identified by residence time and rotational relaxation analysis. However, there are no stable buried hydration sites in one of T188R simulations, which indicates that T188R sometimes makes the buried hydration sites fragile. We also find that fluctuations of subdomains S1-H1-S2 and H1-H2 increase in T188R when the buried hydration sites become unstable. Since the side chain of arginine which is replaced from threonine in T188R is larger than of threonine, the side chain cannot be embedded in the protein, which is one of the causes of the instability of subdomains. These results show correlations between the buried hydration sites and the mutation which is far from them, and provide a possible explanation for the instability by mutation.

  13. Antigenic features of prion proteins of sheep and of other mammalian species.

    PubMed

    Groschup, M H; Harmeyer, S; Pfaff, E

    1997-08-22

    Pathological prion protein (PrPSc) which is a conformational isoform of a host-encoded protein designated (PrPC) serves as a specific marker protein for the immunochemical diagnosis of transmissible spongiform encephalopathies (TSE). The generation of suitable antibodies to PrPSc therefore underlies the specificity and sensitivity of diagnostic assays. However, most antibodies reported to date are directed to a limited number of epitopes only. PrPC is a highly conserved cell membrane protein in all mammalian species studied to date. In an attempt to generate antibodies to further regions of PrP we raised antisera in rabbits and chicken against sixteen synthetic peptides which represent the complete aminoacid sequence of ovine PrP. By this approach immunotolerance was overcome and immunoblot-reactive antibodies were stimulated to epitopes at almost any site of ovine PrPC and PrPSc. A large number of different antibodies cross-reacted also with affinity-purified PrPCs from other mammalian species including cow, goat, pig, man, dog, cat, mink, mouse, hamster and guinea pig. No epitope, however, was recognized exclusively on the pathological or cellular isoform of PrP indicating that both isoforms occur in highly denatured conformations on the immunoblots. Antibodies to the amino-terminus are suitable for immunoprecipitation of PrP. The availability of rabbit and chicken anti-peptide antibodies to PrP will greatly improve immunochemical diagnosis and pathogenetic studies on these diseases.

  14. Induction of cellular prion protein (PrPc) under hypoxia inhibits apoptosis caused by TRAIL treatment

    PubMed Central

    Lee, Ju-Hee; Moon, Ji-Hong; Kim, Sung-Wook; Lee, You-Jin; Park, Sang-Youel

    2015-01-01

    Hypoxia decreases cytotoxic responses to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein. Cellular prion protein (PrPc) is regulated by HIF-1α in neurons. We hypothesized that PrPc is involved in hypoxia-mediated resistance to TRAIL-induced apoptosis. We found that hypoxia induced PrPc protein and inhibited TRAIL-induced apoptosis. Thus silencing of PrPc increased TRAIL-induced apoptosis under hypoxia. Overexpression of PrPc protein using an adenoviral vector inhibited TRAIL-induced apoptosis. In xenograft model in vivo, shPrPc transfected cells were more sensitive to TRAIL-induced apoptosis than in shMock transfected cells. Molecular chemo-therapy approaches based on the regulation of PrPc expression need to address anti-tumor function of TRAIL under hypoxia. Molecular chemo-therapy approaches based on the regulation of PrPc expression need to address anti-tumor function of TRAIL under hypoxia. PMID:25742790

  15. Activation of human natural killer cells by the soluble form of cellular prion protein.

    PubMed

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-08-21

    Cellular prion protein (PrP(C)) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP(C) in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP(C) protein on human natural killer (NK) cells. Recombinant soluble PrP(C) protein was generated by fusion of human PrP(C) with the Fc portion of human IgG1 (PrP(C)-Fc). PrP(C)-Fc binds to the surface of human NK cells, particularly to CD56(dim) NK cells. PrP(C)-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP(C)-Fc facilitated the IL-15-induced proliferation of NK cells. PrP(C)-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP(C)-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP(C)-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  16. Effects of the pathological Q212P mutation on human prion protein non-octarepeat copper-binding site.

    PubMed

    D'Angelo, Paola; Della Longa, Stefano; Arcovito, Alessandro; Mancini, Giordano; Zitolo, Andrea; Chillemi, Giovanni; Giachin, Gabriele; Legname, Giuseppe; Benetti, Federico

    2012-08-07

    Prion diseases are a class of fatal neurodegenerative disorders characterized by brain spongiosis, synaptic degeneration, microglia and astrocytes activation, neuronal loss and altered redox control. These maladies can be sporadic, iatrogenic and genetic. The etiological agent is the prion, a misfolded form of the cellular prion protein, PrP(C). PrP(C) interacts with metal ions, in particular copper and zinc, through the octarepeat and non-octarepeat binding sites. The physiological implication of this interaction is still unclear, as is the role of metals in the conversion. Since prion diseases present metal dyshomeostasis and increased oxidative stress, we described the copper-binding site located in the human C-terminal domain of PrP-HuPrP(90-231), both in the wild-type protein and in the protein carrying the pathological mutation Q212P. We used the synchrotron-based X-ray absorption fine structure technique to study the Cu(II) and Cu(I) coordination geometries in the mutant, and we compared them with those obtained using the wild-type protein. By analyzing the extended X-ray absorption fine structure and the X-ray absorption near-edge structure, we highlighted changes in copper coordination induced by the point mutation Q212P in both oxidation states. While in the wild-type protein the copper-binding site has the same structure for both Cu(II) and Cu(I), in the mutant the coordination site changes drastically from the oxidized to the reduced form of the copper ion. Copper-binding sites in the mutant resemble those obtained using peptides, confirming the loss of short- and long-range interactions. These changes probably cause alterations in copper homeostasis and, consequently, in redox control.

  17. Life cycle of yeast prions: propagation mediated by amyloid fibrils.

    PubMed

    Inoue, Yuji

    2009-01-01

    Currently, prion phenomena have been detected in various organisms, in addition to mammals affected by transmissible spongiform encephalopathies. In the budding yeast Saccharomyces cerevisiae, various proteins have prion properties and adopt atypical phenotypes as genetic elements, such as the Sup35 and Ure2 proteins, corresponding to the [PSI+] and [URE3] phenotypes, respectively. Each yeast prion protein has a prion-forming region rich in glutamines and/or asparagines, and can form amyloid fibrils in its prion conformation. Studies on yeast prions have revealed that the amyloid fibrils play critical roles in the life cycle of the yeast prion. First, the amyloid fibril binds the normal prion protein and catalyzes a structural conversion into the abnormal form, the key event of the prion phenomenon. Second, the amyloid fibril is related to the strain differences of the prion phenotypes, by its substructural differences. Third, the number of prion elements multiplies by the fragmentation of amyloid fibrils, which is mediated by a chaperone system in which Hsp104 plays a central role, and the prion elements are distributed to the daughter cells during cell division. Moreover, heterologous prion-prion communications may occur, probably by cross-seeding of amyloid fibrils among different prion proteins in the same yeast cell. Findings achieved by yeast prion studies are making great contributions toward understanding the characteristics of amyloid fibrils and prions.

  18. Hierarchical organization in the amyloid core of yeast prion protein Ure2.

    PubMed

    Ngo, Sam; Gu, Lei; Guo, Zhefeng

    2011-08-26

    Formation of amyloid fibrils is involved in a range of fatal human disorders including Alzheimer, Parkinson, and prion diseases. Yeast prions, despite differences in sequence from their mammalian counterparts, share similar features with mammalian prions including infectivity, prion strain phenomenon, and species barrier and thus are good model systems for human prion diseases. Yeast prions normally have long prion domains that presumably form multiple β strands in the fibril, and structural knowledge about the yeast prion fibrils has been limited. Here we use site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to investigate the structures of amyloid fibrils of Ure2 prion domain. We show that 15 spin-labeled Ure2 mutants, with spin labels at every 5th residue from position 5 to position 75, show a single-line or nearly single-line feature in their EPR spectra as a result of strong spin exchange interactions. These results suggest that a parallel in-register β structure exists at these spin-labeled positions. More interestingly, we also show that residues in the segment 30-65 have stronger spin exchange interactions, higher local stability, and lower solvent accessibility than segments 5-25 and 70-75, suggesting different local environment at these segments. We propose a hierarchical organization in the amyloid core of Ure2, with the segment 30-65 forming an inner core and the segments 5-25 and 70-75 forming an outer core. The hierarchical organization in the amyloid core may be a structural origin for polymorphism in fibrils and prion strains.

  19. Mass Spectrometric Approaches to Detecting and Quantifying Prions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions are infectious proteins that replicate by converting a normal cellular protein (PrPC)into a prion. Although prions and PrPC are isoforms, they have dramatically different physicochemical properties. Prions are resistant to proteinase K (PK) degradation, while PrPC is completely degraded by PK...

  20. The contribution of different prion protein types and host polymorphisms to clinicopathological variations in Creutzfeldt-Jakob disease.

    PubMed

    Head, Mark W; Ironside, James W

    2012-07-01

    Creutzfeldt-Jakob disease is a fatal neurodegenerative disease that primarily affects the central nervous system. In this respect, it can be considered alongside the more frequently occurring neurodegenerative diseases, such as Alzheimer's disease. Creutzfeldt-Jakob disease is perhaps the paradigmatic protein misfolding disorder, so comparisons between the mechanisms involved in Creutzfeldt-Jakob disease and other neurodegenerative diseases associated with protein misfolding (such as the tauopathies and synucleinopathies) may also be informative. Like many of these diseases, Creutzfeldt-Jakob disease occurs sporadically or can, more rarely, be associated with mutations. However, Creutzfeldt-Jakob disease can also be acquired and is experimentally transmissible. These properties have had profound public health implications and made the disease of interest to virologists, in addition to those interested in protein misfolding disorders and neurodegeneration. The possible causes for the pronounced phenotypic variation among different forms of Creutzfeldt-Jakob disease are beginning to become understood, and these appear to depend in large measure on the genetics of the host (specifically the sequence of the prion protein gene, PRNP) and the epigenetic aspects of the agent (thought to be a misfolded and aggregated form of the PRNP gene product, termed a prion). This review will examine whether this model in its present form has sufficient complexity and subtlety to account for the clinicopathological variation evident in Creutzfeldt-Jakob disease and will outline the ways in which a more complete and informative molecular definition of human prions are currently being sought.

  1. A solid-phase immunoassay of protease-resistant prion protein with filtration blotting involving sodium dodecyl sulfate.

    PubMed

    Kobayashi, Yoshiteru; Kohno, Naoyuki; Wanibe, Shoko; Hirayasu, Kazunari; Uemori, Hitoshi; Tagawa, Yuichi; Yokoyama, Takashi; Shinagawa, Morikazu

    2006-02-15

    The precise diagnosis for bovine spongiform encephalopathy (BSE) is crucial for preventing new transmission to humans. Several testing procedures are reported for determining protease-resistant prion protein in various tissues as a major hallmark of prion diseases such as BSE, scrapie, and Creutzfeldt-Jakob disease. However, contamination of materials from tissues or degradation of the specimens sometimes disturbs the accuracy of the assay. Here, we have developed a novel method for solid-phase immunoassay of the disease-specific conformational isoform, PrP(Sc), using filtration blotting of protein in the presence of sodium dodecyl sulfate (SDS) followed by a filtration-based immunoassay with a single anti-prion protein antibody, together with the improved fractionation procedure involving high concentrations of surfactant/detergent. The SDS/heat treatment renders unfolded PrP(Sc) quantitative retention on a polyvinylidene difluoride filter and allows enhancement of the analyte signal with immunodetection; thus, all of the tested specimens are determined with 100% accuracy. In addition, the immunoassay is completed in approximately 1h, indicating its usefulness not only for the screening of BSE specimens but probably also for the postmortem BSE diagnosis of fallen stock as the antibody recognizes the core part of PrP(Sc). The solid-phase immunoassay method, including the filtration blotting with SDS, would be applicable to determining even more sensitively proteins other than PrP(Sc), especially those having rigid conformations.

  2. α-Helical to β-Helical Conformation Change in the C-Terminal of the Mammalian Prion Protein

    NASA Astrophysics Data System (ADS)

    Singh, Jesse; Whitford, Paul; Hayre, Natha; Cox, Daniel; Onuchic, José.

    2011-03-01

    We employ all-atom structure-based models with mixed basis contact maps to explore whether there are any significant geometric or energetic constraints limiting conjectured conformational transitions between the alpha-helical (α H) and the left handed beta helical (LHBH) conformations for the C-terminal (residues 166-226) of the mammalian prion protein. The LHBH structure has been proposed to describe infectious oligomers and one class of in vitro grown fibrils, as well as possibly self- templating the conversion of normal cellular prion protein to the infectious form. Our results confirm that the kinetics of the conformation change are not strongely limited by large scale geometry modification and there exists an overall preference for the LHBH conformation.

  3. Translation of the prion protein mRNA is robust in astrocytes but does not amplify during reactive astrocytosis in the mouse brain.

    PubMed

    Jackson, Walker S; Krost, Clemens; Borkowski, Andrew W; Kaczmarczyk, Lech

    2014-01-01

    Prion diseases induce neurodegeneration in specific brain areas for undetermined reasons. A thorough understanding of the localization of the disease-causing molecule, the prion protein (PrP), could inform on this issue but previous studies have generated conflicting conclusions. One of the more intriguing disagreements is whether PrP is synthesized by astrocytes. We developed a knock-in reporter mouse line in which the coding sequence of the PrP expressing gene (Prnp), was replaced with that for green fluorescent protein (GFP). Native GFP fluorescence intensity varied between and within brain regions. GFP was present in astrocytes but did not increase during reactive gliosis induced by scrapie prion infection. Therefore, reactive gliosis associated with prion diseases does not cause an acceleration of local PrP production. In addition to aiding in Prnp gene activity studies, this reporter mouse line will likely prove useful for analysis of chimeric animals produced by stem cell and tissue transplantation experiments.

  4. Pyroglutamyl-N-terminal prion protein fragments in sheep brain following the development of transmissible spongiform encephalopathies

    PubMed Central

    Gielbert, Adriana; Thorne, Jemma K.; Hope, James

    2015-01-01

    Protein misfolding, protein aggregation and disruption to cellular proteostasis are key processes in the propagation of disease and, in some progressive neurodegenerative diseases of the central nervous system, the misfolded protein can act as a self-replicating template or prion converting its normal isoform into a misfolded copy of itself. We have investigated the sheep transmissible spongiform encephalopathy, scrapie, and developed a multiple selected reaction monitoring (mSRM) mass spectrometry assay to quantify brain peptides representing the “ragged” N-terminus and the core of ovine prion protein (PrPSc) by using Q-Tof mass spectrometry. This allowed us to identify pyroglutamylated N-terminal fragments of PrPSc at residues 86, 95 and 101, and establish that these fragments were likely to be the result of in vivo processes. We found that the ratios of pyroglutamylated PrPSc fragments were different in sheep of different breeds and geographical origin, and our expanded ovine PrPSc assay was able to determine the ratio and allotypes of PrP accumulating in diseased brain of PrP heterozygous sheep; it also revealed significant differences between N-terminal amino acid profiles (N-TAAPs) in other types of ovine prion disease, CH1641 scrapie and ovine BSE. Variable rates of PrP misfolding, aggregation and degradation are the likely basis for phenotypic (or strain) differences in prion-affected animals and our mass spectrometry-based approach allows the simultaneous investigation of factors such as post-translational modification (pyroglutamyl formation), conformation (by N-TAAP analysis) and amino-acid polymorphisms (allotype ratio) which affect the kinetics of these proteostatic processes. PMID:25988175

  5. Amyloid-beta oligomers increase the localization of prion protein at the cell surface.

    PubMed

    Caetano, Fabiana A; Beraldo, Flavio H; Hajj, Glaucia N M; Guimaraes, Andre L; Jürgensen, Sofia; Wasilewska-Sampaio, Ana Paula; Hirata, Pedro H F; Souza, Ivana; Machado, Cleiton F; Wong, Daisy Y-L; De Felice, Fernanda G; Ferreira, Sergio T; Prado, Vania F; Rylett, R Jane; Martins, Vilma R; Prado, Marco A M

    2011-05-01

    In Alzheimer's disease, the amyloid-β peptide (Aβ) interacts with distinct proteins at the cell surface to interfere with synaptic communication. Recent data have implicated the prion protein (PrP(C)) as a putative receptor for Aβ. We show here that Aβ oligomers signal in cells in a PrP(C)-dependent manner, as might be expected if Aβ oligomers use PrP(C) as a receptor. Immunofluorescence, flow cytometry and cell surface protein biotinylation experiments indicated that treatment with Aβ oligomers, but not monomers, increased the localization of PrP(C) at the cell surface in cell lines. These results were reproduced in hippocampal neuronal cultures by labeling cell surface PrP(C). In order to understand possible mechanisms involved with this effect of Aβ oligomers, we used live cell confocal and total internal reflection microscopy in cell lines. Aβ oligomers inhibited the constitutive endocytosis of PrP(C), but we also found that after Aβ oligomer-treatment PrP(C) formed more clusters at the cell surface, suggesting the possibility of multiple effects of Aβ oligomers. Our experiments show for the first time that Aβ oligomers signal in a PrP(C)-dependent way and that they can affect PrP(C) trafficking, increasing its localization at the cell surface.

  6. Functions of the cellular prion protein, the end of Moore's law, and Ockham's razor theory

    PubMed Central

    del Río, José A.; Gavín, Rosalina

    2016-01-01

    ABSTRACT Since its discovery the cellular prion protein (encoded by the Prnp gene) has been associated with a large number of functions. The proposed functions rank from basic cellular processes such as cell cycle and survival to neural functions such as behavior and neuroprotection, following a pattern similar to that of Moore's law for electronics. In addition, particular interest is increasing in the participation of Prnp in neurodegeneration. However, in recent years a redefinition of these functions has begun, since examples of previously attributed functions were increasingly re-associated with other proteins. Most of these functions are linked to so-called “Prnp-flanking genes” that are close to the genomic locus of Prnp and which are present in the genome of some Prnp mouse models. In addition, their role in neuroprotection against convulsive insults has been confirmed in recent studies. Lastly, in recent years a large number of models indicating the participation of different domains of the protein in apoptosis have been uncovered. However, after more than 10 years of molecular dissection our view is that the simplest mechanistic model in PrPC-mediated cell death should be considered, as Ockham's razor theory suggested. PMID:26890218

  7. Characterization and polyanion-binding properties of purified recombinant prion protein.

    PubMed Central

    Brimacombe, D B; Bennett, A D; Wusteman, F S; Gill, A C; Dann, J C; Bostock, C J

    1999-01-01

    Certain polysulphated polyanions have been shown to have prophylactic effects on the progression of transmissible spongiform encephalopathy disease, presumably because they bind to prion protein (PrP). Until now, the difficulty of obtaining large quantities of native PrP has precluded detailed studies of these interactions. We have over-expressed murine recombinant PrP (recPrP), lacking its glycophosphoinositol membrane anchor, in modified mammalian cells. Milligram quantities of secreted, soluble and partially glycosylated protein were purified under non-denaturing conditions and the identities of mature-length aglycosyl recPrP and two cleavage fragments were determined by electrospray MS. Binding was assessed by surface plasmon resonance techniques using both direct and competitive ligand-binding approaches. recPrP binding to immobilized polyanions was enhanced by divalent metal ions. Polyanion binding was strong and showed complex association and dissociation kinetics that were consistent with ligand-directed recPrP aggregation. The differences in the binding strengths of recPrP to pentosan polysulphate and to other sulphated polyanions were found to parallel their in vivo anti-scrapie and in vitro anti-scrapie-specific PrP formation potencies. When recPrP was immobilized by capture on metal-ion chelates it was found, contrary to expectation, that the addition of polyanions promoted the dissociation of the protein. PMID:10477271

  8. Functions of the cellular prion protein, the end of Moore's law, and Ockham's razor theory.

    PubMed

    del Río, José A; Gavín, Rosalina

    2016-01-01

    Since its discovery the cellular prion protein (encoded by the Prnp gene) has been associated with a large number of functions. The proposed functions rank from basic cellular processes such as cell cycle and survival to neural functions such as behavior and neuroprotection, following a pattern similar to that of Moore's law for electronics. In addition, particular interest is increasing in the participation of Prnp in neurodegeneration. However, in recent years a redefinition of these functions has begun, since examples of previously attributed functions were increasingly re-associated with other proteins. Most of these functions are linked to so-called "Prnp-flanking genes" that are close to the genomic locus of Prnp and which are present in the genome of some Prnp mouse models. In addition, their role in neuroprotection against convulsive insults has been confirmed in recent studies. Lastly, in recent years a large number of models indicating the participation of different domains of the protein in apoptosis have been uncovered. However, after more than 10 years of molecular dissection our view is that the simplest mechanistic model in PrP(C)-mediated cell death should be considered, as Ockham's razor theory suggested.

  9. Activation of human natural killer cells by the soluble form of cellular prion protein

    SciTech Connect

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  10. Luman contributes to brefeldin A-induced prion protein gene expression by interacting with the ERSE26 element

    PubMed Central

    Déry, Marc-André; LeBlanc, Andréa C.

    2017-01-01

    The cellular prion protein (PrP) is essential for transmissible prion diseases, but its exact physiological function remains unclear. Better understanding the regulation of the human prion protein gene (PRNP) expression can provide insight into this elusive function. Spliced XBP1 (sXBP1) was recently shown to mediate endoplasmic reticulum (ER) stress-induced PRNP expression. In this manuscript, we identify Luman, a ubiquitous, non-canonical unfolded protein response (UPR), as a novel regulator of ER stress-induced PRNP expression. Luman activity was transcriptionally and proteolytically activated by the ER stressing drug brefeldin A (BFA) in human neurons, astrocytes, and breast cancer MCF-7 cells. Over-expression of active cleaved Luman (ΔLuman) increased PrP levels, while siRNA-mediated Luman silencing decreased BFA-induced PRNP expression. Site-directed mutagenesis and chromatin immunoprecipitation demonstrated that ΔLuman regulates PRNP expression by interacting with the ER stress response element 26 (ERSE26). Co-over-expression and siRNA-mediated silencing experiments showed that sXBP1 and ΔLuman both up-regulate ER stress-induced PRNP expression. Attempts to understand the function of PRNP up-regulation by Luman excluded a role in atorvastatin-induced neuritogenesis, ER-associated degradation, or proteasomal inhibition-induced cell death. Overall, these results refine our understanding of ER stress-induced PRNP expression and function. PMID:28205568

  11. Origins and Evolution of the HET-s Prion-Forming Protein: Searching for Other Amyloid-Forming Solenoids

    PubMed Central

    Gendoo, Deena M. A.; Harrison, Paul M.

    2011-01-01

    The HET-s prion-forming domain from the filamentous fungus Podospora anserina is gaining considerable interest since it yielded the first well-defined atomic structure of a functional amyloid fibril. This structure has been identified as a left-handed beta solenoid with a triangular hydrophobic core. To delineate the origins of the HET-s prion-forming protein and to discover other amyloid-forming proteins, we searched for all homologs of the HET-s protein in a database of protein domains and fungal genomes, using a combined application of HMM, psi-blast and pGenThreader techniques, and performed a comparative evolutionary analysis of the N-terminal alpha-helical domain and the C-terminal prion-forming domain of HET-s. By assessing the tandem evolution of both domains, we observed that the prion-forming domain is restricted to Sordariomycetes, with a marginal additional sequence homolog in Arthroderma otae as a likely case of horizontal transfer. This suggests innovation and rapid evolution of the solenoid fold in the Sordariomycetes clade. In contrast, the N-terminal domain evolves at a slower rate (in Sordariomycetes) and spans many diverse clades of fungi. We performed a full three-dimensional protein threading analysis on all identified HET-s homologs against the HET-s solenoid fold, and present detailed structural annotations for identified structural homologs to the prion-forming domain. An analysis of the physicochemical characteristics in our set of structural models indicates that the HET-s solenoid shape can be readily adopted in these homologs, but that they are all less optimized for fibril formation than the P. anserina HET-s sequence itself, due chiefly to the presence of fewer asparagine ladders and salt bridges. Our combined structural and evolutionary analysis suggests that the HET-s shape has “limited scope” for amyloidosis across the wider protein universe, compared to the ‘generic’ left-handed beta helix. We discuss the implications of

  12. Phenotypic characterization of cells participating in transport of prion protein aggregates across the intestinal mucosa of sheep

    PubMed Central

    Piercey Åkesson, Caroline; Press, Charles McL.; Tranulis, Michael A.; Jeffrey, Martin; Aleksandersen, Mona; Landsverk, Thor; Espenes, Arild

    2012-01-01

    The oral route is considered to be the main entry site of several transmissible spongiform encephalopathies or prion diseases of animals and man. Following natural and experimental oral exposure to scrapie, sheep first accumulate disease associated prion protein (PrPd) in Peyer’s patch (PP) lymphoid follicles. In this study, recombinant ovine prion protein (rPrP) was inoculated into gut loops of young lambs and the transportation across the intestinal wall studied. In particular, the immunohistochemical phenotypes of cells bearing the inoculated prion protein were investigated. The rPrP was shown to be transported across the villi of the gut, into the lacteals and submucosal lymphatics, mimicking the transport route of PrPd from scrapie brain inoculum observed in a previous intestinal loop experiment. The cells bearing the inoculated rPrP were mainly mononuclear cells, and multicolor immunofluorescence procedures were used to show that the rPrP bearing cells were professional antigen presenting cells expressing Major histocompatibility complex II (MHCII). In addition, the rPrP bearing cells labeled with CD205, CD11b and the macrophage marker CD68, and not with the dendritic cell markers CD11c and CD209. Others have reported that cells expressing CD205 and CD11b in the absence of CD11c have been shown to induce T cell tolerance or regulatory T cells. Based on this association, it was speculated that the rPrP and by extension PrPd and scrapie infective material may exploit the physiological process of macromolecular uptake across the gut, and that this route of entry may have implications for immune surveillance. PMID:22437736

  13. Prions and Prion-Like Pathogens in Neurodegenerative Disorders

    PubMed Central

    Peggion, Caterina; Sorgato, Maria Catia; Bertoli, Alessandro

    2014-01-01

    Prions are unique elements in biology, being able to transmit biological information from one organism to another in the absence of nucleic acids. They have been identified as self-replicating proteinaceous agents responsible for the onset of rare and fatal neurodegenerative disorders—known as transmissible spongiform encephalopathies, or prion diseases—which affect humans and other animal species. More recently, it has been proposed that other proteins associated with common neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease, can self-replicate like prions, thus sustaining the spread of neurotoxic entities throughout the nervous system. Here, we review findings that have contributed to expand the prion concept, and discuss if the involved toxic species can be considered bona fide prions, including the capacity to infect other organisms, or whether these pathogenic aggregates share with prions only the capability to self-replicate. PMID:25437612

  14. Prions and prion-like pathogens in neurodegenerative disorders.

    PubMed

    Peggion, Caterina; Sorgato, Maria Catia; Bertoli, Alessandro

    2014-02-18

    Prions are unique elements in biology, being able to transmit biological information from one organism to another in the absence of nucleic acids. They have been identified as self-replicating proteinaceous agents responsible for the onset of rare and fatal neurodegenerative disorders-known as transmissible spongiform encephalopathies, or prion diseases-which affect humans and other animal species. More recently, it has been proposed that other proteins associated with common neurodegenerative disorders, such as Alzheimer's and Parkinson's disease, can self-replicate like prions, thus sustaining the spread of neurotoxic entities throughout the nervous system. Here, we review findings that have contributed to expand the prion concept, and discuss if the involved toxic species can be considered bona fide prions, including the capacity to infect other organisms, or whether these pathogenic aggregates share with prions only the capability to self-replicate.

  15. Proteomic consequences of expression and pathological conversion of the prion protein in inducible neuroblastoma N2a cells.

    PubMed

    Provansal, Monique; Roche, Stéphane; Pastore, Manuela; Casanova, Danielle; Belondrade, Maxime; Alais, Sandrine; Leblanc, Pascal; Windl, Otto; Lehmann, Sylvain

    2010-01-01

    Neurodegenerative diseases are often associated with misfolding and deposition of specific proteins in the nervous system. The prion protein, which is associated with transmissible spongiform encephalopathies (TSEs), is one of them. The normal function of the cellular form of the prion protein (PrP(C)) is mediated through specific signal transduction pathways and is linked to resistance to oxidative stress, neuronal outgrowth and cell survival. In TSEs, PrP(C) is converted into an abnormally folded isoform, called PrP(Sc), that may impair the normal function of the protein and/or generate toxic aggregates. To investigate these molecular events we performed a two-dimensional gel electrophoresis comparison of neuroblastoma N2a cells expressing different amounts of PrP(C) and eventually infected with the 22L prion strain. Mass spectrometry and peptide mass fingerprint analysis identified a series of proteins with modified expression. They included the chaperones Grp78/BiP, protein disulfide-isomerase A6, Grp75 and Hsp60 which had an opposite expression upon PrPC expression and PrP(Sc) production. The detection of these proteins was coherent with the idea that protein misfolding plays an important role in TSEs. Other proteins, such as calreticulin, tubulin, vimentin or the laminin receptor had their expression modified in infected cells, which was reminiscent of previous results. Altogether our data provide molecular information linking PrP expression and misfolding, which could be the basis of further therapeutic and pathophysiological research in this field.

  16. Amyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity.

    PubMed

    Nicoll, Andrew J; Panico, Silvia; Freir, Darragh B; Wright, Daniel; Terry, Cassandra; Risse, Emmanuel; Herron, Caroline E; O'Malley, Tiernan; Wadsworth, Jonathan D F; Farrow, Mark A; Walsh, Dominic M; Saibil, Helen R; Collinge, John

    2013-01-01

    Growing evidence suggests water-soluble, non-fibrillar forms of amyloid-β protein (Aβ) have important roles in Alzheimer's disease with toxicities mimicked by synthetic Aβ(1-42). However, no defined toxic structures acting via specific receptors have been identified and roles of proposed receptors, such as prion protein (PrP), remain controversial. Here we quantify binding to PrP of Aβ(1-42) after different durations of aggregation. We show PrP-binding and PrP-dependent inhibition of long-term potentiation (LTP) correlate with the presence of protofibrils. Globular oligomers bind less avidly to PrP and do not inhibit LTP, whereas fibrils inhibit LTP in a PrP-independent manner. That only certain transient Aβ assemblies cause PrP-dependent toxicity explains conflicting reports regarding the involvement of PrP in Aβ-induced impairments. We show that these protofibrils contain a defined nanotubular structure with a previously unidentified triple helical conformation. Blocking the formation of Aβ nanotubes or their interaction with PrP might have a role in treatment of Alzheimer's disease.

  17. Synthetic peptide vaccines yield monoclonal antibodies to cellular and pathological prion proteins of ruminants.

    PubMed

    Harmeyer, S; Pfaff, E; Groschup, M H

    1998-04-01

    Transmissible spongiform encephalopathies are closely linked to the accumulation of a pathological isoform of a host-encoded prion protein (PrP(C)), designated PrP(Sc). In an attempt to generate mono- and polyclonal antibodies to ruminant PrP, 32 mice were vaccinated with peptide vaccines which were synthesized according to the amino acid sequence of ovine PrP. By this approach five PrP-reactive polyclonal antisera directed against four different domains of the protein were stimulated. Splenocytes of mice which had developed PrP-reactive antibodies were used for the generation of monoclonal antibodies (MAbs). Obtained PrP-specific MAbs were directed to three different domains of ruminant PrP which differed from the three previously described major MAb binding sites in rodent PrP. MAbs exhibited reactivity with non-denatured ruminant PrP(C) in ELISA and immunoprecipitation and with denatured ovine and bovine PrP(Sc) in immunoblot. Cross-reactivity was observed with PrP(C) of nine other mammalian species and with pathological PrP preferably of ruminants and weakly with that of hamster and mouse. The generated MAbs will be useful tools for the development of diagnostic tests for BSE and scrapie as well as for pathogenesis studies of these diseases.

  18. Cellular prion protein acquires resistance to proteolytic degradation following copper ion binding.

    PubMed

    Kuczius, Thorsten; Buschmann, Anne; Zhang, Wenlan; Karch, Helge; Becker, Karsten; Peters, Georg; Groschup, Martin H

    2004-08-01

    The conversion of cellular prion protein (PrP(C)) into its pathological isoform (PrP(Sc)) conveys an increase in hydrophobicity and induces a partial resistance to proteinase K (PK). Interestingly, co-incubation with high copper ion concentrations also modifies the solubility of PrP(c) and induces a partial PK resistance which was reminiscent of PrP(Sc). However, concerns were raised whether this effect was not due to a copper-induced inhibition of the PK itself. We have therefore analyzed the kinetics of the formation of PK-resistant PrP(C) and excluded possible interference effects by removing unbound copper ions prior to the addition of PK by methanol precipitation or immobilization of PrP(C) followed by washing steps. We found that preincubation of PrPc with copper ions at concentrations as low as 50 microM indeed rendered these proteins completely PK resistant, while control substrates were proteolyzed. No other divalent cations induced a similar effect. However, in addition to this specific stabilizing effect on PrP(C), higher copper ion concentrations in solution (>200 microM) directly blocked the enzymatic activity of PK, possibly by replacing the Ca2+ ions in the active center of the enzyme. Therefore, as a result of this inhibition the proteolytic degradation of PrP(C) as well as PrP(Sc) molecules was suppressed.

  19. Amyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity

    PubMed Central

    Nicoll, Andrew J.; Panico, Silvia; Freir, Darragh B.; Wright, Daniel; Terry, Cassandra; Risse, Emmanuel; Herron, Caroline E.; O’Malley, Tiernan; Wadsworth, Jonathan D. F.; Farrow, Mark A.; Walsh, Dominic M.; Saibil, Helen R.; Collinge, John

    2013-01-01

    Growing evidence suggests water-soluble, non-fibrillar forms of amyloid-β protein (Aβ) have important roles in Alzheimer’s disease with toxicities mimicked by synthetic Aβ1–42. However, no defined toxic structures acting via specific receptors have been identified and roles of proposed receptors, such as prion protein (PrP), remain controversial. Here we quantify binding to PrP of Aβ1–42 after different durations of aggregation. We show PrP-binding and PrP-dependent inhibition of long-term potentiation (LTP) correlate with the presence of protofibrils. Globular oligomers bind less avidly to PrP and do not inhibit LTP, whereas fibrils inhibit LTP in a PrP-independent manner. That only certain transient Aβ assemblies cause PrP-dependent toxicity explains conflicting reports regarding the involvement of PrP in Aβ-induced impairments. We show that these protofibrils contain a defined nanotubular structure with a previously unidentified triple helical conformation. Blocking the formation of Aβ nanotubes or their interaction with PrP might have a role in treatment of Alzheimer’s disease. PMID:24022506

  20. Pharmacological chaperone reshapes the energy landscape for folding and aggregation of the prion protein

    NASA Astrophysics Data System (ADS)

    Gupta, Amar Nath; Neupane, Krishna; Rezajooei, Negar; Cortez, Leonardo M.; Sim, Valerie L.; Woodside, Michael T.

    2016-06-01

    The development of small-molecule pharmacological chaperones as therapeutics for protein misfolding diseases has proven challenging, partly because their mechanism of action remains unclear. Here we study Fe-TMPyP, a tetrapyrrole that binds to the prion protein PrP and inhibits misfolding, examining its effects on PrP folding at the single-molecule level with force spectroscopy. Single PrP molecules are unfolded with and without Fe-TMPyP present using optical tweezers. Ligand binding to the native structure increases the unfolding force significantly and alters the transition state for unfolding, making it more brittle and raising the barrier height. Fe-TMPyP also binds the unfolded state, delaying native refolding. Furthermore, Fe-TMPyP binding blocks the formation of a stable misfolded dimer by interfering with intermolecular interactions, acting in a similar manner to some molecular chaperones. The ligand thus promotes native folding by stabilizing the native state while also suppressing interactions driving aggregation.

  1. Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion protein

    PubMed Central

    Yoon, Yeo Min; Lee, Jun Hee; Yun, Seung Pil; Han, Yong-Seok; Yun, Chul Won; Lee, Hyun Jik; Noh, Hyunjin; Lee, Sei-Jung; Han, Ho Jae; Lee, Sang Hun

    2016-01-01

    Although mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine, ischemia-induced endoplasmic reticulum (ER) stress induces low MSC engraftment and limits their therapeutic efficacy. To overcome this, we investigated the protective effect of tauroursodeoxycholic acid (TUDCA), a bile acid, on ER stress in MSCs in vitro and in vivo. In ER stress conditions, TUDCA treatment of MSCs reduced the activation of ER stress-associated proteins, including GRP78, PERK, eIF2α, ATF4, IRE1α, JNK, p38, and CHOP. In particular, TUDCA inhibited the dissociation between GRP78 and PERK, resulting in reduced ER stress-mediated cell death. Next, to explore the ER stress protective mechanism induced by TUDCA treatment, TUDCA-mediated cellular prion protein (PrPC) activation was assessed. TUDCA treatment increased PrPC expression, which was regulated by Akt phosphorylation. Manganese-dependent superoxide dismutase (MnSOD) expression also increased significantly in response to signaling through the TUDCA-Akt axis. In a murine hindlimb ischemia model, TUDCA-treated MSC transplantation augmented the blood perfusion ratio, vessel formation, and transplanted cell survival more than untreated MSC transplantation did. Augmented functional recovery following MSC transplantation was blocked by PrPC downregulation. This study is the first to demonstrate that TUDCA protects MSCs against ER stress via Akt-dependent PrPC and Akt-MnSOD pathway. PMID:28004805

  2. In Vitro Amplification of Misfolded Prion Protein Using Lysate of Cultured Cells

    PubMed Central

    Mays, Charles E.; Yeom, Jihyun; Kang, Hae-Eun; Bian, Jifeng; Khaychuk, Vadim; Kim, Younghwan; Bartz, Jason C.; Telling, Glenn C.; Ryou, Chongsuk

    2011-01-01

    Protein misfolding cyclic amplification (PMCA) recapitulates the prion protein (PrP) conversion process under cell-free conditions. PMCA was initially established with brain material and then with further simplified constituents such as partially purified and recombinant PrP. However, availability of brain material from some species or brain material from animals with certain mutations or polymorphisms within the PrP gene is often limited. Moreover, preparation of native PrP from mammalian cells and tissues, as well as recombinant PrP from bacterial cells, involves time-consuming purification steps. To establish a convenient and versatile PMCA procedure unrestricted to the availability of substrate sources, we attempted to conduct PMCA with the lysate of cells that express cellular PrP (PrPC). PrPSc was efficiently amplified with lysate of rabbit kidney epithelial RK13 cells stably transfected with the mouse or Syrian hamster PrP gene. Furthermore, PMCA was also successful with lysate of other established cell lines of neuronal or non-neuronal origins. Together with the data showing that the abundance of PrPC in cell lysate was a critical factor to drive efficient PrPSc amplification, our results demonstrate that cell lysate in which PrPC is present abundantly serves as an excellent substrate source for PMCA. PMID:21464935

  3. Pharmacological chaperone reshapes the energy landscape for folding and aggregation of the prion protein

    PubMed Central

    Gupta, Amar Nath; Neupane, Krishna; Rezajooei, Negar; Cortez, Leonardo M.; Sim, Valerie L.; Woodside, Michael T.

    2016-01-01

    The development of small-molecule pharmacological chaperones as therapeutics for protein misfolding diseases has proven challenging, partly because their mechanism of action remains unclear. Here we study Fe-TMPyP, a tetrapyrrole that binds to the prion protein PrP and inhibits misfolding, examining its effects on PrP folding at the single-molecule level with force spectroscopy. Single PrP molecules are unfolded with and without Fe-TMPyP present using optical tweezers. Ligand binding to the native structure increases the unfolding force significantly and alters the transition state for unfolding, making it more brittle and raising the barrier height. Fe-TMPyP also binds the unfolded state, delaying native refolding. Furthermore, Fe-TMPyP binding blocks the formation of a stable misfolded dimer by interfering with intermolecular interactions, acting in a similar manner to some molecular chaperones. The ligand thus promotes native folding by stabilizing the native state while also suppressing interactions driving aggregation. PMID:27346148

  4. Distribution of the cellular prion protein in the central nervous system of the chicken.

    PubMed

    Atoji, Yasuro; Ishiguro, Naotaka

    2009-12-01

    The cellular prion protein (PrP), a cell membrane-bound glycoprotein mainly located in the dendrites and axons of the central nervous system (CNS), is responsible for transmissible spongiform encephalopathies in mammals. PrP genes are widely conserved in vertebrates. In birds, the presence of PrP mRNA has been confirmed in neurons of the chicken brain, but localization of the protein remains to be determined. In the present study, we demonstrated the regional distribution of PrP in the CNS of adult chickens by immunohistochemical staining with a monoclonal antibody that recognizes chicken PrP 161-164. Immunoreactivity was observed in the neuropil, but not in neuronal somata or glial cells. It was preferentially intense in the olfactory bulb, the dorsal thalamus, the hypothalamus, and most regions of the telencephalon. Immunostaining became less intense toward the brainstem, but many nuclei were immunoreactive. Among brainstem nuclei, moderate immunostaining was observed in the nucleus of the solitary tract, dorsal motor nucleus of the vagus nerve, and substantia gelatinosa Rolandi. The cerebellar cortex was devoid of PrP immunoreactivity. The dorsal horn in the spinal cord was strongly immunoreactive. In situ hybridization with two probes of the C-terminal portion demonstrated localization of PrP mRNA in neurons of the brain and spinal cord. These findings suggest that PrP in the chicken CNS is localized in the dendrites and axons of neurons and that it is associated with certain sensory systems.

  5. Prion Protein and Copper Cooperatively Protect Neurons by Modulating NMDA Receptor Through S-nitrosylation

    PubMed Central

    Gasperini, Lisa; Meneghetti, Elisa; Pastore, Beatrice

    2015-01-01

    Abstract Aims: Several neurodegenerative disorders show alterations in glutamatergic synapses and increased susceptibility to excitotoxicity. Mounting evidence suggests a central role for the cellular prion protein (PrPC) in neuroprotection. Therefore, the loss of PrPC function occurring in prion disorders may contribute to the disease progression and neurodegeneration. Indeed, PrPC modulates N-methyl-d-aspartate receptors (NMDAR), thus preventing cell death. In this study, we show that PrPC and copper cooperatively inhibit NMDAR through S-nitrosylation, a post-translational modification resulting from the chemical reaction of nitric oxide (NO) with cysteines. Results: Comparing wild-type Prnp (Prnp+/+) and PrPC knockout (Prnp0/0) mouse hippocampi, we found that GluN1 and GluN2A S-nitrosylation decrease in Prnp0/0. Using organotypic hippocampal cultures, we found that copper chelation decreases NMDAR S-nitrosylation in Prnp+/+ but not in Prnp0/0. This suggests that PrPC requires copper to support the chemical reaction between NO and thiols. We explored PrPC-Cu neuroprotective role by evaluating neuron susceptibility to excitotoxicity in Prnp+/+ and Prnp0/0 cultures. We found that (i) PrPC-Cu modulates GluN2A-containing NMDAR, those inhibited by S-nitrosylation; (ii) PrPC and copper are interdependent to protect neurons from insults; (iii) neuronal NO synthase inhibition affects susceptibility in wild-type but not in Prnp0/0, while (iv) the addition of a NO donor enhances Prnp0/0 neurons survival. Innovation and Conclusions: Our results show that PrPC and copper support NMDAR S-nitrosylation and cooperatively exert neuroprotection. In addition to NMDAR, PrPC may also favor the S-nitrosylation of other proteins. Therefore, this mechanism may be investigated in the context of the different cellular processes in which PrPC is involved. Antioxid. Redox Signal. 22, 772–784. PMID:25490055

  6. Convergent Replication of Mouse Synthetic Prion Strains

    PubMed Central

    Ghaemmaghami, Sina; Colby, David W.; Nguyen, Hoang-Oanh B.; Hayashi, Shigenari; Oehler, Abby; DeArmond, Stephen J.; Prusiner, Stanley B.

    2014-01-01

    Prion diseases are neurodegenerative disorders characterized by the aberrant folding of endogenous proteins into self-propagating pathogenic conformers. Prion disease can be initiated in animal models by inoculation with amyloid fibrils formed from bacterially derived recombinant prion protein. The synthetic prions that accumulated in infected organisms are structurally distinct from the amyloid preparations used to initiate their formation and change conformationally on repeated passage. To investigate the nature of synthetic prion transformation, we infected mice with a conformationally diverse set of amyloids and serially passaged the resulting prion strains. At each passage, we monitored changes in the biochemical and biological properties of the adapting strain. The physicochemical properties of each synthetic prion strain gradually changed on serial propagation until attaining a common adapted state with shared physicochemical characteristics. These results indicate that synthetic prions can assume multiple intermediate conformations before converging into one conformation optimized for in vivo propagation. PMID:23438476

  7. Creutzfeldt-Jakob disease associated with a V203I homozygous mutation in the prion protein gene.

    PubMed

    Komatsu, Junji; Sakai, Kenji; Hamaguchi, Tsuyoshi; Sugiyama, Yu; Iwasa, Kazuo; Yamada, Masahito

    2014-01-01

    We report a Japanese patient with Creutzfeldt-Jakob disease (CJD) with a V203I homozygous mutation of the prion protein gene (PRNP). A 73-year-old woman developed rapidly progressive gait disturbance and cognitive dysfunction. Four months after the onset, she entered a state of an akinetic mutism. Gene analysis revealed a homozygous V203I mutation in the PRNP. Familial CJD with a V203I mutation is rare, and all previously reported cases had a heterozygous mutation showing manifestations similar to those of typical sporadic CJD. Although genetic prion diseases with homozygous PRNP mutations often present with an earlier onset and more rapid clinical course than those with heterozygous mutations, no difference was found in clinical phenotype between our homozygous case and reported heterozygous cases.

  8. Redox behaviors of the neurotoxic portion in human prion protein, HuPrP(106-126)

    NASA Astrophysics Data System (ADS)

    Yamamoto, Norifumi; Kuwata, Kazuo

    2010-09-01

    A peptide fragment of human prion protein, HuPrP(106-126), has been reported to mimic the pathological features underlying prion diseases. Although the actual neurotoxic mechanism of HuPrP(106-126) has not been elucidated, several hypotheses has been proposed based on the role for copper. In this study, to understand the toxic function of HuPrP(106-126) from a viewpoint of electrochemical competence, we investigated redox properties of copper ion complexes with four different binding motifs of a model of HuPrP(106-126) based on density functional theory calculations. We found that the HuPrP(106-126)-derived models exhibited diverse redox activities that depended on copper-binding conformations.

  9. Double replacement gene targeting for the production of a series of mouse strains with different prion protein gene alterations

    SciTech Connect

    Moore, R.C.; Redhead, N.J.; Selfridge, J.

    1995-09-01

    We have developed a double replacement gene targeting strategy which enables the production of a series of mouse strains bearing different subtle alterations to endogenous genes. This is a two-step process in which a region of the gene of interest is first replaced with a selectable marker to produce an inactivated allele, which is then re-targeted with a second vector to reconstruct the inactivated allele, concomitantly introducing an engineered mutation. Five independent embryonic stem cell lines have been produced bearing different targeted alterations to the prion protein gene, including one which raises the level of expression. We have constructed mice bearing the codon 101 proline to leucine substitution linked to the human familial prion disease, Gerstmann-Straussler-Scheinker syndrome. We anticipate that this procedure will have applications to the study of human inherited diseases and the development of therapies. 43 refs., 6 figs., 1 tab.

  10. Diverse Effects on the Native β-Sheet of the Human Prion Protein due to Disease-Associated Mutations†

    PubMed Central

    Chen, Wei; Kamp, Marc W. van der; Daggett, Valerie

    2010-01-01

    Prion diseases are fatal neurodegenerative disorders that involve the conversion of the normal cellular form of the prion protein (PrPC) to a misfolded pathogenic form (PrPSc). There are many genetic mutations of PrP associated with human prion diseases. Three of these point mutations are located at the first strand of the native β-sheet in human PrP: G131V, S132I and A133V. To understand the underlying structural and dynamic effects of these disease-causing mutations on the human protein, we performed molecular dynamics of wild-type and mutated human PrP. The results indicate that the mutations induced different effects but they were all related to misfolding of the native β-sheet: G131V caused the elongation of the native β-sheet, A133V disrupted the native β-sheet, and S132I converted the native β-sheet to an α-sheet. The observed changes were due to the reorientation of side chain-side chain interactions upon introducing the mutations. In addition, all mutations impaired a structurally conserved water site at the native β-sheet. Our work suggests various misfolding pathways for human PrP in response to mutation. PMID:20949975

  11. Structural Instability of the Prion Protein upon M205S/R Mutations Revealed by Molecular Dynamics Simulations

    PubMed Central

    Hirschberger, Thomas; Stork, Martina; Schropp, Bernhard; Winklhofer, Konstanze F.; Tatzelt, Jörg; Tavan, Paul

    2006-01-01

    The point mutations M205S and M205R have been demonstrated to severely disturb the folding and maturation process of the cellular prion protein (PrPC). These disturbances have been interpreted as consequences of mutation-induced structural changes in PrP, which are suggested to involve helix 1 and its attachment to helix 3, because the mutated residue M205 of helix 3 is located at the interface of these two helices. Furthermore, current models of the prion protein scrapie (PrPSc), which is the pathogenic isoform of PrPC in prion diseases, imply that helix 1 disappears during refolding of PrPC into PrPSc. Based on molecular-dynamics simulations of wild-type and mutant PrPC in aqueous solution, we show here that the native PrPC structure becomes strongly distorted within a few nanoseconds, once the point mutations M205S and M205R have been applied. In the case of M205R, this distortion is characterized by a motion of helix 1 away from the hydrophobic core into the aqueous environment and a subsequent structural decay. Together with experimental evidence on model peptides, this decay suggests that the hydrophobic attachment of helix 1 to helix 3 at M205 is required for its correct folding into its stable native structure. PMID:16513786

  12. New insights into metal interactions with the prion protein: EXAFS analysis and structure calculations of copper binding to a single octarepeat from the prion protein.

    PubMed

    McDonald, Alex; Pushie, M Jake; Millhauser, Glenn L; George, Graham N

    2013-11-07

    Copper coordination to the prion protein (PrP) has garnered considerable interest for almost 20 years, due in part to the possibility that this interaction may be part of the normal function of PrP. The most characterized form of copper binding to PrP has been Cu(2+) interaction with the conserved tandem repeats in the N-terminal domain of PrP, termed the octarepeats, with many studies focusing on single and multiple repeats of PHGGGWGQ. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been used in several previous instances to characterize the solution structure of Cu(2+) binding into the peptide backbone in the HGGG portion of the octarepeats. All previous EXAFS studies, however, have benefitted from crystallographic structure information for [Cu(II) (Ac-HGGGW-NH2)(-2H)] but have not conclusively demonstrated that the complex EXAFS spectrum represents the same coordination environment for Cu(2+) bound to the peptide backbone. Density functional structure calculations as well as full multiple scattering EXAFS curve fitting analysis are brought to bear on the predominant coordination mode for Cu(2+) with the Ac-PHGGGWGQ-NH2 peptide at physiological pH, under high Cu(2+) occupancy conditions. In addition to the structure calculations, which provide a thermodynamic link to structural information, methods are also presented for extensive deconvolution of the EXAFS spectrum. We demonstrate how the EXAFS data can be analyzed to extract the maximum structural information and arrive at a structural model that is significantly improved over previous EXAFS characterizations. The EXAFS spectrum for the chemically reduced form of copper binding to the Ac-PHGGGWGQ-NH2 peptide is presented, which is best modeled as a linear two-coordinate species with a single His imidazole ligand and a water molecule. The extent of in situ photoreduction of the copper center during standard data collection is also presented, and EXAFS curve fitting of the photoreduced species

  13. Elucidation of Prion Protein Conformational Changes Associated with Infectivity by Fluorescence Spectroscopy

    DTIC Science & Technology

    2007-06-01

    Introduction 1 1-1. History, Discovery and Definition of Infectious Agent 1 (A) History of TSE Diseases 2 Scrapie 2 Kuru...infectious agents. (A) History of TSE Diseases Scrapie Prion disease has origins in the 1730s with the recognition of a disease afflicting...sheep, given the name scrapie [1, 2]. For reviews on prion see [2-13]. Diseased animals exhibited abnormal behavior such as disinterest

  14. NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1β and neuronal toxicity

    PubMed Central

    Hafner-Bratkovič, Iva; Benčina, Mojca; Fitzgerald, Katherine A.; Golenbock, Douglas; Jerala, Roman

    2012-01-01

    Prion diseases are fatal transmissible neurodegenerative diseases, characterized by aggregation of the pathological form of prion protein, spongiform degeneration, neuronal loss and activation of astrocytes and microglia. Microglia can clear prion plaques but on the other hand cause neuronal death via release of neurotoxic species. Elevated expression of the proinflammatory cytokine IL-1β has been observed in brains affected by several prion diseases and IL-1R-deficiency significantly prolonged the onset of the neurodegeneration in mice. We show that microglial cells stimulated by prion protein (PrP) fibrils induced neuronal toxicity. Microglia and macrophages release IL-1β upon stimulation by PrP fibrils, which depends on the NLRP3 inflammasome. Activation of NLRP3 inflammasome by PrP fibrils requires depletion of intracellular K+ and requires phagocytosis of PrP fibrils and consecutive lysosome destabilization. Among the well-defined molecular forms of PrP the strongest NLRP3 activation was observed by fibrils, followed by aggregates, while neither native monomeric nor oligomeric PrP were able to activate the NLRP3 inflammasome. Our results together with previous studies on IL-1R-deficient mice suggest the IL-1 signaling pathway as the perspective target for the therapy of prion disease. PMID:22926439

  15. Micellar environments induce structuring of the N-terminal tail of the prion protein.

    PubMed

    Renner, Christian; Fiori, Stella; Fiorino, Ferdinando; Landgraf, Dirk; Deluca, Dominga; Mentler, Matthias; Grantner, Klaus; Parak, Fritz G; Kretzschmar, Hans; Moroder, Luis

    2004-03-01

    In the physiological form, the prion protein is a glycoprotein tethered to the cell surface via a C-terminal glycosylphosphatidylinositol anchor, consisting of a largely alpha-helical globular C-terminal domain and an unstructured N-terminal portion. This unstructured part of the protein contains four successive octapeptide repeats, which were shown to bind up to four Cu(2+) ions in a cooperative manner. To mimic the location of the protein on the cell membrane and to analyze possible structuring effects of the lipid/water interface, the conformational preferences of a single octapeptide repeat and its tetrameric form, as well of the fragment 92-113, proposed as an additional copper binding site, were comparatively analyzed in aqueous and dodecylphosphocholine micellar solution as a membrane mimetic. While for the downstream fragment 92-113 no conformational effects were detectable in the presence of DPC micelles by CD and NMR, both the single octapeptide repeat and, in an even more pronounced manner, its tetrameric form are restricted into well-defined conformations. Because of the repetitive character of the rigid structural subdomain in the tetrarepeat molecule, the spatial arrangement of these identical motifs could not be resolved by NMR analysis. However, the polyvalent nature of the repetitive subunits leads to a remarkably enhanced interaction with the micelles, which is not detectably affected by copper complexation. These results strongly suggest interactions of the cellular form of PrP (PrP(c)) N-terminal tail with the cell membrane surface at least in the octapeptide repeat region with preorganization of these sequence portions for copper complexation. There are sufficient experimental facts known that support a physiological role of copper complexation by the octapeptide repeat region of PrP(c) such as a copper-buffering role of the PrP(c) protein on the extracellular surface.

  16. Amyloid Core Formed of Full-Length Recombinant Mouse Prion Protein Involves Sequence 127–143 but Not Sequence 107–126

    PubMed Central

    Chatterjee, Biswanath; Lee, Chung-Yu; Lin, Chen; Chen, Eric H.-L.; Huang, Chao-Li; Yang, Chien-Chih; Chen, Rita P.-Y.

    2013-01-01

    The principal event underlying the development of prion disease is the conversion of soluble cellular prion protein (PrPC) into its disease-causing isoform, PrPSc. This conversion is associated with a marked change in secondary structure from predominantly α-helical to a high β-sheet content, ultimately leading to the formation of aggregates consisting of ordered fibrillar assemblies referred to as amyloid. In vitro, recombinant prion proteins and short prion peptides from various species have been shown to form amyloid under various conditions and it has been proposed that, theoretically, any protein and peptide could form amyloid under appropriate conditions. To identify the peptide segment involved in the amyloid core formed from recombinant full-length mouse prion protein mPrP(23–230), we carried out seed-induced amyloid formation from recombinant prion protein in the presence of seeds generated from the short prion peptides mPrP(107–143), mPrP(107–126), and mPrP(127–143). Our results showed that the amyloid fibrils formed from mPrP(107–143) and mPrP(127–143), but not those formed from mPrP(107–126), were able to seed the amyloidogenesis of mPrP(23–230), showing that the segment residing in sequence 127–143 was used to form the amyloid core in the fibrillization of mPrP(23–230). PMID:23844138

  17. Hypoxia-induced expression of cellular prion protein improves the therapeutic potential of mesenchymal stem cells

    PubMed Central

    Han, Yong-Seok; Lee, Jun Hee; Yoon, Yeo Min; Yun, Chul Won; Noh, Hyunjin; Lee, Sang Hun

    2016-01-01

    Mesenchymal stem cells (MSCs) are ‘adult' multipotent cells that promote regeneration of injured tissues in vivo. However, differences in oxygenation levels between normoxic culture conditions (21% oxygen) and both the MSC niche (2–8% oxygen) and ischemic injury-induced oxidative stress conditions in vivo have resulted in low efficacy of MSC therapies in both pre-clinical and clinical studies. To address this issue, we examined the effectiveness of hypoxia preconditioning (2% oxygen) for enhancing the bioactivity and tissue-regenerative potential of adipose-derived MSCs. Hypoxia preconditioning enhanced the proliferative potential of MSCs by promoting the expression of normal cellular prion protein (PrPC). In particular, hypoxia preconditioning-mediated MSC proliferation was regulated by PrPC-dependent JAK2 and STAT3 activation. In addition, hypoxia preconditioning-induced PrPC regulated superoxide dismutase and catalase activity, and inhibited oxidative stress-induced apoptosis via inactivation of cleaved caspase-3. In a murine hindlimb ischemia model, hypoxia preconditioning enhanced the survival and proliferation of transplanted MSCs, ultimately resulting in improved functional recovery of the ischemic tissue, including the ratio of blood flow perfusion, limb salvage, and neovascularization. These results suggest that Hypo-MSC offer a therapeutic strategy for accelerated neovasculogenesis in ischemic diseases, and that PrPC comprises a potential target for MSC-based therapies. PMID:27711081

  18. Novel single chain antibodies to the prion protein identified by phage display.

    PubMed

    Adamson, Catherine S; Yao, Yongxiu; Vasiljevic, Snezana; Sy, Man-Sun; Ren, Junyuan; Jones, Ian M

    2007-02-05

    A well defined structure is available for the carboxyl half of the cellular prion protein (PrP(c)), while the structure of the amino terminal half of the molecule remains ill defined. The unstructured nature of the polypeptide has meant that relatively few of the many antibodies generated against PrP(c) recognise this region. To circumvent this problem, we have used a previously characterised and well expressed fragment derived from the amino terminus of PrP(c) as bait for panning a single chain antibody phage (scFv-P) library. Using this approach, we identified and characterised 1 predominant and 3 additional scFv-Ps that contained different V(H) and V(L) sequences and that bound specifically to the PrP(c) target. Epitope mapping revealed that all scFv-Ps recognised linear epitopes between PrP(c) residues 76 and 156. When compared with existing monoclonal antibodies (MAb), the binding of the scFvs was significantly different in that high level binding was evident on truncated forms of PrP(c) that reacted poorly or not at all with several pre-existing MAbs. These data suggest that the isolated scFv-Ps bind to novel epitopes within the amino-central region of PrP(c). In addition, the binding of MAbs to known linear epitopes within PrP(c) depends strongly on the endpoints of the target PrP(c) fragment used.

  19. Plasma soluble prion protein, a potential biomarker for sport-related concussions: a pilot study.

    PubMed

    Pham, Nam; Akonasu, Hungbo; Shishkin, Rhonda; Taghibiglou, Changiz

    2015-01-01

    Sport-related mild traumatic brain injury (mTBI) or concussion is a significant health concern to athletes with potential long-term consequences. The diagnosis of sport concussion and return to sport decision making is one of the greatest challenges facing health care clinicians working in sports. Blood biomarkers have recently demonstrated their potential in assisting the detection of brain injury particularly, in those cases with no obvious physical injury. We have recently discovered plasma soluble cellular prion protein (PrP(C)) as a potential reliable biomarker for blast induced TBI (bTBI) in a rodent animal model. In order to explore the application of this novel TBI biomarker to sport-related concussion, we conducted a pilot study at the University of Saskatchewan (U of S) by recruiting athlete and non-athlete 18 to 30 year-old students. Using a modified quantitative ELISA method, we first established normal values for the plasma soluble PrP(C) in male and female students. The measured plasma soluble PrP(C) in confirmed concussion cases demonstrated a significant elevation of this analyte in post-concussion samples. Data collected from our pilot study indicates that the plasma soluble PrP(C) is a potential biomarker for sport-related concussion, which may be further developed into a clinical diagnostic tool to assist clinicians in the assessment of sport concussion and return-to-play decision making.

  20. Cellular prion protein in mammary gland and milk fractions of domestic ruminants.

    PubMed

    Didier, A; Gebert, R; Dietrich, R; Schweiger, M; Gareis, M; Märtlbauer, E; Amselgruber, W M

    2008-05-09

    The present study shows that PrP(c) is expressed in the mammary gland and milk fractions of domestic ruminants in a species-specific manner. By applying immunohistochemistry, Western blot and ELISA, clear expression differences between bovine, ovine and caprine mammary gland, skimmed milk, acid whey and cream could be demonstrated, the highest relative PrP(c) levels being associated with the cream fraction. In the bovine gland PrP(c) was preferentially detectable at the basolateral surface of mammary gland epithelial cells, whereas in ovine and caprine samples the prion protein was more homogeneously distributed. Moreover, in ovine and caprine bovine mammary gland epithelial cells, apocrine secretory vesicles were strongly stained. Ovine and caprine milk proved to contain PrP(c) in all fractions with an additional truncated form at 12kDa in Western blot. This truncated isoform is the predominate one in caprine acid whey. These results support the hypothesis that the apocrine secretion mode of milk fat globules is a major way of PrP(c) transport into the milk.

  1. Ab initio Study of Transition metal binding to the Prion Protein

    NASA Astrophysics Data System (ADS)

    Cox, Daniel L.; Singh, Rajiv R. P.; Pan, Jianping

    2004-03-01

    Fundamental understanding of the prion protein (PrP) is of critical public health importance in view of mad cow and chronic wasting diseases. In recent years, it has been shown that the normal form (PrP^c) binds copper^1), and the structure of the copper binding domain has been elaborated. Hypotheses about toxicity associated with binding of other metals (notably manganese) have been put forward, Accordingly, using the ab initio SIESTA density functional theory code^2), we calculated the binding energy E_B(M) of M-(PrP) complexes relative to initially uncomplexed M ions, with M=Cu,Ni,Zn,Mn and (PrP)^* the minimal binding domain. The binding energy trend is E_B(Ni)>E_B(Cu)>E_B(Zn)>E_B(Mn), consistent with recent experiments apart from the surprising stability of Ni. We will also present preliminary results for binding of initially complexed M ions. *-Supported by U.S. DOE, Office of Basic Energy Sciences, Division of Materials Research 1) G.S. Jackson et al., Proc. Nat. Acad. Sci. (USA) 98, 8531 (2001). 2) P. Ordejón, et al., Phys. Rev. B53, R10441 (1996); J.M. Soler et al., J. Phys. Cond. Matt. 14, 2745 (2002).

  2. Copper attachment to prion protein at a non-octarepeat site

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2011-03-01

    Prion protein (PrP) plays a causative role in a group of neurodegenerative diseases, which include ``mad cow disease'' or its human form variant Creutzfeld-Jacob disease. Normal function of PrP remains unknown, but it is now well established that PrP can efficiently bind copper ions and this ability has been linked to its function. The primary binding sites are located in the so-called octarepeat region located between residues 60-91. While these are by now well characterized, the sites located outside these region remain mostly undetermined. In this work, we investigate the properties of Cu binding site located at His 111 using recently developed hybrid Kohn-Sham/orbital-free density functional simulations. Experimental data indicate that copper is coordinated by either four nitrogens or three nitrogens and one oxygen. We investigate both possibilities, comparing their energetics and attachment geometries. Similarities and differences with other binding sites and implications for PrP function will also be discussed.

  3. Conformational diversity in prion protein variants influences intermolecular [beta]-sheet formation

    SciTech Connect

    Lee, Seungjoo; Antony, Lizamma; Hartmann, Rune; Knaus, Karen J.; Surewicz, Krystyna; Surewicz, Witold K.; Yee, Vivien C.

    2010-04-19

    A conformational transition of normal cellular prion protein (PrP{sup C}) to its pathogenic form (PrP{sup Sc}) is believed to be a central event in the transmission of the devastating neurological diseases known as spongiform encephalopathies. The common methionine/valine polymorphism at residue 129 in the PrP influences disease susceptibility and phenotype. We report here seven crystal structures of human PrP variants: three of wild-type (WT) PrP containing V129, and four of the familial variants D178N and F198S, containing either M129 or V129. Comparison of these structures with each other and with previously published WT PrP structures containing M129 revealed that only WT PrPs were found to crystallize as domain-swapped dimers or closed monomers; the four mutant PrPs crystallized as non-swapped dimers. Three of the four mutant PrPs aligned to form intermolecular {beta}-sheets. Several regions of structural variability were identified, and analysis of their conformations provides an explanation for the structural features, which can influence the formation and conformation of intermolecular {beta}-sheets involving the M/V129 polymorphic residue.

  4. Distribution of abnormal prion protein in a sheep affected with L-type bovine spongiform encephalopathy.

    PubMed

    Matsuura, Y; Iwamaru, Y; Masujin, K; Imamura, M; Mohri, S; Yokoyama, T; Okada, H

    2013-07-01

    To investigate the topographical distribution and patterns of deposition of immunolabelled abnormal prion protein (PrP(Sc)), interspecies transmission of atypical L-type bovine spongiform encephalopathy (BSE) to Cheviot ewes (ARQ/ARQ genotype) was performed. L-type BSE was successfully transmitted via the intracerebral route to a ewe, with an incubation period of 1,562 days. Minimal vacuolar change was detected in the basal ganglia, thalamus and brainstem, and PrP(Sc) accumulated throughout the brain. The L-type BSE-affected sheep was characterized by conspicuous fine particulate deposits in the neuropil, particulate and/or granular intraneuronal and intraglial deposits, and the absence of PrP(Sc) plaques or stellate deposits. In addition, immunohistochemical and western blot analyses revealed that PrP(Sc) accumulation was present in peripheral nervous tissues (including the trigeminal ganglia and dorsal root ganglion) and adrenal glands, but was absent in lymphoid tissues. These results suggest that L-type BSE has distinct and distinguishable characteristics as well as PrP(Sc) tissue tropism in sheep.

  5. Concentration of prion protein from biological samples to increase the limits of detection by immunoassay.

    PubMed

    Davidowitz, Eliot; Eljuga, Lucy; Dover, Katarzyna; Tian, Jean; Grossman, Abraham

    2005-06-01

    An RNA-ligand-based adsorbent has been shown to concentrate prion protein (PrP) from solutions in a model system. The work presented here extends the utility of the RNA-based adsorbent to brain homogenates of cow, sheep, mule deer (Odocoileus hemionus) and elk (Cervus elaphus). Brain homogenates were diluted either in buffer, representing specimens used in post-mortem tests, or in serum, modelling specimens used in biological-fluid-based tests. The RNA adsorbent was effective in binding PrPC (cellular PrP,) and PrPres (proteinase K-resistant PrP) from the brain homogenates of all the species tested in both model systems. The three antibodies against PrP used in the experiments identified PrP in immunoblot analysis after concentrating PrP from brain homogenates with the adsorbent, indicating the general applicability of this technology for improving the detection of PrP in immunoassays. Utilization of RNA adsorbent increased the level of detection of PrPres by immunoblot over several-hundredfold. The results obtained suggest that this RNA adsorbent can be used to increase detection in current post-mortem immunoassays and for the development of a blood-based ante-mortem test.

  6. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2X4 Receptors

    PubMed Central

    Lorca, Ramón A.; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.; Huidobro-Toro, J. Pablo

    2011-01-01

    Although the physiological function of the cellular prion protein (PrPC) remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP)-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+. PMID:22114745

  7. Overcoming barriers and thresholds – signaling of oligomeric Aβ through the prion protein to Fyn

    PubMed Central

    2013-01-01

    Evidence has been mounting for an involvement of the prion protein (PrP) in a molecular pathway assumed to play a critical role in the etiology of Alzheimer disease. A currently popular model sees oligomeric amyloid β (oAβ) peptides bind directly to PrP to emanate a signal that causes activation of the cytoplasmic tyrosine kinase Fyn, an essential player in a cascade of events that ultimately leads to NMDA receptor-mediated excitotoxicity and hyper-phosphorylation of tau. The model does not reveal, however, how extracellular binding of oAβ to PrP is communicated across the plasma membrane barrier to affect activation of Fyn. A scenario whereby PrP may adapt a transmembrane topology to affect Fyn activation in the absence of additional partners is currently not supported by evidence. A survey of known candidate PrP interactors leads to a small number of molecules that are known to acquire a transmembrane topology and understood to contribute to Fyn activation. Because multiple signaling pathways converge onto Fyn, a realistic model needs to take into account a reality of Fyn acting as a hub that integrates signals from multiple inhibitory and activating effectors. To clarify the role of PrP in oAβ-dependent excitotoxicity, future studies may need to incorporate experimental designs that can probe the contributions of Fyn modulator pathways and rely on analogous readouts, rather than threshold effects, known to underlie excitotoxic signaling. PMID:23856335

  8. Evidence for degradation of abnormal prion protein in tissues from sheep with scrapie during composting

    PubMed Central

    Huang, Hongsheng; Spencer, J. Lloyd; Soutyrine, Andrei; Guan, Jeiwen; Rendulich, Jasmine; Balachandran, Aru

    2007-01-01

    This study investigated whether the abnormal prion protein (PrPSc) in tissues from sheep with scrapie would be destroyed by composting. Tissues from sheep naturally infected with scrapie were placed within fiberglass mesh bags and buried in compost piles for 108 d in experiment 1 or 148 d in experiment 2. The temperature in the compost piles rose quickly; it was above 60°C for about 2 wk and then slowly declined to the ambient temperature. Before composting, PrPSc was detected in all the tissues by Western blotting. In experiment 1, PrPSc was not detected after composting in the tissue remnants or the surrounding sawdust. In experiment 2, 1 of 5 specimens tested negative after composting, whereas PrPSc was detected in the other 4 bags, though in reduced amounts compared with those before composting. Tissue weights were reduced during composting. Analysis of the tissue remnants for microbial 16S ribosomal DNA demonstrated that there were more diverse microbes involved in experiment 1 than in experiment 2 and that the guanine and cytosine content of the microbial 16S DNA was higher in the specimens of experiment 1 than in those of experiment 2, which suggests greater dominance of thermophilic microbes in experiment 1. These results indicate that composting may have value as a means for degrading PrPSc in carcasses and other wastes. PMID:17193880

  9. Lipid rafts: linking prion protein to zinc transport and amyloid-β toxicity in Alzheimer's disease

    PubMed Central

    Watt, Nicole T.; Griffiths, Heledd H.; Hooper, Nigel M.

    2014-01-01

    Dysregulation of neuronal zinc homeostasis plays a major role in many processes related to brain aging and neurodegenerative diseases, including Alzheimer's disease (AD). Yet, despite the critical role of zinc in neuronal function, the cellular mechanisms underpinning its homeostatic control are far from clear. We reported that the cellular prion protein (PrPC) is involved in the uptake of zinc into neurons. This PrPC-mediated zinc influx required the metal-binding octapeptide repeats in PrPC and the presence of the zinc permeable AMPA channel with which PrPC directly interacted. Together with the observation that PrPC is evolutionarily related to the ZIP family of zinc transporters, these studies indicate that PrPC plays a key role in neuronal zinc homeostasis. Therefore, PrPC could contribute to cognitive health and protect against age-related zinc dyshomeostasis but PrPC has also been identified as a receptor for amyloid-β oligomers which accumulate in the brains of those with AD. We propose that the different roles that PrPC has are due to its interaction with different ligands and/or co-receptors in lipid raft-based signaling/transport complexes. PMID:25364748

  10. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis

    PubMed Central

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP. PMID:26288071

  11. Phthalocyanine tetrasulfonates bind to multiple sites on natively-folded prion protein.

    PubMed

    Dee, Derek R; Gupta, Amar Nath; Anikovskiy, Max; Sosova, Iveta; Grandi, Elena; Rivera, Laura; Vincent, Abhilash; Brigley, Angela M; Petersen, Nils O; Woodside, Michael T

    2012-06-01

    The phthalocyanine tetrasulfonates (PcTS), a class of cyclic tetrapyrroles, bind to the mammalian prion protein, PrP. Remarkably, they can act as anti-scrapie agents to prevent the formation and spread of infectious, misfolded PrP. While the effects of phthalocyanines on the diseased state have been investigated, the interaction between PcTS and PrP has not yet been extensively characterized. Here we use multiple, complementary assays (surface plasmon resonance, isothermal titration calorimetry, fluorescence correlation spectroscopy, and tryptophan fluorescence quenching) to characterize the binding of PcTS to natively-folded hamster PrP(90-232), in order to determine binding constants, ligand stoichiometry, influence of buffer ionic strength, and the effects of chelated metal ions. We found that binding strength depends strongly on chelated metal ions, with Al(3+)-PcTS binding the weakest and free-base PcTS the strongest of the three types tested (Al(3+), Zn(2+), and free-base). Buffer ionic strength also affected the binding, with K(d) increasing along with salt concentration. The binding isotherms indicated the presence of at least two different binding sites with micromolar affinities and a total stoichiometry of ~4-5 PcTS molecules per PrP molecule.

  12. The Prion Protein Controls Polysialylation of Neural Cell Adhesion Molecule 1 during Cellular Morphogenesis.

    PubMed

    Mehrabian, Mohadeseh; Brethour, Dylan; Wang, Hansen; Xi, Zhengrui; Rogaeva, Ekaterina; Schmitt-Ulms, Gerold

    2015-01-01

    Despite its multi-faceted role in neurodegenerative diseases, the physiological function of the prion protein (PrP) has remained elusive. On the basis of its evolutionary relationship to ZIP metal ion transporters, we considered that PrP may contribute to the morphogenetic reprogramming of cells underlying epithelial-to-mesenchymal transitions (EMT). Consistent with this hypothesis, PrP transcription increased more than tenfold during EMT, and stable PrP-deficient cells failed to complete EMT in a mammalian cell model. A global comparative proteomics analysis identified the neural cell adhesion molecule 1 (NCAM1) as a candidate mediator of this impairment, which led to the observation that PrP-deficient cells fail to undergo NCAM1 polysialylation during EMT. Surprisingly, this defect was caused by a perturbed transcription of the polysialyltransferase ST8SIA2 gene. Proteomics data pointed toward β-catenin as a transcriptional regulator affected in PrP-deficient cells. Indeed, pharmacological blockade or siRNA-based knockdown of β-catenin mimicked PrP-deficiency in regards to NCAM1 polysialylation. Our data established the existence of a PrP-ST8SIA2-NCAM signaling loop, merged two mature fields of investigation and offer a simple model for explaining phenotypes linked to PrP.

  13. Protein profile changes during porcine oocyte aging and effects of caffeine on protein expression patterns.

    PubMed

    Jiang, Guang-Jian; Wang, Ke; Miao, De-Qiang; Guo, Lei; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan

    2011-01-01

    It has been shown that oocyte aging critically affects reproduction and development. By using proteomic tools, in the present study, changes in protein profiles during porcine oocyte aging and effects of caffeine on oocyte aging were investigated. By comparing control MII oocytes with aging MII oocytes, we identified 23 proteins that were up-regulated and 3 proteins that were down-regulated during the aging process. In caffeine-treated oocytes, 6 proteins were identified as up-regulated and 12 proteins were identified as down-regulated. A total of 38 differentially expressed proteins grouped into 5 regulation patterns were determined to relate to the aging and anti-aging process. By using the Gene Ontology system, we found that numerous functional gene products involved in metabolism, stress response, reactive oxygen species and cell cycle regulation were differentially expressed during the oocyte aging process, and most of these proteins are for the first time reported in our study, including 2 novel proteins. In addition, several proteins were found to be modified during oocyte aging. These data contribute new information that may be useful for future research on cellular aging and for improvement of oocyte quality.

  14. Btn3 is a negative regulator of Btn2-mediated endosomal protein trafficking and prion curing in yeast

    PubMed Central

    Kanneganti, Vydehi; Kama, Rachel; Gerst, Jeffrey E.

    2011-01-01

    Yeast Btn2 facilitates the retrieval of specific proteins from late endosomes (LEs) to the Golgi, a process that may be adversely affected in Batten disease patients. We isolated the putative yeast orthologue of a human complex I deficiency gene, designated here as BTN3, as encoding a Btn2-interacting protein and negative regulator. First, yeast overexpressing BTN3 phenocopy the deletion of BTN2 and mislocalize certain trans-Golgi proteins, like Kex2 and Yif1, to the LE and vacuole, respectively. In contrast, the deletion of BTN3 results in a tighter pattern of protein localization to the Golgi. Second, BTN3 overexpression alters Btn2 localization from the IPOD compartment, which correlates with a sharp reduction in Btn2-mediated [URE3] prion curing. Third, Btn3 and the Snc1 v-SNARE compete for the same binding domain on Btn2, and this competition controls Btn2 localization and function. The inhibitory effects upon protein retrieval and prion curing suggest that Btn3 sequesters Btn2 away from its substrates, thus down-regulating protein trafficking and aggregation. Therefore Btn3 is a novel negative regulator of intracellular protein sorting, which may be of importance in the onset of complex I deficiency and Batten disease in humans. PMID:21441304

  15. Covalent surface modification of prions: a mass spectrometry-based means of detecting distinctive structural features of prion strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prions (PrPSc) are molecular pathogens that are able to convert the isosequential normal cellular prion protein (PrPC) into a prion. The only demonstrated differences between PrPC and PrPSc is conformational, they are isoforms. A given host can be infected by more than one kind or strain of prion. F...

  16. Mutation and polymorphism of the prion protein gene in Libyan Jews with Creutzfeldt-Jakob disease (CJD)

    SciTech Connect

    Gabizon, R.; Rosenmann, H.; Meiner, Z.; Kahana, I. ); Kahana, E. ); Shugart, Y.; Ott, J. ); Prusiner, S.B. )

    1993-10-01

    The inherited prion diseases are neurodegenerative disorders which are not only genetic but also transmissible. More than a dozen mutations in the prion protein gene that result in nonconservative amino acid substitutions segregate with the inherited prion diseases including familial Creutzfeldt-Jakob disease (CJD). In Israel, the incidence of CJD is about 1 case/10[sup 4] Libyan Jews. A Lys[sub 200] substitution segregates with CJD and is reported here to be genetically linked to CJD with a lod score of >4.8. Some healthy elderly Lys[sub 200] carriers > age 65 years were identified, suggesting the possibility of incomplete penetrance. In contrast, no linkage was found between the development of familial CJD and a polymorphism encoding either Met[sub 129] or Val[sub 129]. All Libyan Jewish CJD patients with the Lys[sub 200] mutation encode a Met[sub 129] on the mutant allele. Homozygosity for Met[sub 129] did not correlate with age at disease onset or the duration of illness. The frequency of the Met[sub 129] allele was higher in the affected pedigrees than in a control population of Libyan Jews. The frequency of the Met[sub 129] and Val[sub 129] alleles in the control Libyan population was similar to that found in the general Caucasian population. The identification of three Libyan Jews homozygous for the Lys[sub 200] mutation suggests frequent intrafamilial marriages, a custom documented by genealogical investigations. 26 refs., 3 figs., 6 tabs.

  17. Regional and phenotype heterogeneity of cellular prion proteins in the human brain.

    PubMed

    Kuczius, Thorsten; Koch, Richard; Keyvani, Kathy; Karch, Helge; Grassi, Jacques; Groschup, Martin H

    2007-05-01

    Transmissible spongiform encephalopathies (TSEs) are neurological disorders that include genetic, infectious and sporadic forms of human Creutzfeldt-Jakob disease (CJD). The pathogenic agent is the prion protein that is composed of an abnormal isoform (PrP(Sc)) of a host-encoded protein (PrP(C)). Analysis of the relative amounts of PrP(Sc) glycoforms has been used to discriminate between various agents involved in TSE. The distribution and efficiency of conversion to PrP(Sc) can be influenced by differences in the expression of PrP(C). However, little attention has been given so far to the banding patterns of PrP(C). Using four different antibodies recognizing amino- and carboxyl-terminal PrP sequences we analysed the glycoforms of PrP(C) in seven regions of the human brain using brains obtained from six subjects. For determination of the staining intensities, signals were quantified by densitometry and reproducible patterns were accomplished by many repeated immunoblot analyses. When amino-terminal binding antibodies were used for detection, PrP(C) in the frontal neocortex, nucleus lentiformis, thalamus, hippocampus and cerebellum displayed a glycotype with high staining of the diglycosylated isoforms. This was different from patterns in the pons and medulla oblongata, which showed a high intensity of the nonglycosylated isoform, and PrP(C) proteins, approximately 27 kDa in size, exhibited high staining using the carboxyl-terminal binding antibodies. This intense staining followed from an overlay of full-length and truncated PrP(C) isoforms. Furthermore, we found marked differences in the expression of PrP(C). Variations in the processing of PrP(C) may lead to interregional differences in the glycoform composition of PrP(Sc) in human brains.

  18. Salivary prions in sheep and deer.

    PubMed

    Tamgüney, Gültekin; Richt, Jürgen A; Hamir, Amir N; Greenlee, Justin J; Miller, Michael W; Wolfe, Lisa L; Sirochman, Tracey M; Young, Alan J; Glidden, David V; Johnson, Natrina L; Giles, Kurt; DeArmond, Stephen J; Prusiner, Stanley B

    2012-01-01

    Scrapie of sheep and chronic wasting disease (CWD) of cervids are transmissible prion diseases. Milk and placenta have been identified as sources of scrapie prions but do not explain horizontal transmission. In contrast, CWD prions have been reported in saliva, urine and feces, which are thought to be responsible for horizontal transmission. While the titers of CWD prions have been measured in feces, levels in saliva or urine are unknown. Because sheep produce ~17 L/day of saliva, and scrapie prions are present in tongue and salivary glands of infected sheep, we asked if scrapie prions are shed in saliva. We inoculated transgenic (Tg) mice expressing ovine prion protein, Tg(OvPrP) mice, with saliva from seven Cheviot sheep with scrapie. Six of seven samples transmitted prions to Tg(OvPrP) mice with titers of -0.5 to 1.7 log ID₅₀ U/ml. Similarly, inoculation of saliva samples from two mule deer with CWD transmitted prions to Tg(ElkPrP) mice with titers of -1.1 to -0.4 log ID₅₀ U/ml. Assuming similar shedding kinetics for salivary prions as those for fecal prions of deer, we estimated the secreted salivary prion dose over a 10-mo period to be as high as 8.4 log ID₅₀ units for sheep and 7.0 log ID₅₀ units for deer. These estimates are similar to 7.9 log ID₅₀ units of fecal CWD prions for deer. Because saliva is mostly swallowed, salivary prions may reinfect tissues of the gastrointestinal tract and contribute to fecal prion shedding. Salivary prions shed into the environment provide an additional mechanism for horizontal prion transmission.

  19. A comparison of classical and H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism in wild type and EK211 cattle following intracranial inoculation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, a case of H-type bovine spongiform encephalopathy (BSE-H) was diagnosed in a cow that was associated with a heritable polymorphism in the bovine prion protein gene (PRNP) resulting in a lysine for glutamine amino acid substitution at codon 211 (called E211K) of the prion protein. Although t...

  20. Progressive accumulation of the abnormal conformer of the prion protein and spongiform encephalopathy in the obex of nonsymptomatic and symptomatic Rocky Mountain elk (Cervus elaphus nelsoni) with chronic wasting disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy, has been reported in captive and free-ranging cervids. An abnormal isoform of a prion protein (PrP-CWD) has been associated with CWD in Rocky Mountain elk (Cervus elaphus nelsoni) and this prion protein can be detected with i...

  1. Proteolytic processing of Porcine Reproductive and Respiratory Syndrome Virus nsp2 replicase protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One critical step in porcine reproductive and respiratory syndrome virus (PRRSV) replication is the proteolytic processing of the ORF1 polyprotein (replicase). The replicase polyprotein is generally believed to be processed to generate at least 12 smaller nonstructural proteins (nsps) involved in r...

  2. Proteolytic Products of the Porcine Reproductive and Respiratory Syndrome Virus Nsp2 Replicase Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nsp2 replicase protein of porcine reproductive and respiratory syndrome virus (PRRSV) was recently demonstrated to be processed from its precursor by the PL2 protease at or near the G1196|G1197 dipeptide in transfected CHO cells. Here, the proteolytic cleavage of PRRSV nsp2 was further investiga...

  3. Antibody recognition of porcine circovirus type 2 capsid protein epitopes after vaccination, infection, and disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Open reading frame 2 (ORF2) of porcine circovirus type 2 (PCV2) codes for the 233-amino-acid capsid protein (CP). Baculovirus-based vaccines that express only ORF2 are protective against clinical disease following experimental challenge or natural infection. The goal of this study was to identify re...

  4. Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions.

    PubMed

    Zuegg, J; Gready, J E

    1999-10-19

    Molecular dynamics simulations have been used to investigate the dynamical and structural behavior of a homology model of human prion protein HuPrP(90-230) generated from the NMR structure of the Syrian hamster prion protein ShPrP(90-231) and of ShPrP(<90-231) itself. These PrPs have a large number of charged residues on the protein surface. At the simulation pH 7, HuPrP(90-230) has a net charge of -1 eu from 15 positively and 14 negatively charged residues. Simulations for both PrPs, using the AMBER94 force field in a periodic box model with explicit water molecules, showed high sensitivity to the correct treatment of the electrostatic interactions. Highly unstable behavior of the structured region of the PrPs (127-230) was found using the truncation method, and stable trajectories could be achieved only by including all the long-range electrostatic interactions using the particle mesh Ewald (PME) method. The instability using the truncation method could not be reduced by adding sodium and chloride ions nor by replacing some of the sodium ions with calcium ions. The PME simulations showed, in accordance with NMR experiments with ShPrP and mouse PrP, a flexibly disordered N-terminal part, PrP(90-126), and a structured C-terminal part, PrP(127-230), which includes three alpha-helices and a short antiparallel beta-strand. The simulations showed some tendency for the highly conserved hydrophobic segment PrP(112-131) to adopt an alpha-helical conformation and for helix C to split at residues 212-213, a known disease-associated mutation site (Q212P). Three highly occupied salt bridges could be identified (E146/D144<-->R208, R164<-->D178, and R156<-->E196) which appear to be important for the stability of PrP by linking the stable main structured core (helices B and C) with the more flexible structured part (helix A and strands A and B). Two of these salt bridges involve disease-associated mutations (R208H and D178N). Decreased PrP stability shown by protein unfolding

  5. Validation of an immunoturbidimetric method for determination of porcine serum C-reactive protein.

    PubMed

    Saco, Yolanda; Fraile, Lorenzo; Giménez, Mercè; Canalias, Francesca; Bassols, Anna

    2010-10-01

    Measurement of porcine C-reactive protein (CRP) in serum is an important tool for monitoring health and welfare in pigs. In this study, an immunoturbidimetric method from Olympus System Reagent (OSR 6147) used to measure human CRP in serum that employ a human traceable calibrator has been evaluated in porcine serum samples. Intra- and inter-assay imprecision were lower than that obtained with the porcine-specific commercially available ELISA. The expected difference in serum CRP between healthy and non-healthy pigs was detected. CRP values measured by the immunoturbidimetric method showed a good correlation with those obtained by ELISA, although differences in absolute CRP values were observed. When an in-house porcine standard was used a better agreement was obtained. In conclusion, the immunoturbidimetric method of Olympus can be used with porcine samples. The easier use of this method should facilitate the implementation of CRP serum determination for diagnostic and prognostic purposes in swine medicine. The results emphasize the need to establish species-specific standard and methods to decrease inter-laboratory discrepancies.

  6. Prion protein functions as a ferrireductase partner for ZIP14 and DMT1

    PubMed Central

    Qian, Juan; Beserra, Amber; Suda, Srinivas; Singh, Ajay; Hopfer, Ulrich; Chen, Shu G.; Garrick, Michael D.; Turner, Jerrold R.; Knutson, Mitchell D.; Singh, Neena

    2015-01-01

    Excess circulating iron is stored in the liver, and requires reduction of non-Tf-bound-iron (NTBI) and transferrin (Tf)-iron at the plasma membrane and endosomes respectively by ferrireductase (FR) proteins for transport across biological membranes through divalent metal transporters. Here, we report that prion-protein (PrPC), a ubiquitously expressed glycoprotein most abundant on neuronal cells, functions as a FR partner for divalent-metal transporter-1 (DMT1) and ZIP14. Thus, absence of PrPC in PrP-knock-out (PrP−/−) mice resulted in markedly reduced liver iron stores, a deficiency that was not corrected by chronic or acute administration of iron by the oral or intra-peritoneal routes. Likewise, preferential radiolabeling of circulating NTBI with 59Fe revealed significantly reduced uptake and storage of NTBI by the liver of PrP−/− mice relative to matched PrP+/+ controls. However, uptake, storage, and utilization of ferritin-bound iron that does not require reduction for uptake was increased in PrP−/− mice, indicating a compensatory response to the iron-deficiency. Expression of exogenous PrPC in HepG2-cells increased uptake and storage of ferric-iron (Fe3+), not ferrous-iron (Fe2+) from the medium, supporting the function of PrPC as a plasma membrane FR. Co-expression of PrPC with ZIP14 and DMT1 in HepG2 cells increased uptake of Fe3+ significantly, and surprisingly, increased the ratio of N-terminally truncated PrPC forms lacking the FR domain relative to full-length PrPC. Together, these observations indicate that PrPC promotes, and possibly regulates the uptake of NTBI through DMT1 and Zip14 via its FR activity. Implications of these observations for neuronal iron homeostasis under physiological and pathological conditions are discussed. PMID:25862412

  7. Conserved roles of the prion protein domains on subcellular localization and cell-cell adhesion.

    PubMed

    Solis, Gonzalo P; Radon, Yvonne; Sempou, Emily; Jechow, Katharina; Stuermer, Claudia A O; Málaga-Trillo, Edward

    2013-01-01

    Analyses of cultured cells and transgenic mice expressing prion protein (PrP) deletion mutants have revealed that some properties of PrP -such as its ability to misfold, aggregate and trigger neurotoxicity- are controlled by discrete molecular determinants within its protein domains. Although the contributions of these determinants to PrP biosynthesis and turnover are relatively well characterized, it is still unclear how they modulate cellular functions of PrP. To address this question, we used two defined activities of PrP as functional readouts: 1) the recruitment of PrP to cell-cell contacts in Drosophila S2 and human MCF-7 epithelial cells, and 2) the induction of PrP embryonic loss- and gain-of-function phenotypes in zebrafish. Our results show that homologous mutations in mouse and zebrafish PrPs similarly affect their subcellular localization patterns as well as their in vitro and in vivo activities. Among PrP's essential features, the N-terminal leader peptide was sufficient to drive targeting of our constructs to cell contact sites, whereas lack of GPI-anchoring and N-glycosylation rendered them inactive by blocking their cell surface expression. Importantly, our data suggest that the ability of PrP to homophilically trans-interact and elicit intracellular signaling is primarily encoded in its globular domain, and modulated by its repetitive domain. Thus, while the latter induces the local accumulation of PrPs at discrete punctae along cell contacts, the former counteracts this effect by promoting the continuous distribution of PrP. In early zebrafish embryos, deletion of either domain significantly impaired PrP's ability to modulate E-cadherin cell adhesion. Altogether, these experiments relate structural features of PrP to its subcellular distribution and in vivo activity. Furthermore, they show that despite their large evolutionary history, the roles of PrP domains and posttranslational modifications are conserved between mouse and zebrafish.

  8. Complement Protein C1q Forms a Complex with Cytotoxic Prion Protein Oligomers

    PubMed Central

    Erlich, Paul; Dumestre-Pérard, Chantal; Ling, Wai Li; Lemaire-Vieille, Catherine; Schoehn, Guy; Arlaud, Gérard J.; Thielens, Nicole M.; Gagnon, Jean; Cesbron, Jean-Yves

    2010-01-01

    A growing number of studies have investigated the interaction between C1q and PrP, but the oligomeric form of PrP involved in this interaction remains to be determined. Aggregation of recombinant full-length murine PrP in the presence of 100 mm NaCl allowed us to isolate three different types of oligomers by size-exclusion chromatography. In contrast to PrP monomers and fibrils, these oligomers activate the classical complement pathway, the smallest species containing 8–15 PrP protomers being the most efficient. We used Thioflavine T fluorescence to monitor PrP aggregation and showed that, when added to the reaction, C1q has a cooperative effect on PrP aggregation and leads to the formation of C1q-PrP complexes. In these complexes, C1q interacts through its globular domains preferentially with the smallest oligomers, as shown by electron microscopy, and retains the ability to activate the classical complement pathway. Using two cell lines, we also provide evidence that C1q inhibits the cytotoxicity induced by the smallest PrP oligomers. The cooperative interaction between C1q and PrP could represent an early step in the disease, where it prevents elimination of the prion seed, leading to further aggregation. PMID:20410306

  9. Prion proteins with pathogenic and protective mutations show similar structure and dynamics

    PubMed Central

    Bae, Sung-Hun; Legname, Giuseppe; Serban, Ana; Prusiner, Stanley B.; Wright, Peter E.; Dyson, H. Jane

    2009-01-01

    Conformational change in the prion protein (PrP) is thought to be responsible for a group of rare but fatal neurodegenerative diseases of humans and other animals, including Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. However, little is known about the mechanism by which normal cellular PrPs initiate and propagate the conformational change. Here, we studied backbone dynamics of the inherited pathogenic mutants (P101L and H186R), protective mutants (Q167R and Q218K), and wild type mouse PrP(89−230) at pH 5.5 and 3.5. Mutations result in minor chemical shift changes around the mutation sites except that H186R induces large chemical shift changes at distal regions. At lowered pH values, the C-terminal half of the second helix is significantly disordered for the wild type and all mutant proteins, while other parts of the protein are essentially unaffected. This destabilization is accompanied by protonation of the partially exposed histidine H186 in the second helix of the wild type protein. This region in the mutant protein H186R is disordered even at pH 5.5. The wild type and mutant proteins have similar μs conformational exchange near the two β-strands and have similar ns internal motions in several regions including the C-terminal half of the second helix, but only wild type and P101L have extensive ns internal motions throughout the helices. These motions mostly disappear at lower pH. Our findings raise the possibility that the pathogenic or dominant negative mutations exert t