Science.gov

Sample records for pore domains cloned

  1. Two-pore Domain Potassium Channels in Astrocytes

    PubMed Central

    Ryoo, Kanghyun

    2016-01-01

    Two-pore domain potassium (K2P) channels have a distinct structure and channel properties, and are involved in a background K+ current. The 15 members of the K2P channels are identified and classified into six subfamilies on the basis of their sequence similarities. The activity of the channels is dynamically regulated by various physical, chemical, and biological effectors. The channels are expressed in a wide variety of tissues in mammals in an isoform specific manner, and play various roles in many physiological and pathophysiological conditions. To function as channels, the K2P channels form dimers, and some isoforms form heterodimers that provide diversity in channel properties. In the brain, TWIK1, TREK1, TREK2, TRAAK, TASK1, and TASK3 are predominantly expressed in various regions, including the cerebral cortex, dentate gyrus, CA1-CA3, and granular layer of the cerebellum. TWIK1, TREK1, and TASK1 are highly expressed in astrocytes, where they play specific cellular roles. Astrocytes keep leak K+ conductance, called the passive conductance, which mainly involves TWIK1-TREK1 heterodimeric channel. TWIK1 and TREK1 also mediate glutamate release from astrocytes in an exocytosis-independent manner. The expression of TREK1 and TREK2 in astrocytes increases under ischemic conditions, that enhance neuroprotection from ischemia. Accumulated evidence has indicated that astrocytes, together with neurons, are involved in brain function, with the K2P channels playing critical role in these astrocytes. PMID:27790056

  2. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains.

    PubMed

    Wu, Zhenyong; Auclair, Sarah M; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R; Krishnakumar, Shyam S; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle -the fusion pore- can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, "flipped" t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  3. Nanodisc-cell fusion: control of fusion pore nucleation and lifetimes by SNARE protein transmembrane domains

    PubMed Central

    Wu, Zhenyong; Auclair, Sarah M.; Bello, Oscar; Vennekate, Wensi; Dudzinski, Natasha R.; Krishnakumar, Shyam S.; Karatekin, Erdem

    2016-01-01

    The initial, nanometer-sized connection between the plasma membrane and a hormone- or neurotransmitter-filled vesicle –the fusion pore– can flicker open and closed repeatedly before dilating or resealing irreversibly. Pore dynamics determine release and vesicle recycling kinetics, but pore properties are poorly known because biochemically defined single-pore assays are lacking. We isolated single flickering pores connecting v-SNARE-reconstituted nanodiscs to cells ectopically expressing cognate, “flipped” t-SNAREs. Conductance through single, voltage-clamped fusion pores directly reported sub-millisecond pore dynamics. Pore currents fluctuated, transiently returned to baseline multiple times, and disappeared ~6 s after initial opening, as if the fusion pore fluctuated in size, flickered, and resealed. We found that interactions between v- and t-SNARE transmembrane domains (TMDs) promote, but are not essential for pore nucleation. Surprisingly, TMD modifications designed to disrupt v- and t-SNARE TMD zippering prolonged pore lifetimes dramatically. We propose that the post-fusion geometry of the proteins contribute to pore stability. PMID:27264104

  4. Stress fields around two pores in an elastic body: exact quadrature domain solutions

    PubMed Central

    Crowdy, Darren

    2015-01-01

    Analytical solutions are given for the stress fields, in both compression and far-field shear, in a two-dimensional elastic body containing two interacting non-circular pores. The two complex potentials governing the solutions are found by using a conformal mapping from a pre-image annulus with those potentials expressed in terms of the Schottky–Klein prime function for the annulus. Solutions for a three-parameter family of elastic bodies with two equal symmetric pores are presented and the compressibility of a special family of pore pairs is studied in detail. The methodology extends to two unequal pores. The importance for boundary value problems of plane elasticity of a special class of planar domains known as quadrature domains is also elucidated. This observation provides the route to generalization of the mathematical approach here to finding analytical solutions for the stress fields in bodies containing any finite number of pores. PMID:26339198

  5. Classification of 2-pore domain potassium channels based on rectification under quasi-physiological ionic conditions.

    PubMed

    Chen, Haijun; Zuo, Dongchuan; Zhang, Jianing; Zhou, Min; Ma, Liqun

    2014-01-01

    It is generally expected that 2-pore domain K(+) (K2P) channels are open or outward rectifiers in asymmetric physiological K(+) gradients, following the Goldman-Hodgkin-Katz (GHK) current equation. Although cloned K2P channels have been extensively studied, their current-voltage (I-V) relationships are not precisely characterized and previous definitions are contradictory. Here we study all the functional channels from 6 mammalian K2P subfamilies in transfected Chinese hamster ovary cells with patch-clamp technique, and examine whether their I-V relationships are described by the GHK current equation. K2P channels display 2 distinct types of I-V curves in asymmetric physiological K(+) gradients. Two K2P isoforms in the TWIK subfamily conduct large inward K(+) currents and have a nearly linear I-V curve. Ten isoforms from 5 other K2P subfamilies conduct small inward K(+) currents and exhibit open rectification, but fits with the GHK current equation cannot precisely reveal the differences in rectification among K2P channels. The Rectification Index, a ratio of limiting I-V slopes for outward and inward currents, is used to quantitatively describe open rectification of each K2P isoform, which is previously qualitatively defined as strong or weak open rectification. These results systematically and precisely classify K2P channels and suggest that TWIK K(+) channels have a unique feature in regulating cellular function.

  6. A specific two-pore domain potassium channel blocker defines the structure of the TASK-1 open pore.

    PubMed

    Streit, Anne K; Netter, Michael F; Kempf, Franca; Walecki, Magdalena; Rinné, Susanne; Bollepalli, Murali K; Preisig-Müller, Regina; Renigunta, Vijay; Daut, Jürgen; Baukrowitz, Thomas; Sansom, Mark S P; Stansfeld, Phillip J; Decher, Niels

    2011-04-22

    Two-pore domain potassium (K(2P)) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K(2P) channels. We describe A1899 as a potent and highly selective blocker of the K(2P) channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K(2P) open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K(2P) channels.

  7. Fluorescence Anisotropy Reveals Order and Disorder of Protein Domains in the Nuclear Pore Complex

    PubMed Central

    Mattheyses, Alexa L.; Kampmann, Martin; Atkinson, Claire E.; Simon, Sanford M.

    2010-01-01

    We present a new approach for studying individual protein domains within the nuclear pore complex (NPC) using fluorescence polarization microscopy. The NPC is a large macromolecular complex, the size and complexity of which presents experimental challenges. Using fluorescence anisotropy and exploiting the symmetry of the NPC and its organization in the nuclear envelope, we have resolved order and disorder of individual protein domains. Fluorescently tagging specific domains of individual nucleoporins revealed both rigid and flexible domains: the tips of the FG domains are disordered, whereas the NPC-anchored domains are ordered. Our technique allows the collection of structural information in vivo, providing the ability to probe the organization of protein domains within the NPC. This has particular relevance for the FG domain nucleoporins, which are crucial for nucleocytoplasmic transport. PMID:20858414

  8. Conserved Spatial Organization of FG Domains in the Nuclear Pore Complex

    PubMed Central

    Atkinson, Claire E.; Mattheyses, Alexa L.; Kampmann, Martin; Simon, Sanford M.

    2013-01-01

    Selective transport through the nuclear pore complex (NPC) requires nucleoporins containing natively unfolded phenylalanine-glycine (FG) domains. Several differing models for their dynamics within the pore have been proposed. We characterize the behavior of the FG nucleoporins in vivo using polarized fluorescence microscopy. Using nucleoporins tagged with green fluorescent protein along their FG domains, we show that some of these proteins are ordered, indicating an overall orientational organization within the NPC. This orientational ordering of the FG domains depends on their specific context within the NPC, but is independent of active transport and cargo load. For most nups, behavior does not depend on the FG motifs. These data support a model whereby local geometry constrains the orientational organization of the FG nups. Intriguingly, homologous yeast and mammalian proteins show conserved behavior, suggesting functional relevance. Our findings have implications for mechanistic models of NPC transport. PMID:23332057

  9. Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization.

    PubMed

    Mihályi, Csaba; Töröcsik, Beáta; Csanády, László

    2016-01-01

    In CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, ATP-binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs) opens the pore, and dimer disruption following ATP hydrolysis closes it. Spontaneous openings without ATP are rare in wild-type CFTR, but in certain CF mutants constitute the only gating mechanism, stimulated by ivacaftor, a clinically approved CFTR potentiator. The molecular motions underlying spontaneous gating are unclear. Here we correlate energetic coupling between residues across the dimer interface with spontaneous pore opening/closure in single CFTR channels. We show that spontaneous openings are also strictly coupled to NBD dimerization, which may therefore occur even without ATP. Coordinated NBD/pore movements are therefore intrinsic to CFTR: ATP alters the stability, but not the fundamental structural architecture, of open- and closed-pore conformations. This explains correlated effects of phosphorylation, mutations, and drugs on ATP-driven and spontaneous activity, providing insights for understanding CF mutation and drug mechanisms. PMID:27328319

  10. Obligate coupling of CFTR pore opening to tight nucleotide-binding domain dimerization

    PubMed Central

    Mihályi, Csaba; Töröcsik, Beáta; Csanády, László

    2016-01-01

    In CFTR, the chloride channel mutated in cystic fibrosis (CF) patients, ATP-binding-induced dimerization of two cytosolic nucleotide binding domains (NBDs) opens the pore, and dimer disruption following ATP hydrolysis closes it. Spontaneous openings without ATP are rare in wild-type CFTR, but in certain CF mutants constitute the only gating mechanism, stimulated by ivacaftor, a clinically approved CFTR potentiator. The molecular motions underlying spontaneous gating are unclear. Here we correlate energetic coupling between residues across the dimer interface with spontaneous pore opening/closure in single CFTR channels. We show that spontaneous openings are also strictly coupled to NBD dimerization, which may therefore occur even without ATP. Coordinated NBD/pore movements are therefore intrinsic to CFTR: ATP alters the stability, but not the fundamental structural architecture, of open- and closed-pore conformations. This explains correlated effects of phosphorylation, mutations, and drugs on ATP-driven and spontaneous activity, providing insights for understanding CF mutation and drug mechanisms. DOI: http://dx.doi.org/10.7554/eLife.18164.001 PMID:27328319

  11. A Novel Approach to Estimate Iron Distribution Within Different Pore Domains of Structured Media.

    SciTech Connect

    Kamolpornwijit, Wiwat; Brooks, Scott C.; Kim, Y.; Scheibe, Timothy D.

    2007-11-25

    The success and long-term performance of bioremediation processes employing iron-reducing bacteria depends on several factors. A crucial factor is the availability of Fe(III) as an electron acceptor which may be dictated by both chemical (e.g., oxide mineralogy) and physical (distribution of Fe(III) in space) effects. The iron content of subsurface media usually is obtained through different extraction techniques performed in a well-mixed batch experiment. For structured media where preferential flow prevails over the matrix flow, however, the iron content determined from homogenized samples may not well represent the iron content available for microbial activity. Metal reducing bacteria may be physically excluded from a significant fraction of pores due to their sizes. In this study we performed Fe(III) oxide extraction on an intact core of saprolite where intact structure was preserved. An unsaturated flow setup was modified to allow the extraction of oxalate-extractable Fe(III) oxides under two pore tensions, 15 and 0 cm of water. The result suggested the existence of Fe(III) oxide distribution with its mass mainly contained within the finer pore domain of matrix potential larger than 15 cm. Less than 15.5% mass (an upper bound) of oxalate-extractable Fe (III) oxides were present in domains of pore tension less than 15 cm. Hence the use of extraction results from well mixed batch extraction techniques can overestimate the quantity of Fe(III) oxides accessible to bacteria in structured media. To the extent that Fe (III) oxide minerals play an important role in contaminant biogeochemistry and solute transport, the distribution of Fe(III) oxides in structured subsurface media are critical to our understanding of these processes.

  12. Coupling between the voltage-sensing and pore domains in a voltage-gated potassium channel.

    PubMed

    Schow, Eric V; Freites, J Alfredo; Nizkorodov, Alex; White, Stephen H; Tobias, Douglas J

    2012-07-01

    Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.

  13. Effects of amino acid mutations in the pore-forming domain of the hemolytic lectin CEL-III.

    PubMed

    Nagao, Tomonao; Masaki, Risa; Unno, Hideaki; Goda, Shuichiro; Hatakeyama, Tomomitsu

    2016-10-01

    The hemolytic lectin CEL-III forms transmembrane pores in the membranes of target cells. A study on the effect of site-directed mutation at Lys405 in domain 3 of CEL-III indicated that replacements of this residue by relatively smaller residues lead to a marked increase in hemolytic activity, suggesting that moderately destabilizing domain 3 facilitates formation of transmembrane pores through conformational changes.

  14. Effects of amino acid mutations in the pore-forming domain of the hemolytic lectin CEL-III.

    PubMed

    Nagao, Tomonao; Masaki, Risa; Unno, Hideaki; Goda, Shuichiro; Hatakeyama, Tomomitsu

    2016-10-01

    The hemolytic lectin CEL-III forms transmembrane pores in the membranes of target cells. A study on the effect of site-directed mutation at Lys405 in domain 3 of CEL-III indicated that replacements of this residue by relatively smaller residues lead to a marked increase in hemolytic activity, suggesting that moderately destabilizing domain 3 facilitates formation of transmembrane pores through conformational changes. PMID:27101707

  15. Myometrial relaxation of mice via expression of two pore domain acid sensitive K(+) (TASK-2) channels.

    PubMed

    Kyeong, Kyu-Sang; Hong, Seung Hwa; Kim, Young Chul; Cho, Woong; Myung, Sun Chul; Lee, Moo Yeol; You, Ra Young; Kim, Chan Hyung; Kwon, So Yeon; Suzuki, Hikaru; Park, Yeon Jin; Jeong, Eun-Hwan; Kim, Hak Soon; Kim, Heon; Lim, Seung Woon; Xu, Wen-Xie; Lee, Sang Jin; Ji, Il Woon

    2016-09-01

    Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing K(+) channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward K(+) current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing K(+) channels (TASK-2). NIOK in the presence of K(+) channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery.

  16. Myometrial relaxation of mice via expression of two pore domain acid sensitive K+ (TASK-2) channels

    PubMed Central

    Kyeong, Kyu-Sang; Hong, Seung Hwa; Cho, Woong; Myung, Sun Chul; Lee, Moo Yeol; You, Ra Young; Kim, Chan Hyung; Kwon, So Yeon; Suzuki, Hikaru; Park, Yeon Jin; Jeong, Eun-Hwan; Kim, Hak Soon; Kim, Heon; Lim, Seung Woon; Xu, Wen-Xie; Lee, Sang Jin

    2016-01-01

    Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing K+ channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward K+ current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing K+ channels (TASK-2). NIOK in the presence of K+ channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery. PMID:27610042

  17. Myometrial relaxation of mice via expression of two pore domain acid sensitive K(+) (TASK-2) channels.

    PubMed

    Kyeong, Kyu-Sang; Hong, Seung Hwa; Kim, Young Chul; Cho, Woong; Myung, Sun Chul; Lee, Moo Yeol; You, Ra Young; Kim, Chan Hyung; Kwon, So Yeon; Suzuki, Hikaru; Park, Yeon Jin; Jeong, Eun-Hwan; Kim, Hak Soon; Kim, Heon; Lim, Seung Woon; Xu, Wen-Xie; Lee, Sang Jin; Ji, Il Woon

    2016-09-01

    Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing K(+) channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward K(+) current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing K(+) channels (TASK-2). NIOK in the presence of K(+) channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery. PMID:27610042

  18. Myometrial relaxation of mice via expression of two pore domain acid sensitive K+ (TASK-2) channels

    PubMed Central

    Kyeong, Kyu-Sang; Hong, Seung Hwa; Cho, Woong; Myung, Sun Chul; Lee, Moo Yeol; You, Ra Young; Kim, Chan Hyung; Kwon, So Yeon; Suzuki, Hikaru; Park, Yeon Jin; Jeong, Eun-Hwan; Kim, Hak Soon; Kim, Heon; Lim, Seung Woon; Xu, Wen-Xie; Lee, Sang Jin

    2016-01-01

    Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing K+ channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward K+ current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing K+ channels (TASK-2). NIOK in the presence of K+ channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery.

  19. BIM-Mediated Membrane Insertion of the BAK Pore Domain Is an Essential Requirement for Apoptosis

    PubMed Central

    Weber, Kathrin; Harper, Nicholas; Schwabe, John; Cohen, Gerald M.

    2013-01-01

    Summary BAK activation represents a key step during apoptosis, but how it converts into a mitochondria-permeabilizing pore remains unclear. By further delineating the structural rearrangements involved, we reveal that BAK activation progresses through a series of independent steps: BH3-domain exposure, N-terminal change, oligomerization, and membrane insertion. Employing a “BCL-XL-addiction” model, we show that neutralization of BCL-XL by the BH3 mimetic ABT-737 resulted in death only when cells were reconstituted with BCL-XL:BAK, but not BCL-2/ BCL-XL:BIM complexes. Although this resembles the indirect model, release of BAK from BCL-XL did not result in spontaneous adoption of the pore conformation. Commitment to apoptosis required association of the direct activator BIM with oligomeric BAK promoting its conversion to a membrane-inserted pore. The sequential nature of this cascade provides multiple opportunities for other BCL-2 proteins to interfere with or promote BAK activation and unites aspects of the indirect and direct activation models. PMID:24120870

  20. Contribution of the S5-pore-S6 domain to the gating characteristics of the cation channels TRPM2 and TRPM8.

    PubMed

    Kühn, Frank J P; Witschas, Katja; Kühn, Cornelia; Lückhoff, Andreas

    2010-08-27

    The closely related cation channels TRPM2 and TRPM8 show completely different requirements for stimulation and are regulated by Ca(2+) in an opposite manner. TRPM8 is basically gated in a voltage-dependent process enhanced by cold temperatures and cooling compounds such as menthol and icilin. The putative S4 voltage sensor of TRPM8 is closely similar to that of TRPM2, which, however, is mostly devoid of voltage sensitivity. To gain insight into principal interactions of critical channel domains during the gating process, we created chimeras in which the entire S5-pore-S6 domains were reciprocally exchanged. The chimera M2-M8P (i.e. TRPM2 with the pore of TRPM8) responded to ADP-ribose and hydrogen peroxide and was regulated by extracellular and intracellular Ca(2+) as was wild-type TRPM2. Single-channel recordings revealed the characteristic pattern of TRPM2 with extremely long open times. Only at far-negative membrane potentials (-120 to -140 mV) did differences become apparent because currents were reduced by hyperpolarization in M2-M8P but not in TRPM2. The reciprocal chimera, M8-M2P, showed currents after stimulation with high concentrations of menthol and icilin, but these currents were only slightly larger than in controls. The transfer of the NUDT9 domain to the C terminus of TRPM8 produced a channel sensitive to cold, menthol, or icilin but insensitive to ADP-ribose or hydrogen peroxide. We conclude that the gating processes in TRPM2 and TRPM8 differ in their requirements for specific structures within the pore. Moreover, the regulation by extracellular and intracellular Ca(2+) and the single-channel properties in TRPM2 are not determined by the S5-pore-S6 region.

  1. Therapeutic targeting of two-pore-domain potassium (K(2P)) channels in the cardiovascular system.

    PubMed

    Wiedmann, Felix; Schmidt, Constanze; Lugenbiel, Patrick; Staudacher, Ingo; Rahm, Ann-Kathrin; Seyler, Claudia; Schweizer, Patrick A; Katus, Hugo A; Thomas, Dierk

    2016-05-01

    The improvement of treatment strategies in cardiovascular medicine is an ongoing process that requires constant optimization. The ability of a therapeutic intervention to prevent cardiovascular pathology largely depends on its capacity to suppress the underlying mechanisms. Attenuation or reversal of disease-specific pathways has emerged as a promising paradigm, providing a mechanistic rationale for patient-tailored therapy. Two-pore-domain K(+) (K(2P)) channels conduct outward K(+) currents that stabilize the resting membrane potential and facilitate action potential repolarization. K(2P) expression in the cardiovascular system and polymodal K2P current regulation suggest functional significance and potential therapeutic roles of the channels. Recent work has focused primarily on K(2P)1.1 [tandem of pore domains in a weak inwardly rectifying K(+) channel (TWIK)-1], K(2P)2.1 [TWIK-related K(+) channel (TREK)-1], and K(2P)3.1 [TWIK-related acid-sensitive K(+) channel (TASK)-1] channels and their role in heart and vessels. K(2P) currents have been implicated in atrial and ventricular arrhythmogenesis and in setting the vascular tone. Furthermore, the association of genetic alterations in K(2P)3.1 channels with atrial fibrillation, cardiac conduction disorders and pulmonary arterial hypertension demonstrates the relevance of the channels in cardiovascular disease. The function, regulation and clinical significance of cardiovascular K(2P) channels are summarized in the present review, and therapeutic options are emphasized.

  2. The Pore-Domain of TRPA1 Mediates the Inhibitory Effect of the Antagonist 6-Methyl-5-(2-(trifluoromethyl)phenyl)-1H-indazole

    PubMed Central

    Moldenhauer, Hans; Latorre, Ramon; Grandl, Jörg

    2014-01-01

    The transient receptor potential ion channel TRPA1 confers the ability to detect tissue damaging chemicals to sensory neurons and as a result mediates chemical nociception in vivo. Mouse TRPA1 is activated by electrophilic compounds such as mustard-oil and several physical stimuli such as cold temperature. Due to its sensory function inhibition of TRPA1 activity might provide an effective treatment against chronic and inflammatory pain. Therefore, TRPA1 has become a target for the development of analgesic drugs. 6-Methyl-5-(2-(trifluoromethyl)phenyl)-1H-indazole (Compound 31) has been identified by a chemical screen and lead optimization as an inhibitor of chemical activation of TRPA1. However, the structures or domains of TRPA1 that mediate the inhibitory effect of Compound 31 are unknown. Here, we screened 12,000 random mutant clones of mouse TRPA1 for their sensitivity to mustard-oil and the ability of Compound 31 to inhibit chemical activation by mustard-oil. In addition, we separately screened this mutant library while stimulating it with cold temperatures. We found that the single-point mutation I624N in the N-terminus of TRPA1 specifically affects the sensitivity to mustard-oil, but not to cold temperatures. This is evidence that sensitivity of TRPA1 to chemicals and cold temperatures is conveyed by separable mechanisms. We also identified five mutations located within the pore domain that cause loss of inhibition by Compound 31. This result demonstrates that the pore-domain is a regulator of chemical activation and suggests that Compound 31 might be acting directly on the pore-domain. PMID:25181545

  3. Pore helices play a dynamic role as integrators of domain motion during Kv11.1 channel inactivation gating.

    PubMed

    Perry, Matthew D; Ng, Chai Ann; Vandenberg, Jamie I

    2013-04-19

    Proteins that form ion-selective pores in the membrane of cells are integral to many rapid signaling processes, including regulating the rhythm of the heartbeat. In potassium channels, the selectivity filter is critical for both endowing an exquisite selectivity for potassium ions, as well as for controlling the flow of ions through the pore. Subtle rearrangements in the complex hydrogen-bond network that link the selectivity filter to the surrounding pore helices differentiate conducting (open) from nonconducting (inactivated) conformations of the channel. Recent studies suggest that beyond the selectivity filter, inactivation involves widespread rearrangements of the channel protein. Here, we use rate equilibrium free energy relationship analysis to probe the structural changes that occur during selectivity filter gating in Kv11.1 channels, at near atomic resolution. We show that the pore helix plays a crucial dynamic role as a bidirectional interface during selectivity filter gating. We also define the molecular bases of the energetic coupling between the pore helix and outer helix of the pore domain that occurs early in the transition from open to inactivated states, as well as the coupling between the pore helix and inner helix late in the transition. Our data demonstrate that the pore helices are more than just static structural elements supporting the integrity of the selectivity filter; instead they play a crucial dynamic role during selectivity filter gating.

  4. Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters.

    PubMed

    Miyoshi, Tatsuo; Iwatsuki, Teruki; Naganuma, Takeshi

    2005-02-01

    A total of 247 clones of 16S rRNA genes from microorganisms captured by 0.2- and 0.1-microm-pore-size filters from sedimentary and granite rock aquifers were amplified and yielded 37 operational taxonomic units (OTUs). Fifteen OTUs captured by 0.1-microm-pore-size filters were affiliated with the candidate divisions OD1 and OP11, representing novel lineages. On the other hand, OTUs captured by 0.2-microm-pore-size filters were largely affiliated with Betaproteobacteria.

  5. Breaking the silence: functional expression of the two-pore-domain potassium channel THIK-2.

    PubMed

    Renigunta, Vijay; Zou, Xinle; Kling, Stefan; Schlichthörl, Günter; Daut, Jürgen

    2014-09-01

    THIK-2 belongs to the 'silent' channels of the two-pore-domain potassium channel family. It is highly expressed in many nuclei of the brain but has so far resisted all attempts at functional expression. THIK-2 has a highly conserved 19-amino-acid region in its N terminus (residues 6-24 in the rat orthologue) that is missing in the closely related channel THIK-1. After deletion of this region (THIK-2(Δ6-24) mutant), functional expression of the channel was observed in Xenopus oocytes and in mammalian cell lines. The resulting potassium current showed outward rectification under physiological conditions and slight inward rectification with symmetrical high-K(+) solutions and could be inhibited by application of halothane or quinidine. Another THIK-2 mutant, in which the putative retention/retrieval signal RRR at positions 14-16 was replaced by AAA, produced a similar potassium current. Both mutants showed a distinct localisation to the surface membrane when tagged with green fluorescent protein and expressed in a mammalian cell line, whereas wild-type THIK-2 was mainly localised to the endoplasmic reticulum. These findings suggest that deletion of the retention/retrieval signal RRR enabled transport of THIK-2 channels to the surface membrane. Combining the mutation THIK-2(Δ6-24) with a mutation in the pore cavity (rat THIK-2(I158G)) gave rise to a 12-fold increase in current amplitude, most likely due to an increase in open probability. In conclusion, the characteristics of THIK-2 channels can be analysed in heterologous expression systems by using trafficking and/or gating mutants. The possible mechanisms that enable THIK-2 expression at the surface membrane in vivo remain to be determined. PMID:24297522

  6. Cloning, Expression and Purification of the SRCR domains of glycoprotein 340

    PubMed Central

    Purushotham, Sangeetha; Deivanayagam, Champion

    2013-01-01

    Glycoprotein 340 (gp340), an innate immunity molecule is secreted luminally by monolayered epithelia and associated glands within the human oral cavity. Gp340 contains 14 scavenger receptor cysteine rich (SRCR) domains, two CUB (C1r/C1s Uegf Bmp1) domains and one zona - pellucida (ZP) domain. Oral streptococci are known to adhere to the tooth immobilized gp340 via its surface protein Antigen I/II (AgI/II), which is considered to be the critical first step in pathogenesis that eventually results in colonization and infection. In order to decipher the interactions between gp340's domains and oral streptococcal AgI/II domains, we undertook to express human gp340's first SRCR domain (SRCR1) and the first three tandem SRCR domains (SRCR123) in Drosophila S2 cells. While our initial attempts with human codons did not produce optimal results, codon-optimization for expression in Drosophila S2 cells and usage of inducible/secretory Drosophila Expression System (DES) pMT/BiP/V5-HisA vector greatly enhanced the expression of the SRCR domains. Here we report the successful cloning, expression, and purification of the SRCR domains of gp340. Recognition of expressed SRCRs by the conformational dependent gp340 antibody indicate that these domains are appropriately folded and furthermore, surface plasmon resonance studies confirmed functional adherence of the SRCR domains to AgI/II. PMID:23707657

  7. Two-pore domain K⁺ channels regulate membrane potential of isolated human articular chondrocytes.

    PubMed

    Clark, Robert B; Kondo, Colleen; Belke, Darrell D; Giles, Wayne R

    2011-11-01

    Potassium channels that regulate resting membrane potential (RMP) of human articular chondrocytes (HACs) of the tibial joint maintained in short-term (0-3 days) non-confluent cell culture were studied using patch-clamp techniques. Quantitative PCR showed that transcripts of genes for two-pore domain K(+) channels (KCNK1, KCNK5 and KCNK6), and 'BK' Ca(2+)-activated K(+) channels (KCNMA1) were abundantly expressed. Immunocytological methods detected α-subunits for BK and K(2p)5.1 (TASK-2) K(+) channels. Electrophysiological recordings identified three distinct K(+) currents in isolated HACs: (i) a voltage- and time-dependent 'delayed rectifier', blocked by 100 nM α-dendrotoxin, (ii) a large 'noisy' voltage-dependent current that was blocked by low concentrations of tetraethylammonium (TEA; 50% blocking dose = 0.15 mM) and iberiotoxin (52% block, 100 nM) and (iii) a voltage-independent 'background' K(+) current that was blocked by acidic pH (5.5-6), was increased by alkaline pH (8.5), and was not blocked by TEA, but was blocked by the local anaesthetic bupivacaine (0.25 mM). The RMP of isolated HACs was very slightly affected by 5 mM TEA, which was sufficient to block both voltage-dependent K(+) currents, suggesting that these currents probably contributed little to maintaining RMP under 'resting' conditions (i.e. low internal [Ca(2+)]). Increases in external K(+) concentration depolarized HACs by 30 mV in response to a 10-fold increase in [K(+)], indicating a significant but not exclusive role for K(+) current in determining RMP. Increases in external [K(+)] in voltage-clamped HACs revealed a voltage-independent K(+) current whose inward current magnitude increased with external [K(+)]. Block of this current by bupivacaine (0.25-1 mM) in 5 and 25 mM external [K(+)] resulted in a large (8-25 mV) depolarization of RMP. The biophysical and pharmacological properties of the background K(+) current, together with expression of mRNA and α-subunit protein for TASK-2

  8. Molecular Mechanism of Holin Transmembrane Domain I in Pore Formation and Bacterial Cell Death.

    PubMed

    Lella, Muralikrishna; Kamilla, Soumya; Jain, Vikas; Mahalakshmi, Radhakrishnan

    2016-04-15

    Bacterial cell lysis during bacteriophage infection is timed by perfect orchestration between components of the holin-endolysin cassette. In bacteria, progressively accumulating holin in the inner membrane, retained in its inactive form by antiholin, is triggered into active hole formation, resulting in the canonical host cell lysis. However, the molecular mechanism of regulation and physical basis of pore formation in the mycobacterial cell membrane by D29 mycobacteriophage holin, particularly in the nonexistence of a known antiholin, is poorly understood. In this study, we report, for the first time, the use of fluorescence resonance transfer measurements to demonstrate that the first transmembrane domain (TM1) of D29 holin undergoes a helix ↔ β-hairpin conformational interconversion. We validate that this structural malleability is mediated by a centrally positioned proline and is responsible for controlled TM1 self-association in membrana, in the presence of a proton gradient across the lipid membrane. We demonstrate that TM1 is sufficient for bacterial growth inhibition. The biological effect of D29 holin structural alteration is presented as a holin self-regulatory mechanism, and its implications are discussed in the context of holin function. PMID:26701742

  9. Two-pore domain potassium channels: potential therapeutic targets for the treatment of pain.

    PubMed

    Mathie, Alistair; Veale, Emma L

    2015-05-01

    Recent evidence points to a pivotal contribution of a variety of different potassium channels, including two-pore domain potassium (K2P) channels, in chronic pain processing. Expression of several different K2P channel subunits has been detected in nociceptive dorsal root ganglion neurons and trigeminal ganglion neurons, in particular, TREK1, TREK2, TRESK, TRAAK, TASK3 and TWIK1 channels. Of these, the strongest body of evidence from functional studies highlights the importance of TREK1, TRESK and, recently, TREK2 channels. For example, TREK1 knockout mice are more sensitive than wild-type mice to a number of painful stimuli but less sensitive to morphine-induced analgesia. TRESK knockdown mice show behavioural evidence of increased pain and increased sensitivity to painful pressure. Importantly, familial migraine with aura is associated with a dominant-negative mutation in human TRESK channels. Thus, the functional up-regulation of K2P channel activity may be a useful strategy in the development of new therapies for the treatment of pain. Whilst there are few currently available compounds that selectively and directly enhance the activity of TRESK and TREK2 channels, recent advances have been made in terms of identifying compounds that activate TREK1 channels and in understanding how they might act on the channel. Large-scale bio-informatic approaches and the further development of databases of putative ligands, channel structures and putative ligand binding sites on these structures may form the basis for future experimental strategies to detect novel molecules acting to enhance K2P channel activity that would be useful in the treatment of pain.

  10. Structures of the autoproteolytic domain from the Saccharomyces cerevisiae nuclear pore complex component, Nup145

    SciTech Connect

    Sampathkumar, Parthasarathy; Ozyurt, Sinem A.; Do, Johnny; Bain, Kevin T.; Dickey, Mark; Rodgers, Logan A.; Gheyi, Tarun; Sali, Andrej; Kim, Seung Joong; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Martel, Anne; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sauder, J. Michael; Burley, Stephen K.

    2012-04-30

    Nuclear pore complexes (NPCs) are large, octagonally symmetric dynamic macromolecular assemblies responsible for exchange of proteins and RNAs between the nucleus and cytoplasm. NPCs are made up of at least 456 polypeptides from {approx}30 distinct nucleoporins. Several of these components, sharing similar structural motifs, form stable subcomplexes that form a coaxial structure containing two outer rings (the nuclear and cytoplasmic rings), two inner rings, and a membrane ring. The yeast (Saccharomyces cerevisiae) Nup145 and its human counterpart are unique among the nucleoporins, in that they undergo autoproteolysis to generate functionally distinct proteins. The human counterpart of Nup145 is expressed as two alternatively spliced mRNA transcripts. The larger 190 kDa precursor undergoes post-translational autoproteolysis at the Phe863-Ser864 peptide bond yielding the 92 kDa Nup98 and the 96 kDa Nup96. The smaller 98 kDa precursor is also autoproteolysed at an analogous site giving 92 kDa Nup98-N and a 6 kDa C-terminal fragment, which may form a noncovalent complex. The yeast Nup145 precursor [Fig. 1(A)] contains twelve repeats of a 'GLFG' peptide motif (FG repeats) at its N-terminus, an internal autoproteolytic domain (a region of high conservation with the homologous yeast nucleoporins Nup110 and Nup116, neither of which undergo autoproteolysis), followed by the C-terminal domain. Various forms of the FG repeats are present in nearly half of all nucleoporins; they form intrinsically disordered regions implicated in gating mechanisms that control passage of macromolecules through NPCs. Nup145 undergoes autoproteolysis at the Phe605-Ser606 peptide bond to generate two functionally distinct proteins, Nup145N and Nup145C. Subsequently, Nup145C associates with six other proteins to form the heptameric Y-complex, a component of the outer rings of the NPC. Nup145N, on the other hand, can shuttle between the NPC and the nuclear interior. It has been suggested that Nup

  11. Role of the outer pore domain in transient receptor potential vanilloid 1 dynamic permeability to large cations.

    PubMed

    Munns, Clare H; Chung, Man-Kyo; Sanchez, Yuly E; Amzel, L Mario; Caterina, Michael J

    2015-02-27

    Transient receptor potential vanilloid 1 (TRPV1) has been shown to alter its ionic selectivity profile in a time- and agonist-dependent manner. One hallmark of this dynamic process is an increased permeability to large cations such as N-methyl-D-glucamine (NMDG). In this study, we mutated residues throughout the TRPV1 pore domain to identify loci that contribute to dynamic large cation permeability. Using resiniferatoxin (RTX) as the agonist, we identified multiple gain-of-function substitutions within the TRPV1 pore turret (N628P and S629A), pore helix (F638A), and selectivity filter (M644A) domains. In all of these mutants, maximum NMDG permeability was substantially greater than that recorded in wild type TRPV1, despite similar or even reduced sodium current density. Two additional mutants, located in the pore turret (G618W) and selectivity filter (M644I), resulted in significantly reduced maximum NMDG permeability. M644A and M644I also showed increased and decreased minimum NMDG permeability, respectively. The phenotypes of this panel of mutants were confirmed by imaging the RTX-evoked uptake of the large cationic fluorescent dye YO-PRO1. Whereas none of the mutations selectively altered capsaicin-induced changes in NMDG permeability, the loss-of-function phenotypes seen with RTX stimulation of G618W and M644I were recapitulated in the capsaicin-evoked YO-PRO1 uptake assay. Curiously, the M644A substitution resulted in a loss, rather than a gain, in capsaicin-evoked YO-PRO1 uptake. Modeling of our mutations onto the recently determined TRPV1 structure revealed several plausible mechanisms for the phenotypes observed. We conclude that side chain interactions at a few specific loci within the TRPV1 pore contribute to the dynamic process of ionic selectivity.

  12. Role of the Outer Pore Domain in Transient Receptor Potential Vanilloid 1 Dynamic Permeability to Large Cations*

    PubMed Central

    Munns, Clare H.; Chung, Man-Kyo; Sanchez, Yuly E.; Amzel, L. Mario; Caterina, Michael J.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) has been shown to alter its ionic selectivity profile in a time- and agonist-dependent manner. One hallmark of this dynamic process is an increased permeability to large cations such as N-methyl-d-glucamine (NMDG). In this study, we mutated residues throughout the TRPV1 pore domain to identify loci that contribute to dynamic large cation permeability. Using resiniferatoxin (RTX) as the agonist, we identified multiple gain-of-function substitutions within the TRPV1 pore turret (N628P and S629A), pore helix (F638A), and selectivity filter (M644A) domains. In all of these mutants, maximum NMDG permeability was substantially greater than that recorded in wild type TRPV1, despite similar or even reduced sodium current density. Two additional mutants, located in the pore turret (G618W) and selectivity filter (M644I), resulted in significantly reduced maximum NMDG permeability. M644A and M644I also showed increased and decreased minimum NMDG permeability, respectively. The phenotypes of this panel of mutants were confirmed by imaging the RTX-evoked uptake of the large cationic fluorescent dye YO-PRO1. Whereas none of the mutations selectively altered capsaicin-induced changes in NMDG permeability, the loss-of-function phenotypes seen with RTX stimulation of G618W and M644I were recapitulated in the capsaicin-evoked YO-PRO1 uptake assay. Curiously, the M644A substitution resulted in a loss, rather than a gain, in capsaicin-evoked YO-PRO1 uptake. Modeling of our mutations onto the recently determined TRPV1 structure revealed several plausible mechanisms for the phenotypes observed. We conclude that side chain interactions at a few specific loci within the TRPV1 pore contribute to the dynamic process of ionic selectivity. PMID:25568328

  13. Cloning, overexpression, purification and crystallization of the CRN12 coiled-coil domain from Leishmania donovani

    PubMed Central

    Srivastava, Vijay Kumar; Rana, Ajay Kumar; Sahasrabuddhe, Amogh A.; Gupta, C. M; Pratap, J. V.

    2013-01-01

    Leishmania donovani coronin CRN12 is an actin-binding protein which consists of two domains: an N-terminal WD repeat domain and a C-terminal coiled-coil domain. The coiled-coil domain is 53 residues in length. Helix–helix interactions in general and coiled coils in particular are ubiquitous in the structure of proteins and play a significant role in the association among proteins, including supramolecular assemblies and transmembrane receptors that mediate cellular signalling, transport and actin dynamics. The L. donovani coronin CRN12 coiled-coil domain (5.8 kDa) was cloned, overexpressed, purified to homogeneity and the N-terminal 6×His tag was successfully removed by thrombin cleavage. Crystals of recombinant L. donovani coronin CRN12 coiled-coil domain were grown by vapour diffusion using a hanging-drop setup. Diffraction-quality crystals were obtained and data extending to 2.46 Å resolution were collected at 100 K on BM14, ESRF, Grenoble, France. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 118.0, b = 50.6, c = 46.0 Å, β = 111.0°. Matthews coefficient (V M) calculations suggested the presence of 4–6 molecules in the asymmetric unit, corresponding to a solvent content of ∼33–55%, and are consistent with self-rotation function calculations. PMID:23695571

  14. Cloning, overexpression, purification and crystallization of the CRN12 coiled-coil domain from Leishmania donovani.

    PubMed

    Srivastava, Vijay Kumar; Rana, Ajay Kumar; Sahasrabuddhe, Amogh A; Gupta, C M; Pratap, J V

    2013-05-01

    Leishmania donovani coronin CRN12 is an actin-binding protein which consists of two domains: an N-terminal WD repeat domain and a C-terminal coiled-coil domain. The coiled-coil domain is 53 residues in length. Helix-helix interactions in general and coiled coils in particular are ubiquitous in the structure of proteins and play a significant role in the association among proteins, including supramolecular assemblies and transmembrane receptors that mediate cellular signalling, transport and actin dynamics. The L. donovani coronin CRN12 coiled-coil domain (5.8 kDa) was cloned, overexpressed, purified to homogeneity and the N-terminal 6×His tag was successfully removed by thrombin cleavage. Crystals of recombinant L. donovani coronin CRN12 coiled-coil domain were grown by vapour diffusion using a hanging-drop setup. Diffraction-quality crystals were obtained and data extending to 2.46 Å resolution were collected at 100 K on BM14, ESRF, Grenoble, France. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 118.0, b = 50.6, c = 46.0 Å, β = 111.0°. Matthews coefficient (VM) calculations suggested the presence of 4-6 molecules in the asymmetric unit, corresponding to a solvent content of ∼33-55%, and are consistent with self-rotation function calculations. PMID:23695571

  15. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity.

    PubMed

    Schmidt, Hermann Broder; Görlich, Dirk

    2015-01-01

    Nuclear pore complexes (NPCs) conduct massive transport mediated by shuttling nuclear transport receptors (NTRs), while keeping nuclear and cytoplasmic contents separated. The NPC barrier in Xenopus relies primarily on the intrinsically disordered FG domain of Nup98. We now observed that Nup98 FG domains of mammals, lancelets, insects, nematodes, fungi, plants, amoebas, ciliates, and excavates spontaneously and rapidly phase-separate from dilute (submicromolar) aqueous solutions into characteristic 'FG particles'. This required neither sophisticated experimental conditions nor auxiliary eukaryotic factors. Instead, it occurred already during FG domain expression in bacteria. All Nup98 FG phases rejected inert macromolecules and yet allowed far larger NTR cargo complexes to rapidly enter. They even recapitulated the observations that large cargo-domains counteract NPC passage of NTR⋅cargo complexes, while cargo shielding and increased NTR⋅cargo surface-ratios override this inhibition. Their exquisite NPC-typical sorting selectivity and strong intrinsic assembly propensity suggest that Nup98 FG phases can form in authentic NPCs and indeed account for the permeability properties of the pore. PMID:25562883

  16. Cloning

    MedlinePlus

    ... copies of whole animals Therapeutic cloning, which creates embryonic stem cells. Researchers hope to use these cells to grow healthy tissue to replace injured or diseased tissues in the human body. NIH: National Human Genome Research Institute

  17. A homology model of the pore domain of a voltage-gated calcium channel is consistent with available SCAM data.

    PubMed

    Bruhova, Iva; Zhorov, Boris S

    2010-03-01

    In the absence of x-ray structures of calcium channels, their homology models are used to rationalize experimental data and design new experiments. The modeling relies on sequence alignments between calcium and potassium channels. Zhen et al. (2005. J. Gen. Physiol. doi:10.1085/jgp.200509292) used the substituted cysteine accessibility method (SCAM) to identify pore-lining residues in the Ca(v)2.1 channel and concluded that their data are inconsistent with the symmetric architecture of the pore domain and published sequence alignments between calcium and potassium channels. Here, we have built K(v)1.2-based models of the Ca(v)2.1 channel with 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET)-modified engineered cysteines and used Monte Carlo energy minimizations to predict their energetically optimal orientations. We found that depending on the position of an engineered cysteine in S6 and S5 helices, the ammonium group in the long flexible MTSET-modified side chain can orient into the inner pore, an interface between domains (repeats), or an interface between S5 and S6 helices. Different local environments of equivalent positions in the four repeats can lead to different SCAM results. The reported current inhibition by MTSET generally decreases with the predicted distances between the ammonium nitrogen and the pore axis. A possible explanation for outliers of this correlation is suggested. Our calculations rationalize the SCAM data, validate one of several published sequence alignments between calcium and potassium channels, and suggest similar spatial dispositions of S5 and S6 helices in voltage-gated potassium and calcium channels.

  18. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    PubMed

    Oscherwitz, Jon; Cease, Kemp B

    2015-01-01

    The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing determinant in alpha

  19. cDNA cloning of the Octopus dofleini hemocyanin: sequence of the carboxyl-terminal domain.

    PubMed

    Lang, W H

    1988-09-20

    A cDNA library was constructed in pUC 19, using poly(A+) RNA purified from Octopus dofleini branchial gland, which is the site of hemocyanin biosynthesis in cephalopods. The library was screened with an oligonucleotide probe derived from a portion of the partially known sequence of the C-terminal domain of Paroctopus dofleini dofleini. The clone with the longest insert--called pHC1--was sequenced and used as a probe for Northern blotting. It hybridized to a 9.5-kb RNA species, which was also visible as a band after ethidium bromide staining. The cDNA insert (approximately 1200 bp) of pHC1 contained an open reading frame of 1071 bp coding for 357 amino acids. In this insert, a region coding for 42 amino acids from the N-terminal end of the C-terminal domain is missing. These were obtained by sequencing a cloned primer extension product. By comparing our sequence with Helix pomatia beta c-hemocyanin unit D, we found 42.9% identical and 11.5% similar residues. One putative copper binding site (site B) was identified by homology to Helix hemocyanin and arthropodan hemocyanin. The location of a second possible site was identified. PMID:3207675

  20. Cloning of human calcineurin A: Evidence for two isozymes and identification of a polyproline structural domain

    SciTech Connect

    Guerini, D.; Klee, C.B. )

    1989-12-01

    Two types (I and II) of cDNAs encoding the large (A) subunit of calcineurin, a calmodulin-regulated protein phosphatase, were isolated from human basal ganglia and brainstem mRNA. The complete sequences of the two calcineurin clones are identical except for a 54-base-pair insert in the type I clone and different 3{prime} ends including part of the coding sequence for the C termini of the two proteins. These findings suggest that calcineurin A consists of at least two isozymes that may result from alternative splicing events. The two forms of the enzyme differ in the C terminus, which contains an inhibitory domain rapidly severed by limited proteolysis. With the exception of an 18-amino acid insert, the central parts of the molecules, which harbor the catalytic domains, are identical and show extended similarities with the entire catalytic subunits of protein phosphatases 1 and 2A, defining a distinct family of protein phosphatases. The 40-residue N-terminal fragment, specific for calcineurin, contains a sequence of 11 successive prolines that is also found to bovine brain calcineurin by peptide sequencing. A role in the calmodulin activation of calcineurin is proposed for this novel structural element.

  1. DAMGO modulates two-pore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord

    PubMed Central

    Cho, Pyung Sun; Lee, Han Kyu; Lee, Sang Hoon; Im, Jay Zoon

    2016-01-01

    The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K+ current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K+ channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K+ equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K+ channel) related acid-sensitive K+ channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K+ current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K+ channel (TASK1 and 3) in addition to inwardly rectifying K+ channel. PMID:27610039

  2. DAMGO modulates two-pore domain K(+) channels in the substantia gelatinosa neurons of rat spinal cord.

    PubMed

    Cho, Pyung Sun; Lee, Han Kyu; Lee, Sang Hoon; Im, Jay Zoon; Jung, Sung Jun

    2016-09-01

    The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K(+) current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K(+) channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K(+) equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K(+) channel) related acid-sensitive K(+) channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K(+) current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K(+) channel (TASK1 and 3) in addition to inwardly rectifying K(+) channel. PMID:27610039

  3. DAMGO modulates two-pore domain K(+) channels in the substantia gelatinosa neurons of rat spinal cord.

    PubMed

    Cho, Pyung Sun; Lee, Han Kyu; Lee, Sang Hoon; Im, Jay Zoon; Jung, Sung Jun

    2016-09-01

    The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K(+) current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K(+) channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K(+) equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K(+) channel) related acid-sensitive K(+) channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K(+) current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K(+) channel (TASK1 and 3) in addition to inwardly rectifying K(+) channel.

  4. DAMGO modulates two-pore domain K+ channels in the substantia gelatinosa neurons of rat spinal cord

    PubMed Central

    Cho, Pyung Sun; Lee, Han Kyu; Lee, Sang Hoon; Im, Jay Zoon

    2016-01-01

    The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K+ current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K+ channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K+ equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K+ channel) related acid-sensitive K+ channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K+ current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K+ channel (TASK1 and 3) in addition to inwardly rectifying K+ channel.

  5. [Cloning and expression analysis of a LIM-domain protein gene from cotton (Gossypium hirsuturm L.)].

    PubMed

    Luo, Ming; Xiao, Yue-Hua; Hou, Lei; Luo, Xiao-Ying; Li, De-Mou; Pei, Yan

    2003-02-01

    LIM-domain protein plays an important role in various cellular processes, including construction of cytoskeleton, transcription control and signal transduction. Based on cotton fiber EST database and contig analysis, the coding region of a cotton LIM-domain protein gene (GhLIM1) was obtained by RT-PCR from 4DPA (day post anthesis) ovule with fiber. The cloned fragment of 848 bp contains an open reading frame of 570 bp, coding for a polypeptide of 189 amino acids. It was demonstrated that the deduced GhLIM1 protein was highly homologous to the LIM-domain protein of sunflower (Helianthus annuus), tobacco (Nicotiana tabacum) and Arabidopsis thaliana. Two intact LIM-domains, with the conserved sequence of a double zinc-finger structure (C-X2-C-X17-19-H-X2-C-X2-C-X2-C-X16-24-C-X2-H), were found in the GhLIM1 protein. RT-PCR and Northern blot analysis showed that GhLIM1 gene expressed in root, shoot tip, hypocotyls, bud, leaf, anther, ovule and fiber (4DPA, 12DPA, 18DPA). However it was preferentially expressed in the shoot tip, fiber and ovule. It was proposed that the express of GhLIM1 gene is related to cotton fiber development. PMID:12776607

  6. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization.

    PubMed Central

    Paldi, Tzur; Levy, Ilan; Shoseyov, Oded

    2003-01-01

    Carbohydrate-binding modules (CBMs) are protein domains located within a carbohydrate-active enzyme, with a discrete fold that can be separated from the catalytic domain. Starch-binding domains (SBDs) are CBMs that are usually found at the C-terminus in many amylolytic enzymes. The SBD from Aspergillus niger B1 (CMI CC 324262) was cloned and expressed in Escherichia coli as an independent domain and the recombinant protein was purified on starch. The A. niger B1 SBD was found to be similar to SBD from A. kawachii, A. niger var. awamori and A. shirusami (95-96% identity) and was classified as a member of the CBM family 20. Characterization of SBD binding to starch indicated that it is essentially irreversible and that its affinity to cationic or anionic starch, as well as to potato or corn starch, does not differ significantly. These observations indicate that the fundamental binding area on these starches is essentially the same. Natural and chemically modified starches are among the most useful biopolymers employed in the industry. Our study demonstrates that SBD binds effectively to both anionic and cationic starch. PMID:12646045

  7. The Transmembrane Domain Peptide of Vesicular Stomatitis Virus Promotes Both Intermediate and Pore Formation during PEG-Mediated Vesicle Fusion

    PubMed Central

    Sengupta, Tanusree; Chakraborty, Hirak; Lentz, Barry R.

    2014-01-01

    We propose mechanisms by which the transmembrane domain of vesicular stomatitis virus (VSV-TMD) promotes both initiation of fusion and formation of a fusion pore. Time courses of polyethyleneglycol (PEG)-mediated fusion of 25 nm small unilamellar vesicles composed of dioleoylphosphatidylcholine, dioleoylphosphatidylethanolamine (DOPE), bovine brain sphingomyelin, and cholesterol (35:30:15:20 molar ratio) were recorded at pH 7.4 at five different temperatures (from 17°C to 37°C) and compared with time courses obtained with the same vesicles containing the fusion-active TMD of the G protein of VSV. Multiple time courses were fitted globally to a one-intermediate ensemble kinetic model to estimate the rate constants for conversion of the aggregated state to an intermediate hemifused state (k1, stalk, or I1) that rapidly transits to an unstable intermediate (I2 state) that converts to a final fusion pore state with a combined rate k3. The probabilities of lipid mixing, contents mixing, and contents leakage in the three states were also obtained from this analysis. The activation thermodynamics for each step were consistent with previously published models of lipid rearrangements during intermediate and pore formation. The influences of VSV-TMD, hexadecane, and VSV-TMD + hexadecane on the kinetics, activation thermodynamics, and membrane structure support the hypothesis that these two agents do not catalyze fusion by a common mechanism, except possibly at the lowest temperatures examined. VSV-TMD primarily catalyzed initial intermediate formation, although it substantially increased the probability of contents mixing in the intermediate state. Our results support the hypothesis that the catalytic influence of VSV-TMD on the initial-intermediate- and pore-forming steps of PEG-mediated fusion derives from its ability to impose a positive intrinsic curvature and thereby stress small unilamellar vesicle outer leaflets as well as the periphery of intermediate

  8. Atomic structure of the nuclear pore complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata

    SciTech Connect

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn; Bain, Kevin T.; Gilmore, Jeremiah; Gheyi, Tarun; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Matsui, Tsutomu; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Almo, Steven C.; Burley, Stephen K.

    2012-10-23

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of {approx}456 polypeptide chains contributed by {approx}30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal 'FG' repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 {angstrom} resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.

  9. Atomic Structure of the Nuclear Pore Complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata

    PubMed Central

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn; Bain, Kevin T.; Gilmore, Jeremiah; Gheyi, Tarun; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Matsui, Tsutomu; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Almo, Steven C.; Burley, Stephen K.

    2012-01-01

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and cytoplasm. The yeast NPC is an eight-fold symmetric annular structure composed of ~456 polypeptide chains contributed by ~30 distinct proteins termed nucleoporins (Nups). Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal “FG” repeats containing a Gle2p-binding sequence motif (GLEBS motif) and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 Å resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by Small Angle X-ray Scattering (SAXS). Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiaeNup145N, and human Nup98 are discussed. PMID:22544723

  10. Atomic structure of the nuclear pore complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata.

    PubMed

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn; Bain, Kevin T; Gilmore, Jeremiah; Gheyi, Tarun; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D; Matsui, Tsutomu; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A; Emtage, J Spencer; Wasserman, Stephen R; Rout, Michael P; Sali, Andrej; Sauder, J Michael; Almo, Steven C; Burley, Stephen K

    2012-08-01

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of ~456 polypeptide chains contributed by ~30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal "FG" repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain of Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 Å resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed. PMID:22544723

  11. Assembly of custom TALE-type DNA binding domains by modular cloning.

    PubMed

    Morbitzer, Robert; Elsaesser, Janett; Hausner, Jens; Lahaye, Thomas

    2011-07-01

    Transcription activator-like effector (TALE) DNA binding proteins show tremendous potential as molecular tools for targeted binding to any desired DNA sequence. Their DNA binding domain consists of tandem arranged repeats, and due to this repetitive structure it is challenging to generate designer TALEs (dTALEs) with user-defined specificity. We present a cloning approach that facilitates the assembly of multiple repeat-encoding DNA fragments that translate into dTALEs with pre-defined DNA binding specificity. This method makes use of type IIS restriction enzymes in two sequential cut-ligase reactions to build dTALE repeat arrays. We employed this modular approach for generation of a dTALE that differentiates between two highly similar DNA sequences that are both targeted by the Xanthomonas TALE, AvrBs3. These data show that this modular assembly system allows rapid generation of highly specific TALE-type DNA binding domains that target binding sites of predefined length and sequence. This approach enables the rapid and flexible production of dTALEs for gene regulation and genome editing in routine and high-throughput applications.

  12. Cloxyquin (5-chloroquinolin-8-ol) is an activator of the two-pore domain potassium channel TRESK.

    PubMed

    Wright, Paul D; Weir, Gregory; Cartland, Jamie; Tickle, David; Kettleborough, Catherine; Cader, M Zameel; Jerman, Jeff

    2013-11-15

    TRESK is a two-pore domain potassium channel. Loss of function mutations have been linked to typical migraine with aura and due to TRESK’s expression pattern and role in neuronal excitability it represents a promising therapeutic target. We developed a cell based assay using baculovirus transduced U20S cells to screen for activators of TRESK. Using a thallium flux system to measure TRESK channel activity we identified Cloxyquin as a novel activator. Cloxyquin was shown to have an EC50 of 3.8 μM in the thallium assay and displayed good selectivity against other potassium channels tested. Activity was confirmed using whole cell patch electrophysiology, with Cloxyquin causing a near two fold increase in outward current. The strategy presented here will be used to screen larger compound libraries with the aim of identifying novel chemical series which may be developed into new migraine prophylactics.

  13. Cloxyquin (5-Chloroquinolin-8-ol) is an activator of the two-pore domain potassium channel TRESK.

    PubMed

    Wright, Paul D; Weir, Gregory; Cartland, Jamie; Tickle, David; Kettleborough, Catherine; Cader, Zameel; Jerman, Jeff

    2013-10-25

    TRESK is a two-pore domain potassium channel. Loss of function mutations have been linked to typical migraine with aura and due to TRESK's expression pattern and role in neuronal excitability it represents a promising therapeutic target. We developed a cell based assay using baculovirus transduced U20S cells to screen for activators of TRESK. Using a thallium flux system to measure TRESK channel activity we identified Cloxyquin as a novel activator. Cloxyquin was shown to have an EC50 of 3.8μM in the thallium assay and displayed good selectivity against other potassium channels tested. Activity was confirmed using whole cell patch electrophysiology, with Cloxyquin causing a near two fold increase in outward current. The strategy presented here will be used to screen larger compound libraries with the aim of identifying novel chemical series which may be developed into new migraine prophylactics.

  14. Mutations in domain I interhelical loops affect the rate of pore formation by the Bacillus thuringiensis Cry1Aa toxin in insect midgut brush border membrane vesicles.

    PubMed

    Lebel, Geneviève; Vachon, Vincent; Préfontaine, Gabrielle; Girard, Frédéric; Masson, Luke; Juteau, Marc; Bah, Aliou; Larouche, Geneviève; Vincent, Charles; Laprade, Raynald; Schwartz, Jean-Louis

    2009-06-01

    Pore formation in the apical membrane of the midgut epithelial cells of susceptible insects constitutes a key step in the mode of action of Bacillus thuringiensis insecticidal toxins. In order to study the mechanism of toxin insertion into the membrane, at least one residue in each of the pore-forming-domain (domain I) interhelical loops of Cry1Aa was replaced individually by cysteine, an amino acid which is normally absent from the activated Cry1Aa toxin, using site-directed mutagenesis. The toxicity of most mutants to Manduca sexta neonate larvae was comparable to that of Cry1Aa. The ability of each of the activated mutant toxins to permeabilize M. sexta midgut brush border membrane vesicles was examined with an osmotic swelling assay. Following a 1-h preincubation, all mutants except the V150C mutant were able to form pores at pH 7.5, although the W182C mutant had a weaker activity than the other toxins. Increasing the pH to 10.5, a procedure which introduces a negative charge on the thiol group of the cysteine residues, caused a significant reduction in the pore-forming abilities of most mutants without affecting those of Cry1Aa or the I88C, T122C, Y153C, or S252C mutant. The rate of pore formation was significantly lower for the F50C, Q151C, Y153C, W182C, and S252C mutants than for Cry1Aa at pH 7.5. At the higher pH, all mutants formed pores significantly more slowly than Cry1Aa, except the I88C mutant, which formed pores significantly faster, and the T122C mutant. These results indicate that domain I interhelical loop residues play an important role in the conformational changes leading to toxin insertion and pore formation.

  15. A unique alkaline pH-regulated and fatty acid-activated tandem pore domain potassium channel (K2P) from a marine sponge

    PubMed Central

    Wells, Gregory D.; Tang, Qiong-Yao; Heler, Robert; Tompkins-MacDonald, Gabrielle J.; Pritchard, Erica N.; Leys, Sally P.; Logothetis, Diomedes E.; Boland, Linda M.

    2012-01-01

    SUMMARY A cDNA encoding a potassium channel of the two-pore domain family (K2P, KCNK) of leak channels was cloned from the marine sponge Amphimedon queenslandica. Phylogenetic analysis indicated that AquK2P cannot be placed into any of the established functional groups of mammalian K2P channels. We used the Xenopus oocyte expression system, a two-electrode voltage clamp and inside-out patch clamp electrophysiology to determine the physiological properties of AquK2P. In whole cells, non-inactivating, voltage-independent, outwardly rectifying K+ currents were generated by external application of micromolar concentrations of arachidonic acid (AA; EC50 ∼30 μmol l–1), when applied in an alkaline solution (≥pH 8.0). Prior activation of channels facilitated the pH-regulated, AA-dependent activation of AquK2P but external pH changes alone did not activate the channels. Unlike certain mammalian fatty-acid-activated K2P channels, the sponge K2P channel was not activated by temperature and was insensitive to osmotically induced membrane distortion. In inside-out patch recordings, alkalinization of the internal pH (pKa 8.18) activated the AquK2P channels independently of AA and also facilitated activation by internally applied AA. The gating of the sponge K2P channel suggests that voltage-independent outward rectification and sensitivity to pH and AA are ancient and fundamental properties of animal K2P channels. In addition, the membrane potential of some poriferan cells may be dynamically regulated by pH and AA. PMID:22723483

  16. Cloning, expression, purification, and characterization of the catalytic domain of sika deer MMP-13.

    PubMed

    Zhang, Xueliang; Wang, Jiawen; Liu, Meichen; Wang, Siming; Zhang, Hui; Zhao, Yu

    2016-11-01

    Matrix metalloproteinase 13 is one of three mammalian collagenases that are capable of initiating the degradation of interstitial collagens during wound healing. Herein, we report for the first time the molecular cloning of the catalytic domain (CD) of sika deer MMP-13, followed by protein expression in Escherichia coli and purification by affinity chromatography. The final yield was approximately 90.4 mg per liter of growth culture with a purity of 91.6%. The mass recovery during the purification and renaturation were 70.2% and 81.5%, respectively. Using gelatin zymography and a degradation assay, we found that the refolded sika deer MMP-13 (CD) could digest gelatin. The optimal pH and temperature for the enzyme bioactivity was 8.0 and 37 °C, respectively. The Km value for the enzyme-catalyzed digestion of gelatin was 136+/-8 μg/mL, and the Vmax was 4.12 × 10(3) U/μg. sdMMP13 (CD) was able to completely degrade collagen II and gelatin, and partially degrade fibronectin. The sdMMP-13 (CD) activity was significantly inhibited by several chemicals including 1, 10-phenanthroline, EDTA, Fe(2+), Cu(2+), and Mn(2+). PMID:27338011

  17. Intersubunit Concerted Cooperative and cis-Type Mechanisms Modulate Allosteric Gating in Two-Pore-Domain Potassium Channel TREK-2

    PubMed Central

    Zhuo, Ren-Gong; Peng, Peng; Liu, Xiao-Yan; Yan, Hai-Tao; Xu, Jiang-Ping; Zheng, Jian-Quan; Wei, Xiao-Li; Ma, Xiao-Yun

    2016-01-01

    In response to diverse stimuli, two-pore-domain potassium channel TREK-2 regulates cellular excitability, and hence plays a key role in mediating neuropathic pain, mood disorders and ischemia through. Although more and more input modalities are found to achieve their modulations via acting on the channel, the potential role of subunit interaction in these modulations remains to be explored. In the current study, the deletion (lack of proximal C-terminus, ΔpCt) or point mutation (G312A) was introduced into TREK-2 subunits to limit K+ conductance and used to report subunit stoichiometry. The constructs were then combined with wild type (WT) subunit to produce concatenated dimers with defined composition, and the gating kinetics of these channels to 2-Aminoethoxydiphenyl borate (2-APB) and extracellular pH (pHo) were characterized. Our results show that combination of WT and ΔpCt/G312A subunits reserves similar gating properties to that of WT dimmers, suggesting that the WT subunit exerts dominant and positive effects on the mutated one, and thus the two subunits controls channel gating via a concerted cooperative manner. Further introduction of ΔpCt into the latter subunit of heterodimeric channel G312A-WT or G312A-G312A attenuated their sensitivity to 2-APB and pHo alkalization, implicating that these signals were transduced by a cis-type mechanism. Together, our findings elucidate the mechanisms for how the two subunits control the pore gating of TREK-2, in which both intersubunit concerted cooperative and cis-type manners modulate the allosteric regulations induced by 2-APB and pHo alkalization. PMID:27242438

  18. The Structures of Coiled-Coil Domains from Type III Secretion System Translocators Reveal Homology to Pore-Forming Toxins

    SciTech Connect

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V.

    2012-03-26

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SSs) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) that is responsible for over one million deaths per year. The Shigella type III secretion apparatus is composed of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 {angstrom} and 2.8 {angstrom} limiting resolution, respectively. These newly identified domains are composed of extended-length (114 {angstrom} in IpaB and 71 {angstrom} in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably, colicin Ia. This suggests that these mechanistically separate and functionally distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events.

  19. THE STRUCTURES OF COILED-COIL DOMAINS FROM TYPE THREE SECRETION SYSTEM TRANSLOCATORS REVEAL HOMOLOGY TO PORE-FORMING TOXINS

    PubMed Central

    Barta, Michael L.; Dickenson, Nicholas E.; Patil, Mrinalini; Keightley, Andrew; Wyckoff, Gerald J.; Picking, William D.; Picking, Wendy L.; Geisbrecht, Brian V.

    2012-01-01

    Many pathogenic Gram-negative bacteria utilize type III secretion systems (T3SS) to alter the normal functions of target cells. Shigella flexneri uses its T3SS to invade human intestinal cells to cause bacillary dysentery (shigellosis) which is responsible for over one million deaths per year. The Shigella type III secretion apparatus (T3SA) is comprised of a basal body spanning both bacterial membranes and an exposed oligomeric needle. Host altering effectors are secreted through this energized unidirectional conduit to promote bacterial invasion. The active needle tip complex of S. flexneri is composed of a tip protein, IpaD, and two pore-forming translocators, IpaB and IpaC. While the atomic structure of IpaD has been elucidated and studied, structural data on the hydrophobic translocators from the T3SS family remain elusive. We present here the crystal structures of a protease-stable fragment identified within the N-terminal regions of IpaB from S. flexneri and SipB from Salmonella enterica serovar Typhimurium determined at 2.1 Å and 2.8 Å limiting resolution, respectively. These newly identified domains are comprised of extended length (114 Å in IpaB and 71 Å in SipB) coiled-coil motifs that display a high degree of structural homology to one another despite the fact that they share only 21% sequence identity. Further structural comparisons also reveal substantial similarity to the coiled-coil regions of pore-forming proteins from other Gram-negative pathogens, notably colicin Ia. This suggests that these mechanistically-separate and functionally-distinct membrane-targeting proteins may have diverged from a common ancestor during the course of pathogen-specific evolutionary events. PMID:22321794

  20. Low pH-Induced Pore Formation by the T Domain of Botulinum Toxin Type A is Dependent upon NaCl Concentration

    SciTech Connect

    Lai, B.; Swaminathan, S.; Agarwal, R.; Nelson, L. D.; London, E.

    2010-07-19

    Botulinum neurotoxins (BoNTs) undergo low pH-triggered membrane insertion, resulting in the translocation of their light (catalytic) chains into the cytoplasm. The T (translocation) domain of the BoNT heavy chain is believed to carry out translocation. Here, the behavior of isolated T domain from BoNT type A has been characterized, both in solution and when associated with model membranes. When BoNT T domain prepared in the detergent dodecylmaltoside was diluted into aqueous solution, it exhibited a low pH-dependent conformational change below pH 6. At low pH the T domain associated with, and formed pores within, model membrane vesicles composed of 30 mol% dioleoylphosphatidylglycerol/70 mol% dioleoylphosphatidylcholine. Although T domain interacted with vesicles at low (50 mM) and high (400 mM) NaCl concentrations, the interaction required much less lipid at low salt. However, even at high lipid concentrations pore formation was much more pronounced at low NaCl concentrations than at high NaCl concentration. Increasing salt concentration after insertion in the presence of 50 mM NaCl did not decrease pore formation. A similar effect of NaCl concentration upon pore formation was observed in vesicles composed solely of dioleoylphosphatidylcholine, showing that the effect of NaCl did not solely involve modulation of electrostatic interactions between protein and anionic lipids. These results indicate that some feature of membrane-bound T domain tertiary structure critical for pore formation is highly dependent upon salt concentration.

  1. Mutations in the Voltage Sensors of Domains I and II of Nav1.5 that are Associated with Arrhythmias and Dilated Cardiomyopathy Generate Gating Pore Currents

    PubMed Central

    Moreau, Adrien; Gosselin-Badaroudine, Pascal; Boutjdir, Mohamed; Chahine, Mohamed

    2015-01-01

    Voltage gated sodium channels (Nav) are transmembrane proteins responsible for action potential initiation. Mutations mainly located in the voltage sensor domain (VSD) of Nav1.5, the cardiac sodium channel, have been associated with the development of arrhythmias combined with dilated cardiomyopathy. Gating pore currents have been observed with three unrelated mutations associated with similar clinical phenotypes. However, gating pores have never been associated with mutations outside the first domain of Nav1.5. The aim of this study was to explore the possibility that gating pore currents might be caused by the Nav1.5 R225P and R814W mutations (R3, S4 in DI and DII, respectively), which are associated with rhythm disturbances and dilated cardiomyopathy. Nav1.5 WT and mutant channels were transiently expressed in tsA201 cells. The biophysical properties of the alpha pore currents and the presence of gating pore currents were investigated using the patch-clamp technique. We confirmed the previously reported gain of function of the alpha pores of the mutant channels, which mainly consisted of increased window currents mostly caused by shifts in the voltage dependence of activation. We also observed gating pore currents associated with the R225P and R814W mutations. This novel permeation pathway was open under depolarized conditions and remained temporarily open at hyperpolarized potentials after depolarization periods. Gating pore currents could represent a molecular basis for the development of uncommon electrical abnormalities and changes in cardiac morphology. We propose that this biophysical defect be routinely evaluated in the case of Nav1.5 mutations on the VSD. PMID:26733869

  2. The Disulfide Bond Cys255-Cys279 in the Immunoglobulin-Like Domain of Anthrax Toxin Receptor 2 Is Required for Membrane Insertion of Anthrax Protective Antigen Pore

    PubMed Central

    Boone, Kyle; Altiyev, Agamyrat; Puschhof, Jens; Sauter, Roland; Arigi, Emma; Ruiz, Blanca; Peng, Xiuli; Almeida, Igor; Sherman, Michael; Xiao, Chuan; Sun, Jianjun

    2015-01-01

    Anthrax toxin receptors act as molecular clamps or switches that control anthrax toxin entry, pH-dependent pore formation, and translocation of enzymatic moieties across the endosomal membranes. We previously reported that reduction of the disulfide bonds in the immunoglobulin-like (Ig) domain of the anthrax toxin receptor 2 (ANTXR2) inhibited the function of the protective antigen (PA) pore. In the present study, the disulfide linkage in the Ig domain was identified as Cys255-Cys279 and Cys230-Cys315. Specific disulfide bond deletion mutants were achieved by replacing Cys residues with Ala residues. Deletion of the disulfide bond C255-C279, but not C230-C315, inhibited the PA pore-induced release of the fluorescence dyes from the liposomes, suggesting that C255-C279 is essential for PA pore function. Furthermore, we found that deletion of C255-C279 did not affect PA prepore-to-pore conversion, but inhibited PA pore membrane insertion by trapping the PA membrane-inserting loops in proteinaceous hydrophobic pockets. Fluorescence spectra of Trp59, a residue adjacent to the PA-binding motif in von Willebrand factor A (VWA) domain of ANTXR2, showed that deletion of C255-C279 resulted in a significant conformational change on the receptor ectodomain. The disulfide deletion-induced conformational change on the VWA domain was further confirmed by single-particle 3D reconstruction of the negatively stained PA-receptor heptameric complexes. Together, the biochemical and structural data obtained in this study provides a mechanistic insight into the role of the receptor disulfide bond C255-C279 in anthrax toxin action. Manipulation of the redox states of the receptor, specifically targeting to C255-C279, may become a novel strategy to treat anthrax. PMID:26107617

  3. Numerical and Experimental Pore-scale Analyses of Inert and Reactive Multiple Colloidal Particles in Complex Flow Domains

    NASA Astrophysics Data System (ADS)

    Basagaoglu, H.; Succi, S.; Melchionna, S.; Allwein, S.; Dixon, H.

    2008-12-01

    A fluctuating lattice-Boltzmann model was developed to simulate pore-scale flow and transport of multiple particles in geometrically complex porous and fractured domains. The model is based on the original work of Ladd [J. Fluid Mech., 271, 285, 1994] and the modeling approach based on the virtual intraparticle fluid nodes as proposed by Ding and Aidun [J. Stat. Phys., 112, 685, 2003]. The model has been improved by introducing two-body electrostatic and van der Waals potentials. Moreover, the commonly used bounce-back algorithm to simulate no-slip conditions has been replaced by an immersed boundary condition to simulate softer particle-wall interactions. The simulation results captured the wall and inertial effects on trajectories of a single particle in different Reynolds number flows in smooth-walled channels, consistent with earlier numerical simulation results. Multiple-particle simulations in porous and fractured domains captured trains of particles crossing multiple streamlines in fast-flow paths and lagged particles in slow-flow paths as has been observed in our experiments and reported in the literature. Experimental studies are focused on two-dimensional flow for three microflow cell geometries and use monodispersed particles in dense and dilute concentrations. The average particle sizes are 2, 10 and 30 microns, and the interaction between particle surfaces is controlled by the use of surfactants. Three two- dimensional flow cells with a 50 to 500 micron width have been manufactured to evaluate scale effects. Preliminary results are available for the flow of 2 micron poly(lactic-co-glycolic acid) [PLGA] microspheres dispersed in polyvinyl alcohol solution (PVA) in a 500-micron tube with inline flow obstruction with dilute and concentrated solutions. These results demonstrate particle streamlines and show particle-particle and particle-wall interactions. The experimental findings are compared with simulation results.

  4. Identification of two-pore domain potassium channels as potent modulators of osmotic volume regulation in human T lymphocytes.

    PubMed

    Andronic, Joseph; Bobak, Nicole; Bittner, Stefan; Ehling, Petra; Kleinschnitz, Christoph; Herrmann, Alexander M; Zimmermann, Heiko; Sauer, Markus; Wiendl, Heinz; Budde, Thomas; Meuth, Sven G; Sukhorukov, Vladimir L

    2013-02-01

    Many functions of T lymphocytes are closely related to cell volume homeostasis and regulation, which utilize a complex network of membrane channels for anions and cations. Among the various potassium channels, the voltage-gated K(V)1.3 is well known to contribute greatly to the osmoregulation and particularly to the potassium release during the regulatory volume decrease (RVD) of T cells faced with hypotonic environment. Here we address a putative role of the newly identified two-pore domain (K(2P)) channels in the RVD of human CD4(+) T lymphocytes, using a series of potent well known channel blockers. In the present study, the pharmacological profiles of RVD inhibition revealed K(2P)5.1 and K(2P)18.1 as the most important K(2P) channels involved in the RVD of both naïve and stimulated T cells. The impact of chemical inhibition of K(2P)5.1 and K(2P)18.1 on the RVD was comparable to that of K(V)1.3. K(2P)9.1 also notably contributed to the RVD of T cells but the extent of this contribution and its dependence on the activation status could not be unambiguously resolved. In summary, our data provide first evidence that the RVD-related potassium efflux from human T lymphocytes relies on K(2P) channels. PMID:23041580

  5. Structure of the C-terminal domain of Saccharomyces cerevisiae Nup133, a component of the nuclear pore complex

    SciTech Connect

    Sampathkumar, Parthasarathy; Gheyi, Tarun; Miller, Stacy A.; Bain, Kevin T.; Dickey, Mark; Bonanno, Jeffrey B.; Kim, Seung Joong; Phillips, Jeremy; Pieper, Ursula; Fernandez-Martinez, Javier; Franke, Josef D.; Martel, Anne; Tsuruta, Hiro; Atwell, Shane; Thompson, Devon A.; Emtage, J. Spencer; Wasserman, Stephen R.; Rout, Michael P.; Sali, Andrej; Sauder, J. Michael; Burley, Stephen K.

    2012-10-23

    Nuclear pore complexes (NPCs), responsible for the nucleo-cytoplasmic exchange of proteins and nucleic acids, are dynamic macromolecular assemblies forming an eight-fold symmetric co-axial ring structure. Yeast (Saccharomyces cerevisiae) NPCs are made up of at least 456 polypeptide chains of {approx}30 distinct sequences. Many of these components (nucleoporins, Nups) share similar structural motifs and form stable subcomplexes. We have determined a high-resolution crystal structure of the C-terminal domain of yeast Nup133 (ScNup133), a component of the heptameric Nup84 subcomplex. Expression tests yielded ScNup133(944-1157) that produced crystals diffracting to 1.9{angstrom} resolution. ScNup133(944-1157) adopts essentially an all {alpha}-helical fold, with a short two stranded {beta}-sheet at the C-terminus. The 11 {alpha}-helices of ScNup133(944-1157) form a compact fold. In contrast, the previously determined structure of human Nup133(934-1156) bound to a fragment of human Nup107 has its constituent {alpha}-helices are arranged in two globular blocks. These differences may reflect structural divergence among homologous nucleoporins.

  6. From the gating charge response to pore domain movement: Initial motions of Kv1.2 dynamics under physiological voltage changes

    PubMed Central

    Denning, Elizabeth J.; Crozier, Paul S.; Sachs, Jonathan N.; Woolf, Thomas B.

    2010-01-01

    Recent structures of the potassium channel provide an essential beginning point for explaining how the pore is gated between open and closed conformations by changes in membrane voltage. Yet, the molecular details of this process and the connections to transmembrane gradients are not understood. To begin addressing how changes within a membrane environment lead to the channel’s ability to sense shifts in membrane voltage and to gate, we performed double-bilayer simulations of the Kv1.2 channel. These double-bilayer simulations enable us to simulate realistic voltage drops from resting potential conditions to depolarized conditions by changes in the bath conditions on each side of the bilayer. Our results show how the voltage sensor domain movement responds to differences in transmembrane potential. The initial voltage sensor domain movement, S4 in particular, is modulated by the gating charge response to changes in voltage and is initially stabilized by the lipid headgroups. We show this response is directly coupled to the initial stages of pore domain motion. Results presented here provide a molecular model for how the pre-gating process occurs in sequential steps: Gating charge response, movement and stabilization of the S4 voltage sensor domain, and movement near the base of the S5 region to close the pore domain. PMID:19883299

  7. Importance of polarity of the α4-α5 loop residue-Asn(166) in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: implications for ion permeation and pore opening.

    PubMed

    Juntadech, Thanate; Kanintronkul, Yodsoi; Kanchanawarin, Chalermpol; Katzenmeier, Gerd; Angsuthanasombat, Chanan

    2014-01-01

    Bacillus thuringiensis Cry4Ba toxin is lethal to mosquito-larvae by forming ion-permeable pores in the target midgut cell membrane. Previously, the polarity of Asn(166) located within the α4-α5 loop composing the Cry4Ba pore-forming domain was shown to be crucial for larvicidal activity. Here, structurally stable-mutant toxins of both larvicidal-active (N166D) and inactive (N166A and N166I) mutants were FPLC-purified and characterized for their relative activities in liposomal-membrane permeation and single-channel formation. Similar to the 65-kDa trypsin-activated wild-type toxin, the N166D bio-active mutant toxin was still capable of releasing entrapped calcein from lipid vesicles. Conversely, the two other bio-inactive mutants showed a dramatic decrease in causing membrane permeation. When the N166D mutant was incorporated into planar lipid bilayers (under symmetrical conditions at 150mM KCl, pH8.5), it produced single-channel currents with a maximum conductance of about 425pS comparable to the wild-type toxin. However, maximum conductances for single K(+)-channels formed by both bio-inactive mutants (N166I and N166A) were reduced to approximately 165-205pS. Structural dynamics of 60-ns simulations of a trimeric α4-α5 pore model in a fully hydrated-DMPC system revealed that an open-pore structure could be observed only for the simulated pores of the wild type and N166D. Additionally, the number of lipid molecules interacting with both wild-type and N166D pores is relatively higher than those of N166A and N166I pores. Altogether, our results further signify that the polarity at the α4-α5 loop residue-Asn(166) is directly involved in ion permeation through the Cry4Ba toxin-induced ionic pore and pore opening at the membrane-water interface.

  8. The Structure and Organization within the Membrane of the Helices Composing the Pore-Forming Domain of Bacillus thuringiensis δ -Endotoxin are Consistent with an ``Umbrella-Like'' Structure of the Pore

    NASA Astrophysics Data System (ADS)

    Gazit, Ehud; La Rocca, Paolo; Sansom, Mark S. P.; Shai, Yechiel

    1998-10-01

    The aim of this study was to elucidate the mechanism of membrane insertion and the structural organization of pores formed by Bacillus thuringiensis δ -endotoxin. We determined the relative affinities for membranes of peptides corresponding to the seven helices that compose the toxin pore-forming domain, their modes of membrane interaction, their structures within membranes, and their orientations relative to the membrane normal. In addition, we used resonance energy transfer measurements of all possible combinatorial pairs of membrane-bound helices to map the network of interactions between helices in their membrane-bound state. The interaction of the helices with the bilayer membrane was also probed by a Monte Carlo simulation protocol to determine lowest-energy orientations. Our results are consistent with a situation in which helices α 4 and α 5 insert into the membrane as a helical hairpin in an antiparallel manner, while the other helices lie on the membrane surface like the ribs of an umbrella (the ``umbrella model''). Our results also support the suggestion that α 7 may serve as a binding sensor to initiate the structural rearrangement of the pore-forming domain.

  9. The two-pore domain K+ channel TASK-1 is closely associated with brain barriers and meninges.

    PubMed

    Kanjhan, Refik; Pow, David V; Noakes, Peter G; Bellingham, Mark C

    2010-12-01

    Impairment of the blood-brain barrier (BBB), the blood-cerebrospinal fluid (CSF) barrier and brain-CSF barrier has been implicated in neuropathology of several brain disorders, such as amyotrophic lateral sclerosis, cerebral edema, multiple sclerosis, neural inflammation, ischemia and stroke. Two-pore domain weakly inward rectifying K+ channel (TWIK)-related acid-sensitive potassium (TASK)-1 channels (K2p3.1; KCNK3) are among the targets that contribute to the development of these pathologies. For example TASK-1 activity is inhibited by acidification, ischemia, hypoxia and several signaling molecules released under pathologic conditions. We have used immuno-histochemistry to examine the distribution of the TASK-1 protein in structures associated with the BBB, blood-CSF barrier, brain-CSF barrier, and in the meninges of adult rat. Dense TASK-1 immuno-reactivity (TASK-1-IR) was observed in ependymal cells lining the fourth ventricle at the brain-CSF interface, in glial cells that ensheath the walls of blood vessels at the glio-vascular interface, and in the meninges. In these structures, TASK-1-IR often co-localized with glial fibrillary associated protein (GFAP) or vimentin. This study provides anatomical evidence for localization of TASK-1 K+ channels in cells that segregate distinct fluid compartments within and surrounding the brain. We suggest that TASK-1 channels, in coordination with other ion channels (e.g., aquaporins and chloride channels) and transporters (e.g., Na+-K+-ATPase and Na+-K+-2Cl⁻ and by virtue of its heterogeneous distribution, may differentially contribute to the varying levels of K+ vital for cellular function in these compartments. Our findings are likely to be relevant to recently reported roles of TASK-1 in cerebral ischemia, stroke and inflammatory brain disorders.

  10. Class I antiarrhythmic drugs inhibit human cardiac two-pore-domain K(+) (K2 ₂p) channels.

    PubMed

    Schmidt, Constanze; Wiedmann, Felix; Schweizer, Patrick A; Becker, Rüdiger; Katus, Hugo A; Thomas, Dierk

    2013-12-01

    Class IC antiarrhythmic drugs are commonly used for rhythm control in atrial fibrillation. In addition, class I drugs are administered to suppress ventricular tachyarrhythmia in selected cases. The multichannel blocking profile of class I compounds includes reduction of cardiac potassium currents in addition to their primary mechanism of action, sodium channel inhibition. Blockade of two-pore-domain potassium (K2P) channels in the heart causes action potential prolongation and may provide antiarrhythmic action in atrial fibrillation. This study was designed to elucidate inhibitory effects of class I antiarrhythmic drugs on K2P channels. Human K2P2.1 (TREK1) and hK2P3.1 (TASK1) channels were systematically tested for their sensitivity to clinically relevant class IA (ajmaline), class IB (mexiletine), and class IC (propafenone) antiarrhythmic compounds using whole-cell patch clamp and two-electrode voltage clamp electrophysiology in Chinese hamster ovary cells and in Xenopus oocytes. Mexiletine and propafenone inhibited hK2P2.1 (IC50,mexiletine=173µM; IC50,propafenone=7.6µM) and hK2P3.1 channels (IC50,mexiletine=97.3µM; IC50,propafenone=5.1µM) in mammalian cells. Ajmaline did not significantly reduce current amplitudes. K2P channels were blocked in open and closed states, resulting in resting membrane potential depolarization. Open rectification properties of the channels were not affected by class I drugs. In summary, class I antiarrhythmic drugs target cardiac K2P K(+) channels. Blockade of hK2P2.1 and hK2P3.1 potassium currents provides mechanistic evidence to establish cardiac K2P channels as antiarrhythmic drug targets. PMID:24070813

  11. The Presence of Sterols Favors Sticholysin I-Membrane Association and Pore Formation Regardless of Their Ability to Form Laterally Segregated Domains.

    PubMed

    Pedrera, Lohans; Gomide, Andreza B; Sánchez, Rafael E; Ros, Uris; Wilke, Natalia; Pazos, Fabiola; Lanio, María E; Itri, Rosangela; Fanani, María Laura; Alvarez, Carlos

    2015-09-15

    Sticholysin I (St I) is a pore-forming toxin (PFT) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin protein family, a unique class of eukaryotic PFT. As for actinoporins, it has been proposed that the presence of cholesterol (Chol) and the coexistence of lipid phases increase binding to the target membrane and pore-forming ability. However, little is known about the role of membrane structure and dynamics (phase state, fluidity, and the presence of lipid domains) on the activity of actinoporins or which regions of the membrane are the most favorable for protein insertion, oligomerization, and eventually pore formation. To gain insight into the role of membrane properties on the functional activity of St I, we studied its binding to monolayers and vesicles of phosphatidylcholine (PC), sphingomyelin (SM), and sterols inducing (ergosterol -Erg and cholesterol -Chol) or not (cholestenone - Cln) membrane phase segregation in liquid ordered (Lo) and liquid disordered (Ld) domains. This study revealed that St I binds and permeabilizes with higher efficiency sterol-containing membranes independently of their ability to form domains. We discuss the results in terms of the relevance of different membrane properties for the actinoporins mechanism of action, namely, molecular heterogeneity, specially potentiated in membranes with sterols inducers of phase separation (Chol or Erg) or Cln, a sterol noninducer of phase separation but with a high propensity to induce nonlamellar phase. The role of the Ld phase is pointed out as the most suitable platform for pore formation. In this regard, such regions in Chol-containing membranes seem to be the most favored due to its increased fluidity; this property promotes toxin insertion, diffusion, and oligomerization leading to pore formation. PMID:26273899

  12. [The Kupershtokh-Medvedev electrostrictive instability as possible mechanism of initiation of phase transitions, domains and pores in lipid membranes and influence of microwave irradiation on cell].

    PubMed

    Zakhvataev, V E; Khlebopros, R G

    2012-01-01

    One of the possible mechanisms of initiation of local phase transitions and formation of nonuniform structure of biological and model lipid membranes is suggested. It is based on anisotropic electrohydrodynamic instability of Kupershtokh and Medvedev in strong electric field relative to density perturbations. This mechanism may clarify initial stages of formation of membrane domains and pores, some aspects of cell signalization and influence of microwave irradiation of nonthermal intensity on living organisms. PMID:22567911

  13. Cloning and sequence analysis of an Ophiophagus hannah cDNA encoding a precursor of two natriuretic peptide domains.

    PubMed

    Lei, Weiwei; Zhang, Yong; Yu, Guoyu; Jiang, Ping; He, Yingying; Lee, Wenhui; Zhang, Yun

    2011-04-01

    The king cobra (Ophiophagus hannah) is the largest venomous snake. Despite the components are mainly neurotoxins, the venom contains several proteins affecting blood system. Natriuretic peptide (NP), one of the important components of snake venoms, could cause local vasodilatation and a promoted capillary permeability facilitating a rapid diffusion of other toxins into the prey tissues. Due to the low abundance, it is hard to purify the snake venom NPs. The cDNA cloning of the NPs become a useful approach. In this study, a 957 bp natriuretic peptide-encoding cDNA clone was isolated from an O. hannah venom gland cDNA library. The open-reading frame of the cDNA encodes a 210-amino acid residues precursor protein named Oh-NP. Oh-NP has a typical signal peptide sequence of 26 amino acid residues. Surprisingly, Oh-NP has two typical NP domains which consist of the typical sequence of 17-residue loop of CFGXXDRIGC, so it is an unusual NP precursor. These two NP domains share high amino acid sequence identity. In addition, there are two homologous peptides of unknown function within the Oh-NP precursor. To our knowledge, Oh-NP is the first protein precursor containing two NP domains. It might belong to another subclass of snake venom NPs. PMID:21334357

  14. Cloning and sequence analysis of an Ophiophagus hannah cDNA encoding a precursor of two natriuretic peptide domains.

    PubMed

    Lei, Weiwei; Zhang, Yong; Yu, Guoyu; Jiang, Ping; He, Yingying; Lee, Wenhui; Zhang, Yun

    2011-04-01

    The king cobra (Ophiophagus hannah) is the largest venomous snake. Despite the components are mainly neurotoxins, the venom contains several proteins affecting blood system. Natriuretic peptide (NP), one of the important components of snake venoms, could cause local vasodilatation and a promoted capillary permeability facilitating a rapid diffusion of other toxins into the prey tissues. Due to the low abundance, it is hard to purify the snake venom NPs. The cDNA cloning of the NPs become a useful approach. In this study, a 957 bp natriuretic peptide-encoding cDNA clone was isolated from an O. hannah venom gland cDNA library. The open-reading frame of the cDNA encodes a 210-amino acid residues precursor protein named Oh-NP. Oh-NP has a typical signal peptide sequence of 26 amino acid residues. Surprisingly, Oh-NP has two typical NP domains which consist of the typical sequence of 17-residue loop of CFGXXDRIGC, so it is an unusual NP precursor. These two NP domains share high amino acid sequence identity. In addition, there are two homologous peptides of unknown function within the Oh-NP precursor. To our knowledge, Oh-NP is the first protein precursor containing two NP domains. It might belong to another subclass of snake venom NPs.

  15. Peptidoglycan-associated outer membrane protein Mep45 of rumen anaerobe Selenomonas ruminantium forms a non-specific diffusion pore via its C-terminal transmembrane domain.

    PubMed

    Kojima, Seiji; Hayashi, Kanako; Tochigi, Saeko; Kusano, Tomonobu; Kaneko, Jun; Kamio, Yoshiyuki

    2016-10-01

    The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium.

  16. Deficiency of the Two-Pore-Domain Potassium (K2P) Channel TREK-1 Promotes Hyperoxia-Induced Lung Injury

    PubMed Central

    Schwingshackl, Andreas; Teng, Bin; Makena, Patrudu; Ghosh, Manik; Sinclair, Scott E.; Luellen, Charlean; Balasz, Louisa; Rovnaghi, Cynthia; Bryan, Robert M.; Lloyd, Eric E.; Fitzpatrick, Elizabeth; Saravia, Jordy S.; Cormier, Stephania A.; Waters, Christopher M.

    2014-01-01

    Objective We previously reported the expression of the 2-pore domain K+ channel TREK-1 in lung epithelial cells and proposed a role for this channel in the regulation of alveolar epithelial cytokine secretion. In this study we focused on investigating the role of TREK-1 in vivo in the development of hyperoxia-induced lung injury. Design Laboratory animal experiments. Setting University research laboratory. Subjects Wild type and TREK-1 deficient mice. Interventions Mice were anesthetized and exposed to 1) room air, no mechanical ventilation, 2) 95% hyperoxia for 24 hours, 3) 95% hyperoxia for 24 hours followed by mechanical ventilation for 4 hours. Measurements and Main Results Hyperoxia exposure accentuated lung injury in TREK-1 deficient mice but not controls, resulting in increased in Lung Injury Scores (LIS), broncho-alveolar lavage (BAL) fluid cell numbers and cellular apoptosis, and a decrease in quasi-static lung compliance. Exposure to a combination of hyperoxia and injurious mechanical ventilation resulted in further morphological lung damage, increased LIS and BAL fluid cell numbers in control but not TREK-1 deficient mice. At baseline and after hyperoxia exposure BAL cytokine levels were unchanged in TREK-1 deficient mice compared to controls. Exposure to hyperoxia and mechanical ventilation resulted in an increase in BAL IL-6, MCP-1 and TNF-α levels in both mouse types, but the increase in IL-6 and MCP-1 levels was less prominent in TREK-1 deficient mice than in controls. Lung tissue MIP-2, KC and IL-1β gene expression was not altered by hyperoxia in TREK-1 deficient mice compared to controls. Furthermore, we show for the first time TREK-1 expression on alveolar macrophages and unimpaired TNF-α secretion from TREK-1 deficient macrophages. Conclusion TREK-1 deficiency resulted in increased sensitivity of lungs to hyperoxia but this effect is less prominent if overwhelming injury is induced by the combination of hyperoxia and injurious mechanical

  17. Role of molecular chaperones and TPR-domain proteins in the cytoplasmic transport of steroid receptors and their passage through the nuclear pore

    PubMed Central

    Echeverría, Pablo C; Erlejman, Alejandra G; Piwien-Pilipuk, Graciela

    2010-01-01

    In the absence of hormone, corticosteroid receptors such as GR (glucocorticoid receptor) and MR (mineralocorticoid receptor) are primarily located in the cytoplasm. Upon steroid-binding, they rapidly accumulate in the nucleus. Regardless of their primary location, these receptors and many other nuclear factors undergo a constant and dynamic nucleocytoplasmic shuttling. All members of the steroid receptor family are known to form large oligomeric structures with the heat-shock proteins of 90-kDa (hsp90) and 70-kDa (hsp70), the small acidic protein p23, and a tetratricopeptide repeat (TPR)-domain protein such as FK506-binding proteins (FKBPs), cyclophilins (CyPs) or the serine/threonine protein phosphatase 5 (PP5). It has always been stated that the dissociation of the chaperone heterocomplex (a process normally referred to as receptor “transformation”) is the first step that permits the nuclear import of steroid receptors. However the experimental evidence is consistent with a model where the chaperone machinery is required for the retrotransport of the receptor through the cytoplasm and also facilitates the passage through the nuclear pore. Recent evidence indicates that the hsp90-based chaperone system also interacts with structures of the nuclear pore such as importin β and the integral nuclear pore glycoprotein Nup62 facilitating the passage of the untransformed receptor through the nuclear pore. PMID:21113270

  18. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.

    PubMed

    Vomastek, Tomás; Iwanicki, Marcin P; Burack, W Richard; Tiwari, Divya; Kumar, Devanand; Parsons, J Thomas; Weber, Michael J; Nandicoori, Vinay Kumar

    2008-11-01

    Identifying direct substrates of mitogen-activated protein kinases (MAPKs) and understanding how those substrates are selected is central to understanding how these ubiquitously activated enzymes generate diverse biological responses. In previous work, we identified several new candidate substrates for the MAPK ERK2 (extracellular signal-regulated kinase 2), including the nuclear pore complex protein Tpr (translocated promoter region). In this report, we identify sites on Tpr for ERK2 phosphorylation and binding and demonstrate their functional interaction. ERK2 phosphorylation and dimerization are necessary for ERK2-Tpr binding, and this occurs through a DEF (docking site for ERK2, FXF) domain on Tpr. Surprisingly, the DEF domain and the phosphorylation sites displayed positive cooperativity to promote ERK2 binding to Tpr, in contrast to substrates where phosphorylation reduces binding. Ectopic expression or depletion of Tpr resulted in decreased movement of activated ERK2 from the cytoplasm to the nucleus, implying a role for Tpr in ERK2 translocation. Collectively, the data provide direct evidence that a component of the nuclear pore complex is a bona fide substrate of ERK2 in vivo and that activated ERK2 stably associates with this substrate after phosphorylation, where it could play a continuing role in nuclear pore function. We propose that Tpr is both a substrate and a scaffold for activated ERKs.

  19. The β-prism lectin domain of Vibrio cholerae hemolysin promotes self-assembly of the β-pore-forming toxin by a carbohydrate-independent mechanism.

    PubMed

    Ganguly, Sreerupa; Mukherjee, Amarshi; Mazumdar, Budhaditya; Ghosh, Amar N; Banerjee, Kalyan K

    2014-02-14

    Vibrio cholerae cytolysin/hemolysin (VCC) is an amphipathic 65-kDa β-pore-forming toxin with a C-terminal β-prism lectin domain. Because deletion or point mutation of the lectin domain seriously compromises hemolytic activity, it is thought that carbohydrate-dependent interactions play a critical role in membrane targeting of VCC. To delineate the contributions of the cytolysin and lectin domains in pore formation, we used wild-type VCC, 50-kDa VCC (VCC(50)) without the lectin domain, and mutant VCC(D617A) with no carbohydrate-binding activity. VCC and its two variants with no carbohydrate-binding activity moved to the erythrocyte stroma with apparent association constants on the order of 10(7) M(-1). However, loss of the lectin domain severely reduced the efficiency of self-association of the VCC monomer with the β-barrel heptamer in the synthetic lipid bilayer from ∼83 to 27%. Notably, inactivation of the carbohydrate-binding activity by the D617A mutation marginally reduced oligomerization to ∼77%. Oligomerization of VCC(50) was temperature-insensitive; by contrast, VCC self-assembly increased with increasing temperature, suggesting that the process is driven by entropy and opposed by enthalpy. Asialofetuin, the β1-galactosyl-terminated glycoprotein inhibitor of VCC-induced hemolysis, promoted oligomerization of 65-kDa VCC to a species that resembled the membrane-inserted heptamer in stoichiometry and morphology but had reduced global amphipathicity. In conclusion, we propose (i) that the β-prism lectin domain facilitated toxin assembly by producing entropy during relocation in the heptamer and (ii) that glycoconjugates inhibited VCC by promoting its assembly to a water-soluble, less amphipathic oligomer variant with reduced ability to penetrate the bilayer.

  20. Cloning and characterization of a shrimp clip domain serine protease homolog (c-SPH) as a cell adhesion molecule.

    PubMed

    Lin, Chun-Yu; Hu, Kuang-Yu; Ho, Shih-Hu; Song, Yen-Ling

    2006-01-01

    Clip domain serine protease homologs (c-SPHs) are involved in various innate immune functions in arthropods such as antimicrobial activity, cell adhesion, pattern recognition, opsonization, and regulation of the prophenoloxidase system. In the present study, we cloned a c-SPH cDNA from tiger shrimp (Penaeus monodon) hemocytes. It is 1337 bp in length with a coding region of 1068 bp consisting a protein of 355 amino acid residues. The deduced protein includes one clip domain and one catalytically inactive serine protease-like (SP-like) domain. Its molecular weight is estimated to be 38 kDa with an isoelectric point of 7.9. The predicted cutting site of the signal peptide is located between Gly(21) and Gln(22). We aligned 15 single clip domain SPH protein sequences from 12 arthropod species; the identity of these clip domains is low and that of SP-like domains is from 34% to 46%. The conserved regions are located near the amino acid residues which served as substrate interaction sites in catalytically active serine protease. Phylogenetically, the tiger shrimp c-SPH is most similar to a low molecular mass masquerade-like protein of crayfish, but less similar to c-SPHs in Chelicerata and Insecta. Nested reverse transcription polymerase chain reaction (RT-PCR) revealed that c-SPH mRNA is expressed most in tissues with the highest hemocyte abundance. Antimicrobial and opsonization activities of the molecule were not detected. The expression of c-SPH mRNA in hemocytes was up-regulated at the 12-day post beta-glucan immersion. Recombinant c-SPH could significantly enhance hemocyte adhesion. The result suggests that the shrimp c-SPH protein plays a role in innate immunity.

  1. Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K+ channel

    PubMed Central

    Niemeyer, María Isabel; González-Nilo, Fernando D.; Zúñiga, Leandro; González, Wendy; Cid, L. Pablo; Sepúlveda, Francisco V.

    2007-01-01

    Potassium channels share a common selectivity filter that determines the conduction characteristics of the pore. Diversity in K+ channels is given by how they are gated open. TASK-2, TALK-1, and TALK-2 are two-pore region (2P) KCNK K+ channels gated open by extracellular alkalinization. We have explored the mechanism for this alkalinization-dependent gating using molecular simulation and site-directed mutagenesis followed by functional assay. We show that the side chain of a single arginine residue (R224) near the pore senses pH in TASK-2 with an unusual pKa of 8.0, a shift likely due to its hydrophobic environment. R224 would block the channel through an electrostatic effect on the pore, a situation relieved by its deprotonation by alkalinization. A lysine residue in TALK-2 fulfills the same role but with a largely unchanged pKa, which correlates with an environment that stabilizes its positive charge. In addition to suggesting unified alkaline pH-gating mechanisms within the TALK subfamily of channels, our results illustrate in a physiological context the principle that hydrophobic environment can drastically modulate the pKa of charged amino acids within a protein. PMID:17197424

  2. Single-channel SCAM identifies pore-lining residues in the first extracellular loop and first transmembrane domains of Cx46 hemichannels.

    PubMed

    Kronengold, J; Trexler, E B; Bukauskas, F F; Bargiello, T A; Verselis, V K

    2003-10-01

    Gap junction (GJ) channels provide an important pathway for direct intercellular transmission of signaling molecules. Previously we showed that fixed negative charges in the first extracellular loop domain (E1) strongly influence charge selectivity, conductance, and rectification of channels and hemichannels formed of Cx46. Here, using excised patches containing Cx46 hemichannels, we applied the substituted cysteine accessibility method (SCAM) at the single channel level to residues in E1 to determine if they are pore-lining. We demonstrate residues D51, G46, and E43 at the amino end of E1 are accessible to modification in open hemichannels to positively and negatively charged methanethiosulfonate (MTS) reagents added to cytoplasmic or extracellular sides. Positional effects of modification along the length of the pore and opposing effects of oppositely charged modifying reagents on hemichannel conductance and rectification are consistent with placement in the channel pore and indicate a dominant electrostatic influence of the side chains of accessible residues on ion fluxes. Hemichannels modified by MTS-EA+, MTS-ET+, or MTS-ES- were refractory to further modification and effects of substitutions with positively charged residues that electrostatically mimicked those caused by modification with the positively charged MTS reagents were similar, indicating all six subunits were likely modified. The large reductions in conductance caused by MTS-ET+ were visible as stepwise reductions in single-channel current, indicative of reactions occurring at individual subunits. Extension of single-channel SCAM using MTS-ET+ into the first transmembrane domain, TM1, revealed continued accessibility at the extracellular end at A39 and L35. The topologically complementary region in TM3 showed no evidence of reactivity. Structural models show GJ channels in the extracellular gap to have continuous inner and outer walls of protein. If representative of open channels and hemichannels

  3. Cloning and expression analysis of two novel paraflagellar rod domain genes found in Trypanosoma cruzi.

    PubMed

    Clark, April K; Kovtunovych, Gennadiy; Kandlikar, Sachin; Lal, Shailesh; Stryker, Gabrielle A

    2005-07-01

    The eukaryotic flagellum is one of the most complex macromolecular structures found in cells, containing more than 250 proteins. One unique structure in the flagella of trypanomastids is the paraflagellar rod (PFR). The PFR constitutes a lattice of cytoskeletal filaments that lies alongside the axoneme in the flagella. This unique and complex structure is critical for cell motility, though little is known about its molecular assembly or its role in the lifecycle of trypanosomatids. These proteins are of particular importance in Trypanosoma cruzi, as purified or recombinant PFR proteins have been demonstrated to be immunogenic, protecting mice from a lethal challenge with the parasite. We have searched the T. cruzi databases and discovered two novel genes containing PFR domains. Both these genes are transcribed in vivo and are significantly larger than the previously described PFR genes identified in T. cruzi (>2 Kb). Real-time PCR was used to examine the relative expression levels of six PFR genes, including the two we describe here, in all three stages of T. cruzi's lifecycle. Database searches have further provided EST and genomic sequence support for the presence of these genes in two other pathogenic trypanosomatids, Trypanosoma brucei and Leishmania spp. One of these genes, designated PFR5 contains a carboxy terminal SH3 domain not previously seen in PFR family genes. We propose that this proline-binding SH3 domain may play an important role in the assembly of the PFR. PMID:15918067

  4. Peptidoglycan-associated outer membrane protein Mep45 of rumen anaerobe Selenomonas ruminantium forms a non-specific diffusion pore via its C-terminal transmembrane domain

    PubMed Central

    Kojima, Seiji; Hayashi, Kanako; Tochigi, Saeko; Kusano, Tomonobu; Kaneko, Jun; Kamio, Yoshiyuki

    2016-01-01

    The major outer membrane protein Mep45 of Selenomonas ruminantium, an anaerobic Gram-negative bacterium, comprises two distinct domains: the N-terminal S-layer homologous (SLH) domain that protrudes into the periplasm and binds to peptidoglycan, and the remaining C-terminal transmembrane domain, whose function has been unknown. Here, we solubilized and purified Mep45 and characterized its function using proteoliposomes reconstituted with Mep45. We found that Mep45 forms a nonspecific diffusion channel via its C-terminal region. The channel was permeable to solutes smaller than a molecular weight of roughly 600, and the estimated pore radius was 0.58 nm. Truncation of the SLH domain did not affect the channel property. On the basis of the fact that Mep45 is the most abundant outer membrane protein in S. ruminantium, we conclude that Mep45 serves as a main pathway through which small solutes diffuse across the outer membrane of this bacterium. PMID:27310312

  5. Cloning, purification and preliminary X-ray analysis of the C-terminal domain of Helicobacter pylori MotB

    SciTech Connect

    Roujeinikova, Anna

    2008-04-01

    The cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of a putative peptidoglycan-binding domain of H. pylori MotB, a stator component of the bacterial flagellar motor, are reported. The C-terminal domain of MotB (MotB-C) contains a putative peptidoglycan-binding motif and is believed to anchor the MotA/MotB stator unit of the bacterial flagellar motor to the cell wall. Crystals of Helicobacter pylori MotB-C (138 amino-acid residues) were obtained by the hanging-drop vapour-diffusion method using polyethylene glycol as a precipitant. These crystals belong to space group P2{sub 1}, with unit-cell parameters a = 50.8, b = 89.5, c = 66.3 Å, β = 112.5°. The crystals diffract X-rays to at least 1.6 Å resolution using a synchrotron-radiation source. Self-rotation function and Matthews coefficient calculations suggest that the asymmetric unit contains one tetramer with 222 point-group symmetry. The anomalous difference Patterson maps calculated for an ytterbium-derivative crystal using diffraction data at a wavelength of 1.38 Å showed significant peaks on the v = 1/2 Harker section, suggesting that ab initio phase information could be derived from the MAD data.

  6. Cloning and characterization of a LPS-regulatory gene having an LPS binding domain in kuruma prawn Marsupenaeus japonicus.

    PubMed

    Nagoshi, Hiroki; Inagawa, Hiroyuki; Morii, Kayoko; Harada, Hideaki; Kohchi, Chie; Nishizawa, Takashi; Taniguchi, Yoshie; Uenobe, Maya; Honda, Teruko; Kondoh, Masakazu; Takahashi, Yukinori; Soma, Gen-Ichiro

    2006-05-01

    LPS is known as an effective stimulator of the immune system in various animals, including mammals and horseshoe crabs (HSC). Both of these animal groups have suppressive regulatory proteins for the LPS response, e.g. the bactericidal/permeability increasing protein in mammals and anti-LPS factor (ALF) in HSC. Prawns are a valuable aquaculture species, but the regulatory molecules and/or mechanisms that respond to LPS are largely unknown. To investigate the molecular mechanism of the LPS response in kuruma prawns, we cloned a cDNA having a LPS binding domain. A full-length cDNA gene, denoted as M-ALF (Marsupenaeus japonicus ALF-like peptide) was cloned that consisted of 746bp and encoded 123 amino-acid residues. The 3' non-translated region of this gene had the pentamer of ATTTA repeated four times; this is known as sequences for messenger RNA stabilization. Deduced amino-acid sequences showed a 42% homology with Japanese HSC-ALF. In particular, both have clusters of basic and hydrophobic amino acids, indicating that the region is probably binding to lipid A. The mRNA expression was determined for hemocytes, lymphoid organs, hearts, intestines and gills by RT-PCR. The mRNA expression was augmented 1.5-3h after LPS administration in lymphoid organs, but then decreased to normal level at 6h. Synthetic peptides containing Cys30 to Cys51 had LPS neutralizing activity to the Limulus reaction and NO production in RAW264.7 cells. These data suggest that in kuruma prawns, M-ALF acts as a LPS regulator during the acute phase response after invasion of pathogens. PMID:16442159

  7. The chimeric approach reveals that differences in the TRPV1 pore domain determine species-specific sensitivity to block of heat activation.

    PubMed

    Papakosta, Marianthi; Dalle, Carine; Haythornthwaite, Alison; Cao, Lishuang; Stevens, Edward B; Burgess, Gillian; Russell, Rachel; Cox, Peter J; Phillips, Stephen C; Grimm, Christian

    2011-11-11

    The capsaicin-, heat-, and proton-activated ion channel TRPV1, a member of the transient receptor potential cation channel family is a polymodal nociceptor. For almost a decade, TRPV1 has been explored by the pharmaceutical industry as a potential target for example for pain conditions. Antagonists which block TRPV1 activation by capsaicin, heat, and protons were developed by a number of pharmaceutical companies. The unexpected finding of hyperthermia as an on-target side effect in clinical studies using polymodal TRPV1 antagonists has prompted companies to search for ways to circumvent hyperthermia, for example by the development of modality-selective antagonists. The significant lack of consistency of the pharmacology of many TRPV1 antagonists across different species has been a further obstacle. JYL-1421 for example was shown to block capsaicin and heat responses in human and monkey TRPV1 while it was largely ineffective in blocking heat responses in rat TRPV1. These findings suggested structural dissimilarities between different TRPV1 species relevant for small compound antagonism for example of heat activation. Using a chimeric approach (human and rat TRPV1) in combination with a novel FLIPR-based heat activation assay and patch-clamp electrophysiology we have identified the pore region as being strongly linked to the observed species differences. We demonstrate that by exchanging the pore domains JYL-1421, which is modality-selective in rat can be made modality-selective in human TRPV1 and vice-versa.

  8. The Chimeric Approach Reveals That Differences in the TRPV1 Pore Domain Determine Species-specific Sensitivity to Block of Heat Activation*

    PubMed Central

    Papakosta, Marianthi; Dalle, Carine; Haythornthwaite, Alison; Cao, Lishuang; Stevens, Edward B.; Burgess, Gillian; Russell, Rachel; Cox, Peter J.; Phillips, Stephen C.; Grimm, Christian

    2011-01-01

    The capsaicin-, heat-, and proton-activated ion channel TRPV1, a member of the transient receptor potential cation channel family is a polymodal nociceptor. For almost a decade, TRPV1 has been explored by the pharmaceutical industry as a potential target for example for pain conditions. Antagonists which block TRPV1 activation by capsaicin, heat, and protons were developed by a number of pharmaceutical companies. The unexpected finding of hyperthermia as an on-target side effect in clinical studies using polymodal TRPV1 antagonists has prompted companies to search for ways to circumvent hyperthermia, for example by the development of modality-selective antagonists. The significant lack of consistency of the pharmacology of many TRPV1 antagonists across different species has been a further obstacle. JYL-1421 for example was shown to block capsaicin and heat responses in human and monkey TRPV1 while it was largely ineffective in blocking heat responses in rat TRPV1. These findings suggested structural dissimilarities between different TRPV1 species relevant for small compound antagonism for example of heat activation. Using a chimeric approach (human and rat TRPV1) in combination with a novel FLIPR-based heat activation assay and patch-clamp electrophysiology we have identified the pore region as being strongly linked to the observed species differences. We demonstrate that by exchanging the pore domains JYL-1421, which is modality-selective in rat can be made modality-selective in human TRPV1 and vice-versa. PMID:21911503

  9. The structural homology between uteroglobin and the pore-forming domain of colicin A suggests a possible mechanism of action for uteroglobin.

    PubMed Central

    de la Cruz, X.; Lee, B.

    1996-01-01

    Although the exact physiological function of uteroglobin is not known, it has been suggested that it may function by inhibiting phospholipase A2. We have found that the uteroglobin fold is embedded in that of the poreforming domain of colicin A. Colicin A is an antibiotic protein that kills sensitive Escherichia coli cells by forming a pore in their phospholipid membrane. The RMS deviation between the C alpha atoms after the structural alignment is 2.39 A for the 52 superimposed residues. In the alignment, uteroglobin helices 1, 2, 3, and 4 align with colicin A helices 6, 7, 3, and 4, respectively. The motif is strongly amphipathic in both proteins. On the basis of this common structural motif and of known experimental data on both proteins, we propose that UG binds to the membrane surface by lying on it monotopically. The phospholipase A2 inhibition would follow this initial binding step. PMID:8732757

  10. The Blast Resistance Gene Pi54of Cloned from Oryza officinalis Interacts with Avr-Pi54 through Its Novel Non-LRR Domains

    PubMed Central

    Devanna, Navadagi B.; Vijayan, Joshitha; Sharma, Tilak R.

    2014-01-01

    The dominant rice blast resistance gene Pi54 cloned by map-based cloning approach from indica rice cultivar Tetep confers broad spectrum resistance to Magnaporthe oryzae. In this investigation, an orthologue of Pi54 designated as Pi54of was cloned from Oryza officinalis conferring high degree of resistance to M. oryzae and is functionally validated. We have also characterized the Pi54of protein and demonstrate its interaction with AVR-Pi54 protein. The Pi54of encoded ∼43 kDa small and unique cytoplasmic LRR family of disease resistance protein having unique Zinc finger domain overlapped with the leucine rich repeat regions. Pi54of showed Magnaporthe-induced expression. The phylogenetic and western blot analysis confirmed orthologous nature of Pi54 and Pi54of genes, whereas the identity of protein was confirmed through MALDI-TOF analysis. The in silico analysis showed that Pi54of is structurally more stable than other cloned Pi54 proteins. The molecular docking revealed that Pi54of protein interacts with AVR-Pi54 through novel non-LRR domains such as STI1 and RhoGEF. The STI1 and GEF domains which interact with AVR-Pi54 are also components of rice defensome complex. The Pi54of protein showed differential domain specificity while interacting with the AVR protein. Functional complementation revealed that Pi54of transferred in two rice lines belonging to indica and japonica background imparts enhanced resistance against three highly virulent strains of M. oryzae. In this study, for the first time, we demonstrated that a rice blast resistance gene Pi54of cloned from wild species of rice provides high degree of resistance to M. oryzae and might display different molecular mechanism involved in AVRPi54-Pi54of interaction. PMID:25111047

  11. Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the η-carbonic anhydrase from Plasmodium falciparum.

    PubMed

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-09-01

    We report the cloning, purification and characterization of the full domain of carbonic anhydrase (CA, EC 4.2.1.1) from Plasmodium falciparum, which incorporates 358 amino acid residues (from 181 to 538, in the sequence of this 600 amino acid long protein), called PfCAdom. The enzyme, which belongs to the η-CA class showed the following kinetic parameters: kcat of 3.8×10(5)s(-1) and kcat/Km of 7.2×10(7)M(-1)×s(-1), being 13.3 times more effective as a catalyst compared to the truncated form PfCA. PfCAdom is more effective than the human (h) isoform hCA I, being around 50% less effective compared to hCA II, one of the most catalytically efficient enzymes known so far. Intriguingly, the sulfonamides CA inhibitors generally showed much weaker inhibitory activity against PfCAdom compared to PfCA, prompting us to hypothesize that the 69 amino acid residues insertion present in the active site of this η-CA is crucial for the active site architecture. The best sulfonamide inhibitors for PfCAdom were acetazolamide, methazolamide, metanilamide and sulfanilamide, with KIs in the range of 366-808nM. PMID:27485387

  12. Molecular cloning and functional analysis of the duck TIR domain-containing adaptor inducing IFN-β (TRIF) gene.

    PubMed

    Wei, Xiaoqin; Qian, Wei; Sizhu, Suolang; Shi, Lijuan; Jin, Meilin; Zhou, Hongbo

    2016-12-01

    Toll-like receptors (TLRs) trigger the innate immune response by responding to specific components of microorganisms. The TIR domain-containing adaptor inducing IFN-β (TRIF) plays an essential role in mammalian TLR-mediated signaling. The role of TRIF in ducks (duTRIF) remains poorly understood. In this study, we cloned and characterized the full-length coding sequence of duTRIF from duck embryo fibroblasts (DEFs). In healthy ducks, duTRIF transcripts were broadly expressed in different tissues, with higher expression levels in the spleen and liver. Using quantitative real-time PCR (qRT-PCR), we demonstrated the upregulation of duTRIF in DEFs infected with AIV or DTMUV, and DEFs treated with Poly I:C or LPS. Overexpression of duTRIF was able to induce the NF-κB and IFN-β expression. Furthermore, the IFN induction function of duTRIF was impaired when Ala517 was mutated to Pro or His. Taken together, these results suggested that duTRIF regulated duck innate immune responses. PMID:27539203

  13. Membrane Partitioning of the Pore-Forming Domain of Colicin A. Role of the Hydrophobic Helical Hairpin

    PubMed Central

    Bermejo, Ivan L.; Arnulphi, Cristina; Ibáñez de Opakua, Alain; Alonso-Mariño, Marián; Goñi, Félix M.; Viguera, Ana R.

    2013-01-01

    The colicins are bacteriocins that target Escherichia coli and kill bacterial cells through different mechanisms. Colicin A forms ion channels in the inner membranes of nonimmune bacteria. This activity resides exclusively in its C-terminal fragment (residues 387–592). The soluble free form of this domain is a 10 α-helix bundle. The hydrophobic helical hairpin, H8–H9, is buried inside the structure and shielded by eight amphipathic surface helices. The interaction of the C-terminal colicin A domain and several chimeric variants with lipidic vesicles was examined here by isothermal titration calorimetry. In the mutant constructions, natural sequences of the hydrophobic helices H8 and H9 were either removed or substituted by polyalanine or polyleucine. All the constructions fully associated with DOPG liposomes including the mutant that lacked helices H8 and H9, indicating that amphipathic rather than hydrophobic helices were the major determinants of the exothermic binding reactions. Alanine is not specially favored in the lipid-bound form; the chimeric construct with polyalanine produced lower enthalpy gain. On the other hand, the large negative heat capacities associated with partitioning, a characteristic feature of the hydrophobic effect, were found to be dependent on the sequence hydrophobicity of helices H8 and H9. PMID:24047995

  14. The Pore Loop Domain of TRPV1 Is Required for Its Activation by the Volatile Anesthetics Chloroform and Isoflurane.

    PubMed

    Kimball, Corinna; Luo, Jialie; Yin, Shijin; Hu, Hongzhen; Dhaka, Ajay

    2015-07-01

    The environmental irritant chloroform, a naturally occurring small volatile organohalogen, briefly became the world's most popular volatile general anesthetic (VGA) before being abandoned because of its low therapeutic index. When chloroform comes in contact with skin or is ingested, it causes a painful burning sensation. The molecular basis for the pain associated with chloroform remains unknown. In this study, we assessed the role of transient receptor potential (TRP) channel family members in mediating chloroform activation and the molecular determinants of VGA activation of TRPV1. We identified the subpopulation of dorsal root ganglion (DRG) neurons that are activated by chloroform. Additionally, we transiently expressed wild-type or specifically mutated TRP channels in human embryonic kidney cells and used calcium imaging or whole-cell patch-clamp electrophysiology to assess the effects of chloroform or the VGA isoflurane on TRP channel activation. The results revealed that chloroform activates DRG neurons via TRPV1 activation. Furthermore, chloroform activates TRPV1, and it also activates TRPM8 and functions as a potent inhibitor of the noxious chemical receptor TRPA1. The results also indicate that residues in the outer pore region of TRPV1 previously thought to be required for either proton or heat activation of the channel are also required for activation by chloroform and isoflurane. In addition to identifying the molecular basis of DRG neuron activation by chloroform and the opposing effects chloroform has on different TRP channel family members, the findings of this study provide novel insights into the structural basis for the activation of TRPV1 by VGAs.

  15. Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.

    PubMed

    Jaślan, D; Mueller, T D; Becker, D; Schultz, J; Cuin, T A; Marten, I; Dreyer, I; Schönknecht, G; Hedrich, R

    2016-09-01

    The two-pore cation channel TPC1 operates as a dimeric channel in animal and plant endomembranes. Each subunit consists of two homologous Shaker-like halves, with 12 transmembrane domains in total (S1-S6, S7-S12). In plants, TPC1 channels reside in the vacuolar membrane, and upon voltage stimulation, give rise to the well-known slow-activating SV currents. Here, we combined bioinformatics, structure modelling, site-directed mutagenesis, and in planta patch clamp studies to elucidate the molecular mechanisms of voltage-dependent channel gating in TPC1 in its native plant background. Structure-function analysis of the Arabidopsis TPC1 channel in planta confirmed that helix S10 operates as the major voltage-sensing site, with Glu450 and Glu478 identified as possible ion-pair partners for voltage-sensing Arg537. The contribution of helix S4 to voltage sensing was found to be negligible. Several conserved negative residues on the luminal site contribute to calcium binding, stabilizing the closed channel. During evolution of plant TPC1s from two separate Shaker-like domains, the voltage-sensing function in the N-terminal Shaker-unit (S1-S4) vanished. PMID:27270880

  16. Targeting two-pore domain K+ channels TREK-1 and TASK-3 for the treatment of depression: a new therapeutic concept

    PubMed Central

    Borsotto, M; Veyssiere, J; Moha ou Maati, H; Devader, C; Mazella, J; Heurteaux, C

    2015-01-01

    Depression is a disease that is particularly frequent, affecting up to 20% of the population in Western countries. The origins of this pathology involve multiple genes as well as environmental and developmental factors leading to a disorder that remains difficult to treat. Several therapies for depression have been developed and these mainly target monoamine neurotransmitters. However, these treatments are not only associated with numerous adverse effects, but they are also ineffective for more than one-third of patients. Therefore, the need to develop new concepts to treat depression is crucial. Recently, studies using knockout mouse models have provided evidence for a crucial role of two members of the two-pore domain potassium channel (K2P) family, tandem P-domain weak inward rectifying K+ (TWIK)-related K+ channel 1 (TREK-1) and TWIK-related acid-sensitive K+ channel 3 (TASK-3) in the pathophysiology of depression. It is believed that TREK-1 and TASK-3 antagonists could lead to the development of new antidepressants. Herein, we describe the discovery of spadin, a natural peptide released from the maturation of the neurotensin receptor-3 (also known as sortilin), which specifically blocks the activity of the TREK-1 channel and displays particular antidepressant properties, with a rapid onset of action and the absence of adverse effects. The development of such molecules may open a new era in the field of psychiatry. PMID:25263033

  17. Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.

    PubMed

    Jaślan, D; Mueller, T D; Becker, D; Schultz, J; Cuin, T A; Marten, I; Dreyer, I; Schönknecht, G; Hedrich, R

    2016-09-01

    The two-pore cation channel TPC1 operates as a dimeric channel in animal and plant endomembranes. Each subunit consists of two homologous Shaker-like halves, with 12 transmembrane domains in total (S1-S6, S7-S12). In plants, TPC1 channels reside in the vacuolar membrane, and upon voltage stimulation, give rise to the well-known slow-activating SV currents. Here, we combined bioinformatics, structure modelling, site-directed mutagenesis, and in planta patch clamp studies to elucidate the molecular mechanisms of voltage-dependent channel gating in TPC1 in its native plant background. Structure-function analysis of the Arabidopsis TPC1 channel in planta confirmed that helix S10 operates as the major voltage-sensing site, with Glu450 and Glu478 identified as possible ion-pair partners for voltage-sensing Arg537. The contribution of helix S4 to voltage sensing was found to be negligible. Several conserved negative residues on the luminal site contribute to calcium binding, stabilizing the closed channel. During evolution of plant TPC1s from two separate Shaker-like domains, the voltage-sensing function in the N-terminal Shaker-unit (S1-S4) vanished.

  18. KCNQ1 channels voltage dependence through a voltage-dependent binding of the S4-S5 linker to the pore domain.

    PubMed

    Choveau, Frank S; Rodriguez, Nicolas; Abderemane Ali, Fayal; Labro, Alain J; Rose, Thierry; Dahimène, Shehrazade; Boudin, Hélène; Le Hénaff, Carole; Escande, Denis; Snyders, Dirk J; Charpentier, Flavien; Mérot, Jean; Baró, Isabelle; Loussouarn, Gildas

    2011-01-01

    Voltage-dependent potassium (Kv) channels are tetramers of six transmembrane domain (S1-S6) proteins. Crystallographic data demonstrate that the tetrameric pore (S5-S6) is surrounded by four voltage sensor domains (S1-S4). One key question remains: how do voltage sensors (S4) regulate pore gating? Previous mutagenesis data obtained on the Kv channel KCNQ1 highlighted the critical role of specific residues in both the S4-S5 linker (S4S5(L)) and S6 C terminus (S6(T)). From these data, we hypothesized that S4S5(L) behaves like a ligand specifically interacting with S6(T) and stabilizing the closed state. To test this hypothesis, we designed plasmid-encoded peptides corresponding to portions of S4S5(L) and S6(T) of the voltage-gated potassium channel KCNQ1 and evaluated their effects on the channel activity in the presence and absence of the ancillary subunit KCNE1. We showed that S4S5(L) peptides inhibit KCNQ1, in a reversible and state-dependent manner. S4S5(L) peptides also inhibited a voltage-independent KCNQ1 mutant. This inhibition was competitively prevented by a peptide mimicking S6(T), consistent with S4S5(L) binding to S6(T). Val(254) in S4S5(L) is known to contact Leu(353) in S6(T) when the channel is closed, and mutations of these residues alter the coupling between the two regions. The same mutations introduced in peptides altered their effects, further confirming S4S5(L) binding to S6(T). Our results suggest a mechanistic model in which S4S5(L) acts as a voltage-dependent ligand bound to its receptor on S6 at rest. This interaction locks the channel in a closed state. Upon plasma membrane depolarization, S4 pulls S4S5(L) away from S6(T), allowing channel opening.

  19. KCNK10, a Tandem Pore Domain Potassium Channel, Is a Regulator of Mitotic Clonal Expansion during the Early Stage of Adipocyte Differentiation

    PubMed Central

    Nishizuka, Makoto; Hayashi, Takahiro; Asano, Mami; Osada, Shigehiro; Imagawa, Masayoshi

    2014-01-01

    KCNK10, a member of tandem pore domain potassium channel family, gives rise to leak K+ currents. It plays important roles in stabilizing the negative resting membrane potential and in counterbalancing depolarization. We previously demonstrated that kcnk10 expression is quickly elevated during the early stage of adipogenesis of 3T3-L1 cells and that reduction of kcnk10 expression inhibits adipocyte differentiation. However, the molecular mechanism of KCNK10 in adipocyte differentiation remains unclear. Here we revealed that kcnk10 is induced by 3-isobutyl-1-methylxanthine, a cyclic nucleotide phosphodiesterase inhibitor and a potent inducer of adipogenesis, during the early stage of adipocyte differentiation. We also demonstrated that KCNK10 functions as a positive regulator of mitotic clonal expansion (MCE), a necessary process for terminal differentiation. The reduction of kcnk10 expression repressed the expression levels of CCAAT/enhancer-binding protein β (C/EBPβ) and C/EBPδ as well as the phosphorylation level of Akt during the early phase of adipogenesis. In addition, knockdown of kcnk10 expression suppressed insulin-induced Akt phosphorylation. These results indicate that KCNK10 contributes to the regulation of MCE through the control of C/EBPβ and C/EBPδ expression and insulin signaling. PMID:25501330

  20. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK

    PubMed Central

    Beltrán, Leopoldo R.; Dawid, Corinna; Beltrán, Madeline; Gisselmann, Guenter; Degenhardt, Katharina; Mathie, Klaus; Hofmann, Thomas; Hatt, Hanns

    2013-01-01

    For a long time, the focus of trigeminal chemoperception has rested almost exclusively on TRP channels. However, two-pore domain (K2P) potassium channels have recently been identified as targets for substances associated with typical trigeminal sensations, such as numbing and tingling. In addition, they have been shown to be modulated by several TRP agonists. We investigated whether the pungent substances piperine, capsaicin, 6-gingerol and polygodial have an effect on human K2P channels. For this purpose, we evaluated the effects of these pungent substances on both wild-type and mutant K2P channels by means of two-electrode voltage-clamp experiments using Xenopus laevis oocytes. All four pungent substances were found to inhibit the basal activity of TASK-1 (K2P 3.1), TASK-3 (K2P 9.1), and TRESK (K2P 18.1) channels. This inhibitory effect was dose-dependent and, with the exception of polygodial on TASK-1, fully reversible. However, only piperine exhibited an IC50 similar to its reported EC50 on TRP channels. Finally, we observed for TASK-3 that mutating H98 to E markedly decreased the inhibition induced by piperine, capsaicin, and 6-gingerol, but not by polygodial. Our data contribute to the relatively sparse knowledge concerning the pharmacology of K2P channels and also raise the question of whether K2P channels could be involved in the pungency perception of piperine. PMID:24302912

  1. Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice

    PubMed Central

    Wang, Ying; Cao, Liming; Zhang, Yuexiong; Cao, Changxiang; Liu, Fang; Huang, Fengkuan; Qiu, Yongfu; Li, Rongbai; Lou, Xiaojin

    2015-01-01

    Rice (Oryza sativa L.) production, essential for global food security, is threatened by the brown planthopper (BPH). The breeding of host-resistant crops is an economical and environmentally friendly strategy for pest control, but few resistance gene resources have thus far been cloned. An indica rice introgression line RBPH54, derived from wild rice Oryza rufipogon, has been identified with sustainable resistance to BPH, which is governed by recessive alleles at two loci. In this study, a map-based cloning approach was used to fine-map one resistance gene locus to a 24kb region on the short arm of chromosome 6. Through genetic analysis and transgenic experiments, BPH29, a resistance gene containing a B3 DNA-binding domain, was cloned. The tissue specificity of BPH29 is restricted to vascular tissue, the location of BPH attack. In response to BPH infestation, RBPH54 activates the salicylic acid signalling pathway and suppresses the jasmonic acid/ethylene-dependent pathway, similar to plant defence responses to biotrophic pathogens. The cloning and characterization of BPH29 provides insights into molecular mechanisms of plant–insect interactions and should facilitate the breeding of rice host-resistant varieties. PMID:26136269

  2. The complex between SOS3 and SOS2 regulatory domain from Arabidopsis thaliana: cloning, expression, purification, crystallization and preliminary X-ray analysis

    PubMed Central

    Sánchez-Barrena, María José; Moreno-Pérez, Sandra; Angulo, Iván; Martínez-Ripoll, Martín; Albert, Armando

    2007-01-01

    The salt-tolerance genes SOS3 (salt overly sensitive 3) and SOS2 (salt overly sensitive 2) regulatory domain of Arabidopsis thaliana were cloned into a polycistronic plasmid and the protein complex was expressed in Escherichia coli, allowing purification to homogeneity in three chromatographic steps. Crystals were grown using vapour-diffusion techniques. The crystals belonged to space group P212121, with unit-cell parameters a = 44.14, b = 57.39, c = 141.90 Å. PMID:17620712

  3. Cloning and identification of a novel human RNPC3 gene that encodes a protein with two RRM domains and is expressed in the cell nucleus.

    PubMed

    Zhao, Enpeng; Li, Jinsong; Xie, Yi; Jin, Wei; Zhang, Zhen; Chen, Jinzhong; Zeng, Li; Yin, Gang; Qian, Ji; Wu, Hai; Ying, Kang; Zhao, Robert Chunhua; Mao, YuMin

    2003-10-01

    The RNA recognition motifs (RRM) domain is one of the most common eukaryotic protein folds. Proteins containing RRM domains function in important steps of posttranscriptional regulation of gene expression and are involved in processing and transport of mRNA precursors. Here we describe the cloning and characterization of a novel human RNPC3 gene containing two RNA recognition motifs. The 1870 bp cDNA encodes a protein with 517 amino acids. It also contains two bipartite nuclear targeting sequences, which is important for nuclear targeting for proteins, especially those functioning in the cell nucleus. The GFP location of the RNPC3 gene product shows that this protein is located in the cell nucleus. RT-PCR reveals that it is abundantly expressed in kidney and pancreas.

  4. Gene cloning, homology comparison and analysis of the main functional structure domains of beta estrogen receptor in Jining Gray goat.

    PubMed

    Liu, Hai-gang; Li, Hong-mei; Wang, Shu-ying; Huang, Li-bo; Guo, Hui-jun

    2014-08-01

    To clarify the molecular evolution and characteristic of beta estrogen receptor (ERβ) gene in Jining Gray goat in China, the entire ERβ gene from Jining Gray goat ovary was amplified, identified and sequenced, and the gene sequences were compared with those of other animals. Functional structural domains and variations in DNA binding domains (DBD) and ligand binding domains (LBD) between Jining Gray goat and Boer goat were analyzed. The results indicate that the ERβ gene in Jining Gray goat includes a 1584bp sequence with a complete open-reading-frame (ORF), encoding a 527 amino acid (aa) receptor protein. Compared to other species, the nucleotide homology is 73.9-98.9% and the amino acid homology is 79.5-98.5%. The main antigenic structural domains lie from the 97th aa to the 286th aa and from the 403rd aa to the 527th aa. The hydrophilicity and the surface probability of the structural domains are distributed throughout a range of amino acids. There are two different amino acids in the DBD and three different amino acids in the LBD between Jining Gray and Boer goats, resulting in dramatically different spatial structures for ERβ protein. These differences may explain the different biological activities of ERβ between the two goat species. This study firstly acquired the whole ERβ gene sequence of Jining Gray goat with a complete open reading frame, and analyzed its gene evolutionary relationship and predicted its mainly functional structural domains, which may very help for further understanding the genome evolution and gene diversity of goat ERβ.

  5. STEADY-FATE FIELD-SCALE GAS PERMEABILITY ESTIMATION AND PORE-GAS VELOCITY CALCULATION IN A DOMAIN OPEN TO THE ATMOSPHERE

    EPA Science Inventory

    Field-scale estimation of gas permeability and subsequent computation of pore-gas velocity profiles are critical elements of sound soil venting design. It has been our experience however in U.S. EPA's technical assistance program, provided by the Office of Research and Developme...

  6. Molecular cloning, characterization and expression analysis of a clip-domain serine protease from pearl oyster Pinctada fucata.

    PubMed

    Zhang, Dianchang; Jiang, Shigui; Ma, Jianjun; Jiang, Jingjing; Pan, Dequan; Xu, Xinping

    2009-04-01

    The clip-domain serine proteases (SPs) are the essential components of extracellular signaling cascade in various biological processes, especially in embryonic development and the innate immune responses of invertebrate. Herein, we described the isolation and characterization of pearl oyster Pinctada fucata clip-domain SP gene (designated as poSP). The poSP cDNA was 1080 bp long and consisted of a 5'-untranslated region (UTR) of 13 bp, a 3'-UTR of 68 bp with a polyadenylation signal (AATAAA) at 22 nucleotides upstream of the poly(A) tail, and an open reading frame (ORF) of 999 bp encoding a polypeptide of 332 amino acids with an estimated molecular mass of 36.5 kDa and a theoretical isoelectric point of 7.3. A clip-domain and a trypsin-like serine protease domain were identified in the poSP using SMART analysis. Homology analysis of the deduced amino acid sequence of the poSP with other known SP sequences by MatGAT software revealed that the poSP shared 47.0-68.4% similarity to the other known SP sequences. The poSP mRNA was expressed in haemocytes, gonad, digestive gland and mantle, but not expressed in adductor muscle and gill. The poSP mRNA was up-regulated and increased nearly double-fold after LPS or Vibrio alginolyticus stimulation, respectively. These results suggested that the poSP was an inducible acute-phase protein that perhaps involved in the innate immune response of pearl oyster.

  7. Cloning and expression in Saccharomyces cerevisiae of a Trichoderma reesei beta-mannanase gene containing a cellulose binding domain.

    PubMed Central

    Stålbrand, H; Saloheimo, A; Vehmaanperä, J; Henrissat, B; Penttilä, M

    1995-01-01

    beta-Mannanase (endo-1,4-beta-mannanase; mannan endo-1,4-beta-mannosidase; EC 3.2.1.78) catalyzes endo-wise hydrolysis of the backbone of mannan and heteromannans, including hemicellulose polysaccharides, which are among the major components of plant cell walls. The gene man1, which encodes beta-mannanase, of the filamentous fungus Trichoderma reesei was isolated from an expression library by using antiserum raised towards the earlier-purified beta-mannanase protein. The deduced beta-mannanase consists of 410 amino acids. On the basis of hydrophobic cluster analysis, the beta-mannanase was assigned to family 5 of glycosyl hydrolases (cellulase family A). The C terminus of the beta-mannanase has strong amino acid sequence similarity to the cellulose binding domains of fungal cellulases and is preceded by a serine-, threonine-, and proline-rich region. Consequently, the beta-mannanase is probably organized similarly to the T. reesei cellulases, having a catalytic core domain separated from the substrate-binding domain by an O-glycosylated linker. Active beta-mannanase was expressed and secreted by using the yeast Saccharomyces cerevisiae as the host. The results indicate that the man1 gene encodes the two beta-mannanases with different isoelectric points (pIs 4.6 and 5.4) purified earlier from T. reesei. PMID:7793911

  8. Cloning, bacterial expression, purification and structural characterization of N-terminal-repetitive domain of gamma-Gliadin.

    PubMed

    Benitez-Cardoza, Claudia G; Rogniaux, Hélène; Popineau, Yves; Guéguen, Jacques

    2006-04-01

    The gene encoding the repetitive domain located in the N-terminal half of gamma-Gliadin from wheat endosperm has been subcloned into a thioredoxin expression system (pET102/D-Topo). It was over-expressed as fusion protein with thioredoxin in Escherichia coli. Thioredoxin was removed by enterokinase cleavage or by acid cleavage at the respective engineered recognition sites. The soluble N-terminal half of gamma-Gliadin was purified by affinity and reverse-phase chromatography. While, the enterokinase cleavage leaded to only one species detectable by mass spectroscopy, the acid cleavage resulted in a three different length polypeptides, due to the presence of the same number of acid cleavage sites. The secondary structure of the purified protein domain was analysed by circular dichroism, showing an spectral shape common to a Poly(Pro) II conformation. The spectrum is dominated by a large negative peak centred around 201 nm and a broad shoulder centred around 225 nm. Also, the temperature denaturation process was studied. The differences observed in the spectra show two main tendencies, the increment of the shoulder intensity, and the drop of the intensity of the peak around 201. When the sample was cooled down, the change on intensity of the shoulder around 225 was completely reversible and that around the 201 nm peak reached a reversibility of 90%. Such structure and thermal behaviour are characteristic of the repetitive domains of the wheat prolamins.

  9. Expression of two human skeletal calcitonin receptor isoforms cloned from a giant cell tumor of bone. The first intracellular domain modulates ligand binding and signal transduction.

    PubMed Central

    Gorn, A H; Rudolph, S M; Flannery, M R; Morton, C C; Weremowicz, S; Wang, T Z; Krane, S M; Goldring, S R

    1995-01-01

    Two distinct calcitonin (CT) receptor (CTR)-encoding cDNAs (designated GC-2 and GC-10) were cloned and characterized from giant cell tumor of bone (GCT). Both GC-2 and GC-10 differ structurally from the human ovarian cell CTR (o-hCTR) that we cloned previously, but differ from each other only by the presence (GC-10) or absence (GC-2) of a predicted 16-amino acid insert in the putative first intracellular domain. Expression of all three CTR isoforms in COS cells demonstrated that GC-2 has a lower binding affinity for salmon (s) CT (Kd approximately 15 nM) than GC-10 or o-hCTR (Kd approximately 1.5 nM). Maximal stimulatory concentrations of CT resulted in a mean accumulation of cAMP in GC-2 transfected cells that was greater than eight times higher than in cells transfected with GC-10 after normalizing for the number of receptor-expressing cells. The marked difference in maximal cAMP response was also apparent after normalizing for receptor number. GC-2 also demonstrated a more potent ligand-mediated cAMP response compared with GC-10 for both human (h) and sCT (the EC50 values for GC-2 were approximately 0.2 nM for sCT and approximately 2 nM for hCT; EC50 values for GC-10 were approximately 6 nM for sCT and approximately 25 nM for hCT). Reverse transcriptase PCR of GCT RNA indicated that GC-2 transcripts are more abundant than those encoding for GC-10. In situ hybridization on GCT tissue sections demonstrated CTR mRNA expression in osteoclast-like cells. We localized the human CTR gene to chromosome 7 in band q22. The distinct functional characteristics of GC-2 and GC-10, which differ in structure only in the first intracellular domain, indicate that the first intracellular domain of the CTR plays a previously unidentified role in modulating ligand binding and signal transduction via the G protein/adenylate cyclase system. Images PMID:7769107

  10. The periplasmic sensing domain of Vibrio fischeri chemoreceptor protein A (VfcA): cloning, purification and crystallographic analysis.

    PubMed

    Salah Ud-Din, Abu Iftiaf Md; Roujeinikova, Anna

    2016-05-01

    Flagella-mediated motility and chemotaxis towards nutrients are important characteristics of Vibrio fischeri that play a crucial role in the development of its symbiotic relationship with its Hawaiian squid host Euprymna scolopes. The V. fischeri chemoreceptor A (VfcA) mediates chemotaxis toward amino acids. The periplasmic sensory domain of VfcA has been crystallized by the hanging-drop vapour-diffusion method using polyethylene glycol 3350 as a precipitating agent. The crystals belonged to space group P1, with unit-cell parameters a = 39.9, b = 57.0, c = 117.0 Å, α = 88.9, β = 80.5, γ = 89.7°. A complete X-ray diffraction data set has been collected to 1.8 Å resolution using cryocooling conditions and synchrotron radiation. PMID:27139830

  11. Molecular cloning and functional analysis of nucleotide-binding oligomerization domain-containing protein 1 in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Jang, Ju Hye; Kim, Hyun; Kim, Yu Jin; Cho, Ju Hyun

    2016-04-01

    NOD1 has important roles in innate immunity as sensor of microbial components derived from bacterial peptidoglycan. In this study, we identified genes encoding components of the NOD1 signaling pathway, including NOD1 (OmNOD1) and RIP2 (OmRIP2) from rainbow trout, Oncorhynchus mykiss, and investigated whether OmNOD1 has immunomodulating activity in a rainbow trout hepatoma cell line RTH-149 treated with NOD1-specific ligand (iE-DAP). The deduced amino acid sequence of OmNOD1 contained conserved CARD, NOD and LRR domains. Loss-of-function and gain-of-function experiments indicated that OmNOD1 is involved in the expression of pro-inflammatory cytokines. Silencing of OmNOD1 in RTH-149 cells treated with iE-DAP decreased the expression of IL-1β, IL-6, IL-8 and TNF-α. Conversely, overexpression of OmNOD1 resulted in up-regulation of IL-1β, IL-6, IL-8 and TNF-α expression. In addition, RIP2 inhibitor (gefitinib) significantly decreased the expression of these pro-inflammatory cytokines induced by iE-DAP in RTH-149 cells. These findings highlight the important role of NOD1 signaling pathway in fish in eliciting innate immune response.

  12. Molecular cloning of the C-terminal domain of Escherichia coli D-mannitol permease: expression, phosphorylation, and complementation with C-terminal permease deletion proteins.

    PubMed

    White, D W; Jacobson, G R

    1990-03-01

    We have subcloned a portion of the Escherichia coli mtlA gene encoding the hydrophilic, C-terminal domain of the mannitol-specific enzyme II (mannitol permease; molecular mass, 68 kilodaltons [kDa]) of the phosphoenolpyruvate-dependent carbohydrate phosphotransferase system. This mtlA fragment, encoding residues 379 to 637 (residue 637 = C terminus), was cloned in frame into the expression vector pCQV2 immediately downstream from the lambda pr promoter of the vector, which also encodes a temperature-sensitive lambda repressor. E. coli cells carrying a chromosomal deletion in mtlA (strain LGS322) and harboring this recombinant plasmid, pDW1, expressed a 28-kDa protein cross-reacting with antipermease antibody when grown at 42 degrees C but not when grown at 32 degrees C. This protein was relatively stable and could be phosphorylated in vitro by the general phospho-carrier protein of the phosphotransferase system, phospho-HPr. Thus, this fragment of the permease, when expressed in the absence of the hydrophobic, membrane-bound N-terminal domain, can apparently fold into a conformation resembling that of the C-terminal domain of the intact permease. When transformed into LGS322 cells harboring plasmid pGJ9-delta 137, which encodes a C-terminally truncated and inactive permease (residues 1 to ca. 480; molecular mass, 51 kDa), pDW1 conferred a mannitol-positive phenotype to this strain when grown at 42 degrees C but not when grown at 32 degrees C. This strain also exhibited phosphoenolpyruvate-dependent mannitol phosphorylation activity only when grown at the higher temperature. In contrast, pDW1 could not complement a plasmid encoding the complementary N-terminal part of the permease (residues 1 to 377). The pathway of phosphorylation of mannitol by the combined protein products of pGJ9-delta 137 and pDPW1 was also investigated by using N-ethylmaleimide to inactivate the second phosphorylation sites of these permease fragments (proposed to be Cys-384). These results

  13. Molecular cloning of the goose ACSL3 and ACSL5 coding domain sequences and their expression characteristics during goose fatty liver development.

    PubMed

    He, H; Liu, H H; Wang, J W; Lv, J; Li, L; Pan, Z X

    2014-01-01

    It has been demonstrated that ACSL3 and ACSL5 play important roles in fat metabolism. To investigate the primary functions of ACSL3 and ACSL5 and to evaluate their expression levels during goose fatty liver development, we cloned the ACSL3 and ACSL5 coding domain sequences (CDSs) of geese using RT-PCR and analyzed their expression characteristics under different conditions using qRT-PCR. The results showed that the goose ACSL3 (JX511975) and ACSL5 (JX511976) sequences have high similarities with the chicken sequences both at the nucleotide and amino acid levels. Both ACSL3 and ACSL5 have high expression levels in goose liver. The expression levels of ACSL3 and ACSL5 in goose liver and hepatocytes can be changed by overfeeding geese and by treatment with unsaturated fatty acids, respectively. Together, these results indicate that ACSL3 and ACSL5 play important roles during fatty liver development. The different expression characteristics of goose ACSL3 and ACSL5 suggest that these two genes may be responsible for specific functions.

  14. Poring over two-pore channel pore mutants

    PubMed Central

    Penny, Christopher J.; Patel, Sandip

    2016-01-01

    Two-pore channels are members of the voltage-gated ion channel superfamily. They localise to the endolysosomal system and are likely targets for the Ca2+ mobilising messenger NAADP. In this brief review, we relate mutagenesis of the TPC pore to a recently published homology model and discuss how pore mutants are informing us of TPC function. Molecular physiology of these ubiquitous proteins is thus emerging. PMID:27226934

  15. TprC/D (Tp0117/131), a trimeric, pore-forming rare outer membrane protein of Treponema pallidum, has a bipartite domain structure.

    PubMed

    Anand, Arvind; Luthra, Amit; Dunham-Ems, Star; Caimano, Melissa J; Karanian, Carson; LeDoyt, Morgan; Cruz, Adriana R; Salazar, Juan C; Radolf, Justin D

    2012-05-01

    Identification of Treponema pallidum rare outer membrane proteins (OMPs) has been a longstanding objective of syphilis researchers. We recently developed a consensus computational framework that employs a battery of cellular localization and topological prediction tools to generate ranked clusters of candidate rare OMPs (D. L. Cox et al., Infect. Immun. 78:5178-5194, 2010). TP0117/TP0131 (TprC/D), a member of the T. pallidum repeat (Tpr) family, was a highly ranked candidate. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning, and liposome incorporation confirmed that full-length, recombinant TprC (TprC(Fl)) forms a β-barrel capable of integrating into lipid bilayers. Moreover, TprC(Fl) increased efflux of terbium-dipicolinic acid complex from large unilamellar vesicles and migrated as a trimer by blue-native PAGE. We found that in T. pallidum, TprC is heat modifiable, trimeric, expressed in low abundance, and, based on proteinase K accessibility and opsonophagocytosis assays, surface exposed. From these collective data, we conclude that TprC is a bona fide rare OMP as well as a functional ortholog of Escherichia coli OmpF. We also discovered that TprC has a bipartite architecture consisting of a soluble N-terminal portion (TprC(N)), presumably periplasmic and bound directly or indirectly to peptidoglycan, and a C-terminal β-barrel (TprC(C)). Syphilitic rabbits generate antibodies exclusively against TprC(C), while secondary syphilis patients fail to mount a detectable antibody response against either domain. The syphilis spirochete appears to have resolved a fundamental dilemma arising from its extracellular lifestyle, namely, how to enhance OM permeability without increasing its vulnerability to the antibody-mediated defenses of its natural human host.

  16. Molecular identification of the dominant-negative, splicing isoform of the two-pore domain K(+) channel K(2P)5.1 in lymphoid cells and enhancement of its expression by splicing inhibition.

    PubMed

    Endo, Kyoko; Kurokawa, Natsumi; Kito, Hiroaki; Nakakura, Sawa; Fujii, Masanori; Ohya, Susumu

    2015-12-01

    The two-pore domain background K(+) channel K2P5.1 is expected as a possible therapeutic target for autoimmune and inflammatory disorders and cancers because it plays an important role in maintaining the resting membrane potential and regulation of Ca(2+) signaling in T lymphocytes and cancer cells. However, the lack of selective K2P5.1 blockers has led to difficulties conducting experimental studies on this K(+) channel. We identified a novel splicing isoform of K2P5.1, K2P5.1B from the mammalian spleen, which lacked the N-terminus of full-length K2P5.1A. A co-immunoprecipitation assay using mice spleen lysates revealed an interaction between K2P5.1A and K2P5.1B in the cytoplasmic C-terminal domain. In a heterologous HEK293 expression system, K2P5.1B inhibited the trafficking of K2P5.1A to the plasma membrane. The alkaline pHe-induced hyperpolarizing response was significantly suppressed in K2P5.1B-transfected human leukemia K562 cells. Enhancement in cell proliferation by the overexpression of K2P5.1A in K562 was significantly prevented by the transfection of K2P5.1B. The spliceosome inhibitor pladienolide B significantly enhanced the relative expression of K2P5.1B in K562, resulting in decreases in the activity of K2P5.1A. K2P5.1B suppresses the function of the K2P5.1 K(+) channel in a dominant-negative manner, suggesting that the mRNA splicing mechanisms underlying the transcriptional regulation of K2P5.1B may be a new therapeutic strategy for autoimmune and inflammatory disorders and cancers. PMID:26475531

  17. Cloning cattle.

    PubMed

    Oback, B; Wells, D N

    2003-01-01

    Over the past six years, hundreds of apparently normal calves have been cloned worldwide from bovine somatic donor cells. However, these surviving animals represent less than 5% of all cloned embryos transferred into recipient cows. Most of the remaining 95% die at various stages of development from a predictable pattern of placental and fetal abnormalities, collectively referred to as the "cloning-syndrome." The low efficiency seriously limits commercial applicability and ethical acceptance of somatic cloning and enforces the development of improved cloning methods. In this paper, we describe our current standard operating procedure (SOP) for cattle cloning using zona-free nuclear transfer. Following this SOP, the output of viable and healthy calves at weaning is about 9% of embryos transferred. Better standardization of cloning protocols across and within research groups is needed to separate technical from biological factors underlying low cloning efficiency.

  18. Why Clone?

    MedlinePlus

    ... How might cloning be used in medicine? Cloning animal models of disease Much of what researchers learn about human disease comes from studying animal models such as mice. Often, animal models are ...

  19. [Cloning - controversies].

    PubMed

    Twardowski, T; Michalska, A

    2001-01-01

    Cloning of the human being is not only highly controversial; in the opinion of the authors it is impossible - we are not able to reproduce human behaviour and character traits. Reproduction through cloning is limited to personal genome resources. The more important is protection of genomic characteristics as private property and taking advantage of cloning for production of the human organs directly or through xenotransplants. In this paper we present the legislation related to cloning in Poland, in the European Union and other countries. We also indicate who and why is interested in cloning.

  20. Pathophysiological significance of the two-pore domain K+ channel K2P5.1 in splenic CD4+CD25− T cell subset from a chemically-induced murine inflammatory bowel disease model

    PubMed Central

    Nakakura, Sawa; Matsui, Miki; Sato, Aya; Ishii, Mizuki; Endo, Kyoko; Muragishi, Sayaka; Murase, Miki; Kito, Hiroaki; Niguma, Hiroki; Kurokawa, Natsumi; Fujii, Masanori; Araki, Masatake; Araki, Kimi; Ohya, Susumu

    2015-01-01

    The alkaline pH-activated, two-pore domain K+ channel K2P5.1 (also known as TASK2/KCNK5) plays an important role in maintaining the resting membrane potential, and contributes to the control of Ca2+ signaling in several types of cells. Recent studies highlighted the potential role of the K2P5.1 K+ channel in the pathogenesis of autoimmune diseases such as rheumatoid arthritis and multiple sclerosis. The aim of the present study was to elucidate the pathological significance of the K2P5.1 K+ channel in inflammatory bowel disease (IBD). The degrees of colitis, colonic epithelial damage, and colonic inflammation were quantified in the dextran sulfate sodium-induced mouse IBD model by macroscopic and histological scoring systems. The expression and functional activity of K2P5.1 in splenic CD4+ T cells were measured using real-time PCR, Western blot, and fluorescence imaging assays. A significant increase was observed in the expression of K2P5.1 in the splenic CD4+ T cells of the IBD model. Concomitant with this increase, the hyperpolarization response induced by extracellular alkaline pH was significantly larger in the IBD model with the corresponding intracellular Ca2+ rises. The expression of K2P5.1 was higher in CD4+CD25− T cells than in CD4+CD25+ regulatory T cells. The knockout of K2P5.1 in mice significantly suppressed the disease responses implicated in the IBD model. Alternations in intracellular Ca2+ signaling following the dysregulated expression of K2P5.1 were associated with the disease pathogenesis of IBD. The results of the present study suggest that the K2P5.1 K+ channel in CD4+CD25− T cell subset is a potential therapeutic target and biomarker for IBD. PMID:26578971

  1. Academic Cloning.

    ERIC Educational Resources Information Center

    Sikula, John P.; Sikula, Andrew F.

    1980-01-01

    The authors define "cloning" as an integral feature of all educational systems, citing teaching practices which reward students for closely reproducing the teacher's thoughts and/or behaviors and administrative systems which tend to promote like-minded subordinates. They insist, however, that "academic cloning" is not a totally negative practice.…

  2. Phase-field modeling of temperature gradient driven pore migration coupling with thermal conduction

    SciTech Connect

    Liangzhe Zhang; Michael R Tonks; Paul C Millett; Yongfeng Zhang; Karthikeyan Chockalingam; Bulent Biner

    2012-04-01

    Pore migration in a temperature gradient (Soret effect) is investigated by a phase-field model coupled with a heat transfer calculation. Pore migration is observed towards the high temperature domain with velocities that agree with analytical solution. Due to the low thermal conductivity of the pores, the temperature gradient across individual pores is increased, which in turn, accelerates the pore migration. In particular, for pores filled with xenon and helium, the pore velocities are increased by a factor of 2.2 and 2.1, respectively. A quantitative equation is then derived to predict the influence of the low thermal conductivity of pores.

  3. Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven-span transmembrane molecule of the secretin receptor superfamily with an unusual extracellular domain

    SciTech Connect

    Hamann, J. |; Hamann, D.; Lier, R.A.W.

    1995-08-15

    CD97 is a monomeric glycoprotein of 75 to 85 kDa that is induced rapidly on the surface of most leukocytes upon activation. We herein report the isolation of a cDNA encoding human CD97 by expression cloning in COS cells. The 3-kb cDNA clone encodes a mature polypeptide chain of 722 amino acids with a predicted molecular mass of 79 kDa. Within the C-terminal part of the protein, a region with seven hydrophobic segments was identified, suggesting that CD97 is a seven-span transmembrane molecule. Sequence comparison indicates that CD97 is the first leukocyte Ag in a recently described superfamily that includes the receptors for secretin, calcitonin, and other mammalian and insect peptide hormones. Different from these receptors, CD97 has an extended extracellular region of 433 amino acids that possesses three N-terminal epidermal growth factor-like domains, two of them with a calcium-binding site, and single Arg-Gly-Asp (RGD) motif. The existence of structural elements characteristic for extracellular matrix proteins in a seven-span transmembrane molecule makes CD97 a receptor potentially involved in both adhesion and signaling processes early after leukocyte activation. The gene encoding CD97 is localized on chromosome 19 (19p13.12-13.2).

  4. Molecular cloning and cold shock induced overexpression of the DNA encoding phor sensor domain from Mycobacterium tuberculosis as a target molecule for novel anti-tubercular drugs

    NASA Astrophysics Data System (ADS)

    Langi, Gladys Emmanuella Putri; Moeis, Maelita R.; Ihsanawati, Giri-Rachman, Ernawati Arifin

    2014-03-01

    Mycobacterium tuberculosis (Mtb), the sole cause of Tuberculosis (TB), is still a major global problem. The discovery of new anti-tubercular drugs is needed to face the increasing TB cases, especially to prevent the increase of cases with resistant Mtb. A potential novel drug target is the Mtb PhoR sensor domain protein which is the histidine kinase extracellular domain for receiving environmental signals. This protein is the initial part of the two-component system PhoR-PhoP regulating 114 genes related to the virulence of Mtb. In this study, the gene encoding PhoR sensor domain (SensPhoR) was subcloned from pGEM-T SensPhoR from the previous study (Suwanto, 2012) to pColdII. The construct pColdII SensPhoR was confirmed through restriction analysis and sequencing. Using the construct, SensPhoR was overexpressed at 15°C using Escherichia coli BL21 (DE3). Low temperature was chosen because according to the solubility prediction program of recombinant proteins from The University of Oklahama, the PhoR sensor domain has a chance of 79.8% to be expressed as insoluble proteins in Escherichia coli's (E. coli) cytoplasm. This prediction is also supported by other similar programs: PROSO and PROSO II. The SDS PAGE result indicated that the PhoR sensor domain recombinant protein was overexpressed. For future studies, this protein will be purified and used for structure analysis which can be used to find potential drugs through rational drug design.

  5. Cloning, expression, refolding, purification and preliminary crystallographic analysis of the sensory domain of the Campylobacter chemoreceptor for aspartate A (CcaA).

    PubMed

    Machuca, Mayra A; Liu, Yu C; Roujeinikova, Anna

    2015-01-01

    In Campylobacter jejuni, chemotaxis and motility have been identified as important virulence factors that are required for host colonization and invasion. Chemotactic recognition of extracellular signals is mediated by the periplasmic sensory domains of its transducer-like proteins (Tlps). In this study, the sensory domain of the C. jejuni chemoreceptor for aspartate A (CcaA) has been expressed in Escherichia coli and purified from inclusion bodies. The urea-denatured protein was refolded and then crystallized by the hanging-drop vapour-diffusion method using PEG 3350 as a precipitating agent. A complete data set has been collected to 1.4 Å resolution using cryocooling conditions and synchrotron radiation. The crystals belonged to space group P1, with unit-cell parameters a=39.3, b=43.3, c=50.9 Å, α=92.5, β=111.4, γ=114.7°. PMID:25615981

  6. Cloning and characterization of apoptosis-associated speck-like protein containing a CARD domain (ASC) gene from Japanese flounder Paralichthys olivaceus.

    PubMed

    Li, Shuo; Chen, Xiaoli; Peng, Weijiao; Hao, Gaixiang; Geng, Xuyun; Zhan, Wenbin; Sun, Jinsheng

    2016-07-01

    Apoptosis-associated speck-like protein containing a CARD domain (ASC) is a critical adaptor molecule in multiple inflammasome protein complexes that mediate inflammation and host defense. However, few studies have been performed in lower vertebrates such as in teleost. Here we identified and characterized a novel ASC gene (namely PoASC) from Japanese flounder Paralichthys olivaceus. The complete cDNA sequence of PoASC contains a 22 bp 5'-untranslated sequence, a 612 bp open reading frame, and a 438 bp 3'-untranslated sequence. The deduced PoASC protein is comprised of 203 amino acids with a conserved N-terminal PYD domain and a C-terminal CARD domain and shows 35-62% sequence identity with other vertebrate ASC proteins. PoASC mRNA transcripts was detected in various Japanese flounder tissues and is dominantly expressed in hepatopancreas. Oligomeric speck-like structures were observed when PoASC was exogenously expressed in Japanese flounder FG-9307 cells. Immune challenge experiments revealed that PoASC gene expression was significantly induced in the Japanese flounder head kidney macrophages and peripheral blood leukocytes by the canonical TLR ligands LPS, Poly(I:C) and zymosan stimulations. In addition, the induction of PoASC was also observed in Edwardsiella tarda challenged head kidney and gill tissues. Furthermore, we for the first time showed that extracellular ATP, an important signaling molecule in triggering innate immune response and activation of NLR inflammasome, significantly up-regulates PoASC expression in the Japanese flounder head kidney macrophages in a dose-dependent manner. Together, these findings addressed the involvement of PoASC in TLR and extracellular ATP-mediated innate immune signaling in the Japanese flounders.

  7. Cloning and characterization of apoptosis-associated speck-like protein containing a CARD domain (ASC) gene from Japanese flounder Paralichthys olivaceus.

    PubMed

    Li, Shuo; Chen, Xiaoli; Peng, Weijiao; Hao, Gaixiang; Geng, Xuyun; Zhan, Wenbin; Sun, Jinsheng

    2016-07-01

    Apoptosis-associated speck-like protein containing a CARD domain (ASC) is a critical adaptor molecule in multiple inflammasome protein complexes that mediate inflammation and host defense. However, few studies have been performed in lower vertebrates such as in teleost. Here we identified and characterized a novel ASC gene (namely PoASC) from Japanese flounder Paralichthys olivaceus. The complete cDNA sequence of PoASC contains a 22 bp 5'-untranslated sequence, a 612 bp open reading frame, and a 438 bp 3'-untranslated sequence. The deduced PoASC protein is comprised of 203 amino acids with a conserved N-terminal PYD domain and a C-terminal CARD domain and shows 35-62% sequence identity with other vertebrate ASC proteins. PoASC mRNA transcripts was detected in various Japanese flounder tissues and is dominantly expressed in hepatopancreas. Oligomeric speck-like structures were observed when PoASC was exogenously expressed in Japanese flounder FG-9307 cells. Immune challenge experiments revealed that PoASC gene expression was significantly induced in the Japanese flounder head kidney macrophages and peripheral blood leukocytes by the canonical TLR ligands LPS, Poly(I:C) and zymosan stimulations. In addition, the induction of PoASC was also observed in Edwardsiella tarda challenged head kidney and gill tissues. Furthermore, we for the first time showed that extracellular ATP, an important signaling molecule in triggering innate immune response and activation of NLR inflammasome, significantly up-regulates PoASC expression in the Japanese flounder head kidney macrophages in a dose-dependent manner. Together, these findings addressed the involvement of PoASC in TLR and extracellular ATP-mediated innate immune signaling in the Japanese flounders. PMID:27103005

  8. Cloning, purification, crystallization and X-ray crystallographic analysis of the periplasmic sensing domain of Pseudomonas fluorescens chemotactic transducer of amino acids type A (CtaA).

    PubMed

    Ud-Din, Abu Iftiaf Md Salah; Roujeinikova, Anna

    2016-09-01

    Chemotaxis towards nutrients plays a crucial role in root colonization by Pseudomonas fluorescens. The P. fluorescens chemotactic transducer of amino acids type A (CtaA) mediates movement towards amino acids present in root exudates. In this study, the periplasmic sensory domain of CtaA has been crystallized by the hanging-drop vapor diffusion method using ammonium sulfate as a precipitating agent. A complete data set was collected to 1.9 Å resolution using cryocooling conditions and synchrotron radiation. The crystals belong to space group I222 or I212121, with unit-cell parameters a = 67.2, b = 76.0, c = 113.3 Å. This is an important step towards elucidation of the structural basis of how CtaA recognizes its signal molecules and transduces the signal across the membrane. PMID:27251445

  9. Antilipopolysaccharide factor (ALF) of mud crab Scylla paramamosain: molecular cloning, genomic organization and the antimicrobial activity of its synthetic LPS binding domain.

    PubMed

    Imjongjirak, Chanprapa; Amparyup, Piti; Tassanakajon, Anchalee; Sittipraneed, Siriporn

    2007-05-01

    Antilipopolysaccharide factors (ALFs) are small basic proteins that can bind and neutralize lipopolysaccharide (LPS) and have broad spectrum antimicrobial activities. In this study, we describe the isolation of the full-length cDNA encoding for ALF peptide (ALFSp) of mud crab, Scylla paramamosain by sequencing a hemocyte cDNA library and using the rapid amplification cDNA end (RACE) method. A full-length ALFSp cDNA of 614 bp contains an open reading frame (ORF) of 372 bp, encoding 123 amino acid protein with 26 residues signal sequence. The calculated molecular mass of the mature protein is 11.18 kDa. The highly two conserve cysteine residues and putative LPS binding domain were observed in ALFSp peptide. Comparison of amino acid sequences revealed that ALFSp shared high identity with other known ALFs and had an overall similarity of 65, 64, 63, 61 and 59% to those of Fenneropenaeus chinensis, Litopenaeus vannamei, Marsupenaeus japonicus, Limulus polyphemus, and Tachypleus tridentatus, respectively. A neighbour-joining tree showed a clear differentiation of each species and also indicated that ALF from S. paramamosain, Carcinus maenas and Callinectes sapidus are closely related phylogenetically. The genomic DNA sequence of ALFSp gene consists of 1075 bp containing three exons and two introns. Tissue distribution analysis revealed that ALFSp was abundantly expressed in hemocytes, intestine, and muscle but not in eyestalk. The synthetic ALFSp peptide containing putative LPS binding domain revealed a strong antimicrobial activity against several bacteria especially on the growth of Gram-positive bacteria, Micrococcus luteus and Gram-negative bacteria, Vibrio harveyi suggested that ALFSp could play an essential role in defense mechanism in S. paramamosain. PMID:17368541

  10. Velocities in Solar Pores

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  11. Cloning and identification of a cDNA that encodes a novel human protein with thrombospondin type I repeat domain, hPWTSR.

    PubMed

    Chen, Jin-Zhong; Wang, Shu; Tang, Rong; Yang, Quan-Sheng; Zhao, Enpeng; Chao, Yaoqiong; Ying, Kang; Xie, Yi; Mao, Yu-Min

    2002-09-01

    A cDNA was isolated from the fetal brain cDNA library by high throughput cDNA sequencing. The 2390 bp cDNA with an open reading fragment (ORF) of 816 bp encodes a 272 amino acids putative protein with a thrombospondin type I repeat (TSR) domain and a cysteine-rich region at the N-terminus, so it is named hPWTSR. We used Northern blot detected two bands with length of about 3 kb and 4 kb respectively, which expressed in human adult tissues with different intensities. The expression pattern was verified by RT-PCR, revealing that the transcripts were expressed ubiquitously in fetal tissues and human tumor tissues too. However, the transcript was detected neither in ovarian carcinoma GI-102 nor in lung carcinoma LX-1. Blast analysis against NCBI database revealed that the new gene contained at least 5 exons and located in human chromosome 6q22.33. Our results demonstrate that the gene is a novel member of TSR supergene family.

  12. Pore formation by Cry toxins.

    PubMed

    Soberón, Mario; Pardo, Liliana; Muñóz-Garay, Carlos; Sánchez, Jorge; Gómez, Isabel; Porta, Helena; Bravo, Alejandra

    2010-01-01

    Bacillus thuringiensis (Bt) bacteria produce insecticidal Cry and Cyt proteins used in the biological control of different insect pests. In this review, we will focus on the 3d-Cry toxins that represent the biggest group of Cry proteins and also on Cyt toxins. The 3d-Cry toxins are pore-forming toxins that induce cell death by forming ionic pores into the membrane of the midgut epithelial cells in their target insect. The initial steps in the mode of action include ingestion of the protoxin, activation by midgut proteases to produce the toxin fragment and the interaction with the primary cadherin receptor. The interaction of the monomeric CrylA toxin with the cadherin receptor promotes an extra proteolytic cleavage, where helix alpha-1 of domain I is eliminated and the toxin oligomerization is induced, forming a structure of 250 kDa. The oligomeric structure binds to a secondary receptor, aminopeptidase N or alkaline phosphatase. The secondary receptor drives the toxin into detergent resistant membrane microdomains formingpores that cause osmotic shock, burst of the midgut cells and insect death. Regarding to Cyt toxins, these proteins have a synergistic effect on the toxicity of some Cry toxins. Cyt proteins are also proteolytic activated in the midgut lumen of their target, they bind to some phospholipids present in the mosquito midgut cells. The proposed mechanism of synergism between Cry and Cyt toxins is that Cyt1Aa function as a receptor for Cry toxins. The Cyt1A inserts into midgut epithelium membrane and exposes protein regions that are recognized by Cry11Aa. It was demonstrated that this interaction facilitates the oligomerization of Cry11Aa and also its pore formation activity.

  13. The mouse glucocorticoid receptor: mapping of functional domains by cloning, sequencing and expression of wild-type and mutant receptor proteins.

    PubMed Central

    Danielsen, M; Northrop, J P; Ringold, G M

    1986-01-01

    We have isolated mouse glucocorticoid receptor (GR) cDNAs which, when expressed in transfected mammalian cells, produce a fully functional GR protein. Sequence analysis reveals an open reading frame of 2349 bp which could encode a protein of approximately 86,000 daltons. We have also isolated two receptor cDNAs from mouse S49 nuclear transfer-deficient (nt-) cells which encode mutant forms of the receptor protein. One cDNA encodes a protein that is unable to bind hormone and represents the endogenous hormone binding deficient receptor recently discovered in S49 cells. The lesion in this receptor is due to a single amino acid substitution (Glu-546 to Gly). The second cDNA from nt- cells produces a receptor protein that is able to bind hormone but has reduced nuclear binding. This cDNA, therefore, encodes for the S49 nt- receptor which has been shown to have reduced affinity for DNA. The lesion maps to a single amino acid substitution (Arg-484 to His) located in a highly Cys, Lys, Arg-rich region of the protein previously implicated in DNA binding. Our studies provide unambiguous identification of receptor domains and specific amino acids critical for the hormone and DNA binding properties of this transcriptional regulatory protein. Contained within the first 106 amino acids of the mouse GR is a stretch of nine glutamines with two prolines which are related to the family of transcribed repetitive elements, opa, found in Drosophila melanogaster. A truncated receptor lacking these 106 amino acids is functionally indistinguishable from the wild-type receptor. Images Fig. 2. Fig. 5. Fig. 6. Fig. 7. PMID:3780669

  14. Cloning, expression analysis, and RNA interference study of a HORMA domain containing autophagy-related gene 13 (ATG13) from the coleopteran beetle, Tenebrio molitor

    PubMed Central

    Lee, Jung Hee; Jo, Yong Hun; Patnaik, Bharat Bhusan; Park, Ki Beom; Tindwa, Hamisi; Seo, Gi Won; Chandrasekar, Raman; Lee, Yong Seok; Han, Yeon Soo

    2015-01-01

    Autophagy is a process that is necessary during starvation, as it replenishes metabolic precursors by eliminating damaged organelles. Autophagy is mediated by more than 35 autophagy-related (Atg) proteins that participate in the nucleation, elongation, and curving of the autophagosome membrane. In a pursuit to address the role of autophagy during development and immune resistance of the mealworm beetle, Tenebrio molitor, we screened ATG gene sequences from the whole-larva transcriptome database. We identified a homolog of ATG13 gene in T. molitor (designated as TmATG13) that comprises a cDNA of 1176 bp open reading frame (ORF) encoding a protein of 391 amino acids. Analyses of the structure-specific features of TmAtg13 showed an intrinsically disordered middle and C-terminal region that was rich in regulatory phosphorylation sites. The N-terminal Atg13 domain had a HORMA (Hop1, Rev7, and Mad2) fold containing amino acid residues conserved across the Atg13 insect orthologs. A quantitative reverse-transcription-polymerase chain reaction analysis revealed that TmATG13 was expressed ubiquitously during all developmental stages of the insect. TmATG13 mRNA expression was high in the fat body and gut of the larval and adult stages of the insect. The TmATG13 transcripts were expressed at a high level until 6 days of ovarian development, followed by a significant decline. Silencing of ATG13 transcripts in T. molitor larvae showed a reduced survivability of 39 and 38% in response to Escherichia coli and Staphylococcus aureus infection. Furthermore, the role of TmAtg13 in initiating autophagy as a part of the host cell autophagic complex of the host cells against the intracellular pathogen Listeria monocytogenes is currently under study and will be critical to unfold the structure-function relationships. PMID:26136688

  15. Cloning, expression analysis, and RNA interference study of a HORMA domain containing autophagy-related gene 13 (ATG13) from the coleopteran beetle, Tenebrio molitor.

    PubMed

    Lee, Jung Hee; Jo, Yong Hun; Patnaik, Bharat Bhusan; Park, Ki Beom; Tindwa, Hamisi; Seo, Gi Won; Chandrasekar, Raman; Lee, Yong Seok; Han, Yeon Soo

    2015-01-01

    Autophagy is a process that is necessary during starvation, as it replenishes metabolic precursors by eliminating damaged organelles. Autophagy is mediated by more than 35 autophagy-related (Atg) proteins that participate in the nucleation, elongation, and curving of the autophagosome membrane. In a pursuit to address the role of autophagy during development and immune resistance of the mealworm beetle, Tenebrio molitor, we screened ATG gene sequences from the whole-larva transcriptome database. We identified a homolog of ATG13 gene in T. molitor (designated as TmATG13) that comprises a cDNA of 1176 bp open reading frame (ORF) encoding a protein of 391 amino acids. Analyses of the structure-specific features of TmAtg13 showed an intrinsically disordered middle and C-terminal region that was rich in regulatory phosphorylation sites. The N-terminal Atg13 domain had a HORMA (Hop1, Rev7, and Mad2) fold containing amino acid residues conserved across the Atg13 insect orthologs. A quantitative reverse-transcription-polymerase chain reaction analysis revealed that TmATG13 was expressed ubiquitously during all developmental stages of the insect. TmATG13 mRNA expression was high in the fat body and gut of the larval and adult stages of the insect. The TmATG13 transcripts were expressed at a high level until 6 days of ovarian development, followed by a significant decline. Silencing of ATG13 transcripts in T. molitor larvae showed a reduced survivability of 39 and 38% in response to Escherichia coli and Staphylococcus aureus infection. Furthermore, the role of TmAtg13 in initiating autophagy as a part of the host cell autophagic complex of the host cells against the intracellular pathogen Listeria monocytogenes is currently under study and will be critical to unfold the structure-function relationships. PMID:26136688

  16. Electrokinetic induced solute dispersion in porous media; pore network modeling

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Schotting, Ruud; Raoof, Amir

    2013-04-01

    Electrokinetic flow plays an important role in remediation process, separation technique, and chromatography. The solute dispersion is a key parameter to determine transport efficiency. In this study, we present the electrokinetic effects on solute dispersion in porous media at the pore scale, using a pore network model. The analytical solution of the electrokinetic coupling coefficient was obtained to quantity the fluid flow velocity in a cylinder capillary. The effect of electrical double layer on the electrokinetic coupling coefficient was investigated by applying different ionic concentration. By averaging the velocity over cross section within a single pore, the average flux was obtained. Applying such single pore relationships, in the thin electrical double layer limit, to each and every pore within the pore network, potential distribution and the induced fluid flow was calculated for the whole domain. The resulting pore velocities were used to simulate solute transport within the pore network. By averaging the results, we obtained the breakthrough curve (BTC) of the average concentration at the outlet of the pore network. Optimizing the solution of continuum scale advection-dispersion equation to such a BTC, solute dispersion coefficient was estimated. We have compared the dispersion caused by electrokinetic flow and pure pressure driven flow under different Peclet number values. In addition, the effect of microstructure and topological properties of porous media on fluid flow and solute dispersion is presented, mainly based on different pore coordination numbers.

  17. Organization of the Mitochondrial Apoptotic BAK Pore

    PubMed Central

    Aluvila, Sreevidya; Mandal, Tirtha; Hustedt, Eric; Fajer, Peter; Choe, Jun Yong; Oh, Kyoung Joon

    2014-01-01

    The multidomain pro-apoptotic Bcl-2 family proteins BAK and BAX are believed to form large oligomeric pores in the mitochondrial outer membrane during apoptosis. Formation of these pores results in the release of apoptotic factors including cytochrome c from the intermembrane space into the cytoplasm, where they initiate the cascade of events that lead to cell death. Using the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy, we have determined the conformational changes that occur in BAK when the protein targets to the membrane and forms pores. The data showed that helices α1 and α6 disengage from the rest of the domain, leaving helices α2-α5 as a folded unit. Helices α2-α5 were shown to form a dimeric structure, which is structurally homologous to the recently reported BAX “BH3-in-groove homodimer.” Furthermore, the EPR data and a chemical cross-linking study demonstrated the existence of a hitherto unknown interface between BAK BH3-in-groove homodimers in the oligomeric BAK. This novel interface involves the C termini of α3 and α5 helices. The results provide further insights into the organization of the BAK oligomeric pores by the BAK homodimers during mitochondrial apoptosis, enabling the proposal of a BAK-induced lipidic pore with the topography of a “worm hole.” PMID:24337568

  18. Characterization of fibronectin type III domain-containing protein 5 (FNDC5) gene in chickens: Cloning, tissue expression, and regulation of its expression in the muscle by fasting and cold exposure.

    PubMed

    Li, Xin; Fang, Wenqian; Hu, Yuanyuan; Wang, Yajun; Li, Juan

    2015-10-10

    Irisin, a novel myokine encoded by fibronectin type III domain-containing protein 5 gene (FNDC5), is reported to stimulate brown fat-like development of white fat tissue and thermogenesis in mammals recently. However, information about the structure, tissue expression, and roles of FNDC5/irisin remains unknown in non-mammalian vertebrates including birds. In this study, we first cloned the FNDC5 (cFNDC5) cDNA from chickens. cFNDC5 is predicted to encode a 220-amino acid precursor containing the putative 'irisin peptide' of 112 amino acids, which shows high amino acid sequence identity with irisin of humans (97%), mice (97%), anole lizards (93%) and zebrafish (~80%). Using quantitative real-time PCR, we further examined cFNDC5 mRNA expression in chicken tissues. The results showed that in adult chickens, cFNDC5 is abundantly expressed in the muscle, heart, pituitary, ovary and various brain regions, and moderately expressed in adipose tissue, kidneys, lung, testes and small intestine. Moreover, cFNDC5 is also abundantly expressed in the muscle, brain, hypothalamus and pituitary of developing embryos and post-hatching chicks. Interestingly, we noted that cFNDC5 expression in the muscle of 3-week-old chicks could be induced by fasting and cold exposure, while its expression decreases during differentiation of pre-adipocytes cultured in vitro. Collectively, our data suggest that FNDC5/irisin is more than a 'myokine' and may be related to the development/functions of many tissues (e.g. muscle, brain, fat), as well as metabolic status of chickens.

  19. Exocytotic fusion pores are composed of both lipids and proteins

    PubMed Central

    Bao, Huan; Goldschen-Ohm, Marcel; Jeggle, Pia; Chanda, Baron; Edwardson, J Michael; Chapman, Edwin R

    2016-01-01

    During exocytosis, fusion pores form the first aqueous connection that allows escape of neurotransmitters and hormones from secretory vesicles. Although it is well established that SNARE proteins catalyze fusion, the structure and composition of fusion pores remain unknown. Here, we exploited the rigid framework and defined size of nanodiscs to interrogate the properties of reconstituted fusion pores, using the neurotransmitter glutamate as a content-mixing marker. Efficient Ca2+-stimulated bilayer fusion, and glutamate release, occurred with approximately two molecules of mouse synaptobrevin 2 reconstituted into ~6-nm nanodiscs. The transmembrane domains of SNARE proteins assumed distinct roles in lipid mixing versus content release and were exposed to polar solvent during fusion. Additionally, tryptophan substitutions at specific positions in these transmembrane domains decreased glutamate flux. Together, these findings indicate that the fusion pore is a hybrid structure composed of both lipids and proteins. PMID:26656855

  20. The pore space scramble

    NASA Astrophysics Data System (ADS)

    Gormally, Alexandra; Bentham, Michelle; Vermeylen, Saskia; Markusson, Nils

    2015-04-01

    Climate change and energy security continue to be the context of the transition to a secure, affordable and low carbon energy future, both in the UK and beyond. This is reflected in for example, binding climate policy targets at the EU level, the introduction of renewable energy targets, and has also led to an increasing interest in Carbon Capture and Storage (CCS) technology with its potential to help mitigate against the effects of CO2 emissions from fossil fuel burning. The UK has proposed a three phase strategy to integrate CCS into its energy system in the long term focussing on off-shore subsurface storage (DECC, 2014). The potential of CCS therefore, raises a number of challenging questions and issues surrounding the long-term storage of CO2 captured and injected into underground spaces and, alongside other novel uses of the subsurface, contributes to opening a new field for discussion on the governance of the subsurface. Such 'novel' uses of the subsurface have lead to it becoming an increasingly contested space in terms of its governance, with issues emerging around the role of ownership, liability and property rights of subsurface pore space. For instance, questions over the legal ownership of pore space have arisen with ambiguity over the legal standpoint of the surface owner and those wanting to utilise the pore space for gas storage, and suggestions of whether there are depths at which legal 'ownership' becomes obsolete (Barton, 2014). Here we propose to discuss this 'pore space scramble' and provide examples of the competing trajectories of different stakeholders, particularly in the off-shore context given its priority in the UK. We also propose to highlight the current ambiguity around property law of pore space in the UK with reference to approaches currently taken in different national contexts. Ultimately we delineate contrasting models of governance to illustrate the choices we face and consider the ethics of these models for the common good

  1. Magnetic-resonance pore imaging of nonsymmetric microscopic pore shapes

    NASA Astrophysics Data System (ADS)

    Hertel, Stefan Andreas; Wang, Xindi; Hosking, Peter; Simpson, M. Cather; Hunter, Mark; Galvosas, Petrik

    2015-07-01

    Imaging of the microstructure of porous media such as biological tissue or porous solids is of high interest in health science and technology, engineering and material science. Magnetic resonance pore imaging (MRPI) is a recent technique based on nuclear magnetic resonance (NMR) which allows us to acquire images of the average pore shape in a given sample. Here we provide details on the experimental design, challenges, and requirements of MRPI, including its calibration procedures. Utilizing a laser-machined phantom sample, we present images of microscopic pores with a hemiequilateral triangular shape even in the presence of NMR relaxation effects at the pore walls. We therefore show that MRPI is applicable to porous samples without a priori knowledge about their pore shape and symmetry. Furthermore, we introduce "MRPI mapping," which combines MRPI with conventional magnetic resonance imaging (MRI). This enables one to resolve microscopic pore sizes and shapes spatially, thus expanding the application of MRPI to samples with heterogeneous distributions of pores.

  2. Biophysics, pathophysiology, and pharmacology of ion channel gating pores

    PubMed Central

    Moreau, Adrien; Gosselin-Badaroudine, Pascal; Chahine, Mohamed

    2014-01-01

    Voltage sensor domains (VSDs) are a feature of voltage gated ion channels (VGICs) and voltage sensitive proteins. They are composed of four transmembrane (TM) segments (S1–S4). Currents leaking through VSDs are called omega or gating pore currents. Gating pores are caused by mutations of the highly conserved positively charged amino acids in the S4 segment that disrupt interactions between the S4 segment and the gating charge transfer center (GCTC). The GCTC separates the intracellular and extracellular water crevices. The disruption of S4–GCTC interactions allows these crevices to communicate and create a fast activating and non-inactivating alternative cation-selective permeation pathway of low conductance, or a gating pore. Gating pore currents have recently been shown to cause periodic paralysis phenotypes. There is also increasing evidence that gating pores are linked to several other familial diseases. For example, gating pores in Nav1.5 and Kv7.2 channels may underlie mixed arrhythmias associated with dilated cardiomyopathy (DCM) phenotypes and peripheral nerve hyperexcitability (PNH), respectively. There is little evidence for the existence of gating pore blockers. Moreover, it is known that a number of toxins bind to the VSD of a specific domain of Na+ channels. These toxins may thus modulate gating pore currents. This focus on the VSD motif opens up a new area of research centered on developing molecules to treat a number of cell excitability disorders such as epilepsy, cardiac arrhythmias, and pain. The purpose of the present review is to summarize existing knowledge of the pathophysiology, biophysics, and pharmacology of gating pore currents and to serve as a guide for future studies aimed at improving our understanding of gating pores and their pathophysiological roles. PMID:24772081

  3. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  4. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  5. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  6. Pore dynamics in lipid membranes

    NASA Astrophysics Data System (ADS)

    Gozen, I.; Dommersnes, P.

    2014-09-01

    Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses.

  7. On classical cloning and no-cloning

    NASA Astrophysics Data System (ADS)

    Teh, Nicholas J.

    2012-02-01

    It is part of information theory folklore that, while quantum theory prohibits the generic (or universal) cloning of states, such cloning is allowed by classical information theory. Indeed, many take the phenomenon of no-cloning to be one of the features that distinguishes quantum mechanics from classical mechanics. In this paper, we argue that pace conventional wisdom, in the case where one does not include a machine system, there is an analog of the no-cloning theorem for classical systems. However, upon adjoining a non-trivial machine system (or ancilla) one finds that, pace the quantum case, the obstruction to cloning disappears for pure states. We begin by discussing some conceptual points and category-theoretic generalities having to do with cloning, and proceed to discuss no-cloning in both the case of (non-statistical) classical mechanics and classical statistical mechanics.

  8. The Clone Factory

    ERIC Educational Resources Information Center

    Stoddard, Beryl

    2005-01-01

    Have humans been cloned? Is it possible? Immediate interest is sparked when students are asked these questions. In response to their curiosity, the clone factory activity was developed to help them understand the process of cloning. In this activity, students reenact the cloning process, in a very simplified simulation. After completing the…

  9. Human cloning 2001.

    PubMed

    Healy, David L; Weston, Gareth; Pera, Martin F; Rombauts, Luk; Trounson, Alan O

    2002-05-01

    This review summaries human cloning from a clinical perspective. Natural human clones, that is, monozygotic twins, are increasing in the general community. Iatrogenic human clones have been produced for decades in infertile couples given fertility treatment such as ovulation induction. A clear distinction must be made between therapeutic cloning using embryonic stem cells and reproductive cloning attempts. Unlike the early clinical years of in vitro fertilization, with cloning there is no animal model that is safe and dependable. Until there is such a model, 'Dolly'-style human cloning is medically unacceptable.

  10. Latent fingermark pore area reproducibility.

    PubMed

    Gupta, A; Buckley, K; Sutton, R

    2008-08-01

    The study of the reproducibility of friction ridge pore detail in fingermarks is a measure of their usefulness in personal identification. Pore area in latent prints developed using cyanoacrylate and ninhydrin were examined and measured by photomicrography using appropriate software tools. The data were analysed statistically and the results showed that pore area is not reproducible in developed latent prints, using either of the development techniques. The results add further support to the lack of reliability of pore area in personal identification. PMID:18617339

  11. An amino acid outside the pore region influences apamin sensitivity in small conductance Ca2+-activated K+ channels.

    PubMed

    Nolting, Andreas; Ferraro, Teresa; D'hoedt, Dieter; Stocker, Martin

    2007-02-01

    Small conductance calcium-activated potassium channels (SK, K(Ca)) are a family of voltage-independent K+ channels with a distinct physiology and pharmacology. The bee venom toxin apamin inhibits exclusively the three cloned SK channel subtypes (SK1, SK2, and SK3) with different affinity, highest for SK2, lowest for SK1, and intermediate for SK3 channels. The high selectivity of apamin made it a valuable tool to study the molecular makeup and function of native SK channels. Three amino acids located in the outer vestibule of the pore are of particular importance for the different apamin sensitivities of SK channels. Chimeric SK1 channels, enabling the homomeric expression of the rat SK1 (rSK1) subunit and containing the core domain (S1-S6) of rSK1, are apamin-insensitive. By contrast, channels formed by the human orthologue human SK1 (hSK1) are sensitive to apamin. This finding hinted at the involvement of regions beyond the pore as determinants of apamin sensitivity, because hSK1 and rSK1 have an identical amino acid sequence in the pore region. Here we investigated which parts of the channels outside the pore region are important for apamin sensitivity by constructing chimeras between apamin-insensitive and -sensitive SK channel subunits and by introducing point mutations. We demonstrate that a single amino acid situated in the extracellular loop between the transmembrane segments S3 and S4 has a major impact on apamin sensitivity. Our findings enabled us to convert the hSK1 channel into a channel that was as sensitive for apamin as SK2, the SK channel with the highest sensitivity.

  12. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel.

    PubMed Central

    Fink, M; Duprat, F; Lesage, F; Reyes, R; Romey, G; Heurteaux, C; Lazdunski, M

    1996-01-01

    Human TWIK-1, which has been cloned recently, is a new structural type of weak inward rectifier K+ channel. Here we report the structural and functional properties of TREK-1, a mammalian TWIK-1-related K+ channel. Despite a low amino acid identity between TWIK-1 and TREK-1 (approximately 28%), both channel proteins share the same overall structural arrangement consisting of two pore-forming domains and four transmembrane segments (TMS). This structural similarity does not give rise to a functional analogy. K+ currents generated by TWIK-1 are inwardly rectifying while K+ currents generated by TREK-1 are outwardly rectifying. These channels have a conductance of 14 pS. TREK-1 currents are insensitive to pharmacological agents that block TWIK-1 activity such as quinine and quinidine. Extensive inhibitions of TREK-1 activity are observed after activation of protein kinases A and C. TREK-1 currents are sensitive to extracellular K+ and Na+. TREK-1 mRNA is expressed in most tissues and is particularly abundant in the lung and in the brain. Its localization in this latter tissue has been studied by in situ hybridization. TREK-1 expression is high in the olfactory bulb, hippocampus and cerebellum. These results provide the first evidence for the existence of a K+ channel family with four TMS and two pore domains in the nervous system of mammals. They also show that different members in this structural family can have totally different functional properties. Images PMID:9003761

  13. Cilia and Nuclear Pore Proteins: Pore No More?

    PubMed

    Obado, Samson O; Rout, Michael P

    2016-09-12

    Nuclear pore proteins at the base of cilia were thought to regulate transport into cilia. In this issue of Developmental Cell, Del Viso et al. (2016) challenge this view, showing instead that pore proteins localize to ciliary basal bodies and that their perturbation leads to congenital heart disease. PMID:27623377

  14. The perforin pore facilitates the delivery of cationic cargos.

    PubMed

    Stewart, Sarah E; Kondos, Stephanie C; Matthews, Antony Y; D'Angelo, Michael E; Dunstone, Michelle A; Whisstock, James C; Trapani, Joseph A; Bird, Phillip I

    2014-03-28

    Cytotoxic lymphocytes eliminate virally infected or neoplastic cells through the action of cytotoxic proteases (granzymes). The pore-forming protein perforin is essential for delivery of granzymes into the cytoplasm of target cells; however the mechanism of this delivery is incompletely understood. Perforin contains a membrane attack complex/perforin (MACPF) domain and oligomerizes to form an aqueous pore in the plasma membrane; therefore the simplest (and best supported) model suggests that granzymes passively diffuse through the perforin pore into the cytoplasm of the target cell. Here we demonstrate that perforin preferentially delivers cationic molecules while anionic and neutral cargoes are delivered inefficiently. Furthermore, another distantly related pore-forming MACPF protein, pleurotolysin (from the oyster mushroom), also favors the delivery of cationic molecules, and efficiently delivers human granzyme B. We propose that this facilitated diffusion is due to conserved features of oligomerized MACPF proteins, which may include an anionic lumen. PMID:24558045

  15. Bimodal mesoporous silica with bottleneck pores.

    PubMed

    Reber, M J; Brühwiler, D

    2015-11-01

    Bimodal mesoporous silica consisting of two sets of well-defined mesopores is synthesized by a partial pseudomorphic transformation of an ordered mesoporous starting material (SBA-15 type). The introduction of a second set of smaller mesopores (MCM-41 type) establishes a pore system with bottlenecks that restricts the access to the core of the bimodal mesoporous silica particles. The particle size and shape of the starting material are retained, but micropores present in the starting material disappear during the transformation, leading to a true bimodal mesoporous product. A varying degree of transformation allows the adjustment of the pore volume contribution of the two mesopore domains. Information on the accessibility of the mesopores is obtained by the adsorption of fluorescence-labeled poly(amidoamine) dendrimers and imaging by confocal laser scanning microscopy. This information is correlated with nitrogen sorption data to provide insights regarding the spatial distribution of the two mesopore domains. The bimodal mesoporous materials are excellent model systems for the investigation of cavitation effects in nitrogen desorption isotherms. PMID:26399172

  16. Multipartite asymmetric quantum cloning

    SciTech Connect

    Iblisdir, S.; Gisin, N.; Acin, A.; Cerf, N.J.; Filip, R.; Fiurasek, J.

    2005-10-15

    We investigate the optimal distribution of quantum information over multipartite systems in asymmetric settings. We introduce cloning transformations that take N identical replicas of a pure state in any dimension as input and yield a collection of clones with nonidentical fidelities. As an example, if the clones are partitioned into a set of M{sub A} clones with fidelity F{sup A} and another set of M{sub B} clones with fidelity F{sup B}, the trade-off between these fidelities is analyzed, and particular cases of optimal N{yields}M{sub A}+M{sub B} cloning machines are exhibited. We also present an optimal 1{yields}1+1+1 cloning machine, which is an example of a tripartite fully asymmetric cloner. Finally, it is shown how these cloning machines can be optically realized.

  17. Ethical issues in cloning.

    PubMed

    Satris, S

    2000-01-01

    There is great public concern with the ethics of human cloning. This paper briefly examines some of what I identify as pseudo-problems or myths associated with cloning, and some of the more substantial ethical concerns.

  18. The identity of clones.

    PubMed

    Evers, K

    1999-02-01

    A common concern with respect to cloning is based on the belief that cloning produces identical individuals. This is a fundamental misunderstanding of what type of identity-relation cloning involves. The concept "identity" is ambiguous, and the statement that cloning produces "identical" individuals is not meaningful unless the notion of identity is clarified. This paper distinguishes between numerical and qualitative; relational and intrinsic: logical and empirical identity, and discusses the empirical individuation of clones in terms of genetics, physiology, perception, cognition and personality. I argue that the only relation of identity cloning involves is qualitative, intrinsic and empirical: genetic indiscernibility, unlikely to include identity under other aspects mentioned. A popular argument against cloning claims our "right" to a "unique identity". This objection either implies (absurdly) the right not to be an identical twin, or assumes (incorrectly) that cloning involves identity other than genetic. Either way, the argument is untenable.

  19. Aristotle and headless clones.

    PubMed

    Mosteller, Timothy

    2005-01-01

    Cloned organisms can be genetically altered so that they do not exhibit higher brain functioning. This form of therapeutic cloning allows for genetically identical organs and tissues to be harvested from the clone for the use of the organism that is cloned. "Spare parts" cloning promises many opportunities for future medical advances. What is the ontological and ethical status of spare parts, headless clones? This paper attempts to answer this question from the perspective of Aristotle's view of the soul. Aristotle's metaphysics as applied to his view of biological essences generates an ethic that can contribute to moral reasoning regarding the use of headless spare parts clones. The task of this paper is to show the implications that Aristotle's view of the soul, if it is true, would have on the ethics of headless, spare parts cloning. PMID:16180113

  20. Aristotle and headless clones.

    PubMed

    Mosteller, Timothy

    2005-01-01

    Cloned organisms can be genetically altered so that they do not exhibit higher brain functioning. This form of therapeutic cloning allows for genetically identical organs and tissues to be harvested from the clone for the use of the organism that is cloned. "Spare parts" cloning promises many opportunities for future medical advances. What is the ontological and ethical status of spare parts, headless clones? This paper attempts to answer this question from the perspective of Aristotle's view of the soul. Aristotle's metaphysics as applied to his view of biological essences generates an ethic that can contribute to moral reasoning regarding the use of headless spare parts clones. The task of this paper is to show the implications that Aristotle's view of the soul, if it is true, would have on the ethics of headless, spare parts cloning.

  1. Designed membrane channels and pores.

    PubMed

    Bayley, H

    1999-02-01

    Advances in the synthesis and assembly of designed membrane channels and pores include addressable template-assisted synthetic protein (TASP) syntheses of helix bundles, the production of a new class of nanotubes and the ability to purify hetero-oligomeric pores. Channels and pores with altered functional properties and with built-in triggers and switches have been prepared. Progress in applications has been greatest in sensor technology, where sensor elements based on ligand activation, channel selectivity and channel block have been made. Structural information about natural membrane proteins is emerging to inspire new designs.

  2. Triggered pore-forming agents

    DOEpatents

    Bayley, Hagan; Walker, Barbara J.; Chang, Chung-yu; Niblack, Brett; Panchal, Rekha

    1998-01-01

    An inactive pore-forming agent which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell.

  3. Metal structures with parallel pores

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1976-01-01

    Four methods of fabricating metal plates having uniformly sized parallel pores are studied: elongate bundle, wind and sinter, extrude and sinter, and corrugate stack. Such plates are suitable for electrodes for electrochemical and fuel cells.

  4. Cloning. Pigs is pigs.

    PubMed

    Prather, R S

    2000-09-15

    Since the first report of a cloned animal (Dolly the sheep) 3 years ago, cloning mammals has become something of a cottage industry. As Prather discusses in his Perspective, pigs can now be added to the august list of cloned animals, which includes cows, goats, and mice. This is a particularly spectacular achievement because pig cloning has turned out to be notoriously difficult. The pig is also a valuable domestic animal to have cloned because, being physiologically close to humans, its organs can be used in xenotransplantation.

  5. Cloning. Pigs is pigs.

    PubMed

    Prather, R S

    2000-09-15

    Since the first report of a cloned animal (Dolly the sheep) 3 years ago, cloning mammals has become something of a cottage industry. As Prather discusses in his Perspective, pigs can now be added to the august list of cloned animals, which includes cows, goats, and mice. This is a particularly spectacular achievement because pig cloning has turned out to be notoriously difficult. The pig is also a valuable domestic animal to have cloned because, being physiologically close to humans, its organs can be used in xenotransplantation. PMID:11012362

  6. Modeling permeability evolution by precipitation and dissolution: from a single-pore channel to heterogeneous multi-pore systems

    NASA Astrophysics Data System (ADS)

    Silin, D.; Molins, S.

    2011-12-01

    , the model needs to account for heterogeneous nucleation and enhanced reactivity of new precipitates rather than uniform reactivity. We evaluate the impact of this pore-scale heterogeneity on the permeability evolution of multi-pore systems by comparing the output to earlier results. Averaging the local velocities and reaction rates over the computational domain yields the correlation between Darcy velocity and effective reaction rates. Tracking the pore-space and flow evolution produces porosity-permeability correlations.

  7. Gas Hydrate and Pore Pressure

    NASA Astrophysics Data System (ADS)

    Tinivella, Umberta; Giustiniani, Michela

    2014-05-01

    Many efforts have been devoted to quantify excess pore pressures related to gas hydrate dissociation in marine sediments below the BSR using several approaches. Dissociation of gas hydrates in proximity of the BSR, in response to a change in the physical environment (i.e., temperature and/or pressure regime), can liberate excess gas incrising the local pore fluid pressure in the sediment, so decreasing the effective normal stress. So, gas hydrate dissociation may lead to excess pore pressure resulting in sediment deformation or failure, such as submarine landslides, sediment slumping, pockmarks and mud volcanoes, soft-sediment deformation and giant hummocks. Moreover, excess pore pressure may be the result of gas hydrate dissociation due to continuous sedimentation, tectonic uplift, sea level fall, heating or inhibitor injection. In order to detect the presence of the overpressure below the BSR, we propose two approachs. The fist approach models the BSR depth versus pore pressure; in fact, if the free gas below the BSR is in overpressure condition, the base of the gas hydrate stability is deeper with respect to the hydrostatic case. This effect causes a discrepancy between seismic and theoretical BSR depths. The second approach models the velocities versus gas hydrate and free gas concentrations and pore pressure, considering the approximation of the Biot theory in case of low frequency, i.e. seismic frequency. Knowing the P and S seismic velocity from seismic data analysis, it is possibile to jointly estimate the gas hydrate and free gas concentrations and the pore pressure regime. Alternatively, if the S-wave velocity is not availbale (due to lack of OBS/OBC data), an AVO analysis can be performed in order to extract information about Poisson ratio. Our modeling suggests that the areas characterized by shallow waters (i.e., areas in which human infrastructures, such as pipelines, are present) are significantly affected by the presence of overpressure condition

  8. Pore size matters for potassium channel conductance.

    PubMed

    Naranjo, David; Moldenhauer, Hans; Pincuntureo, Matías; Díaz-Franulic, Ignacio

    2016-10-01

    Ion channels are membrane proteins that mediate efficient ion transport across the hydrophobic core of cell membranes, an unlikely process in their absence. K(+) channels discriminate K(+) over cations with similar radii with extraordinary selectivity and display a wide diversity of ion transport rates, covering differences of two orders of magnitude in unitary conductance. The pore domains of large- and small-conductance K(+) channels share a general architectural design comprising a conserved narrow selectivity filter, which forms intimate interactions with permeant ions, flanked by two wider vestibules toward the internal and external openings. In large-conductance K(+) channels, the inner vestibule is wide, whereas in small-conductance channels it is narrow. Here we raise the idea that the physical dimensions of the hydrophobic internal vestibule limit ion transport in K(+) channels, accounting for their diversity in unitary conductance.

  9. Active genes at the nuclear pore complex.

    PubMed

    Taddei, Angela

    2007-06-01

    The nucleus is spatially and functionally organized and its architecture is now seen as a key contributor to genome functions. A central component of this architecture is the nuclear envelope, which is studded with nuclear pore complexes that serve as gateways for communication between the nucleoplasm and cytoplasm. Although the nuclear periphery has traditionally been described as a repressive compartment and repository for gene-poor chromosome regions, several recent studies in yeast have demonstrated that repressive and activating domains can both be positioned at the periphery of the nucleus. Moreover, association with the nuclear envelope favors the expression of particular genes, demonstrating that nuclear organization can play an active role in gene regulation. PMID:17467257

  10. Pore and Continuum Scale Study of the Effect of Subgrid Transport Heterogeneity on Redox Reaction Rates

    SciTech Connect

    Liu, Yuanyuan; Liu, Chongxuan; Zhang, Changyong; Yang, Xiaofan; Zachara, John M.

    2015-08-01

    A micromodel system with a pore structure for heterogeneous flow and transport was used to investigate the effect of subgrid transport heterogeneity on redox reaction rates. Hematite reductive dissolution by injecting a reduced form of flavin mononucleotide (FMNH2) at variable flow rates was used as an example to probe the variations of redox reaction rates in different subgrid transport domains. Experiments, pore-scale simulations, and macroscopic modeling were performed to measure and simulate in-situ hematite reduction and to evaluate the scaling behavior of the redox reaction rates from the pore to macroscopic scales. The results indicated that the measured pore-scale rates of hematite reduction were consistent with the predictions from a pore scale reactive transport model. A general trend is that hematite reduction followed reductant transport pathways, starting from the advection-dominated pores toward the interior of diffusion-dominated domains. Two types of diffusion domains were considered in the micromodel: a micropore diffusion domain, which locates inside solid grains or aggregates where reactant transport is limited by diffusion; and a macropore diffusion domain, which locates at wedged, dead-end pore spaces created by the grain-grain contacts. The rate of hematite reduction in the advection-dominated domain was faster than those in the diffusion-controlled domains, and the rate in the macropore diffusion domain was faster than that in the micropore domain. The reduction rates in the advection and macropore diffusion domains increased with increasing flow rate, but were affected by different mechanisms. The rate increase in the advection domain was controlled by the mass action effect as a faster flow supplied more reactants, and the rate increase in the macropore domain was more affected by the rate of mass exchange with the advection domain, which increased with increasing flow rate. The hematite reduction rate in the micropore domain was, however

  11. Assembling the puzzle: Oligomerization of α-pore forming proteins in membranes☆

    PubMed Central

    García-Sáez, Ana J.

    2016-01-01

    Pore forming proteins (PFPs) share the ability of creating pores that allow the passage of ions, proteins or other constituents through a wide variety of target membranes, ranging from bacteria to humans. They often cause cell death, as pore formation disrupts the membrane permeability barrier required for maintaining cell homeostasis. The organization into supramolecular complexes or oligomers that pierce the membrane is a common feature of PFPs. However, the molecular pathway of self-assembly and pore opening remains unclear. Here, we review the most recent discoveries in the mechanism of membrane oligomerization and pore formation of a subset of PFPs, the α-PFPs, whose pore-forming domains are formed by helical segments. Only now we are starting to grasp the molecular details of their function, mainly thanks to the introduction of single molecule microscopy and nanoscopy techniques. PMID:26375417

  12. Permeability characteristics of cell-membrane pores induced by ostreolysin A/pleurotolysin B, binary pore-forming proteins from the oyster mushroom.

    PubMed

    Schlumberger, Sébastien; Kristan, Katarina Črnigoj; Ota, Katja; Frangež, Robert; Molgό, Jordi; Sepčić, Kristina; Benoit, Evelyne; Maček, Peter

    2014-01-01

    Proteins from the oyster mushroom, 15 kDa ostreolysin A (OlyA), and 59 kDa pleurotolysin B (PlyB) with a membrane attack complex/perforin (MACPF) domain, damage cell membranes as a binary cytolytic pore-forming complex. Measurements of single-channel conductance and transmembrane macroscopic current reveal that OlyA/PlyB form non-selective ion-conducting pores with broad, skewed conductance distributions in N18 neuroblastoma and CHO-K1 cell membranes. Polyethylene-glycol 8000 (hydrodynamic radius of 3.78 nm) provides almost complete osmotic protection against haemolysis, which strongly suggests a colloid-osmotic type of erythrocyte lysis. Our data indicate that OlyA/PlyB form transmembrane pores of varied sizes, as other pore-forming proteins with a MACPF domain. PMID:24211835

  13. Permeability characteristics of cell-membrane pores induced by ostreolysin A/pleurotolysin B, binary pore-forming proteins from the oyster mushroom.

    PubMed

    Schlumberger, Sébastien; Kristan, Katarina Črnigoj; Ota, Katja; Frangež, Robert; Molgό, Jordi; Sepčić, Kristina; Benoit, Evelyne; Maček, Peter

    2014-01-01

    Proteins from the oyster mushroom, 15 kDa ostreolysin A (OlyA), and 59 kDa pleurotolysin B (PlyB) with a membrane attack complex/perforin (MACPF) domain, damage cell membranes as a binary cytolytic pore-forming complex. Measurements of single-channel conductance and transmembrane macroscopic current reveal that OlyA/PlyB form non-selective ion-conducting pores with broad, skewed conductance distributions in N18 neuroblastoma and CHO-K1 cell membranes. Polyethylene-glycol 8000 (hydrodynamic radius of 3.78 nm) provides almost complete osmotic protection against haemolysis, which strongly suggests a colloid-osmotic type of erythrocyte lysis. Our data indicate that OlyA/PlyB form transmembrane pores of varied sizes, as other pore-forming proteins with a MACPF domain.

  14. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  15. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  16. Molecular cloning, expression, and characterization of novel hemolytic lectins from the mushroom Laetiporus sulphureus, which show homology to bacterial toxins.

    PubMed

    Tateno, Hiroaki; Goldstein, Irwin J

    2003-10-17

    We describe herein the cDNA cloning, expression, and characterization of a hemolytic lectin and its related species from the parasitic mushroom Laetiporus sulphureus. The lectin designated LSL (L. sulphureus lectin), is a tetramer composed of subunits of approximately 35 kDa associated by non-covalent bonds. From a cDNA library, three similar full-length cDNAs, termed LSLa, LSLb, and LSLc, were generated, each of which had an open reading frame of 945 bp encoding 315 amino acid residues. These proteins share 80-90% sequence identity and showed structural similarity to bacterial toxins: mosquitocidal toxin (MTX2) from Bacillus sphaericus and alpha toxin from Clostridium septicum. Native and recombinant forms of LSL showed hemagglutination and hemolytic activity and both activities were inhibited by N-acetyllactosamine, whereas a C-terminal deletion mutant of LSLa (LSLa-D1) retained hemagglutination, but not hemolytic activity, indicating the N-terminal domain is a carbohydrate recognition domain and the C-terminal domain functions as an oligomerization domain. The LSL-mediated hemolysis was protected osmotically by polyethylene glycol 4000 and maltohexaose. Inhibition studies showed that lacto-N-neotetraose (Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc) was the best inhibitor for LSL. These results indicate that LSL is a novel pore-forming lectin homologous to bacterial toxins.

  17. How Could SNARE Proteins Open a Fusion Pore?

    PubMed Central

    Fang, Qinghua

    2014-01-01

    The SNARE (Soluble NSF Attachment protein REceptor) complex, which in mammalian neurosecretory cells is composed of the proteins synaptobrevin 2 (also called VAMP2), syntaxin, and SNAP-25, plays a key role in vesicle fusion. In this review, we discuss the hypothesis that, in neurosecretory cells, fusion pore formation is directly accomplished by a conformational change in the SNARE complex via movement of the transmembrane domains. PMID:24985331

  18. Triggered pore-forming agents

    DOEpatents

    Bayley, H.; Walker, B.J.; Chang, C.Y.; Niblack, B.; Panchal, R.

    1998-07-07

    An inactive pore-forming agent is revealed which is activated to lytic function by a condition such as pH, light, heat, reducing potential, or metal ion concentration, or substance such as a protease, at the surface of a cell. 30 figs.

  19. Membrane pores induced by magainin

    SciTech Connect

    Ludtke, S.J.; He, Ke; Heller, W.T.

    1996-10-29

    Magainin, found in the skin of Xenopus laevis, belongs to a broad class of antimicrobial peptides which kill bacteria by permeabilizing the cytoplasmic membrane but do not lyse eukaryotic cells. The 23-residue peptide has been shown to form an amphiphilic helix when associated with membranes. However, its molecular mechanism of action has been controversial. Oriented circular dichroism has detected helical magainin oriented perpendicular to the plane of the membrane at high peptide concentrations, but Raman, fluorescence, differential scanning calorimetry, and NMR all indicate that the peptide is associated with the head groups of the lipid bilayer. Here we show that neutron in-plane scattering detects pores formed by magainin 2 in membranes only when a substantial fraction of the peptide is oriented perpendicular to the membrane. The pores are almost twice as large as the alamethicin pores. On the basis of the in-plane scattering data, we propose a toroidal (or wormhole) model, which differs from the barrel-stave model of alamethicin in that the lipid bends back on itself like the inside of a torus. The bending requires a lateral expansion in the head group region of the bilayer. Magainin monomers play the role of fillers in the expansion region thereby stabilizing the pore. This molecular configuration is consistent with all published magainin data. 33 refs., 5 figs.

  20. A Unified Multi-Scale Model for Pore-Scale Flow Simulations in Soils

    SciTech Connect

    Yang, Xiaofan; Liu, Chongxuan; Shang, Jianying; Fang, Yilin; Bailey, Vanessa L.

    2014-01-30

    Pore-scale simulations have received increasing interest in subsurface sciences to provide mechanistic insights into the macroscopic phenomena of water flow and reactive transport processes. The application of the pore scale simulations to soils and sediments is, however, challenged because of the characterization limitation that often only allows partial resolution of pore structure and geometry. A significant proportion of the pore space in soils and sediments is below the spatial resolution, forming a mixed media of pore and porous domains. Here we reported a unified multi-scale model (UMSM) that can be used to simulate water flow and transport in mixed media of pore and porous domains under both saturated and unsaturated conditions. The approach modifies the classic Navier-Stokes equation by adding a Darcy term to describe fluid momentum and uses a generalized mass balance equation for saturated and unsaturated conditions. By properly defining physical parameters, the UMSM can be applied in both pore and porous domains. This paper describes the set of equations for the UMSM, a series of validation cases under saturated or unsaturated conditions, and a real soil case for the application of the approach.

  1. Method for cloning genes

    SciTech Connect

    Weissman, S.M.; Pereira, D.; Sood, A.

    1988-04-19

    This patent describes a recombinant cloning vehicle comprising an inserted human gene, the improvement wherein the cloning vehicle is isolated from a recombinant clone which is isolated and identified by a process comprising the steps of: (a) effecting cDNA synthesis on a mixture of mRNAs containing a target mRNA coding for a major hisitocompatibility antigen, and isolating the resultant cDNA mixture; (b) inserting the resultant cDNA into recombinant cloning vehicles, and transforming hosts with the vehicles; and (c) separating the transformants and isolating and identifying a recombinant clone containing a DNA segment which is homologous over at least a portion thereof to at least one oligonucleotide probe specific for the DNA segment.

  2. Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles

    PubMed Central

    Katayama, H.; Wang, J.; Tama, F.; Chollet, L.; Gogol, E. P.; Collier, R. J.; Fisher, M. T.

    2010-01-01

    A major goal in understanding the pathogenesis of the anthrax bacillus is to determine how the protective antigen (PA) pore mediates translocation of the enzymatic components of anthrax toxin across membranes. To obtain structural insights into this mechanism, we constructed PA-pore membrane complexes and visualized them by using negative-stain electron microscopy. Two populations of PA pores were visualized in membranes, vesicle-inserted and nanodisc-inserted, allowing us to reconstruct two virtually identical PA-pore structures at 22-Å resolution. Reconstruction of a domain 4-truncated PA pore inserted into nanodiscs showed that this domain does not significantly influence pore structure. Normal mode flexible fitting of the x-ray crystallographic coordinates of the PA prepore indicated that a prominent flange observed within the pore lumen is formed by the convergence of mobile loops carrying Phe427, a residue known to catalyze protein translocation. Our results have identified the location of a crucial functional element of the PA pore and documented the value of combining nanodisc technology with electron microscopy to examine the structures of membrane-interactive proteins. PMID:20142512

  3. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences

    SciTech Connect

    Stubbs, J.D.; Bui, A. San Francisco State Univ., CA ); Lekutis, C.; Singer, K.L.; Srinivasan, U.; Parry, G. ); Yuzuki, D. )

    1990-11-01

    A 2.1-kilobase cDNA coding for a surface protein of mammary epithelial cells has been isolated from a mouse mammary gland {lambda}gt11 cDNA library. Sequence analysis of this cDNA reveals an open reading frame of 1,389 base pairs that defines a protein with a molecular mass of 51.5 dKa. Structural analysis of the predicted sequence identifies two putative functional domains of the protein: (i) an N-terminal cysteine-rich region that is similar to epidermal growth factor-like domains of Drosophila Notch-1 protein and (ii) a large segment of the sequence that exhibited 54.5% identify with C-terminal domains of human coagulation factors VIII and V. These similarities in structure are used to predict the possible functions of the protein and its means of interaction with the cell surface. mRNA expression was detectable in mammary tissue from nonpregnant animals but was maximal in the lactating gland. In cultured cells, mRNA levels also correlated with the degree of cellular differentiation.

  4. Enhanced Performance by Enlarged Nano-pores of Holly Leaf-derived Lamellar Carbon for Sodium-ion Battery Anode

    NASA Astrophysics Data System (ADS)

    Zheng, Peng; Liu, Ting; Yuan, Xiaoyan; Zhang, Lifeng; Liu, Yi; Huang, Jianfeng; Guo, Shouwu

    2016-05-01

    Lamellar hard carbon derived from holly leaf with enlarged pores of tiny graphite-like domains and meso-pores was prepared by hydrothermal followed high temperature pyrolysis process. Benefiting from the enlarged nano-pores of tiny graphite-like domains and the thin sheet structure with meso-pores, the derived carbon delivered a high reversible capacity of 318 mAh g-1 at a current rate of 20 mA g-1 and excellent rate capability as the anode of sodium-ion battery. And the hydrothermal followed high temperature pyrolysis method was also confirmed an effective approach for betula platyphylla and sophora japonica leaf as precursor respectively to synthesis hard carbon of lamellar structure with enlarged nano-pores of tiny graphite-like domains.

  5. Enhanced Performance by Enlarged Nano-pores of Holly Leaf-derived Lamellar Carbon for Sodium-ion Battery Anode.

    PubMed

    Zheng, Peng; Liu, Ting; Yuan, Xiaoyan; Zhang, Lifeng; Liu, Yi; Huang, Jianfeng; Guo, Shouwu

    2016-01-01

    Lamellar hard carbon derived from holly leaf with enlarged pores of tiny graphite-like domains and meso-pores was prepared by hydrothermal followed high temperature pyrolysis process. Benefiting from the enlarged nano-pores of tiny graphite-like domains and the thin sheet structure with meso-pores, the derived carbon delivered a high reversible capacity of 318 mAh g(-1) at a current rate of 20 mA g(-1) and excellent rate capability as the anode of sodium-ion battery. And the hydrothermal followed high temperature pyrolysis method was also confirmed an effective approach for betula platyphylla and sophora japonica leaf as precursor respectively to synthesis hard carbon of lamellar structure with enlarged nano-pores of tiny graphite-like domains. PMID:27189794

  6. Enhanced Performance by Enlarged Nano-pores of Holly Leaf-derived Lamellar Carbon for Sodium-ion Battery Anode

    PubMed Central

    Zheng, Peng; Liu, Ting; Yuan, Xiaoyan; Zhang, Lifeng; Liu, Yi; Huang, Jianfeng; Guo, Shouwu

    2016-01-01

    Lamellar hard carbon derived from holly leaf with enlarged pores of tiny graphite-like domains and meso-pores was prepared by hydrothermal followed high temperature pyrolysis process. Benefiting from the enlarged nano-pores of tiny graphite-like domains and the thin sheet structure with meso-pores, the derived carbon delivered a high reversible capacity of 318 mAh g−1 at a current rate of 20 mA g−1 and excellent rate capability as the anode of sodium-ion battery. And the hydrothermal followed high temperature pyrolysis method was also confirmed an effective approach for betula platyphylla and sophora japonica leaf as precursor respectively to synthesis hard carbon of lamellar structure with enlarged nano-pores of tiny graphite-like domains. PMID:27189794

  7. On cloning human beings.

    PubMed

    de Melo-Martin, Inmaculada

    2002-06-01

    The purpose of this paper is to show that arguments for and against cloning fail to make their case because of one or both of the following reasons: 1) they take for granted customary beliefs and assumptions that are far from being unquestionable; 2) they tend to ignore the context in which human cloning is developed. I will analyze some of the assumptions underlying the main arguments that have been offered for and against cloning. Once these assumptions are critically analyzed, arguments both rejecting and supporting human cloning seem to lose weight. I will first briefly present the main arguments that have been proposed against cloning and I will argue that they fail to establish their case. In the next section I will evaluate some of the positive arguments that have been offered supporting such technology. This analysis will show that the case for cloning also fails. Finally, I will maintain that because critics and especially supporters of this technology neglect the context in which human cloning is developed and might be implemented, their arguments are far from compelling.

  8. Interactions of cations with the cytoplasmic pores of inward rectifier K(+) channels in the closed state.

    PubMed

    Inanobe, Atsushi; Nakagawa, Atsushi; Kurachi, Yoshihisa

    2011-12-01

    Ion channels gate at membrane-embedded domains by changing their conformation along the ion conduction pathway. Inward rectifier K(+) (Kir) channels possess a unique extramembrane cytoplasmic domain that extends this pathway. However, the relevance and contribution of this domain to ion permeation remain unclear. By qualitative x-ray crystallographic analysis, we found that the pore in the cytoplasmic domain of Kir3.2 binds cations in a valency-dependent manner and does not allow the displacement of Mg(2+) by monovalent cations or spermine. Electrophysiological analyses revealed that the cytoplasmic pore of Kir3.2 selectively binds positively charged molecules and has a higher affinity for Mg(2+) when it has a low probability of being open. The selective blocking of chemical modification of the side chain of pore-facing residues by Mg(2+) indicates that the mode of binding of Mg(2+) is likely to be similar to that observed in the crystal structure. These results indicate that the Kir3.2 crystal structure has a closed conformation with a negative electrostatic field potential at the cytoplasmic pore, the potential of which may be controlled by conformational changes in the cytoplasmic domain to regulate ion diffusion along the pore. PMID:21982822

  9. Cloning of a crustin-like, single whey-acidic-domain, antibacterial peptide from the haemocytes of the European lobster, Homarus gammarus, and its response to infection with bacteria.

    PubMed

    Hauton, C; Brockton, V; Smith, V J

    2006-03-01

    Degenerate PCR was used to isolate a 221-base pair nucleotide sequence of a new crustin-like antibacterial peptide from the haemocytes of the European lobster, Homarus gammarus. Rapid amplification of cDNA ends was used to extend the sequence to determine the complete open reading frame and un-translated regions. The inferred amino acid sequence of this peptide was found to be similar to crustin-like peptides isolated for several species of shrimp as well as the shore crab, Carcinus maenas. The sequence also contains a single-whey-acidic protein (WAP) domain, similar to novel antibacterial single-whey-acidic domain (SWD) peptides that have been recently described in the tiger shrimp, Penaeus monodon, and the Pacific white shrimp, Litopenaeus vannamei. Real-time PCR was used to analyse the expression of the gene coding for this peptide. The gene is up regulated after inoculation with the Gram-positive lobster pathogen Aerococcus viridans var. homari but down regulated after inoculation with the Gram-negative bacteria Listonella anguillarum. Phylogenetic analysis of this new peptide shows that it is most related to other antimicrobial crustin peptides and that the crustins are only distantly related to the antibacterial SWD peptides recently described. PMID:16144710

  10. Phospholipids Induce Conformational Changes of SecA to Form Membrane-Specific Domains: AFM Structures and Implication on Protein-Conducting Channels

    PubMed Central

    You, Zhipeng; Liao, Meijiang; Zhang, Hao; Yang, Hsiuchin; Pan, Xijian; Houghton, John E.; Sui, Sen-fang; Tai, Phang C.

    2013-01-01

    SecA, an essential component of the Sec machinery, exists in a soluble and a membrane form in Escherichia coli. Previous studies have shown that the soluble SecA transforms into pore structures when it interacts with liposomes, and integrates into membranes containing SecYEG in two forms: SecAS and SecAM; the latter exemplified by two tryptic membrane-specific domains, an N-terminal domain (N39) and a middle M48 domain (M48). The formation of these lipid-specific domains was further investigated. The N39 and M48 domains are induced only when SecA interacts with anionic liposomes. Additionally, the N-terminus, not the C-terminus of SecA is required for inducing such conformational changes. Proteolytic treatment and sequence analyses showed that liposome-embedded SecA yields the same M48 and N39 domains as does the membrane-embedded SecA. Studies with chemical extraction and resistance to trypsin have also shown that these proteoliposome-embedded SecA fragments exhibit the same stability and characteristics as their membrane-embedded SecA equivalents. Furthermore, the cloned lipid-specific domains N39 and M48, but not N68 or C34, are able to form partial, but imperfect ring-like structures when they interact with phospholipids. These ring-like structures are characteristic of a SecA pore-structure, suggesting that these domains contribute part of the SecA-dependent protein-conducting channel. We, therefore, propose a model in which SecA alone is capable of forming a lipid-specific, asymmetric dimer that is able to function as a viable protein-conducting channel in the membrane, without any requirement for SecYEG. PMID:23977317

  11. DESIGN INFORMATION ON FINE PORE AERATION SYSTEMS

    EPA Science Inventory

    Field studies were conducted over several years at municipal wastewater treatment plants employing line pore diffused aeration systems. These studies were designed to produce reliable information on the performance and operational requirements of fine pore devices under process ...

  12. Pore-scale simulation of calcium carbonate precipitation and dissolution under highly supersaturated conditions in a microfludic pore network

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Dewers, T. A.; Valocchi, A. J.; Werth, C. J.

    2011-12-01

    Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks or confined aquifers and cause mineral precipitation. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at pore-scale. Pore-scale models of coupled fluid flow, reactive transport, and CaCO3 precipitation and dissolution are applied to account for transient experimental results of CaCO3 precipitation and dissolution under highly supersaturated conditions in a microfluidic pore network (i.e., micromodel). Pore-scale experiments in the micromodel are used as a basis for understanding coupled physics of systems perturbed by geological CO2 injection. In the micromodel, precipitation is induced by transverse mixing along the centerline in pore bodies. Overall, the pore-scale model qualitatively captured the governing physics of reactions such as precipitate morphology, precipitation rate, and maximum precipitation area in first few pore spaces. In particular, we found that proper estimation of the effective diffusion coefficient and the reactive surface area is necessary to adequately simulate precipitation and dissolution rates. As the model domain increases, the effect of flow patterns affected by precipitation on the overall reaction rate also increases. The model is also applied to account for the effect of different reaction rate laws on mineral precipitation and dissolution at pore-scale. Reaction rate laws tested include the linear rate law, nonlinear power law, and newly-developed rate law based on in-situ measurements at nano scale in the literature. Progress on novel methods for upscaling pore-scale models for reactive transport are discussed, and are being applied to mineral precipitation patterns observed in natural analogues. H.Y. and T. D. were supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of

  13. Do Managers Clone Themselves?

    ERIC Educational Resources Information Center

    Baron, Alma S.

    1981-01-01

    A recent questionnaire survey provides statistics on male managers' views of female managers. The author recommends that male managers break out of their cloning behavior and that the goal ought to be a plurality in management. (Author/WD)

  14. Statement on Human Cloning

    MedlinePlus

    ... form Search American Association for the Advancement of Science Statement on Human Cloning Print Email Tweet The American Association for the Advancement of Science (AAAS) recognizes the intense debates within our society ...

  15. Sensitivity of stress inversion of focal mechanisms to pore pressure changes

    NASA Astrophysics Data System (ADS)

    Martínez-Garzón, Patricia; Vavryčuk, Václav; Kwiatek, Grzegorz; Bohnhoff, Marco

    2016-08-01

    We investigate the sensitivity of stress inversion from focal mechanisms to pore pressure changes. Synthetic tests reveal that pore pressure variations can cause apparent changes in the retrieved stress ratio R relating the magnitude of the intermediate principal stress with respect to the maximum and minimum principal stresses. Pore pressure and retrieved R are negatively correlated when R is low (R < 0.6). The spurious variations in retrieved R are suppressed when R > 0.6. This observation is independent of faulting style, and it may be related to different performance of the fault plane selection criterion and variability in orientation of activated faults under different pore pressures. Our findings from synthetic data are supported by results obtained from induced seismicity at The Geysers geothermal field. Therefore, the retrieved stress ratio variations can be utilized for monitoring pore pressure changes at seismogenic depth in stress domains with overall low R.

  16. Antimicrobial Peptides in Toroidal and Cylindrical Pores

    PubMed Central

    Mihajlovic, Maja

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize biological membranes. Their mechanism of action is still not well understood. Here we investigate the preference of alamethicin and melittin for pores of different shapes, using molecular dynamics (MD) simulations of the peptides in pre-formed toroidal and cylindrical pores. When an alamethicin hexamer is initially embedded in a cylindrical pore, at the end of the simulation the pore remains cylindrical or closes if glutamines in the N-termini are not located within the pore. On the other hand, when a melittin tetramer is embedded in toroidal pore or in a cylindrical pore, at the end of the simulation the pore is lined both with peptides and lipid headgroups, and, thus, can be classified as a toroidal pore. These observations agree with the prevailing views that alamethicin forms barrel-stave pores whereas melittin forms toroidal pores. Both alamethicin and melittin form amphiphilic helices in the presence of membranes, but their net charge differs; at pH ~7, the net charge of alamethicin is −1 whereas that of melittin is +5. This gives rise to stronger electrostatic interactions of melittin with membranes than those of alamethicin. The melittin tetramer interacts more strongly with lipids in the toroidal pore than in the cylindrical one, due to more favorable electrostatic interactions. PMID:20403332

  17. Twins: A cloning experience.

    PubMed

    Prainsack, Barbara; Spector, Tim D

    2006-11-01

    Drawing upon qualitative interviews with monozygotic (identical) twins sharing 100% of their genes, and with dizygotic (fraternal) twins and singletons as control groups, this paper explores what it means to be genetically identical. (The twins interviewed were from the TwinsUK register in London.) In the context of the ongoing debate on human reproductive cloning, it examines questions such as: To what extent do identical twins perceive their emotional and physical bond to be a result of their genetic makeup? What would they think if they had been deliberately created genetically identical? How would they feel about being genetically identical to a person who was born a few years earlier or later? First, our respondents ascribed no great significance to the role of genes in their understanding of what it means to be identical twins. Second, the opinion that human reproductive cloning would "interfere with nature", or "contradict God's will", was expressed by our respondents exclusively on the abstract level. The more our respondents were able to relate a particular invented cloning scenario to their own life-worlds, the lower the prevalence of the argument. Third, for all three groups of respondents, the scenario of having been born in one of the other groups was perceived as strange. Fourth, the aspect that our respondents disliked about cloning scenarios was the potential motives of the cloners. Without equating monozygotic twins directly with "clones", these results from "naturally" genetically identical individuals add a new dimension to what a future cloning situation could entail: The cloned person might possibly (a) perceive a close physical and emotional connection to the progenitor as a blessing; (b) suffer from preconceptions of people who regard physical likeness as a sign of incomplete individuality; and (c) perceive the idea of not having been born a clone of a particular person as unpleasant.

  18. Pore-forming pyocin S5 utilizes the FptA ferripyochelin receptor to kill Pseudomonas aeruginosa.

    PubMed

    Elfarash, Ameer; Dingemans, Jozef; Ye, Lumeng; Hassan, Ahmed Amir; Craggs, Michael; Reimmann, Cornelia; Thomas, Mark S; Cornelis, Pierre

    2014-02-01

    Pyocins are toxic proteins produced by some strains of Pseudomonas aeruginosa that are lethal for related strains of the same species. Some soluble pyocins (S2, S3 and S4) were previously shown to use the pyoverdine siderophore receptors to enter the cell. The P. aeruginosa PAO1 pore-forming pyocin S5 encoding gene (PAO985) was cloned into the expression vector pET15b, and the affinity-purified protein product tested for its killing activity against different P. aeruginosa strains. The results, however, did not show any correlation with a specific ferripyoverdine receptor. To further identify the S5 receptor, transposon mutants were generated. Pooled mutants were exposed to pyocin S5 and the resistant colonies growing in the killing zone were selected. The majority of S5-resistant mutants had an insertion in the fptA gene encoding the receptor for the siderophore pyochelin. Complementation of an fptA transposon mutant with the P. aeruginosa fptA gene in trans restored the sensitivity to S5. In order to define the receptor-binding domain of pyocin S5, two hybrid pyocins were constructed containing different regions from pyocin S5 fused to the C-terminal translocation and DNase killing domains of pyocin S2. Only the protein containing amino acid residues 151 to 300 from S5 showed toxicity, indicating that the pyocin S5 receptor-binding domain is not at the N-terminus of the protein as in other S-type pyocins. Pyocin S5 was, however, unable to kill Burkholderia cenocepacia strains producing a ferripyochelin FptA receptor, nor was the B. cenocepacia fptA gene able to restore the sensitivity of the resistant fptA mutant P. aeruginosa strain.

  19. Pore-forming pyocin S5 utilizes the FptA ferripyochelin receptor to kill Pseudomonas aeruginosa.

    PubMed

    Elfarash, Ameer; Dingemans, Jozef; Ye, Lumeng; Hassan, Ahmed Amir; Craggs, Michael; Reimmann, Cornelia; Thomas, Mark S; Cornelis, Pierre

    2014-02-01

    Pyocins are toxic proteins produced by some strains of Pseudomonas aeruginosa that are lethal for related strains of the same species. Some soluble pyocins (S2, S3 and S4) were previously shown to use the pyoverdine siderophore receptors to enter the cell. The P. aeruginosa PAO1 pore-forming pyocin S5 encoding gene (PAO985) was cloned into the expression vector pET15b, and the affinity-purified protein product tested for its killing activity against different P. aeruginosa strains. The results, however, did not show any correlation with a specific ferripyoverdine receptor. To further identify the S5 receptor, transposon mutants were generated. Pooled mutants were exposed to pyocin S5 and the resistant colonies growing in the killing zone were selected. The majority of S5-resistant mutants had an insertion in the fptA gene encoding the receptor for the siderophore pyochelin. Complementation of an fptA transposon mutant with the P. aeruginosa fptA gene in trans restored the sensitivity to S5. In order to define the receptor-binding domain of pyocin S5, two hybrid pyocins were constructed containing different regions from pyocin S5 fused to the C-terminal translocation and DNase killing domains of pyocin S2. Only the protein containing amino acid residues 151 to 300 from S5 showed toxicity, indicating that the pyocin S5 receptor-binding domain is not at the N-terminus of the protein as in other S-type pyocins. Pyocin S5 was, however, unable to kill Burkholderia cenocepacia strains producing a ferripyochelin FptA receptor, nor was the B. cenocepacia fptA gene able to restore the sensitivity of the resistant fptA mutant P. aeruginosa strain. PMID:24217175

  20. Domain Engineering

    NASA Astrophysics Data System (ADS)

    Bjørner, Dines

    Before software can be designed we must know its requirements. Before requirements can be expressed we must understand the domain. So it follows, from our dogma, that we must first establish precise descriptions of domains; then, from such descriptions, “derive” at least domain and interface requirements; and from those and machine requirements design the software, or, more generally, the computing systems.

  1. Radial symmetry in a chimeric glutamate receptor pore

    NASA Astrophysics Data System (ADS)

    Wilding, Timothy J.; Lopez, Melany N.; Huettner, James E.

    2014-02-01

    Ionotropic glutamate receptors comprise two conformationally different A/C and B/D subunit pairs. Closed channels exhibit fourfold radial symmetry in the transmembrane domain (TMD) but transition to twofold dimer-of-dimers symmetry for extracellular ligand binding and N-terminal domains. Here, to evaluate symmetry in open pores we analysed interaction between the Q/R editing site near the pore loop apex and the transmembrane M3 helix of kainate receptor subunit GluK2. Chimeric subunits that combined the GluK2 TMD with extracellular segments from NMDA receptors, which are obligate heteromers, yielded channels made up of A/C and B/D subunit pairs with distinct substitutions along M3 and/or Q/R site editing status, in an otherwise identical homotetrameric TMD. Our results indicate that Q/R site interaction with M3 occurs within individual subunits and is essentially the same for both A/C and B/D subunit conformations, suggesting that fourfold pore symmetry persists in the open state.

  2. The amino- and carboxyl-terminal fragments of the Bacillus thuringensis Cyt1Aa toxin have differential roles in toxin oligomerization and pore formation.

    PubMed

    Rodriguez-Almazan, Claudia; Ruiz de Escudero, Iñigo; Cantón, Pablo Emiliano; Muñoz-Garay, Carlos; Pérez, Claudia; Gill, Sarjeet S; Soberón, Mario; Bravo, Alejandra

    2011-01-25

    The Cyt toxins produced by the bacteria Bacillus thuringiensis show insecticidal activity against some insects, mainly dipteran larvae, being able to kill mosquitoes and black flies. However, they also possess a general cytolytic activity in vitro, showing hemolytic activity in red blood cells. These proteins are composed of two outer layers of α-helix hairpins wrapped around a β-sheet. With regard to their mode of action, one model proposed that the two outer layers of α-helix hairpins swing away from the β-sheet, allowing insertion of β-strands into the membrane forming a pore after toxin oligomerization. The other model suggested a detergent-like mechanism of action of the toxin on the surface of the lipid bilayer. In this work, we cloned the N- and C-terminal domains form Cyt1Aa and analyzed their effects on Cyt1Aa toxin action. The N-terminal domain shows a dominant negative phenotype inhibiting the in vitro hemolytic activity of Cyt1Aa in red blood cells and the in vivo insecticidal activity of Cyt1Aa against Aedes aegypti larvae. In addition, the N-terminal region is able to induce aggregation of the Cyt1Aa toxin in solution. Finally, the C-terminal domain composed mainly of β-strands is able to bind to the SUV liposomes, suggesting that this region of the toxin is involved in membrane interaction. Overall, our data indicate that the two isolated domains of Cyt1Aa have different roles in toxin action. The N-terminal region is involved in toxin aggregation, while the C-terminal domain is involved in the interaction of the toxin with the lipid membrane.

  3. Novel biometrics based on nose pore recognition

    NASA Astrophysics Data System (ADS)

    Song, Shangling; Ohnuma, Kazuhiko; Liu, Zhi; Mei, Liangmo; Kawada, Akira; Monma, Tomoyuki

    2009-05-01

    We present a new member of the biometrics family-i.e., nose pores-which uses particularly interesting properties of nose pores as a basis for noninvasive biometric assessment. The pore distribution on the nose is stable and easily inspected. More important, nose pore distribution features are distinguishable between different persons. Thus, these features can be used for personal identification. However, little work has been done on nose pores as a biometric identifier. We have developed an end-to-end recognition system based on nose pore features. We also made use of a database of nose pore images obtained over a long period to examine the performance of nose pores as a biometric identifier. This research showed that the nose pore is a promising candidate for biometric identification and deserves further research. The experimental results based on the unique nose pores database demonstrated that nose pores can give an 88.07% correct recognition rate for biometric identification, which showed this biometric identifier's feasibility and effectiveness.

  4. Measuring kinetic drivers of pneumolysin pore structure.

    PubMed

    Gilbert, Robert J C; Sonnen, Andreas F-P

    2016-05-01

    Most membrane attack complex-perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins are thought to form pores in target membranes by assembling into pre-pore oligomers before undergoing a pre-pore to pore transition. Assembly during pore formation is into both full rings of subunits and incomplete rings (arcs). The balance between arcs and full rings is determined by a mechanism dependent on protein concentration in which arc pores arise due to kinetic trapping of the pre-pore forms by the depletion of free protein subunits during oligomerization. Here we describe the use of a kinetic assay to study pore formation in red blood cells by the MACPF/CDC pneumolysin from Streptococcus pneumoniae. We show that cell lysis displays two kinds of dependence on protein concentration. At lower concentrations, it is dependent on the pre-pore to pore transition of arc oligomers, which we show to be a cooperative process. At higher concentrations, it is dependent on the amount of pneumolysin bound to the membrane and reflects the affinity of the protein for its receptor, cholesterol. A lag occurs before cell lysis begins; this is dependent on oligomerization of pneumolysin. Kinetic dissection of cell lysis by pneumolysin demonstrates the capacity of MACPF/CDCs to generate pore-forming oligomeric structures of variable size with, most likely, different functional roles in biology. PMID:26906727

  5. Diffusive resistance of avian eggshell pores.

    PubMed

    Tøien, O; Paganelli, C V; Rahn, H; Johnson, R R

    1988-12-01

    Resistance to gas diffusion through the avian eggshell resides in the microscopic pores which penetrate the shell. We calculated the resistance to water vapor diffusion of individual pores in the shells of 23 species of avian eggs, based on measurements of pore dimensions taken from drawings of 321 pore casts published by Tyler (1962, 1964, 1965) and Tyler and Simkiss (1959). Diffusive resistances were calculated from Fick's first law, using a 100-segment model of each pore. In addition, we added 2 series resistances, calculated from Stefan's law, to account for boundary layer resistances at the inner and outer pore apertures. Convective resistances for the same 100-segment model were computed from Poiseuille's law. A special, symmetrically branching model is presented for the diffusive resistance of the branched pores of ostrich eggshells, based on the drawings of Tyler and Simkiss (1959). The total aperture resistance was less than 6.2% of total pore resistance, while the outside aperture effect was on average only 1.5%. The calculated average pore conductance for all species was 5.4 micrograms (day Torr)-1, about three times higher than the average value of 1.6 micrograms (day Torr)-1 obtained by dividing measured shell conductance by the number of pores (Ar and Rahn, 1985). A possible explanation for this discrepancy is advanced. However, it is to be noted that in spite of the discrepancy, both calculated and functional values of pore conductance appear to be independent of egg mass.

  6. Killing machines: three pore-forming proteins of the immune system.

    PubMed

    McCormack, Ryan; de Armas, Lesley; Shiratsuchi, Motoaki; Podack, Eckhard R

    2013-12-01

    The evolution of early multicellular eukaryotes 400-500 million years ago required a defensive strategy against microbial invasion. Pore-forming proteins containing the membrane-attack-complex-perforin (MACPF) domain were selected as the most efficient means to destroy bacteria or virally infected cells. The mechanism of pore formation by the MACPF domain is distinctive in that pore formation is purely physical and unspecific. The MACPF domain polymerizes, refolds, and inserts itself into bilayer membranes or bacterial outer cell walls. The displacement of surface lipid/carbohydrate molecules by the polymerizing MACPF domain creates clusters of large, water-filled holes that destabilize the barrier function and provide access for additional anti-bacterial or anti-viral effectors to sensitive sites that complete the destruction of the invader via enzymatic or chemical attack. The highly efficient mechanism of anti-microbial defense by a combined physical and chemical strategy using pore-forming MACPF-proteins has been retargeted during evolution of vertebrates and mammals for three purposes: (1) to kill extracellular bacteria C9/polyC9 evolved in conjunction with complement, (2) to kill virus infected and cancer cells perforin-1/polyperforin-1 CTL evolved targeted by NK and CTL, and (3) to kill intracellular bacteria transmembrane perforin-2/putative polyperforin-2 evolved targeted by phagocytic and nonphagocytic cells. Our laboratory has been involved in the discovery and description of each of the three pore-formers that will be reviewed here. PMID:24293008

  7. Glycosylation of the nuclear pore

    PubMed Central

    Li, Bin; Kohler, Jennifer J.

    2014-01-01

    The O-linked β-N-acetylglucosamine (O-GlcNAc) post-translational modification was first discovered thirty years ago and is highly concentrated in the nuclear pore. In the years since the discovery of this single sugar modification, substantial progress has been made in understanding the biochemistry of O-GlcNAc and its regulation. Nonetheless, O-GlcNAc modification of proteins continues to be overlooked, due in large part to the lack of reliable methods available for its detection. Recently, a new crop of immunological and chemical detection reagents has changed the research landscape. Using these tools, approximately 1000 O-GlcNAc-modified proteins have been identified. While other forms of glycosylation are typically associated with extracellular proteins, O-GlcNAc is abundant on nuclear and cytoplasmic proteins. In particular, phenylalanine-glycine (FG) nucleoporins (NUPs) are heavily O-GlcNAc-modified. Recent experiments are beginning to provide insight into the functional implications of O-GlcNAc modification on certain proteins, but its role in the nuclear pore has remained enigmatic. However, tantalizing new results suggest that O-GlcNAc may play roles in regulating nucleocytoplasmic transport. PMID:24423194

  8. Physical modelling of the nuclear pore complex

    PubMed Central

    Fassati, Ariberto; Ford, Ian J.; Hoogenboom, Bart W.

    2013-01-01

    Physically interesting behaviour can arise when soft matter is confined to nanoscale dimensions. A highly relevant biological example of such a phenomenon is the Nuclear Pore Complex (NPC) found perforating the nuclear envelope of eukaryotic cells. In the central conduit of the NPC, of ∼30–60 nm diameter, a disordered network of proteins regulates all macromolecular transport between the nucleus and the cytoplasm. In spite of a wealth of experimental data, the selectivity barrier of the NPC has yet to be explained fully. Experimental and theoretical approaches are complicated by the disordered and heterogeneous nature of the NPC conduit. Modelling approaches have focused on the behaviour of the partially unfolded protein domains in the confined geometry of the NPC conduit, and have demonstrated that within the range of parameters thought relevant for the NPC, widely varying behaviour can be observed. In this review, we summarise recent efforts to physically model the NPC barrier and function. We illustrate how attempts to understand NPC barrier function have employed many different modelling techniques, each of which have contributed to our understanding of the NPC.

  9. A thermodynamic approach to Alamethicin pore formation

    PubMed Central

    Rahaman, Asif; Lazaridis, Themis

    2013-01-01

    The structure and energetics of alamethicin Rf30 monomer to nonamer in cylindrical pores of 5 to 11 Å radius are investigated using molecular dynamics simulations in an implicit membrane model that includes the free energy cost of acyl chain hydrophobic area exposure. Stable, low energy pores are obtained for certain combinations of radius and oligomeric number. The trimer and the tetramer formed 6 Å pores that appear closed while the larger oligomers formed open pores at their optimal radius. The hexamer in an 8 Å pore and the octamer in an 11 Å pore give the lowest effective energy per monomer. However, all oligomers beyond the pentamer have comparable energies, consistent with the observation of multiple conductance levels. The results are consistent with the widely accepted “barrel-stave” model. The N terminal portion of the molecule exhibits smaller tilt with respect to the membrane normal than the C terminal portion, resulting in a pore shape that is a hybrid between a funnel and an hourglass. Transmembrane voltage has little effect on the structure of the oligomers but enhances or decreases their stability depending on its orientation. Antiparallel bundles are lower in energy than the commonly accepted parallel ones and could be present under certain experimental conditions. Dry aggregates (without an aqueous pore) have lower average effective energy than the corresponding aggregates in a pore, suggesting that alamethicin pores may be excited states that are stabilized in part by voltage and in part by the ion flow itself. PMID:24071593

  10. Extremal quantum cloning machines

    SciTech Connect

    Chiribella, G.; D'Ariano, G. M.; Perinotti, P.; Cerf, N.J.

    2005-10-15

    We investigate the problem of cloning a set of states that is invariant under the action of an irreducible group representation. We then characterize the cloners that are extremal in the convex set of group covariant cloning machines, among which one can restrict the search for optimal cloners. For a set of states that is invariant under the discrete Weyl-Heisenberg group, we show that all extremal cloners can be unitarily realized using the so-called double-Bell states, whence providing a general proof of the popular ansatz used in the literature for finding optimal cloners in a variety of settings. Our result can also be generalized to continuous-variable optimal cloning in infinite dimensions, where the covariance group is the customary Weyl-Heisenberg group of displacement000.

  11. Cloning the laboratory mouse.

    PubMed

    Wakayama, T; Yanagimachi, R

    1999-06-01

    A brief account is given of early attempts to clone mammals (mice) by transferring cells (nuclei) of preimplantation embryos into enucleated oocytes, zygotes or blastomeres of two-cell embryos. This is followed by a brief review of recent successes using adult somatic cells: mammary gland cells for sheep, muscle cells for cattle and cumulus cells for mice. We have developed a technique for cloning the laboratory mouse by transferring cumulus cell nuclei into enucleated oocytes. With this technique, we have produced a population of over 80 cloned animals, and have carried the process over four generations. Development and fertility of these appear normal. However, the yield is very low; only approximately 1% of injected oocytes are carried to term. The challenge is now to understand the reason for this high loss. Is it a problem of technique, genomic reprogramming, somatic mutation, imprinting or incompatible cell cycle phases?

  12. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    PubMed Central

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I; Lindahl, Erik; Elinder, Fredrik

    2016-01-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel. PMID:27278891

  13. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    NASA Astrophysics Data System (ADS)

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I.; Lindahl, Erik; Elinder, Fredrik

    2016-06-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel.

  14. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    NASA Astrophysics Data System (ADS)

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I.; Lindahl, Erik; Elinder, Fredrik

    2016-06-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel.

  15. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation.

    PubMed

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I; Lindahl, Erik; Elinder, Fredrik

    2016-01-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd(2+) bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K(+) coordination, a hallmark for C-type inactivation. An engineered Cd(2+) bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel. PMID:27278891

  16. Open-pore polyurethane product

    DOEpatents

    Jefferson, R.T.; Salyer, I.O.

    1974-02-17

    The method is described of producing an open-pore polyurethane foam having a porosity of at least 50% and a density of 0.1 to 0.5 g per cu cm, and which consists of coherent spherical particles of less than 10 mu diam separated by interconnected interstices. It is useful as a filter and oil absorbent. The product is admirably adapted to scavenging of crude oil from the surface of seawater by preferential wicking. The oil-soaked product may then be compressed to recover the oil or burned for disposal. The crosslinked polyurethane structures are remarkably solvent and heat-resistance as compared with known thermoplastic structures. Because of their relative inertness, they are useful filters for gasoline and other hydrocarbon compounds. (7 claims)

  17. Nuclear Pore Proteins and Cancer

    PubMed Central

    Xu, Songli; Powers, Maureen A.

    2009-01-01

    Nucleocytoplasmic trafficking of macromolecules, a highly specific and tightly regulated process, occurs exclusively through the Nuclear Pore Complex. This immense structure is assembled from approximately 30 proteins, termed nucleoporins. Here we discuss the four nucleoporins that have been linked to cancers, either through elevated expression in tumors (Nup88) or through involvement in chromosomal translocations that encode chimeric fusion proteins (Tpr, Nup98, Nup214). In each case we consider the normal function of the nucleoporin and its translocation partners, as well as what is known about their mechanistic contributions to carcinogenesis, particularly in leukemias. Studies of nucleoporin-linked cancers have revealed novel mechanisms of oncogenesis and. in the future, should continue to expand our understanding of cancer biology. PMID:19577736

  18. Fine structures at pore boundary

    NASA Astrophysics Data System (ADS)

    Bharti, L.; Quintero Noda, C.; Joshi, C.; Rakesh, S.; Pandya, A.

    2016-10-01

    We present high resolution observations of fine structures at pore boundaries. The inner part of granules towards umbra show dark striations which evolve into a filamentary structure with dark core and `Y' shape at the head of the filaments. These filaments migrate into the umbra similar to penumbral filaments. These filaments show higher temperature, lower magnetic field strength and more inclined field compared to the background umbra. The optical depth stratification of physical quantities suggests their similarity with penumbral filaments. However, line-of-sight velocity pattern is different from penumbral filaments where they show downflows in the deeper layers of the atmosphere while the higher layers show upflows. These observations show filamentation in a simple magnetic configuration.

  19. Effects of pore-scale precipitation on permeability and flow

    NASA Astrophysics Data System (ADS)

    Noiriel, Catherine; Steefel, Carl I.; Yang, Li; Bernard, Dominique

    2016-09-01

    rate boundary conditions, precipitation resulted in an increase in both the average and maximum velocities. Increases in pore roughness led to a more heterogeneous flow field, principally through the effects on the fastest and slowest velocities within the domain.

  20. Atomic Structure of Graphene Subnanometer Pores.

    PubMed

    Robertson, Alex W; Lee, Gun-Do; He, Kuang; Gong, Chuncheng; Chen, Qu; Yoon, Euijoon; Kirkland, Angus I; Warner, Jamie H

    2015-12-22

    The atomic structure of subnanometer pores in graphene, of interest due to graphene's potential as a desalination and gas filtration membrane, is demonstrated by atomic resolution aberration corrected transmission electron microscopy. High temperatures of 500 °C and over are used to prevent self-healing of the pores, permitting the successful imaging of open pore geometries consisting of between -4 to -13 atoms, all exhibiting subnanometer diameters. Picometer resolution bond length measurements are used to confirm reconstruction of five-membered ring projections that often decorate the pore perimeter, knowledge which is used to explore the viability of completely self-passivated subnanometer pore structures; bonding configurations where the pore would not require external passivation by, for example, hydrogen to be chemically inert.

  1. Direct numerical simulation of pore-scale flow in a bead pack: Comparison with magnetic resonance imaging observations

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofan; Scheibe, Timothy D.; Richmond, Marshall C.; Perkins, William A.; Vogt, Sarah J.; Codd, Sarah L.; Seymour, Joseph D.; McKinley, Matthew I.

    2013-04-01

    A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier-Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental uncertainty in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods. 2012 Elsevier Science.

  2. Modeling the interaction of ultrasound with pores

    NASA Technical Reports Server (NTRS)

    Lu, Yichi; Wadley, Haydn N. G.; Parthasarathi, Sanjai

    1991-01-01

    Factors that affect ultrasonic velocity sensing of density during consolidation of metal powders are examined. A comparison is made between experimental results obtained during the final stage of densification and the predictions of models that assume either a spherical or a spheroidal pore shape. It is found that for measurements made at low frequencies during the final stage of densification, relative density (pore fraction) and pore shape are the two most important factors determining the ultrasonic velocity, the effect of pore size is negligible.

  3. Applications of quantum cloning

    NASA Astrophysics Data System (ADS)

    Pomarico, E.; Sanguinetti, B.; Sekatski, P.; Zbinden, H.; Gisin, N.

    2011-10-01

    Quantum Cloning Machines (QCMs) allow for the copying of information, within the limits imposed by quantum mechanics. These devices are particularly interesting in the high-gain regime, i.e., when one input qubit generates a state of many output qubits. In this regime, they allow for the study of certain aspects of the quantum to classical transition. The understanding of these aspects is the root of the two recent applications that we will review in this paper: the first one is the Quantum Cloning Radiometer, a device which is able to produce an absolute measure of spectral radiance. This device exploits the fact that in the quantum regime information can be copied with only finite fidelity, whereas when a state becomes macroscopic, this fidelity gradually increases to 1. Measuring the fidelity of the cloning operation then allows to precisely determine the absolute spectral radiance of the input optical source. We will then discuss whether a Quantum Cloning Machine could be used to produce a state visible by the naked human eye, and the possibility of a Bell Experiment with humans playing the role of detectors.

  4. The Cloning of America.

    ERIC Educational Resources Information Center

    Dobson, Judith E.; Dobson, Russell L.

    1981-01-01

    Proposes that the U.S. school system purports to prize human variability, but many educators are engaged in activities that seek to homogenize students. Describes these activities, including diagnosis, labeling, ability grouping, and positive reinforcement. Presents suggestions for counselors to combat sources of cloning and self-validation. (RC)

  5. Human therapeutic cloning.

    PubMed

    Lanza, R P; Cibelli, J B; West, M D

    1999-09-01

    Somatic cell nuclear 'reprogramming' in livestock species is now routine in many laboratories. Here, Robert Lanza, Jose Cibelli and Michael West discuss how these techniques may soon be used to clone genetically matched cells and tissues for transplantation into patients suffering from a wide range of disorders that result from tissue loss or dysfunction.

  6. [Nuclear transfer and therapeutic cloning].

    PubMed

    Xu, Xiao-Ming; Lei, An-Min; Hua, Jin-Lian; Dou, Zhong-Ying

    2005-03-01

    Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.

  7. The First Human Cloned Embryo.

    ERIC Educational Resources Information Center

    Cibelli, Jose B.; Lanza, Robert P.; West, Michael D.; Ezzell, Carol

    2002-01-01

    Describes a process known as parthenogenesis which produces cloned, early-stage embryos and human embryos generated only from eggs. Speculates that this technology puts therapeutic cloning within reach. (DDR)

  8. Effects of pore-size and shape distributions on diffusion pore imaging by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Kuder, Tristan Anselm; Laun, Frederik Bernd

    2015-08-01

    In medical imaging and porous media research, NMR diffusion measurements are extensively used to investigate the structure of diffusion restrictions such as cell membranes. Recently, several methods have been proposed to unambiguously determine the shape of arbitrary closed pores or cells filled with an NMR-visible medium by diffusion experiments. The first approach uses a combination of a long and a short diffusion-weighting gradient pulse, while the other techniques employ short gradient pulses only. While the eventual aim of these methods is to determine pore-size and shape distributions, the focus has been so far on identical pores. Thus, the aim of this work is to investigate the ability of these different methods to resolve pore-size and orientation distributions. Simulations were performed comparing the various pore imaging techniques employing different distributions of pore size and orientation and varying timing parameters. The long-narrow gradient profile is most advantageous to investigate pore distributions, because average pore images can be directly obtained. The short-gradient methods suppress larger pores or induce a considerable blurring. Moreover, pore-shape-specific artifacts occur; for example, the central part of a distribution of cylinders may be largely underestimated. Depending on the actual pore distribution, short-gradient methods may nonetheless yield good approximations of the average pore shape. Furthermore, the application of short-gradient methods can be advantageous to differentiate whether pore-size distributions or intensity distributions, e.g., due to surface relaxation, are predominant.

  9. Sequential cloning of chromosomes

    SciTech Connect

    Lacks, S.A.

    1991-12-31

    A method for sequential cloning of chromosomal DNA and chromosomal DNA cloned by this method are disclosed. The method includes the selection of a target organism having a segment of chromosomal DNA to be sequentially cloned. A first DNA segment, having a first restriction enzyme site on either side. homologous to the chromosomal DNA to be sequentially cloned is isolated. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  10. Probabilistic Cloning and Quantum Computation

    NASA Astrophysics Data System (ADS)

    Gao, Ting; Yan, Feng-Li; Wang, Zhi-Xi

    2004-06-01

    We discuss the usefulness of quantum cloning and present examples of quantum computation tasks for which the cloning offers an advantage which cannot be matched by any approach that does not resort to quantum cloning. In these quantum computations, we need to distribute quantum information contained in the states about which we have some partial information. To perform quantum computations, we use a state-dependent probabilistic quantum cloning procedure to distribute quantum information in the middle of a quantum computation.

  11. Clone-preventive technique that features magnetic microfibers and cryptography

    NASA Astrophysics Data System (ADS)

    Matsumoto, Hiroyuki; Suzuki, Keiichi; Matsumoto, Tsutomu

    1998-04-01

    We have used the term 'clone' to refer to those things which are produced by methods such as counterfeiting, alteration, duplication or simulation. To satisfy the requirements of secure and low-cost techniques for preventing card fraud, we have recently developed a clone preventive system called 'FibeCrypt (Fiber Cryptosystem)' which utilizes physical characteristics. Each card has a canonical domain (i.e. a distinctive part), similar to fingerprints as the biometric measurement, made up of magnetic micro-fibers scattered randomly inside. We have applied cryptosystems to the system. FibeCrypt examines and authenticates the unique pattern of the canonical domain using pre-stored reference data and a digital signature. In our paper, the schemes and the features of this system are described in detail. The results of our examinations show the accuracy of authentication of the system. We conclude that this authentication technique which utilizes physical characteristics can be very effective for clone prevention in various fields.

  12. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore

    NASA Astrophysics Data System (ADS)

    Song, Langzhou; Hobaugh, Michael R.; Shustak, Christopher; Cheley, Stephen; Bayley, Hagan; Gouaux, J. Eric

    1996-12-01

    The structure of the Staphylococcus aureus α-hemolysin pore has been determined to 1.9 overset{circ}{mathrm A} resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 overset{circ}{mathrm A} in length, that runs along the sevenfold axis and ranges from 14 overset{circ}{mathrm A} to 46 overset{circ}{mathrm A} in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel β barrel, to which each protomer contributes two β strands, each 65 overset{circ}{mathrm A} long. The interior of the β barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 overset{circ}{mathrm A} wide. The structure proves the heptameric subunit stoichiometry of the α-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of β barrel pore-forming toxins.

  13. MCU encodes the pore conducting mitochondrial calcium currents.

    PubMed

    Chaudhuri, Dipayan; Sancak, Yasemin; Mootha, Vamsi K; Clapham, David E

    2013-06-04

    Mitochondrial calcium (Ca(2+)) import is a well-described phenomenon regulating cell survival and ATP production. Of multiple pathways allowing such entry, the mitochondrial Ca(2+) uniporter is a highly Ca(2+)-selective channel complex encoded by several recently-discovered genes. However, the identity of the pore-forming subunit remains to be established, since knockdown of all the candidate uniporter genes inhibit Ca(2+) uptake in imaging assays, and reconstitution experiments have been equivocal. To definitively identify the channel, we use whole-mitoplast voltage-clamping, the technique that originally established the uniporter as a Ca(2+) channel. We show that RNAi-mediated knockdown of the mitochondrial calcium uniporter (MCU) gene reduces mitochondrial Ca(2+) current (I MiCa ), whereas overexpression increases it. Additionally, a classic feature of I MiCa , its sensitivity to ruthenium red inhibition, can be abolished by a point mutation in the putative pore domain without altering current magnitude. These analyses establish that MCU encodes the pore-forming subunit of the uniporter channel. DOI:http://dx.doi.org/10.7554/eLife.00704.001.

  14. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    PubMed Central

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  15. Biogenesis of the pore architecture of a voltage-gated potassium channel.

    PubMed

    Gajewski, Christine; Dagcan, Alper; Roux, Benoit; Deutsch, Carol

    2011-02-22

    The pore domain of voltage-gated potassium (Kv) channels consists of transmembrane helices S5 and S6, the turret, the pore helix, the selectivity filter, and the loop preceding S6, with a tertiary reentrant structure between S5 and S6. Using biogenic intermediates, mass tagging (pegylation), and a molecular tape measure, we explored the possibility that the first stages of pore formation occur prior to oligomerization of the transmembrane core. Pegylation of introduced cysteines shows that the pore helix, but not the turret, forms a compact secondary structure in the terminal 20 Å of the ribosomal tunnel. We assessed the tertiary fold of the pore loop in monomeric constructs by determining the relative accessibilities of select cysteines using the kinetics of pegylation. Turret residues are accessible at the extracellular surface. In contrast, pore helix residues are less accessible. All-atom molecular dynamics simulations of a single Kv monomer in a solvated lipid membrane indicate that secondary and tertiary folds are stable over 650 ns. These results are consistent with acquisition of a tertiary reentrant pore architecture at the monomer stage of Kv biogenesis and begin to define a plausible sequence of folding events in the formation of Kv channels.

  16. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana.

    PubMed

    Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2016-03-10

    Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here we present the crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca(2+). Ca(2+) binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain, the conformational changes of which are coupled to the pair of inner helices from the second 6-TM domains. Luminal Ca(2+) or Ba(2+) can modulate voltage activation by stabilizing the second voltage-sensing domain in the resting state and shift voltage activation towards more positive potentials. Our Ba(2+)-bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363

  17. Cloning of Homo sapiens? No!

    PubMed

    McKinnell, Robert G

    2002-01-01

    Animal cloning by nuclear transplantation was first developed in the northern leopard frog, Rana pipiens. It was soon extended to other amphibian species and within time, to various mammalian species. The production of a cloned sheep (Dolly) from an adult nuclear donor reawakened interest in human cloning. Nuclear transfer for the production of animal clones has served experimental biology well. Nonetheless, the potential burden of developmental hazards, scientists and funds diverted from more needy causes, as well as the potential assault on the concept of family has led the author to oppose human cloning.

  18. Cloning of Homo sapiens? No!

    PubMed

    McKinnell, Robert G

    2002-01-01

    Animal cloning by nuclear transplantation was first developed in the northern leopard frog, Rana pipiens. It was soon extended to other amphibian species and within time, to various mammalian species. The production of a cloned sheep (Dolly) from an adult nuclear donor reawakened interest in human cloning. Nuclear transfer for the production of animal clones has served experimental biology well. Nonetheless, the potential burden of developmental hazards, scientists and funds diverted from more needy causes, as well as the potential assault on the concept of family has led the author to oppose human cloning. PMID:11841468

  19. [Media, cloning, and bioethics].

    PubMed

    Costa, S I; Diniz, D

    2000-01-01

    This article was based on an analysis of three hundred articles from mainstream Brazilian periodicals over a period of eighteen months, beginning with the announcement of the Dolly case in February 1997. There were two main objectives: to outline the moral constants in the press associated with the possibility of cloning human beings and to identify some of the moral assumptions concerning scientific research with non-human animals that were published carelessly by the media. The authors conclude that there was a haphazard spread of fear concerning the cloning of human beings rather than an ethical debate on the issue, and that there is a serious gap between bioethical reflections and the Brazilian media.

  20. Overlap extension PCR cloning.

    PubMed

    Bryksin, Anton; Matsumura, Ichiro

    2013-01-01

    Rising demand for recombinant proteins has motivated the development of efficient and reliable cloning methods. Here we show how a beginner can clone virtually any DNA insert into a plasmid of choice without the use of restriction endonucleases or T4 DNA ligase. Chimeric primers encoding plasmid sequence at the 5' ends and insert sequence at the 3' ends are designed and synthesized. Phusion(®) DNA polymerase is utilized to amplify the desired insert by PCR. The double-stranded product is subsequently employed as a pair of mega-primers in a PCR-like reaction with circular plasmids. The original plasmids are then destroyed in restriction digests with Dpn I. The product of the overlap extension PCR is used to transform competent Escherichia coli cells. Phusion(®) DNA polymerase is used for both the amplification and fusion reactions, so both steps can be monitored and optimized in the same way. PMID:23996437

  1. NMDA receptor structures reveal subunit arrangement and pore architecture

    PubMed Central

    Lee, Chia-Hsueh; Lü, Wei; Michel, Jennifer Carlisle; Goehring, April; Du, Juan; Song, Xianqiang; Gouaux, Eric

    2014-01-01

    Summary N-methyl-d-aspartate (NMDA) receptors are Hebbian-like coincidence detectors, requiring binding of glycine and glutamate in combination with the relief of voltage-dependent magnesium block to open an ion conductive pore across the membrane bilayer. Despite the importance of the NMDA receptor in the development and function of the brain, a molecular structure of an intact receptor has remained elusive. Here we present x-ray crystal structures of the GluN1/GluN2B NMDA receptor with the allosteric inhibitor, Ro25-6981, partial agonists and the ion channel blocker, MK-801. Receptor subunits are arranged in a 1-2-1-2 fashion, demonstrating extensive interactions between the amino terminal and ligand binding domains. The transmembrane domains harbor a closed-blocked ion channel, a pyramidal central vestibule lined by residues implicated in binding ion channel blockers and magnesium, and a ~2-fold symmetric arrangement of ion channel pore loops. These structures provide new insights into the architecture, allosteric coupling and ion channel function of NMDA receptors. PMID:25008524

  2. Probabilistic cloning of equidistant states

    SciTech Connect

    Jimenez, O.; Roa, Luis; Delgado, A.

    2010-08-15

    We study the probabilistic cloning of equidistant states. These states are such that the inner product between them is a complex constant or its conjugate. Thereby, it is possible to study their cloning in a simple way. In particular, we are interested in the behavior of the cloning probability as a function of the phase of the overlap among the involved states. We show that for certain families of equidistant states Duan and Guo's cloning machine leads to cloning probabilities lower than the optimal unambiguous discrimination probability of equidistant states. We propose an alternative cloning machine whose cloning probability is higher than or equal to the optimal unambiguous discrimination probability for any family of equidistant states. Both machines achieve the same probability for equidistant states whose inner product is a positive real number.

  3. Ethical issues in livestock cloning.

    PubMed

    Thompson, P B

    1999-01-01

    Although cloning may eventually become an important technology for livestock production, four ethical issues must be addressed before the practice becomes widespread. First, researchers must establish that the procedure is not detrimental to the health or well-being of affected animals. Second, animal research institutions should evaluate the net social benefits to livestock producers by weighing the benefits to producers against the opportunity cost of research capacity lost to biomedical projects. Third, scientists should consider the indirect effects of cloning research on the larger ethical issues surrounding human cloning. Finally, the market structure for products of cloned animals should protect individual choice, and should recognize that many individuals find the prospect of cloning (or consuming cloned animals) repugnant. Analysis of these four issues is complicated by spurious arguments alleging that cloning will have a negative impact on environment and genetic diversity.

  4. Ethical issues in livestock cloning.

    PubMed

    Thompson, P B

    1999-01-01

    Although cloning may eventually become an important technology for livestock production, four ethical issues must be addressed before the practice becomes widespread. First, researchers must establish that the procedure is not detrimental to the health or well-being of affected animals. Second, animal research institutions should evaluate the net social benefits to livestock producers by weighing the benefits to producers against the opportunity cost of research capacity lost to biomedical projects. Third, scientists should consider the indirect effects of cloning research on the larger ethical issues surrounding human cloning. Finally, the market structure for products of cloned animals should protect individual choice, and should recognize that many individuals find the prospect of cloning (or consuming cloned animals) repugnant. Analysis of these four issues is complicated by spurious arguments alleging that cloning will have a negative impact on environment and genetic diversity. PMID:15719505

  5. Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column

    NASA Astrophysics Data System (ADS)

    Scheibe, Timothy D.; Perkins, William A.; Richmond, Marshall C.; McKinley, Matthew I.; Romero-Gomez, Pedro D. J.; Oostrom, Mart; Wietsma, Thomas W.; Serkowski, John A.; Zachara, John M.

    2015-02-01

    Pore-scale models are useful for studying relationships between fundamental processes and phenomena at larger (i.e., Darcy) scales. However, the size of domains that can be simulated with explicit pore-scale resolution is limited by computational and observational constraints. Direct numerical simulation of pore-scale flow and transport is typically performed on millimeter-scale volumes at which X-ray computed tomography (XCT), often used to characterize pore geometry, can achieve micrometer resolution. In contrast, laboratory experiments that measure continuum properties are typically performed on decimeter-scale columns. At this scale, XCT resolution is coarse (tens to hundreds of micrometers) and prohibits characterization of small pores and grains. We performed simulations of pore-scale processes over a decimeter-scale volume of natural porous media with a wide range of grain sizes, and compared to results of column experiments using the same sample. Simulations were conducted using high-performance codes executed on a supercomputer. Two approaches to XCT image segmentation were evaluated, a binary (pores and solids) segmentation and a ternary segmentation that resolved a third category (porous solids with pores smaller than the imaged resolution). We used a multiscale Stokes-Darcy simulation method to simulate the combination of Stokes flow in large open pores and Darcy-like flow in porous solid regions. Flow and transport simulations based on the binary segmentation were inconsistent with experimental observations because of overestimation of large connected pores. Simulations based on the ternary segmentation provided results that were consistent with experimental observations, demonstrating our ability to successfully model pore-scale flow over a column-scale domain.

  6. Sequential cloning of chromosomes

    DOEpatents

    Lacks, Sanford A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism's chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes.

  7. Sequential cloning of chromosomes

    DOEpatents

    Lacks, S.A.

    1995-07-18

    A method for sequential cloning of chromosomal DNA of a target organism is disclosed. A first DNA segment homologous to the chromosomal DNA to be sequentially cloned is isolated. The first segment has a first restriction enzyme site on either side. A first vector product is formed by ligating the homologous segment into a suitably designed vector. The first vector product is circularly integrated into the target organism`s chromosomal DNA. The resulting integrated chromosomal DNA segment includes the homologous DNA segment at either end of the integrated vector segment. The integrated chromosomal DNA is cleaved with a second restriction enzyme and ligated to form a vector-containing plasmid, which is replicated in a host organism. The replicated plasmid is then cleaved with the first restriction enzyme. Next, a DNA segment containing the vector and a segment of DNA homologous to a distal portion of the previously isolated DNA segment is isolated. This segment is then ligated to form a plasmid which is replicated within a suitable host. This plasmid is then circularly integrated into the target chromosomal DNA. The chromosomal DNA containing the circularly integrated vector is treated with a third, retrorestriction (class IIS) enzyme. The cleaved DNA is ligated to give a plasmid that is used to transform a host permissive for replication of its vector. The sequential cloning process continues by repeated cycles of circular integration and excision. The excision is carried out alternately with the second and third enzymes. 9 figs.

  8. Cloning-free CRISPR

    PubMed Central

    Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I.

    2015-01-01

    Summary We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each target locus. We introduce a self-cleaving palindromic sgRNA plasmid and a short double-stranded DNA sequence encoding the desired locus-specific sgRNA into target cells, allowing them to produce a locus-specific sgRNA plasmid through homologous recombination. scCRISPR enables efficient generation of gene knockouts (∼88% mutation rate) at approximately one-sixth the cost of plasmid-based sgRNA construction with only 2 hr of preparation for each targeted site. Additionally, we demonstrate efficient site-specific knockin of GFP transgenes without any plasmid cloning or genome-integrated selection cassette in mouse and human embryonic stem cells (2%–4% knockin rate) through PCR-based addition of short homology arms. scCRISPR substantially lowers the bar on mouse and human transgenesis. PMID:26527385

  9. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1996-03-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 15 figs.

  10. Nucleic acids encoding a cellulose binding domain

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  11. Molecular cloning and stress-dependent regulation of potassium channel gene in Chinese cabbage (Brassica rapa ssp. Pekinensis).

    PubMed

    Zhang, Yidong; Wang, Zeyun; Zhang, Lida; Cao, Youfang; Huang, Danfeng; Tang, Kexuan

    2006-09-01

    Potassium channels are important for many physiological functions in plants, one of which is to regulate plant adaption to stress conditions. In this study, KCT2, the gene encoding a membrane-bound protein potassium channel (GenBank accession number: ), was isolated from Chinese cabbage (Brassica rapa ssp. Pekinensis) by RACE-PCR technique. Bioinformatics methods were performed for the gene structure and molecular similarity analysis. The KCT2 expression patterns under various stress conditions were studied by semi-quantitative RT-PCR. DNA gel blot was used to analyze genomic organization. The putative KCT2 was found to contain five membrane-spanning segments, a pore-forming domain (P-domain) between the last two transmembrane spans, a TxxTxGYGD motif in the P-domain and a putative cyclic nucleotide-binding-like domain within a long C-terminal region. KCT2 is closest to KAT2 in Arabidopsis. KCT2 could be a one-copy gene with different isoforms or belong to a small gene family with four or five members. KCT2 was expressed more strongly in leaves than in shoots and roots. KCT2 transcription products were up-regulated by a 4-h-incubation in abscisic acid (ABA) and various stress treatment including cold stress (4 degrees C) for 24 h, drought stress for 1h, and salt stress for 12 h. KCT2 transcription was not affected by anoxia stress for 8h and was down-regulated with cold stress for 48 h. KCT2 was cloned for the first time from the genus Brassica. Expression analysis indicated that in the early stage of plant adaption to stress conditions KCT2 is up-regulated, which results in a stimulation of potassium transport.

  12. Characteristics of pore migration controlled by diffusion through the pore-filling fluid

    NASA Astrophysics Data System (ADS)

    Petrishcheva, E.; Renner, J.

    2010-10-01

    We analyze drag and drop of pores filled with a fluid phase, e.g., water or melt, in which the constituting elements of the solid matrix are dissolved. Assuming that the diffusion through the fluid-phase dominates bulk transport kinetics, we address the problem of pore motion and calculate the pore mobility and the critical velocity of elongated and lenticular pores on a grain boundary for arbitrary dihedral angle. The found variations in critical velocity and mobility with dihedral angle are modest for given volume of pores with the two considered geometries. For given pore size, however, the dependence on dihedral angle accounts for several orders of magnitude in pore mobility and critical velocity.

  13. Unlocking the Physiochemical Controls on Organic Carbon Dynamics from the Soil Pore- to Core-Scale

    NASA Astrophysics Data System (ADS)

    Smith, A. P.; Tfaily, M. M.; Bond-Lamberty, B. P.; Todd-Brown, K. E.; Bailey, V. L.

    2015-12-01

    The physical organization of soil includes pore networks of varying size and connectivity. These networks control microbial access to soil organic carbon (C) by spatially separating microorganisms and C by both distance and size exclusion. The extent to which this spatially isolated C is vulnerable to microbial transformation under hydrologically dynamic conditions is unknown, and limits our ability to predict the source and sink capacity of soils. We investigated the effects of shifting hydrologic connectivity and soil structure on greenhouse gas C emissions from surface soils collected from the Disney Wilderness Preserve (Florida, USA). We subjected intact soil cores and re-packed homogenized soil cores to simulated groundwater rise or precipitation, monitoring their CO2 and CH4 emissions over 24 hours. Soil pore water was then extracted from each core using different suctions to sample water retained by pore throats of different sizes and then characterized by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Greater respiration rates were observed from homogenized cores compared to intact cores, and from soils wet from below, in which the wetting front is driven by capillary forces, filling fine pores first. This suggests that C located in fine pores may turn over via diffusion processes that lead to the colocation of this C with other resources and microorganisms. Both the complexity and concentration of soluble-C increased with decreasing pore size domains. Pore water extracted from homogenized cores had greater C concentrations than from intact cores, with the greatest concentrations in pore waters sampled from very fine pores, highlighting the importance of soil structure in physically protecting C. These results suggest that the spatial separation of decomposers from C is a key mechanism stabilizing C in these soils. Further research is ongoing to accurately represent this protection mechanism, and the conditions under which it breaks

  14. Fusion pore regulation of transmitter release.

    PubMed

    Fernández-Peruchena, Carlos; Navas, Sergio; Montes, María A; Alvarez de Toledo, Guillermo

    2005-09-01

    During the last decade a wealth of new information about the properties of the exocytotic fusion pore is changing our current view of exocytosis. The exocytotic fusion pore, a necessary stage before the full merging of the vesicle membrane with the plasma membrane, is becoming a key cellular structure that might critically control the amount of neurotransmitter released into the synaptic cleft and that can be subjected to control by second messengers and phosphorylated proteins. Fusion pores form, expand to fully merge membranes, or can close leaving an intact and identical synaptic vesicle in place for a new round of exocytosis. Transient formation of fusion pores is the mechanistic representation of the "kiss-and-run" hypothesis of transmitter release and offers new alternatives for synaptic vesicle recycling besides to the classical mechanism mediated by clathrin coat endocytosis. For vesicle recycling transient fusion pores ensures a fast mechanism for maintaining an active pool of synaptic vesicles. The size reached by transient fusion pores and the time spent on the open state can determine the release of subquantal synaptic transmission, which could be a mechanism of synaptic potentiation. In this review we will described the electrophysiological and fluorescence methods that contribute to further explore the biophysical properties of the exocytotic fusion pore and the relevant experiments obtained by these methods.

  15. To clone or not to clone--a Jewish perspective.

    PubMed Central

    Lipschutz, J H

    1999-01-01

    Many new reproductive methods such as artificial insemination, in vitro fertilisation, freezing of human embryos, and surrogate motherhood were at first widely condemned but are now seen in Western society as not just ethically and morally acceptable, but beneficial in that they allow otherwise infertile couples to have children. The idea of human cloning was also quickly condemned but debate is now emerging. This article examines cloning from a Jewish perspective and finds evidence to support the view that there is nothing inherently wrong with the idea of human cloning. A hypothesis is also advanced suggesting that even if a body was cloned, the brain, which is the essence of humanity, would remain unique. This author suggests that the debate should be changed from "Is cloning wrong?" to "When is cloning wrong?". PMID:10226913

  16. Ethical issues in animal cloning.

    PubMed

    Fiester, Autumn

    2005-01-01

    The issue of human reproductive cloning has recently received a great deal attention in public discourse. Bioethicists, policy makers, and the media have been quick to identify the key ethical issues involved in human reproductive cloning and to argue, almost unanimously, for an international ban on such attempts. Meanwhile, scientists have proceeded with extensive research agendas in the cloning of animals. Despite this research, there has been little public discussion of the ethical issues raised by animal cloning projects. Polling data show that the public is decidedly against the cloning of animals. To understand the public's reaction and fill the void of reasoned debate about the issue, we need to review the possible objections to animal cloning and assess the merits of the anti-animal cloning stance. Some objections to animal cloning (e.g., the impact of cloning on the population of unwanted animals) can be easily addressed, while others (e.g., the health of cloned animals) require more serious attention by the public and policy makers.

  17. High temperature ion channels and pores

    NASA Technical Reports Server (NTRS)

    Kang, Xiaofeng (Inventor); Gu, Li Qun (Inventor); Cheley, Stephen (Inventor); Bayley, Hagan (Inventor)

    2011-01-01

    The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.

  18. Control of pore size in epoxy systems.

    SciTech Connect

    Sawyer, Patricia Sue; Lenhart, Joseph Ludlow; Lee, Elizabeth; Kallam, Alekhya; Majumdar, Partha; Dirk, Shawn M.; Gubbins, Nathan; Chisholm, Bret J.; Celina, Mathias Christopher; Bahr, James; Klein, Robert J.

    2009-01-01

    Both conventional and combinatorial approaches were used to study the pore formation process in epoxy based polymer systems. Sandia National Laboratories conducted the initial work and collaborated with North Dakota State University (NDSU) using a combinatorial research approach to produce a library of novel monomers and crosslinkers capable of forming porous polymers. The library was screened to determine the physical factors that control porosity, such as porogen loading, polymer-porogen interactions, and polymer crosslink density. We have identified the physical and chemical factors that control the average porosity, pore size, and pore size distribution within epoxy based systems.

  19. Enlarged facial pores: an update on treatments.

    PubMed

    Dong, Joanna; Lanoue, Julien; Goldenberg, Gary

    2016-07-01

    Enlarged facial pores remain a common dermatologic and cosmetic concern from acne and rosacea, among other conditions, that is difficult to treat due to the multifactorial nature of their pathogenesis and negative impact on patients' quality of life. Enlarged facial pores are primarily treated through addressing associative factors, such as increased sebum production and cutaneous aging. We review the current treatment modalities for enlarged or dense facial pores, including topical retinoids, chemical peels, oral antiandrogens, and lasers and devices, with a focus on newer therapies. PMID:27529707

  20. Molecular cloning of chicken aggrecan. Structural analyses.

    PubMed Central

    Chandrasekaran, L; Tanzer, M L

    1992-01-01

    The large, aggregating chondroitin sulphate proteoglycan of cartilage, aggrecan, has served as a generic model of proteoglycan structure. Molecular cloning of aggrecans has further defined their amino acid sequences and domain structures. In this study, we have obtained the complete coding sequence of chicken sternal cartilage aggrecan by a combination of cDNA and genomic DNA sequencing. The composite sequence is 6117 bp in length, encoding 1951 amino acids. Comparison of chicken aggrecan protein primary structure with rat, human and bovine aggrecans has disclosed both similarities and differences. The domains which are most highly conserved at 70-80% identity are the N-terminal domains G1 and G2 and the C-terminal domain G3. The chondroitin sulphate domain of chicken aggrecan is smaller than that of rat and human aggrecans and has very distinctive repeat sequences. It has two separate sections, one comprising 12 consecutive Ser-Gly-Glu repeats of 20 amino acids each, adjacent to the other which has 23 discontinuous Ser-Gly-Glu repeats of 10 amino acids each; this latter region, N-terminal to the former one, appears to be unique to chicken aggrecan. The two regions contain a total of 94 potential chondroitin sulphate attachment sites. Genomic comparison shows that, although chicken exons 11-14 are identical in size to the rat and human exons, chicken exon 10 is the smallest of the three species. This is also reflected in the size of its chondroitin sulphate coding region and in the total number of Ser-Gly pairs. The putative keratan sulphate domain shows 31-45% identity with the other species and lacks the repetitive sequences seen in the others. In summary, while the linear arrangement of specific domains of chicken aggrecan is identical to that in the aggrecans of other species, and while there is considerable identity of three separate domains, chicken aggrecan demonstrates unique features, notably in its chondroitin sulphate domain and its keratan sulphate

  1. Structure of Voltage-gated Two-pore Channel TPC1 from Arabidopsis thaliana

    PubMed Central

    Guo, Jiangtao; Zeng, Weizhong; Chen, Qingfeng; Lee, Changkeun; Chen, Liping; Yang, Yi; Cang, Chunlei; Ren, Dejian; Jiang, Youxing

    2015-01-01

    Two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in both animals and plants as organellar cation channels. Here, we present the first crystal structure of a vacuolar two-pore channel from Arabidopsis thaliana, AtTPC1, which functions as a homodimer. AtTPC1 activation requires both voltage and cytosolic Ca2+. Ca2+ binding to the cytosolic EF-hand domain triggers conformational changes coupled to the pair of pore-lining inner helices (IS6 helices) from the first 6-TM domains, whereas membrane potential only activates the second voltage-sensing domain (VSD2) whose conformational changes are coupled to the pair of inner helices (IIS6 helices) from the second 6-TM domains. Luminal Ca2+ or Ba2+ can modulate voltage activation by stabilizing VSD2 in the resting state and shifts voltage activation towards more positive potentials. Our Ba2+ bound AtTPC1 structure reveals a voltage sensor in the resting state, providing hitherto unseen structural insight into the general voltage-gating mechanism among voltage-gated channels. PMID:26689363

  2. To clone or not to clone--whither the law?

    PubMed

    Lupton, M L

    1999-01-01

    The cloning of Dolly the lamb from adult cells by scientists at the Roslin Laboratories near Edinburgh in February 1997 has startled the world because it now opens the way to clone adult human beings. The reaction to Ian Wilmut's breakthrough has been instant and largely negative. Bills were rushed into both the US Senate and House of Representatives aimed at banning the cloning of human beings. Human cloning is premature at this stage, but there are many positive spin-offs of cloning in the field of genetic engineering, such as the production of human proteins such as blood clotting factors which aid in healing wounds. Progress by means of cloning can also be made into devising a cure for Parkinson's Disease amongst others. No lesser ethicist than John C. Fletcher of the University of Virginia foresees circumstances in which human cloning is acceptable e.g. to enable a couple to replace a dying child, to enable a couple, one of whom is infertile, to clone a child from either partner. Extensive regulation of cloning by the law is inevitable but, in doing so, the legislation should be careful not to outlaw research in this area which could be beneficial to mankind. PMID:10436743

  3. To clone or not to clone--whither the law?

    PubMed

    Lupton, M L

    1999-01-01

    The cloning of Dolly the lamb from adult cells by scientists at the Roslin Laboratories near Edinburgh in February 1997 has startled the world because it now opens the way to clone adult human beings. The reaction to Ian Wilmut's breakthrough has been instant and largely negative. Bills were rushed into both the US Senate and House of Representatives aimed at banning the cloning of human beings. Human cloning is premature at this stage, but there are many positive spin-offs of cloning in the field of genetic engineering, such as the production of human proteins such as blood clotting factors which aid in healing wounds. Progress by means of cloning can also be made into devising a cure for Parkinson's Disease amongst others. No lesser ethicist than John C. Fletcher of the University of Virginia foresees circumstances in which human cloning is acceptable e.g. to enable a couple to replace a dying child, to enable a couple, one of whom is infertile, to clone a child from either partner. Extensive regulation of cloning by the law is inevitable but, in doing so, the legislation should be careful not to outlaw research in this area which could be beneficial to mankind.

  4. A Novel Saccharomyces cerevisiae FG Nucleoporin Mutant Collection for Use in Nuclear Pore Complex Functional Experiments.

    PubMed

    Adams, Rebecca L; Terry, Laura J; Wente, Susan R

    2015-11-03

    FG nucleoporins (Nups) are the class of proteins that both generate the permeability barrier and mediate selective transport through the nuclear pore complex (NPC). The FG Nup family has 11 members in Saccharomyces cerevisiae, and the study of mutants lacking different FG domains has been instrumental in testing transport models. To continue analyzing the distinct functional roles of FG Nups in vivo, additional robust genetic tools are required. Here, we describe a novel collection of S. cerevisiae mutant strains in which the FG domains of different groups of Nups are absent (Δ) in the greatest number documented to date. Using this plasmid-based ΔFG strategy, we find that a GLFG domain-only pore is sufficient for viability. The resulting extensive plasmid and strain resources are available to the scientific community for future in-depth in vivo studies of NPC transport.

  5. Lessons learned from cloning dogs.

    PubMed

    Kim, M J; Oh, H J; Kim, G A; Park, J E; Park, E J; Jang, G; Ra, J C; Kang, S K; Lee, B C

    2012-08-01

    The aim of this article is to review dog cloning research and to suggest its applications based on a discussion about the normality of cloned dogs. Somatic cell nuclear transfer was successfully used for production of viable cloned puppies despite limited understanding of in vitro dog embryo production. Cloned dogs have similar growth characteristics to those born from natural fertilization, with no evidence of serious adverse effects. The offspring of cloned dogs also have similar growth performance and health to those of naturally bred puppies. Therefore, cloning in domestic dogs can be applied as an assisted reproductive technique to conserve endangered species, to treat sterile canids or aged dogs, to improve reproductive performance of valuable individuals and to generate disease model animals.

  6. Therapeutic cloning and reproductive liberty.

    PubMed

    Sparrow, Robert

    2009-04-01

    Concern for "reproductive liberty" suggests that decisions about embryos should normally be made by the persons who would be the genetic parents of the child that would be brought into existence if the embryo were brought to term. Therapeutic cloning would involve creating and destroying an embryo, which, if brought to term, would be the offspring of the genetic parents of the person undergoing therapy. I argue that central arguments in debates about parenthood and genetics therefore suggest that therapeutic cloning would be prima facie unethical unless it occurred with the consent of the parents of the person being cloned. Alternatively, if therapeutic cloning is thought to be legitimate, this undermines the case for some uses of reproductive cloning by implying that the genetic relation it establishes between clones and DNA donors does not carry the same moral weight as it does in cases of normal reproduction.

  7. Block copolymer structures in nano-pores

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  8. Uncovering Nuclear Pore Complexity with Innovation

    PubMed Central

    Adams, Rebecca L.; Wente, Susan R.

    2013-01-01

    Advances in imaging and reductionist approaches provide a high-resolution understanding of nuclear pore complex structure and transport, revealing unexpected mechanistic complexities based on nucleoporin functions and specialized import and export pathways. PMID:23498931

  9. Impact of NAPL architecture on interphase mass transfer: A pore network study

    NASA Astrophysics Data System (ADS)

    Agaoglu, Berken; Scheytt, Traugott; Copty, Nadim K.

    2016-09-01

    Interphase mass transfer in porous media is commonly modeled using Sherwood number expressions that are developed in terms of fluid and porous medium properties averaged over some representative elementary volume (REV). In this work the influence of sub-grid scale properties on interphase mass transfer was investigated using a two-dimensional pore network model. The focus was on assessing the impact of (i) NAPL saturation, (ii) interfacial area (iii) NAPL spatial distribution at the pore scale, (iv) grain size heterogeneity, (v) REV or domain size and (vi) pore scale heterogeneity of the porous media on interphase mass transfer. Variability of both the mass transfer coefficient that explicitly accounts for the interfacial area and the mass transfer coefficient that lumps the interfacial area was examined. It was shown that pore scale NAPL distribution and its orientation relative to the flow direction have significant impact on flow bypassing and the interphase mass transfer coefficient. This results in a complex non-linear relationship between interfacial area and the REV-based interphase mass transfer rate. Hence, explicitly accounting for the interfacial area does not eliminate the uncertainty of the mass transfer coefficient. It was also shown that, even for explicitly defined flow patterns, changing the domain size over which the mass transfer process is defined influences the extent of NAPL bypassing and dilution and, consequently, the interphase mass transfer. It was also demonstrated that the spatial variability of pore scale parameters such as pore throat diameters may result in different rates of interphase mass transfer even for the same pore size distribution index.

  10. Pore-Scale and Multiscale Numerical Simulation of Flow and Transport in a Laboratory-Scale Column

    SciTech Connect

    Scheibe, Timothy D.; Perkins, William A.; Richmond, Marshall C.; McKinley, Matthey I.; Romero Gomez, Pedro DJ; Oostrom, Martinus; Wietsma, Thomas W.; Serkowski, John A.; Zachara, John M.

    2015-02-01

    Pore-scale models are useful for studying relationships between fundamental processes and phenomena at larger (i.e., Darcy) scales. However, the size of domains that can be simulated with explicit pore-scale resolution is limited by computational and observational constraints. Direct numerical simulation of pore-scale flow and transport is typically performed on millimeter-scale volumes at which X-ray computed tomography (XCT), often used to characterize pore geometry, can achieve micrometer resolution. In contrast, the scale at which a continuum approximation of a porous medium is valid is usually larger, on the order of centimeters to decimeters. Furthermore, laboratory experiments that measure continuum properties are typically performed on decimeter-scale columns. At this scale, XCT resolution is coarse (tens to hundreds of micrometers) and prohibits characterization of small pores and grains. We performed simulations of pore-scale processes over a decimeter-scale volume of natural porous media with a wide range of grain sizes, and compared to results of column experiments using the same sample. Simulations were conducted using high-performance codes executed on a supercomputer. Two approaches to XCT image segmentation were evaluated, a binary (pores and solids) segmentation and a ternary segmentation that resolved a third category (porous solids with pores smaller than the imaged resolution). We used a mixed Stokes-Darcy simulation method to simulate the combination of Stokes flow in large open pores and Darcy-like flow in porous solid regions. Simulations based on the ternary segmentation provided results that were consistent with experimental observations, demonstrating our ability to successfully model pore-scale flow over a column-scale domain.

  11. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement.

    PubMed

    Morrill, Gene A; Kostellow, Adele B

    2016-01-01

    Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb); neuroglobin (Ngb); myoglobin (Mb); hemoglobin (Hb) subunits Hba(α); and Hbb(β)] contain either a transmembrane (TM) helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol- binding (CRAC/CARC) domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba) and pore-lining region (Hbb). The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues, and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, "band 3," which contains a large internal cavity and 12 TM helices (5 being pore-lining regions). The Hba TM helix may be the erythrocyte membrane "band 3" attachment site. "Band 3" contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO) movement within the large internal cavities and channels of the

  12. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement

    PubMed Central

    Morrill, Gene A.; Kostellow, Adele B.

    2016-01-01

    Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb); neuroglobin (Ngb); myoglobin (Mb); hemoglobin (Hb) subunits Hba(α); and Hbb(β)] contain either a transmembrane (TM) helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol- binding (CRAC/CARC) domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba) and pore-lining region (Hbb). The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues, and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, “band 3,” which contains a large internal cavity and 12 TM helices (5 being pore-lining regions). The Hba TM helix may be the erythrocyte membrane “band 3” attachment site. “Band 3” contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO) movement within the large internal cavities and

  13. Molecular Properties of Globin Channels and Pores: Role of Cholesterol in Ligand Binding and Movement

    PubMed Central

    Morrill, Gene A.; Kostellow, Adele B.

    2016-01-01

    Globins contain one or more cavities that control or affect such functions as ligand movement and ligand binding. Here we report that the extended globin family [cytoglobin (Cygb); neuroglobin (Ngb); myoglobin (Mb); hemoglobin (Hb) subunits Hba(α); and Hbb(β)] contain either a transmembrane (TM) helix or pore-lining region as well as internal cavities. Protein motif/domain analyses indicate that Ngb and Hbb each contain 5 cholesterol- binding (CRAC/CARC) domains and 1 caveolin binding motif, whereas the Cygb dimer has 6 cholesterol-binding domains but lacks caveolin-binding motifs. Mb and Hba each exhibit 2 cholesterol-binding domains and also lack caveolin-binding motifs. The Hb αβ-tetramer contains 14 cholesterol-binding domains. Computer algorithms indicate that Cygb and Ngb cavities display multiple partitions and C-terminal pore-lining regions, whereas Mb has three major cavities plus a C-terminal pore-lining region. The Hb tetramer exhibits a large internal cavity but the subunits differ in that they contain a C-terminal TM helix (Hba) and pore-lining region (Hbb). The cavities include 43 of 190 Cygb residues, 38 of 151 of Ngb residues, 55 of 154 Mb residues, and 137 of 688 residues in the Hb tetramer. Each cavity complex includes 6 to 8 residues of the TM helix or pore-lining region and CRAC/CARC domains exist within all cavities. Erythrocyte Hb αβ-tetramers are largely cytosolic but also bind to a membrane anion exchange protein, “band 3,” which contains a large internal cavity and 12 TM helices (5 being pore-lining regions). The Hba TM helix may be the erythrocyte membrane “band 3” attachment site. “Band 3” contributes 4 caveolin binding motifs and 10 CRAC/CARC domains. Cholesterol binding may create lipid-disordered phases that alter globin cavities and facilitate ligand movement, permitting ion channel formation and conformational changes that orchestrate anion and ligand (O2, CO2, NO) movement within the large internal cavities and

  14. Cloning to reproduce desired genotypes.

    PubMed

    Westhusin, M E; Long, C R; Shin, T; Hill, J R; Looney, C R; Pryor, J H; Piedrahita, J A

    2001-01-01

    Cloned sheep, cattle, goats, pigs and mice have now been produced using somatic cells for nuclear transplantation. Animal cloning is still very inefficient with on average less than 10% of the cloned embryos transferred resulting in a live offspring. However successful cloning of a variety of different species and by a number of different laboratory groups has generated tremendous interest in reproducing desired genotypes. Some of these specific genotypes represent animal cell lines that have been genetically modified. In other cases there is a significant demand for cloning animals characterized by their inherent genetic value, for example prize livestock, household pets and rare or endangered species. A number of different variables may influence the ability to reproduce a specific genotype by cloning. These include species, source of recipient ova, cell type of nuclei donor, treatment of donor cells prior to nuclear transfer, and the techniques employed for nuclear transfer. At present, there is no solid evidence that suggests cloning will be limited to only a few specific animals, and in fact, most data collected to date suggests cloning will be applicable to a wide variety of different animals. The ability to reproduce any desired genotype by cloning will ultimately depend on the amount of time and resources invested in research.

  15. Human cloning and child welfare.

    PubMed Central

    Burley, J; Harris, J

    1999-01-01

    In this paper we discuss an objection to human cloning which appeals to the welfare of the child. This objection varies according to the sort of harm it is expected the clone will suffer. The three formulations of it that we will consider are: 1. Clones will be harmed by the fearful or prejudicial attitudes people may have about or towards them (H1); 2. Clones will be harmed by the demands and expectations of parents or genotype donors (H2); 3. Clones will be harmed by their own awareness of their origins, for example the knowledge that the genetic donor is a stranger (H3). We will show why these three versions of the child welfare objection do not necessarily supply compelling reasons to ban human reproductive cloning. The claim that we will develop and defend in the course of our discussion is that even if it is the case that a cloned child will suffer harms of the type H1-H3, it is none the less permissible to conceive by cloning so long as these cloning-induced welfare deficits are not such as to blight the existence of the resultant child, whoever this may be. PMID:10226914

  16. Therapeutic cloning: The ethical limits

    SciTech Connect

    Whittaker, Peter A. . E-mail: p.whittaker@lancaster.ac.uk

    2005-09-01

    A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparing immunocompatible pluripotent stem cells are indicated.

  17. Colloid dispersion on the pore scale.

    PubMed

    Baumann, Thomas; Toops, Laura; Niessner, Reinhard

    2010-02-01

    Dispersion describes the spreading of a tracer or contaminant in an aquifer. Detailed knowledge of dispersion is the key to successful risk assessment in case of groundwater pollution or groundwater protection. The dispersion of colloids on the pore scale is controlled by flow velocity, ionic strength, colloid size, colloid concentration, and colloid-matrix interactions. The objective of this study was to provide quantitative data and to assess the scale dependency of colloid dispersion on the pore scale. The positions of carboxylated polystyrene microspheres (1 microm, 0.5 microm) were recorded during transport experiments in silicon micromodels with three pore topologies. The positions were combined into particle trajectories revealing the flow path of individual colloids. More than thousand trajectories were evaluated for each experiment to obtain the dispersivity of the colloids for flow distances between 10 and 1000 microm. All experiments were run at high Peclet numbers. The pore scale dispersivity was on the order of 8-30% of the flow distance with pure water, dependent on the heterogeneity of the pore topology. The dispersivity was positively correlated with the ionic strength and inversely correlated with the colloid size and the flow velocity. A coating of the micromodel surface with humic acid also increased dispersivity. The quantitative data set presented here supports the theoretical framework for colloid transport and allows to parametrize colloid transport on the pore scale.

  18. Colloid dispersion on the pore scale.

    PubMed

    Baumann, Thomas; Toops, Laura; Niessner, Reinhard

    2010-02-01

    Dispersion describes the spreading of a tracer or contaminant in an aquifer. Detailed knowledge of dispersion is the key to successful risk assessment in case of groundwater pollution or groundwater protection. The dispersion of colloids on the pore scale is controlled by flow velocity, ionic strength, colloid size, colloid concentration, and colloid-matrix interactions. The objective of this study was to provide quantitative data and to assess the scale dependency of colloid dispersion on the pore scale. The positions of carboxylated polystyrene microspheres (1 microm, 0.5 microm) were recorded during transport experiments in silicon micromodels with three pore topologies. The positions were combined into particle trajectories revealing the flow path of individual colloids. More than thousand trajectories were evaluated for each experiment to obtain the dispersivity of the colloids for flow distances between 10 and 1000 microm. All experiments were run at high Peclet numbers. The pore scale dispersivity was on the order of 8-30% of the flow distance with pure water, dependent on the heterogeneity of the pore topology. The dispersivity was positively correlated with the ionic strength and inversely correlated with the colloid size and the flow velocity. A coating of the micromodel surface with humic acid also increased dispersivity. The quantitative data set presented here supports the theoretical framework for colloid transport and allows to parametrize colloid transport on the pore scale. PMID:20042215

  19. Visualization of enzyme activities inside earthworm pores

    NASA Astrophysics Data System (ADS)

    Hoang, Duyen; Razavi, Bahar S.

    2015-04-01

    In extremely dynamic microhabitats as bio-pores made by earthworm, the in situ enzyme activities are assumed as a footprint of complex biotic interactions. Our study focused on the effect of earthworm on the enzyme activities inside bio-pores and visualizing the differences between bio-pores and earthworm-free soil by zymography technique (Spohn and Kuzyakov, 2013). For the first time, we aimed at quantitative imaging of enzyme activities in bio-pores. Lumbricus terrestris L. was placed into transparent box (15×20×15cm). After two weeks when bio-pore systems were formed by earthworms, we visualized in situ enzyme activities of five hydrolytic enzymes (β-glucosidase, cellobiohydrolase, chitinase, xylanase, leucine-aminopeptidase, and phosphatase. Zymography showed higher activity of β-glucosidase, chitinase, xylanase and phosphatase in biopores comparing to bulk soil. However, the differences in activity of cellobiohydrolase and leucine aminopeptidase between bio-pore and bulk soil were less pronounced. This demonstrated an applicability of zymography approach to monitor and to distinguish the in situ activity of hydrolytic enzymes in soil biopores.

  20. Self-Cloning CRISPR.

    PubMed

    Arbab, Mandana; Sherwood, Richard I

    2016-01-01

    CRISPR/Cas9-gene editing has emerged as a revolutionary technology to easily modify specific genomic loci by designing complementary sgRNA sequences and introducing these into cells along with Cas9. Self-cloning CRISPR/Cas9 (scCRISPR) uses a self-cleaving palindromic sgRNA plasmid (sgPal) that recombines with short PCR-amplified site-specific sgRNA sequences within the target cell by homologous recombination to circumvent the process of sgRNA plasmid construction. Through this mechanism, scCRISPR enables gene editing within 2 hr once sgRNA oligos are available, with high efficiency equivalent to conventional sgRNA targeting: >90% gene knockout in both mouse and human embryonic stem cells and cancer cell lines. Furthermore, using PCR-based addition of short homology arms, we achieve efficient site-specific knock-in of transgenes such as GFP without traditional plasmid cloning or genome-integrated selection cassette (2% to 4% knock-in rate). The methods in this paper describe the most rapid and efficient means of CRISPR gene editing. © 2016 by John Wiley & Sons, Inc. PMID:27532819

  1. Self-Cloning CRISPR.

    PubMed

    Arbab, Mandana; Sherwood, Richard I

    2016-01-01

    CRISPR/Cas9-gene editing has emerged as a revolutionary technology to easily modify specific genomic loci by designing complementary sgRNA sequences and introducing these into cells along with Cas9. Self-cloning CRISPR/Cas9 (scCRISPR) uses a self-cleaving palindromic sgRNA plasmid (sgPal) that recombines with short PCR-amplified site-specific sgRNA sequences within the target cell by homologous recombination to circumvent the process of sgRNA plasmid construction. Through this mechanism, scCRISPR enables gene editing within 2 hr once sgRNA oligos are available, with high efficiency equivalent to conventional sgRNA targeting: >90% gene knockout in both mouse and human embryonic stem cells and cancer cell lines. Furthermore, using PCR-based addition of short homology arms, we achieve efficient site-specific knock-in of transgenes such as GFP without traditional plasmid cloning or genome-integrated selection cassette (2% to 4% knock-in rate). The methods in this paper describe the most rapid and efficient means of CRISPR gene editing. © 2016 by John Wiley & Sons, Inc.

  2. PCR Cloning of Partial "nbs" Sequences from Grape ("Vitis aestivalis" Michx)

    ERIC Educational Resources Information Center

    Chang, Ming-Mei; DiGennaro, Peter; Macula, Anthony

    2009-01-01

    Plants defend themselves against pathogens via the expressions of disease resistance (R) genes. Many plant R gene products contain the characteristic nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. There are highly conserved motifs within the NBS domain which could be targeted for polymerase chain reaction (PCR) cloning of R…

  3. Pore Topology Method: A General and Fast Pore-Scale Modeling Approach to Simulate Fluid Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Riasi, M. S.; Huang, G.; Montemagno, C.; Yeghiazarian, L.

    2014-12-01

    Micro-scale modeling of multiphase flow in porous media is critical to characterize porous materials. Several modeling techniques have been implemented to date, but none can be used as a general strategy for all porous media applications due to challenges presented by non-smooth high-curvature and deformable solid surfaces, and by a wide range of pore sizes and porosities. Finite approaches like the finite volume method require a high quality, problem-dependent mesh, while particle-based approaches like the lattice Boltzmann require too many particles to achieve a stable meaningful solution. Both come at a large computational cost. Other methods such as pore network modeling (PNM) have been developed to accelerate the solution process by simplifying the solution domain, but so far a unique and straightforward methodology to implement PNM is lacking. Pore topology method (PTM) is a new topologically consistent approach developed to simulate multiphase flow in porous media. The core of PTM is to reduce the complexity of the 3-D void space geometry by working with its medial surface as the solution domain. Medial surface is capable of capturing all the corners and surface curvatures in a porous structure, and therefore provides a topologically consistent representative geometry for porous structure. Despite the simplicity and low computational cost, PTM provides a fast and straightforward approach for micro-scale modeling of fluid flow in all types of porous media irrespective of their porosity and pore size distribution. In our previous work, we developed a non-iterative fast medial surface finder algorithm to determine a voxel-wide medial surface of the void space of porous media as well as a set of simple rules to determine the capillary pressure-saturation curves for a porous system assuming quasi-static two-phase flow with a planar w-nw interface. Our simulation results for a highly porous fibrous material and polygonal capillary tubes were in excellent agreement

  4. Adaptive Multi-Scale Pore Network Method for Two-Phase Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Meyer, D. W.; Khayrat, K.; Jenny, P.

    2015-12-01

    Dynamic pore network simulators are important tools in studying macroscopic quantities in two-phase flow through porous media. However, these simulators have a time complexity of order N2 for N pore bodies, which limits their usage to small domains. Quasi-static pore network simulators, which assume capillary dominated flow, are more efficient with a time complexity of order N log(N), but are unable to capture phenomena caused by viscous effects such as viscous fingering and stable displacement. It has been experimentally observed that, in several flow scenarios, capillary forces are dominant at the pore scale and viscous forces at larger scales. In order to take advantage of this behaviour and to reduce the time complexity of existing dynamic pore network simulators, we propose a multi-scale pore-network method for two phase flow. In our solution algorithm, the pore network is first divided into smaller subnetworks. The algorithm to advance the fluid interfaces within each subnetwork consists of three steps: 1) The saturation rate of each subnetwork is obtained by solving a two-phase meso-scale mass balance equation over the domain of subnetworks. Here, a multi-point flux scheme is used. 2) Depending on the local capillary number computed in the subnetwork, either an invasion percolation algorithm or a dynamic network algorithm is used to locally advance the fluid-fluid interfaces within each subnetwork until a new saturation value is matched. 3) The transmissibilities for the meso-scale equation are updated based on the updated fluid configurations in each subnetwork. For this purpose the methodoloy of the existing multi-scale finite volume (MSFV) method is employed. An important feature of the multi-scale pore-network method is that it maintains consistency of both fluid occupancy and fluxes at subnetwork interfaces. Viscous effects such as viscous fingering (see figure) can be captured at a decreased computational cost compared to dynamic pore network

  5. Pore pressure embrittlement in a volcanic edifice

    NASA Astrophysics Data System (ADS)

    Farquharson, Jamie; Heap, Michael J.; Baud, Patrick; Reuschlé, Thierry; Varley, Nick R.

    2016-01-01

    The failure mode of porous rock in compression—dilatant or compactant—is largely governed by the overlying lithostatic pressure and the pressure of pore fluids within the rock (Wong, Solid Earth 102:3009-3025, 1997), both of which are subject to change in space and time within a volcanic edifice. While lithostatic pressure will tend to increase monotonously with depth due to the progressive accumulation of erupted products, pore pressures are prone to fluctuations (during periods of volcanic unrest, for example). An increase in pore fluid pressure can result in rock fracture, even at depths where the lithostatic pressure would otherwise preclude such dilatant behaviour—a process termed pore fluid-induced embrittlement. We explore this phenomenon through a series of targeted triaxial experiments on typical edifice-forming andesites (from Volcán de Colima, Mexico). We first show that increasing pore pressure over a range of timescales (on the order of 1 min to 1 day) can culminate in brittle failure of otherwise intact rock. Irrespective of the pore pressure increase rate, we record comparable accelerations in acoustic emission and strain prior to macroscopic failure. We further show that oscillating pore fluid pressures can cause iterative and cumulative damage, ultimately resulting in brittle failure under relatively low effective mean stress conditions. We find that macroscopic failure occurs once a critical threshold of damage is surpassed, suggesting that only small increases in pore pressure may be necessary to trigger failure in previously damaged rocks. Finally, we observe that inelastic compaction of volcanic rock (as we may expect in much of the deep edifice) can be overprinted by shear fractures due to this mechanism of embrittlement. Pore fluid-induced embrittlement of edifice rock during volcanic unrest is anticipated to be highest closer to the conduit and, as a result, may assist in the development of a fractured halo zone surrounding the

  6. Mechanical properties, pore size distribution, and pore solution of fly ash-belite cement mortars

    SciTech Connect

    Guerrero, A.; Goni, S.; Macias, A.; Luxan, M.P.

    1999-11-01

    The mechanical properties, pore size distribution, and extracted pore solution of fly ash-belite cement (FABC) mortars were studied for a period of 200 days. The influence of the calcination temperature, which ranged from 700 to 900 C, of the fly ash-belite cement was discussed. The evolution with hydration time of the pore size distribution was followed by mercury intrusion porosimetry, and the results correlated with those of flexural and compressive strength. The pore solution was expressed and analyzed at different times of hydration.

  7. Lumenal interactions in nuclear pore complex assembly and stability

    PubMed Central

    Yewdell, William T.; Colombi, Paolo; Makhnevych, Taras; Lusk, C. Patrick

    2011-01-01

    Nuclear pore complexes (NPCs) provide a gateway for the selective transport of macromolecules across the nuclear envelope (NE). Although we have a solid understanding of NPC composition and structure, we do not have a clear grasp of the mechanism of NPC assembly. Here, we demonstrate specific defects in nucleoporin distribution in strains lacking Heh1p and Heh2p—two conserved members of the LEM (Lap2, emerin, MAN1) family of integral inner nuclear membrane proteins. These effects on nucleoporin localization are likely of functional importance as we have defined specific genetic interaction networks between HEH1 and HEH2, and genes encoding nucleoporins in the membrane, inner, and outer ring complexes of the NPC. Interestingly, expression of a domain of Heh1p that resides in the NE lumen is sufficient to suppress both the nucleoporin mislocalization and growth defects in heh1Δpom34Δ strains. We further demonstrate a specific physical interaction between the Heh1p lumenal domain and the massive cadherin-like lumenal domain of the membrane nucleoporin Pom152p. These findings support a role for Heh1p in the assembly or stability of the NPC, potentially through the formation of a lumenal bridge with Pom152p. PMID:21346187

  8. Facial skin pores: a multiethnic study.

    PubMed

    Flament, Frederic; Francois, Ghislain; Qiu, Huixia; Ye, Chengda; Hanaya, Tomoo; Batisse, Dominique; Cointereau-Chardon, Suzy; Seixas, Mirela Donato Gianeti; Dal Belo, Susi Elaine; Bazin, Roland

    2015-01-01

    Skin pores (SP), as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc) that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage) on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 μm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm(2)) and determination of their respective sizes in mm(2). Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage) that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1) were recorded in all studied subjects; 2) varied greatly with ethnicity; 3) plateaued with age in most cases; and 4) globally refected self-assessment by subjects, in particular those who self-declare having "enlarged pores" like Brazilian women. Inversely, Chinese women were clearly distinct from other ethnicities in having very low density and sizes. Analyzing the present results suggests that facial skin pore's morphology as perceived by human eye less result from functional criteria of associated appendages such as sebaceous glands. To what extent skin pores may be viewed as additional criteria of a photo-altered skin is an issue to be further addressed. PMID:25733918

  9. Low pore connectivity in natural rock.

    PubMed

    Hu, Qinhong; Ewing, Robert P; Dultz, Stefan

    2012-05-15

    As repositories for CO(2) and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in air-water system) and diffusion rate than expected from classical behavior.

  10. Soil pore structure and substrate C mineralization

    NASA Astrophysics Data System (ADS)

    Sleutel, Steven; Maenhout, Peter; Vanhoorebeke, Luc; Cnudde, Veerle; De Neve, Stefaan

    2014-05-01

    Our aim was to investigate the complex interactions between soil pore structure, soil biota and decomposition of added OM substrates. We report on a lab incubation experiment in which CO2 respiration from soil cores was monitored (headspace GC analysis) and an X-ray CT approach yielded soil pore size distributions. Such combined use of X-ray CT with soil incubation studies was obstructed, until now, by many practical constraints such as CT-volume quality, limited resolution, scanning time and complex soil pore network quantification, which have largely been overcome in this study. We incubated a sandy loam soil (with application of ground grass or sawdust) in 18 small aluminium rings (Ø 1 cm, h 1 cm). Bulk density was adjusted to 1.1 or 1.3 Mg m-3 (compaction) and 6 rings were filled at a coarser Coarse Sand:Fine Sand:Silt+Clay ratio. While compaction induced a strong reduction in the cumulative C mineralization for both grass and sawdust substrates, artificial change to a coarser soil texture only reduced net C mineralization from the added sawdust. There thus appears to be a strong interaction effect between soil pore structure and substrate type on substrate decomposition. Correlation coefficients between the C mineralization rates and volumes of 7 pore size classes (from the X-ray CT data) also showed an increasing positive correlation with increasing pore size. Since any particulate organic matter initially present in the soil was removed prior to the experiment (sieving, ashing the >53µm fraction and recombining with the <53µm fraction), the added OM can be localized by means of X-ray CT. Through on-going image analysis the surrounding porosity of the added grass or sawdust particles is being quantified to further study the interaction between the soil pore structure and substrate decomposition.

  11. The Arabidopsis Nuclear Pore and Nuclear Envelope

    PubMed Central

    Meier, Iris; Brkljacic, Jelena

    2010-01-01

    The nuclear envelope is a double membrane structure that separates the eukaryotic cytoplasm from the nucleoplasm. The nuclear pores embedded in the nuclear envelope are the sole gateways for macromolecular trafficking in and out of the nucleus. The nuclear pore complexes assembled at the nuclear pores are large protein conglomerates composed of multiple units of about 30 different nucleoporins. Proteins and RNAs traffic through the nuclear pore complexes, enabled by the interacting activities of nuclear transport receptors, nucleoporins, and elements of the Ran GTPase cycle. In addition to directional and possibly selective protein and RNA nuclear import and export, the nuclear pore gains increasing prominence as a spatial organizer of cellular processes, such as sumoylation and desumoylation. Individual nucleoporins and whole nuclear pore subcomplexes traffic to specific mitotic locations and have mitotic functions, for example at the kinetochores, in spindle assembly, and in conjunction with the checkpoints. Mutants of nucleoporin genes and genes of nuclear transport components lead to a wide array of defects from human diseases to compromised plant defense responses. The nuclear envelope acts as a repository of calcium, and its inner membrane is populated by functionally unique proteins connected to both chromatin and—through the nuclear envelope lumen—the cytoplasmic cytoskeleton. Plant nuclear pore and nuclear envelope research—predominantly focusing on Arabidopsis as a model—is discovering both similarities and surprisingly unique aspects compared to the more mature model systems. This chapter gives an overview of our current knowledge in the field and of exciting areas awaiting further exploration. PMID:22303264

  12. Molecular cloning, gene organization and expression of the human UDP-GalNAc:Neu5Acalpha2-3Galbeta-R beta1,4-N-acetylgalactosaminyltransferase responsible for the biosynthesis of the blood group Sda/Cad antigen: evidence for an unusual extended cytoplasmic domain.

    PubMed Central

    Montiel, Maria-Dolores; Krzewinski-Recchi, Marie-Ange; Delannoy, Philippe; Harduin-Lepers, Anne

    2003-01-01

    The nucleotide sequence of the short and long transcripts of beta1,4- N -acetylgalactosaminyltransferase have been submitted to the DDBJ, EMBL, GenBank(R) and GSDB Nucleotide Sequence Databases under accession nos AJ517770 and AJ517771 respectively. The human Sd(a) antigen is formed through the addition of an N -acetylgalactosamine residue via a beta1,4-linkage to a sub-terminal galactose residue substituted with an alpha2,3-linked sialic acid residue. We have taken advantage of the previously cloned mouse cDNA sequence of the UDP-GalNAc:Neu5Acalpha2-3Galbeta-R beta1,4- N -acetylgalactosaminyltransferase (Sd(a) beta1,4GalNAc transferase) to screen the human EST and genomic databases and to identify the corresponding human gene. The sequence spans over 35 kb of genomic DNA on chromosome 17 and comprises at least 12 exons. As judged by reverse transcription PCR, the human gene is expressed widely since it is detected in various amounts in almost all cell types studied. Northern blot analysis indicated that five Sd(a) beta1,4GalNAc transferase transcripts of 8.8, 6.1, 4.7, 3.8 and 1.65 kb were highly expressed in colon and to a lesser extent in kidney, stomach, ileum and rectum. The complete coding nucleotide sequence was amplified from Caco-2 cells. Interestingly, the alternative use of two first exons, named E1(S) and E1(L), leads to the production of two transcripts. These nucleotide sequences give rise potentially to two proteins of 506 and 566 amino acid residues, identical in their sequence with the exception of their cytoplasmic tail. The short form is highly similar (74% identity) to the mouse enzyme whereas the long form shows an unusual long cytoplasmic tail of 66 amino acid residues that is as yet not described for any other mammalian glycosyltransferase. Upon transient transfection in Cos-7 cells of the common catalytic domain, a soluble form of the protein was obtained, which catalysed the transfer of GalNAc residues to alpha2,3-sialylated acceptor

  13. [The discrete horror of cloning].

    PubMed

    Guibourg, Ricardo A

    2009-01-01

    The author raises the topic of cloning after the decision of the Argentine government, which concerned for the "dignity of the human person", passed a decree of need and urgency, No. 200/97 (Annex), prohibiting cloning experiments with human beings. Therefore, considering that the topic is so terribly urgent and necessary, the author feels it is timely to consider it.

  14. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  15. Animal Cloning and Food Safety

    MedlinePlus

    ... from clones and their offspring out of the food chain until CVM could further evaluate the issue. back to top FDA Studies Cloning For more than five years, CVM ... evaluate the safety of food from these animals. The resulting report, called a ...

  16. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  17. CATO: The Clone Alignment Tool

    PubMed Central

    Henstock, Peter V.; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  18. [The discrete horror of cloning].

    PubMed

    Guibourg, Ricardo A

    2009-01-01

    The author raises the topic of cloning after the decision of the Argentine government, which concerned for the "dignity of the human person", passed a decree of need and urgency, No. 200/97 (Annex), prohibiting cloning experiments with human beings. Therefore, considering that the topic is so terribly urgent and necessary, the author feels it is timely to consider it. PMID:19860340

  19. Targeting and function in mRNA export of nuclear pore complex protein Nup153

    PubMed Central

    1996-01-01

    Nup153 is a large (153 kD) O-linked glyco-protein which is a component of the basket structure located on the nucleoplasmic face of nuclear pore complexes. This protein exhibits a tripartite structure consisting of a zinc finger domain flanked by large (60-70 kD) NH2- and COOH- terminal domains. When full-length human Nup153 is expressed in BHK cells, it accumulates appropriately at the nucleoplasmic face of the nuclear envelope. Targeting information for Nup153 resides in the NH2- terminal domain since this region of the molecule can direct an ordinarily cytoplasmic protein, pyruvate kinase, to the nuclear face of the nuclear pore complex. Overexpression of Nup153 results in the dramatic accumulation of nuclear poly (A)+ RNA, suggesting an inhibition of RNA export from the nucleus. This is not due to a general decline in nucleocytoplasmic transport or to occlusion or loss of nuclear pore complexes since nuclear protein import is unaffected. While overexpression of certain Nup153 constructs was found to result in the formation of unusual intranuclear membrane arrays, this structural phenotype could not be correlated with the effects on poly (A)+ RNA distribution. The RNA trafficking defect was, however, dependent upon the Nup153 COOH-terminal domain which contains most of the XFXFG repeats. It is proposed that this region of Nup153, lying within the distal ring of the nuclear basket, represents a docking site for mRNA molecules exiting the nucleus. PMID:8794857

  20. Pore-forming activity and structural autoinhibition of the gasdermin family.

    PubMed

    Ding, Jingjin; Wang, Kun; Liu, Wang; She, Yang; Sun, Qi; Shi, Jianjin; Sun, Hanzi; Wang, Da-Cheng; Shao, Feng

    2016-07-01

    Inflammatory caspases cleave the gasdermin D (GSDMD) protein to trigger pyroptosis, a lytic form of cell death that is crucial for immune defences and diseases. GSDMD contains a functionally important gasdermin-N domain that is shared in the gasdermin family. The functional mechanism of action of gasdermin proteins is unknown. Here we show that the gasdermin-N domains of the gasdermin proteins GSDMD, GSDMA3 and GSDMA can bind membrane lipids, phosphoinositides and cardiolipin, and exhibit membrane-disrupting cytotoxicity in mammalian cells and artificially transformed bacteria. Gasdermin-N moved to the plasma membrane during pyroptosis. Purified gasdermin-N efficiently lysed phosphoinositide/cardiolipin-containing liposomes and formed pores on membranes made of artificial or natural phospholipid mixtures. Most gasdermin pores had an inner diameter of 10–14 nm and contained 16 symmetric protomers. The crystal structure of GSDMA3 showed an autoinhibited two-domain architecture that is conserved in the gasdermin family. Structure-guided mutagenesis demonstrated that the liposome-leakage and pore-forming activities of the gasdermin-N domain are required for pyroptosis. These findings reveal the mechanism for pyroptosis and provide insights into the roles of the gasdermin family in necrosis, immunity and diseases. PMID:27281216

  1. On the cavitation and pore blocking in slit-shaped ink-bottle pores.

    PubMed

    Fan, Chunyan; Do, D D; Nicholson, D

    2011-04-01

    We present GCMC simulations of argon adsorption in slit pores of different channel geometry. We show that the isotherm for an ink-bottle pore can be reconstructed as a linear combination of the local isotherms of appropriately chosen independent unit cells. Second, depending on the system parameters and operating conditions, the phenomena of cavitation and pore blocking can occur for a given configuration of the ink-bottle pore by varying the geometrical aspect ratio. Although it has been argued in the literature that the geometrical aspects of the system govern the evaporation mechanism (either cavitation or pore blocking), we here put forward an argument that the local compressibility in different parts of the ink-bottle pore is the deciding factor for evaporation. When the fluid in the small neck is strongly bound, cavitation is the governing process, and molecules in the cavity evaporate to the surrounding bulk gas via a mass transfer mechanism through the pore neck. When the pore neck is sufficiently large, the system of neck and cavity evaporates at the same pressure, which is a consequence of the comparable compressibility between the fluid in the neck and that in the cavity. This suggests that local compressibility is the measure of cohesiveness of the fluid prior to evaporation. One consequence that we derive from the analysis of isotherms of a number of connected pores is that by analyzing the adsorption branch or the desorption branch of an experimental isotherm may not lead to the correct pore sizes and the correct pore volume distribution. PMID:21370903

  2. [Scientific ethics of human cloning].

    PubMed

    Valenzuela, Carlos Y

    2005-01-01

    True cloning is fission, budding or other types of asexual reproduction. In humans it occurs in monozygote twinning. This type of cloning is ethically and religiously good. Human cloning can be performed by twinning (TWClo) or nuclear transfer (NTClo). Both methods need a zygote or a nuclear transferred cell, obtained in vitro (IVTec). They are under the IVTec ethics. IVTecs use humans (zygotes, embryos) as drugs or things; increase the risk of malformations; increase development and size of abnormalities and may cause long-term changes. Cloning for preserving extinct (or almost extinct) animals or humans when sexual reproduction is not possible is ethically valid. The previous selection of a phenotype in human cloning violates some ethical principles. NTClo for reproductive or therapeutic purposes is dangerous since it increases the risk for nucleotide or chromosome mutations, de-programming or re-programming errors, aging or malignancy of the embryo cells thus obtained.

  3. Therapeutic cloning: promises and issues

    PubMed Central

    Kfoury, Charlotte

    2007-01-01

    Advances in biotechnology necessitate both an understanding of scientific principles and ethical implications to be clinically applicable in medicine. In this regard, therapeutic cloning offers significant potential in regenerative medicine by circumventing immunorejection, and in the cure of genetic disorders when used in conjunction with gene therapy. Therapeutic cloning in the context of cell replacement therapy holds a huge potential for de novo organogenesis and the permanent treatment of Parkinson’s disease, Duchenne muscular dystrophy, and diabetes mellitus as shown by in vivo studies. Scientific roadblocks impeding advancement in therapeutic cloning are tumorigenicity, epigenetic reprogramming, mitochondrial heteroplasmy, interspecies pathogen transfer, low oocyte availability. Therapeutic cloning is also often tied to ethical considerations concerning the source, destruction and moral status of IVF embryos based on the argument of potential. Legislative and funding issues are also addressed. Future considerations would include a distinction between therapeutic and reproductive cloning in legislative formulations. PMID:18523539

  4. Hydrochromic Approaches to Mapping Human Sweat Pores.

    PubMed

    Park, Dong-Hoon; Park, Bum Jun; Kim, Jong-Man

    2016-06-21

    Hydrochromic materials, which undergo changes in their light absorption and/or emission properties in response to water, have been extensively investigated as humidity sensors. Recent advances in the design of these materials have led to novel applications, including monitoring the water content of organic solvents, water-jet-based rewritable printing on paper, and hydrochromic mapping of human sweat pores. Our interest in this area has focused on the design of hydrochromic materials for human sweat pore mapping. We recognized that materials appropriate for this purpose must have balanced sensitivities to water. Specifically, while they should not undergo light absorption and/or emission transitions under ambient moisture conditions, the materials must have sufficiently high hydrochromic sensitivities that they display responses to water secreted from human sweat pores. In this Account, we describe investigations that we have carried out to develop hydrochromic substances that are suitable for human sweat pore mapping. Polydiacetylenes (PDAs) have been extensively investigated as sensor matrices because of their stimulus-responsive color change property. We found that incorporation of headgroups composed of hygroscopic ions such as cesium or rubidium and carboxylate counterions enables PDAs to undergo a blue-to-red colorimetric transition as well as a fluorescence turn-on response to water. Very intriguingly, the small quantities of water secreted from human sweat pores were found to be sufficient to trigger fluorescence turn-on responses of the hydrochromic PDAs, allowing precise mapping of human sweat pores. Since the hygroscopic ion-containing PDAs developed in the initial stage display a colorimetric transition under ambient conditions that exist during humid summer periods, a new system was designed. A PDA containing an imidazolium ion was found to be stable under all ambient conditions and showed temperature-dependent hydrochromism corresponding to a

  5. Performance of Small Pore Microchannel Plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Ravinett, T.; Jelinsky, S. R.; Edgar, M.

    1995-01-01

    Small pore size microchannel plates (MCP's) are needed to satisfy the requirements for future high resolution small and large format detectors for astronomy. MCP's with pore sizes in the range 5 micron to 8 micron are now being manufactured, but they are of limited availability and are of small size. We have obtained sets of Galileo 8 micron and 6.5 micron MCP's, and Philips 6 micron and 7 micron pore MCP's, and compared them to our larger pore MCP Z stacks. We have tested back to back MCP stacks of four of these MCP's and achieved gains greater than 2 x 1O(exp 7) with pulse height distributions of less than 40% FWHM, and background rates of less than 0.3 events sec(exp -1) cm(exp -2). Local counting rates up to approx. 100 events/pore/sec have been attained with little drop of the MCP gain. The bare MCP quantum efficiencies are somewhat lower than those expected, however. Flat field images are characterized by an absence of MCP fixed pattern noise.

  6. Analysis of a spatially deconvolved solar pore

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Shimizu, T.; Ruiz Cobo, B.; Suematsu, Y.; Katsukawa, Y.; Ichimoto, K.

    2016-08-01

    Solar pores are active regions with large magnetic field strengths and apparent simple magnetic configurations. Their properties resemble the ones found for the sunspot umbra although pores do not show penumbra. Therefore, solar pores present themselves as an intriguing phenomenon that is not completely understood. We examine in this work a solar pore observed with Hinode/SP using two state of the art techniques. The first one is the spatial deconvolution of the spectropolarimetric data that allows removing the stray light contamination induced by the spatial point spread function of the telescope. The second one is the inversion of the Stokes profiles assuming local thermodynamic equilibrium that let us to infer the atmospheric physical parameters. After applying these techniques, we found that the spatial deconvolution method does not introduce artefacts, even at the edges of the magnetic structure, where large horizontal gradients are detected on the atmospheric parameters. Moreover, we also describe the physical properties of the magnetic structure at different heights finding that, in the inner part of the solar pore, the temperature is lower than outside, the magnetic field strength is larger than 2 kG and unipolar, and the line-of-sight velocity is almost null. At neighbouring pixels, we found low magnetic field strengths of same polarity and strong downward motions that only occur at the low photosphere, below the continuum optical depth log τ = -1. Finally, we studied the spatial relation between different atmospheric parameters at different heights corroborating the physical properties described before.

  7. Animal cloning: problems and prospects.

    PubMed

    Wells, D N

    2005-04-01

    An efficient animal cloning technology would provide many new opportunities for livestock agriculture, human medicine, and animal conservation. Nuclear cloning involves the production of animals that are genetically identical to the donor cells used in a technique known as nuclear transfer (NT). However, at present it is an inefficient process: in cattle, only around 6% of the embryos transferred to the reproductive tracts of recipient cows result in healthy, longterm surviving clones. Of concern are the high losses throughout gestation, during birth and in the post-natal period through to adulthood. Many of the pregnancy losses relate to failure of the placenta to develop and function correctly. Placental dysfunction may also have an adverse influence on postnatal health. These anomalies are probably due to incorrect epigenetic reprogramming of the donor genome following NT, leading to inappropriate patterns of gene expression during the development of clones. Whilst some physiological tests on surviving clones suggest normality, other reports indicate a variety of post-natal clone-associated abnormalities. This variability in outcome may reflect species-specific and/or cloning methodological differences. Importantly, to date it appears that these clone-associated phenotypes are not transmitted to offspring following sexual reproduction. This indicates that they represent epigenetic errors, rather than genetic errors, which are corrected during gametogenesis. Whilst this needs confirmation at the molecular level, it provides initial confidence in the first application of NT in agriculture, namely, the production of small numbers of cloned sires from genetically elite bulls, for natural mating, to effectively disseminate genetic gain. In addition to the animal welfare concerns with the technology, the underlying health of the animals and the consequential effect on food safety are critical aspects that require investigation to gain regulatory and consumer

  8. Dynamic Encounters of Genes and Transcripts with the Nuclear Pore.

    PubMed

    Ben-Yishay, Rakefet; Ashkenazy, Asaf J; Shav-Tal, Yaron

    2016-07-01

    Transcribed mRNA molecules must reach the cytoplasm to undergo translation. Technological developments in imaging have placed mRNAs under the spotlight, allowing the quantitative study of the spatial and temporal dynamics of the nucleocytoplasmic mRNA export process. Here, we discuss studies that have used such experimental approaches to demonstrate that gene tethering at the nuclear pore complex (NPC) regulates mRNA expression, and to characterize mRNA dynamics during transport in real time. The paths taken by mRNAs as they move from their sites of transcription and travel through the nucleoplasm, in between chromatin domains, and finally through the NPC, can now be observed in detail. PMID:27185238

  9. On the structural possibility of pore-forming mitochondrial FoF1 ATP synthase.

    PubMed

    Gerle, Christoph

    2016-08-01

    The mitochondrial permeability transition is an inner mitochondrial membrane event involving the opening of the permeability transition pore concomitant with a sudden efflux of matrix solutes and breakdown of membrane potential. The mitochondrial F(o)F(1) ATP synthase has been proposed as the molecular identity of the permeability transition pore. The likeliness of potential pore-forming sites in the mitochondrial F(o)F(1) ATP synthase is discussed and a new model, the death finger model, is described. In this model, movement of a p-side density that connects the lipid-plug of the c-ring with the distal membrane bending Fo domain allows reversible opening of the c-ring and structural cross-talk with OSCP and the catalytic (αβ)(3) hexamer. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.

  10. Assembly of anthrax toxin pore: Lethal-factor complexes into lipid nanodiscs

    PubMed Central

    Akkaladevi, N; Hinton-Chollet, L; Katayama, H; Mitchell, J; Szerszen, L; Mukherjee, S; Gogol, E P; Pentelute, B L; Collier, R J; Fisher, M T

    2013-01-01

    We have devised a procedure to incorporate the anthrax protective antigen (PA) pore complexed with the N-terminal domain of anthrax lethal factor (LFN) into lipid nanodiscs and analyzed the resulting complexes by negative-stain electron microscopy. Insertion into nanodiscs was performed without relying on primary and secondary detergent screens. The preparations were relatively pure, and the percentage of PA pore inserted into nanodiscs on EM grids was high (∼43%). Three-dimensional analysis of negatively stained single particles revealed the LFN-PA nanodisc complex mirroring the previous unliganded PA pore nanodisc structure, but with additional protein density consistent with multiple bound LFN molecules on the PA cap region. The assembly procedure will facilitate collection of higher resolution cryo-EM LFN-PA nanodisc structures and use of advanced automated particle selection methods. PMID:23389868

  11. Human cloning: can it be made safe?

    PubMed

    Rhind, Susan M; Taylor, Jane E; De Sousa, Paul A; King, Tim J; McGarry, Michelle; Wilmut, Ian

    2003-11-01

    There are continued claims of attempts to clone humans using nuclear transfer, despite the serious problems that have been encountered in cloning other mammals. It is known that epigenetic and genetic mechanisms are involved in clone failure, but we still do not know exactly how. Human reproductive cloning is unethical, but the production of cells from cloned embryos could offer many potential benefits. So, can human cloning be made safe?

  12. Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore.

    PubMed

    Seyedmohammad, Saeed; Fuentealba, Natalia Alveal; Marriott, Robert A J; Goetze, Tom A; Edwardson, J Michael; Barrera, Nelson P; Venter, Henrietta

    2016-01-01

    Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel.

  13. Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore

    PubMed Central

    Seyedmohammad, Saeed; Fuentealba, Natalia Alveal; Marriott, Robert A.J.; Goetze, Tom A.; Edwardson, J. Michael; Barrera, Nelson P.; Venter, Henrietta

    2016-01-01

    Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel. PMID:26934982

  14. Monitoring the kinetics of the pH driven transition of the anthrax toxin prepore to the pore by biolayer interferometry and surface plasmon resonance

    PubMed Central

    Naik, Subhashchandra; Brock, Susan; Akkaladevi, Narahari; Tally, Jon; Mcginn-Straub, Wesley; Zhang, Na; Gao, Phillip; Gogol, E. P.; Pentelute, B. L.; Collier, R. John; Fisher, Mark T.

    2013-01-01

    Domain 2 of the anthrax protective antigen (PA) prepore heptamer unfolds and refolds during endosome acidification to generate an extended 100 Å beta barrel pore that inserts into the endosomal membrane. The PA pore facilitates the pH dependent unfolding and translocation of bound toxin enzymic components, lethal factor (LF) and/or edema factor (EF), from the endosome into the cytoplasm. We constructed immobilized complexes of the prepore with the PA-binding domain of LF (LFN) to monitor the real-time prepore to pore kinetic transition using surface plasmon resonance (SPR) and bio-layer interferometry (BLI). The kinetics of this transition increased as the solution pH was decreased from pH 7.5 to pH 5.0, mirroring acidification of the endosome. Once transitioned, the LFN-PA pore complex was removed from the BLI biosensor tip and deposited onto EM grids, where the PA pore formation was confirmed by negative stain electron microscopy. When the soluble receptor domain (ANTRX2/CMG2) binds the immobilized PA prepore, the transition to the pore state was observed only after the pH was lowered to early or late endosomal pH conditions (5.5 to 5.0 respectively). Once the pore formed, the soluble receptor readily dissociated from the PA pore. Separate binding experiments with immobilized PA pores and soluble receptor indicate that the receptor has a weakened propensity to bind to the transitioned pore. This immobilized anthrax toxin platform can be used to identify or validate potential antimicrobial lead compounds capable of regulating and/or inhibiting anthrax toxin complex formation or pore transitions. PMID:23964683

  15. A novel nuclear pore protein Nup133p with distinct roles in poly(A)+ RNA transport and nuclear pore distribution.

    PubMed Central

    Doye, V.; Wepf, R.; Hurt, E. C.

    1994-01-01

    Temperature-sensitive nucleoporin nup49-316 mutant cells accumulate poly(A)+ RNA inside the nucleus when shifted to restrictive temperature. We performed a synthetic lethal screen with this mutant allele to identify further components of the mRNA export machinery. A synthetic lethal mutant slv21 was isolated, which exhibited a ts phenotype and showed nuclear accumulation of poly(A)+ RNA at 37 degrees C. The wild-type gene complementing slv21 was cloned and sequenced. It encodes a novel protein Nup133p which is located at the nuclear pore complex. NUP133 is not an essential gene, but cells in which NUP133 is disrupted grow slowly at permissive temperatures and stop growing at 37 degrees C. Concomitant with the growth inhibition, nup133- cells accumulate poly(A)+ RNA inside the nucleus whereas nuclear import of a karyophilic reporter protein is not altered. Strikingly, nup133- cells display extensive clustering of nuclear pore complexes at a few sites on the nuclear envelope. However, the nuclear pore clustering phenotype and intranuclear accumulation of poly(A)+ RNA are not obligatorily linked, since an amino-terminally truncated Nup133p allows normal poly(A)+ RNA export, but does not complement the clustering phenotype of nup133- cells. Images PMID:7813444

  16. Optical detection of pores in adipocyte membrane

    NASA Astrophysics Data System (ADS)

    Yanina, I. Yu.; Doubrovski, V. A.; Tuchin, V. V.

    2013-08-01

    Structures that can be interpreted as cytoplasm droplets leaking through the membrane are experimentally detected on the membranes of adipocytes using optical digital microscopy. The effect of an aqueous alcohol solution of brilliant green on the amount and sizes of structures is studied. It is demonstrated that the optical irradiation of the adipocytes that are sensitized with the aid of the brilliant green leads to an increase in the amount of structures (pores) after the irradiation. The experimental results confirm the existence of an earlier-proposed effect of photochemical action on the sensitized cells of adipose tissue that involves additional formation of pores in the membrane of the sensitized cell under selective optical irradiation. The proposed method for the detection of micropores in the membrane of adipose tissue based on the detection of the cytoplasm droplets leaking from the cell can be considered as a method for the optical detection of nanosized pores.

  17. Modeling Soil Pore Oxygen in Restored Wetlands

    NASA Astrophysics Data System (ADS)

    Rubol, S.; Loecke, T.; Burgin, A. J.; Franz, T.

    2015-12-01

    Soil pore oxygen (O2) is usually modeled indirectly as a function of soil moisture. However, using soil moisture to describe the oxic /anoxic status of a soil may not be sufficient accurate, especially when soil pore O2 rapidly changes, as following hydrological forcing. As first step, we use the dataset collected in the constructed wetland near Dayton, OH, by Loecke and Burgin, to reconstruct the environmental functions and re-aeration status of the soil. The dataset consist of 24 Apogee sensors and 24 soil moisture and temperature sensors located at 10 cm depth in upland, transitional and submerged zone (see Figure 1). Data were recorded over two years at temporal interval of 30 minutes. Then, we explore the capability of existing biogeochemical models to predict metabolic activity and the soil pore O2. Figure1: Restored wetland field site with soil O2 sensors (yellow stars) in upland (red), transitional (green) and submerged (blue) zones.

  18. Emulsion formation at the Pore-Scale

    NASA Astrophysics Data System (ADS)

    Armstrong, R. T.; Van Den Bos, P.; Berg, S.

    2012-12-01

    The use of surfactant cocktails to produce ultra-low interfacial tension between water and oil is an enhanced oil recovery method. In phase behavior tests three distinct emulsion phases are observed: (1) oil-in-water emulsion; (2) microemulsion; and (3) water-in-oil emulsion. However, it is unknown how phase behavior manifests at the pore-scale in a porous media system. What is the time scale needed for microemulsion formation? Where in the pore-space do the microemulsions form? And in what order do the different emulsion phases arrange during oil bank formation? To answer these questions micromodel experiments were conducted. These experiments are used to build a conceptual model for phase behavior at the pore-scale.

  19. Pore structure analysis of American coals

    SciTech Connect

    Gallegos, D.P.; Smith, D.M.; Stermer, D.L.

    1987-01-01

    The pore structure of 19 American coals, representing a wide range of rank and geographic origin, has been studied via gas adsorption, mercury porosimetry, helium displacement and NMR spin-lattice relaxation measurements. Nitrogen adsorption at 77 K was used to determine surface area in the pore range of r/sub p/ > approx. = 1nm and carbon dioxide adsorption at 273 K was used to obtain the total surface area. Porosimetry results were complicated by inter-particle void filling, surface roughness/porosity and sample compression. By employing a range of particle sizes, information concerning the relative magnitude of these mechanisms was ascertained as a function of pressure. Spin-lattice relaxation measurements of water contained in saturated coal were used to find pore size distributions over a broad range of T/sub 1/, the spin-lattice relaxation time. Good qualitative agreement was obtained between these measurements and gas adsorption/condensation results. 13 refs., 3 figs., 1 tab.

  20. Multiscale Pore Network Model for Two-Phase Flow in Porous Media

    NASA Astrophysics Data System (ADS)

    Khayrat, K.; Ragg, F.; Jenny, P.

    2014-12-01

    Viscous effects are important for many applications in two-phase flow through porous media. These effects, such as viscous fingering and stable displacement, can be predicted by current dynamic pore network models. However, these models have severe time-step restrictions which limit their usage to small domains. In order to overcome this limitation, we propose a multiscale pore network model for primary drainage. The proposed model is applicable to typical flow scenarios where capillary forces are dominant at the pore scale and viscous forces at larger scales. In our model, the pore network is divided into subnetworks smaller than a characteristic length below which capillary forces dominate (see Figure 1). The algorithm to advance the fluid interfaces within each subnetwork consists of three steps: 1) The saturation rate of each subnetwork is obtained by solving a two-phase meso-scale mass balance equation over the domain of subnetworks. In this step, both the viscous and capillary forces are taken into account. 2) An invasion percolation algorithm is then used to locally advance the fluid-fluid interfaces within each subnetwork until a new saturation value is matched. Here, the viscous forces are neglected. 3) The parameters for the meso-scale mass balance equation are updated based on the updated fluid configurations in each subnetwork. An important feature of our pore network model is that it maintains consistency of both fluid occupancy (see Figure 2) and fluxes at subnetwork interfaces. In addition, it is straightforward to parallelize the solution algorithm. Exemplary results are presented and compared to results obtained with an existing dynamic pore network model.

  1. Wildlife conservation and reproductive cloning.

    PubMed

    Holt, William V; Pickard, Amanda R; Prather, Randall S

    2004-03-01

    Reproductive cloning, or the production of offspring by nuclear transfer, is often regarded as having potential for conserving endangered species of wildlife. Currently, however, low success rates for reproductive cloning limit the practical application of this technique to experimental use and proof of principle investigations. In this review, we consider how cloning may contribute to wildlife conservation strategies. The cloning of endangered mammals presents practical problems, many of which stem from the paucity of knowledge about their basic reproductive biology. However, situations may arise where resources could be targeted at recovering lost or under-represented genetic lines; these could then contribute to the future fitness of the population. Approaches of this type would be preferable to the indiscriminate generation of large numbers of identical individuals. Applying cloning technology to non-mammalian vertebrates may be more practical than attempting to use conventional reproductive technologies. As the scientific background to cloning technology was pioneered using amphibians, it may be possible to breed imminently threatened amphibians, or even restore extinct amphibian species, by the use of cloning. In this respect species with external embryonic development may have an advantage over mammals as developmental abnormalities associated with inappropriate embryonic reprogramming would not be relevant.

  2. Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks

    PubMed Central

    Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729

  3. Pore-scale modeling of pore structure effects on P-wave scattering attenuation in dry rocks.

    PubMed

    Wang, Zizhen; Wang, Ruihe; Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks.

  4. Therapeutic cloning in the mouse.

    PubMed

    Mombaerts, Peter

    2003-09-30

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice.

  5. Cloning: revisiting an old debate.

    PubMed

    Verhey, Allen D

    1994-09-01

    The debate about cloning that took place 25 years ago, although directed toward a different sort of cloning, elucidates fundamental issues currently at stake in reproductive technologies and research. Paul Ramsey and Joseph Fletcher were participants in this early debate. The differences between Ramsey and Fletcher about the meaning and sufficiency of freedom, the understanding and weighing of good and evil, the connection between embodiment and personhood, the relationship of humans with nature, and the meaning of parenthood suggest both a broader agenda for the debate about cloning and a cautious move forward in the development of embryo-splitting.

  6. A redox switch shapes the Lon protease exit pore to facultatively regulate proteolysis.

    PubMed

    Nishii, Wataru; Kukimoto-Niino, Mutsuko; Terada, Takaho; Shirouzu, Mikako; Muramatsu, Tomonari; Kojima, Masaki; Kihara, Hiroshi; Yokoyama, Shigeyuki

    2015-01-01

    The Lon AAA+ protease degrades damaged or misfolded proteins in its intramolecular chamber. Its activity must be precisely controlled, but the mechanism by which Lon is regulated in response to different environments is not known. Facultative anaerobes in the Enterobacteriaceae family, mostly symbionts and pathogens, encounter both anaerobic and aerobic environments inside and outside the host's body, respectively. The bacteria characteristically have two cysteine residues on the Lon protease (P) domain surface that unusually form a disulfide bond. Here we show that the cysteine residues act as a redox switch of Lon. Upon disulfide bond reduction, the exit pore of the P-domain ring narrows by ∼30%, thus interrupting product passage and decreasing activity by 80%; disulfide bonding by oxidation restores the pore size and activity. The redox switch (E°' = -227 mV) is appropriately tuned to respond to variation between anaerobic and aerobic conditions, thus optimizing the cellular proteolysis level for each environment.

  7. Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning.

    PubMed

    French, Andrew J; Wood, Samuel H; Trounson, Alan O

    2006-01-01

    Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.

  8. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy.

    PubMed

    De Jesús-Pérez, José J; Castro-Chong, Alejandra; Shieh, Ru-Chi; Hernández-Carballo, Carmen Y; De Santiago-Castillo, José A; Arreola, Jorge

    2016-01-01

    CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage-sensing domains; instead, their protopore gates (residing within the pore and each formed by the side chain of a glutamate residue) open under repulsion by permeant intracellular anions or protonation by extracellular H(+). Here, we show that voltage-dependent gating of CLC-2: (a) is facilitated when permeant anions (Cl(-), Br(-), SCN(-), and I(-)) are present in the cytosolic side; (b) happens with poorly permeant anions fluoride, glutamate, gluconate, and methanesulfonate present in the cytosolic side; (c) depends on pore occupancy by permeant and poorly permeant anions; (d) is strongly facilitated by multi-ion occupancy; (e) is absent under likely protonation conditions (pHe = 5.5 or 6.5) in cells dialyzed with acetate (an impermeant anion); and (f) was the same at intracellular pH 7.3 and 4.2; and (g) is observed in both whole-cell and inside-out patches exposed to increasing [Cl(-)]i under unlikely protonation conditions (pHe = 10). Thus, based on our results we propose that hyperpolarization activates CLC-2 mainly by driving intracellular anions into the channel pores, and that protonation by extracellular H(+) plays a minor role in dislodging the glutamate gate. PMID:26666914

  9. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy.

    PubMed

    De Jesús-Pérez, José J; Castro-Chong, Alejandra; Shieh, Ru-Chi; Hernández-Carballo, Carmen Y; De Santiago-Castillo, José A; Arreola, Jorge

    2016-01-01

    CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage-sensing domains; instead, their protopore gates (residing within the pore and each formed by the side chain of a glutamate residue) open under repulsion by permeant intracellular anions or protonation by extracellular H(+). Here, we show that voltage-dependent gating of CLC-2: (a) is facilitated when permeant anions (Cl(-), Br(-), SCN(-), and I(-)) are present in the cytosolic side; (b) happens with poorly permeant anions fluoride, glutamate, gluconate, and methanesulfonate present in the cytosolic side; (c) depends on pore occupancy by permeant and poorly permeant anions; (d) is strongly facilitated by multi-ion occupancy; (e) is absent under likely protonation conditions (pHe = 5.5 or 6.5) in cells dialyzed with acetate (an impermeant anion); and (f) was the same at intracellular pH 7.3 and 4.2; and (g) is observed in both whole-cell and inside-out patches exposed to increasing [Cl(-)]i under unlikely protonation conditions (pHe = 10). Thus, based on our results we propose that hyperpolarization activates CLC-2 mainly by driving intracellular anions into the channel pores, and that protonation by extracellular H(+) plays a minor role in dislodging the glutamate gate.

  10. Organization of the mitochondrial apoptotic BAK pore: oligomerization of the BAK homodimers.

    PubMed

    Aluvila, Sreevidya; Mandal, Tirtha; Hustedt, Eric; Fajer, Peter; Choe, Jun Yong; Oh, Kyoung Joon

    2014-01-31

    The multidomain pro-apoptotic Bcl-2 family proteins BAK and BAX are believed to form large oligomeric pores in the mitochondrial outer membrane during apoptosis. Formation of these pores results in the release of apoptotic factors including cytochrome c from the intermembrane space into the cytoplasm, where they initiate the cascade of events that lead to cell death. Using the site-directed spin labeling method of electron paramagnetic resonance (EPR) spectroscopy, we have determined the conformational changes that occur in BAK when the protein targets to the membrane and forms pores. The data showed that helices α1 and α6 disengage from the rest of the domain, leaving helices α2-α5 as a folded unit. Helices α2-α5 were shown to form a dimeric structure, which is structurally homologous to the recently reported BAX "BH3-in-groove homodimer." Furthermore, the EPR data and a chemical cross-linking study demonstrated the existence of a hitherto unknown interface between BAK BH3-in-groove homodimers in the oligomeric BAK. This novel interface involves the C termini of α3 and α5 helices. The results provide further insights into the organization of the BAK oligomeric pores by the BAK homodimers during mitochondrial apoptosis, enabling the proposal of a BAK-induced lipidic pore with the topography of a "worm hole."

  11. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy

    PubMed Central

    De Jesús-Pérez, José J.; Castro-Chong, Alejandra; Shieh, Ru-Chi; Hernández-Carballo, Carmen Y.; De Santiago-Castillo, José A.

    2016-01-01

    CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage–sensing domains; instead, their protopore gates (residing within the pore and each formed by the side chain of a glutamate residue) open under repulsion by permeant intracellular anions or protonation by extracellular H+. Here, we show that voltage-dependent gating of CLC-2: (a) is facilitated when permeant anions (Cl−, Br−, SCN−, and I−) are present in the cytosolic side; (b) happens with poorly permeant anions fluoride, glutamate, gluconate, and methanesulfonate present in the cytosolic side; (c) depends on pore occupancy by permeant and poorly permeant anions; (d) is strongly facilitated by multi-ion occupancy; (e) is absent under likely protonation conditions (pHe = 5.5 or 6.5) in cells dialyzed with acetate (an impermeant anion); and (f) was the same at intracellular pH 7.3 and 4.2; and (g) is observed in both whole-cell and inside-out patches exposed to increasing [Cl−]i under unlikely protonation conditions (pHe = 10). Thus, based on our results we propose that hyperpolarization activates CLC-2 mainly by driving intracellular anions into the channel pores, and that protonation by extracellular H+ plays a minor role in dislodging the glutamate gate. PMID:26666914

  12. Effects of carbon coating and pore corrugation on capillary condensation of nitrogen in SBA-15 mesoporous silica.

    PubMed

    Morishige, Kunimitsu

    2013-09-24

    To examine the origin of an ink-bottle-like structure in SBA-15 formed by carbon coating and the effects of pore corrugation on capillary condensation and evaporation of a vapor in the cylindrical pores, we measured the adsorption isotherms of nitrogen at 77 K on 10 kinds of SBA-15 samples before and after a carbon coating process by the exposure to acetylene at 1073 K, as well as desorption scanning curves and subloops on the untreated samples. These SBA-15 samples were synthesized under the different conditions of initial SiO2/P123 ratio and hydrothermal treatment. SBA-15 with relatively large microporosity tends to form easily constrictions inside the main channels by the carbon coating. This strongly suggests that the rough pore walls of SBA-15 may induce the incomplete wetting of carbon layers on the pore walls to form the constrictions inside the cylindrical pores. A comparison of two subloops implies that the pores of SBA-15 synthesized with a SiO2/P123 ratio of 75 consist of an assembly of connecting domains of different diameters; that is, the pores are highly corrugated. For SBA-15 synthesized with a SiO2/P123 ratio of 60, the amplitude of the pore corrugation is significantly decreased by the prolonged hydrothermal treatment at 373 K. On the other hand, for SBA-15 synthesized with a SiO2/P123 ratio of 45, the amplitude of the corrugation is negligibly small, although the cylindrical pores are interconnected through narrow necks with each other. It is found that the smaller the amplitude of the pore corrugation, the smaller the width of the hysteresis loop. PMID:23977846

  13. Methylotroph cloning vehicle

    DOEpatents

    Hanson, Richard S.; Allen, Larry N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

  14. Impermanence of bacterial clones

    PubMed Central

    Bobay, Louis-Marie; Traverse, Charles C.; Ochman, Howard

    2015-01-01

    Bacteria reproduce asexually and pass on a single genome copied from the parent, a reproductive mode that assures the clonal descent of progeny; however, a truly clonal bacterial species is extremely rare. The signal of clonality can be interrupted by gene uptake and exchange, initiating homologous recombination that results in the unique sequence of one clone being incorporated into another. Because recombination occurs sporadically and on local scales, these events are often difficult to recognize, even when considering large samples of completely sequenced genomes. Moreover, several processes can produce the appearance of clonality in populations that undergo frequent recombination. The rates and consequences of recombination have been studied in Escherichia coli for over 40 y, and, during this time, there have been several shifting views of its clonal status, population structure, and rates of gene exchange. We reexamine the studies and retrace the evolution of the methods that have assessed the extent of DNA flux, largely focusing on its impact on the E. coli genome. PMID:26195749

  15. Influence of pore pressure and production-induced changes in pore pressure on in situ stress

    SciTech Connect

    Teufel, L.W.

    1996-02-01

    Knowledge of in situ stress and how stress changes with reservoir depletion and pore pressure drawdown is important in a multi-disciplinary approach to reservoir characterization, reservoir management, and improved oil recovery projects. This report summarizes a compilation of in situ stress data from six fields showing the effects of pore pressure and production-induced changes in pore pressure on the minimum horizontal stress. The in situ stress data and corresponding pore pressure data were obtained from field records of the operating companies and published reports. Horizontal stress was determined from closure pressure data of hydraulic fractures and leak-off tests. The stress measurements clearly demonstrate that the total minimum-horizontal stress is dependent on pore pressure. A decrease in pore pressure either by geologic processes or production of a reservoir will result in a decrease in the total minimum-horizontal stress. The magnitude of changes in stress state with net changes in pore pressure is dependent on local field conditions and cannot be accurately predicted by the uniaxial strain model that is commonly used by the petroleum industry.

  16. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components

    PubMed Central

    Yamashita, Keitaro; Kawai, Yuka; Tanaka, Yoshikazu; Hirano, Nagisa; Kaneko, Jun; Tomita, Noriko; Ohta, Makoto; Kamio, Yoshiyuki; Yao, Min; Tanaka, Isao

    2011-01-01

    Staphylococcal γ-hemolysin is a bicomponent pore-forming toxin composed of LukF and Hlg2. These proteins are expressed as water-soluble monomers and then assemble into the oligomeric pore form on the target cell. Here, we report the crystal structure of the octameric pore form of γ-hemolysin at 2.5 Å resolution, which is the first high-resolution structure of a β-barrel transmembrane protein composed of two proteins reported to date. The octameric assembly consists of four molecules of LukF and Hlg2 located alternately in a circular pattern, which explains the biochemical data accumulated over the past two decades. The structure, in combination with the monomeric forms, demonstrates the elaborate molecular machinery involved in pore formation by two different molecules, in which interprotomer electrostatic interactions using loops connecting β2 and β3 (loop A: Asp43-Lys48 of LukF and Lys37-Lys43 of Hlg2) play pivotal roles as the structural determinants for assembly through unwinding of the N-terminal β-strands (amino-latch) of the adjacent protomer, releasing the transmembrane stem domain folded into a β-sheet in the monomer (prestem), and interaction with the adjacent protomer. PMID:21969538

  17. Pore-scale imaging and modelling

    NASA Astrophysics Data System (ADS)

    Blunt, Martin J.; Bijeljic, Branko; Dong, Hu; Gharbi, Oussama; Iglauer, Stefan; Mostaghimi, Peyman; Paluszny, Adriana; Pentland, Christopher

    2013-01-01

    Pore-scale imaging and modelling - digital core analysis - is becoming a routine service in the oil and gas industry, and has potential applications in contaminant transport and carbon dioxide storage. This paper briefly describes the underlying technology, namely imaging of the pore space of rocks from the nanometre scale upwards, coupled with a suite of different numerical techniques for simulating single and multiphase flow and transport through these images. Three example applications are then described, illustrating the range of scientific problems that can be tackled: dispersion in different rock samples that predicts the anomalous transport behaviour characteristic of highly heterogeneous carbonates; imaging of super-critical carbon dioxide in sandstone to demonstrate the possibility of capillary trapping in geological carbon storage; and the computation of relative permeability for mixed-wet carbonates and implications for oilfield waterflood recovery. The paper concludes by discussing limitations and challenges, including finding representative samples, imaging and simulating flow and transport in pore spaces over many orders of magnitude in size, the determination of wettability, and upscaling to the field scale. We conclude that pore-scale modelling is likely to become more widely applied in the oil industry including assessment of unconventional oil and gas resources. It has the potential to transform our understanding of multiphase flow processes, facilitating more efficient oil and gas recovery, effective contaminant removal and safe carbon dioxide storage.

  18. Pore-scale studies of gas shale

    NASA Astrophysics Data System (ADS)

    Silin, D.; Ajo Franklin, J. B.; Cabrini, S.; Kneafsey, T. J.; MacDowell, A.; Nico, P. S.; Radmilovic, V.

    2010-12-01

    Natural gas is the cleanest hydrocarbon fuel. The contribution of natural gas produced from shale to the United States energy portfolio has been steadily increasing over the past several years. The projections into the coming decades expect this trend to remain stable. Although the advancements in well stimulation technologies have made it possible to convert huge resources into recoverable reserves, the mechanisms of gas recovery from these practically impermeable rocks are not yet fully understood. We employed the powerful imaging facilities at Lawrence Berkeley National Laboratory to gain insights into the pore geometry and structure of shale at micron and submicron scales. The X-ray micro-tomography facility at the Advanced Light Source produces 3D reconstructions of the pore space at resolutions approaching one micron. The Focused Ion-Beam sequential milling and imaging at the Molecular Foundry and National Center for Electron Microscopy allows for 3D shale structure and mineral composition at a resolution on the order of ten nanometers. We find that even a miniscule volume of reservoir shale includes an extremely rich diversity of minerals and geometries. Organic matter is consistently present as pore filling among solid grains. Some samples show a connected networks of pores in kerogen, apparently indicating its thermal maturity. Understanding the features controlling gas flow will help increase the ultimate recovery and extend the productive lifetime of a given well.

  19. A Clone of Your Own.

    ERIC Educational Resources Information Center

    Bilodeau, Kirsten

    1997-01-01

    Describes an activity used at the Washington Park Arboretum that helps students understand cloning through plant propagation. Students also learn how to make a pot from recycled newspapers and how to make soil that is appropriate for the plants. (DDR)

  20. Cloning of a quantum measurement

    SciTech Connect

    Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Sedlak, Michal

    2011-10-15

    We analyze quantum algorithms for cloning of a quantum measurement. Our aim is to mimic two uses of a device performing an unknown von Neumann measurement with a single use of the device. When the unknown device has to be used before the bipartite state to be measured is available we talk about 1{yields}2 learning of the measurement, otherwise the task is called 1{yields}2 cloning of a measurement. We perform the optimization for both learning and cloning for arbitrary dimension d of the Hilbert space. For 1{yields}2 cloning we also propose a simple quantum network that achieves the optimal fidelity. The optimal fidelity for 1{yields}2 learning just slightly outperforms the estimate and prepare strategy in which one first estimates the unknown measurement and depending on the result suitably prepares the duplicate.

  1. Human Cloning: Let's Discuss It.

    ERIC Educational Resources Information Center

    Taras, Loretta; Stavroulakis, Anthea M.; Ortiz, Mary T.

    1999-01-01

    Describes experiences with holding discussions on cloning at a variety of levels in undergraduate biology courses. Discusses teaching methods used and student reactions to the discussions. Contains 12 references. (WRM)

  2. Human cloning and 'posthuman' society.

    PubMed

    Blackford, Russell

    2005-01-01

    Since early 1997, when the creation of Dolly the sheep by somatic cell nuclear transfer was announced in Nature, numerous government reports, essays, articles and books have considered the ethical problems and policy issues surrounding human reproductive cloning. In this article, I consider what response a modern liberal society should give to the prospect of human cloning, if it became safe and practical. Some opponents of human cloning have argued that permitting it would place us on a slippery slope to a repugnant future society, comparable to that portrayed in Aldous Huxley's novel, Brave New World. I conclude that, leaving aside concerns about safety, none of the psychological or social considerations discussed in this article provides an adequate policy justification for invoking the state's coercive powers to prevent human cloning.

  3. Are cloned quantum states macroscopic?

    PubMed

    Fröwis, F; Dür, W

    2012-10-26

    We study quantum states produced by optimal phase covariant quantum cloners. We argue that cloned quantum superpositions are not macroscopic superpositions in the spirit of Schrödinger's cat, despite their large particle number. This is indicated by calculating several measures for macroscopic superpositions from the literature, as well as by investigating the distinguishability of the two superposed cloned states. The latter rapidly diminishes when considering imperfect detectors or noisy states and does not increase with the system size. In contrast, we find that cloned quantum states themselves are macroscopic, in the sense of both proposed measures and their usefulness in quantum metrology with an optimal scaling in system size. We investigate the applicability of cloned states for parameter estimation in the presence of different kinds of noise.

  4. Human cloning and 'posthuman' society.

    PubMed

    Blackford, Russell

    2005-01-01

    Since early 1997, when the creation of Dolly the sheep by somatic cell nuclear transfer was announced in Nature, numerous government reports, essays, articles and books have considered the ethical problems and policy issues surrounding human reproductive cloning. In this article, I consider what response a modern liberal society should give to the prospect of human cloning, if it became safe and practical. Some opponents of human cloning have argued that permitting it would place us on a slippery slope to a repugnant future society, comparable to that portrayed in Aldous Huxley's novel, Brave New World. I conclude that, leaving aside concerns about safety, none of the psychological or social considerations discussed in this article provides an adequate policy justification for invoking the state's coercive powers to prevent human cloning. PMID:16007753

  5. Facial skin pores: a multiethnic study

    PubMed Central

    Flament, Frederic; Francois, Ghislain; Qiu, Huixia; Ye, Chengda; Hanaya, Tomoo; Batisse, Dominique; Cointereau-Chardon, Suzy; Seixas, Mirela Donato Gianeti; Dal Belo, Susi Elaine; Bazin, Roland

    2015-01-01

    Skin pores (SP), as they are called by laymen, are common and benign features mostly located on the face (nose, cheeks, etc) that generate many aesthetic concerns or complaints. Despite the prevalence of skin pores, related literature is scarce. With the aim of describing the prevalence of skin pores and anatomic features among ethnic groups, a dermatoscopic instrument, using polarized lighting, coupled to a digital camera recorded the major features of skin pores (size, density, coverage) on the cheeks of 2,585 women in different countries and continents. A detection threshold of 250 μm, correlated to clinical scorings by experts, was input into a specific software to further allow for automatic counting of the SP density (N/cm2) and determination of their respective sizes in mm2. Integrating both criteria also led to establishing the relative part of the skin surface (as a percentage) that is actually covered by SP on cheeks. The results showed that the values of respective sizes, densities, and skin coverage: 1) were recorded in all studied subjects; 2) varied greatly with ethnicity; 3) plateaued with age in most cases; and 4) globally refected self-assessment by subjects, in particular those who self-declare having “enlarged pores” like Brazilian women. Inversely, Chinese women were clearly distinct from other ethnicities in having very low density and sizes. Analyzing the present results suggests that facial skin pore’s morphology as perceived by human eye less result from functional criteria of associated appendages such as sebaceous glands. To what extent skin pores may be viewed as additional criteria of a photo-altered skin is an issue to be further addressed. PMID:25733918

  6. Local cloning of entangled qubits

    SciTech Connect

    Choudhary, Sujit K.; Kunkri, Samir; Rahaman, Ramij; Roy, Anirban

    2007-11-15

    We discuss the exact cloning of orthogonal but entangled qubits under local operations and classical communication. The amount of entanglement necessary in a blank copy is obtained for various cases. Surprisingly, this amount is more than 1 ebit for certain sets of two nonmaximal but equally entangled states of two qubits. To clone any three Bell states, at least log{sub 2} 3 ebit is necessary.

  7. Cloning: questions answered and unsolved.

    PubMed

    Latham, Keith E

    2004-02-01

    Cloning by the transfer of adult somatic cell nuclei to oocytes has produced viable offspring in a variety of mammalian species. The technology is still in its initial stages of development. Studies to date have answered several basic questions related to such issues as genome potency, life expectancy of clones, mitochondrial fates, and feasibility of inter-species nuclear transfer. They have also raised new questions related to the control of nuclear reprogramming and function. These questions are reviewed here.

  8. Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein

    PubMed Central

    Di Scala, Coralie; Yahi, Nouara; Boutemeur, Sonia; Flores, Alessandra; Rodriguez, Léa; Chahinian, Henri; Fantini, Jacques

    2016-01-01

    Calcium-permeable pores formed by small oligomers of amyloid proteins are the primary pathologic species in Alzheimer’s and Parkinson’s diseases. However, the molecular mechanisms underlying the assembly of these toxic oligomers in the plasma membrane of brain cells remain unclear. Here we have analyzed and compared the pore-forming capability of a large panel of amyloid proteins including wild-type, variant and truncated forms, as well as synthetic peptides derived from specific domains of Aβ1-42 and α-synuclein. We show that amyloid pore formation involves two membrane lipids, ganglioside and cholesterol, that physically interact with amyloid proteins through specific structural motifs. Mutation or deletion of these motifs abolished pore formation. Moreover, α-synuclein (Parkinson) and Aβ peptide (Alzheimer) did no longer form Ca2+-permeable pores in presence of drugs that target either cholesterol or ganglioside or both membrane lipids. These results indicate that gangliosides and cholesterol cooperate to favor the formation of amyloid pores through a common molecular mechanism that can be jammed at two different steps, suggesting the possibility of a universal therapeutic approach for neurodegenerative diseases. Finally we present the first successful evaluation of such a new therapeutic approach (coined “membrane therapy”) targeting amyloid pores formed by Aβ1-42 and α-synuclein. PMID:27352802

  9. Artificial cloning of domestic animals.

    PubMed

    Keefer, Carol L

    2015-07-21

    Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research.

  10. Artificial cloning of domestic animals.

    PubMed

    Keefer, Carol L

    2015-07-21

    Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research. PMID:26195770

  11. Artificial cloning of domestic animals

    PubMed Central

    Keefer, Carol L.

    2015-01-01

    Domestic animals can be cloned using techniques such as embryo splitting and nuclear transfer to produce genetically identical individuals. Although embryo splitting is limited to the production of only a few identical individuals, nuclear transfer of donor nuclei into recipient oocytes, whose own nuclear DNA has been removed, can result in large numbers of identical individuals. Moreover, clones can be produced using donor cells from sterile animals, such as steers and geldings, and, unlike their genetic source, these clones are fertile. In reality, due to low efficiencies and the high costs of cloning domestic species, only a limited number of identical individuals are generally produced, and these clones are primarily used as breed stock. In addition to providing a means of rescuing and propagating valuable genetics, somatic cell nuclear transfer (SCNT) research has contributed knowledge that has led to the direct reprogramming of cells (e.g., to induce pluripotent stem cells) and a better understanding of epigenetic regulation during embryonic development. In this review, I provide a broad overview of the historical development of cloning in domestic animals, of its application to the propagation of livestock and transgenic animal production, and of its scientific promise for advancing basic research. PMID:26195770

  12. Cloning goes to the movies.

    PubMed

    Cormick, Craig

    2006-10-01

    Public attitude research conducted by Biotechnology Australia shows that one of the major sources of information on human reproductive cloning is movies. Traditionally, understanding of new and emerging technologies has come through the mass media but human cloning, being so widely addressed through the popular culture of movies, is more effectively defined by Hollywood than the news media or science media. But how well are the science and social issues of cloning portrayed in box office hits such as The Island, Multiplicity, Star Wars: Attack of the Clones and Jurassic Park? These movies have enormous reach and undoubted influence, and are therefore worth analyzing in some detail. This study looks at 33 movies made between 1971 and 2005 that address human reproductive cloning, and it categorizes the films based on their genre and potential influence. Yet rather than simply rating the quality of the science portrayed, the study compares the key messages in these movies with public attitudes towards cloning, to examine the correlations.

  13. Islamic perspectives on human cloning.

    PubMed

    Sadeghi, Mahmoud

    2007-01-01

    The present paper seeks to assess various views from Islamic jurists relating to human cloning, which is one of the controversial topics in the recent past. Taking Islamic jurisprudence principles, such as the rule of necessity for self preservation and respect for human beings, the rule of la darar wa la dirar ('the necessity to refrain from causing harm to oneself and others') and the rule of usr wa haraj, one may indicate that if human cloning could not be prohibited, as such, it could still be opposed because it gives way to various harmful consequences, which include family disorder, chaos in the clone's family relationships, physical and mental diseases for clones and suffering of egg donors and surrogate mothers. However with due attention to the fact that the reasons behind the prohibition of abortion only restrict the destruction of human embryos in their post-implantation stages, human cloning for biomedical research and exploitation of stem cells from cloned embryos at the blastocyst stage for therapeutic purposes would be acceptable.

  14. Cloning goes to the movies.

    PubMed

    Cormick, Craig

    2006-10-01

    Public attitude research conducted by Biotechnology Australia shows that one of the major sources of information on human reproductive cloning is movies. Traditionally, understanding of new and emerging technologies has come through the mass media but human cloning, being so widely addressed through the popular culture of movies, is more effectively defined by Hollywood than the news media or science media. But how well are the science and social issues of cloning portrayed in box office hits such as The Island, Multiplicity, Star Wars: Attack of the Clones and Jurassic Park? These movies have enormous reach and undoubted influence, and are therefore worth analyzing in some detail. This study looks at 33 movies made between 1971 and 2005 that address human reproductive cloning, and it categorizes the films based on their genre and potential influence. Yet rather than simply rating the quality of the science portrayed, the study compares the key messages in these movies with public attitudes towards cloning, to examine the correlations. PMID:17214211

  15. Molecular cloning and expression of the human interleukin 5 receptor

    PubMed Central

    1992-01-01

    Human interleukin 5 (IL-5) plays an important role in proliferation and differentiation of human eosinophils. We report the isolation of cDNA clones from cDNA libraries of human eosinophils by using murine IL-5 receptor alpha chain cDNA as a probe. Analysis of the predicted amino acid sequence indicated that the human IL-5 receptor has approximately 70% amino acid sequence homology with the murine IL-5 receptor and retains features common to the cytokine receptor superfamily. One cDNA clone encodes a glycoprotein of 420 amino acids (Mr 47,670) with an NH2- terminal hydrophobic region (20 amino acids), a glycosylated extracellular domain (324 amino acids), a transmembrane domain (21 amino acids), and a cytoplasmic domain (55 amino acids). Another cDNA encodes only the extracellular domain of this receptor molecule. Other cDNA clones encode molecules having diversified cytoplasmic domains. COS7 cells transfected with the cDNA expressed a approximately 60-kD protein and bound IL-5 with a single class of affinity (Kd = 250-590 pM). The Kd values were similar to that observed in normal human eosinophils. In contrast to the murine 60-kD alpha chain, which binds IL-5 with low affinity (Kd = approximately 10 nM), the human alpha chain homologue can bind IL-5 with much higher affinity by itself. RNA blot analysis of human cells demonstrated two transcripts (approximately 5.3 and 1.4 kb). Both of them were expressed in normal human eosinophils and in erythroleukemic cell line TF-1, which responds to IL-5. The human IL-5 receptor characterized in this paper is essential for signal transduction, because expression of this molecule in murine IL-3-dependent cell line FDC-P1 allowed these cells to proliferate in response to IL-5. PMID:1732409

  16. Methylotroph cloning vehicle

    DOEpatents

    Hanson, R.S.; Allen, L.N.

    1989-04-25

    A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

  17. Imperfect Cloning Operations in Algebraic Quantum Theory

    NASA Astrophysics Data System (ADS)

    Kitajima, Yuichiro

    2015-01-01

    No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.

  18. In vivo analysis of human nucleoporin repeat domain interactions

    PubMed Central

    Xu, Songli; Powers, Maureen A.

    2013-01-01

    The nuclear pore complex (NPC), assembled from ∼30 proteins termed nucleoporins (Nups), mediates selective nucleocytoplasmic trafficking. A subset of nucleoporins bear a domain with multiple phenylalanine–glycine (FG) motifs. As binding sites for transport receptors, FG Nups are critical in translocation through the NPC. Certain FG Nups are believed to associate via low-affinity, cohesive interactions to form the permeability barrier of the pore, although the form and composition of this functional barrier are debated. We used green fluorescent protein–Nup98/HoxA9 constructs with various numbers of repeats and also substituted FG domains from other nucleoporins for the Nup98 domain to directly compare cohesive interactions in live cells by fluorescence recovery after photobleaching (FRAP). We find that cohesion is a function of both number and type of FG repeats. Glycine–leucine–FG (GLFG) repeat domains are the most cohesive. FG domains from several human nucleoporins showed no interactions in this assay; however, Nup214, with numerous VFG motifs, displayed measurable cohesion by FRAP. The cohesive nature of a human nucleoporin did not necessarily correlate with that of its yeast orthologue. The Nup98 GLFG domain also functions in pore targeting through binding to Nup93, positioning the GLFG domain in the center of the NPC and supporting a role for this nucleoporin in the permeability barrier. PMID:23427268

  19. Local cloning of two product states

    SciTech Connect

    Ji Zhengfeng; Feng Yuan; Ying Mingsheng

    2005-09-15

    Local quantum operations and classical communication (LOCC) put considerable constraints on many quantum information processing tasks such as cloning and discrimination. Surprisingly, however, discrimination of any two pure states survives such constraints in some sense. We show that cloning is not that lucky; namely, probabilistic LOCC cloning of two product states is strictly less efficient than global cloning. We prove our result by giving explicitly the efficiency formula of local cloning of any two product states.

  20. Fabrication and electrical characterization of a pore-cavity-pore device

    NASA Astrophysics Data System (ADS)

    Pedone, D.; Langecker, M.; Münzer, A. M.; Wei, R.; Nagel, R. D.; Rant, U.

    2010-11-01

    We present a solid state nanopore device structure comprising two nanopores which are stacked above each other and connected via a pyramidal cavity of 10 fl volume. The process of fabrication of the pore-cavity-pore device (PCP) relies on the formation of one pore in a Si3N4 membrane by electron beam lithography, while the other pore is chemically etched into the Si carrier by a feedback controlled process. The dimensions of the two nanopores as well as the cavity can be adjusted independently, which is confirmed by transmission electron microscopy. The PCP device is characterized with respect to its electrical properties, including noise analysis and impedance spectroscopy. An equivalent circuit model is identified and resistance, capacitance, and dielectric loss factors are obtained. Potential and electric field distributions inside the electrically biased device are simulated by finite element methods. The low noise characteristics of the PCP device (comparable to a single solid state nanopore) make it suitable for the stochastic sensing of single molecules; moreover, the pore-cavity-pore architecture allows for novel kinds of experiments including the trapping of single nano-objects and single molecule time-of-flight measurements.

  1. Local cloning of entangled states

    SciTech Connect

    Gheorghiu, Vlad; Yu Li; Cohen, Scott M.

    2010-08-15

    We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.

  2. Mineral dissolution kinetics at the pore scale

    SciTech Connect

    Li, L.; Steefel, C.I.; Yang, L.

    2007-05-24

    Mineral dissolution rates in the field have been reported to be orders of magnitude slower than those measured in the laboratory, an unresolved discrepancy that severely limits our ability to develop scientifically defensible predictive or even interpretive models for many geochemical processes in the earth and environmental sciences. One suggestion links this discrepancy to the role of physical and chemical heterogeneities typically found in subsurface soils and aquifers in producing scale-dependent rates where concentration gradients develop. In this paper, we examine the possibility that scale-dependent mineral dissolution rates can develop even at the single pore and fracture scale, the smallest and most fundamental building block of porous media. To do so, we develop two models to analyze mineral dissolution kinetics at the single pore scale: (1) a Poiseuille Flow model that applies laboratory-measured dissolution kinetics at the pore or fracture wall and couples this to a rigorous treatment of both advective and diffusive transport, and (2) a Well-Mixed Reactor model that assumes complete mixing within the pore, while maintaining the same reactive surface area, average flow rate, and geometry as the Poiseuille Flow model. For a fracture, a 1D Plug Flow Reactor model is considered in addition to quantify the effects of longitudinal versus transverse mixing. The comparison of averaged dissolution rates under various conditions of flow, pore size, and fracture length from the three models is used as a means to quantify the extent to which concentration gradients at the single pore and fracture scale can develop and render rates scale-dependent. Three important minerals that dissolve at widely different rates, calcite, plagioclase, and iron hydroxide, are considered. The modeling indicates that rate discrepancies arise primarily where concentration gradients develop due to comparable rates of reaction and advective transport, and incomplete mixing via molecular

  3. Pores and Void in Asclepiades’ Physical Theory

    PubMed Central

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  4. Pores and Void in Asclepiades' Physical Theory.

    PubMed

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades' theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus' theory. PMID:22984299

  5. Pore destruction resulting from mechanical thermal expression

    SciTech Connect

    Clayton, S.A.; Wheeler, R.A.; Hoadley, A.F.A.

    2007-07-01

    Mechanical thermal expression (MTE) is a dewatering technology ideally suited for the dewatering of internally porous biomaterials. For such materials, the combined application of temperature and compressive force in the MTE process enhances the collapse of the porous structure, resulting in effective water removal. In this article, a comparison of the dewatering of titanium dioxide, which is an ideal incompressible, non-porous material, and lignite, which is a porous plant-based biomaterial, is presented. The comparison is based on the parameters critical to dewatering, namely the material compressibility and the permeability. With the aid of mercury porosimetry results, a detailed discussion of the pore destruction of lignite resulting from MTE processing is presented. It is illustrated that there is a well-defined relationship between the pore size distribution after MTE dewatering and the MTE temperature and pressure. The discussion is extended to an investigation of the effects of MTE processing conditions on the effective and noneffective porosity. The effective porosity is defined as the interconnected porosity, which contributes to flow through the compressed matrix, while the non-effective porosity is the remaining porosity, which does not contribute to flow. It is illustrated that there is a linear relationship in both the effective and non-effective porosity with the total porosity. The linear relationship is independent of the processing conditions. It is also shown that MTE processing collapses the effective and non-effective pores at roughly the same rate.

  6. The effective pore radius of screen wicks

    SciTech Connect

    Imura, Hideaki; Kozai, Hiroaki; Ikeda, Yuji

    1994-10-01

    The effective pore radius in screen-wick heat pipes was investigated, which is very important for the prediction of maximum heat transfer rates due to capillary limitation. An equation for the effective pore radius of the screen wicks was derived based on the model of the screen geometry. The capillary height for stainless steel and phosphor bronze screens was measured using water, ethyl alcohol, and Freon 113 as the test liquids. The effect of surface treatment (acid cleaning and oxidation) on the capillary height was also examined. From the comparison of the experimental data for water and ethyl alcohol with those for Freon 113, it was indicated that the contact angle was 24.2{degree} for water and 16.9{degree} for ethyl alcohol. Consequently, it was found that the effective pore radius of the screen wicks could be predicted fairly well from the expression presented in this study, and that the contact angle should be taken into consideration to evaluate the maximum capillary pressure accurately.

  7. Pore morphology study of silica aerogels

    SciTech Connect

    Hua, D.W.; Anderson, J.; Haereid, S.; Smith, D.M.

    1994-12-31

    Silica aerogels have numerous properties which suggest applications such as ultra high efficiency thermal insulation. These properties relate directly to the aerogel`s pore size distribution. The micro and meso pore size ranges can be investigated by normal small angle x-ray scattering and possibly, nitrogen adsorption. However, the measurement of larger pores (> 250 {angstrom}) is more difficult. Due to their limited mechanical strength, mercury porosimetry and nitrogen condensation can disrupt the gel structure and electron microscopy provides only limited large scale structure information. The use of small angle light scattering techniques seems to have promise, the only hurdle is that aerogels exhibit significant multiple scattering. This can be avoided if one observes the gels in the wet stage since the structure of the aerogel should be very similar to the wet gel (as the result of supercritical drying). Thus, if one can match the refractive index, the morphology can be probed. The combination of certain alcoholic solvents fit this index matching criteria. Preliminary results for the gel network (micron range) and primary particle structure (manometer) are reported by using small angle light scattering and ultra-small angle x-ray scattering. The effects on structure over the length scale range of <1 nm to >5 {mu}m under different conditions (precursors, pH, etc.) are presented. The change in structure of an aerogel during isostatic compaction to 228 MPa (to simulate drying from wetting solvents) are also discussed.

  8. [Cloning and law in Hungary].

    PubMed

    Julesz, Máté

    2015-03-01

    Reproductive human cloning is prohibited in Hungary, as in many other countries. Therapeutic human cloning is not prohibited, just like in many other countries. Stem cell therapy is also allowed. Article III, paragraph (3) of the Hungarian basic law (constitution) strictly forbids total human cloning. Article 1 of the Additional Protocol to the Oviedo Convention, on the Prohibition of Cloning Human Beings (1998) stipulates that any intervention seeking to create a human being genetically identical to another human being, whether living or dead, is prohibited. In Hungary, according to Article 174 of the Criminal Code, total human cloning constitutes a crime. Article 180, paragraph (3) of the Hungarian Act on Health declares that embryos shall not be brought about for research purposes; research shall be conducted only on embryos brought about for reproductive purposes when this is authorized by the persons entitled to decide upon its disposal, or when the embryo is damaged. Article 180, paragraph (5) of the Hungarian Act on Health stipulates that multiple individuals who genetically conform to one another shall not be brought about. According to Article 181, paragraph (1) of the Hungarian Act on Health, an embryo used for research shall be kept alive for not longer than 14 days, not counting the time it was frozen for storage and the time period of research.

  9. [Mystery and problems of cloning].

    PubMed

    Nikitin, V A

    2010-01-01

    The attention of investigators is attracted to the fact that, in spite of great efforts in mammalian cloning, advances that have been made in this area of research are not great, and cloned animals have developmental pathologies often incompatible with life and/or reproduction ability. It is yet not clear what technical or biological factors underlie this, and how they are connected or interact with each other, which is more realistic strategically. There is a great number of articles dealing with the influence of cloning with the nuclear transfer on genetic and epigenetic reprogramming of donor cells. At the same time we can see the practical absence of analytical investigations concerning the technology of cloning as such, its weak points, and possible sources of cellular trauma in the course of microsurgery of nuclear transfer or twinning. This article discusses step by step several nuclear transfer techniques and the methods of dividing early preimplanted embryos for twinning with the aim to reveal possible sources of cell damage during micromanipulation that may have negative influence on the development of cloned organisms. Several new author's technologies based on the study of cell biophysical characteristics are described, which allow one to avoid cellular trauma during manipulation and minimize the possibility of cell damage at any rate.

  10. INVESTIGATIONS INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    EPA Science Inventory

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  11. The topsy-turvy cloning law.

    PubMed

    Brassington, Iain; Oultram, Stuart

    2011-03-01

    In debates about human cloning, a distinction is frequently drawn between therapeutic and reproductive uses of the technology. Naturally enough, this distinction influences the way that the law is framed. The general consensus is that therapeutic cloning is less morally problematic than reproductive cloning--one can hold this position while holding that both are morally unacceptable--and the law frequently leaves the way open for some cloning for the sake of research into new therapeutic techniques while banning it for reproductive purposes. We claim that the position adopted by the law has things the wrong way around: if we accept a moral distinction between therapeutic and reproductive cloning, there are actually more reasons to be morally worried about therapeutic cloning than about reproductive cloning. If cloning is the proper object of legal scrutiny, then, we ought to make sure that we are scrutinising the right kind of clone.

  12. Pore Scale View of Fluid Displacement Fronts in Porous Media

    NASA Astrophysics Data System (ADS)

    Or, D.; Moebius, F.

    2014-12-01

    The macroscopically smooth and regular motion of fluid fronts in porous media is composed of abrupt pore-scale interfacial jumps involving intense interfacial energy release marked by pressure bursts and acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and the resulting unsaturated transport properties behind the front. Experimental studies using acoustic emissions technique (AE), rapid imaging, and pressure measurements help characterize pore scale processes during drainage and imbibition in model porous media. Imbibition and drainage produce different AE signatures (obeying a power law). For rapid drainage, AE signals persist long after cessation of front motion indicative of redistribution and interfacial relaxation. Rapid imaging revealed that interfacial jumps exceed mean front velocity and are highly inertial (Re>1000). Imaged pore invasion volumes and pore volumes deduced from waiting times between pressure fluctuations were in remarkable agreement with geometric pores. Differences between invaded volumes and geometrical pores increase with increasing capillary numbers due to shorter pore evacuation times and onset of simultaneous invasion events. A new mechanistic model for interfacial motions through a pore-throat network enabled systematic evaluation of inertia in interfacial dynamics. Results suggest that in contrast to great sensitivity of pore scale dynamics to variations in pore geometry and boundary conditions, inertia exerts only a minor effect on average phase entrapment. Pore scale invasion events paint a complex picture of rapid and inertial motions and provide new insights on mechanisms at displacement fronts essential for improving the macroscopic description of multiphase flow in porous media.

  13. Resolving pore-space characteristics by rate-controlled porosimetry

    SciTech Connect

    Yuan, H.H.; Swanson, B.F.

    1989-03-01

    By monitoring the mercury capillary pressure in rate-controlled porosimetry (intrusion) experiments, new information regarding the pore space of a rock sample has been obtained. With this technique, called an apparatus for pore examination (APEX), it is now possible to resolve the pore space of a rock sample into two interconnected parts. One part identifies the individual pore systems (pore bodies), which are low-energy sumps or regions of low capillarity. The other part corresponds to the pore throats that interconnect with pore systems. New capillary-pressure curves have been obtained by partitioning the total capillary-pressure curve (normal capillary-pressure curve) into two subcurves: the subison capillary-pressure curve, which details the distribution of pore bodies, and the rison capillary-pressure curve, which details the distribution of pore throats. The authors present APEX data on Berea sandstone and San Andres dolomite that show the volume distribution of low-capillarity regions within the pore space of these rocks. These regions of low capillarity are the principal pore-space regions that trap the residual nonwetting phase upon imbibition of a strongly wetting fluid, as measured by toluene/air systems. The residual nonwetting-phase saturations as determined by the APEX method and by the toluene/air method are in excellent agreement. Thus, the detailed volume distribution of pore systems responsible for trapped nonwetting-phase saturation is determined from APEX measurements, which can have important implications for EOR.

  14. Emergence of a large pore subpopulation during electroporating pulses.

    PubMed

    Smith, Kyle C; Son, Reuben S; Gowrishankar, T R; Weaver, James C

    2014-12-01

    Electroporation increases ionic and molecular transport through cell membranes by creating transient aqueous pores. These pores cannot be directly observed experimentally, but cell system modeling with dynamic electroporation predicts pore populations that produce cellular responses consistent with experiments. We show a cell system model's response that illustrates the life cycle of a pore population in response to a widely used 1 kV/cm, 100 μs trapezoidal pulse. Rapid pore creation occurs early in the pulse, followed by the gradual emergence of a subpopulation of large pores reaching ~30 nm radius. After the pulse, pores rapidly contract to form a single thermally broadened distribution of small pores (~1 nm radius) that slowly decays. We also show the response of the same model to pulses of 100 ns to 1 ms duration, each with an applied field strength adjusted such that a total of 10,000±100 pores are created. As pulse duration is increased, the pore size distributions vary dramatically and a distinct subpopulation of large pores emerges for pulses of microsecond and longer duration. This subpopulation of transient large pores is relevant to understanding rapid transport of macromolecules into and out of cells during a pulse. PMID:24290730

  15. Conformational changes during pore formation by the perforin-related protein pleurotolysin.

    PubMed

    Lukoyanova, Natalya; Kondos, Stephanie C; Farabella, Irene; Law, Ruby H P; Reboul, Cyril F; Caradoc-Davies, Tom T; Spicer, Bradley A; Kleifeld, Oded; Traore, Daouda A K; Ekkel, Susan M; Voskoboinik, Ilia; Trapani, Joseph A; Hatfaludi, Tamas; Oliver, Katherine; Hotze, Eileen M; Tweten, Rodney K; Whisstock, James C; Topf, Maya; Saibil, Helen R; Dunstone, Michelle A

    2015-02-01

    Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters

  16. Change of permeability caused by 2011 Tohoku earthquake detected from pore pressure monitoring

    NASA Astrophysics Data System (ADS)

    Kinoshita, C.; Kano, Y.; Ito, H.

    2013-12-01

    shifted every one day. As a result, amplitude of O1 and M2 constituents decreased after the Tohoku earthquake. M2 and O1 amplitudes were 0.575 hPa and 0.277 hPa before the earthquake, and decreased to 0.554 hPa and 0.184 hPa after the earthquake respectively. The phase between pore pressure and strain, changed after the event and soon recovered. We estimated the hydraulic diffusivity from the change in ratio of tidal response. We have no strain data due to apparatus problem, so we used synthetic strain. From one-dimensional diffusion equation and poroelastic constitutive relations, we could approximate the relation between pore pressure and strain by the exponential curve. Estimated hydraulic diffusivity of preseismic period is 8.0 m2/s and postseismic period is 19 m2/s, and these results correspond to pore pressure decreases. In the case of the barometric pressure response, we made the spectrum analysis and estimated the hydraulic diffusivity. The results from three frequency domain bands were integrated to show how the hydraulic diffusivity depends on to frequency.

  17. Influence of Pore Structure on SIP Properties Deduced from Micro-Scale Modelling

    NASA Astrophysics Data System (ADS)

    Volkmann, Jan; Klitzsch, Norbert; Wiens, Eugen; Mohnke, Oliver

    2010-05-01

    In geophysics frequency dependent complex resistivity measurements are called Spectral Induced Polarization (SIP). In other fields this method is known as Impedance Spectroscopy. In the last two decades many empirical relations were proposed which relate the frequency dependent electrical properties of water saturated rocks to structural properties such as pore radius and inner surface area, or to hydraulic conductivity. Unfortunately, these relations are not universal; they apply only for specific rock types and water compositions. In order to quantify the influence of inner rock structure (as well as of electrochemical water and rock properties) on the frequency dependent electrical properties we model the charge transport processes at the pore space using Comsol Multiphysics. In the frequency domain the effect of Induced Polarization (IP) is characterised by a phase shift between a measured electric current and an alternating voltage applied to the ground. A possible origin of this behaviour particularly for nonconducting rock minerals can be seen in the membrane polarization model as proposed by Marshall and Madden. This model describes a system of electrolyte filled pores. Different mobilities of cations and anions in the small pores cause a membrane effect and thus an electrical polarization. We aim to find a more realistic way of modelling the membrane polarization effect than using the simple Marshall and Madden model. The electric double layer, the origin of the Induced Polarization effect, is caused by surface charges located at the electrolyte rock interface. Thus, the EDL as a boundary effect is accounted for by reduced ion mobilities at the inner surface area. The governing equations and boundary conditions for a system of larger and smaller pores with applied voltage are expressed in frequency domain using a time harmonic approach, the electric current is determined to obtain information about amplitude and phase of the complex resistivity. The

  18. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes.

    PubMed

    Kalluri, R K; Biener, M M; Suss, M E; Merrill, M D; Stadermann, M; Santiago, J G; Baumann, T F; Biener, J; Striolo, A

    2013-02-21

    Understanding and leveraging physicochemical processes at the pore scale are believed to be essential to future performance improvements of supercapacitors and capacitive desalination (CD) cells. Here, we report on a combination of electrochemical experiments and fully atomistic simulations to study the effect of pore size and surface charge density on the capacitance of graphitic nanoporous carbon electrodes. Specifically, we used cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) to study the effect of potential and pore size on the capacitance of nanoporous carbon foams. Molecular dynamics simulations were performed to study the pore-size dependent accumulation of aqueous electrolytes in slit-shaped graphitic carbon pores of different widths (0.65 to 1.6 nm). Experimentally, we observe a pronounced increase of the capacitance of sub-nm pores as the applied potential window gets wider, from a few F g(-1) for narrow potential ranges (-0.3 to 0.3 V vs. Ag/AgCl) to ~40 F g(-1) for wider potential windows (-0.9 V to 0.9 V vs. Ag/AgCl). By contrast, the capacitance of wider pores does not depend significantly on the applied potential window. Molecular dynamics simulations confirm that the penetration of ions into pores becomes more difficult with decreasing pore width and increasing strength of the hydration shell. Consistent with our experimental results, we observe a pore- and ion-size dependent threshold-like charging behavior when the pore width becomes comparable to the size of the hydrated ion (0.65 nm pores for Na(+) and 0.79 nm pores for Cl(-) ions). The observed pore-size and potential dependent accumulation of ions in slit-shaped carbon pores can be explained by the hydration structure of the ions entering the charged pores. The results are discussed in view of their effect on energy-storage and desalination efficiency.

  19. Nuclear Pore Complex Protein Sequences Determine Overall Copolymer Brush Structure and Function

    PubMed Central

    Ando, David; Zandi, Roya; Kim, Yong Woon; Colvin, Michael; Rexach, Michael; Gopinathan, Ajay

    2014-01-01

    The transport of cargo across the nuclear membrane is highly selective and accomplished by a poorly understood mechanism involving hundreds of nucleoporins lining the inside of the nuclear pore complex (NPC). Currently, there is no clear picture of the overall structure formed by this collection of proteins within the pore, primarily due to their disordered nature. We perform coarse-grained simulations of both individual nucleoporins and grafted rings of nups mimicking the in vivo geometry of the NPC and supplement this with polymer brush modeling. Our results indicate that different regions or blocks of an individual NPC protein can have distinctly different forms of disorder and that this property appears to be a conserved functional feature. Furthermore, this block structure at the individual protein level is critical to the formation of a unique higher-order polymer brush architecture that can exist in distinct morphologies depending on the effective interaction energy between the phenylalanine glycine (FG) domains of different nups. Because the interactions between FG domains may be modulated by certain forms of transport factors, our results indicate that transitions between brush morphologies could play an important role in regulating transport across the NPC, suggesting novel forms of gated transport across membrane pores with wide biomimetic applicability. PMID:24806932

  20. Fungal MACPF-like proteins and aegerolysins: bi-component pore-forming proteins?

    PubMed

    Ota, Katja; Butala, Matej; Viero, Gabriella; Dalla Serra, Mauro; Sepčić, Kristina; Maček, Peter

    2014-01-01

    Proteins with membrane-attack complex/perforin (MACPF) domains are found in almost all kingdoms of life, and they have a variety of biological roles, including defence and attack, organism development, and cell adhesion and signalling. The distribution of these proteins in fungi appears to be restricted to some Pezizomycotina and Basidiomycota species only, in correlation with another group of proteins with unknown biological function, known as aegerolysins. These two protein groups coincide in only a few species, and they might operate in concert as cytolytic bi-component pore-forming agents. Representative proteins here include pleurotolysin B, which has a MACPF domain, and the aegerolysin-like protein pleurotolysin A, and the very similar ostreolysin A, which have been purified from oyster mushroom (Pleurotus ostreatus). These have been shown to act in concert to perforate natural and artificial lipid membranes with high cholesterol and sphingomyelin content. The aegerolysin-like proteins provide the membrane cholesterol/sphingomyelin selectivity and recruit oligomerised pleurotolysin B molecules, to create a membrane-inserted pore complex. The resulting protein structure has been imaged with electron microscopy, and it has a 13-meric rosette-like structure, with a central lumen that is ~4-5 nm in diameter. The opened transmembrane pore is non-selectively permeable for ions and smaller neutral solutes, and is a cause of cytolysis of a colloid-osmotic type. The biological significance of these proteins for the fungal life-style is discussed. PMID:24798017

  1. Star volumes of villi and intervillous pores in placentae from low and high altitude pregnancies.

    PubMed Central

    Lee, R; Mayhew, T M

    1995-01-01

    Histological sections of placentae from pregnancies completed at low altitude (400 m) and high altitude (3600 m) in Bolivia were analysed using a stereological estimator of the star volumes of villous 'domains' and intervillous 'pores'. The purpose was to test whether or not differences in the overall volumes of these compartments are accompanied by changes in their geometrical relationships. Whilst total placental volume did not vary with altitude, the total volume of villi declined by about 25% and total intervillous volume increased by 40% at high altitude. The star volume of villi also decreased by 25% (from 1.5 x 10(6) microns 3 at low altitude to 1.1 x 10(6) microns 3 at high altitude) whilst the star volume of intervillous pores increased 4-fold (from 87 x 10(6) microns 3 to 461 x 10(6) microns 3). These figures imply that villous domains decrease in size but may be constant in number. The most likely explanation is that villous trees at high altitude are scaled-down versions of their low-altitude counterparts. By contrast, although the intervillous pores enlarge they may decrease in number in the highland organ. This may reflect a change in the number of maternal cotyledons or in the spatial arrangement of villous trees. PMID:7649834

  2. Piezo1 ion channel pore properties are dictated by C-terminal region.

    PubMed

    Coste, Bertrand; Murthy, Swetha E; Mathur, Jayanti; Schmidt, Manuela; Mechioukhi, Yasmine; Delmas, Patrick; Patapoutian, Ardem

    2015-05-26

    Piezo1 and Piezo2 encode mechanically activated cation channels that function as mechanotransducers involved in vascular system development and touch sensing, respectively. Structural features of Piezos remain unknown. Mouse Piezo1 is bioinformatically predicted to have 30-40 transmembrane (TM) domains. Here, we find that nine of the putative inter-transmembrane regions are accessible from the extracellular side. We use chimeras between mPiezo1 and dPiezo to show that ion-permeation properties are conferred by C-terminal region. We further identify a glutamate residue within a conserved region adjacent to the last two putative TM domains of the protein, that when mutated, affects unitary conductance and ion selectivity, and modulates pore block. We propose that this amino acid is either in the pore or closely associates with the pore. Our results describe important structural motifs of this channel family and lay the groundwork for a mechanistic understanding of how Piezos are mechanically gated and conduct ions.

  3. Piezo1 ion channel pore properties are dictated by C-terminal region

    NASA Astrophysics Data System (ADS)

    Coste, Bertrand; Murthy, Swetha E.; Mathur, Jayanti; Schmidt, Manuela; Mechioukhi, Yasmine; Delmas, Patrick; Patapoutian, Ardem

    2015-05-01

    Piezo1 and Piezo2 encode mechanically activated cation channels that function as mechanotransducers involved in vascular system development and touch sensing, respectively. Structural features of Piezos remain unknown. Mouse Piezo1 is bioinformatically predicted to have 30-40 transmembrane (TM) domains. Here, we find that nine of the putative inter-transmembrane regions are accessible from the extracellular side. We use chimeras between mPiezo1 and dPiezo to show that ion-permeation properties are conferred by C-terminal region. We further identify a glutamate residue within a conserved region adjacent to the last two putative TM domains of the protein, that when mutated, affects unitary conductance and ion selectivity, and modulates pore block. We propose that this amino acid is either in the pore or closely associates with the pore. Our results describe important structural motifs of this channel family and lay the groundwork for a mechanistic understanding of how Piezos are mechanically gated and conduct ions.

  4. HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358

    PubMed Central

    2013-01-01

    Background Lentiviruses such as HIV-1 can be distinguished from other retroviruses by the cyclophilin A-binding loop in their capsid and their ability to infect non-dividing cells. Infection of non-dividing cells requires transport through the nuclear pore but how this is mediated is unknown. Results Here we present the crystal structure of the N-terminal capsid domain of HIV-1 in complex with the cyclophilin domain of nuclear pore protein NUP358. The structure reveals that HIV-1 is positioned to allow single-bond resonance stabilisation of exposed capsid residue P90. NMR exchange experiments demonstrate that NUP358 is an active isomerase, which efficiently catalyzes cis-trans isomerization of the HIV-1 capsid. In contrast, the distantly related feline lentivirus FIV can bind NUP358 but is neither isomerized by it nor requires it for infection. Conclusion Isomerization by NUP358 may be preserved by HIV-1 to target the nuclear pore and synchronize nuclear entry with capsid uncoating. PMID:23902822

  5. Displacement of soil pore water by trichloroethylene

    USGS Publications Warehouse

    Wershaw, R. L.; Aiken, G.R.; Imbrigiotta, T.E.; Goldberg, M.C.

    1994-01-01

    Dense nonaqueous phase liquids (DNAPLS) are important pollutants because of their widespread use as chemical and industrial solvents. An example of the pollution caused by the discharge of DNAPLs is found at the Picatinny Arsenal, New Jersey, where trichloroethylene (TCE) has been discharged directly into the unsaturated zone. This discharge has resulted in the formation of a plume of TCE-contaminated water in the aquifer downgradient of the discharge. A zone of dark-colored groundwater containing a high dissolved organic C content has been found near the point of discharge of the TCE. The colored-water plume extends from the point of discharge at least 30 m (100 feet) downgradient. Fulvic acids isolated from the colored-waters plume, from water from a background well that has not been affected by the discharge of chlorinated solvents, and from soil pore water collected in a lysimeter installed at an uncontaminated site upgradient of the study area have been compared. Nuclear magnetic resonance spectra of the fulvic acids from the colored waters and from the lysimeter are very similar, but are markedly different from the nuclear magnetic resonance spectrum of the fulvic acid from the background well. The three-dimensional fluorescence spectrum and the DOC fractionation profile of the colored groundwater and the soil pore water are very similar to each other, but quite different from those of the background water. It is proposed from these observations that this colored water is soil pore water that has been displaced by a separate DNAPL liquid phase downward to the saturated zone.

  6. Energy conversion device with support member having pore channels

    DOEpatents

    Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

    2014-01-07

    Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

  7. Cloning, characterization, and tissue expression pattern of mouse Nma/BAMBI during odontogenesis.

    PubMed

    Knight, C; Simmons, D; Gu, T T; Gluhak-Heinrich, J; Pavlin, D; Zeichner-David, M; MacDougall, M

    2001-10-01

    Degenerate oligonucleotides to consensus serine kinase functional domains previously identified a novel, partial rabbit tooth cDNA (Zeichner-David et al., 1992) that was used in this study to identify a full-length mouse clone. A 1390-base-pair cDNA clone was isolated encoding a putative 260-amino-acid open reading frame containing a hydrophobic 25-amino-acid potential transmembrane domain. This clone shares some homology with the TGF-beta type I receptor family, but lacks the intracellular kinase domain. DNA database analysis revealed that this clone has 86% identity to a newly isolated human gene termed non-metastatic gene A and 80% identity to a Xenopus cDNA clone termed BMP and activin membrane bound inhibitor. Here we report the mouse Nma/BAMBI cDNA sequence, the tissue expression pattern, and confirmed expression in dental cell lines. This study demonstrates that Nma/BAMBI is a highly conserved protein across species and is expressed at high levels during odontogenesis.

  8. Precipitation in pores: A geochemical frontier

    DOE PAGES

    Stack, Andrew G.

    2015-07-29

    This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below.more » The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid

  9. Precipitation in pores: A geochemical frontier

    SciTech Connect

    Stack, Andrew G.

    2015-07-29

    This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below. The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid velocities

  10. Mammalian cloning: possibilities and threats.

    PubMed

    Mitalipov, S M; Wolf, D P

    2000-10-01

    The cloning of mammals originated with the production of limited numbers of genetically identical offspring by blastomere separation or embryo splitting. In the past few years, remarkable progress has been reported in cloning by nuclear transfer (NT) with donor nuclei recovered from embryonic, fetal or adult cells. Factors that contribute to the successful reprogramming of the transferred nucleus and the normal term development of the newly reconstructed embryo include the cell cycle stage of both the donor nucleus and recipient cytoplast, the timing of fusion and cytoplast activation, and the source of donor nuclei. The possibility of producing live offspring by somatic cell NT carries potential applications in animal husbandry, biotechnology, transgenic and pharmaceutical production, biomedical research, and the preservation of endangered species. However, the low efficiencies of cloning by NT coupled with high embryonic, fetal and neonatal losses may restrict immediate commercial applications in agriculture. These limitations notwithstanding, the greatest benefits and practical implications of this new technology could be in transplantation medicine and therapeutic cloning.

  11. Clone Poems and the Microcomputer.

    ERIC Educational Resources Information Center

    Irizarry, Estelle

    1989-01-01

    Describes how students can use the computer to study and create clone poems (altering original Spanish-language poems by substituting words and expressions), and how students can gain a deeper appreciation of the original poem's poetic structure and semantics. (CB)

  12. Healthy ageing of cloned sheep

    PubMed Central

    Sinclair, K. D.; Corr, S. A.; Gutierrez, C. G.; Fisher, P. A.; Lee, J.-H.; Rathbone, A. J.; Choi, I.; Campbell, K. H. S.; Gardner, D. S.

    2016-01-01

    The health of cloned animals generated by somatic-cell nuclear transfer (SCNT) has been of concern since its inception; however, there are no detailed assessments of late-onset, non-communicable diseases. Here we report that SCNT has no obvious detrimental long-term health effects in a cohort of 13 cloned sheep. We perform musculoskeletal assessments, metabolic tests and blood pressure measurements in 13 aged (7–9 years old) cloned sheep, including four derived from the cell line that gave rise to Dolly. We also perform radiological examinations of all main joints, including the knees, the joint most affected by osteoarthritis in Dolly, and compare all health parameters to groups of 5-and 6-year-old sheep, and published reference ranges. Despite their advanced age, these clones are euglycaemic, insulin sensitive and normotensive. Importantly, we observe no clinical signs of degenerative joint disease apart from mild, or in one case moderate, osteoarthritis in some animals. Our study is the first to assess the long-term health outcomes of SCNT in large animals. PMID:27459299

  13. Healthy ageing of cloned sheep.

    PubMed

    Sinclair, K D; Corr, S A; Gutierrez, C G; Fisher, P A; Lee, J-H; Rathbone, A J; Choi, I; Campbell, K H S; Gardner, D S

    2016-01-01

    The health of cloned animals generated by somatic-cell nuclear transfer (SCNT) has been of concern since its inception; however, there are no detailed assessments of late-onset, non-communicable diseases. Here we report that SCNT has no obvious detrimental long-term health effects in a cohort of 13 cloned sheep. We perform musculoskeletal assessments, metabolic tests and blood pressure measurements in 13 aged (7-9 years old) cloned sheep, including four derived from the cell line that gave rise to Dolly. We also perform radiological examinations of all main joints, including the knees, the joint most affected by osteoarthritis in Dolly, and compare all health parameters to groups of 5-and 6-year-old sheep, and published reference ranges. Despite their advanced age, these clones are euglycaemic, insulin sensitive and normotensive. Importantly, we observe no clinical signs of degenerative joint disease apart from mild, or in one case moderate, osteoarthritis in some animals. Our study is the first to assess the long-term health outcomes of SCNT in large animals.

  14. Healthy ageing of cloned sheep.

    PubMed

    Sinclair, K D; Corr, S A; Gutierrez, C G; Fisher, P A; Lee, J-H; Rathbone, A J; Choi, I; Campbell, K H S; Gardner, D S

    2016-01-01

    The health of cloned animals generated by somatic-cell nuclear transfer (SCNT) has been of concern since its inception; however, there are no detailed assessments of late-onset, non-communicable diseases. Here we report that SCNT has no obvious detrimental long-term health effects in a cohort of 13 cloned sheep. We perform musculoskeletal assessments, metabolic tests and blood pressure measurements in 13 aged (7-9 years old) cloned sheep, including four derived from the cell line that gave rise to Dolly. We also perform radiological examinations of all main joints, including the knees, the joint most affected by osteoarthritis in Dolly, and compare all health parameters to groups of 5-and 6-year-old sheep, and published reference ranges. Despite their advanced age, these clones are euglycaemic, insulin sensitive and normotensive. Importantly, we observe no clinical signs of degenerative joint disease apart from mild, or in one case moderate, osteoarthritis in some animals. Our study is the first to assess the long-term health outcomes of SCNT in large animals. PMID:27459299

  15. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1999-01-05

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 34 figs.

  16. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  17. Methods of detection using a cellulose binding domain fusion product

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1999-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. Extreme accumulation of nucleotides in simulated hydrothermal pore systems

    PubMed Central

    Baaske, Philipp; Weinert, Franz M.; Duhr, Stefan; Lemke, Kono H.; Russell, Michael J.; Braun, Dieter

    2007-01-01

    We simulate molecular transport in elongated hydrothermal pore systems influenced by a thermal gradient. We find extreme accumulation of molecules in a wide variety of plugged pores. The mechanism is able to provide highly concentrated single nucleotides, suitable for operations of an RNA world at the origin of life. It is driven solely by the thermal gradient across a pore. On the one hand, the fluid is shuttled by thermal convection along the pore, whereas on the other hand, the molecules drift across the pore, driven by thermodiffusion. As a result, millimeter-sized pores accumulate even single nucleotides more than 108-fold into micrometer-sized regions. The enhanced concentration of molecules is found in the bulk water near the closed bottom end of the pore. Because the accumulation depends exponentially on the pore length and temperature difference, it is considerably robust with respect to changes in the cleft geometry and the molecular dimensions. Whereas thin pores can concentrate only long polynucleotides, thicker pores accumulate short and long polynucleotides equally well and allow various molecular compositions. This setting also provides a temperature oscillation, shown previously to exponentially replicate DNA in the protein-assisted PCR. Our results indicate that, for life to evolve, complicated active membrane transport is not required for the initial steps. We find that interlinked mineral pores in a thermal gradient provide a compelling high-concentration starting point for the molecular evolution of life. PMID:17494767

  20. Comparison of unimodal versus bimodal pore catalysts in residues hydrotreating

    SciTech Connect

    Absi-Halabi, M.; Stanislaus, A.; Al-Zaid, H.

    1994-12-31

    Catalyst pore structure is a critical factor influencing the performance of residues hydroprocessing catalysts. The effect is reflected in both hydrodesulfurization activity of the catalyst and its rate of deactivation. In this paper, the pore size distributions of two categories of catalysts, unimodal and bimodal, were systematically varied. Performance evaluation tests in a fixed bed reactor using vacuum residues under conditions comparable to typical refinery operations were conducted. Two series of unimodal and bimodal catalyst extrudates were prepared starting from boehmite gel, whereby the pore structure was systematically varied using hydrothermal treatment and organic additives. For the unimodal catalysts, the pore maxima ranged between 50 and 500 {angstrom} with 70--80% of the pore volume in the desired pore diameter range. The bimodal catalysts had narrow pores with pore diameters less than 100 {angstrom} and wide pres with pore diameter around 5,000 {angstrom}. For bimodal catalyst, an increase in the average wide pore diameter, while maintaining the narrow pore constant, had no significant effect on the catalyst performance. For monomodal catalyst, the activity of the catalyst was noted to have an optimum between 150--350 {angstrom} diameter. Furthermore, the performance of the catalyst concerning its desulfurization activity and deactivation was superior to that of the bimodal catalysts.

  1. Caterpillar regurgitant induces pore formation in plant membranes.

    PubMed

    Lühring, Hinrich; Nguyen, Van Dy; Schmidt, Lilian; Röse, Ursula S R

    2007-11-27

    Formation of channel-like pores in a plant membrane was induced within seconds after application of an aqueous solution containing regurgitant of the insect larvae Spodoptera littoralis. Gated pore currents recorded on the tonoplast of the Charophyte Chara corallina displayed conductances up to several hundred pS. A voltage-dependent gating reaction supports the assumption that pore-forming molecules have amphipathic properties. Regurgitant samples separated into masses smaller or larger than 3kDa were evaluated by patch-clamp and mass spectroscopy. Fractions containing peptides larger than 3kDa constituted pores of large conductances, peptides smaller than 3kDa constituted pores of small conductances. Peptide-free eluates did not constitute conducting pores, indicating that pore-forming components in regurgitant are membrane-spanning oligopeptides.

  2. Human reproductive cloning: a conflict of liberties.

    PubMed

    Havstad, Joyce C

    2010-02-01

    Proponents of human reproductive cloning do not dispute that cloning may lead to violations of clones' right to self-determination, or that these violations could cause psychological harms. But they proceed with their endorsement of human reproductive cloning by dismissing these psychological harms, mainly in two ways. The first tactic is to point out that to commit the genetic fallacy is indeed a mistake; the second is to invoke Parfit's non-identity problem. The argument of this paper is that neither approach succeeds in removing our moral responsibility to consider and to prevent psychological harms to cloned individuals. In fact, the same commitment to personal liberty that generates the right to reproduce by means of cloning also creates the need to limit that right appropriately. Discussion of human reproductive cloning ought to involve a careful and balanced consideration of both the relevant aspects of personal liberty - the parents' right to reproductive freedom and the cloned child's right to self-determination.

  3. Energy values of nine Populus clones

    SciTech Connect

    Strong, T.F.

    1980-01-01

    This paper compares calorific values for components of nine Populus clones. The components include stem wood, stem bark, and branches. Also compared are calorific values for clones of balsam poplar and black cottonwood parentages.

  4. Race quickens for the first human clone.

    PubMed

    Gross, M

    2001-04-01

    The dazzling creation of Dolly, the cloned sheep, led many states to legislate against the possibility of using similar technology to create human clones. But for some, this prize is proving too tempting to ignore. Michael Gross reports. PMID:11413008

  5. The Thumb Domain Mediates Acid-sensing Ion Channel Desensitization.

    PubMed

    Krauson, Aram J; Carattino, Marcelo D

    2016-05-20

    Acid-sensing ion channels (ASICs) are cation-selective proton-gated channels expressed in neurons that participate in diverse physiological processes, including nociception, synaptic plasticity, learning, and memory. ASIC subunits contain intracellular N and C termini, two transmembrane domains that constitute the pore, and a large extracellular loop with defined domains termed the finger, β-ball, thumb, palm, and knuckle. Here we examined the contribution of the finger, β-ball, and thumb domains to activation and desensitization through the analysis of chimeras and the assessment of the effect of covalent modification of introduced Cys at the domain-domain interfaces. Our studies with ASIC1a-ASIC2a chimeras showed that swapping the thumb domain between subunits results in faster channel desensitization. Likewise, the covalent modification of Cys residues at selected positions in the β-ball-thumb interface accelerates the desensitization of the mutant channels. Studies of accessibility with thiol-reactive reagents revealed that the β-ball and thumb domains reside apart in the resting state but that they become closer to each other in response to extracellular acidification. We propose that the thumb domain moves upon continuous exposure to an acidic extracellular milieu, assisting with the closing of the pore during channel desensitization. PMID:27015804

  6. Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins.

    PubMed

    Xiao, Yucheng; Blumenthal, Kenneth; Cummins, Theodore R

    2014-08-01

    Voltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI-DIV) to monitor the activity of individual voltage-sensors and to investigate the molecular determinants of sodium channel pharmacology. The tarantula toxin huwentoxin-IV (HWTX-IV), which inhibits sodium channel current, exclusively enhanced inward gating-pore currents through the DII voltage-sensor. By contrast, the tarantula toxin ProTx-II, which also inhibits sodium channel currents, altered the gating-pore currents in multiple voltage-sensors in a complex manner. Thus, whereas HWTX-IV inhibits central-pore currents by selectively trapping the DII voltage-sensor in the resting configuration, ProTx-II seems to inhibit central-pore currents by differentially altering the configuration of multiple voltage-sensors. The sea anemone toxin anthopleurin B, which impairs open-channel inactivation, exclusively enhanced inward gating-pore currents through the DIV voltage-sensor. This indicates that trapping the DIV voltage-sensor in the resting configuration selectively impairs open-channel inactivation. Furthermore, these data indicate that although activation of all four voltage-sensors is not required for central-pore current generation, activation of the DII voltage-sensor is crucial. Overall, our data demonstrate that gating-pore currents can determine the mechanism of action for sodium channel gating modifiers with high precision. We propose this approach could be adapted to identify the molecular mechanisms of action for gating modifiers of various voltage-gated ion channels.

  7. Gating-Pore Currents Demonstrate Selective and Specific Modulation of Individual Sodium Channel Voltage-Sensors by Biological Toxins

    PubMed Central

    Xiao, Yucheng; Blumenthal, Kenneth

    2014-01-01

    Voltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI–DIV) to monitor the activity of individual voltage-sensors and to investigate the molecular determinants of sodium channel pharmacology. The tarantula toxin huwentoxin-IV (HWTX-IV), which inhibits sodium channel current, exclusively enhanced inward gating-pore currents through the DII voltage-sensor. By contrast, the tarantula toxin ProTx-II, which also inhibits sodium channel currents, altered the gating-pore currents in multiple voltage-sensors in a complex manner. Thus, whereas HWTX-IV inhibits central-pore currents by selectively trapping the DII voltage-sensor in the resting configuration, ProTx-II seems to inhibit central-pore currents by differentially altering the configuration of multiple voltage-sensors. The sea anemone toxin anthopleurin B, which impairs open-channel inactivation, exclusively enhanced inward gating-pore currents through the DIV voltage-sensor. This indicates that trapping the DIV voltage-sensor in the resting configuration selectively impairs open-channel inactivation. Furthermore, these data indicate that although activation of all four voltage-sensors is not required for central-pore current generation, activation of the DII voltage-sensor is crucial. Overall, our data demonstrate that gating-pore currents can determine the mechanism of action for sodium channel gating modifiers with high precision. We propose this approach could be adapted to identify the molecular mechanisms of action for gating modifiers of various voltage-gated ion channels. PMID:24898004

  8. Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins.

    PubMed

    Xiao, Yucheng; Blumenthal, Kenneth; Cummins, Theodore R

    2014-08-01

    Voltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI-DIV) to monitor the activity of individual voltage-sensors and to investigate the molecular determinants of sodium channel pharmacology. The tarantula toxin huwentoxin-IV (HWTX-IV), which inhibits sodium channel current, exclusively enhanced inward gating-pore currents through the DII voltage-sensor. By contrast, the tarantula toxin ProTx-II, which also inhibits sodium channel currents, altered the gating-pore currents in multiple voltage-sensors in a complex manner. Thus, whereas HWTX-IV inhibits central-pore currents by selectively trapping the DII voltage-sensor in the resting configuration, ProTx-II seems to inhibit central-pore currents by differentially altering the configuration of multiple voltage-sensors. The sea anemone toxin anthopleurin B, which impairs open-channel inactivation, exclusively enhanced inward gating-pore currents through the DIV voltage-sensor. This indicates that trapping the DIV voltage-sensor in the resting configuration selectively impairs open-channel inactivation. Furthermore, these data indicate that although activation of all four voltage-sensors is not required for central-pore current generation, activation of the DII voltage-sensor is crucial. Overall, our data demonstrate that gating-pore currents can determine the mechanism of action for sodium channel gating modifiers with high precision. We propose this approach could be adapted to identify the molecular mechanisms of action for gating modifiers of various voltage-gated ion channels. PMID:24898004

  9. Probabilistic cloning of three symmetric states

    SciTech Connect

    Jimenez, O.; Bergou, J.; Delgado, A.

    2010-12-15

    We study the probabilistic cloning of three symmetric states. These states are defined by a single complex quantity, the inner product among them. We show that three different probabilistic cloning machines are necessary to optimally clone all possible families of three symmetric states. We also show that the optimal cloning probability of generating M copies out of one original can be cast as the quotient between the success probability of unambiguously discriminating one and M copies of symmetric states.

  10. Phase-covariant quantum cloning of qudits

    SciTech Connect

    Fan Heng; Imai, Hiroshi; Matsumoto, Keiji; Wang, Xiang-Bin

    2003-02-01

    We study the phase-covariant quantum cloning machine for qudits, i.e., the input states in a d-level quantum system have complex coefficients with arbitrary phase but constant module. A cloning unitary transformation is proposed. After optimizing the fidelity between input state and single qudit reduced density operator of output state, we obtain the optimal fidelity for 1 to 2 phase-covariant quantum cloning of qudits and the corresponding cloning transformation.

  11. [Cloning: reproductive medicine or breeding program?].

    PubMed

    Zülicke, F

    1998-01-01

    The presentation of clone-sheep Dolly in February 1997 which was the result of a long and costly research process by Ian Wilmut's team at Roslin Institute near Edinburgh brought world-wide headlines and a continuous debate. But neither cloning and cloning experiments nor the debates about it and the possible application on humans are as new as it is shown in the media. The following article gives some facts and arguments to the field of cloning.

  12. Reactive Transport in Porous Media: Pore-scale Mass Exchange between Aqueous Phase and Biofilms

    NASA Astrophysics Data System (ADS)

    Hassanizadeh, S.; Qin, C.

    2013-12-01

    In the presence of water and necessary nutrients, biofilms can grow on soil grain surfaces. They occupy void pore spaces blocking water flow. As a result, some hydrodynamic properties of porous media like porosity and permeability will be reduced. This ultimately leads to a condition known as bioclogging. Also, biofilms can degrade certain compounds. So, the features of bioclogging and biodegradation in porous media with biofilms have given rise to a broad range of environmental and engineering applications, such as bioremediation, biobarriers, microbial enhanced oil recovery, and protection of steel corrosion. To date, a number of macroscale and pore-scale models for describing biodegradation in porous media with biofilms are available in the literature. At the macro scale, to simplify numerical implementation, a ';one-equation' model is normally preferred. In this approach, only the solute concentration in aqueous phase is modeled associated with the consumption of solute in biofilms. Because the solute concentration in biofilms is different from that in aqueous phase, an effectiveness factor may be used in Monod kinetics for relating reaction rate within biofilms to the solute concentration in aqueous phase. Notice that this approach has its validity domains like local equilibrium and reaction-rate limited consumption. Another approach to modeling biodegradation is referred to as a ';two-equation' model, in which one needs to simultaneously track the solute concentrations in both aqueous phase and biofilms. In addition, the two concentrations may be related by a first-order kinetic mass exchange model. This first-rate exchange model is normally represented by a constant mas exchange coefficient multiplied by the concentration difference in the two domains. Here, one may question if complex advection-diffusion-reaction processes can be represented just by a constant mass exchange coefficient. In addition, the kinetic model of mass exchange between aqueous phase

  13. On the effusion time of drugs from the open pore of a spherical vesicle

    NASA Astrophysics Data System (ADS)

    Simon, Laurent; Ospina, Juan

    2016-06-01

    Solute permeation through a spherical liposomal vesicle was analyzed using Fick's second law and a mixed Neumann-Dirichlet boundary condition. The first-principles approach was necessary to help calculate the effusion time of a medication through a pore located on the surface of the device. An infinite series of Bessel functions represented the concentration in the Laplace domain. This method yielded closed-form expressions for the characteristic time and the Laplace-transformed fraction of drug released, which was approximated by the first term of the series. The time constant was inversely proportional to the diffusion coefficient in the system and decreased as the pore size increased. It took 4 times the effusion time to unload nearly ninety-eight percent of the pharmaceutical ingredient.

  14. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances.

    PubMed

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F

    2016-12-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum. PMID:27518230

  15. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances.

    PubMed

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F

    2016-12-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.

  16. Nanoporous Anodic Alumina 3D FDTD Modelling for a Broad Range of Inter-pore Distances

    NASA Astrophysics Data System (ADS)

    Bertó-Roselló, Francesc; Xifré-Pérez, Elisabet; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F.

    2016-08-01

    The capability of the finite difference time domain (FDTD) method for the numerical modelling of the optical properties of nanoporous anodic alumina (NAA) in a broad range of inter-pore distances is evaluated. FDTD permits taking into account in the same numerical framework all the structural features of NAA, such as the texturization of the interfaces or the incorporation of electrolyte anions in the aluminium oxide host. The evaluation is carried out by comparing reflectance measurements from two samples with two very different inter-pore distances with the simulation results. Results show that considering the texturization is crucial to obtain good agreement with the measurements. On the other hand, including the anionic layer in the model leads to a second-order contribution to the reflectance spectrum.

  17. Size of diffusion pore of Alcaligenes faecalis.

    PubMed Central

    Ishii, J; Nakae, T

    1988-01-01

    The diffusion pore of the outer membrane of Alcaligenes faecalis was shown to be substantially smaller than the Escherichia coli porin pore. In experiments with intact cells, pentoses and hexoses penetrated into the NaCl-expanded periplasm, whereas saccharides of Mr greater than 342 did not. Cells treated with 0.5 M saccharides of Mr greater than 342 weighed 33 to 38% less than cells treated with isotonic solution, suggesting that these saccharides do not permeate through the outer membrane. The diffusion rates of various solutes through the liposome membranes reconstituted from the Mr-43,000 outer membrane protein showed the following characteristics. (i) The relative diffusion rates of pentoses, hexoses, and methylhexoses appeared to be about 1.0, 0.6, and negligibly small, respectively. (ii) The diffusion rate of glucose appeared to be about 1/10th that with the E. coli B porin. (iii) The diffusion rate of gluconic acid was five to seven times higher than that of glucose. (iv) The diffusion rates of beta-lactam antibiotics appeared to be 40 to less than 10% of those with the E. coli B porin. Images PMID:2835003

  18. Proteins Connecting the Nuclear Pore Complex with the Nuclear Interior

    PubMed Central

    Strambio-de-Castillia, Caterina; Blobel, Günter; Rout, Michael P.

    1999-01-01

    While much has been learned in recent years about the movement of soluble transport factors across the nuclear pore complex (NPC), comparatively little is known about intranuclear trafficking. We isolated the previously identified Saccharomyces protein Mlp1p (myosin-like protein) by an assay designed to find nuclear envelope (NE) associated proteins that are not nucleoporins. We localized both Mlp1p and a closely related protein that we termed Mlp2p to filamentous structures stretching from the nucleoplasmic face of the NE into the nucleoplasm, similar to the homologous vertebrate and Drosophila Tpr proteins. Mlp1p can be imported into the nucleus by virtue of a nuclear localization sequence (NLS) within its COOH-terminal domain. Overexpression experiments indicate that Mlp1p can form large structures within the nucleus which exclude chromatin but appear highly permeable to proteins. Remarkably, cells harboring a double deletion of MLP1 and MLP2 were viable, although they showed a slower net rate of active nuclear import and faster passive efflux of a reporter protein. Our data indicate that the Tpr homologues are not merely NPC-associated proteins but that they can be part of NPC-independent, peripheral intranuclear structures. In addition, we suggest that the Tpr filaments could provide chromatin-free conduits or tracks to guide the efficient translocation of macromolecules between the nucleoplasm and the NPC. PMID:10085285

  19. Characterisation of the passive permeability barrier of nuclear pore complexes

    PubMed Central

    Mohr, Dagmar; Frey, Steffen; Fischer, Torsten; Güttler, Thomas; Görlich, Dirk

    2009-01-01

    Nuclear pore complexes (NPCs) restrict uncontrolled nucleocytoplasmic fluxes of inert macromolecules but permit facilitated translocation of nuclear transport receptors and their cargo complexes. We probed the passive barrier of NPCs and observed sieve-like properties with a dominating mesh or channel radius of 2.6 nm, which is narrower than proposed earlier. A small fraction of diffusion channels has a wider opening, explaining the very slow passage of larger molecules. The observed dominant passive diameter approximates the distance of adjacent hydrophobic clusters of FG repeats, supporting the model that the barrier is made of FG repeat domains cross-linked with a spacing of an FG repeat unit length. Wheat germ agglutinin and the dominant-negative importin β45-462 fragment were previously regarded as selective inhibitors of facilitated NPC passage. We now observed that they do not distinguish between the passive and the facilitated mode. Instead, their inhibitory effect correlates with the size of the NPC-passing molecule. They have little effect on small species, inhibit the passage of green fluorescent protein-sized objects >10-fold and virtually block the translocation of larger ones. This suggests that passive and facilitated NPC passage proceed through one and the same permeability barrier. PMID:19680228

  20. Economical phase-covariant cloning of qudits

    SciTech Connect

    Buscemi, Francesco; D'Ariano, Giacomo Mauro; Macchiavello, Chiara

    2005-04-01

    We derive the optimal N{yields}M phase-covariant quantum cloning for equatorial states in dimension d with M=kd+N, k integer. The cloning maps are optimal for both global and single-qudit fidelity. The map is achieved by an 'economical' cloning machine, which works without ancilla.

  1. Local cloning of arbitrarily entangled multipartite states

    SciTech Connect

    Kay, Alastair; Ericsson, Marie

    2006-01-15

    We examine the perfect cloning of nonlocal, orthogonal states using only local operations and classical communication. We provide a complete characterisation of the states that can be cloned under these restrictions, and their relation to distinguishability. We also consider the case of catalytic cloning, which we show provides no enhancement to the set of clonable states.

  2. Molecular and functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins

    PubMed Central

    1996-01-01

    Macromolecular trafficking across the nuclear envelope involves interactions between cytosolic transport factors and nuclear pore complex proteins. The p62 complex, an assembly of 62, 58, 54, and 45-kD O-linked glycoproteins-localized near the central gated channel of the nuclear pore complex, has been directly implicated in nuclear protein import. The cDNA cloning of rat p62 was reported previously. We have now carried out cDNA cloning of rat p58, p54, and p45. We found that p58 contains regions with FG (Phe, Gly) and PA (Pro, Ala) repeats at both its NH2 and COOH termini separated by a predicted alpha-helical coiled-coil region, while p54 has an NH2-terminal FG and PA repeat region and a COOH-terminal predicted coiled-coil region. p45 and p58 appear to be generated by alternative splicing, with p45 containing the NH2-terminal FG repeat region and the coiled-coil region of p58. Using immunogold electron microscopy, we found that p58/p45 and p54 are localized on both sides of the nuclear pore complex, like p62. Previous studies have shown that immobilized recombinant p62 can bind the cytosolic nuclear import factor NTF2 and thereby deplete transport activity from cytosol. We have now found that immobilized recombinant p58 and p54 also can deplete nuclear transport activity from cytosol, and that p62, p58, and p54 bind directly to the cytosolic nuclear import factors p97 and NTF2. At least in the case of p58, this involves FG repeat regions. Moreover, p58 can bind to a complex containing transport ligand, the nuclear localization sequence receptor (Srp1 alpha) and p97. These data support a model in which the p62 complex binds to a multicomponent particle consisting of transport ligand and cytosolic factors to achieve accumulation of ligand near the central gated channel of the nuclear pore complex. PMID:8707840

  3. Protein domain architectures.

    PubMed

    Mulder, Nicola J

    2010-01-01

    Proteins are composed of functional units, or domains, that can be found alone or in combination with other domains. Analysis of protein domain architectures and the movement of protein domains within and across different genomes provide clues about the evolution of protein function. The classification of proteins into families and domains is provided through publicly available tools and databases that use known protein domains to predict other members in new proteins sequences. Currently at least 80% of the main protein sequence databases can be classified using these tools, thus providing a large data set to work from for analyzing protein domain architectures. Each of the protein domain databases provide intuitive web interfaces for viewing and analyzing their domain classifications and provide their data freely for downloading. Some of the main protein family and domain databases are described here, along with their Web-based tools for analyzing domain architectures.

  4. Computational modeling of electrokinetic transport in random networks of micro-pores and nano-pores

    NASA Astrophysics Data System (ADS)

    Alizadeh, Shima; Mani, Ali

    2014-11-01

    A reduced order model has been developed to study the nonlinear electrokinetic behaviors emerging in the transport of ionic species through micro-scale and nano-scale porous media. In this approach a porous structure is modeled as a network of long and thin pores. By assuming transport equilibrium in the thin dimensions for each pore, a 1D transport equation is developed in the longitudinal direction covering a wide range of conditions including extreme limits of thick and thin electric double layers. This 1D model includes transport via diffusion, electromigration and wide range of advection mechanisms including pressure driven flow, electroosmosis, and diffusion osmosis. The area-averaged equations governing the axial transport from different pores are coupled at the pore intersections using the proper conservation laws. Moreover, an asymptotic treatment has been included in order to remove singularities in the limit of small concentration. The proposed method provides an efficient framework for insightful simulations of porous electrokinetic systems with applications in water desalination and energy storage. PhD student in Mechanical Engineering, Stanford University. She received her Master's degree in Mechanical Engineering from Stanford at 2013. Her research interests include CFD, high performance computing, and optimization.

  5. Nanoscale Pore Imaging and Pore Scale Fluid Flow Modeling in Chalk

    SciTech Connect

    Tomutsa, Liviu; Silin, Dmitriy

    2004-08-19

    For many rocks of high economic interest such as chalk, diatomite, tight gas sands or coal, nanometer scale resolution is needed to resolve the 3D-pore structure, which controls the flow and trapping of fluids in the rocks. Such resolutions cannot be achieved with existing tomographic technologies. A new 3D imaging method, based on serial sectioning and using the Focused Ion Beam (FIB) technology has been developed. FIB allows for the milling of layers as thin as 10 nanometers by using accelerated Ga+ ions to sputter atoms from the sample surface. After each milling step, as a new surface is exposed, a 2D image of this surface is generated. Next, the 2D images are stacked to reconstruct the 3D pore or grain structure. Resolutions as high as 10 nm are achievable using such a technique. A new robust method of pore-scale fluid flow modeling has been developed and applied to sandstone and chalk samples. The method uses direct morphological analysis of the pore space to characterize the petrophysical properties of diverse formations. Not only petrophysical properties (porosity, permeability, relative permeability and capillary pressures) can be computed but also flow processes, such as those encountered in various IOR approaches, can be simulated. Petrophysical properties computed with the new method using the new FIB data will be presented. Present study is a part of the development of an Electronic Core Laboratory at LBNL/UCB.

  6. Cloning humans, cloning literature: genetics and the imagination deficit.

    PubMed

    Van Dijck, J

    1999-01-01

    After the birth of Dolly, media stories on cloning were replete with references to well-known science fiction plots. This essay criticizes the 'imagination deficit' of scientists and journalists, first by problematizing the uncritical adoption of attentuated science fiction plots in the media coverage of Dolly, and second, by proposing to look at more expansive science fiction novels that carefully examine issues such as uniqueness and identity in relation to the new genetics.

  7. A mutation in the pore of the sodium channel alters gating.

    PubMed Central

    Tomaselli, G F; Chiamvimonvat, N; Nuss, H B; Balser, J R; Pérez-García, M T; Xu, R H; Orias, D W; Backx, P H; Marban, E

    1995-01-01

    Ion permeation and channel gating are classically considered independent processes, but site-specific mutagenesis studies in K channels suggest that residues in or near the ion-selective pore of the channel can influence activation and inactivation. We describe a mutation in the pore of the skeletal muscle Na channel that alters gating. This mutation, I-W53C (residue 402 in the mu 1 sequence), decreases the sensitivity to block by tetrodotoxin and increases the sensitivity to block by externally applied Cd2+ relative to the wild-type channel, placing this residue within the pore near the external mouth. Based on contemporary models of the structure of the channel, this residue is remote from the regions of the channel known to be involved in gating, yet this mutation abbreviates the time to peak and accelerates the decay of the macroscopic Na current. At the single-channel level we observe a shortening of the latency to first opening and a reduction in the mean open time compared with the wild-type channel. The acceleration of macroscopic current kinetics in the mutant channels can be simulated by changing only the activation and deactivation rate constants while constraining the microscopic inactivation rate constants to the values used to fit the wild-type currents. We conclude that the tryptophan at position 53 in the domain IP-loop may act as a linchpin in the pore that limits the opening transition rate. This effect could reflect an interaction of I-W53 with the activation voltage sensors or a more global gating-induced change in pore structure. Images FIGURE 1 PMID:7612823

  8. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    SciTech Connect

    Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakage assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.

  9. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    DOE PAGES

    Lin, Qingqing; Li, Huilin; Wang, Tong; London, Erwin

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less

  10. Change of pore properties during carbonization of coking coal

    SciTech Connect

    Miura, S.; Silveston, P.L.

    1980-01-01

    Porosimetry, sorption and density measurements are reported on two caking bituminous coals. West Virginia Jewel No. 2 medium volatile and a Pennsylvania Pittsburgh seam high volatile C, for final carbonization temperatures between 400 and 1000/sup 0/C. Samples were not confined and heating rates of 3 and 8.2%/min were employed. The medium volatile samples exhibit pronounced maxima in pore volume, pore surface area and porosity between 600 and 800/sup 0/C. These temperatures are unexpectedly greater than those at which maximum particle dilation and maximum rate of devolatilization occur. An explanation for this observation is that closed pores are created during carbonization below 600/sup 0/C which are opened when carbonization is carried to higher temperatures. Shape of the pore volume curves suggest new pore initiation, pore growth and pore shrinkage are the dominant processes operating, although collapse of the ultra micro pore structure seems to occur above 800/sup 0/C. A pore development model employing simple expressions for the three dominant processes successfully predicts the pore volume and surface area changes. Apparent activation energies derived from the model indicate that the rates of these dominant steps are controled by basicaly physical, not chemical, changes.

  11. THE SIZE OF SONOPORATION PORES ON THE CELL MEMBRANE

    PubMed Central

    Zhou, Yun; Kumon, Ronald E.; Cui, Jianmin; Deng, Cheri X.

    2009-01-01

    Sonoporation uses ultrasound (US) to generate transient non-selective pores on the cell membrane and has been exploited as a non-viral intracellular drug and gene delivery strategy. The pore size determines the size of agents that can be delivered into the cytoplasm using the technique. However, measurements of the dynamic, submicron-scale pores have not been readily available. Electron microscopy or atomic force microscopy has been used to gauge pore size but such techniques are intrinsically limited to post US measurements that may not accurately reveal the relevant information. As previously demonstrated, changes of the transmembrane current (TMC) of a single cell under voltage clamp can be used for monitoring sonoporation in real time. Because the TMC is related to the diffusion of ions through the pores on the membrane, it can potentially provide information of the pore size generated in sonoporation. Using Xenopus laevis oocytes as the model system, the TMC of single cells under voltage clamp was measured in real time to assess formation of pores on the membrane in sonoporation. The cells were exposed to US (0.2 s, 0.3 MPa, 1.075 MHz) in the presence of Definity™ microbubbles. Experiments were designed to obtain the TMC corresponding to a single pore on the membrane. The size of the pores was estimated from an electro-diffusion model that relates the TMC with pore size from the ion transport through the pores on the membrane. The mean radius of single pores was determined to be 110 nm with standard deviation of 40 nm. This study reports the first results of pore size from the TMC measured using the voltage clamp technique. PMID:19647924

  12. Rainbow trout prolactin cDNA cloning in Escherichia coli.

    PubMed

    Mercier, L; Rentier-Delrue, F; Swennen, D; Lion, M; Le Goff, P; Prunet, P; Martial, J A

    1989-03-01

    We describe the isolation and characterization of a cDNA for trout prolactin (tPrl). An extensive analysis of tPrl recombinant clones by restriction analysis and sequencing revealed the presence of only one form of tPrl mRNA. The deduced protein sequence consists of 210 amino acids, including a signal peptide of 23 amino acids. The amino acid sequence of the mature protein is compared among teleosts and mammals, showing two domains of strong similarity that may be involved in biological activity. PMID:2647439

  13. A Stereolithography Pore-Throat Model

    NASA Astrophysics Data System (ADS)

    Crandall, D.; Ahmadi, G.; Ferer, M.; Smith, D. H.

    2007-12-01

    A new experimental, heterogeneous pore-throat model has been designed and fabricated using stereolithography (SL). In SL production, a laser cures a thin layer of photo-sensitive resin on the surface of a vat of liquid resin; a moveable platform then submerges the cured layer and a new layer is cured on top of the previous one, creating a physical model from a computer generated model. This layered fabrication of a computer generated model has enabled the production of an experimental porous medium with improved fluid resistance properties, as compared to previously studied, constant-height etched cells. A uniform distribution of throat widths was randomly placed throughout the pore-throat matrix and the throat height of each throat was assigned to increase the range of viscous and capillary resistances within the physical model. This variation in both throat height and width generated a porous medium with fairly low porosity (43%), permeability (~400 D), and wide range of geometric resistance properties. Experimental, two-phase immiscible drainage studies in the porous flowcell were performed. Analysis of the captured images was performed with open-source image processing software. These analysis techniques utilized the capability of both ImageJ and the Gnu Image Manipulation Program to be customized with ancillary codes. This enabled batch procedures to be created that converted the original grey-scale bitmaps to binary data sets, which were then analyzed with in-house codes. The fractal dimension, Df, (measured with box-counting) and percent saturation of these experiments were calculated and shown to compare favorably to fractal predictions and previous flowcell studies. Additionally, using the computer generated pore-throat geometry, a computational fluid dynamics model of two- phase flow through the porous medium was created. This model was created using FLUENT code and the Volume of Fluid method. The percent saturation of the less-viscous invading fluid

  14. Evidence that the TM1-TM2 loop contributes to the rho1 GABA receptor pore.

    PubMed

    Filippova, Natalia; Wotring, Virginia E; Weiss, David S

    2004-05-14

    Considerable evidence indicates the second transmembrane domain (TM2) of the gamma-aminobutyric acid (GABA) receptor lines the integral ion pore. To further delineate the structures that constitute the ion pore and selectivity filter of the rho1 GABA receptor, we used the substituted cysteine accessibility method with charged reagents to identify anion- and cation-accessible surfaces. Twenty-one consecutive residues were mutated to cysteine, one at a time, in the presumed intracellular end of the first transmembrane domain (TM1; Ala(271)-Met(276)), the entire linker connecting TM1 to TM2 (Leu(277)-Arg(287)), and the presumed intracellular end of TM2 (Ala(288)-Ala(291)). Positively (MTSEA(+)) and negatively (pCMBS(-)) charged sulfhydryl reagents, as well as Cd(2+), were added extracellularly to test accessibility of the engineered cysteines. Four of the mutants, all at the intracellular end of TM2 (R287C, V289C, P290C, A291C), were accessible to positively charged reagents, whereas seven mutants (A271C, T272C, L277C, W279C, V280C, P290C, A291C) were functionally modified by negatively charged pCMBS(-). These seven modified residues were at the intracellular end of TM2, in the TM1-TM2 linker, and at the intracellular end of TM1. In nearly all cases (excluding P290C), the rate and the degree of modification were state-dependent, with greater accessibility in the presence of agonist. Select cysteine mutants were combined with a point mutation (A291E) that converted the pore from chloride- to non-selective. In this case, positively charged reagents could modify residues in the TM1-TM2 linker (Leu(277) and Val(280)), supporting the notion that the modifying reagents were reaching their target through the pore. Taken together, our results suggest that, up to its intracellular end, the TM2 domain is not charge selective. In addition, we propose that the TM1-TM2 linker and the intracellular end of TM1 are along the pathway of the permeating ion. These findings may lend new

  15. Predators induce cloning in echinoderm larvae.

    PubMed

    Vaughn, Dawn; Strathmann, Richard R

    2008-03-14

    Asexual propagation (cloning) is a widespread reproductive strategy of plants and animals. Although larval cloning is well documented in echinoderms, identified stimuli for cloning are limited to those associated with conditions favorable for growth and reproduction. Our research shows that larvae of the sand dollar Dendraster excentricus also clone in response to cues from predators. Predator-induced clones were smaller than uncloned larvae, suggesting an advantage against visual predators. Our results offer another ecological context for asexual reproduction: rapid size reduction as a defense.

  16. Probabilistic cloning of three nonorthogonal states

    NASA Astrophysics Data System (ADS)

    Zhang, Wen; Rui, Pinshu; Yang, Qun; Zhao, Yan; Zhang, Ziyun

    2015-04-01

    We study the probabilistic cloning of three nonorthogonal states with equal success probabilities. For simplicity, we assume that the three states belong to a special set. Analytical form of the maximal success probability for probabilistic cloning is calculated. With the maximal success probability, we deduce the explicit form of probabilistic quantum cloning machine. In the case of cloning, we get the unambiguous form of the unitary operation. It is demonstrated that the upper bound for probabilistic quantum cloning machine in (Qiu in J Phys A 35:6931, 2002) can be reached only if the three states are equidistant.

  17. Optimal quantum cloning via spin networks

    SciTech Connect

    Chen Qing; Cheng Jianhua; Wang Kelin; Du Jiangfeng

    2006-09-15

    In this paper we demonstrate that optimal 1{yields}M phase-covariant cloning quantum cloning is available via free dynamical evolution of spin networks. By properly designing the network and the couplings between spins, we show that optimal 1{yields}M phase-covariant cloning can be achieved if the initial state is prepared as a specific symmetric state. Especially, when M is an odd number, the optimal phase-covariant cloning can be achieved without ancillas. Moreover, we demonstrate that the same framework is capable for optimal 1{yields}2 universal cloning.

  18. No-cloning theorem on quantum logics

    SciTech Connect

    Miyadera, Takayuki; Imai, Hideki

    2009-10-15

    This paper discusses the no-cloning theorem in a logicoalgebraic approach. In this approach, an orthoalgebra is considered as a general structure for propositions in a physical theory. We proved that an orthoalgebra admits cloning operation if and only if it is a Boolean algebra. That is, only classical theory admits the cloning of states. If unsharp propositions are to be included in the theory, then a notion of effect algebra is considered. We proved that an atomic Archimedean effect algebra admitting cloning operation is a Boolean algebra. This paper also presents a partial result, indicating a relation between the cloning on effect algebras and hidden variables.

  19. Therapeutic and reproductive cloning: a critique.

    PubMed

    Bowring, Finn

    2004-01-01

    This article is a critical examination of the science and ethics of human cloning. It summarises the key scientific milestones in the development of nuclear transplantation, explains the importance of cloning to research into the medical potential of embryonic stem cells, and discusses the well-worn distinction between 'therapeutic' and 'reproductive' cloning. Suggesting that this distinction will be impossible to police, it goes on to consider the ethics of full human cloning. It is concluded that it represents an unacceptable form of parental despotism, and that the genetic engineering and cloning of future human beings will fracture the foundations of modern humanism.

  20. Understanding the Public Domain.

    ERIC Educational Resources Information Center

    Russell, Carrie

    2003-01-01

    This overview of the public domain covers: defining the public domain; figuring out if a work is protected by copyright; being sure a work is in the public domain; asserting the copyright protection and term; the Creative Commons initiative; building the Information Commons; when permission is needed for using a public domain work; and special…

  1. Chromatin remodeling in nuclear cloning.

    PubMed

    Wade, Paul A; Kikyo, Nobuaki

    2002-05-01

    Nuclear cloning is a procedure to create new animals by injecting somatic nuclei into unfertilized oocytes. Recent successes in mammalian cloning with differentiated adult nuclei strongly indicate that oocyte cytoplasm contains unidentified remarkable reprogramming activities with the capacity to erase the previous memory of cell differentiation. At the heart of this nuclear reprogramming lies chromatin remodeling as chromatin structure and function define cell differentiation through regulation of the transcriptional activities of the cells. Studies involving the modification of chromatin elements such as selective uptake or release of binding proteins, covalent histone modifications including acetylation and methylation, and DNA methylation should provide significant insight into the molecular mechanisms of nuclear dedifferentiation and redifferentiation in oocyte cytoplasm.

  2. Distributed Pore Chemistry in Porous Organic Polymers

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1998-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The sub-strate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic region, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  3. Distributed Pore Chemistry in Porous Organic Polymers

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1999-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge. wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions. and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  4. Viruses Challenge Selectivity Barrier of Nuclear Pores

    PubMed Central

    Labokha, Aksana A.; Fassati, Ariberto

    2013-01-01

    Exchange between the nucleus and the cytoplasm occurs through nuclear pore complexes (NPCs) embedded in the double membrane of the nuclear envelope. NPC permeability barrier restricts the entry of inert molecules larger than 5 nm in diameter but allows facilitated entry of selected cargos, whose size can reach up to 39 nm. The translocation of large molecules is facilitated by nuclear transport receptors (NTRs) that have affinity to proteins of NPC permeability barrier. Viruses that enter the nucleus replicate evolved strategies to overcome this barrier. In this review, we will discuss the functional principles of NPC barrier and nuclear transport machinery, as well as the various strategies viruses use to cross the selective barrier of NPCs. PMID:24084236

  5. Development of a closed pore insulation material

    NASA Technical Reports Server (NTRS)

    Tobin, A.; Feldman, C.; Russak, M.; Reichman, J.

    1973-01-01

    A closed pore ceramic foam insulation material (CPI) has been developed that offers possibilities for use as a reusable external heat shield for the NASA manned space shuttle. The outstanding characteristics of CPI are: (1) negligible water absorption due to a noninterconnecting network of cells; (2) high emittance at room and elevated temperature; (3) ability to survive at least 10 simulated reentry cycles to 1500 K using radiant heat lamps to simulate the reentry heat fluxes; (4) ability to survive, with no change in properties or appearance, at least 10 simulated plasma arc jet cycles to 1500 K (with the exception of some stress cracks induced either by the unduly severe nature of the initial arc splash heating pulse or by improper mechanical holding of the specimen in the test fixture); (5) strength (flexure); and (6) a low thermal conductivity throughout the temperature range of interest for the space shuttle.

  6. Structural evolution of the membrane-coating module of the nuclear pore complex

    PubMed Central

    Liu, Xiaoping; Mitchell, Jana M.; Wozniak, Richard W.; Blobel, Günter; Fan, Jie

    2012-01-01

    The coatomer module of the nuclear pore complex borders the cylinder-like nuclear pore-membrane domain of the nuclear envelope. In evolution, a single coatomer module increases in size from hetero-heptamer (Saccharomyces cerevisiae) to hetero-octamer (Schizosaccharomyces pombe) to hetero-nonamer (Metazoa). Notably, the heptamer–octamer transition proceeds through the acquisition of the nucleoporin Nup37. How Nup37 contacts the heptamer remained unknown. Using recombinant nucleoporins, we show that Sp-Nup37 specifically binds the Sp-Nup120 member of the hetero-heptamer but does not bind an Sc-Nup120 homolog. To elucidate the Nup37–Nup120 interaction at the atomic level, we carried out crystallographic analyses of Sp-Nup37 alone and in a complex with an N-terminal, ∼110-kDa fragment of Sp-Nup120 comprising residues 1–950. Corroborating structural predictions, we determined that Nup37 folds into a seven-bladed β-propeller. Several disordered surface regions of the Nup37 β-propeller assume structure when bound to Sp-Nup120. The N-terminal domain of Sp-Nup1201–950 also folds into a seven-bladed propeller with a markedly protruding 6D–7A insert and is followed by a contorted helical domain. Conspicuously, this 6D–7A insert contains an extension of 50 residues which also is highly conserved in Metazoa but is absent in Sc-Nup120. Strikingly, numerous contacts with the Nup37 β-propeller are located on this extension of the 6D–7A insert. Another contact region is situated toward the end of the helical region of Sp-Nup1201–950. Our findings provide information about the evolution and the assembly of the coatomer module of the nuclear pore complex. PMID:23019579

  7. Stacking of silicon pore optics for IXO

    NASA Astrophysics Data System (ADS)

    Collon, Maximilien J.; Guenther, Ramses; Ackermann, Marcelo; Partapsing, Rakesh; Kelly, Chris; Beijersbergen, Marco W.; Bavdaz, Marcos; Wallace, Kotska; Olde Riekerink, Mark; Mueller, Peter; Krumrey, Michael

    2009-08-01

    Silicon pore optics is a technology developed to enable future large area X-ray telescopes, such as the International Xray Observatory (IXO), a candidate mission in the ESA Space Science Programme 'Cosmic Visions 2015-2025'. IXO uses nested mirrors in Wolter-I configuration to focus grazing incidence X-ray photons on a detector plane. The IXO mirrors will have to meet stringent performance requirements including an effective area of ~3 m2 at 1.25 keV and ~1 m2 at 6 keV and angular resolution better than 5 arc seconds. To achieve the collecting area requires a total polished mirror surface area of ~1300 m2 with a surface roughness better than 0.5 nm rms. By using commercial high-quality 12" silicon wafers which are diced, structured, wedged, coated, bent and stacked the stringent performance requirements of IXO can be attained without any costly polishing steps. Two of these stacks are then assembled into a co-aligned mirror module, which is a complete X-ray imaging system. Included in the mirror module are the isostatic mounting points, providing a reliable interface to the telescope. Hundreds of such mirror modules are finally integrated into petals, and mounted onto the spacecraft to form an X-ray optic of four meters in diameter. In this paper we will present the silicon pore optics assembly process and latest X-ray results. The required metrology is described in detail and experimental methods are shown, which allow to assess the quality of the HPOs during production and to predict the performance when measured in synchrotron radiation facilities.

  8. The channel domain of colicin A is inhibited by its immunity protein through direct interaction in the Escherichia coli inner membrane.

    PubMed Central

    Espesset, D; Duché, D; Baty, D; Géli, V

    1996-01-01

    A bacterial signal sequence was fused to the colicin A pore-forming domain: the exported pore-forming domain was highly cytotoxic. We thus introduced a cysteine-residue pair in the fusion protein which has been shown to form a disulfide bond in the natural colicin A pore-forming domain between alpha-helices 5 and 6. Formation of the disulfide bond prevented the cytotoxic activity of the fusion protein, presumably by preventing the membrane insertion of helices 5 and 6. However, the cytotoxicity of the disulfide-linked pore-forming domain was reactivated by adding dithiothreitol into the culture medium. We were then able to co-produce the immunity protein with the disulfide linked pore-forming domain, by using a co-immunoprecipitation procedure, in order to show that they interact. We showed both proteins to be co-localized in the Escherichia coli inner membrane and subsequently co-immunoprecipitated them. The interaction required a functional immunity protein. The immunity protein also interacted with a mutant form of the pore-forming domain carrying a mutation located in the voltage-gated region: this mutant was devoid of pore-forming activity but still inserted into the membrane. Our results indicate that the immunity protein interacts with the membrane-anchored channel domain; the interaction requires a functional membrane-inserted immunity protein but does not require the channel to be in the open state. Images PMID:8665842

  9. Cloning Expeditions: Risky but Rewarding

    PubMed Central

    2013-01-01

    In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine. PMID:24061478

  10. Cloning expeditions: risky but rewarding.

    PubMed

    Lodish, Harvey

    2013-12-01

    In the 1980s, a good part of my laboratory was using the then-new recombinant DNA techniques to clone and characterize many important cell surface membrane proteins: GLUT1 (the red cell glucose transporter) and then GLUT2 and GLUT4, the red cell anion exchange protein (Band 3), asialoglycoprotein receptor subunits, sucrase-isomaltase, the erythropoietin receptor, and two of the subunits of the transforming growth factor β (TGF-β) receptor. These cloned genes opened many new fields of basic research, including membrane insertion and trafficking of transmembrane proteins, signal transduction by many members of the cytokine and TGF-β families of receptors, and the cellular physiology of glucose and anion transport. They also led to many insights into the molecular biology of several cancers, hematopoietic disorders, and diabetes. This work was done by an exceptional group of postdocs and students who took exceptionally large risks in developing and using novel cloning technologies. Unsurprisingly, all have gone on to become leaders in the fields of molecular cell biology and molecular medicine.

  11. The structure of a melittin-stabilized pore.

    PubMed

    Leveritt, John M; Pino-Angeles, Almudena; Lazaridis, Themis

    2015-05-19

    Melittin has been reported to form toroidal pores under certain conditions, but the atomic-resolution structure of these pores is unknown. A 9-μs all-atom molecular-dynamics simulation starting from a closely packed transmembrane melittin tetramer in DMPC shows formation of a toroidal pore after 1 μs. The pore remains stable with a roughly constant radius for the rest of the simulation. Surprisingly, one or two melittin monomers frequently transition between transmembrane and surface states. All four peptides are largely helical. A simulation in a DMPC/DMPG membrane did not lead to a stable pore, consistent with the experimentally observed lower activity of melittin on anionic membranes. The picture that emerges from this work is rather close to the classical toroidal pore, but more dynamic with respect to the configuration of the peptides. PMID:25992720

  12. Molecular cloning of protein-based polymers.

    PubMed

    Mi, Lixin

    2006-07-01

    Protein-based biopolymers have become a promising class of materials for both biomedical and pharmaceutical applications, as they have well-defined molecular weights, monomer compositions, as well as tunable chemical, biological, and mechanical properties. Using standard molecular biology tools, it is possible to design and construct genes encoding artificial proteins or protein-based polymers containing multiple repeats of amino acid sequences. This article reviews some of the traditional methods used for constructing DNA duplexes encoding these repeat-containing genes, including monomer generation, concatemerization, iterative oligomerization, and seamless cloning. A facile and versatile method, called modules of degenerate codons (MDC), which uses PCR and codon degeneracy to overcome some of the disadvantages of traditional methods, is introduced. Re-engineering of the random coil spacer domain of a bioactive protein, WPT2-3R, is used to demonstrate the utility of the MDC method. MDC re-constructed coding sequences facilitate further manipulations, such as insertion, deletion, and swapping of various sequence modules. A summary of some promising emerging techniques for synthesizing repetitive sequence-containing artificial proteins is also provided. PMID:16827576

  13. Application of real rock pore-throat statistics to a regular pore network model

    SciTech Connect

    Sarker, M.R.; McIntyre, D.; Ferer, M.; Siddigui, S.; Bromhal. G.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throat sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results

  14. Application of real rock pore-threat statistics to a regular pore network model

    SciTech Connect

    Rakibul, M.; Sarker, H.; McIntyre, D.; Ferer, M.; Siddiqui, S.; Bromhal. G.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throat sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results

  15. Molecular Dynamics Simulations of Hydrophilic Pores in Lipid Bilayers

    PubMed Central

    Leontiadou, Hari; Mark, Alan E.; Marrink, Siewert J.

    2004-01-01

    Hydrophilic pores are formed in peptide free lipid bilayers under mechanical stress. It has been proposed that the transport of ionic species across such membranes is largely determined by the existence of such meta-stable hydrophilic pores. To study the properties of these structures and understand the mechanism by which pore expansion leads to membrane rupture, a series of molecular dynamics simulations of a dipalmitoylphosphatidylcholine (DPPC) bilayer have been conducted. The system was simulated in two different states; first, as a bilayer containing a meta-stable pore and second, as an equilibrated bilayer without a pore. Surface tension in both cases was applied to study the formation and stability of hydrophilic pores inside the bilayers. It is observed that below a critical threshold tension of ∼38 mN/m the pores are stabilized. The minimum radius at which a pore can be stabilized is 0.7 nm. Based on the critical threshold tension the line tension of the bilayer was estimated to be ∼3 × 10−11 N, in good agreement with experimental measurements. The flux of water molecules through these stabilized pores was analyzed, and the structure and size of the pores characterized. When the lateral pressure exceeds the threshold tension, the pores become unstable and start to expand causing the rupture of the membrane. In the simulations the mechanical threshold tension necessary to cause rupture of the membrane on a nanosecond timescale is much higher in the case of the equilibrated bilayers, as compared with membranes containing preexisting pores. PMID:15041656

  16. Preparation of mesoporous cadmium sulfide nanoparticles with moderate pore size

    SciTech Connect

    Han Zhaohui Zhu, Huaiyong; Shi, Jeffrey; Parkinson, Gordon; Lu, G.Q.

    2007-03-15

    The preparation of cadmium sulfide nanoparticles that have a moderate pore size is reported. This preparation method involves a hydrothermal process that produces a precursor mixture and a following acid treatment of the precursor to get the porous material. The majority of the particles have a pore size close to 20nm, which complements and fills in the gap between the existing cadmium sulfide materials, which usually have a pore size either less than 10nm or are well above 100nm.

  17. Fouling Study of Silicon Oxide Pores Exposed to Tap Water

    SciTech Connect

    Nilsson, J.; Bourcier, W.L.; Lee, J.R.I.; Letant, S.E.; /LLNL, Livermore

    2007-07-12

    We report on the fouling of Focused Ion Beam (FIB)-fabricated silicon oxide nanopores after exposure to tap water for two weeks. Pore clogging was monitored by Scanning Electron Microscopy (SEM) on both bare silicon oxide and chemically functionalized nanopores. While fouling occurred on hydrophilic silicon oxide pore walls, the hydrophobic nature of alkane chains prevented clogging on the chemically functionalized pore walls. These results have implications for nanopore sensing platform design.

  18. A lipocentric view of peptide-induced pores.

    PubMed

    Fuertes, Gustavo; Giménez, Diana; Esteban-Martín, Santi; Sánchez-Muñoz, Orlando L; Salgado, Jesús

    2011-04-01

    Although lipid membranes serve as effective sealing barriers for the passage of most polar solutes, nonmediated leakage is not completely improbable. A high activation energy normally keeps unassisted bilayer permeation at a very low frequency, but lipids are able to self-organize as pores even in peptide-free and protein-free membranes. The probability of leakage phenomena increases under conditions such as phase coexistence, external stress or perturbation associated to binding of nonlipidic molecules. Here, we argue that pore formation can be viewed as an intrinsic property of lipid bilayers, with strong similarities in the structure and mechanism between pores formed with participation of peptides, lipidic pores induced by different types of stress, and spontaneous transient bilayer defects driven by thermal fluctuations. Within such a lipocentric framework, amphipathic peptides are best described as pore-inducing rather than pore-forming elements. Active peptides bound to membranes can be understood as a source of internal surface tension which facilitates pore formation by diminishing the high activation energy barrier. This first or immediate action of the peptide has some resemblance to catalysis. However, the presence of membrane-active peptides has the additional effect of displacing the equilibrium towards the pore-open state, which is then maintained over long times, and reducing the size of initial individual pores. Thus, pore-inducing peptides, regardless of their sequence and oligomeric organization, can be assigned a double role of increasing the probability of pore formation in membranes to high levels as well as stabilizing these pores after they appear.

  19. Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel

    PubMed Central

    Habermacher, Chloé; Martz, Adeline; Calimet, Nicolas; Lemoine, Damien; Peverini, Laurie; Specht, Alexandre; Cecchini, Marco; Grutter, Thomas

    2016-01-01

    P2X receptors function by opening a transmembrane pore in response to extracellular ATP. Recent crystal structures solved in apo and ATP-bound states revealed molecular motions of the extracellular domain following agonist binding. However, the mechanism of pore opening still remains controversial. Here we use photo-switchable cross-linkers as ‘molecular tweezers’ to monitor a series of inter-residue distances in the transmembrane domain of the P2X2 receptor during activation. These experimentally based structural constraints combined with computational studies provide high-resolution models of the channel in the open and closed states. We show that the extent of the outer pore expansion is significantly reduced compared to the ATP-bound structure. Our data further reveal that the inner and outer ends of adjacent pore-lining helices come closer during opening, likely through a hinge-bending motion. These results provide new insight into the gating mechanism of P2X receptors and establish a versatile strategy applicable to other membrane proteins. DOI: http://dx.doi.org/10.7554/eLife.11050.001 PMID:26808983

  20. Pore volume accessibility of particulate and monolithic stationary phases.

    PubMed

    Urban, Jiří

    2015-05-29

    A chromatographic characterization of pore volume accessibility for both particulate and monolithic stationary phases is presented. Size-exclusion calibration curves have been used to determine the pore volume fraction that is accessible for six alkylbenzenes and twelve polystyrene standards in tetrahydrofuran as the mobile phase. Accessible porosity has been then correlated with the size of the pores from which individual compounds are just excluded. I have determined pore volume accessibility of commercially available columns packed with fully and superficially porous particles, as well as with silica-based monolithic stationary phase. I also have investigated pore accessibility of polymer-based monolithic stationary phases. Suggested protocol is used to characterize pore formation at the early stage of the polymerization, to evaluate an extent of hypercrosslinking during modification of pore surface, and to characterize the pore accessibility of monolithic stationary phases hypercrosslinked after an early termination of polymerization reaction. Pore volume accessibility was also correlated to column efficiency of both particulate and monolithic stationary phases. PMID:25892635

  1. X-ray microtomography application in pore space reservoir rock.

    PubMed

    Oliveira, M F S; Lima, I; Borghi, L; Lopes, R T

    2012-07-01

    Characterization of porosity in carbonate rocks is important in the oil and gas industry since a major hydrocarbons field is formed by this lithology and they have a complex media porous. In this context, this research presents a study of the pore space in limestones rocks by x-ray microtomography. Total porosity, type of porosity and pore size distribution were evaluated from 3D high resolution images. Results show that carbonate rocks has a complex pore space system with different pores types at the same facies.

  2. Extraction of pores from microtomographic reconstructions of intact soil aggregates

    SciTech Connect

    Albee, P. B.; Stockman, G. C.; Smucker, A. J. M.

    2000-02-29

    Segmentation of features is often a necessary step in the analysis of volumetric data. The authors have developed a simple technique for extracting voids from irregular volumetric data sets. In this work they look at extracting pores from soil aggregates. First, they identify a threshold that gives good separability of the object from the background. They then segment the object, and perform connected components analysis on the pores within the object. Using their technique pores that break the surface can be segmented along with pores completely contained in the initially segmented object.

  3. Characterisation of pore structures in nanoporous materials for advanced bionanotechnology.

    PubMed

    Heo, K; Yoon, J; Jin, K S; Jin, S; Ree, M

    2006-08-01

    Porous materials are potential candidates for applications in various fields, such as bionanotechnology, gas separation, catalysts and micro-electronics. In particular, their applications in bionanotechnology include biosensors, biomedical implants and microdevices, biosupporters, bio-encapsules, biomolecule separations and biomedical therapy. All these bionanotechnology applications utilise the shape, size and size distribution of pores in porous materials. Therefore the controlled creation of pores with desired shape, size and size distribution is most important in the development of nanoporous materials. Accordingly, the accurate evaluation of pore structure is necessary in the development of nanoporous materials and their applications. This article reviews recent developments in analytical techniques to characterise the pore structures of nanoporous materials.

  4. Pore-size-distribution of cationic polyacrylamide hydrogels

    SciTech Connect

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga's mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  5. Pore-size-distribution of cationic polyacrylamide hydrogels. Progress report

    SciTech Connect

    Kremer, M.; Prausnitz, J.M.

    1992-06-01

    The pore size distribution of a AAm/MAPTAC (acrylamide copolymerized with (3-methacrylamidopropyl)trimethylammonium chloride) hydrogel was investigated using Kuga`s mixed-solute-exclusion method, taking into account the wall effect. A Brownian-motion model is also used. Results show the feasibility of determining pore-size distribution of porous materials using the mixed-solute-exclusion method in conjunction with solution of the Fredholm equation; good agreement was obtained with experiment, even for bimodal pore structures. However, different pore size distributions were calculated for the two different probe-solutes (Dextran and poly(ethylene glycol/oxide)). Future work is outlined. 32 figs, 25 refs.

  6. Enzyme screening with synthetic multifunctional pores: Focus on biopolymers

    PubMed Central

    Sordé, Nathalie; Das, Gopal; Matile, Stefan

    2003-01-01

    This report demonstrates that a single set of identical synthetic multifunctional pores can detect the activity of many different enzymes. Enzymes catalyzing either synthesis or degradation of DNA (exonuclease III or polymerase I), RNA (RNase A), polysaccharides (heparinase I, hyaluronidase, and galactosyltransferase), and proteins (papain, ficin, elastase, subtilisin, and pronase) are selected to exemplify this key characteristic of synthetic multifunctional pore sensors. Because anionic, cationic, and neutral substrates can gain access to the interior of complementarily functionalized pores, such pores can be the basis for very user-friendly screening of a broad range of enzymes. PMID:14530413

  7. Cytolytic and antibacterial activity of synthetic peptides derived from amoebapore, the pore-forming peptide of Entamoeba histolytica.

    PubMed Central

    Leippe, M; Andrä, J; Müller-Eberhard, H J

    1994-01-01

    The pore-forming peptide amoebapore is considered part of the cytolytic armament of pathogenic Entamoeba histolytica. Amoebapore is composed of 77 amino acid residues arranged in four alpha-helical domains. For structure-function analysis, synthetic peptides were constructed corresponding to these four domains: H1 (residues 1-22), H2 (25-39), H3 (40-64), and H4 (67-77). The peptides H1 and H3, representing two highly amphipathic alpha-helical regions of amoebapore, possessed pore-forming activity. Peptide H3 displayed cytolytic and antibacterial functions similar to those of natural amoebapore. The most potent antibacterial activity and the broadest activity spectrum were expressed by H1-Mel, a hybrid molecule composed of the N-terminal alpha-helix of amoebapore and the C-terminal hexapeptide of melittin from the venom of Apis mellifera. Images PMID:8146160

  8. Pore morphologies of root induced biopores from single pore to network scale investigated by XRCT

    NASA Astrophysics Data System (ADS)

    Peth, Stephan; Wittig, Marlen C.; Uteau Puschmann, Daniel; Pagenkemper, Sebastian; Haas, Christoph; Holthusen, Dörthe; Horn, Rainer

    2015-04-01

    Biopores are assumed to be an important factor for nutrient acquisition by providing biologically highly active soil-root interfaces to re-colonizing roots and controlling oxygen and water flows at the pedon scale and within the rhizosphere through the formation of branching channel networks which potentially enhance microbial turnover processes. Characteristic differences in pore morphologies are to be expected depending on the genesis of biopores which, for example, can be earthworm-induced or root-induced or subsequently modified by one of the two. Our understanding of biophysical interactions between plants and soil can be significantly improved by quantifying 3D biopore architectures across scales ranging from single biopores to pedon scale pore networks and linking pore morphologies to microscale measurements of transport processes (e.g. oxygen diffusion). While a few studies in the past have investigated biopore networks on a larger scale yet little is known on the micro-morphology of root-induces biopores and their associated rhizosphere. Also little data is available on lateral transport of oxygen through the rhizosphere which will strongly influence microbial turnover processes and consequently control the release and uptake of nutrients. This paper highlights results gathered within a research unit on nutrient acquisition from the subsoil. Here we focus on X-ray microtomography (XRCT) studies ranging from large soil columns (70 cm length and 20 cm diameter) to individual biopores and its surrounding rhizosphere. Samples were collected from sites with different preceding crops (fescue, chicory, alfalfa) and various cropping durations (1-3 years). We will present an approach for quantitative image analysis combined with micro-sensor measurements of oxygen diffusion and spatial gradients of O2 partial pressures to relate pore structure with transport functions. Implications of various biopore architectures for the accessibility of nutrient resources in

  9. Agro-economic impact of cattle cloning.

    PubMed

    Faber, D C; Ferre, L B; Metzger, J; Robl, J M; Kasinathan, P

    2004-01-01

    The purpose of this paper is to review the economic and social implications of cloned cattle, their products, and their offspring as related to production agriculture. Cloning technology in cattle has several applications outside of traditional production agriculture. These applications can include bio-medical applications, such as the production of pharmaceuticals in the blood or milk of transgenic cattle. Cloning may also be useful in the production of research models. These models may or may not include genetic modifications. Uses in agriculture include many applications of the technology. These include making genetic copies of elite seed stock and prize winning show cattle. Other purposes may range from "insurance" to making copies of cattle that have sentimental value, similar to cloning of pets. Increased selection opportunities available with cloning may provide for improvement in genetic gain. The ultimate goal of cloning has often been envisioned as a system for producing quantity and uniformity of the perfect dairy cow. However, only if heritability were 100%, would clone mates have complete uniformity. Changes in the environment may have significant impact on the productivity and longevity of the resulting clones. Changes in consumer preferences and economic input costs may all change the definition of the perfect cow. The cost of producing such animals via cloning must be economically feasible to meet the intended applications. Present inefficiencies limit cloning opportunities to highly valued animals. Improvements are necessary to move the applications toward commercial application. Cloning has additional obstacles to conquer. Social and regulatory acceptance of cloning is paramount to its utilization in production agriculture. Regulatory acceptance will need to address the animal, its products, and its offspring. In summary, cloning is another tool in the animal biotechnology toolbox, which includes artificial insemination, sexing of semen, embryo

  10. Agro-economic impact of cattle cloning.

    PubMed

    Faber, D C; Ferre, L B; Metzger, J; Robl, J M; Kasinathan, P

    2004-01-01

    The purpose of this paper is to review the economic and social implications of cloned cattle, their products, and their offspring as related to production agriculture. Cloning technology in cattle has several applications outside of traditional production agriculture. These applications can include bio-medical applications, such as the production of pharmaceuticals in the blood or milk of transgenic cattle. Cloning may also be useful in the production of research models. These models may or may not include genetic modifications. Uses in agriculture include many applications of the technology. These include making genetic copies of elite seed stock and prize winning show cattle. Other purposes may range from "insurance" to making copies of cattle that have sentimental value, similar to cloning of pets. Increased selection opportunities available with cloning may provide for improvement in genetic gain. The ultimate goal of cloning has often been envisioned as a system for producing quantity and uniformity of the perfect dairy cow. However, only if heritability were 100%, would clone mates have complete uniformity. Changes in the environment may have significant impact on the productivity and longevity of the resulting clones. Changes in consumer preferences and economic input costs may all change the definition of the perfect cow. The cost of producing such animals via cloning must be economically feasible to meet the intended applications. Present inefficiencies limit cloning opportunities to highly valued animals. Improvements are necessary to move the applications toward commercial application. Cloning has additional obstacles to conquer. Social and regulatory acceptance of cloning is paramount to its utilization in production agriculture. Regulatory acceptance will need to address the animal, its products, and its offspring. In summary, cloning is another tool in the animal biotechnology toolbox, which includes artificial insemination, sexing of semen, embryo

  11. Defective mutations within the translocation domain of Clostridium difficile toxin B impair disease pathogenesis.

    PubMed

    Hamza, Therwa; Zhang, Zhifen; Melnyk, Roman A; Feng, Hanping

    2016-02-01

    The Clostridium difficile toxin B is one of the main virulence factors and plays an important role in the pathogenesis of C. difficile infection (CDI). We recently revealed crucial residues in the translocation domain of TcdB for the pore formation and toxin translocation. In this study, we investigated the effects of mutating a critical site involved in pore formation, Leu-1106, to residues that differ in size and polarity (Phe, Ala, Cys, Asp). We observed a broad range of effects on TcdB function in vitro consistent with the role of this site in pore formation and translocation. We show that mice challenged systemically with a lethal dose (LD100) of the most defective mutant (L1106K) showed no symptoms of disease highlighting the importance of this residue and the translocation domain in disease pathogenesis. These findings offer insights into the structure function of the toxin translocation pore, and inform novel therapeutic strategies against CDI.

  12. pORE: a modular binary vector series suited for both monocot and dicot plant transformation.

    PubMed

    Coutu, Catherine; Brandle, James; Brown, Dan; Brown, Kirk; Miki, Brian; Simmonds, John; Hegedus, Dwayne D

    2007-12-01

    We present a series of 14 binary vectors suitable for Agrobacterium-mediated transformation of dicotyledonous plants and adaptable for biolistic transformation of monocotyledonous plants. The vector size has been minimized by eliminating all non-essential elements from the vector backbone and T-DNA regions while maintaining the ability to replicate independently. The smallest of the vector series is 6.3 kb and possesses an extensive multiple cloning site with 21 unique restriction endonuclease sites that are compatible with common cloning, protein expression, yeast two-hybrid and other binary vectors. The T-DNA region was engineered using a synthetic designer oligonucleotide resulting in an entirely modular system whereby any vector element can be independently exchanged. The high copy number ColE1 origin of replication has been included to enhance plasmid yield in Escherichia coli. FRT recombination sites flank the selectable marker cassette regions and allow for in planta excision by FLP recombinase. The pORE series consists of three basic types; an 'open' set for general plant transformation, a 'reporter' set for promoter analysis and an 'expression' set for constitutive expression of transgenes. The sets comprise various combinations of promoters (P (HPL), P (ENTCUP2) and P (TAPADH)), selectable markers (nptII and pat) and reporter genes (gusA and smgfp). PMID:17273915

  13. Process of inducing pores in membranes by melittin

    PubMed Central

    Lee, Ming-Tao; Sun, Tzu-Lin; Hung, Wei-Chin; Huang, Huey W.

    2013-01-01

    Melittin is a prototype of the ubiquitous antimicrobial peptides that induce pores in membranes. It is commonly used as a molecular device for membrane permeabilization. Even at concentrations in the nanomolar range, melittin can induce transient pores that allow transmembrane conduction of atomic ions but not leakage of glucose or larger molecules. At micromolar concentrations, melittin induces stable pores allowing transmembrane leakage of molecules up to tens of kilodaltons, corresponding to its antimicrobial activities. Despite extensive studies, aspects of the molecular mechanism for pore formation remain unclear. To clarify the mechanism, one must know the states of the melittin-bound membrane before and after the process. By correlating experiments using giant unilamellar vesicles with those of peptide-lipid multilayers, we found that melittin bound on the vesicle translocated and redistributed to both sides of the membrane before the formation of stable pores. Furthermore, stable pores are formed only above a critical peptide-to-lipid ratio. The initial states for transient and stable pores are different, which implies different mechanisms at low and high peptide concentrations. To determine the lipidic structure of the pore, the pores in peptide–lipid multilayers were induced to form a lattice and examined by anomalous X-ray diffraction. The electron density distribution of lipid labels shows that the pore is formed by merging of two interfaces through a hole. The molecular property of melittin is such that it adsorbs strongly to the bilayer interface. Pore formation can be viewed as the bilayer adopting a lipid configuration to accommodate its excessive interfacial area. PMID:23940362

  14. Cloning

    MedlinePlus

    ... mammals. These twins are produced when a fertilized egg splits, creating two or more embryos that carry ... of the donor animal's somatic cell into an egg cell, or oocyte, that has had its own ...

  15. On the structural possibility of pore-forming mitochondrial FoF1 ATP synthase.

    PubMed

    Gerle, Christoph

    2016-08-01

    The mitochondrial permeability transition is an inner mitochondrial membrane event involving the opening of the permeability transition pore concomitant with a sudden efflux of matrix solutes and breakdown of membrane potential. The mitochondrial F(o)F(1) ATP synthase has been proposed as the molecular identity of the permeability transition pore. The likeliness of potential pore-forming sites in the mitochondrial F(o)F(1) ATP synthase is discussed and a new model, the death finger model, is described. In this model, movement of a p-side density that connects the lipid-plug of the c-ring with the distal membrane bending Fo domain allows reversible opening of the c-ring and structural cross-talk with OSCP and the catalytic (αβ)(3) hexamer. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26968896

  16. The outer membrane usher forms a twin-pore secretion complex.

    PubMed

    Li, Huilin; Qian, Luping; Chen, Zhiqiang; Thibault, Danielle; Liu, Guang; Liu, Tianbo; Thanassi, David G

    2004-12-10

    The PapC usher is an outer membrane protein required for assembly and secretion of P pili in uropathogenic Escherichia coli. P pilus biogenesis occurs by the chaperone/usher pathway, a terminal branch of the general secretory pathway. Periplasmic chaperone-subunit complexes target to the PapC usher for fiber assembly and secretion through the usher to the cell surface. The molecular details of pilus biogenesis at the usher, and protein secretion across the outer membrane in general, are unclear. We studied the structure and oligomeric state of PapC by gel filtration, dynamic light scattering, and electron microscopy and image analysis. Two-dimensional crystals of wild-type PapC and a C-terminal deletion mutant of PapC were produced by reconstituting detergent purified usher into E.coli lipids. PapC formed a dimer both in detergent solution and in the phospholipid bilayer. Cryo-electron microscopy revealed that the usher forms a twin-pore complex. Removal of the C-terminal domain did not change the basic shape of the PapC molecule, but altered the dimeric association of the usher, suggesting that the C terminus forms part of the dimerization interface. The overall molecular size (11 nm), pore size (2 nm), and twin-pore configuration of PapC resemble that of the Tom40 complex, a mitochondrial outer membrane protein translocase.

  17. Detectability of Plasmodium falciparum clones

    PubMed Central

    2010-01-01

    Background In areas of high transmission people often harbour multiple clones of Plasmodium falciparum, but even PCR-based diagnostic methods can only detect a fraction (the detectability, q) of all clones present in a host. Accurate measurements of detectability are desirable since it affects estimates of multiplicity of infection, prevalence, and frequency of breakthrough infections in clinical drug trials. Detectability can be estimated by typing repeated samples from the same host but it has been unclear what should be the time interval between the samples and how the data should be analysed. Methods A longitudinal molecular study was conducted in the Kassena-Nankana district in northern Ghana. From each of the 80 participants, four finger prick samples were collected over a period of 8 days, and tested for presence of different Merozoite Surface Protein (msp) 2 genotypes. Implications for estimating q were derived from these data by comparing the fit of statistical models of serial dependence and over-dispersion. Results The distribution of the frequencies of detection for msp2 genotypes was close to binomial if the time span between consecutive blood samples was at least 7 days. For shorter intervals the probabilities of detection were positively correlated, i.e. the shorter the interval between two blood collections, the more likely the diagnostic results matched for a particular genotype. Estimates of q were rather insensitive to the statistical model fitted. Conclusions A simple algorithm based on analysing blood samples collected 7 days apart is justified for generating robust estimates of detectability. The finding of positive correlation of detection probabilities for short time intervals argues against imperfect detection being directly linked to the 48-hour periodicity of P. falciparum. The results suggest that the detectability of a given parasite clone changes over time, at an unknown rate, but fast enough to regard blood samples taken one week

  18. Cloning cattle: the methods in the madness.

    PubMed

    Oback, Björn; Wells, David N

    2007-01-01

    Somatic cell nuclear transfer (SCNT) is much more widely and efficiently practiced in cattle than in any other species, making this arguably the most important mammal cloned to date. While the initial objective behind cattle cloning was commercially driven--in particular to multiply genetically superior animals with desired phenotypic traits and to produce genetically modified animals-researchers have now started to use bovine SCNT as a tool to address diverse questions in developmental and cell biology. In this paper, we review current cattle cloning methodologies and their potential technical or biological pitfalls at any step of the procedure. In doing so, we focus on one methodological parameter, namely donor cell selection. We emphasize the impact of epigenetic and genetic differences between embryonic, germ, and somatic donor cell types on cloning efficiency. Lastly, we discuss adult phenotypes and fitness of cloned cattle and their offspring and illustrate some of the more imminent commercial cattle cloning applications.

  19. Unified universal quantum cloning machine and fidelities

    SciTech Connect

    Wang Yinan; Shi Handuo; Xiong Zhaoxi; Jing Li; Mu Liangzhu; Ren Xijun; Fan Heng

    2011-09-15

    We present a unified universal quantum cloning machine, which combines several different existing universal cloning machines together, including the asymmetric case. In this unified framework, the identical pure states are projected equally into each copy initially constituted by input and one half of the maximally entangled states. We show explicitly that the output states of those universal cloning machines are the same. One importance of this unified cloning machine is that the cloning procession is always the symmetric projection, which reduces dramatically the difficulties for implementation. Also, it is found that this unified cloning machine can be directly modified to the general asymmetric case. Besides the global fidelity and the single-copy fidelity, we also present all possible arbitrary-copy fidelities.

  20. Nuclear transfer technology in mammalian cloning.

    PubMed

    Wolf, D P; Mitalipov, S; Norgren, R B

    2001-01-01

    The past several years have witnessed remarkable progress in mammalian cloning using nuclear transfer (NT). Until 1997 and the announcement of the successful cloning of sheep from adult mammary gland or fetal fibroblast cells, our working assumption was that cloning by NT could only be accomplished with relatively undifferentiated embryonic cells. Indeed, live offspring were first produced by NT over 15 years ago from totipotent, embryonic blastomeres derived from early cleavage-stage embryos. However, once begun, the progression to somatic cell cloning or NT employing differentiated cells as the source of donor nuclei was meteoric, initially involving differentiated embryonic cell cultures in sheep in 1996 and quickly thereafter, fetal or adult somatic cells in sheep, cow, mouse, goat, and pig. Several recent reviews provide a background for and discussion of these successes. Here we will focus on the potential uses of reproductive cloning along with recent activities in the field and a discussion concerning current interests in human reproductive and therapeutic cloning.

  1. Porous Boron Nitride with Tunable Pore Size.

    PubMed

    Dai, Jun; Wu, Xiaojun; Yang, Jinlong; Zeng, Xiao Cheng

    2014-01-16

    On the basis of a global structural search and first-principles calculations, we predict two types of porous boron-nitride (BN) networks that can be built up with zigzag BN nanoribbons (BNNRs). The BNNRs are either directly connected with puckered B (N) atoms at the edge (type I) or connected with sp(3)-bonded BN chains (type II). Besides mechanical stability, these materials are predicted to be thermally stable at 1000 K. The porous BN materials entail large surface areas, ranging from 2800 to 4800 m(2)/g. In particular, type-II BN material with relatively large pores is highly favorable for hydrogen storage because the computed hydrogen adsorption energy (-0.18 eV) is very close to the optimal adsorption energy (-0.15 eV) suggested for reversible hydrogen storage at room temperature. Moreover, the type-II materials are semiconductors with width-dependent direct bandgaps, rendering the type-II BN materials promising not only for hydrogen storage but also for optoelectronic and photonic applications. PMID:26270717

  2. The nuclear pore complex and nuclear transport.

    PubMed

    Wente, Susan R; Rout, Michael P

    2010-10-01

    Internal membrane bound structures sequester all genetic material in eukaryotic cells. The most prominent of these structures is the nucleus, which is bounded by a double membrane termed the nuclear envelope (NE). Though this NE separates the nucleoplasm and genetic material within the nucleus from the surrounding cytoplasm, it is studded throughout with portals called nuclear pore complexes (NPCs). The NPC is a highly selective, bidirectional transporter for a tremendous range of protein and ribonucleoprotein cargoes. All the while the NPC must prevent the passage of nonspecific macromolecules, yet allow the free diffusion of water, sugars, and ions. These many types of nuclear transport are regulated at multiple stages, and the NPC carries binding sites for many of the proteins that modulate and modify the cargoes as they pass across the NE. Assembly, maintenance, and repair of the NPC must somehow occur while maintaining the integrity of the NE. Finally, the NPC appears to be an anchor for localization of many nuclear processes, including gene activation and cell cycle regulation. All these requirements demonstrate the complex design of the NPC and the integral role it plays in key cellular processes. PMID:20630994

  3. MEASUREMENT AND CONTROL OF FOULING IN FINE PORE DIFFUSER SYSTEMS

    EPA Science Inventory

    The purpose of the study was two-fold: First, to define the efficiency of various methods of cleaning fine pore diffusers and, second, to develop a methodology that could be used to evaluate the efficiency of the cleaning techniques. Dirty fine pore domes from the North Texas Mu...

  4. FINE PORE DIFFUSER FOULING: THE LOS ANGELES STUDIES

    EPA Science Inventory

    This report describes five fine pore diffuser evaluations conducted at three different wastewater treatment plants located in the greater Los Angeles area. The overall goal of the study was to evaluate the performance of fine pore diffusers using selected cleaning methods for ex...

  5. Pore Structure and the Low Frequency Permittivity of Sea Ice

    NASA Astrophysics Data System (ADS)

    O'Sadnick, M.; Ingham, M.; Eicken, H.

    2014-12-01

    Field and laboratory measurements of the dielectric permittivity of first-year sea ice both show that below a frequency of about 10 Hz the real part of the relative permittivity (ɛ') increases with decreasing frequency. Field measurements in Barrow, Alaska and McMurdo Sound suggest that this rise in low frequency ɛ' steepens as the ice warms, and is confined primarily to the upper 0.50m of the ice cover as it approaches maximum thickness. We propose that this behaviour may be related to membrane polarization occurring in the pore structure within the ice. With ice-liquid interfaces carrying a net charge, an electric double layer forms within the brine filled pores. Polarization occurs at grain boundaries, intragranular films and "necks" in the pore structure where the effective thickness of the double layer approaches the width of the pore resulting in differential transport of ions. This process is dependent on both the characteristic lengths and radii of pores relative to the length and radii of the "necks" or the geometry of inter/intragranular brine layers. By representing the measured dielectric permittivity in terms of a Cole-Cole model it is possible to show that the distribution of pore sizes evolves with temperature. Derived values of complex conductivity are also examined in relationship to the temporal evolution of pore geometry including smoothness of the pore-ice interface.

  6. Effect of pore pressure buildup on slowness of rupture propagation

    NASA Astrophysics Data System (ADS)

    Ougier-Simonin, A.; Zhu, W.

    2015-12-01

    Pore fluid pressure is known to play an important role in brittle fracture initiation and propagation, yet the underlying mechanisms remain unclear. We conducted triaxial experiments on saturated porous sandstones to investigate effects of pore pressure buildup on the slowness of shear rupture propagation at different confining pressures. At low to intermediate confinements, rocks fail by brittle faulting, and pore pressure buildup causes a reduction in rock's shear strength but does not induce measurable differences in slip behavior. When the confinement is high enough to prohibit dynamic faulting, rocks fail in the brittle-ductile transitional regime. In the transitional regime, pore pressure buildup promotes slip instability on an otherwise stably sliding fracture. Compared to those observed in the brittle regime, the slip rate, stress drop, and energy dissipated during rupture propagation with concurrent pore pressure buildup in the transitional regime are distinctively different. When decreasing confining pressure instead, the slip behavior resembles the ones of the brittle regime, emphasizing how the observed slowness is related to excess pore pressure beyond the effective pressure phenomenon. Analysis of the mechanical data using existing theoretical models confirms these observations. Quantitative microstructural analyses reveal that increasing pore pressure lessens the dilatancy hardening during failure, thus enhances slip along the localized zone in the transitional regime. Our experimental results suggest that pore pressure buildup induces slow slip in the transitional regime, and slip rates along a shear fracture may vary considerably depending on effective stress states.

  7. Partitioning of habitable pore space in earthworm burrows

    PubMed Central

    Amador, Jose A.

    2010-01-01

    Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, Vs, varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total Vs of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter. PMID:22736839

  8. Antimicrobial peptides bind more strongly to membrane pores

    PubMed Central

    Mihajlovic, Maja

    2010-01-01

    Antimicrobial peptides (AMPs) are small, usually cationic peptides, which permeabilize bacterial membranes. Understanding their mechanism of action might help design better antibiotics. Using an implicit membrane model, modified to include pores of different shapes, we show that four AMPs (alamethicin, melittin, a magainin analogue, MG-H2, and piscidin 1) bind more strongly to membrane pores, consistent with the idea that they stabilize them. The effective energy of alamethicin in cylindrical pores is similar to that in toroidal pores, whereas the effective energy of the other three peptides is lower in toroidal pores. Only alamethicin intercalates into the membrane core; MG-H2, melittin and piscidin are located exclusively at the hydrophobic/hydrophilic interface. In toroidal pores, the latter three peptides often bind at the edge of the pore, and are in an oblique orientation. The calculated binding energies of the peptides are correlated with their hemolytic activities. We hypothesize that one distinguishing feature of AMPs may be the fact that they are imperfectly amphipathic which allows them to bind more strongly to toroidal pores. An initial test on a melittin-based mutant seems to support this hypothesis. PMID:20188066

  9. Gating Immunity and Death at the Nuclear Pore Complex.

    PubMed

    Dasso, Mary; Fontoura, Beatriz M A

    2016-09-01

    The nuclear pore complex is the primary conduit for nuclear import and export of molecules. In this issue, Gu et al. uncover a novel mechanism in which immune signaling and programmed cell death require nuclear pore rearrangement and release of sequestered cyclin-dependent kinase inhibitors to elicit immunity and death. PMID:27610561

  10. Partitioning of habitable pore space in earthworm burrows.

    PubMed

    Gorres, Josef H; Amador, Jose A

    2010-03-01

    Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, V(s), varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total V(s) of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter. PMID:22736839

  11. No human cloning: a social ethics perspective.

    PubMed

    Cahill, L S

    1999-01-01

    This Essay addresses the negative impact of human cloning on the family, and argues further that market incentives to develop and implement cloning techniques exploit and exacerbate socioeconomic inequities. It suggests that cloning should be prohibited internationally and examines possible routes to that aim. To begin with, it offers some reflections on the nature of moral argument, and on the role of religion in public debate. PMID:12650145

  12. Cloning: pathways to a pluripotent future.

    PubMed

    McLaren, A

    2000-06-01

    In this month's essay, Anne McLaren traces the winding and pitted pathways that connect the early days of the cell theory of biology in the 1830s to the new and unfolding era of cloning science and technology that came to worldwide attention in 1997 with the announcement of the birth of Dolly, the Scottish cloned sheep. The possibilities, including the potential for new medical treatments and perhaps even human cloning, are fantastic ... and ethically charged.

  13. Telomeres and the ethics of human cloning.

    PubMed

    Allhoff, Fritz

    2004-01-01

    In search of a potential problem with cloning, I investigate the phenomenon of telomere shortening which is caused by cell replication; clones created from somatic cells will have shortened telomeres and therefore reach a state of senescence more rapidly. While genetic intervention might fix this problem at some point in the future, I ask whether, absent technological advances, this biological phenomenon undermines the moral permissibility of cloning.

  14. Cloning: pathways to a pluripotent future.

    PubMed

    McLaren, A

    2000-06-01

    In this month's essay, Anne McLaren traces the winding and pitted pathways that connect the early days of the cell theory of biology in the 1830s to the new and unfolding era of cloning science and technology that came to worldwide attention in 1997 with the announcement of the birth of Dolly, the Scottish cloned sheep. The possibilities, including the potential for new medical treatments and perhaps even human cloning, are fantastic ... and ethically charged. PMID:10877698

  15. Relationship between the Averaged Deposition Rate Coefficients for Colloids in a Single Pore and Various Pore-scale Parameters

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Mohan Kumar, M.; Hassanizadeh, S. M.; Raoof, A.

    2014-12-01

    The colloid deposition behavior observed at the Darcy scale represents an average of the processes occurring at the pore scale. Hence, a better understanding of the processes occurring at the Darcy scale can be obtained by studying colloid transport at the pore-scale and then upscaling the results. In this study, we have developed a mathematical model to simulate the transport of colloids in a cylindrical pore by considering various processes such as advection, diffusion, colloid-soil surface interactions and hydrodynamic wall effects. The pore space is divided into three different regions, namely, the bulk, diffusion and potential regions, based on the dominant processes acting in each of these regions. In the bulk region, colloid transport is governed by advection and diffusion; whereas in the diffusion region, colloid mobility due to diffusion is retarded by hydrodynamic wall effects. Colloid-solid interaction forces dominate the transport in the potential region where colloid deposition occurs and are calculated using DLVO theory. The expressions for mass transfer rate coefficients between the diffusion and potential regions have been derived for different DLVO energy profiles. These are incorporated in the pore-scale equations in the form of a boundary condition at the diffusion-potential region interface. The model results are used to obtain the colloid breakthrough curve at the end of a long pore, and then it is fitted with 1D advection-dispersion-adsorption model so as to determine the averaged attachment and detachment rate coefficients at the scale of a single pore. A sensitivity analysis of the model to six pore-scale parameters (colloid and wall surface potentials, solution ionic strength, average pore-water velocity, colloid radius, and pore radius) is carried out so as to find the relation between the averaged deposition rate coefficients at pore scale vs the pore-scale parameters. We found an hyper exponential relation between the colloid attachment

  16. PoreFlow: A complex pore-network model for simulation of reactive transport in variably saturated porous media

    NASA Astrophysics Data System (ADS)

    Raoof, A.; Nick, H. M.; Hassanizadeh, S. M.; Spiers, C. J.

    2013-12-01

    This study introduces PoreFlow, a pore-network modeling tool capable of simulating fluid flow and multi-component reactive and adsorptive transport under saturated and variably saturated conditions. PoreFlow includes a variety of modules, such as: pore network generator, drainage simulator, calculation of pressure and velocity distributions, and modeling of reactive solute transport accounting for advection and diffusion. The pore space is represented using a multi-directional pore-network capable of capturing the random structure of a given porous media with user-defined directional connectivities for anisotropic pore structures. The chemical reactions can occur within the liquid phase, as well as between the liquid and solid phases which may result in an evolution of porosity and permeability. Under variably saturated conditions the area of interfaces changes with degree of the fluid saturation. PoreFlow uses complex formulations for more accurate modeling of transport problems in presence of the nonwetting phase. This is done by refining the discretization within drained pores. An implicit numerical scheme is used to solve the governing equations, and an efficient substitution method is applied to considerably minimize computational times. Several examples are provided, under saturated and variably saturated conditions, to demonstrate the model applicability in hydrogeology problems and petroleum fields. We show that PoreFlow is a powerful tool for upscaling of flow and transport in porous media, utilizing different pore scale information such as various interfaces, phase distributions and local fluxes and concentrations to determine macro scale properties such as average saturation, relative permeability, solute dispersivity, adsorption coefficients, effective diffusion and tortuosity. Such information can be used as constitutive relations within continuum scale governing equations to model physical and chemical processes more accurately at the larger scales.

  17. Respiratory Pores on Ostrich Struthio camelus (Aves: Struthionidae) Eggshells.

    PubMed

    Koyama, T; Tennyson, A J D

    2016-01-01

    Respiratory pores are essential for the survival of the embryo within the eggshell. Distribution patterns of such pores on ostrich (Struthio camelus) eggshells show remarkable variations in bird group. Eggshells preserved in the museum of New Zealand have long, superficial, winding grooves and ridges, with pores distributed densely in the bottom of grooves. Both the grooves and ridges that separate them are twisted. By contrast, the surfaces of eggs from farmed ostriches are mostly smooth, with only occasional, short grooves, and respiratory pores distributed more evenly. The cause of ridging and grooving of the surface of eggs from wild birds is unclear but may be due to the need for stronger shells and effects of environmental stresses. It appears that the arrangement of respiratory pores on ostrich eggshells seems to be changeable by surrounding stresses. PMID:27526124

  18. Influence of pore structure on compressive strength of cement mortar.

    PubMed

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  19. Pore architecture of nanoporous gold and titania by hydrogen thermoporometry

    NASA Astrophysics Data System (ADS)

    Johnston, L. T.; Biener, M. M.; Ye, J. C.; Baumann, T. F.; Kucheyev, S. O.

    2015-07-01

    Nanoporous gold (NPG) and materials derived from it by templating have complex pore architecture that determines their technologically relevant physical properties. Here, we apply high-resolution hydrogen thermoporometry to study the pore structure of NPG and NPG-derived titania nanofoam (TNF). Results reveal complex multimodal pore size distributions for NPG and TNF. The freezing-melting hysteresis is pronounced, with freezing and melting scans having entirely different shapes. Experiments involving partial freeze-melt cycles reveal the lack of direct correlation between individual freezing and melting peaks, pointing to phenomena that are beyond the Gibbs-Thomson formalism. The depression of the average freezing temperature scales linearly with the ratio of the internal surface area (measured by gas sorption) and the total pore volume derived from the density of monoliths. Thermoporometry yields total pore volumes in good agreement with those derived from monolith densities for both NPG and TNF.

  20. Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores

    SciTech Connect

    Qiao, Rui; Meunier, V.; Huang, Jingsong; Wu, Peng; Sumpter, Bobby G

    2012-01-01

    Using molecular dynamics simulations, we show that charge storage in subnanometer pores follows a distinct voltage-dependent behavior. Specifically, at lower voltages, charge storage is achieved by swapping co-ions in the pore with counterions in the bulk electrolyte. As voltage increases, further charge storage is due mainly to the removal of co-ions from the pore, leading to a capacitance increase. The capacitance eventually reaches a maximum when all co-ions are expelled from the pore. At even higher electrode voltages, additional charge storage is realized by counterion insertion into the pore, accompanied by a reduction of capacitance. The molecular mechanisms of these observations are elucidated and provide useful insight for optimizing energy storage based on supercapacitors.