Sample records for pore network models

  1. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport.

    PubMed

    Xiong, Qingrong; Baychev, Todor G; Jivkov, Andrey P

    2016-09-01

    Pore network models have been applied widely for simulating a variety of different physical and chemical processes, including phase exchange, non-Newtonian displacement, non-Darcy flow, reactive transport and thermodynamically consistent oil layers. The realism of such modelling, i.e. the credibility of their predictions, depends to a large extent on the quality of the correspondence between the pore space of a given medium and the pore network constructed as its representation. The main experimental techniques for pore space characterisation, including direct imaging, mercury intrusion porosimetry and gas adsorption, are firstly summarised. A review of the main pore network construction techniques is then presented. Particular focus is given on how such constructions are adapted to the data from experimentally characterised pore systems. Current applications of pore network models are considered, with special emphasis on the effects of adsorption, dissolution and precipitation, as well as biomass growth, on transport coefficients. Pore network models are found to be a valuable tool for understanding and predicting meso-scale phenomena, linking single pore processes, where other techniques are more accurate, and the homogenised continuum porous media, used by engineering community. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Pore network extraction from pore space images of various porous media systems

    NASA Astrophysics Data System (ADS)

    Yi, Zhixing; Lin, Mian; Jiang, Wenbin; Zhang, Zhaobin; Li, Haishan; Gao, Jian

    2017-04-01

    Pore network extraction, which is defined as the transformation from irregular pore space to a simplified network in the form of pores connected by throats, is significant to microstructure analysis and network modeling. A physically realistic pore network is not only a representation of the pore space in the sense of topology and morphology, but also a good tool for predicting transport properties accurately. We present a method to extract pore network by employing the centrally located medial axis to guide the construction of maximal-balls-like skeleton where the pores and throats are defined and parameterized. To validate our method, various rock samples including sand pack, sandstones, and carbonates were used to extract pore networks. The pore structures were compared quantitatively with the structures extracted by medial axis method or maximal ball method. The predicted absolute permeability and formation factor were verified against the theoretical solutions obtained by lattice Boltzmann method and finite volume method, respectively. The two-phase flow was simulated through the networks extracted from homogeneous sandstones, and the generated relative permeability curves were compared with the data obtained from experimental method and other numerical models. The results show that the accuracy of our network is higher than that of other networks for predicting transport properties, so the presented method is more reliable for extracting physically realistic pore network.

  3. Development of a pore network simulation model to study nonaqueous phase liquid dissolution

    USGS Publications Warehouse

    Dillard, Leslie A.; Blunt, Martin J.

    2000-01-01

    A pore network simulation model was developed to investigate the fundamental physics of nonequilibrium nonaqueous phase liquid (NAPL) dissolution. The network model is a lattice of cubic chambers and rectangular tubes that represent pore bodies and pore throats, respectively. Experimental data obtained by Powers [1992] were used to develop and validate the model. To ensure the network model was representative of a real porous medium, the pore size distribution of the network was calibrated by matching simulated and experimental drainage and imbibition capillary pressure‐saturation curves. The predicted network residual styrene blob‐size distribution was nearly identical to the observed distribution. The network model reproduced the observed hydraulic conductivity and produced relative permeability curves that were representative of a poorly consolidated sand. Aqueous‐phase transport was represented by applying the equation for solute flux to the network tubes and solving for solute concentrations in the network chambers. Complete mixing was found to be an appropriate approximation for calculation of chamber concentrations. Mass transfer from NAPL blobs was represented using a corner diffusion model. Predicted results of solute concentration versus Peclet number and of modified Sherwood number versus Peclet number for the network model compare favorably with experimental data for the case in which NAPL blob dissolution was negligible. Predicted results of normalized effluent concentration versus pore volume for the network were similar to the experimental data for the case in which NAPL blob dissolution occurred with time.

  4. Assessing the Increase in Specific Surface Area for Electrospun Fibrous Network due to Pore Induction.

    PubMed

    Katsogiannis, Konstantinos Alexandros G; Vladisavljević, Goran T; Georgiadou, Stella; Rahmani, Ramin

    2016-10-26

    The effect of pore induction on increasing electrospun fibrous network specific surface area was investigated in this study. Theoretical models based on the available surface area of the fibrous network and exclusion of the surface area lost due to fiber-to-fiber contacts were developed. The models for calculation of the excluded area are based on Hertzian, Derjaguin-Muller-Toporov (DMT), and Johnson-Kendall-Roberts (JKR) contact models. Overall, the theoretical models correlated the network specific surface area to the material properties including density, surface tension, Young's modulus, Poisson's ratio, as well as network physical properties, such as density and geometrical characteristics including fiber radius, fiber aspect ratio and network thickness. Pore induction proved to increase the network specific surface area up to 52%, compared to the maximum surface area that could be achieved by nonporous fiber network with the same physical properties and geometrical characteristics. The model based on Johnson-Kendall-Roberts contact model describes accurately the fiber-to-fiber contact area under the experimental conditions used for pore generation. The experimental results and the theoretical model based on Johnson-Kendall-Roberts contact model show that the increase in network surface area due to pore induction can reach to up to 58%.

  5. Coupling root architecture and pore network modeling - an attempt towards better understanding root-soil interactions

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Bodner, Gernot; Raoof, Amir

    2013-04-01

    Understanding root-soil interactions is of high importance for environmental and agricultural management. Root uptake is an essential component in water and solute transport modeling. The amount of groundwater recharge and solute leaching significantly depends on the demand based plant extraction via its root system. Plant uptake however not only responds to the potential demand, but in most situations is limited by supply form the soil. The ability of the plant to access water and solutes in the soil is governed mainly by root distribution. Particularly under conditions of heterogeneous distribution of water and solutes in the soil, it is essential to capture the interaction between soil and roots. Root architecture models allow studying plant uptake from soil by describing growth and branching of root axes in the soil. Currently root architecture models are able to respond dynamically to water and nutrient distribution in the soil by directed growth (tropism), modified branching and enhanced exudation. The porous soil medium as rooting environment in these models is generally described by classical macroscopic water retention and sorption models, average over the pore scale. In our opinion this simplified description of the root growth medium implies several shortcomings for better understanding root-soil interactions: (i) It is well known that roots grow preferentially in preexisting pores, particularly in more rigid/dry soil. Thus the pore network contributes to the architectural form of the root system; (ii) roots themselves can influence the pore network by creating preferential flow paths (biopores) which are an essential element of structural porosity with strong impact on transport processes; (iii) plant uptake depend on both the spatial location of water/solutes in the pore network as well as the spatial distribution of roots. We therefore consider that for advancing our understanding in root-soil interactions, we need not only to extend our root models, but also improve the description of the rooting environment. Until now there have been no attempts to couple root architecture and pore network models. In our work we present a first attempt to join both types of models using the root architecture model of Leitner et al., (2010) and a pore network model presented by Raoof et al. (2010). The two main objectives of coupling both models are: (i) Representing the effect of root induced biopores on flow and transport processes: For this purpose a fixed root architecture created by the root model is superimposed as a secondary root induced pore network to the primary soil network, thus influencing the final pore topology in the network generation. (ii) Representing the influence of pre-existing pores on root branching: Using a given network of (rigid) pores, the root architecture model allocates its root axes into these preexisting pores as preferential growth paths with thereby shape the final root architecture. The main objective of our study is to reveal the potential of using a pore scale description of the plant growth medium for an improved representation of interaction processes at the interface of root and soil. References Raoof, A., Hassanizadeh, S.M. 2010. A New Method for Generating Pore-Network Models. Transp. Porous Med. 81, 391-407. Leitner, D, Klepsch, S., Bodner, G., Schnepf, S. 2010. A dynamic root system growth model based on L-Systems. Tropisms and coupling to nutrient uptake from soil. Plant Soil 332, 177-192.

  6. Validation of pore network simulations of ex-situ water distributions in a gas diffusion layer of proton exchange membrane fuel cells with X-ray tomographic images

    NASA Astrophysics Data System (ADS)

    Agaesse, Tristan; Lamibrac, Adrien; Büchi, Felix N.; Pauchet, Joel; Prat, Marc

    2016-11-01

    Understanding and modeling two-phase flows in the gas diffusion layer (GDL) of proton exchange membrane fuel cells are important in order to improve fuel cells performance. They are scientifically challenging because of the peculiarities of GDLs microstructures. In the present work, simulations on a pore network model are compared to X-ray tomographic images of water distributions during an ex-situ water invasion experiment. A method based on watershed segmentation was developed to extract a pore network from the 3D segmented image of the dry GDL. Pore network modeling and a full morphology model were then used to perform two-phase simulations and compared to the experimental data. The results show good agreement between experimental and simulated microscopic water distributions. Pore network extraction parameters were also benchmarked using the experimental data and results from full morphology simulations.

  7. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model

    NASA Astrophysics Data System (ADS)

    Ruspini, L. C.; Farokhpoor, R.; Øren, P. E.

    2017-10-01

    We present a pore-network model study of capillary trapping in water-wet porous media. The amount and distribution of trapped non-wetting phase is determined by the competition between two trapping mechanisms - snap-off and cooperative pore-body filling. We develop a new model to describe the pore-body filling mechanism in geologically realistic pore-networks. The model accounts for the geometrical characteristics of the pore, the spatial location of the connecting throats and the local fluid topology at the time of the displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations. The simulated trapped cluster size distributions are compared with predictions from percolation theory.

  8. Generalized network modeling of capillary-dominated two-phase flow

    NASA Astrophysics Data System (ADS)

    Raeini, Ali Q.; Bijeljic, Branko; Blunt, Martin J.

    2018-02-01

    We present a generalized network model for simulating capillary-dominated two-phase flow through porous media at the pore scale. Three-dimensional images of the pore space are discretized using a generalized network—described in a companion paper [A. Q. Raeini, B. Bijeljic, and M. J. Blunt, Phys. Rev. E 96, 013312 (2017), 10.1103/PhysRevE.96.013312]—which comprises pores that are divided into smaller elements called half-throats and subsequently into corners. Half-throats define the connectivity of the network at the coarsest level, connecting each pore to half-throats of its neighboring pores from their narrower ends, while corners define the connectivity of pore crevices. The corners are discretized at different levels for accurate calculation of entry pressures, fluid volumes, and flow conductivities that are obtained using direct simulation of flow on the underlying image. This paper discusses the two-phase flow model that is used to compute the averaged flow properties of the generalized network, including relative permeability and capillary pressure. We validate the model using direct finite-volume two-phase flow simulations on synthetic geometries, and then present a comparison of the model predictions with a conventional pore-network model and experimental measurements of relative permeability in the literature.

  9. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  10. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-08-27

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  11. Construction of pore network models for Berea and Fontainebleau sandstones using non-linear programing and optimization techniques

    NASA Astrophysics Data System (ADS)

    Sharqawy, Mostafa H.

    2016-12-01

    Pore network models (PNM) of Berea and Fontainebleau sandstones were constructed using nonlinear programming (NLP) and optimization methods. The constructed PNMs are considered as a digital representation of the rock samples which were based on matching the macroscopic properties of the porous media and used to conduct fluid transport simulations including single and two-phase flow. The PNMs consisted of cubic networks of randomly distributed pores and throats sizes and with various connectivity levels. The networks were optimized such that the upper and lower bounds of the pore sizes are determined using the capillary tube bundle model and the Nelder-Mead method instead of guessing them, which reduces the optimization computational time significantly. An open-source PNM framework was employed to conduct transport and percolation simulations such as invasion percolation and Darcian flow. The PNM model was subsequently used to compute the macroscopic properties; porosity, absolute permeability, specific surface area, breakthrough capillary pressure, and primary drainage curve. The pore networks were optimized to allow for the simulation results of the macroscopic properties to be in excellent agreement with the experimental measurements. This study demonstrates that non-linear programming and optimization methods provide a promising method for pore network modeling when computed tomography imaging may not be readily available.

  12. Investigating the relative permeability behavior of microporosity-rich carbonates and tight sandstones with multiscale pore network models

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Stappen, Jeroen Van; Kock, Tim De; Boever, Wesley De; Boone, Marijn A.; Hoorebeke, Luc Van; Cnudde, Veerle

    2016-11-01

    The relative permeability behavior of rocks with wide ranges of pore sizes is in many cases still poorly understood and is difficult to model at the pore scale. In this work, we investigate the capillary pressure and relative permeability behavior of three outcrop carbonates and two tight reservoir sandstones with wide, multimodal pore size distributions. To examine how the drainage and imbibition properties of these complex rock types are influenced by the connectivity of macropores to each other and to zones with unresolved small-scale porosity, we apply a previously presented microcomputed-tomography-based multiscale pore network model to these samples. The sensitivity to the properties of the small-scale porosity is studied by performing simulations with different artificial sphere-packing-based networks as a proxy for these pores. Finally, the mixed-wet water-flooding behavior of the samples is investigated, assuming different wettability distributions for the microporosity and macroporosity. While this work is not an attempt to perform predictive modeling, it seeks to qualitatively explain the behavior of the investigated samples and illustrates some of the most recent developments in multiscale pore network modeling.

  13. Percolation Network Study on the Gas Apparent Permeability of Rock

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tang, Y. B.; Li, M.

    2017-12-01

    We modeled the gas single phase transport behaviors of monomodal porous media using percolation networks. Different from the liquid absolute permeability, which is only related to topology and morphology of pore space, the gas permeability depends on pore pressure as well. A published gas flow conductance model, included usual viscous flow, slip flow and Knudsen diffusion in cylinder pipe, was used to simulated gas flow in 3D, simple cubic, body-center cubic and face-center cubic networks with different hydraulic radius, different coordination number, and different pipe radius distributions under different average pore pressure. The simulation results showed that the gas apparent permeability kapp obey the `universal' scaling law (independence of network lattices), kapp (z-zc)β, where exponent β is related to pore radius distribution, z is coordination number and zc=1.5. Following up on Bernabé et al.'s (2010) study of the effects of pore connectivity and pore size heterogeneity on liquid absolute permeability, gas apparent permeability kapp model and a new joint gas-liquid permeability (i.e., kapp/k∞) model, which could explain the Klinkenberg phenomenon, were proposed. We satisfactorily tested the models by comparison with published experimental data on glass beads and other datasets.

  14. Capillary filling rules and displacement mechanisms for spontaneous imbibition of CO2 for carbon storage and EOR using micro-model experiments and pore scale simulation

    NASA Astrophysics Data System (ADS)

    Chapman, E.; Yang, J.; Crawshaw, J.; Boek, E. S.

    2012-04-01

    In the 1980s, Lenormand et al. carried out their pioneering work on displacement mechanisms of fluids in etched networks [1]. Here we further examine displacement mechanisms in relation to capillary filling rules for spontaneous imbibition. Understanding the role of spontaneous imbibition in fluid displacement is essential for refining pore network models. Generally, pore network models use simple capillary filling rules and here we examine the validity of these rules for spontaneous imbibition. Improvement of pore network models is vital for the process of 'up-scaling' to the field scale for both enhanced oil recovery (EOR) and carbon sequestration. In this work, we present our experimental microfluidic research into the displacement of both supercritical CO2/deionised water (DI) systems and analogous n-decane/air - where supercritical CO2 and n-decane are the respective wetting fluids - controlled by imbibition at the pore scale. We conducted our experiments in etched PMMA and silicon/glass micro-fluidic hydrophobic chips. We first investigate displacement in single etched pore junctions, followed by displacement in complex network designs representing actual rock thin sections, i.e. Berea sandstone and Sucrosic dolomite. The n-decane/air experiments were conducted under ambient conditions, whereas the supercritical CO2/DI water experiments were conducted under high temperature and pressure in order to replicate reservoir conditions. Fluid displacement in all experiments was captured via a high speed video microscope. The direction and type of displacement the imbibing fluid takes when it enters a junction is dependent on the number of possible channels in which the wetting fluid can imbibe, i.e. I1, I2 and I3 [1]. Depending on the experiment conducted, the micro-models were initially filled with either DI water or air before the wetting fluid was injected. We found that the imbibition of the wetting fluid through a single pore is primarily controlled by the geometry of the pore body rather than the downstream pore throat sizes, contrary to the established capillary filling rules as used in current pore network models. Our experimental observations are confirmed by detailed lattice-Boltzmann pore scale computer simulations of fluid displacement in the same geometries. This suggests that capillary filling rules for imbibition as used in pore network models may need to be revised. [1] G. Lenormand, C. Zarcone and A. Sarr, J. Fluid Mech. 135 , 337-353 (1983).

  15. Multi-Scale Multi-Physics Modeling of Matrix Transport Properties in Fractured Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Mehmani, A.; Prodanovic, M.

    2014-12-01

    Understanding the shale matrix flow behavior is imperative in successful reservoir development for hydrocarbon production and carbon storage. Without a predictive model, significant uncertainties in flowback from the formation, the communication between the fracture and matrix as well as proper fracturing practice will ensue. Informed by SEM images, we develop deterministic network models that couple pores from multiple scales and their respective fluid physics. The models are used to investigate sorption hysteresis as an affordable way of inferring the nanoscale pore structure in core scale. In addition, restricted diffusion as a function of pore shape, pore-throat size ratios and network connectivity is computed to make correct interpretation of the 2D NMR maps possible. Our novel pore network models have the ability to match sorption hysteresis measurements without any tuning parameters. The results clarify a common misconception of linking type 3 nitrogen hysteresis curves to only the shale pore shape and show promising sensitivty for nanopore structre inference in core scale. The results on restricted diffusion shed light on the importance of including shape factors in 2D NMR interpretations. A priori "weighting factors" as a function of pore-throat and throat-length ratio are presented and the effect of network connectivity on diffusion is quantitatively assessed. We are currently working on verifying our models with experimental data gathered from the Eagleford formation.

  16. A kinetic Monte Carlo approach to study fluid transport in pore networks

    NASA Astrophysics Data System (ADS)

    Apostolopoulou, M.; Day, R.; Hull, R.; Stamatakis, M.; Striolo, A.

    2017-10-01

    The mechanism of fluid migration in porous networks continues to attract great interest. Darcy's law (phenomenological continuum theory), which is often used to describe macroscopically fluid flow through a porous material, is thought to fail in nano-channels. Transport through heterogeneous and anisotropic systems, characterized by a broad distribution of pores, occurs via a contribution of different transport mechanisms, all of which need to be accounted for. The situation is likely more complicated when immiscible fluid mixtures are present. To generalize the study of fluid transport through a porous network, we developed a stochastic kinetic Monte Carlo (KMC) model. In our lattice model, the pore network is represented as a set of connected finite volumes (voxels), and transport is simulated as a random walk of molecules, which "hop" from voxel to voxel. We simulated fluid transport along an effectively 1D pore and we compared the results to those expected by solving analytically the diffusion equation. The KMC model was then implemented to quantify the transport of methane through hydrated micropores, in which case atomistic molecular dynamic simulation results were reproduced. The model was then used to study flow through pore networks, where it was able to quantify the effect of the pore length and the effect of the network's connectivity. The results are consistent with experiments but also provide additional physical insights. Extension of the model will be useful to better understand fluid transport in shale rocks.

  17. Investigation of Coupled model of Pore network and Continuum in shale gas

    NASA Astrophysics Data System (ADS)

    Cao, G.; Lin, M.

    2016-12-01

    Flow in shale spanning over many scales, makes the majority of conventional treatment methods disabled. For effectively simulating, a coupled model of pore-scale and continuum-scale was proposed in this paper. Based on the SEM image, we decompose organic-rich-shale into two subdomains: kerogen and inorganic matrix. In kerogen, the nanoscale pore-network is the main storage space and migration pathway so that the molecular phenomena (slip and diffusive transport) is significant. Whereas, inorganic matrix, with relatively large pores and micro fractures, the flow is approximate to Darcy. We use pore-scale network models (PNM) to represent kerogen and continuum-scale models (FVM or FEM) to represent matrix. Finite element mortars are employed to couple pore- and continuum-scale models by enforcing continuity of pressures and fluxes at shared boundary interfaces. In our method, the process in the coupled model is described by pressure square equation, and uses Dirichlet boundary conditions. We discuss several problems: the optimal element number of mortar faces, two categories boundary faces of pore network, the difference between 2D and 3D models, and the difference between continuum models FVM and FEM in mortars. We conclude that: (1) too coarse mesh in mortars will decrease the accuracy, while too fine mesh will lead to an ill-condition even singular system, the optimal element number is depended on boundary pores and nodes number. (2) pore network models are adjacent to two different mortar faces (PNM to PNM, PNM to continuum model), incidental repeated mortar nodes must be deleted. (3) 3D models can be replaced by 2D models under certain condition. (4) FVM is more convenient than FEM, for its simplicity in assigning interface nodes pressure and calculating interface fluxes. This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB10020302), the 973 Program (2014CB239004), the Key Instrument Developing Project of the CAS (ZDYZ2012-1-08-02), the National Natural Science Foundation of China (41574129).

  18. Evaluating the hydraulic and transport properties of peat soil using pore network modeling and X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Gharedaghloo, Behrad; Price, Jonathan S.; Rezanezhad, Fereidoun; Quinton, William L.

    2018-06-01

    Micro-scale properties of peat pore space and their influence on hydraulic and transport properties of peat soils have been given little attention so far. Characterizing the variation of these properties in a peat profile can increase our knowledge on the processes controlling contaminant transport through peatlands. As opposed to the common macro-scale (or bulk) representation of groundwater flow and transport processes, a pore network model (PNM) simulates flow and transport processes within individual pores. Here, a pore network modeling code capable of simulating advective and diffusive transport processes through a 3D unstructured pore network was developed; its predictive performance was evaluated by comparing its results to empirical values and to the results of computational fluid dynamics (CFD) simulations. This is the first time that peat pore networks have been extracted from X-ray micro-computed tomography (μCT) images of peat deposits and peat pore characteristics evaluated in a 3D approach. Water flow and solute transport were modeled in the unstructured pore networks mapped directly from μCT images. The modeling results were processed to determine the bulk properties of peat deposits. Results portray the commonly observed decrease in hydraulic conductivity with depth, which was attributed to the reduction of pore radius and increase in pore tortuosity. The increase in pore tortuosity with depth was associated with more decomposed peat soil and decreasing pore coordination number with depth, which extended the flow path of fluid particles. Results also revealed that hydraulic conductivity is isotropic locally, but becomes anisotropic after upscaling to core-scale; this suggests the anisotropy of peat hydraulic conductivity observed in core-scale and field-scale is due to the strong heterogeneity in the vertical dimension that is imposed by the layered structure of peat soils. Transport simulations revealed that for a given solute, the effective diffusion coefficient decreases with depth due to the corresponding increase of diffusional tortuosity. Longitudinal dispersivity of peat also was computed by analyzing advective-dominant transport simulations that showed peat dispersivity is similar to the empirical values reported in the same peat soil; it is not sensitive to soil depth and does not vary much along the soil profile.

  19. Impact of pore size variability and network coupling on electrokinetic transport in porous media

    NASA Astrophysics Data System (ADS)

    Alizadeh, Shima; Bazant, Martin Z.; Mani, Ali

    2016-11-01

    We have developed and validated an efficient and robust computational model to study the coupled fluid and ion transport through electrokinetic porous media, which are exposed to external gradients of pressure, electric potential, and concentration. In our approach a porous media is modeled as a network of many pores through which the transport is described by the coupled Poisson-Nernst-Planck-Stokes equations. When the pore sizes are random, the interactions between various modes of transport may provoke complexities such as concentration polarization shocks and internal flow circulations. These phenomena impact mixing and transport in various systems including deionization and filtration systems, supercapacitors, and lab-on-a-chip devices. In this work, we present simulations of massive networks of pores and we demonstrate the impact of pore size variation, and pore-pore coupling on the overall electrokinetic transport in porous media.

  20. Multiscale Pore Throat Network Reconstruction of Tight Porous Media Constrained by Mercury Intrusion Capillary Pressure and Nuclear Magnetic Resonance Measurements

    NASA Astrophysics Data System (ADS)

    Xu, R.; Prodanovic, M.

    2017-12-01

    Due to the low porosity and permeability of tight porous media, hydrocarbon productivity strongly depends on the pore structure. Effective characterization of pore/throat sizes and reconstruction of their connectivity in tight porous media remains challenging. Having a representative pore throat network, however, is valuable for calculation of other petrophysical properties such as permeability, which is time-consuming and costly to obtain by experimental measurements. Due to a wide range of length scales encountered, a combination of experimental methods is usually required to obtain a comprehensive picture of the pore-body and pore-throat size distributions. In this work, we combine mercury intrusion capillary pressure (MICP) and nuclear magnetic resonance (NMR) measurements by percolation theory to derive pore-body size distribution, following the work by Daigle et al. (2015). However, in their work, the actual pore-throat sizes and the distribution of coordination numbers are not well-defined. To compensate for that, we build a 3D unstructured two-scale pore throat network model initialized by the measured porosity and the calculated pore-body size distributions, with a tunable pore-throat size and coordination number distribution, which we further determine by matching the capillary pressure vs. saturation curve from MICP measurement, based on the fact that the mercury intrusion process is controlled by both the pore/throat size distributions and the connectivity of the pore system. We validate our model by characterizing several core samples from tight Middle East carbonate, and use the network model to predict the apparent permeability of the samples under single phase fluid flow condition. Results show that the permeability we get is in reasonable agreement with the Coreval experimental measurements. The pore throat network we get can be used to further calculate relative permeability curves and simulate multiphase flow behavior, which will provide valuable insights into the production optimization and enhanced oil recovery design.

  1. Saturation-dependent solute dispersivity in porous media: Pore-scale processes

    NASA Astrophysics Data System (ADS)

    Raoof, A.; Hassanizadeh, S. M.

    2013-04-01

    It is known that in variably saturated porous media, dispersion coefficient depends on Darcy velocity and water saturation. In one-dimensional flow, it is commonly assumed that the dispersion coefficient is a linear function of velocity. The coefficient of proportionality, called the dispersivity, is considered to depend on saturation. However, there is not much known about its dependence on saturation. In this study, we investigate, using a pore network model, how the longitudinal dispersivity varies nonlinearly with saturation. We schematize the porous medium as a network of pore bodies and pore throats with finite volumes. The pore space is modeled using the multidirectional pore-network concept, which allows for a distribution of pore coordination numbers. This topological property together with the distribution of pore sizes are used to mimic the microstructure of real porous media. The dispersivity is calculated by solving the mass balance equations for solute concentration in all network elements and averaging the concentrations over a large number of pores. We have introduced a new formulation of solute transport within pore space, where we account for different compartments of residual water within drained pores. This formulation makes it possible to capture the effect of limited mixing due to partial filling of the pores under variably saturated conditions. We found that dispersivity increases with the decrease in saturation, it reaches a maximum value, and then decreases with further decrease in saturation. To show the capability of our formulation to properly capture the effect of saturation on solute dispersion, we applied it to model the results of a reported experimental study.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruvinsky, Anatoly M., E-mail: anatoly.ruvinsky@astrazeneca.com; Center for Bioinformatics, The University of Kansas, Lawrence, Kansas 66047; Vakser, Ilya A.

    Ferritin-like molecules show a remarkable combination of the evolutionary conserved activity of iron uptake and release that engage different pores in the conserved ferritin shell. It was hypothesized that pore selection and iron traffic depend on dynamic allostery with no conformational changes in the backbone. In this study, we detect the allosteric networks in Pseudomonas aeruginosa bacterioferritin (BfrB), bacterial ferritin (FtnA), and bullfrog M and L ferritins (Ftns) by a network-weaving algorithm (NWA) that passes threads of an allosteric network through highly correlated residues using hierarchical clustering. The residue-residue correlations are calculated in the packing-on elastic network model that introducesmore » atom packing into the common packing-off model. Applying NWA revealed that each of the molecules has an extended allosteric network mostly buried inside the ferritin shell. The structure of the networks is consistent with experimental observations of iron transport: The allosteric networks in BfrB and FtnA connect the ferroxidase center with the 4-fold pores and B-pores, leaving the 3-fold pores unengaged. In contrast, the allosteric network directly links the 3-fold pores with the 4-fold pores in M and L Ftns. The majority of the network residues are either on the inner surface or buried inside the subunit fold or at the subunit interfaces. We hypothesize that the ferritin structures evolved in a way to limit the influence of functionally unrelated events in the cytoplasm on the allosteric network to maintain stability of the translocation mechanisms. We showed that the residue-residue correlations and the resultant long-range cooperativity depend on the ferritin shell packing, which, in turn, depends on protein sequence composition. Switching from the packing-on to the packing-off model reduces correlations by 35%–38% so that no allosteric network can be found. The influence of the side-chain packing on the allosteric networks explains the diversity in mechanisms of iron traffic suggested by experimental approaches.« less

  3. Prediction of relative and absolute permeabilities for gas and water from soil water retention curves using a pore-scale network model

    NASA Astrophysics Data System (ADS)

    Fischer, Ulrich; Celia, Michael A.

    1999-04-01

    Functional relationships for unsaturated flow in soils, including those between capillary pressure, saturation, and relative permeabilities, are often described using analytical models based on the bundle-of-tubes concept. These models are often limited by, for example, inherent difficulties in prediction of absolute permeabilities, and in incorporation of a discontinuous nonwetting phase. To overcome these difficulties, an alternative approach may be formulated using pore-scale network models. In this approach, the pore space of the network model is adjusted to match retention data, and absolute and relative permeabilities are then calculated. A new approach that allows more general assignments of pore sizes within the network model provides for greater flexibility to match measured data. This additional flexibility is especially important for simultaneous modeling of main imbibition and drainage branches. Through comparisons between the network model results, analytical model results, and measured data for a variety of both undisturbed and repacked soils, the network model is seen to match capillary pressure-saturation data nearly as well as the analytical model, to predict water phase relative permeabilities equally well, and to predict gas phase relative permeabilities significantly better than the analytical model. The network model also provides very good estimates for intrinsic permeability and thus for absolute permeabilities. Both the network model and the analytical model lost accuracy in predicting relative water permeabilities for soils characterized by a van Genuchten exponent n≲3. Overall, the computational results indicate that reliable predictions of both relative and absolute permeabilities are obtained with the network model when the model matches the capillary pressure-saturation data well. The results also indicate that measured imbibition data are crucial to good predictions of the complete hysteresis loop.

  4. Estimating dynamic permeability in fractal pore network saturated by Maxwellian fluid

    NASA Astrophysics Data System (ADS)

    Sun, W.

    2017-12-01

    The frequency dependent flow of fluid in porous media is an important issue in geophysical prospecting. Oscillating flow in pipe leads to frequency dependent dynamic permeability and has been studied in pore network containing Newtonian fluid. But there is little work on oscillating complex fluid in pipe network, especially in irregular network. Here we formulated frequency dependent permeability for Maxwellian fluid and estimated the permeability in three-dimensional fractal network model. We consider an infinitely long cylindrical pipe with rigid solid wall. The pipe is filled with Maxwellian fluids. Based on the mass conservation equation, the equilibrium equation of force and Maxwell constitutive relationship, we formulated the flux by integration of axial velocity component over the pipe's cross section. Then we extend single pipe formulation to a 3D irregular network. Flux balance condition yields a set of linear equations whose unknowns are the fluid pressure at each node. By evaluating the total flow flux through the network, the dynamic permeability can be calculated.We investigated the dynamic permeability of brine and CPyCl/NaSal in a 3D porous sample with a cubic side length 1 cm. The pore network is created by a Voronoi cell filling method. The porosity, i.e., volume ratio between pore/pipe network and the overall cubic, is set as 0.1. The irregular pore network has a fractal structure. The dimension d of the pore network is defined by the relation between node number M within a sphere and the radius r of the sphere,M=rd.The results show that both brine and Maxwellian fluid's permeability maintain a stable value at low frequency, then decreases with fluctuating peaks. The dynamic permeability in pore networks saturated by Maxwellian fluid (CPyCl/NaSal (60 mM)) show larger peaks during the decline process at high frequency, which represents the typical resonance behavior. Dynamic permeability shows clear dependence on the dimension of the fractal network. Small-scale network has higher dimension than large-scale networks. The reason is that in larger networks pore and inter-pore connections are so dense that the probability P(r) to have a neighboring pore at distance r decays faster. The proposed model may be used to explain velocity dispersion in unconventional reservoir rocks observed in laboratory.

  5. Numerical Simulation of Multiphase Flow in Nanoporous Organic Matter With Application to Coal and Gas Shale Systems

    NASA Astrophysics Data System (ADS)

    Song, Wenhui; Yao, Jun; Ma, Jingsheng; Sun, Hai; Li, Yang; Yang, Yongfei; Zhang, Lei

    2018-02-01

    Fluid flow in nanoscale organic pores is known to be affected by fluid transport mechanisms and properties within confined pore space. The flow of gas and water shows notably different characteristics compared with conventional continuum modeling approach. A pore network flow model is developed and implemented in this work. A 3-D organic pore network model is constructed from 3-D image that is reconstructed from 2-D shale SEM image of organic-rich sample. The 3-D pore network model is assumed to be gas-wet and to contain initially gas-filled pores only, and the flow model is concerned with drainage process. Gas flow considers a full range of gas transport mechanisms, including viscous flow, Knudsen diffusion, surface diffusion, ad/desorption, and gas PVT and viscosity using a modified van der Waals' EoS and a correlation for natural gas, respectively. The influences of slip length, contact angle, and gas adsorption layer on water flow are considered. Surface tension considers the pore size and temperature effects. Invasion percolation is applied to calculate gas-water relative permeability. The results indicate that the influences of pore pressure and temperature on water phase relative permeabilities are negligible while gas phase relative permeabilities are relatively larger in higher temperatures and lower pore pressures. Gas phase relative permeability increases while water phase relative permeability decreases with the shrinkage of pore size. This can be attributed to the fact that gas adsorption layer decreases the effective flow area of the water phase and surface diffusion capacity for adsorbed gas is enhanced in small pore size.

  6. Multiphase flow predictions from carbonate pore space images using extracted network models

    NASA Astrophysics Data System (ADS)

    Al-Kharusi, Anwar S.; Blunt, Martin J.

    2008-06-01

    A methodology to extract networks from pore space images is used to make predictions of multiphase transport properties for subsurface carbonate samples. The extraction of the network model is based on the computation of the location and sizes of pores and throats to create a topological representation of the void space of three-dimensional (3-D) rock images, using the concept of maximal balls. In this work, we follow a multistaged workflow. We start with a 2-D thin-section image; convert it statistically into a 3-D representation of the pore space; extract a network model from this image; and finally, simulate primary drainage, waterflooding, and secondary drainage flow processes using a pore-scale simulator. We test this workflow for a reservoir carbonate rock. The network-predicted absolute permeability is similar to the core plug measured value and the value computed on the 3-D void space image using the lattice Boltzmann method. The predicted capillary pressure during primary drainage agrees well with a mercury-air experiment on a core sample, indicating that we have an adequate representation of the rock's pore structure. We adjust the contact angles in the network to match the measured waterflood and secondary drainage capillary pressures. We infer a significant degree of contact angle hysteresis. We then predict relative permeabilities for primary drainage, waterflooding, and secondary drainage that agree well with laboratory measured values. This approach can be used to predict multiphase transport properties when wettability and pore structure vary in a reservoir, where experimental data is scant or missing. There are shortfalls to this approach, however. We compare results from three networks, one of which was derived from a section of the rock containing vugs. Our method fails to predict properties reliably when an unrepresentative image is processed to construct the 3-D network model. This occurs when the image volume is not sufficient to represent the geological variations observed in a core plug sample.

  7. A streamline splitting pore-network approach for computationally inexpensive and accurate simulation of transport in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehmani, Yashar; Oostrom, Martinus; Balhoff, Matthew

    2014-03-20

    Several approaches have been developed in the literature for solving flow and transport at the pore-scale. Some authors use a direct modeling approach where the fundamental flow and transport equations are solved on the actual pore-space geometry. Such direct modeling, while very accurate, comes at a great computational cost. Network models are computationally more efficient because the pore-space morphology is approximated. Typically, a mixed cell method (MCM) is employed for solving the flow and transport system which assumes pore-level perfect mixing. This assumption is invalid at moderate to high Peclet regimes. In this work, a novel Eulerian perspective on modelingmore » flow and transport at the pore-scale is developed. The new streamline splitting method (SSM) allows for circumventing the pore-level perfect mixing assumption, while maintaining the computational efficiency of pore-network models. SSM was verified with direct simulations and excellent matches were obtained against micromodel experiments across a wide range of pore-structure and fluid-flow parameters. The increase in the computational cost from MCM to SSM is shown to be minimal, while the accuracy of SSM is much higher than that of MCM and comparable to direct modeling approaches. Therefore, SSM can be regarded as an appropriate balance between incorporating detailed physics and controlling computational cost. The truly predictive capability of the model allows for the study of pore-level interactions of fluid flow and transport in different porous materials. In this paper, we apply SSM and MCM to study the effects of pore-level mixing on transverse dispersion in 3D disordered granular media.« less

  8. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale

    NASA Astrophysics Data System (ADS)

    Seetha, N.; Raoof, Amir; Mohan Kumar, M. S.; Majid Hassanizadeh, S.

    2017-05-01

    Transport and deposition of nanoparticles in porous media is a multi-scale problem governed by several pore-scale processes, and hence, it is critical to link the processes at pore scale to the Darcy-scale behavior. In this study, using pore network modeling, we develop correlation equations for deposition rate coefficients for nanoparticle transport under unfavorable conditions at the Darcy scale based on pore-scale mechanisms. The upscaling tool is a multi-directional pore-network model consisting of an interconnected network of pores with variable connectivities. Correlation equations describing the pore-averaged deposition rate coefficients under unfavorable conditions in a cylindrical pore, developed in our earlier studies, are employed for each pore element. Pore-network simulations are performed for a wide range of parameter values to obtain the breakthrough curves of nanoparticle concentration. The latter is fitted with macroscopic 1-D advection-dispersion equation with a two-site linear reversible deposition accounting for both equilibrium and kinetic sorption. This leads to the estimation of three Darcy-scale deposition coefficients: distribution coefficient, kinetic rate constant, and the fraction of equilibrium sites. The correlation equations for the Darcy-scale deposition coefficients, under unfavorable conditions, are provided as a function of measurable Darcy-scale parameters, including: porosity, mean pore throat radius, mean pore water velocity, nanoparticle radius, ionic strength, dielectric constant, viscosity, temperature, and surface potentials of the particle and grain surfaces. The correlation equations are found to be consistent with the available experimental results, and in qualitative agreement with Colloid Filtration Theory for all parameters, except for the mean pore water velocity and nanoparticle radius.

  9. Assessment of critical path analyses of the relationship between permeability and electrical conductivity of pore networks

    NASA Astrophysics Data System (ADS)

    Skaggs, Todd H.

    2011-10-01

    Critical path analysis (CPA) is a method for estimating macroscopic transport coefficients of heterogeneous materials that are highly disordered at the micro-scale. Developed originally to model conduction in semiconductors, numerous researchers have noted that CPA might also have relevance to flow and transport processes in porous media. However, the results of several numerical investigations of critical path analysis on pore network models raise questions about the applicability of CPA to porous media. Among other things, these studies found that (i) in well-connected 3D networks, CPA predictions were inaccurate and became worse when heterogeneity was increased; and (ii) CPA could not fully explain the transport properties of 2D networks. To better understand the applicability of CPA to porous media, we made numerical computations of permeability and electrical conductivity on 2D and 3D networks with differing pore-size distributions and geometries. A new CPA model for the relationship between the permeability and electrical conductivity was found to be in good agreement with numerical data, and to be a significant improvement over a classical CPA model. In sufficiently disordered 3D networks, the new CPA prediction was within ±20% of the true value, and was nearly optimal in terms of minimizing the squared prediction errors across differing network configurations. The agreement of CPA predictions with 2D network computations was similarly good, although 2D networks are in general not well-suited for evaluating CPA. Numerical transport coefficients derived for regular 3D networks of slit-shaped pores were found to be in better agreement with experimental data from rock samples than were coefficients derived for networks of cylindrical pores.

  10. Minimum requirements for predictive pore-network modeling of solute transport in micromodels

    NASA Astrophysics Data System (ADS)

    Mehmani, Yashar; Tchelepi, Hamdi A.

    2017-10-01

    Pore-scale models are now an integral part of analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Pore network models (PNM) are particularly attractive due to their computational efficiency. However, quantitative predictions with PNM have not always been successful. We focus on single-phase transport of a passive tracer under advection-dominated regimes and compare PNM with high-fidelity direct numerical simulations (DNS) for a range of micromodel heterogeneities. We identify the minimum requirements for predictive PNM of transport. They are: (a) flow-based network extraction, i.e., discretizing the pore space based on the underlying velocity field, (b) a Lagrangian (particle tracking) simulation framework, and (c) accurate transfer of particles from one pore throat to the next. We develop novel network extraction and particle tracking PNM methods that meet these requirements. Moreover, we show that certain established PNM practices in the literature can result in first-order errors in modeling advection-dominated transport. They include: all Eulerian PNMs, networks extracted based on geometric metrics only, and flux-based nodal transfer probabilities. Preliminary results for a 3D sphere pack are also presented. The simulation inputs for this work are made public to serve as a benchmark for the research community.

  11. A characterization of the coupled evolution of grain fabric and pore space using complex networks: Pore connectivity and optimized flows in the presence of shear bands

    NASA Astrophysics Data System (ADS)

    Russell, Scott; Walker, David M.; Tordesillas, Antoinette

    2016-03-01

    A framework for the multiscale characterization of the coupled evolution of the solid grain fabric and its associated pore space in dense granular media is developed. In this framework, a pseudo-dual graph transformation of the grain contact network produces a graph of pores which can be readily interpreted as a pore space network. Survivability, a new metric succinctly summarizing the connectivity of the solid grain and pore space networks, measures material robustness. The size distribution and the connectivity of pores can be characterized quantitatively through various network properties. Assortativity characterizes the pore space with respect to the parity of the number of particles enclosing the pore. Multiscale clusters of odd parity versus even parity contact cycles alternate spatially along the shear band: these represent, respectively, local jamming and unjamming regions that continually switch positions in time throughout the failure regime. Optimal paths, established using network shortest paths in favor of large pores, provide clues on preferential paths for interstitial matter transport. In systems with higher rolling resistance at contacts, less tortuous shortest paths thread through larger pores in shear bands. Notably the structural patterns uncovered in the pore space suggest that more robust models of interstitial pore flow through deforming granular systems require a proper consideration of the evolution of in situ shear band and fracture patterns - not just globally, but also inside these localized failure zones.

  12. Experimental and modeling study of Newtonian and non-Newtonian fluid flow in pore network micromodels.

    PubMed

    Perrin, Christian L; Tardy, Philippe M J; Sorbie, Ken S; Crawshaw, John C

    2006-03-15

    The in situ rheology of polymeric solutions has been studied experimentally in etched silicon micromodels which are idealizations of porous media. The rectangular channels in these etched networks have dimensions typical of pore sizes in sandstone rocks. Pressure drop/flow rate relations have been measured for water and non-Newtonian hydrolyzed-polyacrylamide (HPAM) solutions in both individual straight rectangular capillaries and in networks of such capillaries. Results from these experiments have been analyzed using pore-scale network modeling incorporating the non-Newtonian fluid mechanics of a Carreau fluid. Quantitative agreement is seen between the experiments and the network calculations in the Newtonian and shear-thinning flow regions demonstrating that the 'shift factor,'alpha, can be calculated a priori. Shear-thickening behavior was observed at higher flow rates in the micromodel experiments as a result of elastic effects becoming important and this remains to be incorporated in the network model.

  13. Validation of model predictions of pore-scale fluid distributions during two-phase flow

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.

    2018-05-01

    Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.

  14. Simulating secondary waterflooding in heterogeneous rocks with variable wettability using an image-based, multiscale pore network model

    NASA Astrophysics Data System (ADS)

    Bultreys, Tom; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-09-01

    The two-phase flow properties of natural rocks depend strongly on their pore structure and wettability, both of which are often heterogeneous throughout the rock. To better understand and predict these properties, image-based models are being developed. Resulting simulations are however problematic in several important classes of rocks with broad pore-size distributions. We present a new multiscale pore network model to simulate secondary waterflooding in these rocks, which may undergo wettability alteration after primary drainage. This novel approach permits to include the effect of microporosity on the imbibition sequence without the need to describe each individual micropore. Instead, we show that fluid transport through unresolved pores can be taken into account in an upscaled fashion, by the inclusion of symbolic links between macropores, resulting in strongly decreased computational demands. Rules to describe the behavior of these links in the quasistatic invasion sequence are derived from percolation theory. The model is validated by comparison to a fully detailed network representation, which takes each separate micropore into account. Strongly and weakly water-and oil-wet simulations show good results, as do mixed-wettability scenarios with different pore-scale wettability distributions. We also show simulations on a network extracted from a micro-CT scan of Estaillades limestone, which yields good agreement with water-wet and mixed-wet experimental results.

  15. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment

    DOE PAGES

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; ...

    2015-10-26

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. Here, this balancesmore » the insufficient characterisation information and provides the means for future mechanical–physical–chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(VI) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(VI) diffusion the method is extended to account for sorption and convection. Finally, rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.« less

  16. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    PubMed

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  17. Application of real rock pore-threat statistics to a regular pore network model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakibul, M.; Sarker, H.; McIntyre, D.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data.« less

  18. Application of real rock pore-throat statistics to a regular pore network model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarker, M.R.; McIntyre, D.; Ferer, M.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data. Introduction« less

  19. Developing an Effective Model for Shale Gas Flow in Nano-scale Pore Clusters based on FIB-SEM Images

    NASA Astrophysics Data System (ADS)

    Jiang, W. B.; Lin, M.; Yi, Z. X.; Li, H. S.

    2016-12-01

    Nano-scale pores existed in the form of clusters are the controlling void space in shale gas reservoir. Gas transport in nanopores which has a significant influence on shale gas' recoverability displays multiple transport regimes, including viscous, slippage flow and Knudsen diffusion. In addition, it is also influenced by pore space characteristics. For convenience and efficiency consideration, it is necessary to develop an upscaling model from nano pore to pore cluster scale. Existing models are more like framework functions that provide a format, because the parameters that represent pore space characteristics are underdetermined and may have multiple possibilities. Therefore, it is urgent to make them clear and obtained a model that is closer to reality. FIB-SEM imaging technology is able to acquire three dimensional images with nanometer resolution that nano pores can be visible. Based on the images of two shale samples, we used a high-precision pore network extraction algorithm to generate equivalent pore networks and simulate multiple regime (non-Darcy) flow in it. Several structural parameters can be obtained through pore network modelling. It is found that although the throat-radius distributions are very close, throat flux-radius distributions of different samples can be divided into two categories. The variation of tortuosity with pressure and the overall trend of throat-flux distribution changes with pressure are disclosed. A deeper understanding of shale gas flow in nano-scale pore clusters is obtained. After all, an upscaling model that connects absolute permeability, apparent permeability and other characteristic parameters is proposed, and the best parameter scheme considering throat number-radius distribution and flowing porosity for this model is selected out of three schemes based on pore scale results, and it can avoid multiple-solution problem and is useful in reservoir modelling and experiment result analysis, etc. This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB10020302), the National Natural Science Foundation of China (41574129), the Key Instrument Developing Project of the CAS (ZDYZ2012-1-08-02), the 973 Program (2014CB239004).

  20. A multi-scale network method for two-phase flow in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khayrat, Karim, E-mail: khayratk@ifd.mavt.ethz.ch; Jenny, Patrick

    Pore-network models of porous media are useful in the study of pore-scale flow in porous media. In order to extract macroscopic properties from flow simulations in pore-networks, it is crucial the networks are large enough to be considered representative elementary volumes. However, existing two-phase network flow solvers are limited to relatively small domains. For this purpose, a multi-scale pore-network (MSPN) method, which takes into account flow-rate effects and can simulate larger domains compared to existing methods, was developed. In our solution algorithm, a large pore network is partitioned into several smaller sub-networks. The algorithm to advance the fluid interfaces withinmore » each subnetwork consists of three steps. First, a global pressure problem on the network is solved approximately using the multiscale finite volume (MSFV) method. Next, the fluxes across the subnetworks are computed. Lastly, using fluxes as boundary conditions, a dynamic two-phase flow solver is used to advance the solution in time. Simulation results of drainage scenarios at different capillary numbers and unfavourable viscosity ratios are presented and used to validate the MSPN method against solutions obtained by an existing dynamic network flow solver.« less

  1. Pore-scale simulation of liquid CO2 displacement of water using a two-phase lattice Boltzmann model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haihu; Valocchi, Albert J.; Werth, Charles J.

    A lattice Boltzmann color-fluid model, which was recently proposed by Liu et al. [H. Liu, A.J. Valocchi, and Q. Kang. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations. Phys. Rev. E, 85:046309, 2012.] based on a concept of continuum surface force, is improved to simulate immiscible two-phase flows in porous media. The new improvements allow the model to account for different kinematic viscosities of both fluids and to model fluid-solid interactions. The capability and accuracy of this model is first validated by two benchmark tests: a layered two-phase flow with a viscosity ratio, and a dynamic capillary intrusion. Thismore » model is then used to simulate liquid CO2 (LCO2) displacing water in a dual-permeability pore network. The extent and behavior of LCO2 preferential flow (i.e., fingering) is found to depend on the capillary number (Ca), and three different displacement patterns observed in previous micromodel experiments are reproduced. The predicted variation of LCO2 saturation with Ca, as well as variation of specific interfacial length with LCO2 saturation, are both in good agreement with the experimental observations. To understand the effect of heterogeneity on pore-scale displacement, we also simulate LCO2 displacing water in a randomly heterogeneous pore network, which has the same size and porosity as the dual-permeability pore network. In comparison to the dual-permeability case, the transition from capillary fingering to viscous fingering occurs at a higher Ca, and LCO2 saturation is higher at low Ca but lower at high Ca. In either pore network, the LCO2-water specific interfacial length is found to obey a power-law dependence on LCO2 saturation.« less

  2. Cyclic deformation-induced solute transport in tissue scaffolds with computer designed, interconnected, pore networks: experiments and simulations.

    PubMed

    Den Buijs, Jorn Op; Dragomir-Daescu, Dan; Ritman, Erik L

    2009-08-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid-structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold.

  3. A new methodology for determination of macroscopic transport parameters in drying porous media

    NASA Astrophysics Data System (ADS)

    Attari Moghaddam, A.; Kharaghani, A.; Tsotsas, E.; Prat, M.

    2015-12-01

    Two main approaches have been used to model the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models (CM) obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments. The second approach considers the material at the pore scale, where the void space is represented by a network of pores (PN). Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network. In this work, the moisture transport coefficient (D), the pseudo desorption isotherm inside the network and at the evaporative surface are estimated from the post-processing of the three-dimensional pore network drying simulations for fifteen realizations of the pore space geometry from a given probability distribution. A slice sampling method is used in order to extract these parameters from PN simulations. The moisture transport coefficient obtained in this way is shown in Fig. 1a. The minimum of average D values demonstrates the transition between liquid dominated moisture transport region and vapor dominated moisture transport region; a similar behavior has been observed in previous experimental findings. A function is fitted to the average D values and then is fed into the non-linear moisture diffusion equation. The saturation profiles obtained from PN and CM simulations are shown in Fig. 1b. Figure 1: (a) extracted moisture transport coefficient during drying for fifteen realizations of the pore network, (b) average moisture profiles during drying obtained from PN and CM simulations.

  4. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    NASA Astrophysics Data System (ADS)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-04-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a Critical Filtration Size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  5. Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes

    NASA Astrophysics Data System (ADS)

    Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.

    2010-10-01

    Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.

  6. Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, S. M.; Xiao, X.; Faber, K. T.

    Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys,more » and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.« less

  7. Cyclic Deformation-Induced Solute Transport in Tissue Scaffolds with Computer Designed, Interconnected, Pore Networks: Experiments and Simulations

    PubMed Central

    Op Den Buijs, Jorn; Dragomir-Daescu, Dan; Ritman, Erik L.

    2014-01-01

    Nutrient supply and waste removal in porous tissue engineering scaffolds decrease from the periphery to the center, leading to limited depth of ingrowth of new tissue into the scaffold. However, as many tissues experience cyclic physiological strains, this may provide a mechanism to enhance solute transport in vivo before vascularization of the scaffold. The hypothesis of this study was that pore cross-sectional geometry and interconnectivity are of major importance for the effectiveness of cyclic deformation-induced solute transport. Transparent elastic polyurethane scaffolds, with computer-programmed design of pore networks in the form of interconnected channels, were fabricated using a 3D printing and injection molding technique. The scaffold pores were loaded with a colored tracer for optical contrast, cyclically compressed with deformations of 10 and 15% of the original undeformed height at 1.0 Hz. Digital imaging was used to quantify the spatial distribution of the tracer concentration within the pores. Numerical simulations of a fluid–structure interaction model of deformation-induced solute transport were compared to the experimental data. The results of experiments and modeling agreed well and showed that pore interconnectivity heavily influences deformation-induced solute transport. Pore cross-sectional geometry appears to be of less relative importance in interconnected pore networks. Validated computer models of solute transport can be used to design optimal scaffold pore geometries that will enhance the convective transport of nutrients inside the scaffold and the removal of waste, thus improving the cell survivability deep inside the scaffold. PMID:19466547

  8. Fractal Characteristics of the Pore Network in Diatomites Using Mercury Porosimetry and Image Analysis

    NASA Astrophysics Data System (ADS)

    Stańczak, Grażyna; Rembiś, Marek; Figarska-Warchoł, Beata; Toboła, Tomasz

    The complex pore space considerably affects the unique properties of diatomite and its significant potential for many industrial applications. The pore network in the diatomite from the Lower Miocene strata of the Skole nappe (the Jawornik deposit, SE Poland) has been investigated using a fractal approach. The fractal dimension of the pore-space volume was calculated using the Menger sponge as a model of a porous body and the mercury porosimetry data in a pore-throat diameter range between 10,000 and 10 nm. Based on the digital analyses of the two-dimensional images from thin sections taken under a scanning electron microscope at the backscattered electron mode at different magnifications, the authors tried to quantify the pore spaces of the diatomites using the box counting method. The results derived from the analyses of the pore-throat diameter distribution using mercury porosimetry have revealed that the pore space of the diatomite has the bifractal structure in two separated ranges of the pore-throat diameters considerably smaller than the pore-throat sizes corresponding to threshold pressures. Assuming that the fractal dimensions identified for the ranges of the smaller pore-throat diameters characterize the overall pore-throat network in the Jawornik diatomite, we can set apart the distribution of the pore-throat volume (necks) and the pore volume from the distribution of the pore-space volume (pores and necks together).

  9. A FUNCTIONAL RELATION FOR FIELD-SCALE NONAQUEOUS PHASE LIQUID DISSOLUTION DEVELOPED USING A PORE NETWORK MODEL. (R825689C080)

    EPA Science Inventory

    Abstract

    A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai

  10. A FUNCTIONAL RELATION FOR FIELD-SCALE NONAQUEOUS PHASE LIQUID DISSOLUTION DEVELOPED USING A PORE NETWORK MODEL. (R825689C079)

    EPA Science Inventory

    Abstract

    A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai

  11. A Binomial Modeling Approach for Upscaling Colloid Transport Under Unfavorable Attachment Conditions: Emergent Prediction of Nonmonotonic Retention Profiles

    NASA Astrophysics Data System (ADS)

    Hilpert, Markus; Johnson, William P.

    2018-01-01

    We used a recently developed simple mathematical network model to upscale pore-scale colloid transport information determined under unfavorable attachment conditions. Classical log-linear and nonmonotonic retention profiles, both well-reported under favorable and unfavorable attachment conditions, respectively, emerged from our upscaling. The primary attribute of the network is colloid transfer between bulk pore fluid, the near-surface fluid domain (NSFD), and attachment (treated as irreversible). The network model accounts for colloid transfer to the NSFD of downgradient grains and for reentrainment to bulk pore fluid via diffusion or via expulsion at rear flow stagnation zones (RFSZs). The model describes colloid transport by a sequence of random trials in a one-dimensional (1-D) network of Happel cells, which contain a grain and a pore. Using combinatorial analysis that capitalizes on the binomial coefficient, we derived from the pore-scale information the theoretical residence time distribution of colloids in the network. The transition from log-linear to nonmonotonic retention profiles occurs when the conditions underlying classical filtration theory are not fulfilled, i.e., when an NSFD colloid population is maintained. Then, nonmonotonic retention profiles result potentially both for attached and NSFD colloids. The concentration maxima shift downgradient depending on specific parameter choice. The concentration maxima were also shown to shift downgradient temporally (with continued elution) under conditions where attachment is negligible, explaining experimentally observed downgradient transport of retained concentration maxima of adhesion-deficient bacteria. For the case of zero reentrainment, we develop closed-form, analytical expressions for the shape, and the maximum of the colloid retention profile.

  12. Upscaling pore pressure-dependent gas permeability in shales

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Javadpour, Farzam

    2017-04-01

    Upscaling pore pressure dependence of shale gas permeability is of great importance and interest in the investigation of gas production in unconventional reservoirs. In this study, we apply the Effective Medium Approximation, an upscaling technique from statistical physics, and modify the Doyen model for unconventional rocks. We develop an upscaling model to estimate the pore pressure-dependent gas permeability from pore throat size distribution, pore connectivity, tortuosity, porosity, and gas characteristics. We compare our adapted model with six data sets: three experiments, one pore-network model, and two lattice-Boltzmann simulations. Results showed that the proposed model estimated the gas permeability within a factor of 3 of the measurements/simulations in all data sets except the Eagle Ford experiment for which we discuss plausible sources of discrepancies.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckingham, Lauren E.; Peters, Catherine A.; Um, Wooyong

    Although the impact of subsurface geochemical reactions on porosity is relatively well understood, changes in permeability remain difficult to estimate. In this work, pore-network modeling was used to predict permeability based on pore- and pore-throat size distributions determined from analysis of 2D scanning electron microscopy (SEM) images of thin sections and 3D X-ray computed microtomography (CMT) data. The analyzed specimens were a Viking sandstone sample from the Alberta sedimentary basin and an experimental column of reacted Hanford sediments. For the column, a decrease in permeability due to mineral precipitation was estimated, but the permeability estimates were dependent on imaging techniquemore » and resolution. X-ray CT imaging has the advantage of reconstructing a 3D pore network while 2D SEM imaging can easily analyze sub-grain and intragranular variations in mineralogy. Pore network models informed by analyses of 2D and 3D images at comparable resolutions produced permeability esti- mates with relatively good agreement. Large discrepancies in predicted permeabilities resulted from small variations in image resolution. Images with resolutions 0.4 to 4 lm predicted permeabilities differ- ing by orders of magnitude. While lower-resolution scans can analyze larger specimens, small pore throats may be missed due to resolution limitations, which in turn overestimates permeability in a pore-network model in which pore-to-pore conductances are statistically assigned. Conversely, high-res- olution scans are capable of capturing small pore throats, but if they are not actually flow-conducting predicted permeabilities will be below expected values. In addition, permeability is underestimated due to misinterpreting surface-roughness features as small pore throats. Comparison of permeability pre- dictions with expected and measured permeability values showed that the largest discrepancies resulted from the highest resolution images and the best predictions of permeability will result from images between 2 and 4 lm resolution. To reduce permeability underestimation from analyses of high-resolu- tion images, a resolution threshold between 3 and 15 lm was found to be effective, but it is not known whether this range is applicable beyond the samples studied here.« less

  14. A New Dual-Pore Formation Factor Model: A Percolation Network Study and Comparison to Experimental Data

    NASA Astrophysics Data System (ADS)

    Tang, Y. B.; Li, M.; Bernabe, Y.

    2014-12-01

    We modeled the electrical transport behavior of dual-pore carbonate rocks in this paper. Based on experimental data of a carbonate reservoir in China, we simply considered the low porosity samples equivalent to the matrix (micro-pore system) of the high porosity samples. For modeling the bimodal porous media, we considered that the matrix is homogeneous and interconnected. The connectivity and the pore size distribution of macro-pore system are varied randomly. Both pore systems are supposed to act electrically in parallel, connected at the nodes, where the fluid exchange takes place, an approach previously used by Bauer et al. (2012). Then, the effect of the properties of matrix, the pore size distribution and connectivity of macro-pore system on petrophysical properties of carbonates can be investigated. We simulated electrical current through networks in three-dimensional simple cubic (SC) and body-center cubic (BCC) with different coordination numbers and different pipe radius distributions of macro-pore system. Based on the simulation results, we found that the formation factor obeys a "universal" scaling relationship (i.e. independent of lattice type), 1/F∝eγz, where γ is a function of the normalized standard deviation of the pore radius distribution of macro-pore system and z is the coordination number of macro-pore system. This relationship is different from the classic "universal power law" in percolation theory. A formation factor model was inferred on the basis of the scaling relationship mentioned above and several scale-invariant quantities (such as hydraulic radius rH and throat length l of macro-pore). Several methods were developed to estimate corresponding parameters of the new model with conventional core analyses. It was satisfactorily tested against experimental data, including some published experimental data. Furthermore, the relationship between water saturation and resistivity in dual-pore carbonates was discussed based on the new model.

  15. Unifying Pore Network Modeling, Continuous Time Random Walk Theory and Experiment - Accomplishments and Future Directions

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.

    2008-05-01

    This talk will describe and highlight the advantages offered by a methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause spreading of solute particles. This spreading is traditionally described by dispersion coefficients, D, defined by σ 2 = 2Dt, where σ 2 is the variance of the solute position and t is the time. Using a pore-scale network model based on particle tracking, the rich Peclet- number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. Future directions for further applications of the methodology presented are discussed in relation to the scale- dependent solute dispersion and reactive transport. Significance of pre-asymptotic dispersion in porous media is addressed from pore-scale upwards and the impact of heterogeneity is discussed. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will profoundly increase the range of velocities in the aquifer, thus considerably delaying the asymptotic approach to Gaussian behaviour. As a consequence, the asymptotic behaviour might not be reached at the field scale.

  16. Percolation Pore Network Study on the Residue Gas Saturation of Dry Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Cheng, T.; Tang, Y. B.; Zou, G. Y.; Jiang, K.; Li, M.

    2014-12-01

    We tried to model the effect of pore size heterogeneity and pore connectivity on the residue gas saturation for dry gas reservoir rocks. If we consider that snap-off does not exist and only piston displacement takes place in all pores with the same size during imbibition process, in the extreme case, the residue gas saturation will be equal to zero. Thus we can suppose that the residue gas saturation of dry rocks is mainly controlled by the pore size distribution. To verify the assumption, percolation pore networks (i.e., three-dimensional simple cubic (SC) and body-center cubic (BCC)) were used in the study. The connectivity and the pore size distribution in percolation pore network could be changed randomly. The concept of water phase connectivity zw(i.e., water coordination number) and gas phase connectivity zg (i.e., gas coordination number) was introduced here. zw and zg will change during simulation and can be estimated numerically from the results of simulations through gradually saturated networks by water. The Simulation results show that when zg less than or equal to 1.5 during water quasi - static imbibition, the gas will be trapped in rock pores. Network simulation results also shows that the residue gas saturation Srg follows a power law relationship (i.e.,Srg∝σrα, where σr is normalized standard deviation of the pore radius distribution, and exponent α is a function of coordination number). This indicates that the residue gas saturation has no explicit relationship with porosity and permeability as it should have in light of previous study, pore radius distribution is the principal factor in determining the residue gas saturation of dry reservoir rocks.

  17. Transport and Deposition of Nanoparticles in the Pore Network of a Reservoir Rock: Effects of Pore Surface Heterogeneity and Radial Diffusion

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc; Papavassiliou, Dimitrios

    2014-03-01

    In this study, transport behavior of nanoparticles under different pore surface conditions of consolidated Berea sandstone is numerically investigated. Micro-CT scanning technique is applied to obtain 3D grayscale images of the rock sample geometry. Quantitative characterization, which is based on image analysis is done to obtain physical properties of the pore network, such as the pore size distribution and the type of each pore (dead-end, isolated, and fully connected pore). Transport of water through the rock is simulated by employing a 3D lattice Boltzmann method. The trajectories of nanopaticles moving under convection in the simulated flow field and due to molecular diffusion are monitored in the Lagrangian framework. It is assumed in the model that the particle adsorption on the pore surface, which is modeled as a pseudo-first order adsorption, is the only factor hindering particle propagation. The effect of pore surface heterogeneity to the particle breakthrough is considered, and the role of particle radial diffusion is also addressed in details. The financial support of the Advanced Energy Consortium (AEC BEG08-022) and the computational support of XSEDE (CTS090017) are acknowledged.

  18. Effects of the soil pore network architecture on the soil's physical functionalities

    NASA Astrophysics Data System (ADS)

    Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore

    2017-04-01

    The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured parameters uncertainties? Sarah Smet, as a research fellow, acknowledges the support of the National Fund for Scientific Research (Brussels, Belgium).

  19. Multi-scale modeling of multi-component reactive transport in geothermal aquifers

    NASA Astrophysics Data System (ADS)

    Nick, Hamidreza M.; Raoof, Amir; Wolf, Karl-Heinz; Bruhn, David

    2014-05-01

    In deep geothermal systems heat and chemical stresses can cause physical alterations, which may have a significant effect on flow and reaction rates. As a consequence it will lead to changes in permeability and porosity of the formations due to mineral precipitation and dissolution. Large-scale modeling of reactive transport in such systems is still challenging. A large area of uncertainty is the way in which the pore-scale information controlling the flow and reaction will behave at a larger scale. A possible choice is to use constitutive relationships relating, for example the permeability and porosity evolutions to the change in the pore geometry. While determining such relationships through laboratory experiments may be limited, pore-network modeling provides an alternative solution. In this work, we introduce a new workflow in which a hybrid Finite-Element Finite-Volume method [1,2] and a pore network modeling approach [3] are employed. Using the pore-scale model, relevant constitutive relations are developed. These relations are then embedded in the continuum-scale model. This approach enables us to study non-isothermal reactive transport in porous media while accounting for micro-scale features under realistic conditions. The performance and applicability of the proposed model is explored for different flow and reaction regimes. References: 1. Matthäi, S.K., et al.: Simulation of solute transport through fractured rock: a higher-order accurate finite-element finite-volume method permitting large time steps. Transport in porous media 83.2 (2010): 289-318. 2. Nick, H.M., et al.: Reactive dispersive contaminant transport in coastal aquifers: Numerical simulation of a reactive Henry problem. Journal of contaminant hydrology 145 (2012), 90-104. 3. Raoof A., et al.: PoreFlow: A Complex pore-network model for simulation of reactive transport in variably saturated porous media, Computers & Geosciences, 61, (2013), 160-174.

  20. Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria

    NASA Astrophysics Data System (ADS)

    Daly, Kristopher E.; Huang, Kerwyn Casey; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2011-04-01

    The bacterial cell wall is a network of sugar strands crosslinked by peptides that serve as the primary structure for bearing osmotic stress. Despite its importance in cellular survival, the robustness of the cell wall to network defects has been relatively unexplored. Treatment of the Gram-negative bacterium Escherichia coli with the antibiotic vancomycin, which disrupts the crosslinking of new material during growth, leads to the development of pronounced bulges and eventually of cell lysis. Here, we model the mechanics of the bulging of the cytoplasmic membrane through pores in the cell wall. We find that the membrane undergoes a transition between a nearly flat state and a spherical bulge at a critical pore radius of ~20 nm. This critical pore size is large compared to the typical distance between neighboring peptides and glycan strands, and hence pore size acts as a constraint on network integrity. We also discuss the general implications of our model to membrane deformations in eukaryotic blebbing and vesiculation in red blood cells.

  1. Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity

    NASA Astrophysics Data System (ADS)

    Dashtian, Hassan; Shokri, Nima; Sahimi, Muhammad

    2018-02-01

    Salt transport and precipitation in porous media constitute a set of complex and fascinating phenomena that are of considerable interest to several important problems, ranging from storage of CO2 in geological formations, to soil fertility, and protection of pavements and roads, as well as historical monuments. The phenomena occur at the pore scale and are greatly influenced by the heterogeneity of the pore space morphology. We present a pore-network (PN) model to study the phenomena. Vapor diffusion, capillary effect at the brine-vapor interface, flow of brine, and transport of salt and its precipitation in the pores that plug the pores partially or completely are all accounted for. The drying process is modeled by the invasion percolation, while transport of salt in brine is accounted for by the convective-diffusion equation. We demonstrate that the drying patterns, the clustering and connectivity of the pore throats in which salt precipitation occurs, the saturation distribution, and the drying rate are all strongly dependent upon the pore-size distribution, the correlations among the pore sizes, and the anisotropy of the pore space caused by stratification that most natural porous media contain. In particular, if the strata are more or less parallel to the direction of injection of the gas that dries out the pore space (air, for example) and/or causes salt precipitation (CO2, for example), the drying rate increases significantly. Moreover, salt tends to precipitate in clusters of neighboring pores that are parallel to the open surface of the porous medium.

  2. Comparison of Pore-Network and Lattice Boltzmann Models for Pore-Scale Modeling of Geological Storage of CO2 in Natural Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Kohanpur, A. H.; Chen, Y.; Valocchi, A. J.; Tudek, J.; Crandall, D.

    2016-12-01

    CO2-brine flow in deep natural rocks is the focus of attention in geological storage of CO2. Understanding rock/flow properties at pore-scale is a vital component in field-scale modeling and prediction of fate of injected CO2. There are many challenges in working at the pore scale, such as size and selection of representative elementary volume (REV), particularly for material with complex geometry and heterogeneity, and the high computational costs. These issues factor into trade-offs that need to be made in choosing and applying pore-scale models. On one hand, pore-network modeling (PNM) simplifies the geometry and flow equations but can provide characteristic curves on fairly large samples. On the other hand, the lattice Boltzmann method (LBM) solves Navier-Stokes equations on the real geometry but is limited to small samples due to its high computational costs. Thus, both methods have some advantages but also face some challenges, which warrants a more detailed comparison and evaluation. In this study, we used industrial and micro-CT scans of actual reservoir rock samples to characterize pore structure at different resolutions. We ran LBM models directly on the characterized geometry and PNM on the equivalent 3D extracted network to determine single/two-phase flow properties during drainage and imbibition processes. Specifically, connectivity, absolute permeability, relative permeability curve, capillary pressure curve, and interface location are compared between models. We also did simulations on several subsamples from different locations including different domain sizes and orientations to encompass analysis of heterogeneity and isotropy. This work is primarily supported as part of the Center for Geologic Storage of CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and partially supported by the International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) based at Kyushu University, Japan.

  3. Micropore analysis of polymer networks by gas sorption and 129Xe NMR spectroscopy: toward a better understanding of intrinsic microporosity.

    PubMed

    Weber, Jens; Schmidt, Johannes; Thomas, Arne; Böhlmann, Winfried

    2010-10-05

    The microporosity of two microporous polymer networks is investigated in detail. Both networks are based on a central spirobifluorene motif but have different linker groups, namely, imide and thiophene units. The microporosity of the networks is based on the "polymers of intrinsic microporosity (PIM)" design strategy. Nitrogen, argon, and carbon dioxide were used as sorbates in order to analyze the microporosity in greater detail. The gas sorption data was analyzed with respect to important parameters such as specific surface area, pore volume, and pore size (distribution). It is shown that the results can be strongly model dependent and swelling effects have to be regarded. (129)Xe NMR was used as an independent technique for the estimation of the average pore size of the polymer networks. The results indicate that both networks are mainly ultramicroporous (pore sizes < 0.8 nm) in the dry state, which was not expected based on the molecular design. Phase separation and network defects might influence the overall network morphology strongly. Finally, the observed swelling indicates that this "soft" microporous matter might have a different micropore size in the solvent swollen/filled state that in the dry state.

  4. An Amorphous Network Model for Capillary Flow and Dispersion in a Partially Saturated Porous Medium

    NASA Astrophysics Data System (ADS)

    Simmons, C. S.; Rockhold, M. L.

    2013-12-01

    Network models of capillary flow are commonly used to represent conduction of fluids at pore scales. Typically, a flow system is described by a regular geometric lattice of interconnected tubes. Tubes constitute the pore throats, while connection junctions (nodes) are pore bodies. Such conceptualization of the geometry, however, is questionable for the pore scale, where irregularity clearly prevails, although prior published models using a regular lattice have demonstrated successful descriptions of the flow in the bulk medium. Here a network is allowed to be amorphous, and is not subject to any particular lattice structure. Few network flow models have treated partially saturated or even multiphase conditions. The research trend is toward using capillary tubes with triangular or square cross sections that have corners and always retain some fluid by capillarity when drained. In contrast, this model uses only circular capillaries, whose filled state is controlled by a capillary pressure rule for the junctions. The rule determines which capillary participate in the flow under an imposed matric potential gradient during steady flow conditions. Poiseuille's Law and Laplace equation are used to describe flow and water retention in the capillary units of the model. A modified conjugate gradient solution for steady flow that tracks which capillary in an amorphous network contribute to fluid conduction was devised for partially saturated conditions. The model thus retains the features of classical capillary models for determining hydraulic flow properties under unsaturated conditions based on distribution of non-interacting tubes, but now accounts for flow exchange at junctions. Continuity of the flow balance at every junction is solved simultaneously. The effective water retention relationship and unsaturated permeability are evaluated for an extensive enough network to represent a small bulk sample of porous medium. The model is applied for both a hypothetically randomly generate network and for a directly measured porous medium structure, by means of xray-CT scan. A randomly generated network has the benefit of providing ensemble averages for sample replicates of a medium's properties, whereas network structure measurements are expected to be more predictive. Dispersion of solute in a network flow is calculate by using particle tracking to determine the travel time breakthrough between inflow and outflow boundaries. The travel time distribution can exhibit substantial skewness that reflects both network velocity variability and mixing dilution at junctions. When local diffusion is not included, and transport is strictly advective, then the skew breakthrough is not due to mobile-immobile flow region behavior. The approach of dispersivity to its asymptotic value with sample size is examined, and may be only an indicator of particular stochastic flow variation. It is not proven that a simplified network flow model can accurately predict the hydraulic properties of a sufficiently large-size medium sample, but such a model can at least demonstrate macroscopic flow resulting from the interaction of physical processes at pore scales.

  5. Reply to 'Comments on upscaling geochemical reaction rates usingpore-scale network modeling' by Peter C. Lichtner and Qinjun Kang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Li; Peters, Catherine A.; Celia, Michael A.

    2006-05-03

    Our paper "Upscaling geochemical reaction rates usingpore-scale network modeling" presents a novel application of pore-scalenetwork modeling to upscale mineral dissolution and precipitationreaction rates from the pore scale to the continuum scale, anddemonstrates the methodology by analyzing the scaling behavior ofanorthite and kaolinite reaction kinetics under conditions related to CO2sequestration. We conclude that under highly acidic conditions relevantto CO2 sequestration, the traditional continuum-based methodology may notcapture the spatial variation in concentrations from pore to pore, andscaling tools may be important in correctly modeling reactive transportprocesses in such systems. This work addresses the important butdifficult question of scaling mineral dissolution and precipitationreactionmore » kinetics, which is often ignored in fields such as geochemistry,water resources, and contaminant hydrology. Although scaling of physicalprocesses has been studied for almost three decades, very few studieshave examined the scaling issues related to chemical processes, despitetheir importance in governing the transport and fate of contaminants insubsurface systems.« less

  6. Pore-scale modeling of saturated permeabilities in random sphere packings.

    PubMed

    Pan, C; Hilpert, M; Miller, C T

    2001-12-01

    We use two pore-scale approaches, lattice-Boltzmann (LB) and pore-network modeling, to simulate single-phase flow in simulated sphere packings that vary in porosity and sphere-size distribution. For both modeling approaches, we determine the size of the representative elementary volume with respect to the permeability. Permeabilities obtained by LB modeling agree well with Rumpf and Gupte's experiments in sphere packings for small Reynolds numbers. The LB simulations agree well with the empirical Ergun equation for intermediate but not for small Reynolds numbers. We suggest a modified form of Ergun's equation to describe both low and intermediate Reynolds number flows. The pore-network simulations agree well with predictions from the effective-medium approximation but underestimate the permeability due to the simplified representation of the porous media. Based on LB simulations in packings with log-normal sphere-size distributions, we suggest a permeability relation with respect to the porosity, as well as the mean and standard deviation of the sphere diameter.

  7. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.

    2017-01-01

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix. PMID:28772465

  8. Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N

    2017-01-25

    Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.

  9. Toward multiscale modelings of grain-fluid systems

    NASA Astrophysics Data System (ADS)

    Chareyre, Bruno; Yuan, Chao; Montella, Eduard P.; Salager, Simon

    2017-06-01

    Computationally efficient methods have been developed for simulating partially saturated granular materials in the pendular regime. In contrast, one hardly avoid expensive direct resolutions of 2-phase fluid dynamics problem for mixed pendular-funicular situations or even saturated regimes. Following previous developments for single-phase flow, a pore-network approach of the coupling problems is described. The geometry and movements of phases and interfaces are described on the basis of a tetrahedrization of the pore space, introducing elementary objects such as bridge, meniscus, pore body and pore throat, together with local rules of evolution. As firmly established local rules are still missing on some aspects (entry capillary pressure and pore-scale pressure-saturation relations, forces on the grains, or kinetics of transfers in mixed situations) a multi-scale numerical framework is introduced, enhancing the pore-network approach with the help of direct simulations. Small subsets of a granular system are extracted, in which multiphase scenario are solved using the Lattice-Boltzman method (LBM). In turns, a global problem is assembled and solved at the network scale, as illustrated by a simulated primary drainage.

  10. Dissolution Front Instabilities in Reacting Porous Media

    NASA Astrophysics Data System (ADS)

    Raoof, Amir; Spiers, Chris; Hassanizadeh, Majid

    2013-04-01

    The main objective of this research is to gain a better understanding of the relation between regime of reaction and dissolution front instability, leading to formation of channels or wormholes. Potential applications are geological sequestration of CO2 and acid-gas injection during enhanced oil recovery. The microscopic pore space is modeled using a multi-directional pore network, allowing for a distribution of pore coordination number, together with distribution of pore sizes. In order to simulate transport of multi-component chemical species, mass balance equations are solved within each element of the network (i.e., pore body and pore throat). We have considered advective and diffusive transport processes within the pore spaces together with multi-component chemical reactions, including both equilibrium and kinetic reactions. Using dimensionless scaling groups (such as Damköhler number and Péclet-Damköhler number) we characterized the dissolution front behavior, and by averaging over the network domain we calculated the evolution of porosity and permeability as well as flux-averaged concentration breakthrough curves. We obtain constitutive relations linking porosity and permeability, under conditions relevant to geological storage of CO2. Effect of distribution of reactive minerals is also evaluated and regime of reaction is shown to play a key role.

  11. A network model for characterizing brine channels in sea ice

    NASA Astrophysics Data System (ADS)

    Lieblappen, Ross M.; Kumar, Deip D.; Pauls, Scott D.; Obbard, Rachel W.

    2018-03-01

    The brine pore space in sea ice can form complex connected structures whose geometry is critical in the governance of important physical transport processes between the ocean, sea ice, and surface. Recent advances in three-dimensional imaging using X-ray micro-computed tomography have enabled the visualization and quantification of the brine network morphology and variability. Using imaging of first-year sea ice samples at in situ temperatures, we create a new mathematical network model to characterize the topology and connectivity of the brine channels. This model provides a statistical framework where we can characterize the pore networks via two parameters, depth and temperature, for use in dynamical sea ice models. Our approach advances the quantification of brine connectivity in sea ice, which can help investigations of bulk physical properties, such as fluid permeability, that are key in both global and regional sea ice models.

  12. An investigation into preserving spatially-distinct pore systems in multi-component rocks using a fossiliferous limestone example

    NASA Astrophysics Data System (ADS)

    Jiang, Zeyun; Couples, Gary D.; Lewis, Helen; Mangione, Alessandro

    2018-07-01

    Limestones containing abundant disc-shaped fossil Nummulites can form significant hydrocarbon reservoirs but they have a distinctly heterogeneous distribution of pore shapes, sizes and connectivities, which make it particularly difficult to calculate petrophysical properties and consequent flow outcomes. The severity of the problem rests on the wide length-scale range from the millimetre scale of the fossil's pore space to the micron scale of rock matrix pores. This work develops a technique to incorporate multi-scale void systems into a pore network, which is used to calculate the petrophysical properties for subsequent flow simulations at different stages in the limestone's petrophysical evolution. While rock pore size, shape and connectivity can be determined, with varying levels of fidelity, using techniques such as X-ray computed tomography (CT) or scanning electron microscopy (SEM), this work represents a more challenging class where the rock of interest is insufficiently sampled or, as here, has been overprinted by extensive chemical diagenesis. The main challenge is integrating multi-scale void structures derived from both SEM and CT images, into a single model or a pore-scale network while still honouring the nature of the connections across these length scales. Pore network flow simulations are used to illustrate the technique but of equal importance, to demonstrate how supportable earlier-stage petrophysical property distributions can be used to assess the viability of several potential geological event sequences. The results of our flow simulations on generated models highlight the requirement for correct determination of the dominant pore scales (one plus of nm, μm, mm, cm), the spatial correlation and the cross-scale connections.

  13. Measurements of pore-scale flow through apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chojnicki, Kirsten

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregularmore » cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.« less

  14. Determination of relative phase permeabilities in stochastic model of pore channel distribution by diameter

    NASA Astrophysics Data System (ADS)

    Zemenkova, M. Y.; Shabarov, A.; Shatalov, A.; Puldas, L.

    2018-05-01

    The problem of the pore space description and the calculation of relative phase permeabilities (RPP) for two-phase filtration is considered. A technique for constructing a pore-network structure for constant and variable channel diameters is proposed. A description of the design model of RPP based on the capillary pressure curves is presented taking into account the variability of diameters along the length of pore channels. By the example of the calculation analysis for the core samples of the Urnenskoye and Verkhnechonskoye deposits, the possibilities of calculating RPP are shown when using the stochastic distribution of pores by diameters and medium-flow diameters.

  15. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media: A pore-scale network modeling approach

    NASA Astrophysics Data System (ADS)

    Raeesi, Behrooz; Piri, Mohammad

    2009-10-01

    SummaryWe use a three-dimensional mixed-wet random pore-scale network model to investigate the impact of wettability and trapping on the relationship between interfacial area, capillary pressure and saturation in two-phase drainage and imbibition processes. The model is a three-dimensional network of interconnected pores and throats of various geometrical shapes. It allows multiple phases to be present in each capillary element in wetting and spreading layers, as well as occupying the center of the pore space. Two different random networks that represent the pore space in Berea and a Saudi Arabia reservoir sandstone are used in this study. We allow the wettability of the rock surfaces contacted by oil to alter after primary drainage. The model takes into account both contact angle and trapping hystereses. We model primary oil drainage and water flooding for mixed-wet conditions, and secondary oil injection for a water-wet system. The total interfacial area for pores and throats are calculated when the system is at capillary equilibrium. They include contributions from the arc menisci (AMs) between the bulk and corner fluids, and from the main terminal menisci (MTMs) between different bulk fluids. We investigate hysteresis in these relationships by performing water injection into systems of varying wettability and initial water saturation. We show that trapping and contact angle hystereses significantly affect the interfacial area. In a strongly water-wet system, a sharp increase is observed at the beginning of water flood, which shifts the area to a higher level than primary drainage. As we change the wettability of the system from strongly water-wet to strongly oil-wet, the trapped oil saturation decreases significantly. Starting water flood from intermediate water saturations, greater than the irreducible water saturation, can also affect the non-wetting phase entrapment, resulting in different interfacial area behaviors. This can increase the interfacial area significantly in oil-wet systems. A qualitative comparison of our results with the experimental data available in literature for glass beads shows, with some expected differences, an encouraging agreement. Also, our results agree well with those generated by the previously developed models.

  16. Pore-wall roughness as a fractal surface and theoretical simulation of mercury intrusion/retraction in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsakiroglou, C.D.; Payatakes, A.C.

    The mercury intrusion/retraction curves of many types of porous materials (e.g., sandstones) have sections of finite slope in the region of high and very high pressure. This feature is attributed to the existence of microroughness on the pore walls. In the present work pore-wall roughness features are added to a three-dimensional primary network of chambers-and-throats using ideas of fractal geometry. The roughness of the throats is modeled with a finite number of self-similar triangular prisms of progressively smaller sizes. The roughness of the chambers is modeled in a similar way using right circular cones instead of prisms. Three parameters sufficemore » for the complete characterization of the model of fractal roughness, namely, the number of features per unit length, the common angle of sharpness, and the number of layers (which is taken to be the same for throats and chambers). Analytical relations that give the surface area, pore volume, and mercury saturation of the pore network as functions of the fractal roughness parameters are developed for monolayer and multilayer arrangements. The chamber-and-throat network with fractal pore-wall roughness is used to develop an extended version of the computer-aided simulator of mercury porosimetry that has been reported in previous publications. This new simulator is used to investigate the effects of the roughness features on the form of mercury intrusion/retraction curves. It turns out that the fractal model of the porewall roughness gives an adequate representation of real porous media, and capillary pressure curves which are similar to the experimental ones for many typical porous materials such as sandstones. The method is demonstrated with the analysis of a Greek sandstone.« less

  17. Modeling the relaxation dynamics of fluids in nanoporous materials

    NASA Astrophysics Data System (ADS)

    Edison, John R.

    Mesoporous materials are being widely used in the chemical industry in various environmentally friendly separation processes and as catalysts. Our research can be broadly described as an effort to understand the behavior of fluids confined in such materials. More specifically we try to understand the influence of state variables like temperature and pore variables like size, shape, connectivity and structural heterogeneity on both the dynamic and equilibrium behavior of confined fluids. The dynamic processes associated with the approach to equilibrium are largely unexplored. It is important to look into the dynamic behavior for two reasons. First, confined fluids experience enhanced metastabilities and large equilibration times in certain classes of mesoporous materials, and the approach to the metastable/stable equilibrium is of tremendous interest. Secondly, understanding the transport resistances in a microscopic scale will help better engineer heterogeneous catalysts and separation processes. Here we present some of our preliminary studies on dynamics of fluids in ideal pore geometries. The tool that we have used extensively to investigate the relaxation dynamics of fluids in pores is the dynamic mean field theory (DMFT) as developed by Monson [P. A. Monson, J. Chem. Phys., 128, 084701 (2008)]. The theory is based on a lattice gas model of the system and can be viewed as a highly computationally efficient approximation to the dynamics averaged over an ensemble of Kawasaki dynamics Monte Carlo trajectories of the system. It provides a theory of the dynamics of the system consistent with the thermodynamics in mean field theory. The nucleation mechanisms associated with confined fluid phase transitions are emergent features in the calculations. We begin by describing the details of the theory and then present several applications of DMFT. First we present applications to three model pore networks (a) a network of slit pores with a single pore width; (b) a network of slit pores with two pore widths arranged in intersecting channels with a single pore width in each channel; (c) a network of slit pores with two pore widths forming an array of ink-bottles. The results illustrate the effects of pore connectivity upon the dynamics of vapor liquid phase transformations as well as on the mass transfer resistances to equilibration. We then present an application to a case where the solid-fluid interactions lead to partial wetting on a planar surface. The pore filling process in such systems features an asymmetric density distribution where a liquid droplet appears on one of the walls. We also present studies on systems where there is partial drying or drying associated with weakly attractive or repulsive interactions between the fluid and the pore walls. We describe the symmetries exhibited by the lattice model between pore filling for wetting states and pore emptying for drying states, for both the thermodynamics and dynamics. We then present an extension of DMFT to mixtures and present some examples that illustrate the utility of the approach. Finally we present an assessment the accuracy of the DMFT through comparisons with a higher order approximation based on the path probability method as well as Kawasaki dynamics.

  18. Machine learning framework for analysis of transport through complex networks in porous, granular media: A focus on permeability

    NASA Astrophysics Data System (ADS)

    van der Linden, Joost H.; Narsilio, Guillermo A.; Tordesillas, Antoinette

    2016-08-01

    We present a data-driven framework to study the relationship between fluid flow at the macroscale and the internal pore structure, across the micro- and mesoscales, in porous, granular media. Sphere packings with varying particle size distribution and confining pressure are generated using the discrete element method. For each sample, a finite element analysis of the fluid flow is performed to compute the permeability. We construct a pore network and a particle contact network to quantify the connectivity of the pores and particles across the mesoscopic spatial scales. Machine learning techniques for feature selection are employed to identify sets of microstructural properties and multiscale complex network features that optimally characterize permeability. We find a linear correlation (in log-log scale) between permeability and the average closeness centrality of the weighted pore network. With the pore network links weighted by the local conductance, the average closeness centrality represents a multiscale measure of efficiency of flow through the pore network in terms of the mean geodesic distance (or shortest path) between all pore bodies in the pore network. Specifically, this study objectively quantifies a hypothesized link between high permeability and efficient shortest paths that thread through relatively large pore bodies connected to each other by high conductance pore throats, embodying connectivity and pore structure.

  19. Unifying Pore Network Modeling, Continuous Time Random Walk (CTRW) Theory and Experiment to Describe Impact of Spatial Heterogeneities on Solute Dispersion at Multiple Length-scales

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.; Blunt, M. J.; Rhodes, M. E.

    2009-04-01

    This talk will describe and highlight the advantages offered by a novel methodology that unifies pore network modeling, CTRW theory and experiment in description of solute dispersion in porous media. Solute transport in a porous medium is characterized by the interplay of advection and diffusion (described by Peclet number, Pe) that cause dispersion of solute particles. Dispersion is traditionally described by dispersion coefficients, D, that are commonly calculated from the spatial moments of the plume. Using a pore-scale network model based on particle tracking, the rich Peclet-number dependence of dispersion coefficient is predicted from first principles and is shown to compare well with experimental data for restricted diffusion, transition, power-law and mechanical dispersion regimes in the asymptotic limit. In the asymptotic limit D is constant and can be used in an averaged advection-dispersion equation. However, it is highly important to recognize that, until the velocity field is fully sampled, the particle transport is non-Gaussian and D possesses temporal or spatial variation. Furthermore, temporal probability density functions (PDF) of tracer particles are studied in pore networks and an excellent agreement for the spectrum of transition times for particles from pore to pore is obtained between network model results and CTRW theory. Based on the truncated power-law interpretation of PDF-s, the physical origin of the power-law scaling of dispersion coefficient vs. Peclet number has been explained for unconsolidated porous media, sands and a number of sandstones, arriving at the same conclusion from numerical network modelling, analytic CTRW theory and experiment. The length traveled by solute plumes before Gaussian behaviour is reached increases with an increase in heterogeneity and/or Pe. This opens up the question on the nature of dispersion in natural systems where the heterogeneities at the larger scales will significantly increase the range of velocities in the reservoir, thus significantly delaying the asymptotic approach to Gaussian behaviour. As a consequence, the asymptotic behaviour might not be reached at the field scale. This is illustrated by the multi-scale approach in which transport at core, gridblock and field scale is viewed as a series of particle transitions between discrete nodes governed by probability distributions. At each scale of interest a distribution that represents transport physics (and the heterogeneity) is used as an input to model a subsequent reservoir scale. The extensions to reactive transport are discussed.

  20. The impact of fluid topology on residual saturations - A pore-network model study

    NASA Astrophysics Data System (ADS)

    Doster, F.; Kallel, W.; van Dijke, R.

    2014-12-01

    In two-phase flow in porous media only fractions of the resident fluid are mobilised during a displacement process and, in general, a significant amount of the resident fluid remains permanently trapped. Depending on the application, entrapment is desirable (geological carbon storage), or it should be obviated (enhanced oil recovery, contaminant remediation). Despite its utmost importance for these applications, predictions of trapped fluid saturations for macroscopic systems, in particular under changing displacement conditions, remain challenging. The models that aim to represent trapping phenomena are typically empirical and require tracking of the history of the state variables. This exacerbates the experimental verification and the design of sophisticated displacement technologies that enhance or impede trapping. Recently, experiments [1] have suggested that a macroscopic normalized Euler number, quantifying the topology of fluid distributions, could serve as a parameter to predict residual saturations based on state variables. In these experiments the entrapment of fluids was visualised through 3D micro CT imaging. However, the experiments are notoriously time consuming and therefore only allow for a sparse sampling of the parameter space. Pore-network models represent porous media through an equivalent network structure of pores and throats. Under quasi-static capillary dominated conditions displacement processes can be modeled through simple invasion percolation rules. Hence, in contrast to experiments, pore-network models are fast and therefore allow full sampling of the parameter space. Here, we use pore-network modeling [2] to critically investigate the knowledge gained through observing and tracking the normalized Euler number. More specifically, we identify conditions under which (a) systems with the same saturations but different normalized Euler numbers lead to different residual saturations and (b) systems with the same saturations and the same normalized Euler numbers but different process histories yield the same residual saturations. Special attention is given to contact angle and process histories with varying drainage and imbibition periods. [1] Herring et al., Adv. Water. Resour., 62, 47-58 (2013) [2] Ryazanov et al., Transp. Porous Media, 80, 79-99 (2009).

  1. The impact of calcium carbonate as pore forming agent and drug entrapment method towards drug dissolution mechanism of amoxicillin trihydrate encapsulated by chitosan-methyl cellulose semi-IPN hydrogel for floating drug delivery system

    NASA Astrophysics Data System (ADS)

    Dewantara, Fauzi; Budianto, Emil

    2018-04-01

    Chitosan-methyl cellulose semi-IPN hydrogel is used as floating drug delivery system, and calcium carbonate also added as pore forming agent. The hydrogel network arranged by not only using biopolymer chitosan and methyl cellulose, but also the crosslink agent that is glutaraldehyde. Amoxicillin trihydrate entrapped into the polymer network with two different method, in situ loading and post loading. Furthermore both method has been tested for drug entrapment efficiency along with drug dissolution test, and the result for drug entrapment efficiency is in situ loading method has highest value of 100%, compared to post loading method which has value only 71%. Moreover, at the final time of drug dissolution test shows in situ loading method has value of 96% for total accumulative of drug dissolution, meanwhile post loading method has 72%. The value of drug dissolution test from both method is used for analyzing drug dissolution mechanism of amoxicillin trihydrate from hydrogel network with four mathematical drug mechanism models as parameter. The polymer network encounter destructive degradation causes by acid solution which used as dissolution medium, and the level of degradation is observed with optical microscope. However the result shows that degradation of the polymer network doesn't affect drug dissolution mechanism directly. Although the pore forming agent causes the pore inside the hydrogel network create interconnection and it was quite influential to drug dissolution mechanism. Interconnected pore is observed with Scanning Electron Microscope (SEM) and shows that the amount and area of interconnected pore inside the hydrogel network is increasing as drug dissolution goes on.

  2. Pore pressure control on faulting behavior in a block-gouge system

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Juanes, R.

    2016-12-01

    Pore fluid pressure in a fault zone can be altered by natural processes (e.g., mineral dehydration and thermal pressurization) and industrial operations involving subsurface fluid injection/extraction for the development of energy and water resources. However, the effect of pore pressure change on the stability and slip motion of a preexisting geologic fault remain poorly understood; yet they are critical for the assessment of seismic risk. In this work, we develop a micromechanical model to investigate the effect of pore pressure on faulting behavior. The model couples pore network fluid flow and mechanics of the solid grains. We conceptualize the fault zone as a gouge layer sandwiched between two blocks; the block material is represented by a group of contact-bonded grains and the gouge is composed of unbonded grains. A pore network is extracted from the particulate pack of the block-gouge system with pore body volumes and pore throat conductivities calculated rigorously based on the geometry of the local pore space. Pore fluid exerts pressure force onto the grains, the motion of which is solved using the discrete element method (DEM). The model updates the pore network regularly in response to deformation of the solid matrix. We study the fault stability in the presence of a pressure inhomogeneity (gradient) across the gouge layer, and compare it with the case of homogeneous pore pressure. We consider both normal and thrust faulting scenarios with a focus on the onset of shear failure along the block-gouge interfaces. Numerical simulations show that the slip behavior is characterized by intermittent dynamics, which is evident in the number of slipping contacts at the block-gouge interfaces and the total kinetic energy of the gouge particles. Numerical results also show that, for the case of pressure inhomogeneity, the onset of slip occurs earlier for the side with higher pressure, and that this onset appears to be controlled by the maximum pressure of both sides of the fault. We conclude that the stability of the fault should be evaluated separately for both sides of the gouge layer, a result that sheds new light on the use of the effective stress principle and the Coulomb failure criterion in evaluating the stability of a complex fault zone.

  3. Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach

    NASA Astrophysics Data System (ADS)

    Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos

    2016-08-01

    3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.

  4. Cavitation and pore blocking in nanoporous glasses.

    PubMed

    Reichenbach, C; Kalies, G; Enke, D; Klank, D

    2011-09-06

    In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided. © 2011 American Chemical Society

  5. Geometric and topological characterization of porous media: insights from eigenvector centrality

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Negre, C.

    2017-12-01

    Solving flow and transport through complex geometries such as porous media involves an extreme computational cost. Simplifications such as pore networks, where the pores are represented by nodes and the pore throats by edges connecting pores, have been proposed. These models have the ability to preserve the connectivity of the medium. However, they have difficulties capturing preferential paths (high velocity) and stagnation zones (low velocity), as they do not consider the specific relations between nodes. Network theory approaches, where the complex network is conceptualized like a graph, can help to simplify and better understand fluid dynamics and transport in porous media. To address this issue, we propose a method based on eigenvector centrality. It has been corrected to overcome the centralization problem and modified to introduce a bias in the centrality distribution along a particular direction which allows considering the flow and transport anisotropy in porous media. The model predictions are compared with millifluidic transport experiments, showing that this technique is computationally efficient and has potential for predicting preferential paths and stagnation zones for flow and transport in porous media. Entropy computed from the eigenvector centrality probability distribution is proposed as an indicator of the "mixing capacity" of the system.

  6. A functional relation for field-scale nonaqueous phase liquid dissolution developed using a pore network model

    USGS Publications Warehouse

    Dillard, L.A.; Essaid, H.I.; Blunt, M.J.

    2001-01-01

    A pore network model with cubic chambers and rectangular tubes was used to estimate the nonaqueous phase liquid (NAPL) dissolution rate coefficient, Kdissai, and NAPL/water total specific interfacial area, ai. Kdissai was computed as a function of modified Peclet number (Pe???) for various NAPL saturations (SN) and ai during drainage and imbibition and during dissolution without displacement. The largest contributor to ai was the interfacial area in the water-filled corners of chambers and tubes containing NAPL. When Kdissai was divided by ai, the resulting curves of dissolution coefficient, Kdiss versus Pe??? suggested that an approximate value of Kdiss could be obtained as a weak function of hysteresis or SN. Spatially and temporally variable maps of Kdissai calculated using the network model were used in field-scale simulations of NAPL dissolution. These simulations were compared to simulations using a constant value of Kdissai and the empirical correlation of Powers et al. [Water Resour. Res. 30(2) (1994b) 321]. Overall, a methodology was developed for incorporating pore-scale processes into field-scale prediction of NAPL dissolution. Copyright ?? 2001 .

  7. Dual FIB-SEM 3D imaging and lattice boltzmann modeling of porosimetry and multiphase flow in chalk.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinehart, Alex; Petrusak, Robin; Heath, Jason E.

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scalemore » seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage.« less

  8. Versatile and efficient pore network extraction method using marker-based watershed segmentation

    NASA Astrophysics Data System (ADS)

    Gostick, Jeff T.

    2017-08-01

    Obtaining structural information from tomographic images of porous materials is a critical component of porous media research. Extracting pore networks is particularly valuable since it enables pore network modeling simulations which can be useful for a host of tasks from predicting transport properties to simulating performance of entire devices. This work reports an efficient algorithm for extracting networks using only standard image analysis techniques. The algorithm was applied to several standard porous materials ranging from sandstone to fibrous mats, and in all cases agreed very well with established or known values for pore and throat sizes, capillary pressure curves, and permeability. In the case of sandstone, the present algorithm was compared to the network obtained using the current state-of-the-art algorithm, and very good agreement was achieved. Most importantly, the network extracted from an image of fibrous media correctly predicted the anisotropic permeability tensor, demonstrating the critical ability to detect key structural features. The highly efficient algorithm allows extraction on fairly large images of 5003 voxels in just over 200 s. The ability for one algorithm to match materials as varied as sandstone with 20% porosity and fibrous media with 75% porosity is a significant advancement. The source code for this algorithm is provided.

  9. Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Ali N.; Or, Dani

    2014-09-01

    The dispersal rates of self-propelled microorganisms affect their spatial interactions and the ecological functioning of microbial communities. Microbial dispersal rates affect risk of contamination of water resources by soil-borne pathogens, the inoculation of plant roots, or the rates of spoilage of food products. In contrast with the wealth of information on microbial dispersal in water replete systems, very little is known about their dispersal rates in unsaturated porous media. The fragmented aqueous phase occupying complex soil pore spaces suppress motility and limits dispersal ranges in unsaturated soil. The primary objective of this study was to systematically evaluate key factors that shape microbial dispersal in model unsaturated porous media to quantify effects of saturation, pore space geometry, and chemotaxis on characteristics of principles that govern motile microbial dispersion in unsaturated soil. We constructed a novel 3-D angular pore network model (PNM) to mimic aqueous pathways in soil for different hydration conditions; within the PNM, we employed an individual-based model that considers physiological and biophysical properties of motile and chemotactic bacteria. The effects of hydration conditions on first passage times in different pore networks were studied showing that fragmentation of aquatic habitats under dry conditions sharply suppresses nutrient transport and microbial dispersal rates in good agreement with limited experimental data. Chemotactically biased mean travel speed of microbial cells across 9 mm saturated PNM was ˜3 mm/h decreasing exponentially to 0.45 mm/h for the PNM at matric potential of -15 kPa (for -35 kPa, dispersal practically ceases and the mean travel time to traverse the 9 mm PNM exceeds 1 year). Results indicate that chemotaxis enhances dispersal rates by orders of magnitude relative to random (diffusive) motions. Model predictions considering microbial cell sizes relative to available liquid pathways sizes were in good agreement with experimental results for unsaturated soils. The new modeling platform enables quantitative consideration of key biophysical factors (e.g., pore space heterogeneities and hydration conditions) governing microbial interactions in 3-D soil pore spaces.

  10. Water permeability in hydrate-bearing sediments: A pore-scale study

    NASA Astrophysics Data System (ADS)

    Dai, Sheng; Seol, Yongkoo

    2014-06-01

    Permeability is a critical parameter governing methane flux and fluid flow in hydrate-bearing sediments; however, limited valid data are available due to experimental challenges. Here we investigate the relationship between apparent water permeability (k') and hydrate saturation (Sh), accounting for hydrate pore-scale growth habit and meso-scale heterogeneity. Results from capillary tube models rely on cross-sectional tube shapes and hydrate pore habits, thus are appropriate only for sediments with uniform hydrate distribution and known hydrate pore character. Given our pore network modeling results showing that accumulating hydrate in sediments decreases sediment porosity and increases hydraulic tortuosity, we propose a modified Kozeny-Carman model to characterize water permeability in hydrate-bearing sediments. This model agrees well with experimental results and can be easily implemented in reservoir simulators with no empirical variables other than Sh. Results are also relevant to flow through other natural sediments that undergo diagenesis, salt precipitation, or bio-clogging.

  11. Computation of three-phase capillary entry pressures and arc menisci configurations in pore geometries from 2D rock images: A combinatorial approach

    NASA Astrophysics Data System (ADS)

    Zhou, Yingfang; Helland, Johan Olav; Hatzignatiou, Dimitrios G.

    2014-07-01

    We present a semi-analytical, combinatorial approach to compute three-phase capillary entry pressures for gas invasion into pore throats with constant cross-sections of arbitrary shapes that are occupied by oil and/or water. For a specific set of three-phase capillary pressures, geometrically allowed gas/oil, oil/water and gas/water arc menisci are determined by moving two circles in opposite directions along the pore/solid boundary for each fluid pair such that the contact angle is defined at the front circular arcs. Intersections of the two circles determine the geometrically allowed arc menisci for each fluid pair. The resulting interfaces are combined systematically to allow for all geometrically possible three-phase configuration changes. The three-phase extension of the Mayer and Stowe - Princen method is adopted to calculate capillary entry pressures for all determined configuration candidates, from which the most favorable gas invasion configuration is determined. The model is validated by comparing computed three-phase capillary entry pressures and corresponding fluid configurations with analytical solutions in idealized triangular star-shaped pores. It is demonstrated that the model accounts for all scenarios that have been analyzed previously in these shapes. Finally, three-phase capillary entry pressures and associated fluid configurations are computed in throat cross-sections extracted from segmented SEM images of Bentheim sandstone. The computed gas/oil capillary entry pressures account for the expected dependence of oil/water capillary pressure in spreading and non-spreading fluid systems at the considered wetting conditions. Because these geometries are irregular and include constrictions, we introduce three-phase displacements that have not been identified previously in pore-network models that are based on idealized pore shapes. However, in the limited number of pore geometries considered in this work, we find that the favorable displacements are not generically different from those already encountered in network models previously, except that the size and shape of oil layers that are surrounded by gas and water are described more realistically. The significance of the results for describing oil connectivity in porous media accurately can only be evaluated by including throats with more complex cross-sections in three-phase pore-network models.

  12. EVALUATION AND ANALYSIS OF MICROSCALE FLOW AND TRANSPORT DURING REMEDIATION

    EPA Science Inventory

    The design of in-situ remediation is currently based on a description at the macroscopic scale. Phenomena at the pore and pore-network scales are typically lumped in terms of averaged quantities, using empirical or ad hoc expressions. These models cannot address fundamental rem...

  13. Eigenvector centrality for geometric and topological characterization of porous media

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, Joaquin; Negre, Christian F. A.

    2017-07-01

    Solving flow and transport through complex geometries such as porous media is computationally difficult. Such calculations usually involve the solution of a system of discretized differential equations, which could lead to extreme computational cost depending on the size of the domain and the accuracy of the model. Geometric simplifications like pore networks, where the pores are represented by nodes and the pore throats by edges connecting pores, have been proposed. These models, despite their ability to preserve the connectivity of the medium, have difficulties capturing preferential paths (high velocity) and stagnation zones (low velocity), as they do not consider the specific relations between nodes. Nonetheless, network theory approaches, where a complex network is a graph, can help to simplify and better understand fluid dynamics and transport in porous media. Here we present an alternative method to address these issues based on eigenvector centrality, which has been corrected to overcome the centralization problem and modified to introduce a bias in the centrality distribution along a particular direction to address the flow and transport anisotropy in porous media. We compare the model predictions with millifluidic transport experiments, which shows that, albeit simple, this technique is computationally efficient and has potential for predicting preferential paths and stagnation zones for flow and transport in porous media. We propose to use the eigenvector centrality probability distribution to compute the entropy as an indicator of the "mixing capacity" of the system.

  14. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less

  15. Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport

    NASA Astrophysics Data System (ADS)

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Martinus Th.

    2017-07-01

    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have been used to simulate contaminant transport in such media. Many of these models consider advective-dispersive transport through relatively large inter-aggregate pore domains, while exchange with the smaller intra-aggregate pores is assumed to be controlled by diffusion. Exchange of solute between the two domains is often represented using a first-order mass transfer coefficient, which is commonly obtained by fitting to observed data. This study aims to understand and quantify the solute exchange term by applying a dual-porosity pore-scale network model to relatively large domains, and analysing the pore-scale results in terms of the classical dual-porosity (mobile-immobile) transport formulation. We examined the effects of key parameters (notably aggregate porosity and aggregate permeability) on the main dual-porosity model parameters, i.e., the mobile water fraction (ϕm) and the mass transfer coefficient (α). Results were obtained for a wide range of aggregate porosities (between 0.082 and 0.700). The effect of aggregate permeability was explored by varying pore throat sizes within the aggregates. Solute breakthrough curves (BTCs) obtained with the pore-scale network model at several locations along the domain were analysed using analytical solutions of the dual-porosity model to obtain estimates of ϕm and α. An increase in aggregate porosity was found to decrease ϕm and increase α, leading to considerable tailing in the BTCs. Changes in the aggregate pore throat size affected the relative flow velocity between the intra- and inter-aggregate domains. Higher flow velocities within the aggregates caused a change in the transport regime from diffusion dominated to more advection dominated. This change increased the exchange rate of solutes between the mobile and immobile domains, with a related increase in the value of the mass transfer coefficient and less tailing in the BTCs.

  16. Laboratory measurements of shock propagation through spherical cavities in an optically accessible polymer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chojnicki, Kirsten; Cooper, Marcia A.; Guo, Shuyue

    Pore-scale aperture effects on flow in pore networks was studied in the laboratory to provide a parameterization for use in transport models. Four cases were considered: regular and irregular pillar/pore alignment with and without an aperture. The velocity field of each case was measured and simulated, providing quantitatively comparable results. Two aperture effect parameterizations were considered: permeability and transmission. Permeability values varied by an order of magnitude between the cases with and without apertures. However, transmission did not correlate with permeability. Despite having much greater permeability the regular aperture case permitted less transmission than the regular case. Moreover, both irregularmore » cases had greater transmission than the regular cases, a difference not supported by the permeabilities. Overall, these findings suggest that pore-scale aperture effects on flow though a pore-network may not be adequately captured by properties such as permeability for applications that are interested in determining particle transport volume and timing.« less

  17. Pore-scale simulation of calcium carbonate precipitation and dissolution under highly supersaturated conditions in a microfludic pore network

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Dewers, T. A.; Valocchi, A. J.; Werth, C. J.

    2011-12-01

    Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks or confined aquifers and cause mineral precipitation. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at pore-scale. Pore-scale models of coupled fluid flow, reactive transport, and CaCO3 precipitation and dissolution are applied to account for transient experimental results of CaCO3 precipitation and dissolution under highly supersaturated conditions in a microfluidic pore network (i.e., micromodel). Pore-scale experiments in the micromodel are used as a basis for understanding coupled physics of systems perturbed by geological CO2 injection. In the micromodel, precipitation is induced by transverse mixing along the centerline in pore bodies. Overall, the pore-scale model qualitatively captured the governing physics of reactions such as precipitate morphology, precipitation rate, and maximum precipitation area in first few pore spaces. In particular, we found that proper estimation of the effective diffusion coefficient and the reactive surface area is necessary to adequately simulate precipitation and dissolution rates. As the model domain increases, the effect of flow patterns affected by precipitation on the overall reaction rate also increases. The model is also applied to account for the effect of different reaction rate laws on mineral precipitation and dissolution at pore-scale. Reaction rate laws tested include the linear rate law, nonlinear power law, and newly-developed rate law based on in-situ measurements at nano scale in the literature. Progress on novel methods for upscaling pore-scale models for reactive transport are discussed, and are being applied to mineral precipitation patterns observed in natural analogues. H.Y. and T. D. were supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Diffusion Dominant Solute Transport Modelling In Deep Repository Under The Effect of Emplacement Media Degradation - 13285

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, S.; Jivkov, A.P.

    2013-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is being actively considered and pursued in many countries, where low permeability geological formations are used to provide long term waste contaminant with minimum impact to the environment and risk to the biosphere. A multi-barrier approach that makes use of both engineered and natural barriers (i.e. geological formations) is often used to further enhance the containment performance of the repository. As the deep repository system subjects to a variety of thermo-hydro-chemo-mechanical (THCM) effects over its long 'operational' lifespan (e.g. 0.1 to 1.0 million years, the integrity of the barrier systemmore » will decrease over time (e.g. fracturing in rock or clay)). This is broadly referred as media degradation in the present study. This modelling study examines the effects of media degradation on diffusion dominant solute transport in fractured media that are typical of deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes, while the effects of degradation is studied using a pore network model that considers the media diffusivity and network changes. Model results are presented to demonstrate the use of a 3D pore-network model, using a novel architecture, to calculate macroscopic properties of the medium such as diffusivity, subject to pore space changes as the media degrade. Results from a reactive transport model of a representative geological waste disposal package are also presented to demonstrate the effect of media property change on the solute migration behaviour, illustrating the complex interplay between kinetic biogeochemical processes and diffusion dominant transport. The initial modelling results demonstrate the feasibility of a coupled modelling approach (using pore-network model and reactive transport model) to examine the long term behaviour of deep geological repositories with media property change under complex geochemical conditions. (authors)« less

  19. Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores

    NASA Astrophysics Data System (ADS)

    Prasher, Ravi

    2006-09-01

    Nanoporous and microporous materials made from aligned cylindrical pores play important roles in present technologies and will play even bigger roles in future technologies. The insight into the phonon thermal conductivity of these materials is important and relevant in many technologies and applications. Since the mean free path of phonons can be comparable to the pore size and interpore distance, diffusion-approximation based effective medium models cannot be used to predict the thermal conductivity of these materials. Strictly speaking, the Boltzmann transport equation (BTE) must be solved to capture the ballistic nature of thermal transport; however, solving BTE in such a complex network of pores is impractical. As an alternative, we propose an approximate ballistic-diffusive microscopic effective medium model for predicting the thermal conductivity of phonons in two-dimensional nanoporous and microporous materials made from aligned cylindrical pores. The model captures the size effects due to the pore diameter and the interpore distance and reduces to diffusion-approximation based models for macroporous materials. The results are in good agreement with experimental data.

  20. Topological characteristics underpin intermittency and anomalous transport behavior in soil-like porous media

    NASA Astrophysics Data System (ADS)

    Holzner, M.; Morales, V.; Willmann, M.; Jerjen, I.; Kaufmann, R.; Dentz, M.

    2016-12-01

    Continuum models of porous media are based on the validity of the Darcy equation for fluid and Fick's law for scalar fluxes on a representative elementary volume. Fluctuations of pore-scale flow and scalar transport are averaged out and represented in terms of effective parameters such as hydrodynamic dispersion. However, the intermittent behavior of pore-scale flow impacts on the nature of particle and scalar transport, and it determines the way dissolved substances mix and react. The understanding of the origin of these processes is of both fundamental and practical importance in applications ranging from reactive transport in groundwater flow to diffusion in fuel cells or biological systems. A central issue in porous medium flow is therefore to relate intermittent behavior of Lagrangian velocity at pore scale imposed by the complex pore network geometry to transport properties at larger scales. Lagrangian measurements in porous systems are nonetheless scarce and most experimental techniques do not provide access to all three velocity components. In this contribution we report 3D measurements of Lagrangian velocity in soil-like porous media. We complement these measurements with detailed X-ray scans of the pore network. We find sharp velocity transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity and a superlinear evolution of particle dispersion. We demonstrate that porosity and pore size distribution alone cannot explain the observed features of the flow. Rather, anomalous transport is better interpreted in terms of how pores of various geometries are interconnected. We reproduce the main observations using a continuous-time random walk (CTRW) model revealing the main features that control the system and showing the potential of this simple model to capture transport in complex geometries.

  1. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing.more » Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.« less

  2. A level set method for determining critical curvatures for drainage and imbibition.

    PubMed

    Prodanović, Masa; Bryant, Steven L

    2006-12-15

    An accurate description of the mechanics of pore level displacement of immiscible fluids could significantly improve the predictions from pore network models of capillary pressure-saturation curves, interfacial areas and relative permeability in real porous media. If we assume quasi-static displacement, at constant pressure and surface tension, pore scale interfaces are modeled as constant mean curvature surfaces, which are not easy to calculate. Moreover, the extremely irregular geometry of natural porous media makes it difficult to evaluate surface curvature values and corresponding geometric configurations of two fluids. Finally, accounting for the topological changes of the interface, such as splitting or merging, is nontrivial. We apply the level set method for tracking and propagating interfaces in order to robustly handle topological changes and to obtain geometrically correct interfaces. We describe a simple but robust model for determining critical curvatures for throat drainage and pore imbibition. The model is set up for quasi-static displacements but it nevertheless captures both reversible and irreversible behavior (Haines jump, pore body imbibition). The pore scale grain boundary conditions are extracted from model porous media and from imaged geometries in real rocks. The method gives quantitative agreement with measurements and with other theories and computational approaches.

  3. Modeling of submicrometer aerosol penetration through sintered granular membrane filters.

    PubMed

    Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle

    2004-06-01

    We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).

  4. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE PAGES

    Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; ...

    2015-09-28

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less

  5. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less

  6. A Novel Nano/Micro-Fluidic Reactor for Evaluation of Pore-Scale Reactive Transport

    NASA Astrophysics Data System (ADS)

    Werth, C. J.; Alcalde, R.; Ghazvini, S.; Sanford, R. A.; Fouke, B. W.; Valocchi, A. J.

    2017-12-01

    The reactive transport of pollutants in groundwater can be affected by the presence of stressor chemicals, which inhibit microbial functions. The stressor can be a primary reactant (e.g., trichloroethene), a reaction product (e.g., nitrite from nitrate), or some other chemical present in groundwater (e.g., antibiotic). In this work, a novel nano/microfluidic cell was developed to examine the effect of the antibiotic ciprofloxacin on nitrate reduction coupled to lactate oxidation. The reactor contains parallel boundary channels that deliver flow and solutes on either side of a pore network. The boundary channels are separated from the pore network by one centimeter-long, one micrometer-thick walls perforated by hundreds of nanoslits. The nanoslits allow solute mass transfer from the boundary channels to the pore network, but not microbial passage. The pore network was inoculated with a pure culture of Shewanella oneidensis MR-1, and this was allowed to grow on lactate and nitrate in the presence of ciprofloxacin, all delivered through the boundary channels. Microbial growth patterns suggest inhibition from ciprofloxacin and the nitrate reduction product nitrite, and a dependence on nitrate and lactate mass transfer rates from the boundary channels. A numerical model was developed to interpret the controlling mechanisms, and results indicate cell chemotaxis also affects nitrate reduction and microbial growth. The results are broadly relevant to bioremediation efforts where one or more chemicals that inhibit microbial growth are present and inhibit pollutant degradation rates.

  7. Dynamic pore-scale network model (PNM) of water imbibition in porous media

    NASA Astrophysics Data System (ADS)

    Li, J.; McDougall, S. R.; Sorbie, K. S.

    2017-09-01

    A dynamic pore-scale network model is presented which simulates 2-phase oil/water displacement during water imbibition by explicitly modelling intra-pore dynamic bulk and film flows using a simple local model. A new dynamic switching parameter, λ, is proposed within this model which is able to simulate the competition between local capillary forces and viscous forces over a very wide range of flow conditions. This quantity (λ) determines the primary pore filling mechanism during imbibition; i.e. whether the dominant force is (i) piston-like displacement under viscous forces, (ii) film swelling/collapse and snap-off due to capillary forces, or (iii) some intermediate local combination of both mechanisms. A series of 2D dynamic pore network simulations is presented which shows that the λ-model can satisfactorily reproduce and explain different filling regimes of water imbibition over a wide range of capillary numbers (Ca) and viscosity ratios (M). These imbibition regimes are more complex than those presented under drainage by (Lenormand et al. (1983)), since they are determined by a wider group of control parameters. Our simulations show that there is a coupling between viscous and capillary forces that is much less important in drainage. The effects of viscosity ratio during imbibition are apparent even under conditions of very slow flow (low Ca)-displacements that would normally be expected to be completely capillary dominated. This occurs as a result of the wetting films having a much greater relative mobility in the higher M cases (e.g. M = 10) thus leading to a higher level of film swelling/snap-off, resulting in local oil cluster bypassing and trapping, and hence a poorer oil recovery. This deeper coupled viscous mechanism is the underlying reason why the microscopic displacement efficiency is lower for higher M cases in water imbibition processes. Additional results are presented from the dynamic model on the corresponding effluent fractional flows (fw) and global pressure drops (ΔP) as functions of capillary number and viscosity ratio. These results indicate that unsteady-state (USS) relatively permeabilities in imbibition should be inherently rate dependent.

  8. Dynamic Pore-Scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservior Conditions

    NASA Astrophysics Data System (ADS)

    Menke, Hannah; Bijeljic, Branko; Andrew, Matthew; Blunt, Martin

    2014-05-01

    Sequestering carbon in deep geologic formations is one way of reducing anthropogenic CO2 emissions. Carbon capture, Utilization, and Storage (CCUS) in carbonate reservoirs has the added benefit of mobilizing more oil for extraction, increasing oil reservoir yield, and generating revenue while also mitigating climate change. The magnitude, speed, and type of dissolution are dependent the intrinsic properties of the rock. Understanding how small changes in the pore structure affect dissolution is paramount for successful predictive modelling both on the pore-scale and for up-scaled reservoir simulations. We propose an experimental method whereby both 'Pink Beam' synchrotron radiation and a Micro-CT lab source are used in dynamic X-ray microtomography to investigate the pore structure changes in carbonate rocks of varying heterogeneity at high temperatures and pressures. Four carbonate rock types were studied, two relatively homogeneous carbonates, Ketton and Mt. Gambier, and two very heterogeneous carbonates, Estalliades and Portland Basebed. Each rock type was imaged under the same reservoir and flow conditions to gain insight into the impact of heterogeneity. A 4-mm carbonate core was injected with CO2-saturated brine at 10 MPa and 50oC for 2 hours. Depending on sample heterogeneity and X-ray source, tomographic images were taken at between 30-second and 20-minute time-resolutions and a 4-micron spatial resolution during injection. Changes in porosity, permeability, and structure were obtained by first binning and filtering the images, then binarizing them with watershed segmentation, and finally extracting a pore/throat network. Furthermore, pore-scale flow modelling was performed directly on the binarized image and used to track velocity distributions as the pore network evolved. Significant differences in dissolution type and magnitude were found for each rock type. The most homogeneous carbonate, Ketton, was seen to have predominately uniform dissolution with minor dissolution rate differences between the pores and pore throats. This was not true for the heterogeneous carbonates, Estalliades and Portland Basebed, which formed wormholes. Pore-scale modelling of flow directly on the voxels showed the differences in the evolution of complex flow fields with changes in dissolution regime. The PDFs of normalized velocity for uniform dissolution showed that the maximum pore velocity within the system decreased as dissolution occurred. This is due to dissolution enlarging pores and pore throats. However, in the wormholing regime, there was a large increase in maximum velocity once the wormhole broke through the length of the core and a preferential flow path was created. Additionally, this study serves as a unique benchmark for pore-scale reactive transport modelling directly on the binarized Micro-CT images. This dynamic pore-scale imaging method offers advantages in helping fully explain the dominant physical and chemical processes at the pore scale so that they may be up-scaled to the reservoir scale for increased accuracy in model prediction.

  9. Upscaling of spectral induced polarization response using random tube networks

    NASA Astrophysics Data System (ADS)

    Maineult, Alexis; Revil, André; Camerlynck, Christian; Florsch, Nicolas; Titov, Konstantin

    2017-05-01

    In order to upscale the induced polarization (IP) response of porous media, from the pore scale to the sample scale, we implement a procedure to compute the macroscopic complex resistivity response of random tube networks. A network is made of a 2-D square-meshed grid of connected tubes, which obey to a given tube radius distribution. In a simplified approach, the electrical impedance of each tube follows a local Pelton resistivity model, with identical resistivity, chargeability and Cole-Cole exponent values for all the tubes-only the time constant varies, as it depends on the radius of each tube and on a diffusion coefficient also identical for all the tubes. By solving the conservation law for the electrical charge, the macroscopic IP response of the network is obtained. We fit successfully the macroscopic complex resistivity also by a Pelton resistivity model. Simulations on uncorrelated and correlated networks, for which the tube radius distribution is so that the decimal logarithm of the radius is normally distributed, evidence that the local and macroscopic model parameters are the same, except the Cole-Cole exponent: its macroscopic value diminishes with increasing heterogeneity (i.e. with increasing standard deviation of the radius distribution), compared to its local value. The methodology is also applied to six siliciclastic rock samples, for which the pore radius distributions from mercury porosimetry are available. These samples exhibit the same behaviour as synthetic media, that is, the macroscopic Cole-Cole exponent is always lower than the local one. As a conclusion, the pore network method seems to be a promising tool for studying the upscaling of the IP response of porous media.

  10. Using synchrotron X-ray microtomography to characterize the pore network of reservoir rocks: A case study on carbonates

    NASA Astrophysics Data System (ADS)

    Arzilli, F.; Cilona, A.; Mancini, L.; Tondi, E.

    2016-09-01

    In this work we propose a new methodology to calculate pore connectivity in granular rocks. This method is useful to characterize the pore networks of natural and laboratory compaction bands (CBs), and compare them with the host rock pore network. Data were collected using the synchrotron X-ray microtomography technique and quantitative analyses were carried out using the Pore3D software library. The porosity was calculated from segmented tridimensional images of deformed and pristine rocks. A process of skeletonization of the pore space was used to obtain the number of connected pores within the rock volume. By analyzing the skeletons the differences between natural and laboratory CBs were highlighted. The natural CB has a lower porosity than to the laboratory one. In natural CBs, the grain contacts appear welded, whereas laboratory CBs show irregular pore shape. Moreover, we assessed for the first time how pore connectivity evolves as a function of deformation, documenting the mechanism responsible for pore connectivity drop within the CBs.

  11. A pore-network model for foam formation and propagation in porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharabaf, H.; Yortsos, Y.C.

    1996-12-31

    We present a pore-network model, based on a pores-and-throats representation of the porous medium, to simulate the generation and mobilization of foams in porous media. The model allows for various parameters or processes, empirically treated in current models, to be quantified and interpreted. Contrary to previous works, we also consider a dynamic (invasion) in addition to a static process. We focus on the properties of the displacement, the onset of foam flow and mobilization, the foam texture and the sweep efficiencies obtained. The model simulates an invasion process, in which gas invades a porous medium occupied by a surfactant solution.more » The controlling parameter is the snap-off probability, which in turn determines the foam quality for various size distributions of pores and throats. For the front to advance, the applied pressure gradient needs to be sufficiently high to displace a series of lamellae along a minimum capillary resistance (threshold) path. We determine this path using a novel algorithm. The fraction of the flowing lamellae, X{sub f} (and, consequently, the fraction of the trapped lamellae, X{sub f}) which are currently empirical, are also calculated. The model allows the delineation of conditions tinder which high-quality (strong) or low-quality (weak) foams form. In either case, the sweep efficiencies in displacements in various media are calculated. In particular, the invasion by foam of low permeability layers during injection in a heterogeneous system is demonstrated.« less

  12. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.

    PubMed

    Chan, Ariel W; Neufeld, Ronald J

    2009-10-01

    Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel.

  13. Finite volume solution for two-phase flow in a straight capillary

    NASA Astrophysics Data System (ADS)

    Yelkhovsky, Alexander; Pinczewski, W. Val

    2018-04-01

    The problem of two-phase flow in straight capillaries of polygonal cross section displays many of the dynamic characteristics of rapid interfacial motions associated with pore-scale displacements in porous media. Fluid inertia is known to be important in these displacements but is usually ignored in network models commonly used to predict macroscopic flow properties. This study presents a numerical model for two-phase flow which describes the spatial and temporal evolution of the interface between the fluids. The model is based on an averaged Navier-Stokes equation and is shown to be successful in predicting the complex dynamics of both capillary rise in round capillaries and imbibition along the corners of polygonal capillaries. The model can form the basis for more realistic network models which capture the effect of capillary, viscous, and inertial forces on pore-scale interfacial dynamics and consequent macroscopic flow properties.

  14. A computational geometry approach to pore network construction for granular packings

    NASA Astrophysics Data System (ADS)

    van der Linden, Joost H.; Sufian, Adnan; Narsilio, Guillermo A.; Russell, Adrian R.; Tordesillas, Antoinette

    2018-03-01

    Pore network construction provides the ability to characterize and study the pore space of inhomogeneous and geometrically complex granular media in a range of scientific and engineering applications. Various approaches to the construction have been proposed, however subtle implementational details are frequently omitted, open access to source code is limited, and few studies compare multiple algorithms in the context of a specific application. This study presents, in detail, a new pore network construction algorithm, and provides a comprehensive comparison with two other, well-established Delaunay triangulation-based pore network construction methods. Source code is provided to encourage further development. The proposed algorithm avoids the expensive non-linear optimization procedure in existing Delaunay approaches, and is robust in the presence of polydispersity. Algorithms are compared in terms of structural, geometrical and advanced connectivity parameters, focusing on the application of fluid flow characteristics. Sensitivity of the various networks to permeability is assessed through network (Stokes) simulations and finite-element (Navier-Stokes) simulations. Results highlight strong dependencies of pore volume, pore connectivity, throat geometry and fluid conductance on the degree of tetrahedra merging and the specific characteristics of the throats targeted by the merging algorithm. The paper concludes with practical recommendations on the applicability of the three investigated algorithms.

  15. Multiscale pore networks and their effect on deformation and transport property alteration associated with hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Daigle, Hugh; Hayman, Nicholas; Jiang, Han; Tian, Xiao; Jiang, Chunbi

    2017-04-01

    Multiple lines of evidence indicate that, during a hydraulic fracture stimulation, the permeability of the unfractured matrix far from the main, induced tensile fracture increases by one to two orders of magnitude. This permeability enhancement is associated with pervasive shear failure in a large region surrounding the main induced fracture. We have performed low-pressure gas sorption, mercury intrusion, and nuclear magnetic resonance measurements along with high-resolution scanning electron microscope imaging on several preserved and unpreserved shale samples from North American basins before and after inducing failure in confined compressive strength tests. We have observed that the pore structure in intact samples exhibits multiscale behavior, with sub-micron-scale pores in organic matter connected in isolated, micron-scale clusters which themselves are connected to each other through a network of microcracks. The organic-hosted pore networks are poorly connected due to a significant number of dead-end pores within the organic matter. Following shear failure, we often observe an increase in pore volume in the sub-micron range, which appears to be related to the formation of microcracks that propagate along grain boundaries and other planes of mechanical strength contrast. This is consistent with other experimental and field evidence. In some cases these microcracks cross or terminate in organic matter, intersecting the organic-hosted pores. The induced microcrack networks typically have low connectivity and do not appreciably increase the connectivity of the overall pore network. However, in other cases the shear deformation results in an overall pore volume decrease; samples which exhibit this behavior tend to have more clay minerals. Our interpretation of these phenomena is as follows. As organic matter is converted to hydrocarbons, organic-hosted pores develop, and the hydrocarbons contained in these pores are overpressured. The disconnected nature of these clusters of organic-hosted pores prevents the overpressure from dissipating, resulting in localized overpressure at the micron scale. When the rock is subjected to a hydraulic fracture stimulation, the rock surrounding the main induced fracture experiences shear deformation. Those parts of the rock that contain overpressured fluids in the organic-hosted pores will be more likely to experience dilatancy in the form of brittle deformation; the portions of the rock lacking in organic-hosted pores will tend to experience compactive shear failure since the effective normal stresses are larger. The microcrack networks that propagate into the regions of organic-hosted porosity allow the hydrocarbons resident in those pores to migrate to the main induced tensile fractures. The disconnected nature of the microcrack networks causes only a slight increase in permeability, which is consistent with other observations. Our work illustrates how multiscale pore networks in shale interact with in situ stresses to affect the bulk shale rheology.

  16. A binomial modeling approach for upscaling colloid transport under unfavorable conditions: Emergent prediction of extended tailing

    NASA Astrophysics Data System (ADS)

    Hilpert, Markus; Rasmuson, Anna; Johnson, William P.

    2017-07-01

    Colloid transport in saturated porous media is significantly influenced by colloidal interactions with grain surfaces. Near-surface fluid domain colloids experience relatively low fluid drag and relatively strong colloidal forces that slow their downgradient translation relative to colloids in bulk fluid. Near-surface fluid domain colloids may reenter into the bulk fluid via diffusion (nanoparticles) or expulsion at rear flow stagnation zones, they may immobilize (attach) via primary minimum interactions, or they may move along a grain-to-grain contact to the near-surface fluid domain of an adjacent grain. We introduce a simple model that accounts for all possible permutations of mass transfer within a dual pore and grain network. The primary phenomena thereby represented in the model are mass transfer of colloids between the bulk and near-surface fluid domains and immobilization. Colloid movement is described by a Markov chain, i.e., a sequence of trials in a 1-D network of unit cells, which contain a pore and a grain. Using combinatorial analysis, which utilizes the binomial coefficient, we derive the residence time distribution, i.e., an inventory of the discrete colloid travel times through the network and of their probabilities to occur. To parameterize the network model, we performed mechanistic pore-scale simulations in a single unit cell that determined the likelihoods and timescales associated with the above colloid mass transfer processes. We found that intergrain transport of colloids in the near-surface fluid domain can cause extended tailing, which has traditionally been attributed to hydrodynamic dispersion emanating from flow tortuosity of solute trajectories.

  17. Pore-scale and continuum simulations of solute transport micromodel benchmark experiments

    DOE PAGES

    Oostrom, M.; Mehmani, Y.; Romero-Gomez, P.; ...

    2014-06-18

    Four sets of nonreactive solute transport experiments were conducted with micromodels. Three experiments with one variable, i.e., flow velocity, grain diameter, pore-aspect ratio, and flow-focusing heterogeneity were in each set. The data sets were offered to pore-scale modeling groups to test their numerical simulators. Each set consisted of two learning experiments, for which our results were made available, and one challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the transverse dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing,more » and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice Boltzmann (LB) approach, and one used a computational fluid dynamics (CFD) technique. Furthermore, we used the learning experiments, by the PN models, to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used the learning experiments to appropriately discretize the spatial grid representations. For the continuum modeling, the required dispersivity input values were estimated based on published nonlinear relations between transverse dispersion coefficients and Peclet number. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values, resulting in reduced dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models, which account for the micromodel geometry and underlying flow and transport physics, needed up to several days on supercomputers to resolve the more complex problems.« less

  18. P-adic model of transport in porous disordered media

    NASA Astrophysics Data System (ADS)

    Khrennikov, Adrei Yu.; Oleschko, Klaudia

    2014-05-01

    The soil porosity and permeability are the most important quantitative indicators of soil dynamics under the land-use change. The main problema in the modeling of this dynamic is still poor correlation between the real measuring data and the mathematical and computer simulation models. In order to overpassed this deep divorce we have designed a new technique, able to compare the data arised from the multiscale image analices and time series of the basic physical properties dynamics in porous media studied in time and space. We present a model of the diffusion reaction type describing transport in disordered porous media, e.g., water or oil flow in a complex network of pores. Our model is based on p-adic representation of such networks. This is a kind of fractal representation. We explore advantages of p- adic representation, namely, the possibility to endow p-adic trees with an algebraic structure and ultrametric topology and, hence, to apply analysis which have (at least some) similarities with ordinary real analysis on the straight line. We present the system of two diffusion reaction equations describing propagation of particles in networks of pores in disordered media. As an application, one can consider water transport through the soil pore Networks, or oil flow through capillaries nets. Under some restrictions on potentials and rate coefficients we found the stationary regime corresponding to water content or concentration of oil in a cluster of capillaries. Usage of p-adic analysis (in particular, p-adic wavelets) gives a possibility to find the stationary solution in the analytic form which makes possible to present a clear pedological or geological picture of the process. The mathematical model elaborated in this paper (Khrennikov, 2013) can be applied to variety of problems from water concentration in aquifers to the problem of formation of oil reservoirs in disordered media with porous structures. Another possible application may have real practical output. In fact, our system of diffusion-reaction equations can be used to model the process of extraction of water or oil from an extended network of capillaries (Khrennikov et al., 2013). The accomplished analyses show that the time series of water content/pressure dynamics in saturated/unsaturated conditions reflect the fractal structure of pores separated by familias base don the seven geometric descriptors which we used for the soils multiscale images (Oleschko et al., 2012). The similar models were applied to the porous media behind the oil flow from wells. These results motivate usage of the fractal and, in particular, p-adic methods of modeling.

  19. Evaporation in Capillary Porous Media at the Perfect Piston-Like Invasion Limit: Evidence of Nonlocal Equilibrium Effects

    NASA Astrophysics Data System (ADS)

    Attari Moghaddam, Alireza; Prat, Marc; Tsotsas, Evangelos; Kharaghani, Abdolreza

    2017-12-01

    The classical continuum modeling of evaporation in capillary porous media is revisited from pore network simulations of the evaporation process. The computed moisture diffusivity is characterized by a minimum corresponding to the transition between liquid and vapor transport mechanisms confirming previous interpretations. Also the study suggests an explanation for the scattering generally observed in the moisture diffusivity obtained from experimental data. The pore network simulations indicate a noticeable nonlocal equilibrium effect leading to a new interpretation of the vapor pressure-saturation relationship classically introduced to obtain the one-equation continuum model of evaporation. The latter should not be understood as a desorption isotherm as classically considered but rather as a signature of a nonlocal equilibrium effect. The main outcome of this study is therefore that nonlocal equilibrium two-equation model must be considered for improving the continuum modeling of evaporation.

  20. Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bossa, Nathan, E-mail: bossanathan@gmail.com; INERIS, Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte; iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence

    2015-01-15

    Pore structure of leached cement pastes (w/c = 0.5) was studied for the first time from micro-scale down to the nano-scale by combining micro- and nano-X-ray computed tomography (micro- and nano-CT). This allowed assessing the 3D heterogeneity of the pore network along the cement profile (from the core to the altered layer) of almost the entire range of cement pore size, i.e. from capillary to gel pores. We successfully quantified an increase of porosity in the altered layer at both resolutions. Porosity is increasing from 1.8 to 6.1% and from 18 to 58% at the micro-(voxel = 1.81 μm) andmore » nano-scale (voxel = 63.5 nm) respectively. The combination of both CT allowed to circumvent weaknesses inherent of both investigation scales. In addition the connectivity and the channel size of the pore network were also evaluated to obtain a complete 3D pore network characterization at both scales.« less

  1. Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution

    NASA Astrophysics Data System (ADS)

    Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.

    2016-09-01

    A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.

  2. Effect of Pore Pressure on Slip Failure of an Impermeable Fault: A Coupled Micro Hydro-Geomechanical Model

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Juanes, R.

    2015-12-01

    The geomechanical processes associated with subsurface fluid injection/extraction is of central importance for many industrial operations related to energy and water resources. However, the mechanisms controlling the stability and slip motion of a preexisting geologic fault remain poorly understood and are critical for the assessment of seismic risk. In this work, we develop a coupled hydro-geomechanical model to investigate the effect of fluid injection induced pressure perturbation on the slip behavior of a sealing fault. The model couples single-phase flow in the pores and mechanics of the solid phase. Granular packs (see example in Fig. 1a) are numerically generated where the grains can be either bonded or not, depending on the degree of cementation. A pore network is extracted for each granular pack with pore body volumes and pore throat conductivities calculated rigorously based on geometry of the local pore space. The pore fluid pressure is solved via an explicit scheme, taking into account the effect of deformation of the solid matrix. The mechanics part of the model is solved using the discrete element method (DEM). We first test the validity of the model with regard to the classical one-dimensional consolidation problem where an analytical solution exists. We then demonstrate the ability of the coupled model to reproduce rock deformation behavior measured in triaxial laboratory tests under the influence of pore pressure. We proceed to study the fault stability in presence of a pressure discontinuity across the impermeable fault which is implemented as a plane with its intersected pore throats being deactivated and thus obstructing fluid flow (Fig. 1b, c). We focus on the onset of shear failure along preexisting faults. We discuss the fault stability criterion in light of the numerical results obtained from the DEM simulations coupled with pore fluid flow. The implication on how should faults be treated in a large-scale continuum model is also presented.

  3. Dual FIB-SEM 3D Imaging and Lattice Boltzmann Modeling of Porosimetry and Multiphase Flow in Chalk

    NASA Astrophysics Data System (ADS)

    Rinehart, A. J.; Yoon, H.; Dewers, T. A.; Heath, J. E.; Petrusak, R.

    2010-12-01

    Mercury intrusion porosimetry (MIP) is an often-applied technique for determining pore throat distributions and seal analysis of fine-grained rocks. Due to closure effects, potential pore collapse, and complex pore network topologies, MIP data interpretation can be ambiguous, and often biased toward smaller pores in the distribution. We apply 3D imaging techniques and lattice-Boltzmann modeling in interpreting MIP data for samples of the Cretaceous Selma Group Chalk. In the Mississippi Interior Salt Basin, the Selma Chalk is the apparent seal for oil and gas fields in the underlying Eutaw Fm., and, where unfractured, the Selma Chalk is one of the regional-scale seals identified by the Southeast Regional Carbon Sequestration Partnership for CO2 injection sites. Dual focused ion - scanning electron beam and laser scanning confocal microscopy methods are used for 3D imaging of nanometer-to-micron scale microcrack and pore distributions in the Selma Chalk. A combination of image analysis software is used to obtain geometric pore body and throat distributions and other topological properties, which are compared to MIP results. 3D data sets of pore-microfracture networks are used in Lattice Boltzmann simulations of drainage (wetting fluid displaced by non-wetting fluid via the Shan-Chen algorithm), which in turn are used to model MIP procedures. Results are used in interpreting MIP results, understanding microfracture-matrix interaction during multiphase flow, and seal analysis for underground CO2 storage. This work was supported by the US Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, anmore » advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.« less

  5. VISUALIZATION AND SIMULATION OF NON-AQUEOUS PHASE LIQUIDS SOLUBILIZATION IN PORE NETWORKS

    EPA Science Inventory

    The design of in-situ remediation of contaminated soils is mostly based on a description at the macroscopic scale using a averaged quantities. These cannot address issues at the pore and pore network scales. In this paper, visualization experiments and numerical simulations in ...

  6. Multi-scale Pore Imaging Techniques to Characterise Heterogeneity Effects on Flow in Carbonate Rock

    NASA Astrophysics Data System (ADS)

    Shah, S. M.

    2017-12-01

    Digital rock analysis and pore-scale studies have become an essential tool in the oil and gas industry to understand and predict the petrophysical and multiphase flow properties for the assessment and exploitation of hydrocarbon reserves. Carbonate reservoirs, accounting for majority of the world's hydrocarbon reserves, are well known for their heterogeneity and multiscale pore characteristics. The pore sizes in carbonate rock can vary over orders of magnitudes, the geometry and topology parameters of pores at different scales have a great impact on flow properties. A pore-scale study is often comprised of two key procedures: 3D pore-scale imaging and numerical modelling techniques. The fundamental problem in pore-scale imaging and modelling is how to represent and model the different range of scales encountered in porous media, from the pore-scale to macroscopic petrophysical and multiphase flow properties. However, due to the restrictions of image size vs. resolution, the desired detail is rarely captured at the relevant length scales using any single imaging technique. Similarly, direct simulations of transport properties in heterogeneous rocks with broad pore size distributions are prohibitively expensive computationally. In this study, we present the advances and review the practical limitation of different imaging techniques varying from core-scale (1mm) using Medical Computed Tomography (CT) to pore-scale (10nm - 50µm) using Micro-CT, Confocal Laser Scanning Microscopy (CLSM) and Focussed Ion Beam (FIB) to characterise the complex pore structure in Ketton carbonate rock. The effect of pore structure and connectivity on the flow properties is investigated using the obtained pore scale images of Ketton carbonate using Pore Network and Lattice-Boltzmann simulation methods in comparison with experimental data. We also shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging.

  7. Formation of Molecular Networks: Tailored Quantum Boxes and Behavior of Adsorbed CO in Them

    NASA Astrophysics Data System (ADS)

    Wyrick, Jon; Sun, Dezheng; Kim, Dae-Ho; Cheng, Zhihai; Lu, Wenhao; Zhu, Yeming; Luo, Miaomiao; Kim, Yong Su; Rotenberg, Eli; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2011-03-01

    We show that the behavior of CO adsorbed into the pores of large regular networks on Cu(111) is significantly affected by their nano-scale lateral confinement and that formation of the networks themselves is directed by the Shockley surface state. Saturation coverages of CO are found to exhibit persistent dislocation lines; at lower coverages their mobility increases. Individual CO within the pores titrate the surface state, providing crucial information for understanding formation of the network as a result of optimization of the number N of electrons bound within each pore. Determination of N is based on quinone-coverage-dependent UPS data and an analysis of states of particles in a pore-shaped box (verified by CO's titration); a wide range of possible pore shapes and sizes has been considered. Work at UCR supported by NSF CHE 07-49949; at UMD by NSF CHE 07-50334 & UMD NSF-MRSEC DMR 05-20471.

  8. Reduced-Order Direct Numerical Simulation of Solute Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Mehmani, Yashar; Tchelepi, Hamdi

    2017-11-01

    Pore-scale models are an important tool for analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Current direct numerical simulation (DNS) techniques, while very accurate, are computationally prohibitive for sample sizes that are statistically representative of the porous structure. Reduced-order approaches such as pore-network models (PNM) aim to approximate the pore-space geometry and physics to remedy this problem. Predictions from current techniques, however, have not always been successful. This work focuses on single-phase transport of a passive solute under advection-dominated regimes and delineates the minimum set of approximations that consistently produce accurate PNM predictions. Novel network extraction (discretization) and particle simulation techniques are developed and compared to high-fidelity DNS simulations for a wide range of micromodel heterogeneities and a single sphere pack. Moreover, common modeling assumptions in the literature are analyzed and shown that they can lead to first-order errors under advection-dominated regimes. This work has implications for optimizing material design and operations in manufactured (electrodes) and natural (rocks) porous media pertaining to energy systems. This work was supported by the Stanford University Petroleum Research Institute for Reservoir Simulation (SUPRI-B).

  9. Water Displacement in Oil-Wet Tight Reservoirs by Dynamic Network Simulation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, M.; Chen, M.

    2017-12-01

    Pore network simulation is an effective tool for studying the multiphase flow in porous media. Based on the topological information and pore-throat size distribution obtained from the analysis of Scanning Electron Microscope (SEM) and constant-rate mercury injection (CRMI) for tight cores (composed by micro-nano scale throats and micro scale pores), a simple cubic (SC) pore-throat network was built with equilateral triangular cross-section throats and cubic bodies. Rules for oil and water movement and redistribution were devised in accordance with the physics process at pore-throat scale. Water flooding from oil-saturated under irreducible water were simulated by considering the changing displacement rate and viscosity ratio at the slightly oil-wet condition (the static contact angle ranges between π/2 to 2π/3). Different from the double pressure field algorithm, a single pressure field which solved by using successive over relaxation method was used with the flow of irreducible water in corners was ignored while its swilling was take into consideration. Dynamic of displacement fronts, relative permeability curves and residual oil saturation were obtained. It showed that there were obviously snap-off at low capillary number (Nc<10-5) and fingering at high capillary number (Nc<10-4) even at a favorable viscosity ratio (M=1). The magnitude of viscosity ratio effect on relative permeability depended largely on the capillary number, which the effect wasn't noticeable for a high capillary number. For residual oil saturation Sor, it showed that Sor decreased with the increase of capillary number at different viscosity ratio. Changing of residual oil saturation from simulation was in good agreement with the experimental results in a certain range, which indicated that this network model could be used to character the water flooding in tight reservoirs.

  10. Multiscale modeling of fluid flow and mass transport

    NASA Astrophysics Data System (ADS)

    Masuoka, K.; Yamamoto, H.; Bijeljic, B.; Lin, Q.; Blunt, M. J.

    2017-12-01

    In recent years, there are some reports on a simulation of fluid flow in pore spaces of rocks using Navier-Stokes equations. These studies mostly adopt a X-ray CT to create 3-D numerical grids of the pores in micro-scale. However, results may be of low accuracy when the rock has a large pore size distribution, because pores, whose size is smaller than resolution of the X-ray CT may be neglected. We recently found out by tracer tests in a laboratory using a brine saturated Ryukyu limestone and inject fresh water that a decrease of chloride concentration took longer time. This phenomenon can be explained due to weak connectivity of the porous networks. Therefore, it is important to simulate entire pore spaces even those of very small sizes in which diffusion is dominant. We have developed a new methodology for multi-level modeling for pore scale fluid flow in porous media. The approach is to combine pore-scale analysis with Darcy-flow analysis using two types of X-ray CT images in different resolutions. Results of the numerical simulations showed a close match with the experimental results. The proposed methodology is an enhancement for analyzing mass transport and flow phenomena in rocks with complicated pore structure.

  11. Water retention curve for hydrate-bearing sediments

    NASA Astrophysics Data System (ADS)

    Dai, Sheng; Santamarina, J. Carlos

    2013-11-01

    water retention curve plays a central role in numerical algorithms that model hydrate dissociation in sediments. The determination of the water retention curve for hydrate-bearing sediments faces experimental difficulties, and most studies assume constant water retention curves regardless of hydrate saturation. This study employs network model simulation to investigate the water retention curve for hydrate-bearing sediments. Results show that (1) hydrate in pores shifts the curve to higher capillary pressures and the air entry pressure increases as a power function of hydrate saturation; (2) the air entry pressure is lower in sediments with patchy rather than distributed hydrate, with higher pore size variation and pore connectivity or with lower specimen slenderness along the flow direction; and (3) smaller specimens render higher variance in computed water retention curves, especially at high water saturation Sw > 0.7. Results are relevant to other sediment pore processes such as bioclogging and mineral precipitation.

  12. Using Artificial Neural Networks to Predict the Presence of Overpressured Zones in the Anadarko Basin, Oklahoma

    NASA Astrophysics Data System (ADS)

    Cranganu, Constantin

    2007-10-01

    Many sedimentary basins throughout the world exhibit areas with abnormal pore-fluid pressures (higher or lower than normal or hydrostatic pressure). Predicting pore pressure and other parameters (depth, extension, magnitude, etc.) in such areas are challenging tasks. The compressional acoustic (sonic) log (DT) is often used as a predictor because it responds to changes in porosity or compaction produced by abnormal pore-fluid pressures. Unfortunately, the sonic log is not commonly recorded in most oil and/or gas wells. We propose using an artificial neural network to synthesize sonic logs by identifying the mathematical dependency between DT and the commonly available logs, such as normalized gamma ray (GR) and deep resistivity logs (REID). The artificial neural network process can be divided into three steps: (1) Supervised training of the neural network; (2) confirmation and validation of the model by blind-testing the results in wells that contain both the predictor (GR, REID) and the target values (DT) used in the supervised training; and 3) applying the predictive model to all wells containing the required predictor data and verifying the accuracy of the synthetic DT data by comparing the back-predicted synthetic predictor curves (GRNN, REIDNN) to the recorded predictor curves used in training (GR, REID). Artificial neural networks offer significant advantages over traditional deterministic methods. They do not require a precise mathematical model equation that describes the dependency between the predictor values and the target values and, unlike linear regression techniques, neural network methods do not overpredict mean values and thereby preserve original data variability. One of their most important advantages is that their predictions can be validated and confirmed through back-prediction of the input data. This procedure was applied to predict the presence of overpressured zones in the Anadarko Basin, Oklahoma. The results are promising and encouraging.

  13. The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks.

    PubMed

    Sapudom, Jiranuwat; Rubner, Stefan; Martin, Steve; Kurth, Tony; Riedel, Stefanie; Mierke, Claudia T; Pompe, Tilo

    2015-06-01

    The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter--and not pore size--to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Ultrasonic sensing of powder densification

    NASA Technical Reports Server (NTRS)

    Lu, Yichi; Wadley, Haydn N. G.; Parthasarathi, Sanjai

    1992-01-01

    An independent scattering theory has been applied to the interpretation of ultrasonic velocity measurements made on porous metal samples produced either by a cold or a high-temperature compaction process. The results suggest that the pores in both processes are not spherical, an aspect ration of 1:3 fitting best with the data for low (less than 4 percent) pore volume fractions. For the hot compacted powders, the pores are smooth due to active diffusional processes during processing. For these types of voids, the results can be extended to a pore fraction of 10 percent, at which point voids form an interconnected network that violates the model assumptions. The cold pressed samples are not as well predicted by the theory because of poor particle bonding.

  15. An analysis of electrical conductivity model in saturated porous media

    NASA Astrophysics Data System (ADS)

    Cai, J.; Wei, W.; Qin, X.; Hu, X.

    2017-12-01

    Electrical conductivity of saturated porous media has numerous applications in many fields. In recent years, the number of theoretical methods to model electrical conductivity of complex porous media has dramatically increased. Nevertheless, the process of modeling the spatial conductivity distributed function continues to present challenges when these models used in reservoirs, particularly in porous media with strongly heterogeneous pore-space distributions. Many experiments show a more complex distribution of electrical conductivity data than the predictions derived from the experiential model. Studies have observed anomalously-high electrical conductivity of some low-porosity (tight) formations compared to more- porous reservoir rocks, which indicates current flow in porous media is complex and difficult to predict. Moreover, the change of electrical conductivity depends not only on the pore volume fraction but also on several geometric properties of the more extensive pore network, including pore interconnection and tortuosity. In our understanding of electrical conductivity models in porous media, we study the applicability of several well-known methods/theories to electrical characteristics of porous rocks as a function of pore volume, tortuosity and interconnection, to estimate electrical conductivity based on the micro-geometrical properties of rocks. We analyze the state of the art of scientific knowledge and practice for modeling porous structural systems, with the purpose of identifying current limitations and defining a blueprint for future modeling advances. We compare conceptual descriptions of electrical current flow processes in pore space considering several distinct modeling approaches. Approaches to obtaining more reasonable electrical conductivity models are discussed. Experiments suggest more complex relationships between electrical conductivity and porosity than experiential models, particularly in low-porosity formations. However, the available theoretical models combined with simulations do provide insight to how microscale physics affects macroscale electrical conductivity in porous media.

  16. X-ray Computed Tomography and Pore Network Modeling to Assess the Impact of Biochar on Saturated Hydraulic Conductivity of Stormwater Infiltration Media

    NASA Astrophysics Data System (ADS)

    Imhoff, P. T.; Nakhli, S. A. A.; Mills, G.; Yudi, Y.; Abera, K.; Williams, R.; Manahiloh, K. N.; Willson, C. S.

    2017-12-01

    Biochar has been proposed as an amendment to stormwater infiltration media to enhance pollutant capture (metals, organics) or transformation (e.g., nitrate). Because stormwater media must maintain sufficient infiltration capacity, it is critical that biochar amendment not reduce saturated hydraulic conductivity. We present experimental measurements of saturated hydraulic conductivity for mixtures of wood biochar, sieved to various size fractions, and uniform sands or bioretention media (mixtures of sand, clay, and sawdust). While the influence of biochar on the inter particle pore volume of the mixtures explained most changes in hydraulic conductivity, for mixtures containing large biochar particles results were unexpected. For example, while large biochar particles (2 - 4.75 mm) increased inter particle porosity from 0.35 to 0.48 for a sand/biochar mixture, hydraulic conductivity decreased from 820 ± 90 cm/h to 323 ± 2 cm/h. To understand this and other unusual data, biochar was doped with 3% CsCl, mixed with uniform sand using different packing techniques, and analyzed with X-ray computed tomography to assess biochar distribution and pore structure. Depending on packing technique, biochar particles were either segregated or uniformly mixed, which influenced pore structure. Biochar content and inter particle pore volume determined from X-ray images were in excellent agreement with experimental data (< 5% difference). Grain-based algorithms were then used to generate physically-representative pore networks, and single-phase permeability models were employed to estimate saturated hydraulic conductivity of sand and biochar-amended sand packings for specimens prepared with different packing techniques. Results from these analyses will be presented and compared with experimental measurements to elucidate the mechanisms by which large biochar particles alter the saturated hydraulic conductivity of engineered media.

  17. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation

    NASA Astrophysics Data System (ADS)

    Mahabadi, Nariman; Dai, Sheng; Seol, Yongkoo; Sup Yun, Tae; Jang, Jaewon

    2016-08-01

    The water retention curve and relative permeability are critical to predict gas and water production from hydrate-bearing sediments. However, values for key parameters that characterize gas and water flows during hydrate dissociation have not been identified due to experimental challenges. This study utilizes the combined techniques of micro-focus X-ray computed tomography (CT) and pore-network model simulation to identify proper values for those key parameters, such as gas entry pressure, residual water saturation, and curve fitting values. Hydrates with various saturation and morphology are realized in the pore-network that was extracted from micron-resolution CT images of sediments recovered from the hydrate deposit at the Mallik site, and then the processes of gas invasion, hydrate dissociation, gas expansion, and gas and water permeability are simulated. Results show that greater hydrate saturation in sediments lead to higher gas entry pressure, higher residual water saturation, and steeper water retention curve. An increase in hydrate saturation decreases gas permeability but has marginal effects on water permeability in sediments with uniformly distributed hydrate. Hydrate morphology has more significant impacts than hydrate saturation on relative permeability. Sediments with heterogeneously distributed hydrate tend to result in lower residual water saturation and higher gas and water permeability. In this sense, the Brooks-Corey model that uses two fitting parameters individually for gas and water permeability properly capture the effect of hydrate saturation and morphology on gas and water flows in hydrate-bearing sediments.

  18. Micro-CT Pore Scale Study Of Flow In Porous Media: Effect Of Voxel Resolution

    NASA Astrophysics Data System (ADS)

    Shah, S.; Gray, F.; Crawshaw, J.; Boek, E.

    2014-12-01

    In the last few years, pore scale studies have become the key to understanding the complex fluid flow processes in the fields of groundwater remediation, hydrocarbon recovery and environmental issues related to carbon storage and capture. A pore scale study is often comprised of two key procedures: 3D pore scale imaging and numerical modelling techniques. The essence of a pore scale study is to test the physics implemented in a model of complicated fluid flow processes at one scale (microscopic) and then apply the model to solve the problems associated with water resources and oil recovery at other scales (macroscopic and field). However, the process of up-scaling from the pore scale to the macroscopic scale has encountered many challenges due to both pore scale imaging and modelling techniques. Due to the technical limitations in the imaging method, there is always a compromise between the spatial (voxel) resolution and the physical volume of the sample (field of view, FOV) to be scanned by the imaging methods, specifically X-ray micro-CT (XMT) in our case In this study, a careful analysis was done to understand the effect of voxel size, using XMT to image the 3D pore space of a variety of porous media from sandstones to carbonates scanned at different voxel resolution (4.5 μm, 6.2 μm, 8.3 μm and 10.2 μm) but keeping the scanned FOV constant for all the samples. We systematically segment the micro-CT images into three phases, the macro-pore phase, an intermediate phase (unresolved micro-pores + grains) and the grain phase and then study the effect of voxel size on the structure of the macro-pore and the intermediate phases and the fluid flow properties using lattice-Boltzmann (LB) and pore network (PN) modelling methods. We have also applied a numerical coarsening algorithm (up-scale method) to reduce the computational power and time required to accurately predict the flow properties using the LB and PN method.

  19. Fiber optic sensor and method for making

    DOEpatents

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  20. Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume

    NASA Astrophysics Data System (ADS)

    Yuan, Chao; Chareyre, Bruno; Darve, Félix

    2016-09-01

    A pore-scale model is introduced for two-phase flow in dense packings of polydisperse spheres. The model is developed as a component of a more general hydromechanical coupling framework based on the discrete element method, which will be elaborated in future papers and will apply to various processes of interest in soil science, in geomechanics and in oil and gas production. Here the emphasis is on the generation of a network of pores mapping the void space between spherical grains, and the definition of local criteria governing the primary drainage process. The pore space is decomposed by Regular Triangulation, from which a set of pores connected by throats are identified. A local entry capillary pressure is evaluated for each throat, based on the balance of capillary pressure and surface tension at equilibrium. The model reflects the possible entrapment of disconnected patches of the receding wetting phase. It is validated by a comparison with drainage experiments. In the last part of the paper, a series of simulations are reported to illustrate size and boundary effects, key questions when studying small samples made of spherical particles be it in simulations or experiments. Repeated tests on samples of different sizes give evolution of water content which are not only scattered but also strongly biased for small sample sizes. More than 20,000 spheres are needed to reduce the bias on saturation below 0.02. Additional statistics are generated by subsampling a large sample of 64,000 spheres. They suggest that the minimal sampling volume for evaluating saturation is one hundred times greater that the sampling volume needed for measuring porosity with the same accuracy. This requirement in terms of sample size induces a need for efficient computer codes. The method described herein has a low algorithmic complexity in order to satisfy this requirement. It will be well suited to further developments toward coupled flow-deformation problems in which evolution of the microstructure require frequent updates of the pore network.

  1. Water Transport in the Micro Porous Layer and Gas Diffusion Layer of a Polymer Electrolyte Fuel Cell

    NASA Astrophysics Data System (ADS)

    Qin, C.; Hassanizadeh, S. M.

    2015-12-01

    In this work, a recently developed dynamic pore-network model is presented [1]. The model explicitly solves for both water pressure and capillary pressure. A semi-implicit scheme is used in updating water saturation in each pore body, which considerably increases the numerical stability at low capillary number values. Furthermore, a multiple-time-step algorithm is introduced to reduce the computational effort. A number of case studies of water transport in the micro porous layer (MPL) and gas diffusion layer (GDL) are conducted. We illustrate the role of MPL in reducing water flooding in the GDL. Also, the dynamic water transport through the MPL-GDL interface is explored in detail. This information is essential to the reduced continua model (RCM), which was developed for multiphase flow through thin porous layers [2, 3]. C.Z. Qin, Water transport in the gas diffusion layer of a polymer electrolyte fuel cell: dynamic pore-network modeling, J Electrochimical. Soci., 162, F1036-F1046, 2015. C.Z. Qin and S.M. Hassanizadeh, Multiphase flow through multilayers of thin porous media: general balance equations and constitutive relationships for a solid-gas-liquid three-phase system, Int. J. Heat Mass Transfer, 70, 693-708, 2014. C.Z. Qin and S.M. Hassanizadeh, A new approach to modeling water flooding in a polymer electrolyte fuel cell, Int. J. Hydrogen Energy, 40, 3348-3358, 2015.

  2. Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks

    PubMed Central

    Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben

    2015-01-01

    When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839

  3. Dynamic Pore-Scale Imaging of Reactive Transport in Heterogeneous Carbonates at Reservoir Conditions Across Multiple Dissolution Regimes

    NASA Astrophysics Data System (ADS)

    Menke, H. P.; Bijeljic, B.; Andrew, M. G.; Blunt, M. J.

    2014-12-01

    Sequestering carbon in deep geologic formations is one way of reducing anthropogenic CO2 emissions. When supercritical CO2 mixes with brine in a reservoir, the acid generated has the potential to dissolve the surrounding pore structure. However, the magnitude and type of dissolution are condition dependent. Understanding how small changes in the pore structure, chemistry, and flow properties affect dissolution is paramount for successful predictive modelling. Both 'Pink Beam' synchrotron radiation and a Micro-CT lab source are used in dynamic X-ray microtomography to investigate the pore structure changes during supercritical CO2 injection in carbonate rocks of varying heterogeneity at high temperatures and pressures and various flow-rates. Three carbonate rock types were studied, one with a homogeneous pore structure and two heterogeneous carbonates. All samples are practically pure calcium carbonate, but have widely varying rock structures. Flow-rate was varied in three successive experiments by over an order of magnitude whlie keeping all other experimental conditions constant. A 4-mm carbonate core was injected with CO2-saturated brine at 10 MPa and 50oC. Tomographic images were taken at 30-second to 20-minute time-resolutions during a 2 to 4-hour injection period. A pore network was extracted using a topological analysis of the pore space and pore-scale flow modelling was performed directly on the binarized images with connected pathways and used to track the altering velocity distributions. Significant differences in dissolution type and magnitude were found for each rock type and flowrate. At the highest flow-rates, the homogeneous carbonate was seen to have predominately uniform dissolution with minor dissolution rate differences between the pores and pore throats. Alternatively, the heterogeneous carbonates which formed wormholes at high flow rates. At low flow rates the homogeneous rock developed wormholes, while the heterogeneous samples showed evidence of compact dissolution. This study serves as a unique benchmark for pore-scale reactive transport modelling directly on the binarized Micro-CT images. Dynamic pore-scale imaging methods offer advantages in helping explain the dominant processes at the pore scale so that they may be up-scaled for accurate model prediction.

  4. Porous Electrodes I: Numerical Simulation Using Random Network and Single Pore Models.

    DTIC Science & Technology

    1984-01-31

    characteristic of Zn and ZnO ) and scaling them down to the magnitude of a unit pore size- approximately 10i in diameter. We define a characteristic...supported by the Office of Naval Research under contract N00014-81-K-0339. 11 - 15 - REFERENCES 1. R. de Levis in Advances in Electrochemistry and...P. 3. Hendra Dr. C. E. Mueller Department of Chemistry The Electrochemistry Branch University of Southampton Naval Surface Weapons Center

  5. Variational-based segmentation of bio-pores in tomographic images

    NASA Astrophysics Data System (ADS)

    Bauer, Benjamin; Cai, Xiaohao; Peth, Stephan; Schladitz, Katja; Steidl, Gabriele

    2017-01-01

    X-ray computed tomography (CT) combined with a quantitative analysis of the resulting volume images is a fruitful technique in soil science. However, the variations in X-ray attenuation due to different soil components keep the segmentation of single components within these highly heterogeneous samples a challenging problem. Particularly demanding are bio-pores due to their elongated shape and the low gray value difference to the surrounding soil structure. Recently, variational models in connection with algorithms from convex optimization were successfully applied for image segmentation. In this paper we apply these methods for the first time for the segmentation of bio-pores in CT images of soil samples. We introduce a novel convex model which enforces smooth boundaries of bio-pores and takes the varying attenuation values in the depth into account. Segmentation results are reported for different real-world 3D data sets as well as for simulated data. These results are compared with two gray value thresholding methods, namely indicator kriging and a global thresholding procedure, and with a morphological approach. Pros and cons of the methods are assessed by considering geometric features of the segmented bio-pore systems. The variational approach features well-connected smooth pores while not detecting smaller or shallower pores. This is an advantage in cases where the main bio-pores network is of interest and where infillings, e.g., excrements of earthworms, would result in losing pore connections as observed for the other thresholding methods.

  6. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    NASA Astrophysics Data System (ADS)

    Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-01

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.

  7. Unlocking the Physiochemical Controls on Organic Carbon Dynamics from the Soil Pore- to Core-Scale

    NASA Astrophysics Data System (ADS)

    Smith, A. P.; Tfaily, M. M.; Bond-Lamberty, B. P.; Todd-Brown, K. E.; Bailey, V. L.

    2015-12-01

    The physical organization of soil includes pore networks of varying size and connectivity. These networks control microbial access to soil organic carbon (C) by spatially separating microorganisms and C by both distance and size exclusion. The extent to which this spatially isolated C is vulnerable to microbial transformation under hydrologically dynamic conditions is unknown, and limits our ability to predict the source and sink capacity of soils. We investigated the effects of shifting hydrologic connectivity and soil structure on greenhouse gas C emissions from surface soils collected from the Disney Wilderness Preserve (Florida, USA). We subjected intact soil cores and re-packed homogenized soil cores to simulated groundwater rise or precipitation, monitoring their CO2 and CH4 emissions over 24 hours. Soil pore water was then extracted from each core using different suctions to sample water retained by pore throats of different sizes and then characterized by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Greater respiration rates were observed from homogenized cores compared to intact cores, and from soils wet from below, in which the wetting front is driven by capillary forces, filling fine pores first. This suggests that C located in fine pores may turn over via diffusion processes that lead to the colocation of this C with other resources and microorganisms. Both the complexity and concentration of soluble-C increased with decreasing pore size domains. Pore water extracted from homogenized cores had greater C concentrations than from intact cores, with the greatest concentrations in pore waters sampled from very fine pores, highlighting the importance of soil structure in physically protecting C. These results suggest that the spatial separation of decomposers from C is a key mechanism stabilizing C in these soils. Further research is ongoing to accurately represent this protection mechanism, and the conditions under which it breaks down, in new and improved Earth system models.

  8. FIB and MIP: understanding nanoscale porosity in molecularly imprinted polymers via 3D FIB/SEM tomography.

    PubMed

    Neusser, G; Eppler, S; Bowen, J; Allender, C J; Walther, P; Mizaikoff, B; Kranz, C

    2017-10-05

    We present combined focused ion beam/scanning electron beam (FIB/SEM) tomography as innovative method for differentiating and visualizing the distribution and connectivity of pores within molecularly imprinted polymers (MIPs) and non-imprinted control polymers (NIPs). FIB/SEM tomography is used in cell biology for elucidating three-dimensional structures such as organelles, but has not yet been extensively applied for visualizing the heterogeneity of nanoscopic pore networks, interconnectivity, and tortuosity in polymers. To our best knowledge, the present study is the first application of this strategy for analyzing the nanoscale porosity of MIPs. MIPs imprinted for propranolol - and the corresponding NIPs - were investigated establishing FIB/SEM tomography as a viable future strategy complementing conventional isotherm studies. For visualizing and understanding the properties of pore networks in detail, polymer particles were stained with osmium tetroxide (OsO 4 ) vapor, and embedded in epoxy resin. Staining with OsO 4 provides excellent contrast during high-resolution SEM imaging. After optimizing the threshold to discriminate between the stained polymer matrix, and pores filled with epoxy resin, a 3D model of the sampled volume may be established for deriving not only the pore volume and pore surface area, but also to visualize the interconnectivity and tortuosity of the pores within the sampled polymer volume. Detailed studies using different types of cross-linkers and the effect of hydrolysis on the resulting polymer properties have been investigated. In comparison of MIP and NIP, it could be unambiguously shown that the interconnectivity of the visualized pores in MIPs is significantly higher vs. the non-imprinted polymer, and that the pore volume and pore area is 34% and approx. 35% higher within the MIP matrix. This confirms that the templating process not only induces selective binding sites, but indeed also affects the physical properties of such polymers down to the nanoscale, and that additional chemical modification, e.g., via hydrolysis clearly affects that nature of the polymer.

  9. Effect of Dihedral Angle and Porosity on Percolating-Sealing Capacity of Texturally Equilibrated Rock Salt

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.; Gardner, J. E.

    2013-12-01

    Salt deposits in sedimentary basins have long been considered to be a seal against fluid penetration. However, experimental, theoretical and field evidence suggests brine (and oil) can wet salt crystal surfaces at higher pressures and temperatures, which can form a percolating network. This network may act as flow conduits even at low porosities. The aim of this work is to investigate the effects of dihedral angle and porosity on the formation of percolating paths in different salt network lattices. However, previous studies considered only simple homogeneous and isotropic geometries. This work extends the analysis to realistic salt textures by presenting a novel numerical method to describe the texturally equilibrated pore shapes in polycrystalline rock salt and brine systems. First, a theoretical interfacial topology was formulated to minimize the interfacial surface between brine and salt. Then, the resulting nonlinear system of ordinary differential equations was solved using the Newton-Raphson method. Results show that the formation of connected fluid channels is more probable in lower dihedral angles and at higher porosities. The connectivity of the pore network is hysteretic, because the connection and disconnection at the pore throats for processes with increasing or decreasing porosities occur at different porosities. In porous media with anisotropic solids, pores initially connect in the direction of the shorter crystal axis and only at much higher porosities in the other directions. Consequently, even an infinitesimal elongation of the crystal shape can give rise to very strong anisotropy in permeability of the pore network. Also, fluid flow was simulated in the resulting pore network to calculate permeability, capillary entry pressure and velocity field. This work enabled us to investigate the opening of pore space and sealing capacity of rock salts. The obtained pore geometries determine a wide range of petrophysical properties such as permeability and capillary entry pressure. This expanded knowledge of the salt textural behavior vs. depth could also improve drilling operations in salt. Second, a series of experiments in different P-T conditions was carried out to investigate the actual shape of equilibrated channels in salt. The synthetic salt samples were scanned at the High Resolution X-ray CT Facility at the Department of Geological Science, the University of Texas at Austin with resolution in 1-6 micron range. The experimental results show both equilibrated (tubular pores) and non-equilibrated (planar features) in salt structure. Image processing was carried out by two open source software programs: ImageJ, which is a public domain Java image processing program, and 3DMA-Rock, which is a software package for quantitative analyzing of the pore space in three-dimensional X-ray computed microtomographic images of rock. We obtain medial axis and medial surface of the pore space, as well as find and characterize the corresponding pore-throat network. We also report permeability of the pore space computed using Palabos software.

  10. Preferential paths in yield stress fluid flow through a porous medium

    NASA Astrophysics Data System (ADS)

    Guasto, Jeffrey; Waisbord, Nicolas; Stoop, Norbert; Dunkel, Jörn

    2016-11-01

    A broad range of biological, geological, and industrial materials with complex rheological properties are subjected to flow through porous media in applications ranging from oil recovery to food manufacturing. In this experimental study, we examine the flow of a model yield stress fluid (Carbopol micro-gel) through a quasi-2D porous medium, fabricated in a microfluidic channel. The flow is driven by applying a precisely-controlled pressure gradient and measured by particle tracking velocimetry, and our observations are complemented by a pore-network model of the yield stress fluid flow. While remaining unyielded at small applied pressure, the micro-gel begins to yield at a critical pressure gradient, exhibiting a single preferential flow path that percolates through the porous medium. As the applied pressure gradient increases, we observe a subsequent coarsening and invasion of the yielded, fluidized network. An examination of both the yielded network topology and pore-scale flow reveal that two cooperative phenomena are involved in sculpting the preferential flow paths: (1) the geometry of the porous microstructure, and (2) the adhesive surface interactions between the micro-gel and substrate. NSF CBET-1511340.

  11. Modeling Stokes flow in real pore geometries derived by high resolution micro CT imaging

    NASA Astrophysics Data System (ADS)

    Halisch, M.; Müller, C.

    2012-04-01

    Meanwhile, numerical modeling of rock properties forms an important part of modern petrophysics. Substantially, equivalent rock models are used to describe and assess specific properties and phenomena, like fluid transport or complex electrical properties. In recent years, non-destructive computed X-ray tomography got more and more important - not only to take a quick and three dimensional look into rock samples but also to get access to in-situ sample information for highly accurate modeling purposes. Due to - by now - very high resolution of the 3D CT data sets (micron- to submicron range) also very small structures and sample features - e.g. micro porosity - can be visualized and used for numerical models of very high accuracy. Special demands even arise before numerical modeling can take place. Inappropriate filter applications (e.g. improper type of filter, wrong kernel, etc.) may lead to a significant corruption of spatial sample structure and / or even sample or void space volume. Because of these difficulties, especially small scale mineral- and pore space textures are very often lost and valuable in-situ information is erased. Segmentation of important sample features - porosity as well as rock matrix - based upon grayscale values strongly depends upon the scan quality and upon the experience of the application engineer, respectively. If the threshold for matrix-porosity separation is set too low, porosity can be quickly (and even more, due to restrictions of scanning resolution) underestimated. Contrary to this, a too high threshold over-determines porosity and small void space features as well as interfaces are changed and falsified. Image based phase separation in close combination with "conventional" analytics, as scanning electron microscopy or thin sectioning, greatly increase the reliability of this preliminary work. For segmentation and quantification purposes, a special CT imaging and processing software (Avizo Fire) has been used. By using this tool, 3D rock data can be assessed and interpreted by petrophysical means. Furthermore, pore structures can be directly segmented and hence could be used for so called image based modeling approach. The special XLabHydro module grants a finite volume solver for the direct assessment of Stokes flow (incompressible fluid, constant dynamic viscosity, stationary conditions and laminar flow) in real pore geometries. Nevertheless, also pore network extraction and numerical modeling with standard FE or lattice Boltzmann solvers is possible. By using the achieved voxel resolution as smallest node distance, fluid flow properties can be analyzed even in very small sample structures and hence with very high accuracy, especially with interaction to bigger parts of the pore network. The so derived results in combination with a direct 3D visualization within the structures offer great new insights and understanding in range of meso- and microscopic pore space phenomena.

  12. Porous structure and fluid partitioning in polyethylene cores from 3D X-ray microtomographic imaging.

    PubMed

    Prodanović, M; Lindquist, W B; Seright, R S

    2006-06-01

    Using oil-wet polyethylene core models, we present the development of robust throat finding techniques for the extraction, from X-ray microtomographic images, of a pore network description of porous media having porosity up to 50%. Measurements of volume, surface area, shape factor, and principal diameters are extracted for pores and area, shape factor and principal diameters for throats. We also present results on the partitioning of wetting and non-wetting phases in the pore space at fixed volume increments of the injected fluid during a complete cycle of drainage and imbibition. We compare these results with fixed fractional flow injection, where wetting and non-wetting phase are simultaneously injected at fixed volume ratio. Finally we demonstrate the ability to differentiate three fluid phases (oil, water, air) in the pore space.

  13. Comparison of caprock pore networks which potentially will be impacted by carbon sequestration projects.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine

    Injection of CO2 into underground rock formations can reduce atmospheric CO2 emissions. Caprocks present above potential storage formations are the main structural trap inhibiting CO2 from leaking into overlying aquifers or back to the Earth's surface. Dissolution and precipitation of caprock minerals resulting from reaction with CO2 may alter the pore network where many pores are of the micrometer to nanometer scale, thus altering the structural trapping potential of the caprock. However, the distribution, geometry and volume of pores at these scales are poorly characterized. In order to evaluate the overall risk of leakage of CO2 from storage formations, amore » first critical step is understanding the distribution and shape of pores in a variety of different caprocks. As the caprock is often comprised of mudstones, we analyzed samples from several mudstone formations with small angle neutron scattering (SANS) and high-resolution transmission electron microscopy (TEM) imaging to compare the pore networks. Mudstones were chosen from current or potential sites for carbon sequestration projects including the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Expandable clay contents ranged from 10% to approximately 40% in the Gothic shale and Kirtland Formation, respectively. During SANS, neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e., minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume and arrangement of pores in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. On such plots slopes from -2 to -3 represent mass fractals while slopes from -3 to -4 represent surface fractals. Scattering data showed surface fractal dimensions for the Kirtland formation and one sample from the Tuscaloosa formation close to 3, indicating very rough surfaces. In contrast, scattering data for the Gothic shale formation exhibited mass fractal behavior. In one sample of the Tuscaloosa formation the data are described by a surface fractal at low Q (larger pores) and a mass fractal at high Q (smaller pores), indicating two pore populations contributing to the scattering behavior. These small angle neutron scattering results, combined with high-resolution TEM imaging, provided a means for both qualitative and quantitative analysis of the differences in pore networks between these various mudstones.« less

  14. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  15. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2017-06-19

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  16. Fast Two-Dimensional Bubble Analysis of Biopolymer Filamentous Networks Pore Size from Confocal Microscopy Thin Data Stacks

    PubMed Central

    Molteni, Matteo; Magatti, Davide; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks. No skeletonization or reconstruction of the full geometry of the entire network is required. The method was validated by using many isotropic in silico generated networks of different structures, morphologies, and concentrations. For each type of network, the method provides accurate estimates (a few percent) of the average and the standard deviation of the three-dimensional distribution of the pore sizes, defined as the diameters of the largest spheres that can be fit into the pore zones of the entire gel volume. When applied to the analysis of real confocal microscopy images taken on fibrin gels, the method provides an estimate of ξ0 consistent with results from elastic light scattering data. PMID:23473499

  17. Pore network quantification of sandstones under experimental CO2 injection using image analysis

    NASA Astrophysics Data System (ADS)

    Berrezueta, Edgar; González-Menéndez, Luís; Ordóñez-Casado, Berta; Olaya, Peter

    2015-04-01

    Automated-image identification and quantification of minerals, pores and textures together with petrographic analysis can be applied to improve pore system characterization in sedimentary rocks. Our case study is focused on the application of these techniques to study the evolution of rock pore network subjected to super critical CO2-injection. We have proposed a Digital Image Analysis (DIA) protocol that guarantees measurement reproducibility and reliability. This can be summarized in the following stages: (i) detailed description of mineralogy and texture (before and after CO2-injection) by optical and scanning electron microscopy (SEM) techniques using thin sections; (ii) adjustment and calibration of DIA tools; (iii) data acquisition protocol based on image capture with different polarization conditions (synchronized movement of polarizers); (iv) study and quantification by DIA that allow (a) identification and isolation of pixels that belong to the same category: minerals vs. pores in each sample and (b) measurement of changes in pore network, after the samples have been exposed to new conditions (in our case: SC-CO2-injection). Finally, interpretation of the petrography and the measured data by an automated approach were done. In our applied study, the DIA results highlight the changes observed by SEM and microscopic techniques, which consisted in a porosity increase when CO2 treatment occurs. Other additional changes were minor: variations in the roughness and roundness of pore edges, and pore aspect ratio, shown in the bigger pore population. Additionally, statistic tests of pore parameters measured were applied to verify that the differences observed between samples before and after CO2-injection were significant.

  18. Visualizing and Quantifying Pore Scale Fluid Flow Processes With X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Wildenschild, D.; Hopmans, J. W.; Vaz, C. M.; Rivers, M. L.

    2001-05-01

    When using mathematical models based on Darcy's law it is often necessary to simplify geometry, physics or both and the capillary bundle-of-tubes approach neglects a fundamentally important characteristic of porous solids, namely interconnectedness of the pore space. New approaches to pore-scale modeling that arrange capillary tubes in two- or three-dimensional pore space have been and are still under development: Network models generally represent the pore space by spheres while the pore throats are usually represented by cylinders or conical shapes. Lattice Boltzmann approaches numerically solve the Navier-Stokes equations in a realistic microscopically disordered geometry, which offers the ability to study the microphysical basis of macroscopic flow without the need for a simplified geometry or physics. In addition to these developments in numerical modeling techniques, new theories have proposed that interfacial area should be considered as a primary variable in modeling of a multi-phase flow system. In the wake of this progress emerges an increasing need for new ways of evaluating pore-scale models, and for techniques that can resolve and quantify phase interfaces in porous media. The mechanisms operating at the pore-scale cannot be measured with traditional experimental techniques, however x-ray computerized microtomography (CMT) provides non-invasive observation of, for instance, changing fluid phase content and distribution on the pore scale. Interfacial areas have thus far been measured indirectly, but with the advances in high-resolution imaging using CMT it is possible to track interfacial area and curvature as a function of phase saturation or capillary pressure. We present results obtained at the synchrotron-based microtomography facility (GSECARS, sector 13) at the Advanced Photon Source at Argonne National Laboratory. Cylindrical sand samples of either 6 or 1.5 mm diameter were scanned at different stages of drainage and for varying boundary conditions. A significant difference in fluid saturation and phase distribution was observed for different drainage conditions, clearly showing preferential flow and a dependence on the applied flow rate. For the 1.5 mm sample individual pores and water/air interfaces could be resolved and quantified using image analysis techniques. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Basic Energy Sciences, Office of Science, under Contract No. W-31-109-Eng-38.

  19. Evaluation of Micro- and Macro-Scale Petrophysical Characteristics of Lower Cretaceous Sandstone with Flow Modeling in µ-CT Imaged Geometry

    NASA Astrophysics Data System (ADS)

    Katsman, R.; Haruzi, P.; Waldmann, N.; Halisch, M.

    2017-12-01

    In this study petrophysical characteristics of rock samples from 3 successive outcrop layers of Hatira Formation Lower Cretaceous Sandstone in northen Israel were evaluated at micro- and macro-scales. The study was carried out by two complementary methods: using conventional experimental measurements of porosity, pore size distribution and permeability; and using a 3D µCT imaging and modeling of signle-phase flow in the real micro-scale sample geometry. The workfow included µ-CT scanning, image processing, image segmentation, and image analyses of pore network, followed by fluid flow simulations at a pore-scale. Upscaling the results of the micro-scale flow simulations yielded a macroscopic permeabilty tensor. Comparison of the upscaled and the experimentally measured rock properties demonstrated a reasonable agreement. In addition, geometrical (pore size distribution, surface area and tortuosity) and topological (Euler characteristic) characteristics of the grains and of the pore network were evaluated at a micro-scale. Statistical analyses of the samples for estimation of anisotropy and inhomogeneity of the porous media were conducted and the results agree with anisotropy and inhomogeneity of the upscaled permeabilty tensor. Isotropic pore orientation of the primary inter-granular porosity was identified in all three samples, whereas the characteristics of the secondary porosity were affected by precipitated cement and clay matrix within the primary pore network. Results of this study provide micro- and macro-scale characteristics of the Lower Cretaceous sandstone that is used in different places over the world as a reservoir for petroleum production and sequestration.

  20. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Brantley, Susan L.; Chorover, Jon D.

    2016-03-16

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments and soil aggregates. These domains, which we term internal domains in porous media (IDPM), contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse porous media types, and are important locations for chemical reactivity and hydrocarbon storage. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM. In this review we: discuss analytical methods to characterize IDPM, evaluate what has been learned about their size distributions, connectivity, and extended structures; determinemore » whether they exhibit unique chemical reactivity; and assess potential for their inclusion in reactive transport models. Three key findings are noteworthy. 1) A combination of methods now allows complete characterization of the porosity spectrum of natural materials and its connectivity; while imaging microscopies are providing three dimensional representations of the interconnected pore network. 2) Chemical reactivity in pores <10 nm is expected to be different from micro and macropores, yet research performed to date is inconclusive on the nature, direction, and magnitude of effect. 3) Existing continuum reactive transport models treat IDPM as a sub-grid feature with average, empirical, scale-dependent parameters; and are not formulated to include detailed information on pore networks. Overall we find that IDPM are key features controlling hydrocarbon release from shales in hydrofracking systems, organic matter stabilization and recalcitrance in soil, weathering and soil formation, and long term inorganic and organic contaminant behavior in the vadose zone and groundwater. We conclude with an assessment of impactful research opportunities to advance understanding of IDPM, and to incorporate their important effects in reactive transport models for improved environmental simulation and prediction.« less

  1. Reactive transport under stress: Permeability evolution by chemo-mechanical deformation

    NASA Astrophysics Data System (ADS)

    Roded, R.; Holtzman, R.

    2017-12-01

    The transport of reactive fluids in porous media is important in many natural and engineering processes. Reaction with the solid matrix—e.g. dissolution—changes the transport properties, which in turn affect the rate of reagent transport and hence the reaction. The importance of this highly nonlinear problem has motivated intensive research. Specifically, there have been numerous studies concerning the permeability evolution, especially the process of "wormholing", where preferential dissolution of the most conductive regions leads to a runaway permeability increase. Much less attention, however, has been given to the effect of geomechanics; that is, how the fact that the medium is under stress changes the permeability evolution. Here, we present a novel, mechanistic pore-scale model, simulating the interplay between pore opening by matrix dissolution and pore closure by mechanical compaction, facilitated by weakening caused by the very same process of dissolution. We combine a pore network model of reactive transport with a block-spring model that captures the effect of geomechanics through the update of the network properties. Our simulations show that permeability enhancement is inhibited by stress concentration downstream, in the less dissolved (hence stiffer) regions. Higher stresses lead to stronger inhibition, in agreement with experiments. The effect of stress also depends on the Damkohler number (Da)—the ratio between the flow and the reaction rate. At rapid injection (small Da), where dissolution is relatively uniform, stress has a significant effect on permeability. At slower flow rates (high Da, wormholing regime), stress affects the permeability evolution mostly in early stages, with a much smaller effect on the injected volume required for a significant permeability increase (breakthrough) than at low Da. Interestingly, at higher Da, stress concentration downstream induced by the more heterogeneous dissolution leads to a more homogeneous reagent transport, promoting wormhole competition.

  2. Physics Applied to Oil and Gas Exploration

    NASA Astrophysics Data System (ADS)

    Schwartz, Larry

    2002-03-01

    Problems involving transport in porous media are of interest throughout the fields of petroleum exploration and environmental monitoring and remediation. The systems being studied can vary in size from centimeter scale rock or soil samples to kilometer scale reservoirs and aquifers. Clearly, the smaller the sample the more easily can the medium's structure and composition be characterized, and the better defined are the associated experimental and theoretical modeling problems. The study of transport in such geological systems is then similar to corresponding problems in the study of other heterogeneous systems such as polymer gels, catalytic beds and cementitious materials. The defining characteristic of porous media is that they are comprised of two percolating interconnected channels, the solid and pore networks. Transport processes of interest in such systems typically involve the flow of electrical current, viscous fluids or fine grained particles. A closely related phenomena, nuclear magnetic resonance (NMR), is controlled by diffusion in the pore network. Also of interest is the highly non-linear character of the stress-strain response of granular porous media. We will review the development of two and three dimensional model porous media, and will outline the calculation of their physical properties. We will also discuss the direct measurement of the pore structure by synchrotron X-ray microtomography.

  3. Simulation of solute transport through heterogeneous networks: analysis using the method of moments and the statistics of local transport characteristics.

    PubMed

    Li, Min; Qi, Tao; Bernabé, Yves; Zhao, Jinzhou; Wang, Ying; Wang, Dong; Wang, Zheming

    2018-02-28

    We used a time domain random walk approach to simulate passive solute transport in networks. In individual pores, solute transport was modeled as a combination of Poiseuille flow and Taylor dispersion. The solute plume data were interpreted via the method of moments. Analysis of the first and second moments showed that the longitudinal dispersivity increased with increasing coefficient of variation of the pore radii CV and decreasing pore coordination number Z. The third moment was negative and its magnitude grew linearly with time, meaning that the simulated dispersion was intrinsically non-Fickian. The statistics of the Eulerian mean fluid velocities [Formula: see text], the Taylor dispersion coefficients [Formula: see text] and the transit times [Formula: see text] were very complex and strongly affected by CV and Z. In particular, the probability of occurrence of negative velocities grew with increasing CV and decreasing Z. Hence, backward and forward transit times had to be distinguished. The high-τ branch of the transit-times probability curves had a power law form associated to non-Fickian behavior. However, the exponent was insensitive to pore connectivity, although variations of Z affected the third moment growth. Thus, we conclude that both the low- and high-τ branches played a role in generating the observed non-Fickian behavior.

  4. Analysis of quasi-periodic pore-network structure of centric marine diatom frustules

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory A.; Alvarez, Christine E.; Meyers, Keith; Deheyn, Dimitri D.; Hildebrand, Mark; Kieu, Khanh; Norwood, Robert A.

    2015-03-01

    Diatoms are a common type of phytoplankton characterized by their silica exoskeleton known as a frustule. The diatom frustule is composed of two valves and a series of connecting girdle bands. Each diatom species has a unique frustule shape and valves in particular species display an intricate pattern of pores resembling a photonic crystal structure. We used several numerical techniques to analyze the periodic and quasi-periodic valve pore-network structure in diatoms of the Coscinodiscophyceae order. We quantitatively identify defect locations and pore spacing in the valve and use this information to better understand the optical and biological properties of the diatom.

  5. Quantitative analysis of vascular colonisation and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) model.

    PubMed

    Magnaudeix, Amandine; Usseglio, Julie; Lasgorceix, Marie; Lalloue, Fabrice; Damia, Chantal; Brie, Joël; Pascaud-Mathieu, Patricia; Champion, Eric

    2016-07-01

    The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration. An expedient and efficient method, using chick embryo chorioallantoic membrane (CAM) assays, has been set up to characterise quantitatively the angiogenesis and the vascular conduction in scaffolds. This approach complements the usual cell culture assays and could replace to a certain extent in vivo experiments. It was applied to silicon-substituted hydroxyapatite porous bioceramics with various pore shapes. The material was found to be biocompatible, allowing the conduction of blood vessels on its surface. The presence of pores does not influence the angiogenesis but the pore shape affects the blood vessel guidance and angio-conductive potential. Pores with triangular cross-section appear particularly attractive for the further design of scaffolds in order to promote their vascular colonisation and osteointegration and improve their performances. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Mechanical instability and percolation of deformable particles through porous networks

    NASA Astrophysics Data System (ADS)

    Benet, Eduard; Lostec, Guillaume; Pellegrino, John; Vernerey, Franck

    2018-04-01

    The transport of micron-sized particles such as bacteria, cells, or synthetic lipid vesicles through porous spaces is a process relevant to drug delivery, separation systems, or sensors, to cite a few examples. Often, the motion of these particles depends on their ability to squeeze through small constrictions, making their capacity to deform an important factor for their permeation. However, it is still unclear how the mechanical behavior of these particles affects collective transport through porous networks. To address this issue, we present a method to reconcile the pore-scale mechanics of the particles with the Darcy scale to understand the motion of a deformable particle through a porous network. We first show that particle transport is governed by a mechanical instability occurring at the pore scale, which leads to a binary permeation response on each pore. Then, using the principles of directed bond percolation, we are able to link this microscopic behavior to the probability of permeating through a random porous network. We show that this instability, together with network uniformity, are key to understanding the nonlinear permeation of particles at a given pressure gradient. The results are then summarized by a phase diagram that predicts three distinct permeation regimes based on particle properties and the randomness of the pore network.

  7. Understanding fluid transport through the multiscale pore network of a natural shale

    NASA Astrophysics Data System (ADS)

    Davy, Catherine A.; Nguyen Kim, Thang; Song, Yang; Troadec, David; Blanchenet, Anne-Marie; Adler, Pierre M.

    2017-06-01

    The pore structure of a natural shale is obtained by three imaging means. Micro-tomography results are extended to provide the spatial arrangement of the minerals and pores present at a voxel size of 700 nm (the macroscopic scale). FIB/SEM provides a 3D representation of the porous clay matrix on the so-called mesoscopic scale (10-20 nm); a connected pore network, devoid of cracks, is obtained for two samples out of five, while the pore network is connected through cracks for two other samples out of five. Transmission Electron Microscopy (TEM) is used to visualize the pore space with a typical pixel size of less than 1 nm and a porosity ranging from 0.12 to 0.25. On this scale, in the absence of 3D images, the pore structure is reconstructed by using a classical technique, which is based on truncated Gaussian fields. Permeability calculations are performed with the Lattice Boltzmann Method on the nanoscale, on the mesoscale, and on the combination of the two. Upscaling is finally done (by a finite volume approach) on the bigger macroscopic scale. Calculations show that, in the absence of cracks, the contribution of the nanoscale pore structure on the overall permeability is similar to that of the mesoscale. Complementarily, the macroscopic permeability is measured on a centimetric sample with a neutral fluid (ethanol). The upscaled permeability on the macroscopic scale is in good agreement with the experimental results.

  8. Linkages of fracture network geometry and hydro-mechanical properties to spatio-temporal variations of seismicity in Koyna-Warna Seismic Zone

    NASA Astrophysics Data System (ADS)

    Selles, A.; Mikhailov, V. O.; Arora, K.; Ponomarev, A.; Gopinadh, D.; Smirnov, V.; Srinu, Y.; Satyavani, N.; Chadha, R. K.; Davulluri, S.; Rao, N. P.

    2017-12-01

    Well logging data and core samples from the deep boreholes in the Koyna-Warna Seismic Zone (KWSZ) provided a glimpse of the 3-D fracture network responsible for triggered earthquakes in the region. The space-time pattern of earthquakes during the last five decades show strong linkage of favourably oriented fractures system deciphered from airborne LiDAR and borehole structural logging to the seismicity. We used SAR interferometry data on surface displacements to estimate activity of the inferred faults. The failure in rocks at depths is largely governed by overlying lithostatic and pore fluid pressure in the rock matrix which are subject to change in space and time. While lithostatic pressure tends to increase with depth pore pressure is prone to fluctuations due to any change in the hydrological regime. Based on the earthquake catalogue data, the seasonal variations in seismic activity associated with annual fluctuations in the reservoir water level were analyzed over the time span of the entire history of seismological observations in this region. The regularities in the time changes in the structure of seasonal variations are revealed. An increase in pore fluid pressure can result in rock fracture and oscillating pore fluid pressures due to a reservoir loading and unloading cycles can cause iterative and cumulative damage, ultimately resulting in brittle failure under relatively low effective mean stress conditions. These regularities were verified by laboratory physical modeling. Based on our observations of main trends of spatio-temporal variations in seismicity as well as the spatial distribution of fracture network a conceptual model is presented to explain the triggered earthquakes in the KWSZ. The work was supported under the joint Russian-Indian project of the Russian Science Foundation (RSF) and the Department of Science and Technology (DST) of India (RSF project no. 16-47-02003 and DST project INT/RUS/RSF/P-13).

  9. Localized reactive flow in carbonate rocks: Core-flood experiments and network simulations

    NASA Astrophysics Data System (ADS)

    Wang, Haoyue; Bernabé, Yves; Mok, Ulrich; Evans, Brian

    2016-11-01

    We conducted four core-flood experiments on samples of a micritic, reef limestone from Abu Dhabi under conditions of constant flow rate. The pore fluid was water in equilibrium with CO2, which, because of its lowered pH, is chemically reactive with the limestone. Flow rates were between 0.03 and 0.1 mL/min. The difference between up and downstream pore pressures dropped to final values ≪1 MPa over periods of 3-18 h. Scanning electron microscope and microtomography imaging of the starting material showed that the limestone is mostly calcite and lacks connected macroporosity and that the prevailing pores are few microns large. During each experiment, a wormhole formed by localized dissolution, an observation consistent with the decreases in pressure head between the up and downstream reservoirs. Moreover, we numerically modeled the changes in permeability during the experiments. We devised a network approach that separated the pore space into competing subnetworks of pipes. Thus, the problem was framed as a competition of flow of the reactive fluid among the adversary subnetworks. The precondition for localization within certain time is that the leading subnetwork rapidly becomes more transmissible than its competitors. This novel model successfully simulated features of the shape of the wormhole as it grew from few to about 100 µm, matched the pressure history patterns, and yielded the correct order of magnitude of the breakthrough time. Finally, we systematically studied the impact of changing the statistical parameters of the subnetworks. Larger mean radius and spatial correlation of the leading subnetwork led to faster localization.

  10. Improved understanding of the relationship between hydraulic properties and streaming potentials

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Brovelli, A.

    2009-12-01

    Streaming potential (SP) measurements have been satisfactorily used in a number of recent studies as a non-invasive tool to monitor fluid movement in both the vadose and the saturated zone. SPs are generated from the coupling between two independent physical processes oc-curring at the pore-level, namely water flow and excess of ions at the negatively charged solid matrix-water interface. The intensity of the measured potentials depends on physical proper-ties of the medium, including the internal micro-geometry of the system, the charge density of the interface and the composition of the pore fluid, which affects its ionic strength, pH and redox potential. The goal of this work is to investigate whether a relationship between the intensity of the SPs and the saturated hydraulic conductivity can be identified. Both properties are - at least to some extent - dependent on the pore-size distribution and connectivity of the pores, and there-fore some degree of correlation is expected. We used a pore-scale numerical model previously developed to simulate both the bulk hydraulic conductivity and the intensity of the SPs gener-ated in a three-dimensional pore-network. The chemical-physical properties of both the inter-face (Zeta-potential) and of the aqueous phase are computed using an analytical, physically based model that has shown good agreement with experimental data. Modelling results were satisfactorily compared with experimental data, showing that the model, although simplified retains the key properties and mechanisms that control SP generation. A sensitivity analysis with respect to the key geometrical and chemical parameters was conducted to evaluate how the correlation between the two studied variables changes and to ascertain whether the bulk hydraulic conductivity can be estimated from SP measurements alone.

  11. Pore geometry effects on intrapore viscous to inertial flows and on effective hydraulic parameters

    NASA Astrophysics Data System (ADS)

    Chaudhary, Kuldeep; Cardenas, M. Bayani; Deng, Wen; Bennett, Philip C.

    2013-02-01

    In this article, the effects of different diverging-converging pore geometries were investigated, and the microscale fluid flow and effective hydraulic properties from these pores were compared with that of a pipe from viscous to inertial laminar flow regimes. The flow fields are obtained using computational fluid dynamics, and the comparative analysis is based on a new dimensionless hydraulic shape factor β, which is the "specific surface" scaled by the length of pores. Results from all diverging-converging pores show an inverse pattern in velocity and vorticity distributions relative to the pipe flow. The hydraulic conductivity K of all pores is dependent on and can be predicted from β with a power function with an exponent of 3/2. The differences in K are due to the differences in distribution of local friction drag on the pore walls. At Reynolds number (Re) ˜ 0 flows, viscous eddies are found to exist almost in all pores in different sizes, but not in the pipe. Eddies grow when Re → 1 and leads to the failure of Darcy's law. During non-Darcy or Forchheimer flows, the apparent hydraulic conductivity Ka decreases due to the growth of eddies, which constricts the bulk flow region. At Re > 1, the rate of decrease in Ka increases, and at Re >> 1, it decreases to where the change in Ka ≈ 0, and flows once again exhibits a Darcy-type relationship. The degree of nonlinearity during non-Darcy flow decreases for pores with increasing β. The nonlinear flow behavior becomes weaker as β increases to its maximum value in the pipe, which shows no nonlinearity in the flow; in essence, Darcy's law stays valid in the pipe at all laminar flow conditions. The diverging-converging geometry in pores plays a critical role in modifying the intrapore fluid flow, implying that this property should be incorporated in effective larger-scale models, e.g., pore-network models.

  12. Characterization of macropore structure of Malan loess in NW China based on 3D pipe models constructed by using computed tomography technology

    NASA Astrophysics Data System (ADS)

    Li, Yanrong; He, Shengdi; Deng, Xiaohong; Xu, Yongxin

    2018-04-01

    Malan loess is a grayish yellow or brownish yellow, clastic, highly porous and brittle late Quaternary sediment formed by the accumulation of windblown dust. The present-day pore structure of Malan loess is crucial for understanding the loessification process in history, loess strengths and mechanical behavior. This study employed a modern computed tomography (CT) device to scan Malan loess samples, which were obtained from the east part of the Loess Plateau of China. A sophisticated and efficient workflow for processing the CT images and constructing 3D pore models was established by selecting and programming relevant mathematical algorithms in MATLAB, such as the maximum entropy method, medial axis method, and node recognition algorithm. Individual pipes within the Malan loess were identified and constructed by partitioning and recombining links in the 3D pore model. The macropore structure of Malan loess was then depicted using quantitative parameters. The parameters derived from 2D images of CT scanning included equivalent radius, length and aspect ratio of pores, porosity, and pore distribution entropy, whereas those derived from the constructed 3D structure models included porosity, coordination number, node density, pipe radius, length, length density, dip angle, and dip direction. The analysis of these parameters revealed that Malan loess is a strongly anisotropic geomaterial with a dense and complex network of pores and pipes. The pores discovered on horizontal images, perpendicular to the vertical direction, were round and relatively uniform in shape and size and evenly distributed, whereas the pores discovered on vertical images varied in shape and size and were distributed in clusters. The pores showed good connectivity in vertical direction and formed vertically aligned pipes but displayed weak connectivity in horizontal directions. The pipes in vertical direction were thick, long, and straight compared with those in horizontal directions. These results were in good agreement with both numerical simulation and laboratory permeability tests, which indicate that Malan loess is more permeable in the vertical direction than in the horizontal directions.

  13. Stochasticity of Pores Interconnectivity in Li–O 2 Batteries and its Impact on the Variations in Electrochemical Performance

    DOE PAGES

    Torayev, Amangeldi; Rucci, Alexis J.; Magusin, Pieter C. M. M.; ...

    2018-01-17

    While large dispersions in electrochemical performance have been reported for lithium oxygen batteries in the literature, they have not been investigated in any depth. The variability in the results is often assumed to arise from differences in cell design, electrode structure, handling and cell preparation at different times. An accurate theoretical framework turns out to be needed to get a better insight into the mechanisms underneath and to interpreting experimental results. Here, we develop and use a pore network model to simulate the electrochemical performance of three-dimensionally resolved lithium-oxygen cathode mesostructures obtained from TXM nano-computed tomography images. Here, we applymore » this model to the 3D reconstructed object of a Super P carbon electrode and calculate discharge curves, using identical conditions, for four different zones in the electrode and their reversed configurations. The resulting galvanostatic discharge curves show some dispersion, (both in terms of capacity and overpotential) which we attribute to the way pores are connected with each other. Based on these results, we propose that the stochastic nature of pores interconnectivity and the microscopic arrangement of pores can lead, at least partially, to the variations in electrochemical results observed experimentally.« less

  14. Stochasticity of Pores Interconnectivity in Li–O 2 Batteries and its Impact on the Variations in Electrochemical Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torayev, Amangeldi; Rucci, Alexis J.; Magusin, Pieter C. M. M.

    While large dispersions in electrochemical performance have been reported for lithium oxygen batteries in the literature, they have not been investigated in any depth. The variability in the results is often assumed to arise from differences in cell design, electrode structure, handling and cell preparation at different times. An accurate theoretical framework turns out to be needed to get a better insight into the mechanisms underneath and to interpreting experimental results. Here, we develop and use a pore network model to simulate the electrochemical performance of three-dimensionally resolved lithium-oxygen cathode mesostructures obtained from TXM nano-computed tomography images. Here, we applymore » this model to the 3D reconstructed object of a Super P carbon electrode and calculate discharge curves, using identical conditions, for four different zones in the electrode and their reversed configurations. The resulting galvanostatic discharge curves show some dispersion, (both in terms of capacity and overpotential) which we attribute to the way pores are connected with each other. Based on these results, we propose that the stochastic nature of pores interconnectivity and the microscopic arrangement of pores can lead, at least partially, to the variations in electrochemical results observed experimentally.« less

  15. Influence of internal pore architecture on biological and mechanical properties of three-dimensional fiber deposited scaffolds for bone regeneration.

    PubMed

    Ostrowska, Barbara; Di Luca, Andrea; Szlazak, Karol; Moroni, Lorenzo; Swieszkowski, Wojciech

    2016-04-01

    Fused deposition modeling has been used to fabricate three-dimensional (3D) scaffolds for tissue engineering applications, because it allows to tailor their pore network. Despite the proven flexibility in doing so, a limited amount of studies have been performed to evaluate whether specific pore shapes have an influence on cell activity and tissue formation. Our study aimed at investigating the influence of internal pore architecture on the biological and mechanical properties of 3D scaffolds seeded with mesenchymal stromal cells. Polycaprolactone scaffolds with six different geometries were fabricated. The 3D samples were manufactured with different lay-down pattern of the fibers by varying the layer deposition angle from 0°/15°/30°, to 0°/30°/60°, 0°/45°/90°, 0°/60°/120°, 0°/75°/150°, and 0°/90°/180°. The scaffolds were investigated by scanning electron microscopy and micro computed tomographical analysis and displayed a fully interconnected pore network. Cell proliferation and differentiation toward the osteogenic lineage were evaluated by DNA, alkaline phosphatase activity, and polymerase chain reaction. The obtained scaffolds had structures with open porosity (50%-60%) and interconnected pores ranging from 380 to 400 µm. Changing the angle deposition affected significantly the mechanical properties of the scaffolds. With increasing the angle deposition between successive layers, the elastic modulus increased as well. Cellular studies also showed influence of the internal architecture on cell adhesion and proliferation within the 3D construct, yet limited influence on cell differentiation was observed. © 2016 Wiley Periodicals, Inc.

  16. High Fidelity Computational Analysis of CO2 Trapping at Pore Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vinod

    2013-07-13

    With an alarming rise in carbon dioxide (CO2) emission from anthropogenic sources, CO2 sequestration has become an attractive choice to mitigate the emission. Some popular storage media for CO{sub 2} are oil reservoirs, deep coal-bed, and deep oceanic-beds. These have been used for the long term CO{sub 2} storage. Due to special lowering viscosity and surface tension property of CO{sub 2}, it has been widely used for enhanced oil recovery. The sites for CO{sub 2} sequestration or enhanced oil recovery mostly consist of porous rocks. Lack of knowledge of molecular mobility under confinement and molecule-surface interactions between CO2 and naturalmore » porous media results in generally governed by unpredictable absorption kinetics and total absorption capacity for injected fluids, and therefore, constitutes barriers to the deployment of this technology. Therefore, it is important to understand the flow dynamics of CO{sub 2} through the porous microstructures at the finest scale (pore-scale) to accurately predict the storage potential and long-term dynamics of the sequestered CO{sub 2}. This report discusses about pore-network flow modeling approach using variational method and analyzes simulated results this method simulations at pore-scales for idealized network and using Berea Sandstone CT scanned images. Variational method provides a promising way to study the kinetic behavior and storage potential at the pore scale in the presence of other phases. The current study validates variational solutions for single and two-phase Newtonian and single phase non-Newtonian flow through angular pores for special geometries whose analytical and/or empirical solutions are known. The hydraulic conductance for single phase flow through a triangular duct was also validated against empirical results derived from lubricant theory.« less

  17. Morphology and linear-elastic moduli of random network solids.

    PubMed

    Nachtrab, Susan; Kapfer, Sebastian C; Arns, Christoph H; Madadi, Mahyar; Mecke, Klaus; Schröder-Turk, Gerd E

    2011-06-17

    The effective linear-elastic moduli of disordered network solids are analyzed by voxel-based finite element calculations. We analyze network solids given by Poisson-Voronoi processes and by the structure of collagen fiber networks imaged by confocal microscopy. The solid volume fraction ϕ is varied by adjusting the fiber radius, while keeping the structural mesh or pore size of the underlying network fixed. For intermediate ϕ, the bulk and shear modulus are approximated by empirical power-laws K(phi)proptophin and G(phi)proptophim with n≈1.4 and m≈1.7. The exponents for the collagen and the Poisson-Voronoi network solids are similar, and are close to the values n=1.22 and m=2.11 found in a previous voxel-based finite element study of Poisson-Voronoi systems with different boundary conditions. However, the exponents of these empirical power-laws are at odds with the analytic values of n=1 and m=2, valid for low-density cellular structures in the limit of thin beams. We propose a functional form for K(ϕ) that models the cross-over from a power-law at low densities to a porous solid at high densities; a fit of the data to this functional form yields the asymptotic exponent n≈1.00, as expected. Further, both the intensity of the Poisson-Voronoi process and the collagen concentration in the samples, both of which alter the typical pore or mesh size, affect the effective moduli only by the resulting change of the solid volume fraction. These findings suggest that a network solid with the structure of the collagen networks can be modeled in quantitative agreement by a Poisson-Voronoi process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Coverage dependent molecular assembly of anthraquinone on Au(111)

    NASA Astrophysics Data System (ADS)

    DeLoach, Andrew S.; Conrad, Brad R.; Einstein, T. L.; Dougherty, Daniel B.

    2017-11-01

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  19. Coverage dependent molecular assembly of anthraquinone on Au(111).

    PubMed

    DeLoach, Andrew S; Conrad, Brad R; Einstein, T L; Dougherty, Daniel B

    2017-11-14

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  20. Global Motions of the Nuclear Pore Complex: Insights from Elastic Network Models

    PubMed Central

    Lezon, Timothy R.; Sali, Andrej; Bahar, Ivet

    2009-01-01

    The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at ∼5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations. PMID:19730674

  1. Global motions of the nuclear pore complex: insights from elastic network models.

    PubMed

    Lezon, Timothy R; Sali, Andrej; Bahar, Ivet

    2009-09-01

    The nuclear pore complex (NPC) is the gate to the nucleus. Recent determination of the configuration of proteins in the yeast NPC at approximately 5 nm resolution permits us to study the NPC global dynamics using coarse-grained structural models. We investigate these large-scale motions by using an extended elastic network model (ENM) formalism applied to several coarse-grained representations of the NPC. Two types of collective motions (global modes) are predicted by the ENMs to be intrinsically favored by the NPC architecture: global bending and extension/contraction from circular to elliptical shapes. These motions are shown to be robust against tested variations in the representation of the NPC, and are largely captured by a simple model of a toroid with axially varying mass density. We demonstrate that spoke multiplicity significantly affects the accessible number of symmetric low-energy modes of motion; the NPC-like toroidal structures composed of 8 spokes have access to highly cooperative symmetric motions that are inaccessible to toroids composed of 7 or 9 spokes. The analysis reveals modes of motion that may facilitate macromolecular transport through the NPC, consistent with previous experimental observations.

  2. Application of a pore-scale reactive transport model to a natural analog for reaction-induced pore alterations

    DOE PAGES

    Yoon, Hongkyu; Major, Jonathan; Dewers, Thomas; ...

    2017-01-05

    Dissolved CO 2 in the subsurface resulting from geological CO 2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes including hydrodynamics, transport, and reactions at the (sub) pore-scale. In this work pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reactions at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This paper is motivated by observations of CO 2 seeps from a natural CO 2 sequestration analog, Crystal Geyser, Utah. Observations alongmore » the surface exposure of the Little Grand Wash fault indicate the lateral migration of CO 2 seep sites (i.e., alteration zones) of 10–50 m width with spacing on the order of ~100 m over time. Sandstone permeability in alteration zones is reduced by 3–4 orders of magnitude by carbonate cementation compared to unaltered zones. One granular porous medium and one fracture network systems are used to conceptually represent permeable porous media and locations of conduits controlled by fault-segment intersections and/or topography, respectively. Simulation cases accounted for a range of reaction regimes characterized by the Damköhler (Da) and Peclet (Pe) numbers. Pore-scale simulation results demonstrate that combinations of transport (Pe), geochemical conditions (Da), solution chemistry, and pore and fracture configurations contributed to match key patterns observed in the field of how calcite precipitation alters flow paths by pore plugging. This comparison of simulation results with field observations reveals mechanistic explanations of the lateral migration and enhances our understanding of subsurface processes associated with the CO 2 injection. In addition, permeability and porosity relations are constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Da and Pe numbers. Finally, the functional relationships obtained from pore-scale simulations can be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO 2 seeps.« less

  3. Assessment of critical path analyses of the relationship between permeability and electrical conductivity of pore networks

    USDA-ARS?s Scientific Manuscript database

    Critical path analysis (CPA) is a method for estimating macroscopic transport coefficients of heterogeneous materials that are highly disordered at the micro-scale. Developed originally to model conduction in semiconductors, numerous researchers have noted that CPA might also have relevance to flow ...

  4. A forward analysis on the applicability of tracer breakthrough profiles in revealing the pore structure of tight gas sandstone and carbonate rocks

    NASA Astrophysics Data System (ADS)

    Mehmani, Ayaz; Mehmani, Yashar; Prodanović, Maša.; Balhoff, Matthew

    2015-06-01

    We explore tracer breakthrough profiles (TBP) as a macroscopic property to infer the pore-space topology of tight gas sandstone and carbonate rocks at the core scale. The following features were modeled via three-dimensional multiscale networks: microporosity within dissolved grains and pore-filling clay, cementation in the absence and presence of microporosity (each classified into uniform, pore-preferred, and throat-preferred modes), layering, vug, and microcrack inclusion. A priori knowledge of the extent and location of each process was assumed to be known. With the exception of an equal importance of macropores and pore-filling micropores, TBPs show little sensitivity to the fraction of micropores present. In general, significant sensitivity of the TBPs was observed for uniform and throat-preferred cementation. Layering parallel to the fluid flow direction had a considerable impact on TBPs whereas layering perpendicular to flow did not. Microcrack orientations seemed of minor importance in affecting TBPs. This article was corrected on 9 Nov 2015. See the end of the full text for details.

  5. Mechanistic principles of colloidal crystal growth by evaporation-induced convective steering.

    PubMed

    Brewer, Damien D; Allen, Joshua; Miller, Michael R; de Santos, Juan M; Kumar, Satish; Norris, David J; Tsapatsis, Michael; Scriven, L E

    2008-12-02

    We simulate evaporation-driven self-assembly of colloidal crystals using an equivalent network model. Relationships between a regular hexagonally close-packed array of hard, monodisperse spheres, the associated pore space, and selectivity mechanisms for face-centered cubic microstructure propagation are described. By accounting for contact line rearrangement and evaporation at a series of exposed menisci, the equivalent network model describes creeping flow of solvent into and through a rigid colloidal crystal. Observations concerning colloidal crystal growth are interpreted in terms of the convective steering hypothesis, which posits that solvent flow into and through the pore space of the crystal may play a major role in colloidal self-assembly. Aspects of the convective steering and deposition of high-Peclet-number rigid spherical particles at a crystal boundary are inferred from spatially resolved solvent flow into the crystal. Gradients in local flow through boundary channels were predicted due to the channels' spatial distribution relative to a pinned free surface contact line. On the basis of a uniform solvent and particle flux as the criterion for stability of a particular growth plane, these network simulations suggest the stability of a declining {311} crystal interface, a symmetry plane which exclusively propagates fcc microstructure. Network simulations of alternate crystal planes suggest preferential growth front evolution to the declining {311} interface, in consistent agreement with the proposed stability mechanism for preferential fcc microstructure propagation in convective assembly.

  6. Effects of pore topology and iron oxide core on doxorubicin loading and release from mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Ronhovde, Cicily J.; Baer, John; Larsen, Sarah C.

    2017-06-01

    Mesoporous silica nanoparticles (MSNs) have a network of pores that give rise to extremely high specific surface areas, making them attractive materials for applications such as adsorption and drug delivery. The pore topology can be readily tuned to achieve a variety of structures such as the hexagonally ordered Mobil Crystalline Material 41 (MCM-41) and the disordered "wormhole" (WO) mesoporous silica (MS) structure. In this work, the effects of pore topology and iron oxide core on doxorubicin loading and release were investigated using MSNs with pore diameters of approximately 3 nm and sub-100 nm particle diameters. The nanoparticles were loaded with doxorubicin, and the drug release into phosphate-buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The release profiles were fit using the Peppas model. The results indicated diffusion-controlled release for all samples. Statistically significant differences were observed in the kinetic host-guest parameters for each sample due to the different pore topologies and the inclusion of an iron oxide core. Applying a static magnetic field to the iron oxide core WO-MS shell materials did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials.

  7. Spectro-microscopic study of the formation of supramolecular networks

    NASA Astrophysics Data System (ADS)

    Sadowski, Jerzy T.

    2015-03-01

    Metal-organic frameworks (MOFs) are emerging as a new class of materials for CO2 capture. There are many fundamental questions, including the optimum pore size and arrangement of the molecules in the structure to achieve highest CO2 uptake. As only the surface is of interest for potential applications such as heterogeneous catalysis, nano-templating, and sensing, 2D analogs of MOFs can serve as good model systems. Utilizing capabilities of LEEM/PEEM for non-destructive interrogation of the real-time molecular self-assembly, we investigated supramolecular systems based on carboxylic acid-metal complexes, such as trimesic and mellitic acid, doped with transition metals. Such 2D networks act as host systems for transition-metal phthalocyanines (MPc; M = Fe, Ti, Sc) and the electrostatic interactions of CO2 molecules with transition metal ions, can be tuned by controlling the type of TM ion and the size of the pore in the host network. The understanding of directed self-assembly by controlling the molecule-substrate interaction can enable us to engineer the pore size and density, and thus tune the host's chemical activity. Research carried out at the Center for Functional Nanomaterials and National Synchrotron Light Source, Brookhaven National Laboratory, which are supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10.

  8. Characterizing 3-D flow velocity in evolving pore networks driven by CaCO3 precipitation and dissolution

    NASA Astrophysics Data System (ADS)

    Chojnicki, K. N.; Yoon, H.; Martinez, M. J.

    2015-12-01

    Understanding reactive flow in geomaterials is important for optimizing geologic carbon storage practices, such as using pore space efficiently. Flow paths can be complex in large degrees of geologic heterogeneities across scales. In addition, local heterogeneity can evolve as reactive transport processes alter the pore-scale morphology. For example, dissolved carbon dioxide may react with minerals in fractured rocks, confined aquifers, or faults, resulting in heterogeneous cementation (and/or dissolution) and evolving flow conditions. Both path and flow complexities are important and poorly characterized, making it difficult to determine their evolution with traditional 2-D transport models. Here we characterize the development of 3-D pore-scale flow with an evolving pore configuration due to calcium carbonate (CaCO3) precipitation and dissolution. A simple pattern of a microfluidic pore network is used initially and pore structures will become more complex due to precipitation and dissolution processes. At several stages of precipitation and dissolution, we directly visualize 3-D velocity vectors using micro particle image velocimetry and a laser scanning confocal microscope. Measured 3-D velocity vectors are then compared to 3-D simulated flow fields which will be used to simulate reactive transport. Our findings will highlight the importance of the 3-D flow dynamics and its impact on estimating reactive surface area over time. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. This material is based upon work supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114.

  9. A General 3-D Methodology for Quasi-Static Simulation of Drainage and Imbibition: Application to Highly Porous Fibrous Materials

    NASA Astrophysics Data System (ADS)

    Riasi, S.; Huang, G.; Montemagno, C.; Yeghiazarian, L.

    2013-12-01

    Micro-scale modeling of multiphase flow in porous media is critical to characterize porous materials. Several modeling techniques have been implemented to date, but none can be used as a general strategy for all porous media applications due to challenges presented by non-smooth high-curvature solid surfaces, and by a wide range of pore sizes and porosities. Finite approaches like the finite volume method require a high quality, problem-dependent mesh, while particle-based approaches like the lattice Boltzmann require too many particles to achieve a stable meaningful solution. Both come at a large computational cost. Other methods such as pore network modeling (PNM) have been developed to accelerate the solution process by simplifying the solution domain, but so far a unique and straightforward methodology to implement PNM is lacking. We have developed a general, stable and fast methodology to model multi-phase fluid flow in porous materials, irrespective of their porosity and solid phase topology. We have applied this methodology to highly porous fibrous materials in which void spaces are not distinctly separated, and where simplifying the geometry into a network of pore bodies and throats, as in PNM, does not result in a topology-consistent network. To this end, we have reduced the complexity of the 3-D void space geometry by working with its medial surface. We have used a non-iterative fast medial surface finder algorithm to determine a voxel-wide medial surface of the void space, and then solved the quasi-static drainage and imbibition on the resulting domain. The medial surface accurately represents the topology of the porous structure including corners, irregular cross sections, etc. This methodology is capable of capturing corner menisci and the snap-off mechanism numerically. It also allows for calculation of pore size distribution, permeability and capillary pressure-saturation-specific interfacial area surface of the porous structure. To show the capability of this method to numerically estimate the capillary pressure in irregular cross sections, we compared our results with analytical solutions available for capillary tubes with non-circular cross sections. We also validated this approach by implementing it on well-known benchmark problems such as a bundle of cylinders and packed spheres.

  10. Wettability effect on capillary trapping of supercritical CO2 at pore-scale: micromodel experiment and numerical modeling

    NASA Astrophysics Data System (ADS)

    Hu, R.; Wan, J.

    2015-12-01

    Wettability of reservoir minerals along pore surfaces plays a controlling role in capillary trapping of supercritical (sc) CO2 in geologic carbon sequestration. The mechanisms controlling scCO2 residual trapping are still not fully understood. We studied the effect of pore surface wettability on CO2 residual saturation at the pore-scale using engineered high pressure and high temperature micromodel (transparent pore networks) experiments and numerical modeling. Through chemical treatment of the micromodel pore surfaces, water-wet, intermediate-wet, and CO2-wet micromodels can be obtained. Both drainage and imbibition experiments were conducted at 8.5 MPa and 45 °C with controlled flow rate. Dynamic images of fluid-fluid displacement processes were recorded using a microscope with a CCD camera. Residual saturations were determined by analysis of late stage imbibition images of flow path structures. We performed direct numerical simulations of the full Navier-Stokes equations using a volume-of-fluid based finite-volume framework for the primary drainage and the followed imbibition for the micromodel experiments with different contact angles. The numerical simulations agreed well with our experimental observations. We found that more scCO2 can be trapped within the CO2-wet micromodel whereas lower residual scCO2 saturation occurred within the water-wet micromodels in both our experiments and the numerical simulations. These results provide direct and consistent evidence of the effect of wettability, and have important implications for scCO2 trapping in geologic carbon sequestration.

  11. The Effect of Pluronic 123 Surfactant concentration on The N2 Adsorption Capacity of Mesoporous Silica SBA-15: Dubinin-Astakhov Adsorption Isotherm Analysis

    NASA Astrophysics Data System (ADS)

    Dhaneswara, Donanta; Siti Agustina, A. A. A.; Dewantoro Adhy, P.; Delayori, Farhan; Fajar Fatriansyah, Jaka

    2018-04-01

    Mesoporous SBA-15 has been successfully synthesized at various concentration of Pluronic 123 surfactant (7mM, 50 mM, 54 mM, 60 mM and 66 mM) and the effect of these various concentrations on the N2 adsorption capacity has been investigated. The adsorption analysis was conducted using Dubinin-Astakhov isotherm model for multilayer adsorption phenomenon. It was found that etryat low concentration of Pluronic 123, the system exhibits type I adsorption isotherm while at high concentration, the system exhibits type IV adsorption with H1 hysteresis curve which indicates the existence of pores with cylindrical geometry, relatively uniform pore size and possibility of pore network effects. It also was found that, by using D-A isotherm model fitting, at 60 mM concentration of Pluronic 123, SBA-15 has the highest adsorption capacity which stands at 421 cm3/gram.

  12. Targeted Control of Permeability Using Carbonate Dissolution/Precipitation Reactions

    NASA Astrophysics Data System (ADS)

    Clarens, A. F.; Tao, Z.; Plattenberger, D.

    2016-12-01

    Targeted mineral precipitation reactions are a promising approach for controlling fluid flow in the deep subsurface. Here we studied the potential to use calcium and magnesium bearing silicates as cation donors that would react with aqueous phase CO2 under reservoir conditions to form solid carbonate precipitates. Preliminary experiments in high pressure and temperature columns suggest that these reactions can effectively lower the permeability of a porous media. Wollastonite (CaSiO3) was used as the model silicate, injected as solid particles into the pore space of a packed column, which was then subsequently flooded with CO2(aq). The reactions occur spontaneously, leveraging the favorable kinetics that occur at the high temperature and pressure conditions characteristic of the deep subsurface, to form solid phase calcium carbonate (CaCO3) and amorphous silica (SiO2) within the pore space. Both x-ray tomography imaging of reacted columns and electron microscopy imaging of thin sections were used to characterize where dissolution/precipitation occurred within the porous media. The spatial distribution of the products was closely tied to the flow rate and the duration of the experiment. The SiO2 product precipitated in close spatial proximity to the CaSiO3 reactant. The CaCO3 product, which is sensitive to the low pH and high pCO2 brine, precipitated out of solution further down the column as Ca2+ ions moved with the brine. The permeability of the columns decreased by several orders of magnitude after injecting the CaSiO3 particles. Following carbonation, the permeability decreased even further as precipitates filled flow paths within the pore network. A pore network model was developed to help understand the interplay between precipitation kinetics and flow in altering the permeability of the porous media. The effect of particle concentration and size, pore size, reaction time, and pCO2, are explored on pore/fracture aperture and reaction extent. To provide better control of these dynamics and ultimately devise a mechanism to deliver carbonation seed particles into leakage pathways, we are exploring the potential to functionalize the silicate particles using temperature sensitive polymer coatings.

  13. Monitoring CO2 invasion processes at the pore scale using geological labs on chip.

    PubMed

    Morais, S; Liu, N; Diouf, A; Bernard, D; Lecoutre, C; Garrabos, Y; Marre, S

    2016-09-21

    In order to investigate at the pore scale the mechanisms involved during CO2 injection in a water saturated pore network, a series of displacement experiments is reported using high pressure micromodels (geological labs on chip - GLoCs) working under real geological conditions (25 < T (°C) < 75 and 4.5 < p (MPa) < 8). The experiments were focused on the influence of three experimental parameters: (i) the p, T conditions, (ii) the injection flow rates and (iii) the pore network characteristics. By using on-chip optical characterization and imaging approaches, the CO2 saturation curves as a function of either time or the number of pore volume injected were determined. Three main mechanisms were observed during CO2 injection, namely, invasion, percolation and drying, which are discussed in this paper. Interestingly, besides conventional mechanisms, two counterintuitive situations were observed during the invasion and drying processes.

  14. Template-directed assembly of metal-chalcogenide nanocrystals into ordered mesoporous networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vamvasakis, Ioannis; Subrahmanyam, Kota S.; Kanatzidis, Mercouri G.

    Although great progress in the synthesis of porous networks of metal and metal oxide nanoparticles with highly accessible pore surface and ordered mesoscale pores has been achieved, synthesis of assembled 3D mesostructures of metal-chalcogenide nanocrystals is still challenging. In this work we demonstrate that ordered mesoporous networks, which comprise well-defined interconnected metal sulfide nanocrystals, can be prepared through a polymer-templated oxidative polymerization process. The resulting self-assembled mesostructures that were obtained after solvent extraction of the polymer template impart the unique combination of light-emitting metal chalcogenide nanocrystals, three-dimensional open-pore structure, high surface area, and uniform pores. We show that the poremore » surface of these materials is active and accessible to incoming molecules, exhibiting high photocatalytic activity and stability, for instance, in oxidation of 1-phenylethanol into acetophenone. We demonstrate through appropriate selection of the synthetic components that this method is general to prepare ordered mesoporous materials from metal chalcogenide nanocrystals with various sizes and compositions.« less

  15. Pores-scale hydrodynamics in a progressively bio-clogged three-dimensional porous medium: 3D particle tracking experiments and stochastic transport modelling

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Carrel, M.; Dentz, M.; Derlon, N.; Morgenroth, E.; Holzner, M.

    2017-12-01

    Biofilms are ubiquitous bacterial communities growing in various porous media including soils, trickling and sand filters and are relevant for applications such as the degradation of pollutants for bioremediation, waste water or drinking water production purposes. By their development, biofilms dynamically change the structure of porous media, increasing the heterogeneity of the pore network and the non-Fickian or anomalous dispersion. In this work, we use an experimental approach to investigate the influence of biofilm growth on pore scale hydrodynamics and transport processes and propose a correlated continuous time random walk model capturing these observations. We perform three-dimensional particle tracking velocimetry at four different time points from 0 to 48 hours of biofilm growth. The biofilm growth notably impacts pore-scale hydrodynamics, as shown by strong increase of the average velocity and in tailing of Lagrangian velocity probability density functions. Additionally, the spatial correlation length of the flow increases substantially. This points at the formation of preferential flow pathways and stagnation zones, which ultimately leads to an increase of anomalous transport in the porous media considered, characterized by non-Fickian scaling of mean-squared displacements and non-Gaussian distributions of the displacement probability density functions. A gamma distribution provides a remarkable approximation of the bulk and the high tail of the Lagrangian pore-scale velocity magnitude, indicating a transition from a parallel pore arrangement towards a more serial one. Finally, a correlated continuous time random walk based on a stochastic relation velocity model accurately reproduces the observations and could be used to predict transport beyond the time scales accessible to the experiment.

  16. Pore network properties of sandstones in a fault damage zone

    NASA Astrophysics Data System (ADS)

    Bossennec, Claire; Géraud, Yves; Moretti, Isabelle; Mattioni, Luca; Stemmelen, Didier

    2018-05-01

    The understanding of fluid flow in faulted sandstones is based on a wide range of techniques. These depend on the multi-method determination of petrological and structural features, porous network properties and both spatial and temporal variations and interactions of these features. The question of the multi-parameter analysis on fluid flow controlling properties is addressed for an outcrop damage zone in the hanging wall of a normal fault zone on the western border of the Upper Rhine Graben, affecting the Buntsandstein Group (Early Triassic). Diagenetic processes may alter the original pore type and geometry in fractured and faulted sandstones. Therefore, these may control the ultimate porosity and permeability of the damage zone. The classical model of evolution of hydraulic properties with distance from the major fault core is nuanced here. The hydraulic behavior of the rock media is better described by a pluri-scale model including: 1) The grain scale, where the hydraulic properties are controlled by sedimentary features, the distance from the fracture, and the impact of diagenetic processes. These result in the ultimate porous network characteristics observed. 2) A larger scale, where the structural position and characteristics (density, connectivity) of the fracture corridors are strongly correlated with both geo-mechanical and hydraulic properties within the damage zone.

  17. Wave propagation in a strongly heterogeneous elastic porous medium: Homogenization of Biot medium with double porosities

    NASA Astrophysics Data System (ADS)

    Rohan, Eduard; Naili, Salah; Nguyen, Vu-Hieu

    2016-08-01

    We study wave propagation in an elastic porous medium saturated with a compressible Newtonian fluid. The porous network is interconnected whereby the pores are characterized by two very different characteristic sizes. At the mesoscopic scale, the medium is described using the Biot model, characterized by a high contrast in the hydraulic permeability and anisotropic elasticity, whereas the contrast in the Biot coupling coefficient is only moderate. Fluid motion is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. The homogenization method based on the asymptotic analysis is used to obtain a macroscopic model. To respect the high contrast in the material properties, they are scaled by the small parameter, which is involved in the asymptotic analysis and characterized by the size of the heterogeneities. Using the estimates of wavelengths in the double-porosity networks, it is shown that the macroscopic descriptions depend on the contrast in the static permeability associated with pores and micropores and on the frequency. Moreover, the microflow in the double porosity is responsible for fading memory effects via the macroscopic poroviscoelastic constitutive law. xml:lang="fr"

  18. Understanding Hydraulic Fracturing: A Multi-Scale Problem

    DOE PAGES

    Hyman, Jeffrey De'Haven; Gimenez Martinez, Joaquin; Viswanathan, Hari S.; ...

    2016-09-05

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nano-meters to kilo-meters. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical, and experimental efforts. At the field scale, we use discrete fracture network modeling to simulate production at a well site whose fracture network is based on a site characterization of a shale formation. At the core scale, we use triaxial fracture experiments and a finite-element discrete-elementmore » fracture propagation model with a coupled fluid solver to study dynamic crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and real micromodels to study pore-scale flow phenomenon such as multiphase flow and mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs.« less

  19. Pore Space Connectivity and the Transport Properties of Rocks

    DOE PAGES

    Bernabé, Yves; Li, Min; Tang, Yan-Bing; ...

    2016-06-23

    Pore connectivity is likely one of the most important factors affecting the permeability of reservoir rocks. Furthermore, connectivity effects are not restricted to materials approaching a percolation transition but can continuously and gradually occur in rocks undergoing geological processes such as mechanical and chemical diagenesis. Here, we compiled sets of published measurements of porosity, permeability and formation factor, performed in samples of unconsolidated granular aggregates, in which connectivity does not change, and in two other materials, sintered glass beads and Fontainebleau sandstone, in which connectivity does change. We compared these data to the predictions of a Kozeny-Carman model of permeability,more » which does not account for variations in connectivity, and to those of Bernabé et al. (2010, 2011) model, which does [Bernabé Y., Li M., Maineult A. (2010) Permeability and pore connectivity: a new model based on network simulations, J. Geophys. Res. 115, B10203; Bernabé Y., Zamora M., Li M., Maineult A., Tang Y.B. (2011) Pore connectivity, permeability and electrical formation factor: a new model and comparison to experimental data, J. Geophys. Res. 116, B11204]. Both models agreed equally well with experimental data obtained in unconsolidated granular media. But, in the other materials, especially in the low porosity samples that had undergone the greatest amount of sintering or diagenesis, only Bernabé et al. model matched the experimental data satisfactorily. In comparison, predictions of the Kozeny-Carman model differed by orders of magnitude. The advantage of the Bernabé et al. model was its ability to account for a continuous, gradual reduction in pore connectivity during sintering or diagenesis. Though we can only speculate at this juncture about the mechanisms responsible for the connectivity reduction, we propose two possible mechanisms, likely to be active at different stages of sintering and diagenesis, and thus allowing the gradual evolution observed experimentally.« less

  20. Pore Space Connectivity and the Transport Properties of Rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernabé, Yves; Li, Min; Tang, Yan-Bing

    Pore connectivity is likely one of the most important factors affecting the permeability of reservoir rocks. Furthermore, connectivity effects are not restricted to materials approaching a percolation transition but can continuously and gradually occur in rocks undergoing geological processes such as mechanical and chemical diagenesis. Here, we compiled sets of published measurements of porosity, permeability and formation factor, performed in samples of unconsolidated granular aggregates, in which connectivity does not change, and in two other materials, sintered glass beads and Fontainebleau sandstone, in which connectivity does change. We compared these data to the predictions of a Kozeny-Carman model of permeability,more » which does not account for variations in connectivity, and to those of Bernabé et al. (2010, 2011) model, which does [Bernabé Y., Li M., Maineult A. (2010) Permeability and pore connectivity: a new model based on network simulations, J. Geophys. Res. 115, B10203; Bernabé Y., Zamora M., Li M., Maineult A., Tang Y.B. (2011) Pore connectivity, permeability and electrical formation factor: a new model and comparison to experimental data, J. Geophys. Res. 116, B11204]. Both models agreed equally well with experimental data obtained in unconsolidated granular media. But, in the other materials, especially in the low porosity samples that had undergone the greatest amount of sintering or diagenesis, only Bernabé et al. model matched the experimental data satisfactorily. In comparison, predictions of the Kozeny-Carman model differed by orders of magnitude. The advantage of the Bernabé et al. model was its ability to account for a continuous, gradual reduction in pore connectivity during sintering or diagenesis. Though we can only speculate at this juncture about the mechanisms responsible for the connectivity reduction, we propose two possible mechanisms, likely to be active at different stages of sintering and diagenesis, and thus allowing the gradual evolution observed experimentally.« less

  1. Reconstruction of three-dimensional porous media using generative adversarial neural networks

    NASA Astrophysics Data System (ADS)

    Mosser, Lukas; Dubrule, Olivier; Blunt, Martin J.

    2017-10-01

    To evaluate the variability of multiphase flow properties of porous media at the pore scale, it is necessary to acquire a number of representative samples of the void-solid structure. While modern x-ray computer tomography has made it possible to extract three-dimensional images of the pore space, assessment of the variability in the inherent material properties is often experimentally not feasible. We present a method to reconstruct the solid-void structure of porous media by applying a generative neural network that allows an implicit description of the probability distribution represented by three-dimensional image data sets. We show, by using an adversarial learning approach for neural networks, that this method of unsupervised learning is able to generate representative samples of porous media that honor their statistics. We successfully compare measures of pore morphology, such as the Euler characteristic, two-point statistics, and directional single-phase permeability of synthetic realizations with the calculated properties of a bead pack, Berea sandstone, and Ketton limestone. Results show that generative adversarial networks can be used to reconstruct high-resolution three-dimensional images of porous media at different scales that are representative of the morphology of the images used to train the neural network. The fully convolutional nature of the trained neural network allows the generation of large samples while maintaining computational efficiency. Compared to classical stochastic methods of image reconstruction, the implicit representation of the learned data distribution can be stored and reused to generate multiple realizations of the pore structure very rapidly.

  2. Confinement properties of 2D porous molecular networks on metal surfaces

    NASA Astrophysics Data System (ADS)

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-01

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.

  3. Confinement properties of 2D porous molecular networks on metal surfaces.

    PubMed

    Müller, Kathrin; Enache, Mihaela; Stöhr, Meike

    2016-04-20

    Quantum effects that arise from confinement of electronic states have been extensively studied for the surface states of noble metals. Utilizing small artificial structures for confinement allows tailoring of the surface properties and offers unique opportunities for applications. So far, examples of surface state confinement include thin films, artificial nanoscale structures, vacancy and adatom islands, self-assembled 1D chains, vicinal surfaces, quantum dots and quantum corrals. In this review we summarize recent achievements in changing the electronic structure of surfaces by adsorption of nanoporous networks whose design principles are based on the concepts of supramolecular chemistry. Already in 1993, it was shown that quantum corrals made from Fe atoms on a Cu(1 1 1) surface using single atom manipulation with a scanning tunnelling microscope confine the Shockley surface state. However, since the atom manipulation technique for the construction of corral structures is a relatively time consuming process, the fabrication of periodic two-dimensional (2D) corral structures is practically impossible. On the other side, by using molecular self-assembly extended 2D porous structures can be achieved in a parallel process, i.e. all pores are formed at the same time. The molecular building blocks are usually held together by non-covalent interactions like hydrogen bonding, metal coordination or dipolar coupling. Due to the reversibility of the bond formation defect-free and long-range ordered networks can be achieved. However, recently also examples of porous networks formed by covalent coupling on the surface have been reported. By the choice of the molecular building blocks, the dimensions of the network (pore size and pore to pore distance) can be controlled. In this way, the confinement properties of the individual pores can be tuned. In addition, the effect of the confined state on the hosting properties of the pores will be discussed in this review article.

  4. Dispersion upscaling from a pore scale characterization of Lagrangian velocities

    NASA Astrophysics Data System (ADS)

    Turuban, Régis; de Anna, Pietro; Jiménez-Martínez, Joaquín; Tabuteau, Hervé; Méheust, Yves; Le Borgne, Tanguy

    2013-04-01

    Mixing and reactive transport are primarily controlled by the interplay between diffusion, advection and reaction at pore scale. Yet, how the distribution and spatial correlation of the velocity field at pore scale impact these processes is still an open question. Here we present an experimental investigation of the distribution and correlation of pore scale velocities and its relation with upscaled dispersion. We use a quasi two-dimensional (2D) horizontal set up, consisting of two glass plates filled with cylinders representing the grains of the porous medium : the cell is built by soft lithography technique, wich allows for full control of the system geometry. The local velocity field is quantified from particle tracking velocimetry using microspheres that are advected with the pore scale flow. Their displacement is purely advective, as the particle size is chosen large enough to avoid diffusion. We thus obtain particle trajectories as well as lagrangian velocities in the entire system. The measured velocity field shows the existence of a network of preferential flow paths in channels with high velocities, as well as very low velocity in stagnation zones, with a non Gaussian distribution. Lagrangian velocities are long range correlated in time, which implies a non-fickian scaling of the longitudinal variance of particle positions. To upscale this process we develop an effective transport model, based on correlated continous time random walk, which is entirely parametrized by the pore scale velocity distribution and correlation. The model predictions are compared with conservative tracer test data for different Peclet numbers. Furthermore, we investigate the impact of different pore geometries on the distribution and correlation of Lagrangian velocities and we discuss the link between these properties and the effective dispersion behavior.

  5. Using Resin-Based 3D Printing to Build Geometrically Accurate Proxies of Porous Sedimentary Rocks.

    PubMed

    Ishutov, Sergey; Hasiuk, Franciszek J; Jobe, Dawn; Agar, Susan

    2018-05-01

    Three-dimensional (3D) printing is capable of transforming intricate digital models into tangible objects, allowing geoscientists to replicate the geometry of 3D pore networks of sedimentary rocks. We provide a refined method for building scalable pore-network models ("proxies") using stereolithography 3D printing that can be used in repeated flow experiments (e.g., core flooding, permeametry, porosimetry). Typically, this workflow involves two steps, model design and 3D printing. In this study, we explore how the addition of post-processing and validation can reduce uncertainty in the 3D-printed proxy accuracy (difference of proxy geometry from the digital model). Post-processing is a multi-step cleaning of porous proxies involving pressurized ethanol flushing and oven drying. Proxies are validated by: (1) helium porosimetry and (2) digital measurements of porosity from thin-section images of 3D-printed proxies. 3D printer resolution was determined by measuring the smallest open channel in 3D-printed "gap test" wafers. This resolution (400 µm) was insufficient to build porosity of Fontainebleau sandstone (∼13%) from computed tomography data at the sample's natural scale, so proxies were printed at 15-, 23-, and 30-fold magnifications to validate the workflow. Helium porosities of the 3D-printed proxies differed from digital calculations by up to 7% points. Results improved after pressurized flushing with ethanol (e.g., porosity difference reduced to ∼1% point), though uncertainties remain regarding the nature of sub-micron "artifact" pores imparted by the 3D printing process. This study shows the benefits of including post-processing and validation in any workflow to produce porous rock proxies. © 2017, National Ground Water Association.

  6. Morphological analysis of pore size and connectivity in a thick mixed-culture biofilm.

    PubMed

    Rosenthal, Alex F; Griffin, James S; Wagner, Michael; Packman, Aaron I; Balogun, Oluwaseyi; Wells, George F

    2018-05-19

    Morphological parameters are commonly used to predict transport and metabolic kinetics in biofilms. Yet, quantification of biofilm morphology remains challenging due to imaging technology limitations and lack of robust analytical approaches. We present a novel set of imaging and image analysis techniques to estimate internal porosity, pore size distributions, and pore network connectivity to a depth of 1 mm at a resolution of 10 µm in a biofilm exhibiting both heterotrophic and nitrifying activity. Optical coherence tomography (OCT) scans revealed an extensive pore network with diameters as large as 110 µm directly connected to the biofilm surface and surrounding fluid. Thin section fluorescence in situ hybridization microscopy revealed ammonia oxidizing bacteria (AOB) distributed through the entire thickness of the biofilm. AOB were particularly concentrated in the biofilm around internal pores. Areal porosity values estimated from OCT scans were consistently lower than those estimated from multiphoton laser scanning microscopy, though the two imaging modalities showed a statistically significant correlation (r = 0.49, p<0.0001). Estimates of areal porosity were moderately sensitive to grey level threshold selection, though several automated thresholding algorithms yielded similar values to those obtained by manually thresholding performed by a panel of environmental engineering researchers (±25% relative error). These findings advance our ability to quantitatively describe the geometry of biofilm internal pore networks at length scales relevant to engineered biofilm reactors and suggest that internal pore structures provide crucial habitat for nitrifier growth. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Direct numerical simulation of supercritical gas flow in complex nanoporous media: Elucidating the relationship between permeability and pore space geometry

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2015-12-01

    Mudrocks and shales are currently a significant source of natural gas and understanding the basic transport properties of these formations is critical to predicting long-term production, however, the nanoporous nature of mudrocks presents a unique challenge. Mudrock pores are predominantly in the range of 1-100 nm, and within this size range the flow of gas at reservoir conditions will fall within the slip-flow and early transition-flow regime (0.001 < Kn < 1.0). Therefore, flow-rates will significantly deviate from Navier-Stokes predictions. Currently, the study of slip-flows is mostly limited to simple tube and channel geometries, but the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Here we present a local effective viscosity lattice Boltzmann model (LEV-LBM) constructed for flow simulation in the slip- and early-transition flow regimes, adapted here for complex geometries. At the macroscopic scale the LEV-LBM is parameterized with local effective viscosities at each node to capture the variance of the mean free path of gas molecules in a bounded system. The LEV-LBM is first validated in simple tube geometries, where excellent agreement with linearized Boltzmann solutions is found for Knudsen numbers up to 1.0. The LEV-LBM is then employed to quantify the length effect on the apparent permeability of tubes, which suggests pore network modeling of flow in the slip and early-transition regime will result in overestimation unless the length effect is considered. Furthermore, the LEV-LBM is used to evaluate the predictive value of commonly measured pore geometry characteristics such as porosity, pore size distribution, and specific solid surface area for the calculation of permeability. We show that bundle of tubes models grossly overestimate apparent permeability, as well as underestimate the increase in apparent permeability with decreasing pressure as a result of excluding topology and pore shape from calculations.

  8. Assessing the utility of FIB-SEM images for shale digital rock physics

    NASA Astrophysics Data System (ADS)

    Kelly, Shaina; El-Sobky, Hesham; Torres-Verdín, Carlos; Balhoff, Matthew T.

    2016-09-01

    Shales and other unconventional or low permeability (tight) reservoirs house vast quantities of hydrocarbons, often demonstrate considerable water uptake, and are potential repositories for fluid sequestration. The pore-scale topology and fluid transport mechanisms within these nanoporous sedimentary rocks remain to be fully understood. Image-informed pore-scale models are useful tools for studying porous media: a debated question in shale pore-scale petrophysics is whether there is a representative elementary volume (REV) for shale models? Furthermore, if an REV exists, how does it differ among petrophysical properties? We obtain three dimensional (3D) models of the topology of microscale shale volumes from image analysis of focused ion beam-scanning electron microscope (FIB-SEM) image stacks and investigate the utility of these models as a potential REV for shale. The scope of data used in this work includes multiple local groups of neighboring FIB-SEM images of different microscale sizes, corresponding core-scale (milli- and centimeters) laboratory data, and, for comparison, series of two-dimensional (2D) cross sections from broad ion beam SEM images (BIB-SEM), which capture a larger microscale field of view than the FIB-SEM images; this array of data is larger than the majority of investigations with FIB-SEM-derived microscale models of shale. Properties such as porosity, organic matter content, and pore connectivity are extracted from each model. Assessments of permeability with single phase, pressure-driven flow simulations are performed in the connected pore space of the models using the lattice-Boltzmann method. Calculated petrophysical properties are compared to those of neighboring FIB-SEM images and to core-scale measurements of the sample associated with the FIB-SEM sites. Results indicate that FIB-SEM images below ∼5000 μm3 volume (the largest volume analyzed) are not a suitable REV for shale permeability and pore-scale networks; i.e. field of view is compromised at the expense of detailed, but often unconnected, nanopore morphology. Further, we find that it is necessary to acquire several local FIB-SEM or BIB-SEM images and correlate their extracted geometric properties to improve the likelihood of achieving representative values of porosity and organic matter volume. Our work indicates that FIB-SEM images of microscale volumes of shale are a qualitative tool for petrophysical and transport analysis. Finally, we offer alternatives for quantitative pore-scale assessments of shale.

  9. Methane and CO2 Adsorption and Transport in Carbon-based Systems from Experiments and Molecular Simulation

    NASA Astrophysics Data System (ADS)

    Wilcox, Jennifer; Firouzi, Mahnaz; Rupp, Erik; Haghapanah, Reza; Wang, Beibei

    2013-04-01

    Carbon capture and sequestration is one strategy that could potentially mitigate gigatons of CO2 emissions per year; however, technical obstacles have thus far hindered wide-scale deployment of this strategy. To design efficient and reliable strategies for either carbon capture or sequestration at the full-scale, one needs to understand the chemical and physical properties of CO2 and its interaction with its local surroundings at the molecular-scale. To investigate the chemical and physical properties of CO2 and its local surroundings at the molecular-scale, surface characterization studies are carried out alongside theoretical model efforts. Experimental investigation of CO2 interactions with organic-based porous materials ranging in complexity from functionalized graphene and activated carbon to various-rank coal and gas shale samples to create a set of realistic models that take into account both surface and pore heterogeneity. Integration of theory and experiments takes place to allow for the relevant physics at the molecular-level to be revealed. Determining adsorption and transport phenomena of CO2 (and mixtures, including H2O, and CH4) within the model pore systems can be used to understand the complex pore matrices of carbon-based sorbents, coal, and the organic components of gas shale that are crucial to determining their carbon capture or sequestration potential. Non-equilibrium molecular dynamics (NEMD) simulations of pure carbon dioxide, methane, helium and their mixtures have been carried out in carbon slit pores to investigate gas slippage and Klinkenberg effects in the organic matrices of coal and gas shale rocks. NEMD techniques are ideally suited for the experimental situation in which an external driving force, such as a chemical potential or pressure gradient, are applied on the system. Simulations have been conducted to determine the effect of pore size and exposure to an external potential on the velocity profile and slip-stick boundary conditions. The simulations indicate that molecule-wall collisions influence the velocity profile, which deviates significantly from the Navier-Stokes hydrodynamic prediction for micro and mesopores. Also, the shape of the velocity profile is found to be independent of the applied pressure gradient in micropores. The results indicate that the velocity profile is uniform for pore sizes less than 2 nm (micropores). As pore sizes increase to 10 nm, parabolic profiles are observed due to the reduced interaction of gas molecules with the pore walls. Interestingly, in small pores unlike in large pores, the gas velocity at the walls is non-zero and predicted gas transport is somewhat enhanced as the gas flow transitions from a parabolic velocity profile to plug-flow. In addition, a 3-D pore network, representative of porous carbon-based materials, has been generated atomistically using the Voronoi tessellation method. Simulations have been carried out to determine the effect of the pore structure and modeled viscosity on permeability and Klinkenberg parameters. The use of the bulk-phase viscosity for estimating the permeability of CO2 in units of Darcy in a 3-D micropore network is not an appropriate assumption as it significantly underestimates the CO2 permeability given that CO2 is an adsorbing gas with strong pore wall interactions. On the other hand, since the transport properties of CH4 are less influenced by the pore walls compared with CO2, the use of the bulk-phase CH4 viscosity estimates are a reasonable assumption. The application of this work is to advance our understanding of gas transport and to provide insight into mechanisms of gas-surface interactions in the complex natural systems such as gas shale so that we can make accurate capacity estimates in addition to assisting in enhancing natural gas recovery from these systems. These results will potentially have important implications on CO2 adsorption and transport in carbon-based materials and geologic formations and may provide an understanding of the limitations of the use of bulk-phase fluid viscosities to model transport properties for nanoconfined fluids.

  10. Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage

    DOE PAGES

    Dewers, Thomas; Eichhubl, Peter; Ganis, Ben; ...

    2017-11-28

    Desirable outcomes for geologic carbon storage include maximizing storage efficiency, preserving injectivity, and avoiding unwanted consequences such as caprock or wellbore leakage or induced seismicity during and post injection. Here, to achieve these outcomes, three control measures are evident including pore pressure, injectate chemistry, and knowledge and prudent use of geologic heterogeneity. Field, experimental, and modeling examples are presented that demonstrate controllable GCS via these three measures. Observed changes in reservoir response accompanying CO 2 injection at the Cranfield (Mississippi, USA) site, along with lab testing, show potential for use of injectate chemistry as a means to alter fracture permeabilitymore » (with concomitant improvements for sweep and storage efficiency). Further control of reservoir sweep attends brine extraction from reservoirs, with benefit for pressure control, mitigation of reservoir and wellbore damage, and water use. State-of-the-art validated models predict the extent of damage and deformation associated with pore pressure hazards in reservoirs, timing and location of networks of fractures, and development of localized leakage pathways. Experimentally validated geomechanics models show where wellbore failure is likely to occur during injection, and efficiency of repair methods. Use of heterogeneity as a control measure includes where best to inject, and where to avoid attempts at storage. Lastly, an example is use of waste zones or leaky seals to both reduce pore pressure hazards and enhance residual CO 2 trapping.« less

  11. Heterogeneity, pore pressure, and injectate chemistry: Control measures for geologic carbon storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewers, Thomas; Eichhubl, Peter; Ganis, Ben

    Desirable outcomes for geologic carbon storage include maximizing storage efficiency, preserving injectivity, and avoiding unwanted consequences such as caprock or wellbore leakage or induced seismicity during and post injection. Here, to achieve these outcomes, three control measures are evident including pore pressure, injectate chemistry, and knowledge and prudent use of geologic heterogeneity. Field, experimental, and modeling examples are presented that demonstrate controllable GCS via these three measures. Observed changes in reservoir response accompanying CO 2 injection at the Cranfield (Mississippi, USA) site, along with lab testing, show potential for use of injectate chemistry as a means to alter fracture permeabilitymore » (with concomitant improvements for sweep and storage efficiency). Further control of reservoir sweep attends brine extraction from reservoirs, with benefit for pressure control, mitigation of reservoir and wellbore damage, and water use. State-of-the-art validated models predict the extent of damage and deformation associated with pore pressure hazards in reservoirs, timing and location of networks of fractures, and development of localized leakage pathways. Experimentally validated geomechanics models show where wellbore failure is likely to occur during injection, and efficiency of repair methods. Use of heterogeneity as a control measure includes where best to inject, and where to avoid attempts at storage. Lastly, an example is use of waste zones or leaky seals to both reduce pore pressure hazards and enhance residual CO 2 trapping.« less

  12. Mechanical characterization of collagen-glycosaminoglycan scaffolds.

    PubMed

    Harley, Brendan A; Leung, Janet H; Silva, Emilio C C M; Gibson, Lorna J

    2007-07-01

    Tissue engineering scaffolds are used extensively as three-dimensional analogs of the extracellular matrix (ECM). However, less attention has been paid to characterizing the scaffold microstructure and mechanical properties than to the processing and bioactivity of scaffolds. Collagen-glycosaminoglycan (CG) scaffolds have long been utilized as ECM analogs for the regeneration of skin and are currently being considered for the regeneration of nerve and conjunctiva. Recently a series of CG scaffolds with a uniform pore microstructure has been developed with a range of sizes of equiaxed pores. Experimental characterization and theoretical modeling techniques have previously been used to describe the pore microstructure, specific surface area, cell attachment and permeability of these variants. The results of tensile and compressive tests on these CG scaffolds and of bending tests on the individual struts that define the scaffold network are reported here. The CG scaffold variants exhibited stress-strain behavior characteristic of low-density, open-cell foams with distinct linear elastic, collapse plateau and densification regimes. Scaffolds with equiaxed pores were found to be mechanically isotropic. The independent effects of hydration level, pore size, crosslink density and relative density on the mechanical properties was determined. Independent control over scaffold stiffness and pore size was obtained. Good agreement was observed between experimental results of scaffold mechanical characterization and low-density, open-cell foam model predictions for uniform scaffolds. The characterized scaffold variants provide a standardized framework with defined extracellular environments (microstructure, mechanics) for in vitro studies of the mechanical interactions between cells and scaffolds as well as in vivo tissue engineering studies.

  13. Pore-level determination of spectral reflection behaviors of high-porosity metal foam sheets

    NASA Astrophysics Data System (ADS)

    Li, Yang; Xia, Xin-Lin; Ai, Qing; Sun, Chuang; Tan, He-Ping

    2018-03-01

    Open cell metal foams are currently attracting attention and their radiative behaviors are of primary importance in high temperature applications. The spectral reflection behaviors of high-porosity metal foam sheets, bidirectional reflectance distribution function (BRDF) and directional-hemispherical reflectivity were numerically investigated. A set of realistic nickel foams with porosity from 0.87 to 0.97 and pore density from 10 to 40 pores per inch were tomographied to obtain their 3-D digital cell network. A Monte Carlo ray-tracing method was employed in order to compute the pore-level radiative transfer inside the network within the limit of geometrical optics. The apparent reflection behaviors and their dependency on the textural parameters and strut optical properties were comprehensively computed and analysed. The results show a backward scattering of the reflected energy at the foam sheet surface. Except in the cases of large incident angles, an energy peak is located almost along the incident direction and increases with increasing incident angles. Through an analytical relation established, the directional-hemispherical reflectivity can be related directly to the porosity of the foam sheet and to the complex refractive index of the solid phase as well as the specularity parameter which characterizes the local reflection model. The computations show that a linear decrease in normal-hemispherical reflectivity occurs with increasing porosity. The rate of this decrease is directly proportional to the strut normal reflectivity. In addition, the hemispherical reflectivity increases as a power function of the incident angle cosine.

  14. Fluid displacement fronts in porous media: pore scale interfacial jumps, pressure bursts and acoustic emissions

    NASA Astrophysics Data System (ADS)

    Moebius, Franziska; Or, Dani

    2014-05-01

    The macroscopically smooth and regular motion of fluid fronts in porous media is composed of numerous rapid pore-scale interfacial jumps and pressure bursts that involve intense interfacial energy release in the form of acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and transport properties behind the front. We present experimental studies using acoustic emission technique (AE), rapid imaging, and liquid pressure measurements to characterize these processes during drainage and imbibition in simple porous media. Imbibition and drainage produce different AE signatures (AE amplitudes obey a power law). For rapid drainage, AE signals persist long after cessation of front motion reflecting fluid redistribution and interfacial relaxation. Imaging revealed that the velocity of interfacial jumps often exceeds front velocity by more than 50 fold and is highly inertial component (Re>1000). Pore invasion volumes reduced deduced from pressure fluctuations waiting times (for constant withdrawal rates) show remarkable agreement with geometrically-deduced pore volumes. Discrepancies between invaded volumes and geometrical pores increase with increasing capillary numbers due to constraints on evacuation opportunity times and simultaneous invasion events. A mechanistic model for interfacial motions in a pore-throat network was developed to investigate interfacial dynamics focusing on the role of inertia. Results suggest that while pore scale dynamics were sensitive to variations in pore geometry and boundary conditions, inertia exerted only a minor effect on phase entrapment. The study on pore scale invasion events paints a complex picture of rapid and inertial motions and provides new insights on mechanisms at displacement fronts that are essential for improved macroscopic description of multiphase flows in porous media.

  15. Evaluating the Global Precipitation Measurement mission with NOAA/NSSL Multi-Radar Multisensor: current status and future directions.

    NASA Astrophysics Data System (ADS)

    Kirstetter, P. E.; Petersen, W. A.; Gourley, J. J.; Kummerow, C. D.; Huffman, G. J.; Turk, J.; Tanelli, S.; Maggioni, V.; Anagnostou, E. N.; Hong, Y.; Schwaller, M.

    2016-12-01

    Natural gas production via hydraulic fracturing of shale has proliferated on a global scale, yet recovery factors remain low because production strategies are not based on the physics of flow in shale reservoirs. In particular, the physical mechanisms and time scales of depletion from the matrix into the simulated fracture network are not well understood, limiting the potential to optimize operations and reduce environmental impacts. Studying matrix flow is challenging because shale is heterogeneous and has porosity from the μm- to nm-scale. Characterizing nm-scale flow paths requires electron microscopy but the limited field of view does not capture the connectivity and heterogeneity observed at the mm-scale. Therefore, pore-scale models must link to larger volumes to simulate flow on the reservoir-scale. Upscaled models must honor the physics of flow, but at present there is a gap between cm-scale experiments and μm-scale simulations based on ex situ image data. To address this gap, we developed a synchrotron X-ray microscope with an in situ cell to simultaneously visualize and measure flow. We perform coupled flow and microtomography experiments on mm-scale samples from the Barnett, Eagle Ford and Marcellus reservoirs. We measure permeability at various pressures via the pulse-decay method to quantify effective stress dependence and the relative contributions of advective and diffusive mechanisms. Images at each pressure step document how microfractures, interparticle pores, and organic matter change with effective stress. Linking changes in the pore network to flow measurements motivates a physical model for depletion. To directly visualize flow, we measure imbibition rates using inert, high atomic number gases and image periodically with monochromatic beam. By imaging above/below X-ray adsorption edges, we magnify the signal of gas saturation in μm-scale porosity and nm-scale, sub-voxel features. Comparing vacuumed and saturated states yields image-based measurements of the distribution and time scales of imbibition. We also characterize nm-scale structure via focused ion beam tomography to quantify sub-voxel porosity and connectivity. The multi-scale image and flow data is used to develop a framework to upscale and benchmark pore-scale models.

  16. Seismic properties of fluid bearing formations in magmatic geothermal systems: can we directly detect geothermal activity with seismic methods?

    NASA Astrophysics Data System (ADS)

    Grab, Melchior; Scott, Samuel; Quintal, Beatriz; Caspari, Eva; Maurer, Hansruedi; Greenhalgh, Stewart

    2016-04-01

    Seismic methods are amongst the most common techniques to explore the earth's subsurface. Seismic properties such as velocities, impedance contrasts and attenuation enable the characterization of the rocks in a geothermal system. The most important goal of geothermal exploration, however, is to describe the enthalpy state of the pore fluids, which act as the main transport medium for the geothermal heat, and to detect permeable structures such as fracture networks, which control the movement of these pore fluids in the subsurface. Since the quantities measured with seismic methods are only indirectly related with the fluid state and the rock permeability, the interpretation of seismic datasets is difficult and usually delivers ambiguous results. To help overcome this problem, we use a numerical modeling tool that quantifies the seismic properties of fractured rock formations that are typically found in magmatic geothermal systems. We incorporate the physics of the pore fluids, ranging from the liquid to the boiling and ultimately vapor state. Furthermore, we consider the hydromechanics of permeable structures at different scales from small cooling joints to large caldera faults as are known to be present in volcanic systems. Our modeling techniques simulate oscillatory compressibility and shear tests and yield the P- and S-wave velocities and attenuation factors of fluid saturated fractured rock volumes. To apply this modeling technique to realistic scenarios, numerous input parameters need to be indentified. The properties of the rock matrix and individual fractures were derived from extensive literature research including a large number of laboratory-based studies. The geometries of fracture networks were provided by structural geologists from their published studies of outcrops. Finally, the physical properties of the pore fluid, ranging from those at ambient pressures and temperatures up to the supercritical conditions, were taken from the fluid physics literature. The results of this study allow us to describe the seismic properties as a function of hydrothermal and geological features. We use it in a forward seismic modeling study to examine how the seismic response changes with temporally and/or spatially varying fluid properties.

  17. Visualizing and measuring flow in shale matrix using in situ synchrotron X-ray microtomography

    NASA Astrophysics Data System (ADS)

    Kohli, A. H.; Kiss, A. M.; Kovscek, A. R.; Bargar, J.

    2017-12-01

    Natural gas production via hydraulic fracturing of shale has proliferated on a global scale, yet recovery factors remain low because production strategies are not based on the physics of flow in shale reservoirs. In particular, the physical mechanisms and time scales of depletion from the matrix into the simulated fracture network are not well understood, limiting the potential to optimize operations and reduce environmental impacts. Studying matrix flow is challenging because shale is heterogeneous and has porosity from the μm- to nm-scale. Characterizing nm-scale flow paths requires electron microscopy but the limited field of view does not capture the connectivity and heterogeneity observed at the mm-scale. Therefore, pore-scale models must link to larger volumes to simulate flow on the reservoir-scale. Upscaled models must honor the physics of flow, but at present there is a gap between cm-scale experiments and μm-scale simulations based on ex situ image data. To address this gap, we developed a synchrotron X-ray microscope with an in situ cell to simultaneously visualize and measure flow. We perform coupled flow and microtomography experiments on mm-scale samples from the Barnett, Eagle Ford and Marcellus reservoirs. We measure permeability at various pressures via the pulse-decay method to quantify effective stress dependence and the relative contributions of advective and diffusive mechanisms. Images at each pressure step document how microfractures, interparticle pores, and organic matter change with effective stress. Linking changes in the pore network to flow measurements motivates a physical model for depletion. To directly visualize flow, we measure imbibition rates using inert, high atomic number gases and image periodically with monochromatic beam. By imaging above/below X-ray adsorption edges, we magnify the signal of gas saturation in μm-scale porosity and nm-scale, sub-voxel features. Comparing vacuumed and saturated states yields image-based measurements of the distribution and time scales of imbibition. We also characterize nm-scale structure via focused ion beam tomography to quantify sub-voxel porosity and connectivity. The multi-scale image and flow data is used to develop a framework to upscale and benchmark pore-scale models.

  18. Laboratory Experiments and Modeling of Pooled NAPL Dissolution in Porous Media

    NASA Astrophysics Data System (ADS)

    Copty, N. K.; Sarikurt, D. A.; Gokdemir, C.

    2017-12-01

    The dissolution of non-aqueous phase liquids (NAPLs) entrapped in porous media is commonly modeled at the continuum scale as the product of a chemical potential and an interphase mass transfer coefficient, the latter expressed in terms of Sherwood correlations that are related to flow and porous media properties. Because of the lack of precise estimates of the interface area separating the NAPL and aqueous phase, numerous studies have lumped the interfacial area into the interphase mass transfer coefficient. In this paper controlled dissolution experiments from a pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two types of porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution was developed. The well-defined geometry of the NAPL-water interface and the observed effluent concentrations were used to compute best-fit mass transfer coefficients and non-lumped Sherwood correlations. Comparing the concentrations predicted with the pore network model to simple previously used one-dimensional analytic solutions indicates that the analytic model which ignores the transverse dispersion can lead to over-estimation of the mass transfer coefficient. The predicted Sherwood correlations are also compared to previously published data and implications on NAPL remediation strategies are discussed.

  19. Percolation connectivity, pore size, and gas apparent permeability: Network simulations and comparison to experimental data

    NASA Astrophysics Data System (ADS)

    Li, M.; Tang, Y. B.; Bernabé, Y.; Zhao, J. Z.; Li, X. F.; Li, T.

    2017-07-01

    We modeled single-phase gas flow through porous media using percolation networks. Gas permeability is different from liquid permeability. The latter is only related to the geometry and topology of the pore space, while the former depends on the specific gas considered and varies with gas pressure. As gas pressure decreases, four flow regimes can be distinguished as viscous flow, slip flow, transition flow, and free molecular diffusion. Here we use a published conductance model presumably capable of predicting the flow rate of an arbitrary gas through a cylindrical pipe in the four regimes. We incorporated this model into pipe network simulations. We considered 3-D simple cubic, body-centered cubic, and face-centered cubic lattices, in which we varied the pipe radius distribution and the bond coordination number. Gas flow was simulated at different gas pressures. The simulation results showed that the gas apparent permeability kapp obeys an identical scaling law in all three lattices, kapp (z-zc)β, where the exponent β depends on the width of the pipe radius distribution, z is the mean coordination number, and zc its critical value at the percolation threshold. Surprisingly, (z-zc) had a very weak effect on the ratio of the apparent gas permeability to the absolute liquid permeability, kapp/kabs, suggesting that the Klinkenberg gas slippage correction factor is nearly independent of connectivity. We constructed models of kapp and kapp/kabs based on the observed power law and tested them by comparison with published experimental data on glass beads and other materials.

  20. Multiscale modelling of Flow-Induced Blood Cell Damage

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Sohrabi, Salman

    2017-11-01

    We study red blood cell (RBC) damage and hemolysis at cellular level. Under high shear rates, pores form on RBC membranes through which hemoglobin (Hb) leaks out and increases free Hb content of plasma leading to hemolysis. By coupling lattice Boltzmann and spring connected network models through immersed boundary method, we estimate hemolysis of a single RBC under various shear rates. The developed cellular damage model can be used as a predictive tool for hydrodynamic and hematologic design optimization of blood-wetting medical devices.

  1. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Haihu, E-mail: haihu.liu@mail.xjtu.edu.cn; James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ; Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

    Injection of anthropogenic carbon dioxide (CO{sub 2}) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO{sub 2} that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns,more » namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S{sub nw}) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S{sub nw}. In either pore networks, the specific interfacial length is linearly proportional to S{sub nw} during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S{sub nw} for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.« less

  2. Modeling Mass and Thermal Transport in Thin Porous Media of PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Konduru, Vinaykumar

    Water transport in the Porous Transport Layer (PTL) plays an important role in the efficient operation of polymer electrolyte membrane fuel cells (PEMFC). Excessive water content as well as dry operating conditions are unfavorable for efficient and reliable operation of the fuel cell. The effect of thermal conductivity and porosity on water management are investigated by simulating two-phase flow in the PTL of the fuel cell using a network model. In the model, the PTL consists of a pore-phase and a solid-phase. Different models of the PTLs are generated using independent Weibull distributions for the pore-phase and the solid-phase. The specific arrangement of the pores and solid elements is varied to obtain different PTL realizations for the same Weibull parameters. The properties of PTL are varied by changing the porosity and thermal conductivity. The parameters affecting operating conditions include the temperature, relative humidity in the flow channel and voltage and current density. In addition, a novel high-speed capable Surface Plasmon Resonance (SPR) microscope was built based on Kretschmann's configuration utilizing a collimated Kohler illumination. The SPR allows thin film characterization in a thickness of approximately 0-200nm by measuring the changes in the refractive index. Various independent experiments were run to measure film thickness during droplet coalescence during condensation.

  3. Micro-CT scan reveals an unexpected high-volume and interconnected pore network in a Cretaceous Sanagasta dinosaur eggshell.

    PubMed

    Hechenleitner, E Martín; Grellet-Tinner, Gerald; Foley, Matthew; Fiorelli, Lucas E; Thompson, Michael B

    2016-03-01

    The Cretaceous Sanagasta neosauropod nesting site (La Rioja, Argentina) was the first confirmed instance of extinct dinosaurs using geothermal-generated heat to incubate their eggs. The nesting strategy and hydrothermal activities at this site led to the conclusion that the surprisingly 7 mm thick-shelled eggs were adapted to harsh hydrothermal microenvironments. We used micro-CT scans in this study to obtain the first three-dimensional microcharacterization of these eggshells. Micro-CT-based analyses provide a robust assessment of gas conductance in fossil dinosaur eggshells with complex pore canal systems, allowing calculation, for the first time, of the shell conductance through its thickness. This novel approach suggests that the shell conductance could have risen during incubation to seven times more than previously estimated as the eggshell erodes. In addition, micro-CT observations reveal that the constant widening and branching of pore canals form a complex funnel-like pore canal system. Furthermore, the high density of pore canals and the presence of a lateral canal network in the shell reduce the risks of pore obstruction during the extended incubation of these eggs in a relatively highly humid and muddy nesting environment. © 2016 The Author(s).

  4. Thermo-Hydro-Micro-Mechanical 3D Modeling of a Fault Gouge During Co-seismic Slip

    NASA Astrophysics Data System (ADS)

    Papachristos, E.; Stefanou, I.; Sulem, J.; Donze, F. V.

    2017-12-01

    A coupled Thermo-Hydro-Micro-Mechanical (THMM) model based on the Discrete Elements method (DEM) is presented for studying the evolving fault gouge properties during pre- and co-seismic slip. Modeling the behavior of the fault gouge at the microscale is expected to improve our understanding on the various mechanisms that lead to slip weakening and finally control the transition from aseismic to seismic slip.The gouge is considered as a granular material of spherical particles [1]. Upon loading, the interactions between particles follow a frictional behavior and explicit dynamics. Using regular triangulation, a pore network is defined by the physical pore space between the particles. The network is saturated by a compressible fluid, and flow takes place following Stoke's equations. Particles' movement leads to pore deformation and thus to local pore pressure increase. Forces exerted from the fluid onto the particles are calculated using mid-step velocities. The fluid forces are then added to the contact forces resulting from the mechanical interactions before the next step.The same semi-implicit, two way iterative coupling is used for the heat-exchange through conduction.Simple tests have been performed to verify the model against analytical solutions and experimental results. Furthermore, the model was used to study the effect of temperature on the evolution of effective stress in the system and to highlight the role of thermal pressurization during seismic slip [2, 3].The analyses are expected to give grounds for enhancing the current state-of-the-art constitutive models regarding fault friction and shed light on the evolution of fault zone propertiesduring seismic slip.[1] Omid Dorostkar, Robert A Guyer, Paul A Johnson, Chris Marone, and Jan Carmeliet. On the role of fluids in stick-slip dynamics of saturated granular fault gouge using a coupled computational fluid dynamics-discrete element approach. Journal of Geophysical Research: Solid Earth, 122(5):3689-3700, 2017.[2] James R Rice. Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5), 2006.[3] Jean Sulem, Ioannis Stefanou, and Emmanuil Veveakis. Stability analysis of undrained adiabatic shearing of a rock layer with cosserat microstructure. Granular Matter, 13(3):261-268,2011.

  5. Seismic velocity deviation log: An effective method for evaluating spatial distribution of reservoir pore types

    NASA Astrophysics Data System (ADS)

    Shirmohamadi, Mohamad; Kadkhodaie, Ali; Rahimpour-Bonab, Hossain; Faraji, Mohammad Ali

    2017-04-01

    Velocity deviation log (VDL) is a synthetic log used to determine pore types in reservoir rocks based on a combination of the sonic log with neutron-density logs. The current study proposes a two step approach to create a map of porosity and pore types by integrating the results of petrographic studies, well logs and seismic data. In the first step, velocity deviation log was created from the combination of the sonic log with the neutron-density log. The results allowed identifying negative, zero and positive deviations based on the created synthetic velocity log. Negative velocity deviations (below - 500 m/s) indicate connected or interconnected pores and fractures, while positive deviations (above + 500 m/s) are related to isolated pores. Zero deviations in the range of [- 500 m/s, + 500 m/s] are in good agreement with intercrystalline and microporosities. The results of petrographic studies were used to validate the main pore type derived from velocity deviation log. In the next step, velocity deviation log was estimated from seismic data by using a probabilistic neural network model. For this purpose, the inverted acoustic impedance along with the amplitude based seismic attributes were formulated to VDL. The methodology is illustrated by performing a case study from the Hendijan oilfield, northwestern Persian Gulf. The results of this study show that integration of petrographic, well logs and seismic attributes is an instrumental way for understanding the spatial distribution of main reservoir pore types.

  6. Pore diameter effects on phase behavior of a gas condensate in graphitic one-and two-dimensional nanopores.

    PubMed

    Welch, William R W; Piri, Mohammad

    2016-01-01

    Molecular dynamics (MD) simulations were performed on a hydrocarbon mixture representing a typical gas condensate composed mostly of methane and other small molecules with small fractions of heavier hydrocarbons, representative of mixtures found in tight shale reservoirs. The fluid was examined both in bulk and confined to graphitic nano-scale slits and pores. Numerous widths and diameters of slits and pores respectively were examined under variable pressures at 300 K in order to find conditions in which the fluid at the center of the apertures would not be affected by capillary condensation due to the oil-wet walls. For the bulk fluid, retrograde phase behavior was verified by liquid volumes obtained from Voronoi tessellations. In cases of both one and two-dimensional confinement, for the smallest apertures, heavy molecules aggregated inside the pore space and compression of the gas outside the solid structure lead to decreases in density of the confined fluid. Normal density/pressure relationships were observed for slits having gaps of above 3 nm and pores having diameters above 6 nm. At 70 bar, the minimum gap width at which the fluid could pass through the center of slits without condensation effects was predicted to be 6 nm and the corresponding diameter in pores was predicted to be 8 nm. The models suggest that in nanoscale networks involving pores smaller than these limiting dimensions, capillary condensation should significantly impede transmission of natural gases with similar composition.

  7. Focused ion beam assisted three-dimensional rock imaging at submicron scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomutsa, Liviu; Radmilovic, Velimir

    2003-05-09

    Computation of effective flow properties of fluids in porous media based on three dimensional (3D) pore structure information has become more successful in the last few years, due to both improvements in the input data and the network models. Computed X-ray microtomography has been successful in 3D pore imaging at micron scale, which is adequate for many sandstones. For other rocks of economic interest, such as chalk and diatomite, submicron resolution is needed in order to resolve the 3D-pore structure. To achieve submicron resolution, a new method of sample serial sectioning and imaging using Focused Ion Beam (FIB) technology hasmore » been developed and 3D pore images of the pore system for diatomite and chalk have been obtained. FIB was used in the milling of layers as wide as 50 micrometers and as thin as 100 nanometers by sputtering of atoms from the sample surface. The focused ion beam, consisting of gallium ions (Ga+) accelerated by potentials of up to 30 kV and currents up to 20,000 pA, yields very clean, flat surfaces in which the pore-grain boundaries appear in high contrast. No distortion of the pore boundaries due to the ion milling is apparent. After each milling step, as a new surface is exposed, an image of the surface is generated. Using secondary electrons or ions, resolutions as high as 10 nm can be obtained. Afterwards, the series of 2D images can be stacked in the computer and, using appropriate interpolation and surface rendering algorithms, the 3D pore structure is reconstructed.« less

  8. Pore networks and polymer rearrangement on a drug-eluting stent as revealed by correlated confocal Raman and atomic force microscopy.

    PubMed

    Biggs, Kevin B; Balss, Karin M; Maryanoff, Cynthia A

    2012-05-29

    Drug release from and coating morphology on a CYPHER sirolimus-eluting coronary stent (SES) during in vitro elution were studied by correlated confocal Raman and atomic force microscopy (CRM and AFM, respectively). Chemical surface and subsurface maps of the SES were generated in the same region of interest by CRM and were correlated with surface topography measured by AFM at different elution times. For the first time, a direct correlation between drug-rich regions and the coating morphology was made on a drug-eluting medical device, linking drug release with pore formation, pore throats, and pore networks. Drug release was studied on a drug-eluting stent (DES) system with a multicomponent carrier matrix (poly(n-butyl methacrylate) [PBMA] and poly(ethylene-co-vinyl acetate) [PEVA]). The polymer was found to rearrange postelution because confluence of the carrier polymer matrix reconstituted the voids created by drug release.

  9. Bio-inspired Murray materials for mass transfer and activity

    NASA Astrophysics Data System (ADS)

    Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian

    2017-04-01

    Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.

  10. Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Fazeli, Mohammadreza; Hinebaugh, James; Fishman, Zachary; Tötzke, Christian; Lehnert, Werner; Manke, Ingo; Bazylak, Aimy

    2016-12-01

    Understanding how compression affects the distribution of liquid water and gaseous oxygen in the polymer electrolyte membrane fuel cell gas diffusion layer (GDL) is vital for informing the design of improved porous materials for effective water management strategies. Pore networks extracted from synchrotron-based micro-computed tomography images of compressed GDLs were employed to simulate liquid water transport in GDL materials over a range of compression pressures. The oxygen transport resistance was predicted for each sample under dry and partially saturated conditions. A favorable GDL compression value for a preferred liquid water distribution and oxygen diffusion was found for Toray TGP-H-090 (10%), yet an optimum compression value was not recognized for SGL Sigracet 25BC. SGL Sigracet 25BC exhibited lower transport resistance values compared to Toray TGP-H-090, and this is attributed to the additional diffusion pathways provided by the microporous layer (MPL), an effect that is particularly significant under partially saturated conditions.

  11. Augmented Topological Descriptors of Pore Networks for Material Science.

    PubMed

    Ushizima, D; Morozov, D; Weber, G H; Bianchi, A G C; Sethian, J A; Bethel, E W

    2012-12-01

    One potential solution to reduce the concentration of carbon dioxide in the atmosphere is the geologic storage of captured CO2 in underground rock formations, also known as carbon sequestration. There is ongoing research to guarantee that this process is both efficient and safe. We describe tools that provide measurements of media porosity, and permeability estimates, including visualization of pore structures. Existing standard algorithms make limited use of geometric information in calculating permeability of complex microstructures. This quantity is important for the analysis of biomineralization, a subsurface process that can affect physical properties of porous media. This paper introduces geometric and topological descriptors that enhance the estimation of material permeability. Our analysis framework includes the processing of experimental data, segmentation, and feature extraction and making novel use of multiscale topological analysis to quantify maximum flow through porous networks. We illustrate our results using synchrotron-based X-ray computed microtomography of glass beads during biomineralization. We also benchmark the proposed algorithms using simulated data sets modeling jammed packed bead beds of a monodispersive material.

  12. Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy

    DOE PAGES

    Liu, Yijin; Meirer, Florian; Krest, Courtney M.; ...

    2016-08-30

    To understand how hierarchically structured functional materials operate, analytical tools are needed that can reveal small structural and chemical details in large sample volumes. Often, a single method alone is not sufficient to get a complete picture of processes happening at multiple length scales. Here we present a correlative approach combining three-dimensional X-ray imaging techniques at different length scales for the analysis of metal poisoning of an individual catalyst particle. The correlative nature of the data allowed establishing a macro-pore network model that interprets metal accumulations as a resistance to mass transport and can, by tuning the effect of metalmore » deposition, simulate the response of the network to a virtual ageing of the catalyst particle. In conclusion, the developed approach is generally applicable and provides an unprecedented view on dynamic changes in a material’s pore space, which is an essential factor in the rational design of functional porous materials.« less

  13. Coupled flow and deformations in granular systems beyond the pendular regime

    NASA Astrophysics Data System (ADS)

    Yuan, Chao; Chareyre, Bruno; Darve, Felix

    2017-06-01

    A pore-scale numerical model is proposed for simulating the quasi-static primary drainage and the hydro-mechanical couplings in multiphase granular systems. The solid skeleton is idealized to a dense random packing of polydisperse spheres by DEM. The fluids (nonwetting and wetting phases) space is decomposed to a network of tetrahedral pores based on the Regular Triangulation method. The local drainage rules and invasion logic are defined. The fluid forces acting on solid grains are formulated. The model can simulate the hydraulic evolution from a fully saturated state to a low level of saturation but beyond the pendular regime. The features of wetting phase entrapments and capillary fingering can also be reproduced. Finally, a primary drainage test is performed on a 40,000 spheres of sample. The water retention curve is obtained. The solid skeleton first shrinks then swells.

  14. Multiscale study for stochastic characterization of shale samples

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Pejman; Javadpour, Farzam; Sahimi, Muhammad; Piri, Mohammad

    2016-03-01

    Characterization of shale reservoirs, which are typically of low permeability, is very difficult because of the presence of multiscale structures. While three-dimensional (3D) imaging can be an ultimate solution for revealing important complexities of such reservoirs, acquiring such images is costly and time consuming. On the other hand, high-quality 2D images, which are widely available, also reveal useful information about shales' pore connectivity and size. Most of the current modeling methods that are based on 2D images use limited and insufficient extracted information. One remedy to the shortcoming is direct use of qualitative images, a concept that we introduce in this paper. We demonstrate that higher-order statistics (as opposed to the traditional two-point statistics, such as variograms) are necessary for developing an accurate model of shales, and describe an efficient method for using 2D images that is capable of utilizing qualitative and physical information within an image and generating stochastic realizations of shales. We then further refine the model by describing and utilizing several techniques, including an iterative framework, for removing some possible artifacts and better pattern reproduction. Next, we introduce a new histogram-matching algorithm that accounts for concealed nanostructures in shale samples. We also present two new multiresolution and multiscale approaches for dealing with distinct pore structures that are common in shale reservoirs. In the multiresolution method, the original high-quality image is upscaled in a pyramid-like manner in order to achieve more accurate global and long-range structures. The multiscale approach integrates two images, each containing diverse pore networks - the nano- and microscale pores - using a high-resolution image representing small-scale pores and, at the same time, reconstructing large pores using a low-quality image. Eventually, the results are integrated to generate a 3D model. The methods are tested on two shale samples for which full 3D samples are available. The quantitative accuracy of the models is demonstrated by computing their morphological and flow properties and comparing them with those of the actual 3D images. The success of the method hinges upon the use of very different low- and high-resolution images.

  15. Improved Characterization and Modeling of Tight Oil Formations for CO 2 Enhanced Oil Recovery Potential and Storage Capacity Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorensen, James; Smith, Steven; Kurz, Bethany

    Tight oil formations such as those in the Bakken petroleum system are known to hold hundreds of billions of barrels of oil in place; however, the primary recovery factor for these plays is typically less than 10%. Tight oil formations, including the Bakken Formation, therefore, may be attractive candidates for enhanced oil recovery (EOR) using CO 2. Multiphase fluid behavior and flow in fluid-rich shales can vary substantially depending on the size of pore throats, and properties such as fluid viscosity and density are much different in nanoscale pores than in macroscale pores. Thus it is critical to understand themore » nature and distribution of nano-, micro-, and macroscale pores and fracture networks. To address these issues, the Energy & Environmental Research Center (EERC) has been conducting a research program entitled “Improved Characterization and Modeling of Tight Oil Formations for CO 2 Enhanced Oil Recovery Potential and Storage Capacity Estimation.” The objectives of the project are 1) the use of advanced characterization methods to better understand and quantify the petrophysical and geomechanical factors that control CO 2 and oil mobility within tight oil formation samples, 2) the determination of CO 2 permeation and oil extraction rates in tight reservoir rocks and organic-rich shales of the Bakken, and 3) the integration of the laboratory-based CO 2 permeation and oil extraction data and the characterization data into geologic models and dynamic simulations to develop predictions of CO 2 storage resource and EOR in the Bakken tight oil formation. A combination of standard and advanced petrophysical characterization techniques were applied to characterize samples of Bakken Formation tight reservoir rock and shales from multiple wells. Techniques included advanced computer tomography (CT) imaging, scanning electron microscopy (SEM) techniques, whole-core and micro x-ray CT imaging, field emission (FE) SEM, and focused ion beam (FIB) SEM. Selected samples were also analyzed for geomechanical properties. X-ray CT imaging yielded information on the occurrence of fractures, bedding planes, fossils, and bioturbation in core, as well as data on bulk density and photoelectric factor logs, which were used to interpret porosity, organic content, and mineralogy. FESEM was used for characterization of nano- and microscale features, including nanoscale pore visualization and micropore and pore throat mineralogy. FIBSEM yielded micro- to nanoscale visualization of fracture networks, porosity and pore-size distribution, connected versus isolated porosity, and distribution of organics. Results from the characterization activities provide insight on nanoscale fracture properties, pore throat mineralogy and connectivity, rock matrix characteristics, mineralogy, and organic content. Laboratory experiments demonstrated that CO 2 can permeate the tight matrix of Bakken shale and nonshale reservoir samples and mobilize oil from those samples. Geologic models were created at scales ranging from the core plug to the reservoir, and dynamic simulations were conducted. The data from the characterization and laboratory-based activities were integrated into modeling research activities to determine the fundamental mechanisms controlling fluid transport in the Bakken, which support EOR scheme design and estimation of CO 2 storage potential in tight oil formations. Simulation results suggest a CO 2 storage resource estimate range of 169 million to 1.5 billion tonnes for the Bakken in North Dakota, possibly resulting in 1.8 billion to 16 billion barrels of incremental oil.« less

  16. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-06-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  17. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons

    PubMed Central

    Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.

    2015-01-01

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary. PMID:26047466

  18. On the Formation of Nanobubbles in Vycor Porous Glass during the Desorption of Halogenated Hydrocarbons.

    PubMed

    Mitropoulos, A C; Stefanopoulos, K L; Favvas, E P; Vansant, E; Hankins, N P

    2015-06-05

    Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of 'ink-bottle' pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.

  19. Pore-Lining Composition and Capillary Breakthrough Pressure of Mudstone Caprocks: Sealing Efficiency of Geologic CO2 Storage Sites

    NASA Astrophysics Data System (ADS)

    Heath, J. E.; Dewers, T. A.; McPherson, B. J.; Kotula, P. G.

    2010-12-01

    Subsurface containment of CO2 is predicated on effective caprock sealing. Many previous studies have relied on macroscopic measurements of capillary breakthrough pressure and other petrophysical properties without direct examination of solid phases that line pore networks and directly contact fluids. However, pore-lining phases strongly contribute to sealing behavior through interfacial interactions among CO2, brine, and the mineral or non-mineral phases. Our high resolution (i.e., sub-micron) examination of the composition of pore-lining phases of several continental and marine mudstones indicates that sealing efficiency (i.e., breakthrough pressure) is governed by pore shapes and pore-lining phases that are not identifiable except through direct characterization of pores. Bulk X-ray diffraction data does not indicate which phases line the pores and may be especially lacking for mudstones with organic material. Organics can line pores and may represent once-mobile phases that modify the wettability of an originally clay-lined pore network. For shallow formations (i.e., < ~800 m depth), interfacial tension and contact angles result in breakthrough pressures that may be as high as those needed to fracture the rock—thus, in the absence of fractures, capillary sealing efficiency is indicated. Deeper seals have poorer capillary sealing if mica-like wetting dominates the wettability. We thank the U.S. Department of Energy’s National Energy Technology Laboratory and the Office of Basic Energy Sciences, and the Southeast and Southwest Carbon Sequestration Partnerships for supporting this work. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Dimethyl Methylphosphonate Adsorption Capacities and Desorption Energies on Ordered Mesoporous Carbons.

    PubMed

    Huynh, Kim; Holdren, Scott; Hu, Junkai; Wang, Luning; Zachariah, Michael R; Eichhorn, Bryan W

    2017-11-22

    In this study, we determine effective adsorption capacities and desorption energies for DMMP with highly ordered mesoporous carbons (OMCs), 1D cylindrical FDU-15, 3D hexagonal CMK-3, 3D bicontinuous CMK-8, and as a reference, microporous BPL carbon. After exposure to DMMP vapor at room temperature for approximately 70 and 800 h, the adsorption capacity of DMMP for each OMC was generally proportional to the total surface area and pore volume, respectively. Desorption energies of DMMP were determined using a model-free isoconversional method applied to thermogravimetric analysis (TGA) data. Our experiments determined that DMMP saturated carbon will desorb any weakly bound DMMP from pores >2.4 nm at room temperature, and no DMMP will adsorb into pores smaller than 0.5 nm. The calculated desorption energies for high surface coverages, 25% DMMP desorbed from pores ≤2.4 nm, are 68-74 kJ mol -1 , which is similar to the DMMP heat of vaporization (52 kJ mol -1 ). At lower surface coverages, 80% DMMP desorbed, the DMMP desorption energies from the OMCs are 95-103 kJ mol -1 . This is overall 20-30 kJ mol -1 higher in comparison to that of BPL carbon, due to the pore size and diffusion through different porous networks.

  1. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions.

    PubMed

    Menke, Hannah P; Bijeljic, Branko; Andrew, Matthew G; Blunt, Martin J

    2015-04-07

    Quantifying CO2 transport and average effective reaction rates in the subsurface is essential to assess the risks associated with underground carbon capture and storage. We use X-ray microtomography to investigate dynamic pore structure evolution in situ at temperatures and pressures representative of underground reservoirs and aquifers. A 4 mm diameter Ketton carbonate core is injected with CO2-saturated brine at 50 °C and 10 MPa while tomographic images are taken at 15 min intervals with a 3.8 μm spatial resolution over a period of 2(1/2) h. An approximate doubling of porosity with only a 3.6% increase in surface area to volume ratio is measured from the images. Pore-scale direct simulation and network modeling on the images quantify an order of magnitude increase in permeability and an appreciable alteration of the velocity field. We study the uniform reaction regime, with dissolution throughout the core. However, at the pore scale, we see variations in the degree of dissolution with an overall reaction rate which is approximately 14 times lower than estimated from batch measurements. This work implies that in heterogeneous rocks, pore-scale transport of reactants limits dissolution and can reduce the average effective reaction rate by an order of magnitude.

  2. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    PubMed

    Shem-Ad, Tzilhav; Irit, Orr; Yifrach, Ofer

    2013-01-01

    The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  3. Three-dimensionally networked graphene hydroxide with giant pores and its application in supercapacitors

    PubMed Central

    Lee, Dongwook; Seo, Jiwon

    2014-01-01

    The three-dimensionally networked and layered structure of graphene hydroxide (GH) was investigated. After lengthy immersion in a NaOH solution, most of the epoxy groups in the graphene oxide were destroyed, and more hydroxyl groups were generated, transforming the graphene oxide into graphene hydroxide. Additionally, benzoic acid groups were formed, and the ether groups link the neighboring layers, creating a near-3D structure in the GH. To utilize these unique structural features, electrodes with large pores for use in supercapacitors were fabricated using thermal reduction in vacuum. The reduced GH maintained its layered structure and developed a lot of large of pores between/inside the layers. The GH electrodes exhibited high gravimetric as well as high volumetric capacitance. PMID:25492227

  4. Three-dimensionally networked graphene hydroxide with giant pores and its application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Lee, Dongwook; Seo, Jiwon

    2014-12-01

    The three-dimensionally networked and layered structure of graphene hydroxide (GH) was investigated. After lengthy immersion in a NaOH solution, most of the epoxy groups in the graphene oxide were destroyed, and more hydroxyl groups were generated, transforming the graphene oxide into graphene hydroxide. Additionally, benzoic acid groups were formed, and the ether groups link the neighboring layers, creating a near-3D structure in the GH. To utilize these unique structural features, electrodes with large pores for use in supercapacitors were fabricated using thermal reduction in vacuum. The reduced GH maintained its layered structure and developed a lot of large of pores between/inside the layers. The GH electrodes exhibited high gravimetric as well as high volumetric capacitance.

  5. Three-dimensionally networked graphene hydroxide with giant pores and its application in supercapacitors.

    PubMed

    Lee, Dongwook; Seo, Jiwon

    2014-12-10

    The three-dimensionally networked and layered structure of graphene hydroxide (GH) was investigated. After lengthy immersion in a NaOH solution, most of the epoxy groups in the graphene oxide were destroyed, and more hydroxyl groups were generated, transforming the graphene oxide into graphene hydroxide. Additionally, benzoic acid groups were formed, and the ether groups link the neighboring layers, creating a near-3D structure in the GH. To utilize these unique structural features, electrodes with large pores for use in supercapacitors were fabricated using thermal reduction in vacuum. The reduced GH maintained its layered structure and developed a lot of large of pores between/inside the layers. The GH electrodes exhibited high gravimetric as well as high volumetric capacitance.

  6. EFFECTS OF PORE STRUCTURE CHANGE AND MULTI-SCALE HETEROGENEITY ON CONTAMINANT TRANSPORT AND REACTION RATE UPSCALING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindquist, W. Brent; Jones, Keith W.; Um, Wooyong

    2013-02-15

    This project addressed the scaling of geochemical reactions to core and field scales, and the interrelationship between reaction rates and flow in porous media. We targeted reactive transport problems relevant to the Hanford site - specifically the reaction of highly caustic, radioactive waste solutions with subsurface sediments, and the immobilization of 90Sr and 129I through mineral incorporation and passive flow blockage, respectively. We addressed the correlation of results for pore-scale fluid-soil interaction with field-scale fluid flow, with the specific goals of (i) predicting attenuation of radionuclide concentration; (ii) estimating changes in flow rates through changes of soil permeabilities; and (iii)more » estimating effective reaction rates. In supplemental work, we also simulated reactive transport systems relevant to geologic carbon sequestration. As a whole, this research generated a better understanding of reactive transport in porous media, and resulted in more accurate methods for reaction rate upscaling and improved prediction of permeability evolution. These scientific advancements will ultimately lead to better tools for management and remediation of DOE’s legacy waste problems. We established three key issues of reactive flow upscaling, and organized this project in three corresponding thrust areas. 1) Reactive flow experiments. The combination of mineral dissolution and precipitation alters pore network structure and the subsequent flow velocities, thereby creating a complex interaction between reaction and transport. To examine this phenomenon, we conducted controlled laboratory experimentation using reactive flow-through columns. Results and Key Findings: Four reactive column experiments (S1, S3, S4, S5) have been completed in which simulated tank waste leachage (STWL) was reacted with pure quartz sand, with and without Aluminum. The STWL is a caustic solution that dissolves quartz. Because Al is a necessary element in the formation of secondary mineral precipitates (cancrinite), conducting experiments under conditions with and without Al allowed us to experimentally separate the conditions that lead to quartz dissolution from the conditions that lead to quartz dissolution plus cancrinite precipitation. Consistent with our expectations, in the experiments without Al, there was a substantial reduction in volume of the solid matrix. With Al there was a net increase in the volume of the solid matrix. The rate and extent of reaction was found to increase with temperature. These results demonstrate a successful effort to identify conditions that lead to increases and conditions that lead to decreases in solid matrix volume due to reactions of caustic tank wastes with quartz sands. In addition, we have begun to work with slightly larger, intermediate-scale columns packed with Hanford natural sediments and quartz. Similar dissolution and precipitation were observed in these colums. The measurements are being interpreted with reactive transport modeling using STOMP; preliminary observations are reported here. 2) Multi-Scale Imaging and Analysis. Mineral dissolution and precipitation rates within a porous medium will be different in different pores due to natural heterogeneity and the heterogeneity that is created from the reactions themselves. We used a combination of X-ray computed microtomography, backscattered electron and energy dispersive X-ray spectroscopy combined with computational image analysis to quantify pore structure, mineral distribution, structure changes and fluid-air and fluid-grain interfaces. Results and Key Findings: Three of the columns from the reactive flow experiments at PNNL (S1, S3, S4) were imaged using 3D X-ray computed microtomography (XCMT) at BNL and analyzed using 3DMA-rock at SUNY Stony Brook. The imaging results support the mass balance findings reported by Dr. Um’s group, regarding the substantial dissolution of quartz in column S1. An important observation is that of grain movement accompanying dissolution in the unconsolidated media. The resultant movement changes the anticipated findings for pore and throat size distributions. For column S3, with cancrinite precipitation accompanying quartz dissolution, the precitiation halts much of the grain movement and more systematic distributions are obtained. Column S4, which was sealed with caustic solution acted as a control sample to study reactive effects during periods when columns S1 and S3 were sealed between flow experiments. No significant changes are observed in S4 with time. At Princeton, the imaging and analysis work focused on the effects of mineral precipitation and advancing our understanding of the impacts of these reactions on reactive transport in subsurface sediments. These findings are described in detail below, and have been published in L.E. Crandell, C.A. Peters, W. Um, K.W. Jones, W.B. Lindquist, 2012. “Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes.” Journal of Contaminant Hydrology 131 (2012) 89–99. 3) Multi-Scale Modeling and Up-Scaling. Using an array of modeling approaches, we examined pore-scale variations in physical and mineralogical properties, flow velocities, and (for unsaturated conditions) wetting fluid/grain surface areas, and permeability evolution. Results and Key Findings: To predict the column permeability and estimate the impact of mineral precipitation, pore network models were informed using the pore and throat-size distributions from the imaging analyses. As a comparison, supplemental analyses were performed on Viking sandstone specimens from the Alberta sedimentary basin. In another part of this study we sought to understand how carbonate rocks in contact with CO2-rich brines change due to the precipitation or dissolution of fast-reacting minerals such as calcite and dolomite. Using a newly developed reactive-transport pore-network model we were able to identify the conditions that lead to significant permeability changes. These findings are presented below and are compiled in a publication that is under review: J.P. Nogues, J.P. Fitts, M.A. Celia, C.A. Peters. “Permeability evolution due to dissolution and precipitation of carbonates using reactive transport modeling in pore networks”, Submitted: Water Resources Research, 2013.« less

  7. Adsorbates in a Box: Titration of Substrate Electronic States

    NASA Astrophysics Data System (ADS)

    Cheng, Zhihai; Wyrick, Jonathan; Luo, Miaomiao; Sun, Dezheng; Kim, Daeho; Zhu, Yeming; Lu, Wenhao; Kim, Kwangmoo; Einstein, T. L.; Bartels, Ludwig

    2010-08-01

    Nanoscale confinement of adsorbed CO molecules in an anthraquinone network on Cu(111) with a pore size of ≈4nm arranges the CO molecules in a shell structure that coincides with the distribution of substrate confined electronic states. Molecules occupy the states approximately in the sequence of rising electron energy. Despite the sixfold symmetry of the pore boundary itself, the adsorbate distribution adopts the threefold symmetry of the network-substrate system, highlighting the importance of the substrate even for such quasi-free-electron systems.

  8. Observations of the Dynamic Connectivity of the Non-Wetting Phase During Steady State Flow at the Pore Scale Using 3D X-ray Microtomography

    NASA Astrophysics Data System (ADS)

    Reynolds, C. A.; Menke, H. P.; Blunt, M. J.; Krevor, S. C.

    2015-12-01

    We observe a new type of non-wetting phase flow using time-resolved pore scale imaging. The traditional conceptual model of drainage involves a non-wetting phase invading a porous medium saturated with a wetting phase as either a fixed, connected flow path through the centres of pores or as discrete ganglia which move individually through the pore space, depending on the capillary number. We observe a new type of flow behaviour at low capillary number in which the flow of the non-wetting phase occurs through networks of persistent ganglia that occupy the large pores but continuously rearrange their connectivity (Figure 1). Disconnections and reconnections occur randomly to provide short-lived pseudo-steady state flow paths between pores. This process is distinctly different to the notion of flowing ganglia which coalesce and break-up. The size distribution of ganglia is dependent on capillary number. Experiments were performed by co-injecting N2and 25 wt% KI brine into a Bentheimer sandstone core (4mm diameter, 35mm length) at 50°C and 10 MPa. Drainage was performed at three flow rates (0.04, 0.3 and 1 ml/min) at a constant fractional flow of 0.5 and the variation in ganglia populations and connectivity observed. We obtained images of the pore space during steady state flow with a time resolution of 43 s over 1-2 hours. Experiments were performed at the Diamond Light Source synchrotron. Figure 1. The position of N2 in the pore space during steady state flow is summed over 40 time steps. White indicates that N2 occupies the space over >38 time steps and red <5 time steps.

  9. Dispersion in 2D network: Effects of mixing rule at nodes and molecular diffusion

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tao, Q.; Li, M.

    2017-12-01

    We simulate solute transport in 2D network backbone characterized by pore connectivity and pore heterogeneity by particle-tracking method. In order to ensure the dispersion coefficient reaching an asymptotic value, we upscale dispersion from pore-scale to meter-scale by using periodic boundary condition. As comparison, two different flow mechanisms without or with dispersion in a capillary tube, namely mean flow and Taylor-Aris dispersion, are introduced to investigate the evolution of solute spreading. The longitudinal dispersion coefficient DLM without dispersion in a pipe can roughly be regarded as a parameter to quantify the impact of microscopic structure of porous media on solute spreading, which is smaller than that value DL of Taylor-Aris dispersion. The difference between them decreases with the enhancement of the disorder. The mixing rule at nodes has a minor effect on longitudinal spreading, but has a significant effect on transverse spreading, especially for the nearly homogeneous media. An increase of the disorder in network achieved by increasing pore size heterogeneity or/and decreasing pore connectivity diminishes the difference between two mixing rules. Besides, the evolution of longitudinal dispersion coefficient over diffusion presents three different patterns at different velocities for homogenous media, such as monotonically increasing trend, decreasing first and then increasing trend and monotonically decreasing trend. But all are replaced by power law for a high disorder. The simulation results also accurately predict the experimental dependence of the longitudinal coefficient on Peclet number Pe.

  10. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine

    Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillarymore » entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or geometry of the pore network. Results from this study, combined with high-resolution TEM imaging, provide insight into the differences in volume and geometry of porosity between these various mudstones.« less

  11. Bio-inspired Murray materials for mass transfer and activity

    PubMed Central

    Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian

    2017-01-01

    Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid–solid, gas–solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes. PMID:28382972

  12. Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.

    PubMed

    Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros

    2014-09-16

    The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based materials are biocompatible. On the basis of these results, the fibrous and porous KCC-1-based nanomaterials can be said to be more suitable to carry, transport, and deliver DNAs and genes than cylindrical porous nanomaterials such as MCM-41.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hongkyu; Major, Jonathan; Dewers, Thomas

    Dissolved CO 2 in the subsurface resulting from geological CO 2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes including hydrodynamics, transport, and reactions at the (sub) pore-scale. In this work pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reactions at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This paper is motivated by observations of CO 2 seeps from a natural CO 2 sequestration analog, Crystal Geyser, Utah. Observations alongmore » the surface exposure of the Little Grand Wash fault indicate the lateral migration of CO 2 seep sites (i.e., alteration zones) of 10–50 m width with spacing on the order of ~100 m over time. Sandstone permeability in alteration zones is reduced by 3–4 orders of magnitude by carbonate cementation compared to unaltered zones. One granular porous medium and one fracture network systems are used to conceptually represent permeable porous media and locations of conduits controlled by fault-segment intersections and/or topography, respectively. Simulation cases accounted for a range of reaction regimes characterized by the Damköhler (Da) and Peclet (Pe) numbers. Pore-scale simulation results demonstrate that combinations of transport (Pe), geochemical conditions (Da), solution chemistry, and pore and fracture configurations contributed to match key patterns observed in the field of how calcite precipitation alters flow paths by pore plugging. This comparison of simulation results with field observations reveals mechanistic explanations of the lateral migration and enhances our understanding of subsurface processes associated with the CO 2 injection. In addition, permeability and porosity relations are constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Da and Pe numbers. Finally, the functional relationships obtained from pore-scale simulations can be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO 2 seeps.« less

  14. Coverage Dependent Assembly of Anthraquinone on Au(111)

    NASA Astrophysics Data System (ADS)

    Conrad, Brad; Deloach, Andrew; Einstein, Theodore; Dougherty, Daniel

    A study of adsorbate-adsorbate and surface state mediated interactions of anthraquinone (AnQ) on Au(111) is presented. We utilize scanning tunneling microscopy (STM) to characterize the coverage dependence of AnQ structure formation. Ordered structures are observed up to a single monolayer (ML) and are found to be strongly dependent on molecular surface density. While the complete ML forms a well-ordered close-packed layer, for a narrow range of sub-ML coverages irregular close-packed islands are observed to coexist with a disordered pore network linking neighboring islands. This network displays a characteristic pore size and at lower coverages, the soliton walls of the herringbone reconstruction are shown to promote formation of distinct pore nanostructures. We will discuss these nanostructure formations in the context of surface mediated and more direct adsorbate interactions.

  15. Formation, Structure and Electrochemical Impedance Analysis of Microporous Polyelectrolyte Multilayers

    NASA Astrophysics Data System (ADS)

    Lutkenhaus, Jodie; McEnnis, Kathleen; Hammond, Paula

    2007-03-01

    Microporous networks are of interest as electrolyte materials, gas separation membranes and catalytic nanoparticle templates. Here, we create microporous polyelectrolyte networks of tunable pore size and connectivity using the layer-by-layer (LBL) technique. In this method, a film is formed from the alternate adsorption of oppositely charged polyelectrolytes from aqueous solution to create a cohesive thin film. Using poly(ethylene imine) (PEI) and poly(acrylic acid) (PAA), LBL thin films of variable composition and charge density were assembled; then, the films were treated in an acidic bath, which ionizes PEI and de-ionizes PAA. This shift in charge density induces morphological rearrangement realized by a microporous network. Depending on the assembly pH and acidic bath pH, we are able to precisely tune the morphology, which is characterized by atomic force microscopy and scanning electron microscopy. To demonstrate the porous nature of the polyelectrolyte multilayer, the pores were filled with non-aqueous electrolyte (i.e. ethylene carbonate, dimethyl carbonate and lithium hexafluorophosphate) and probed with electrochemical impedance spectroscopy. These microporous networks exhibited two time constants, indicative of ions traveling through the liquid-filled pores and ions traveling through the polyelectrolyte matrix.

  16. Modeling postshock evolution of large electropores

    NASA Astrophysics Data System (ADS)

    Neu, John C.; Krassowska, Wanda

    2003-02-01

    The Smoluchowski equation (SE), which describes the evolution of pores created by electric shocks, cannot be applied to modeling large and long-lived pores for two reasons: (1) it does not predict pores of radius above 20 nm without also predicting membrane rupture; (2) it does not predict postshock growth of pores. This study proposes a model in which pores are coupled by membrane tension, resulting in a nonlinear generalization of SE. The predictions of the model are explored using examples of homogeneous (all pore radii r are equal) and heterogeneous (0⩽r⩽rmax) distributions of pores. Pores in a homogeneous population either shrink to zero or assume a stable radius corresponding to the minimum of the bilayer energy. For a heterogeneous population, such a stable radius does not exist. All pores, except rmax, shrink to zero and rmax grows to infinity. However, the unbounded growth of rmax is not physical because the number of pores per cell decreases in time and the continuum model loses validity. When the continuum formulation is replaced by the discrete one, the model predicts the coarsening process: all pores, except rmax, shrink to zero and rmax assumes a stable radius. Thus, the model with tension-coupled pores does not predict membrane rupture and the predicted postshock growth of pores is consistent with experimental evidence.

  17. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles - upscaling an aggregate biophysical model.

    PubMed

    Ebrahimi, Ali; Or, Dani

    2016-09-01

    Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Recent mechanistic models of microbial processes in unsaturated aggregate-like pore networks revealed a highly dynamic interplay between oxic and anoxic microsites jointly shaped by hydration conditions and by aerobic and anaerobic microbial community abundance and self-organization. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support substantial anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3D angular pore networks. Model aggregates of different sizes were subjected to variable water, carbon and oxygen contents that varied with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain estimates of biogeochemical fluxes from the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2 O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of practical interest for hydrological and climate models. © 2016 John Wiley & Sons Ltd.

  18. Three-dimensional characterization of microporosity and permeability in fault zones hosted in heterolithic succession

    NASA Astrophysics Data System (ADS)

    Riegel, H. B.; Zambrano, M.; Jablonska, D.; Emanuele, T.; Agosta, F.; Mattioni, L.; Rustichelli, A.

    2017-12-01

    The hydraulic properties of fault zones depend upon the individual contributions of the damage zone and the fault core. In the case of the damage zone, it is generally characterized by means of fracture analysis and modelling implementing multiple approaches, for instance the discrete fracture network model, the continuum model, and the channel network model. Conversely, the fault core is more difficult to characterize because it is normally composed of fine grain material generated by friction and wear. If the dimensions of the fault core allows it, the porosity and permeability are normally studied by means of laboratory analysis or in the other case by two dimensional microporosity analysis and in situ measurements of permeability (e.g. micro-permeameter). In this study, a combined approach consisting of fracture modeling, three-dimensional microporosity analysis, and computational fluid dynamics was applied to characterize the hydraulic properties of fault zones. The studied fault zones crosscut a well-cemented heterolithic succession (sandstone and mudstones) and may vary in terms of fault core thickness and composition, fracture properties, kinematics (normal or strike-slip), and displacement. These characteristics produce various splay and fault core behavior. The alternation of sandstone and mudstone layers is responsible for the concurrent occurrence of brittle (fractures) and ductile (clay smearing) deformation. When these alternating layers are faulted, they produce corresponding fault cores which act as conduits or barriers for fluid migration. When analyzing damage zones, accurate field and data acquisition and stochastic modeling was used to determine the hydraulic properties of the rock volume, in relation to the surrounding, undamaged host rock. In the fault cores, the three-dimensional pore network quantitative analysis based on X-ray microtomography images includes porosity, pore connectivity, and specific surface area. In addition, images were used to perform computational fluid simulation (Lattice-Boltzmann multi relaxation time method) and estimate the permeability. These results will be useful for understanding the deformation process and hydraulic properties across meter-scale damage zones.

  19. Studies of Biosilicification; The Role of Proteins, Carbohydrates and Model Compounds in Structure Control

    DTIC Science & Technology

    2005-12-31

    No. carbons Pore volume data. Resolution of complex monosaccharide mixtures from plant cell wall isolates by high pH anion exchange chromatography. To...interwoven polysaccharide chains embedded in a gel matrix of galacturonic acid rich polysaccharides connected by calcium bridges. This network also...picomolar levels). Also, it allows the determination of intact monosaccharides without pre or post column derivatisation, decreasing the time of

  20. Understanding hydraulic fracturing: a multi-scale problem.

    PubMed

    Hyman, J D; Jiménez-Martínez, J; Viswanathan, H S; Carey, J W; Porter, M L; Rougier, E; Karra, S; Kang, Q; Frash, L; Chen, L; Lei, Z; O'Malley, D; Makedonska, N

    2016-10-13

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages.This article is part of the themed issue 'Energy and the subsurface'. © 2016 The Author(s).

  1. Understanding hydraulic fracturing: a multi-scale problem

    PubMed Central

    Hyman, J. D.; Jiménez-Martínez, J.; Viswanathan, H. S.; Carey, J. W.; Porter, M. L.; Rougier, E.; Karra, S.; Kang, Q.; Frash, L.; Chen, L.; Lei, Z.; O’Malley, D.; Makedonska, N.

    2016-01-01

    Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597789

  2. Seasonal changes in peatland surface elevation recorded at GPS stations in the Red Lake Peatlands, northern Minnesota, USA

    USGS Publications Warehouse

    Reeve, A.S.; Glaser, P.H.; Rosenberry, Donald O.

    2013-01-01

    Northern peatlands appear to hold large volumes of free-phase gas (e.g., CH4 and CO2), which has been detected by surface deformations, pore pressure profiles, and electromagnetic surveys. Determining the gas content and its impact in peat is challenging because gas storage depends on both the elastic properties of the peat matrix and the buoyant forces exerted by pore fluids. We therefore used a viscoelastic deformation model to estimate these variables by adjusting model runs to reproduce observed changes in peat surface elevation within a 1300 km2 peatland. A local GPS network documented significant changes in surface elevations throughout the year with the greatest vertical displacements associated with rapid changes in peat water content and unloadings due to melting of the winter snowpack. These changes were coherent with changes in water table elevation and also abnormal pore pressure changes measured by nests of instrumented piezometers. The deformation model reproduced these changes when the gas content was adjusted to 10% of peat volume, and Young's modulus was varied between 5 and 100 kPa as the peat profile shifted from tension to compression. In contrast, the model predicted little peat deformation when the gas content was 3% or lower. These model simulations are consistent with previous estimates of gas volume in northern peatlands and suggest an upper limit of gas storage controlled by the elastic moduli of the peat fabric.

  3. Inertial effects during irreversible meniscus reconfiguration in angular pores

    NASA Astrophysics Data System (ADS)

    Ferrari, Andrea; Lunati, Ivan

    2014-12-01

    In porous media, the dynamics of the invading front between two immiscible fluids is often characterized by abrupt reconfigurations caused by local instabilities of the interface. As a prototype of these phenomena we consider the dynamics of a meniscus in a corner as it can be encountered in angular pores. We investigate this process in detail by means of direct numerical simulations that solve the Navier-Stokes equations in the pore space and employ the Volume of Fluid method (VOF) to track the evolution of the interface. We show that for a quasi-static displacement, the numerically calculated surface energy agrees well with the analytical solutions that we have derived for pores with circular and square cross sections. However, the spontaneous reconfigurations are irreversible and cannot be controlled by the injection rate: they are characterized by the amount of surface energy that is spontaneously released and transformed into kinetic energy. The resulting local velocities can be orders of magnitude larger than the injection velocity and they induce damped oscillations of the interface that possess their own time scales and depend only on fluid properties and pore geometry. In complex media (we consider a network of cubic pores) reconfigurations are so frequent and oscillations last long enough that increasing inertial effects leads to a different fluid distribution by influencing the selection of the next pore to be invaded. This calls into question simple pore-filling rules based only on capillary forces. Also, we demonstrate that inertial effects during irreversible reconfigurations can influence the work done by the external forces that is related to the pressure drop in Darcy's law. This suggests that these phenomena have to be considered when upscaling multiphase flow because local oscillations of the menisci affect macroscopic quantities and modify the constitutive relationships to be used in macro-scale models. These results can be extrapolated to other interface instabilities that are at the origin of fast pore-scale events, such as Haines jumps, snap-off and coalescence.

  4. XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction

    DOE PAGES

    Thomaston, Jessica L.; Woldeyes, Rahel A.; Nakane, Takanori; ...

    2017-08-23

    The M2 proton channel of influenza A is a drug target that is essential for the reproduction of the flu virus. It is also a model system for the study of selective, unidirectional proton transport across a membrane. Ordered water molecules arranged in “wires” inside the channel pore have been proposed to play a role in both the conduction of protons to the four gating His37 residues and the stabilization of multiple positive charges within the channel. To visualize the solvent in the pore of the channel at room temperature while minimizing the effects of radiation damage, data were collectedmore » to a resolution of 1.4 Å using an X-ray free-electron laser (XFEL) at three different pH conditions: pH 5.5, pH 6.5, and pH 8.0. Data were collected on the Inward open state, which is an intermediate that accumulates at high protonation of the His37 tetrad. At pH 5.5, a continuous hydrogen-bonded network of water molecules spans the vertical length of the channel, consistent with a Grotthuss mechanism model for proton transport to the His37 tetrad. This ordered solvent at pH 5.5 could act to stabilize the positive charges that build up on the gating His37 tetrad during the proton conduction cycle. The number of ordered pore waters decreases at pH 6.5 and 8.0, where the Inward open state is less stable. Furthermore, these studies provide a graphical view of the response of water to a change in charge within a restricted channel environment.« less

  5. XFEL structures of the influenza M2 proton channel: Room temperature water networks and insights into proton conduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomaston, Jessica L.; Woldeyes, Rahel A.; Nakane, Takanori

    The M2 proton channel of influenza A is a drug target that is essential for the reproduction of the flu virus. It is also a model system for the study of selective, unidirectional proton transport across a membrane. Ordered water molecules arranged in “wires” inside the channel pore have been proposed to play a role in both the conduction of protons to the four gating His37 residues and the stabilization of multiple positive charges within the channel. To visualize the solvent in the pore of the channel at room temperature while minimizing the effects of radiation damage, data were collectedmore » to a resolution of 1.4 Å using an X-ray free-electron laser (XFEL) at three different pH conditions: pH 5.5, pH 6.5, and pH 8.0. Data were collected on the Inward open state, which is an intermediate that accumulates at high protonation of the His37 tetrad. At pH 5.5, a continuous hydrogen-bonded network of water molecules spans the vertical length of the channel, consistent with a Grotthuss mechanism model for proton transport to the His37 tetrad. This ordered solvent at pH 5.5 could act to stabilize the positive charges that build up on the gating His37 tetrad during the proton conduction cycle. The number of ordered pore waters decreases at pH 6.5 and 8.0, where the Inward open state is less stable. Furthermore, these studies provide a graphical view of the response of water to a change in charge within a restricted channel environment.« less

  6. Simulation of the Flow Through Porous Layers Composed of Converging-Diverging Capillary Fissures or Tubes

    NASA Astrophysics Data System (ADS)

    Walicka, A.

    2018-02-01

    In this paper, a porous medium is modelled by a network of converging-diverging capillaries which may be considered as fissures or tubes. This model makes it necessary to consider flows through capillary fissures or tubes. Therefore an analytical method for deriving the relationships between pressure drops, volumetric flow rates and velocities for the following fluids: Newtonian, polar, power-law, pseudoplastic (DeHaven and Sisko types) and Shulmanian, was developed. Next, considerations on the models of pore network for Newtonian and non-Newtonian fluids were presented. The models, similar to the schemes of central finite differences may provide a good basis for transforming the governing equations of a flow through the porous medium into a set of linear or quasi-linear algebraic equations. It was shown that the some coefficients in these algebraic equations depend on the kind of the capillary convergence.

  7. Physical modelling of the nuclear pore complex

    PubMed Central

    Fassati, Ariberto; Ford, Ian J.; Hoogenboom, Bart W.

    2013-01-01

    Physically interesting behaviour can arise when soft matter is confined to nanoscale dimensions. A highly relevant biological example of such a phenomenon is the Nuclear Pore Complex (NPC) found perforating the nuclear envelope of eukaryotic cells. In the central conduit of the NPC, of ∼30–60 nm diameter, a disordered network of proteins regulates all macromolecular transport between the nucleus and the cytoplasm. In spite of a wealth of experimental data, the selectivity barrier of the NPC has yet to be explained fully. Experimental and theoretical approaches are complicated by the disordered and heterogeneous nature of the NPC conduit. Modelling approaches have focused on the behaviour of the partially unfolded protein domains in the confined geometry of the NPC conduit, and have demonstrated that within the range of parameters thought relevant for the NPC, widely varying behaviour can be observed. In this review, we summarise recent efforts to physically model the NPC barrier and function. We illustrate how attempts to understand NPC barrier function have employed many different modelling techniques, each of which have contributed to our understanding of the NPC.

  8. Particulate removal processes and hydraulics of porous gravel media filters

    NASA Astrophysics Data System (ADS)

    Minto, J. M.; Phoenix, V. R.; Dorea, C. C.; Haynes, H.; Sloan, W. T.

    2013-12-01

    Sustainable urban Drainage Systems (SuDS) are rapidly gaining acceptance as a low-cost tool for treating urban runoff pollutants close to source. Road runoff water in particular requires treatment due to the presence of high levels of suspended particles and heavy metals adsorbed to these particles. The aim of this research is to elucidate the particle removal processes that occur within gravel filters that have so far been considered as 'black-box' systems. Based on these findings, a better understanding will be attained on what influences gravel filter removal efficiency and how this changes throughout their design life; leading to a more rational design of this useful technology. This has been achieved by tying together three disparate research elements: tracer residence time distribution curves of filters during clogging; 3D magnetic resonance imaging (MRI) of clogging filters and computational fluid dynamics (CFD) modelling of complex filter pore networks. This research relates column average changes in particle removal efficiency and tracer residence time distributions (RTDs) due to clogging with non-invasive measurement of the spatial variability in particle deposition. The CFD modelling provides a link between observed deposition patterns, flow velocities and wall shear stresses as well as the explanations for the change in RTD with clogging and the effect on particle transport. Results show that, as a filter clogs, particles take a longer, more tortuous path through the filter. This is offset by a reduction in filter volume resulting in higher flow velocities and more rapid particle transport. Higher velocities result in higher shear stresses and the development of preferential pathways in which the velocity exceeds the deposition threshold and the overall efficiency of the filter decreases. Initial pore geometry is linked to the pattern of deposition and subsequent formation of preferential pathways. These results shed light on the 'black-box' internal clogging processes of gravel filters and are a considerable improvement on the inflow/outflow data most often available to monitor removal efficiency and clogging. Sub-section of the MRI derived geometry showing gravel (grey), pore space (blue), deposited particles (red) for 1) prior to clogging and 2) after clogging. The pore network skeleton (green) provided a reference point for comparing pore diameter change with clogging.

  9. Modeling relative permeability of water in soil: Application of effective-medium approximation and percolation theory

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Sahimi, Muhammad; Daigle, Hugh

    2016-07-01

    Accurate prediction of the relative permeability to water under partially saturated condition has broad applications and has been studied intensively since the 1940s by petroleum, chemical, and civil engineers, as well as hydrologists and soil scientists. Many models have been developed for this purpose, ranging from those that represent the pore space as a bundle of capillary tubes, to those that utilize complex networks of interconnected pore bodies and pore throats with various cross-section shapes. In this paper, we propose an approach based on the effective-medium approximation (EMA) and percolation theory in order to predict the water relative permeability. The approach is general and applicable to any type of porous media. We use the method to compute the water relative permeability in porous media whose pore-size distribution follows a power law. The EMA is invoked to predict the relative permeability from the fully saturated pore space to some intermediate water saturation that represents a crossover from the EMA to what we refer to as the "critical region." In the critical region below the crossover water saturation Swx, but still above the critical water saturation Swc (the residual saturation or the percolation threshold of the water phase), the universal power law predicted by percolation theory is used to compute the relative permeability. To evaluate the accuracy of the approach, data for 21 sets of undisturbed laboratory samples were selected from the UNSODA database. For 14 cases, the predicted relative permeabilities are in good agreement with the data. For the remaining seven samples, however, the theory underestimates the relative permeabilities. Some plausible sources of the discrepancy are discussed.

  10. Current challenges in quantifying preferential flow through the vadose zone

    NASA Astrophysics Data System (ADS)

    Koestel, John; Larsbo, Mats; Jarvis, Nick

    2017-04-01

    In this presentation, we give an overview of current challenges in quantifying preferential flow through the vadose zone. A review of the literature suggests that current generation models do not fully reflect the present state of process understanding and empirical knowledge of preferential flow. We believe that the development of improved models will be stimulated by the increasingly widespread application of novel imaging technologies as well as future advances in computational power and numerical techniques. One of the main challenges in this respect is to bridge the large gap between the scales at which preferential flow occurs (pore to Darcy scales) and the scale of interest for management (fields, catchments, regions). Studies at the pore scale are being supported by the development of 3-D non-invasive imaging and numerical simulation techniques. These studies are leading to a better understanding of how macropore network topology and initial/boundary conditions control key state variables like matric potential and thus the strength of preferential flow. Extrapolation of this knowledge to larger scales would require support from theoretical frameworks such as key concepts from percolation and network theory, since we lack measurement technologies to quantify macropore networks at these large scales. Linked hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data enable investigation of the larger-scale heterogeneities that can generate preferential flow patterns at pedon, hillslope and field scales. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help in parameterizing models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  11. Tomographic Image of a Seismically Active Volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Chouet, B. A.; Pitt, A. M.

    2015-12-01

    High-resolution tomographic P wave, S wave, and VP /VS velocity structure models are derived for Mammoth Mountain, California using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (˜50 km3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is primarily due to the presence of CO2 distributed in oblate-spheroid pores with mean aspect ratio α ˜8 x 10-4 (crack-like pores) and gas volume fraction φ ˜4 x 10-4. The pore density parameter κ = 3φ / (4πα) = na3 = 0.12, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to range up to ˜1.6 x 1010 kg if the pores exclusively contain CO2, although he presence of an aqueous phase may lower this estimate by up to one order of magnitude. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 5 x 105 kg day-1, the reservoir could supply the emission of CO2 for ˜8 to ˜90 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  12. Multiscale Simulations of Reactive Transport

    NASA Astrophysics Data System (ADS)

    Tartakovsky, D. M.; Bakarji, J.

    2014-12-01

    Discrete, particle-based simulations offer distinct advantages when modeling solute transport and chemical reactions. For example, Brownian motion is often used to model diffusion in complex pore networks, and Gillespie-type algorithms allow one to handle multicomponent chemical reactions with uncertain reaction pathways. Yet such models can be computationally more intensive than their continuum-scale counterparts, e.g., advection-dispersion-reaction equations. Combining the discrete and continuum models has a potential to resolve the quantity of interest with a required degree of physicochemical granularity at acceptable computational cost. We present computational examples of such "hybrid models" and discuss the challenges associated with coupling these two levels of description.

  13. Impact of geometrical properties on permeability and fluid phase distribution in porous media

    NASA Astrophysics Data System (ADS)

    Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.

    2008-09-01

    To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.

  14. Fractal Viscous Fingering in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Boyle, E.; Sams, W.; Ferer, M.; Smith, D. H.

    2007-12-01

    We have used two very different physical models and computer codes to study miscible injection of a low- viscosity fluid into a simple fracture network, where it displaces a much-more viscous "defending" fluid through "rock" that is otherwise impermeable. The one code (NETfLow) is a standard pore level model, originally intended to treat laboratory-scale experiments; it assumes negligible mixing of the two fluids. The other code (NFFLOW) was written to treat reservoir-scale engineering problems; It explicitly treats the flow through the fractures and allows for significant mixing of the fluids at the interface. Both codes treat the fractures as parallel plates, of different effective apertures. Results are presented for the composition profiles from both codes. Independent of the degree of fluid-mixing, the profiles from both models have a functional form identical to that for fractal viscous fingering (i.e., diffusion limited aggregation, DLA). The two codes that solve the equations for different models gave similar results; together they suggest that the injection of a low-viscosity fluid into large- scale fracture networks may be much more significantly affected by fractal fingering than previously illustrated.

  15. The role of local stress perturbation on the simultaneous opening of orthogonal fractures

    NASA Astrophysics Data System (ADS)

    Boersma, Quinten; Hardebol, Nico; Barnhoorn, Auke; Bertotti, Giovanni; Drury, Martyn

    2016-04-01

    Orthogonal fracture networks (ladder-like networks) are arrangements that are commonly observed in outcrop studies. They form a particularly dense and well connected network which can play an important role in the effective permeability of tight hydrocarbon or geothermal reservoirs. One issue is the extent to which both the long systematic and smaller cross fractures can be simultaneously critically stressed under a given stress condition. Fractures in an orthogonal network form by opening mode-I displacements in which the main component is separation of the two fracture walls. This opening is driven by effective tensile stresses as the smallest principle stress acting perpendicular to the fracture wall, which accords with linear elastic fracture mechanics. What has been well recognized in previous field and modelling studies is how both the systematic fractures and perpendicular cross fractures require the minimum principle stress to act perpendicular to the fracture wall. Thus, these networks either require a rotation of the regional stress field or local perturbations in stress field. Using a mechanical finite element modelling software, a geological case of layer perpendicular systematic mode I opening fractures is generated. New in our study is that we not only address tensile stresses at the boundary, but also address models using pore fluid pressure. The local stress in between systematic fractures is then assessed in order to derive the probability and orientation of micro crack propagation using the theory of sub critical crack growth and Griffith's theory. Under effective tensile conditions, the results indicate that in between critically spaced systematic fractures, local effective tensile stresses flip. Therefore the orientation of the least principle stress will rotate 90°, hence an orthogonal fracture is more likely to form. Our new findings for models with pore fluid pressures instead of boundary tension show that the magnitude of effective tension in between systematic fractures is reduced but does not remove the occurring stress flip. However, putting effective tension on the boundaries will give overestimates in the reduction of the local effective tensile stress perpendicular to the larger systematic fractures and therefore the magnitude of the stress flip. In conclusion, both model approaches indicate that orthogonal fractures can form while experiencing one regional stress regime. This also means that under these specific loading and locally perturbed stress conditions both sets of orthogonal fractures stay open and can provide a pathway for fluid circulation.

  16. The influence of interfacial slip on two-phase flow in rough pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucala, Alec; Martinez, Mario J.; Wang, Yifeng

    The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less

  17. The influence of interfacial slip on two-phase flow in rough pores

    DOE PAGES

    Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; ...

    2017-08-01

    The migration and trapping of supercritical CO 2 (scCO 2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-anglemore » (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO 2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. As a result, a much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.« less

  18. The influence of interfacial slip on two-phase flow in rough pores

    NASA Astrophysics Data System (ADS)

    Kucala, Alec; Martinez, Mario J.; Wang, Yifeng; Noble, David R.

    2017-08-01

    The migration and trapping of supercritical CO2 (scCO2) in geologic carbon storage is strongly dependent on the geometry and wettability of the pore network in the reservoir rock. During displacement, resident fluids may become trapped in the pits of a rough pore surface forming an immiscible two-phase fluid interface with the invading fluid, allowing apparent slip flow at this interface. We present a two-phase fluid dynamics model, including interfacial tension, to characterize the impact of mineral surface roughness on this slip flow. We show that the slip flow can be cast in more familiar terms as a contact-angle (wettability)-dependent effective permeability to the invading fluid, a nondimensional measurement which relates the interfacial slip to the pore geometry. The analysis shows the surface roughness-induced slip flow can effectively increase or decrease this effective permeability, depending on the wettability and roughness of the mineral surfaces. Configurations of the pore geometry where interfacial slip has a tangible influence on permeability have been identified. The results suggest that for large roughness features, permeability to CO2 may be enhanced by approximately 30% during drainage, while the permeability to brine during reimbibition may be enhanced or diminished by 60%, depending on the contact angle with the mineral surfaces and degrees of roughness. For smaller roughness features, the changes in permeability through interfacial slip are small. A much larger range of effective permeabilities are suggested for general fluid pairs and contact angles, including occlusion of the pore by the trapped phase.

  19. A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Wada, Ken; Hyodo, Toshio

    2013-06-01

    Positron annihilation lifetime spectroscopy is one of the methods for estimating pore size in insulating materials. We present a shape-free model to be used conveniently for such analysis. A basic model in classical picture is modified by introducing a parameter corresponding to an effective size of the positronium (Ps). This parameter is adjusted so that its Ps-lifetime to pore-size relation merges smoothly with that of the well-established Tao-Eldrup model (with modification involving the intrinsic Ps annihilation rate) applicable to very small pores. The combined model, i.e., modified Tao-Eldrup model for smaller pores and the modified classical model for larger pores, agrees surprisingly well with the quantum-mechanics based extended Tao-Eldrup model, which deals with Ps trapped in and thermally equilibrium with a rectangular pore.

  20. A new species of Xenoturbella from the western Pacific Ocean and the evolution of Xenoturbella.

    PubMed

    Nakano, Hiroaki; Miyazawa, Hideyuki; Maeno, Akiteru; Shiroishi, Toshihiko; Kakui, Keiichi; Koyanagi, Ryo; Kanda, Miyuki; Satoh, Noriyuki; Omori, Akihito; Kohtsuka, Hisanori

    2017-12-18

    Xenoturbella is a group of marine benthic animals lacking an anus and a centralized nervous system. Molecular phylogenetic analyses group the animal together with the Acoelomorpha, forming the Xenacoelomorpha. This group has been suggested to be either a sister group to the Nephrozoa or a deuterostome, and therefore it may provide important insights into origins of bilaterian traits such as an anus, the nephron, feeding larvae and centralized nervous systems. However, only five Xenoturbella species have been reported and the evolutionary history of xenoturbellids and Xenacoelomorpha remains obscure. Here we describe a new Xenoturbella species from the western Pacific Ocean, and report a new xenoturbellid structure - the frontal pore. Non-destructive microCT was used to investigate the internal morphology of this soft-bodied animal. This revealed the presence of a frontal pore that is continuous with the ventral glandular network and which exhibits similarities with the frontal organ in acoelomorphs. Our results suggest that large size, oval mouth, frontal pore and ventral glandular network may be ancestral features for Xenoturbella. Further studies will clarify the evolutionary relationship of the frontal pore and ventral glandular network of xenoturbellids and the acoelomorph frontal organ. One of the habitats of the newly identified species is easily accessible from a marine station and so this species promises to be valuable for research on bilaterian and deuterostome evolution.

  1. Synthesis of pore-variable mesoporous CdS and evaluation of its photocatalytic activity in degrading methylene blue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei-Min, E-mail: chm_zhangwm@ujn.edu.cn; Jiang, Yao-Quan; Cao, Xiao-Yan

    2013-10-15

    Graphical abstract: - Highlights: • Self-templated synthesis of tubular CdS. • Cadmium complexes of aliphatic acids sustain the network of mesoporous structures. • Aliphatic acids affect the phase composition and particle size. • Pore size and volume vary with aliphatic acids having different hydrocarbonyl. - Abstract: In this study, mesoporous CdS polycrystallites have been synthesized using aliphatic acids of hexanoic acid, octanoic acid, and oleic acid as coordinating and capping agents, respectively. The fibrous Cd–fatty acid salts act as a template to form the tubular CdS. The organic species are found to be necessary for maintaining the network of mesoporousmore » CdS. The characterization results indicate that the shorter carbon chain length in aliphatic acids favors the wurtzite phase and particle size growth the specific surface area, pore diameter and pore volume show a monotonic raise with increasing carbon chain. The photocatalytic activities of mesoporous CdS tubes exhibit much higher efficiency than those of nanosized CdS powders in decolorizing methylene blue under simulated visible light.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, K.; Tonks, M.; Zhang, Y.

    A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared tomore » the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.« less

  3. Modeling for stress-strain curve of a porous NiTi under compressive loading

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Taya, Minoru

    2005-05-01

    Two models for predicting the stress-strain curve of porous NiTi under compressive loading are presented in this paper. Porous NiTi shape memory alloy is investigated as a composite composed of solid NiTi as matrix and pores as inclusions. Eshelby"s equivalent inclusion method and Mori-Tanaka"s mean-field theory are employed in both models. In the first model, the geometry of the pores is assumed as sphere. The composite is with close-cells. While in the second model, two geometries of the pores, sphere and ellipsoid, are investigated. The pores are interconnected to each other forming an open-cell microstructure. The two adjacent pores connected along equator ring are investigated as a unit. Two pores interact with each other as they are connected. The average eigenstrain of each unit is obtained by taking the average of each pore"s eigenstrain. The stress-strain curves of porous shape memory alloy with spherical pores and ellipsoidal pores are compared, it is found that the shape of the pores has a nonignorable influence on the mechanical property of the porous NiTi. Comparison of the stress-strain curves of the two models shows that introducing of the average eigenstrains in the second model makes the predictions more agreeable to the experimental results.

  4. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding.

    PubMed

    Lee, Kee-Won; Wang, Shanfeng; Lu, Lichun; Jabbari, Esmaiel; Currier, Bradford L; Yaszemski, Michael J

    2006-10-01

    Poly(propylene fumarate) (PPF) is an injectable, biodegradable polymer that has been used for fabricating preformed scaffolds in tissue engineering applications because of in situ crosslinking characteristics. Aiming for understanding the effects of pore structure parameters on bone tissue ingrowth, 3-dimensional (3D) PPF scaffolds with controlled pore architecture have been produced in this study from computer-aided design (CAD) models. We have created original scaffold models with 3 pore sizes (300, 600, and 900 microm) and randomly closed 0%, 10%, 20%, or 30% of total pores from the original models in 3 planes. PPF scaffolds were fabricated by a series steps involving 3D printing of support/build constructs, dissolving build materials, injecting PPF, and dissolving support materials. To investigate the effects of controlled pore size and interconnectivity on scaffolds, we compared the porosities between the models and PPF scaffolds fabricated thereby, examined pore morphologies in surface and cross-section using scanning electron microscopy, and measured permeability using the falling head conductivity test. The thermal properties of the resulting scaffolds as well as uncrosslinked PPF were determined by differential scanning calorimetry and thermogravimetric analysis. Average pore sizes and pore shapes of PPF scaffolds with 600- and 900-microm pores were similar to those of CAD models, but they depended on directions in those with 300-microm pores. Porosity and permeability of PPF scaffolds decreased as the number of closed pores in original models increased, particularly when the pore size was 300 microm as the result of low porosity and pore occlusion. These results show that 3D printing and injection molding technique can be applied to crosslinkable polymers to fabricate 3D porous scaffolds with controlled pore structures, porosity, and permeability using their CAD models.

  5. Dual pore-connectivity and flow-paths affect shale hydrocarbon production

    NASA Astrophysics Data System (ADS)

    Hayman, N. W.; Daigle, H.; Kelly, E. D.; Milliken, K. L.; Jiang, H.

    2016-12-01

    Aided with integrated characterization approaches of droplet contact angle measurement, mercury intrusion capillary pressure, low-pressure gas physisorption, scanning electron microscopy, and small angle neutron scattering, we have systematically studied how pore connectivity and wettability are associated with mineral and organic matter phases of shales (Barnett, Bakken, Eagle Ford), as well as their influence on macroscopic fluid flow and hydrocarbon movement, from the following complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction and high-pressure intrusion, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with imaging and elemental mapping. The first three tests use tracer-bearing fluids (hydrophilic API brine and hydrophobic n-decane) fluids with a suite of wettability tracers of different sizes and reactivities developed in our laboratory. These innovative and integrated approaches indicate a Dalmatian wettability behavior at a scale of microns, limited connectivity (<500 microns from shale sample edge) shale pores, and disparity of well-connected hydrophobic pore network ( 10 nm) and sparsely connected hydrophilic pore systems (>50-100 nm), which is linked to the steep initial decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.

  6. Monitoring of stainless-steel slag carbonation using X-ray computed microtomography.

    PubMed

    Boone, Marijn A; Nielsen, Peter; De Kock, Tim; Boone, Matthieu N; Quaghebeur, Mieke; Cnudde, Veerle

    2014-01-01

    Steel production is one of the largest contributors to industrial CO2 emissions. This industry also generates large amounts of solid byproducts, such as slag and sludge. In this study, fine grained stainless-steel slag (SSS) is valorized to produce compacts with high compressive strength without the use of a hydraulic binder. This carbonation process is investigated on a pore-scale level to identify how the mineral phases in the SSS react with CO2, where carbonates are formed, and what the impact of these changes is on the pore network of the carbonated SSS compact. In addition to conventional research techniques, high-resolution X-ray computed tomography (HRXCT) is applied to visualize and quantify the changes in situ during the carbonation process. The results show that carbonates mainly precipitate at grain contacts and in capillary pores and this precipitation has little effect on the connectivity of the pore space. This paper also demonstrates the use of a custom-designed polymer reaction cell that allows in situ HRXCT analysis of the carbonation process. This shows the distribution and influence of water and CO2 in the pore network on the carbonate precipitation and, thus, the influence on the compressive strength development of the waste material.

  7. Dual pore-connectivity and flow-paths affect shale hydrocarbon production

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Barber, T.; Zhang, Y.; Md Golam, K.

    2017-12-01

    Aided with integrated characterization approaches of droplet contact angle measurement, mercury intrusion capillary pressure, low-pressure gas physisorption, scanning electron microscopy, and small angle neutron scattering, we have systematically studied how pore connectivity and wettability are associated with mineral and organic matter phases of shales (Barnett, Bakken, Eagle Ford), as well as their influence on macroscopic fluid flow and hydrocarbon movement, from the following complementary tests: vacuum saturation with vacuum-pulling on dry shale followed with tracer introduction and high-pressure intrusion, tracer diffusion into fluid-saturated shale, fluid and tracer imbibition into partially-saturated shale, and Wood's metal intrusion followed with imaging and elemental mapping. The first three tests use tracer-bearing fluids (hydrophilic API brine and hydrophobic n-decane) fluids with a suite of wettability tracers of different sizes and reactivities developed in our laboratory. These innovative and integrated approaches indicate a Dalmatian wettability behavior at a scale of microns, limited connectivity (<500 microns from shale sample edge) shale pores, and disparity of well-connected hydrophobic pore network ( 10 nm) and sparsely connected hydrophilic pore systems (>50-100 nm), which is linked to the steep initial decline and low overall recovery because of the limited connection of hydrocarbon molecules in the shale matrix to the stimulated fracture network.

  8. Preferential flow from pore to landscape scales

    NASA Astrophysics Data System (ADS)

    Koestel, J. K.; Jarvis, N.; Larsbo, M.

    2017-12-01

    In this presentation, we give a brief personal overview of some recent progress in quantifying preferential flow in the vadose zone, based on our own work and those of other researchers. One key challenge is to bridge the gap between the scales at which preferential flow occurs (i.e. pore to Darcy scales) and the scales of interest for management (i.e. fields, catchments, regions). We present results of recent studies that exemplify the potential of 3-D non-invasive imaging techniques to visualize and quantify flow processes at the pore scale. These studies should lead to a better understanding of how the topology of macropore networks control key state variables like matric potential and thus the strength of preferential flow under variable initial and boundary conditions. Extrapolation of this process knowledge to larger scales will remain difficult, since measurement technologies to quantify macropore networks at these larger scales are lacking. Recent work suggests that the application of key concepts from percolation theory could be useful in this context. Investigation of the larger Darcy-scale heterogeneities that generate preferential flow patterns at the soil profile, hillslope and field scales has been facilitated by hydro-geophysical measurement techniques that produce highly spatially and temporally resolved data. At larger regional and global scales, improved methods of data-mining and analyses of large datasets (machine learning) may help to parameterize models as well as lead to new insights into the relationships between soil susceptibility to preferential flow and site attributes (climate, land uses, soil types).

  9. Fast Simulation of Membrane Filtration by Combining Particle Retention Mechanisms and Network Models

    NASA Astrophysics Data System (ADS)

    Krupp, Armin; Griffiths, Ian; Please, Colin

    2016-11-01

    Porous membranes are used for their particle retention capabilities in a wide range of industrial filtration processes. The underlying mechanisms for particle retention are complex and often change during the filtration process, making it hard to predict the change in permeability of the membrane during the process. Recently, stochastic network models have been shown to predict the change in permeability based on retention mechanisms, but remain computationally intensive. We show that the averaged behaviour of such a stochastic network model can efficiently be computed using a simple partial differential equation. Moreover, we also show that the geometric structure of the underlying membrane and particle-size distribution can be represented in our model, making it suitable for modelling particle retention in interconnected membranes as well. We conclude by demonstrating the particular application to microfluidic filtration, where the model can be used to efficiently compute a probability density for flux measurements based on the geometry of the pores and particles. A. U. K. is grateful for funding from Pall Corporation and the Mathematical Institute, University of Oxford. I.M.G. gratefully acknowledges support from the Royal Society through a University Research Fellowship.

  10. PBO Borehole Strainmeters and Pore Pressure Sensors: Recording Hydrological Strain Signals

    NASA Astrophysics Data System (ADS)

    Gottlieb, M. H.; Hodgkinson, K. M.; Mencin, D.; Henderson, D. B.; Johnson, W.; Van Boskirk, E.; Pyatt, C.; Mattioli, G. S.

    2017-12-01

    UNAVCO operates a network of 75 borehole strainmeters along the west coast of the United States and Vancouver Island, Canada as part of the Plate Boundary Observatory (PBO), the geodetic component of the NSF-funded Earthscope program. Borehole strainmeters are designed to detect variations in the strain field at the nanostrain level and can easily detect transient strains caused by aseismic creep events, Episodic Tremor and Slip (ETS) events and seismically induced co- and post-seimic signals. In 2016, one strainmeter was installed in an Oklahoma oil field to characterize in-situ deformation during CO2 injection. Twenty-three strainmeter sites also have pore pressure sensors to measure fluctuations in groundwater pressure. Both the strainmeter network and the pore pressure sensors provide unique data against which those using water-level measurements, GPS time-series or InSAR data can compare possible subsidence signals caused by groundwater withdrawal or fluid re-injection. Operating for 12 years, the PBO strainmeter and pore pressure network provides a long-term, continuous, 1-sps record of deformation. PBO deploys GTSM21 tensor strainmeters from GTSM Technologies, which consist of four horizontal strain gauges stacked vertically, at different orientations, within a single 2 m-long instrument. The strainmeters are typically installed at depths of 200 to 250 m and grouted into the bottom of 15 cm diameter boreholes. The pore pressure sensors are Digiquartz Depth Sensors from Paros Scientific. These sensors are installed in 2" PVC, sampling groundwater through a screened section 15 m above the co-located strainmeter. These sensors are also recording at 1-sps with a resolution in the hundredths of hPa. High-rate local barometric pressure data and low-rate rainfall data also available at all locations. PBO Strainmeter and pore pressure data are available in SEED, SAC-ASCII and time-stamped ASCII format from the IRIS Data Managements Center. Strainmeter data are available at 2-hour latency while the pore pressure data are available in real-time. Links for data access, instrument and borehole information and station histories are available from UNAVCO's Borehole Data web page (https://www.unavco.org/data/strain-seismic/bsm-data/bsm-data.html ).

  11. Water adsorption isotherms on porous onionlike carbonaceous particles. Simulations with the grand canonical Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Hantal, György; Picaud, Sylvain; Hoang, Paul N. M.; Voloshin, Vladimir P.; Medvedev, Nikolai N.; Jedlovszky, Pál

    2010-10-01

    The grand canonical Monte Carlo method is used to simulate the adsorption isotherms of water molecules on different types of model soot particles. These soot models are constructed by first removing atoms from onion-fullerene structures in order to create randomly distributed pores inside the soot, and then performing molecular dynamics simulations, based on the reactive adaptive intermolecular reactive empirical bond order (AIREBO) description of the interaction between carbon atoms, to optimize the resulting structures. The obtained results clearly show that the main driving force of water adsorption on soot is the possibility of the formation of new water-water hydrogen bonds with the already adsorbed water molecules. The shape of the calculated water adsorption isotherms at 298 K strongly depends on the possible confinement of the water molecules in pores of the carbonaceous structure. We found that there are two important factors influencing the adsorption ability of soot. The first of these factors, dominating at low pressures, is the ability of the soot of accommodating the first adsorbed water molecules at strongly hydrophilic sites. The second factor concerns the size and shape of the pores, which should be such that the hydrogen bonding network of the water molecules filling them should be optimal. This second factor determines the adsorption properties at higher pressures.

  12. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions.

    PubMed

    Pearce, Carolyn I; Wilkins, Michael J; Zhang, Changyong; Heald, Steve M; Fredrickson, Jim K; Zachara, John M

    2012-08-07

    Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray microprobe and X-ray absorption spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced in the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting reoxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.

  13. Uncertainty Quantification of Nonlinear Electrokinetic Response in a Microchannel-Membrane Junction

    NASA Astrophysics Data System (ADS)

    Alizadeh, Shima; Iaccarino, Gianluca; Mani, Ali

    2015-11-01

    We have conducted uncertainty quantification (UQ) for electrokinetic transport of ionic species through a hybrid microfluidic system using different probabilistic techniques. The system of interest is an H-configuration consisting of two parallel microchannels that are connected via a nafion junction. This system is commonly used for ion preconcentration and stacking by utilizing a nonlinear response at the channel-nafion junction that leads to deionization shocks. In this work, the nafion medium is modeled as many parallel nano-pores where, the nano-pore diameter, nafion porosity, and surface charge density are independent random variables. We evaluated the resulting uncertainty on the ion concentration fields as well as the deionization shock location. The UQ methods predicted consistent statistics for the outputs and the results revealed that the shock location is weakly sensitive to the nano-pore surface charge and primarily driven by nano-pore diameters. The present study can inform the design of electrokinetic networks with increased robustness to natural manufacturing variability. Applications include water desalination and lab-on-a-chip systems. Shima is a graduate student in the department of Mechanical Engineering at Stanford University. She received her Master's degree from Stanford in 2011. Her research interests include Electrokinetics in porous structures and high performance computing.

  14. Numerical Modeling of Anaerobic Microzones Development in Bulk Oxic Porous Media: An Assessment of Different Microzone Formation Processes

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, S.; Zarnetske, J. P.; Briggs, M. A.; Day-Lewis, F. D.; Singha, K.

    2017-12-01

    Soil and groundwater research indicates that unique biogeochemical "microzones" commonly form within bulk soil masses. The formation of these microzones at the pore-scale has been attributed to a number of causes, including variability of in situ carbon or nutrient sources, intrinsic physical conditions that lead to dual-porosity and mass transfer conditions, or microbial bioclogging of the porous media. Each of these causes, while documented in different porous media systems, potentially can lead to the presence of anaerobic pores residing in a bulk oxic domain. The relative role of these causes operating independently or in conjunction with each other to form microzones is not known. Here, we use a single numerical modeling framework to assess the relative roles of each process in creating anaerobic microzones. Using a two-dimensional pore-network model, coupled with a microbial growth model based on Monod kinetics, simulations were performed to explore the development of these anoxic microzones and their fate under a range of hydrologic, nutrient, and microbial conditions. Initial results parameterized for a stream-groundwater exchange environment (i.e., a hyporheic zone) indicate that external forcing of fluid flux in the domain is a key soil characteristic to anaerobic microzone development as fluid flux governs the nutrient flux. The initial amount of biomass present in the system also plays a major role in the development of the microzones. In terms of dominant in situ causes, the intrinsic physical structure of the local pore space is found to play the key role in development of anaerobic sites by regulating fluxes to reaction sites. Acknowledging and understanding the drivers of these microzones will improve the ability of multiple disciplines to measure and model reactive mass transport in soils and assess if they play a significant role for particular biogeochemical processes and ecosystem functions, such as denitrification and greenhouse gas production.

  15. Using soft computing techniques to predict corrected air permeability using Thomeer parameters, air porosity and grain density

    NASA Astrophysics Data System (ADS)

    Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez

    2014-03-01

    Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.

  16. The flow of power law fluids in elastic networks and porous media.

    PubMed

    Sochi, Taha

    2016-02-01

    The flow of power law fluids, which include shear thinning and shear thickening as well as Newtonian as a special case, in networks of interconnected elastic tubes is investigated using a residual-based pore scale network modeling method with the employment of newly derived formulae. Two relations describing the mechanical interaction between the local pressure and local cross-sectional area in distensible tubes of elastic nature are considered in the derivation of these formulae. The model can be used to describe shear dependent flows of mainly viscous nature. The behavior of the proposed model is vindicated by several tests in a number of special and limiting cases where the results can be verified quantitatively or qualitatively. The model, which is the first of its kind, incorporates more than one major nonlinearity corresponding to the fluid rheology and conduit mechanical properties, that is non-Newtonian effects and tube distensibility. The formulation, implementation, and performance indicate that the model enjoys certain advantages over the existing models such as being exact within the restricting assumptions on which the model is based, easy implementation, low computational costs, reliability, and smooth convergence. The proposed model can, therefore, be used as an alternative to the existing Newtonian distensible models; moreover, it stretches the capabilities of the existing modeling approaches to reach non-Newtonian rheologies.

  17. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    NASA Astrophysics Data System (ADS)

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang

    2016-11-01

    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones.

  18. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    PubMed Central

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang

    2016-01-01

    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones. PMID:27830731

  19. Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Grunewald, E.; Knight, R.

    2008-12-01

    The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over which heterogeneous pores are encountered in bimodal grain packs of pure quartz (long T2S) and hematite (short T2S). The scale of heterogeneity is varied by changing the mean grain size and relative mineral concentrations. When the mean grain size is small and the mineral concentrations are comparable, the T2-distribution is roughly monomodal indicating strong pore coupling. As the grain size is increased or the mineral concentrations are made increasingly uneven, the T2- distribution develops a bimodal character, more representative of the actual distribution of pore types. Numerical simulations of measurements in both experiment groups allow us to more closely investigate how the relaxing magnetization evolves in both time and space. Collectively, these experiments provide important insights into the effects of pore coupling on NMR measurements in heterogeneous systems and contribute to our ultimate goal of improving the interpretation of these data in complex near-surface sediments.

  20. Synthesis and characterization of nanoparticulate MnS within the pores of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Barry, Louse; Copley, Mark; Holmes, Justin D.; Otway, David J.; Kazakova, Olga; Morris, Michael A.

    2007-12-01

    Mesoporous silica was loaded with nanoparticulate MnS via a simple post-synthesis treatment. The mesoporous material that still contained surfactant was passivated to prevent MnS formation at the surface. The surfactant was extracted and a novel manganese ethylxanthate was used to impregnate the pore network. This precursor thermally decomposes to yield MnS particles that are smaller or equal to the pore size. The particles exhibit all three common polymorphs. The passivation treatment is most effective at lower loadings because at the highest loadings (SiO 2:MnS molar ratio of 6:1) large particles (>50 nm) form at the exterior of the mesoporous particles. The integrity of the mesoporous network is maintained through the preparation and high order is maintained. The MnS particles exhibit unexpected ferromagnetism at low temperatures. Strong luminescence of these samples is observed and this suggests that they may have a range of important application areas.

  1. The three-zone composite productivity model for a multi-fractured horizontal shale gas well

    NASA Astrophysics Data System (ADS)

    Qi, Qian; Zhu, Weiyao

    2018-02-01

    Due to the nano-micro pore structures and the massive multi-stage multi-cluster hydraulic fracturing in shale gas reservoirs, the multi-scale seepage flows are much more complicated than in most other conventional reservoirs, and are crucial for the economic development of shale gas. In this study, a new multi-scale non-linear flow model was established and simplified, based on different diffusion and slip correction coefficients. Due to the fact that different flow laws existed between the fracture network and matrix zone, a three-zone composite model was proposed. Then, according to the conformal transformation combined with the law of equivalent percolation resistance, the productivity equation of a horizontal fractured well, with consideration given to diffusion, slip, desorption, and absorption, was built. Also, an analytic solution was derived, and the interference of the multi-cluster fractures was analyzed. The results indicated that the diffusion of the shale gas was mainly in the transition and Fick diffusion regions. The matrix permeability was found to be influenced by slippage and diffusion, which was determined by the pore pressure and diameter according to the Knudsen number. It was determined that, with the increased half-lengths of the fracture clusters, flow conductivity of the fractures, and permeability of the fracture network, the productivity of the fractured well also increased. Meanwhile, with the increased number of fractures, the distance between the fractures decreased, and the productivity slowly increased due to the mutual interfere of the fractures.

  2. Passive advection-dispersion in networks of pipes: Effect of connectivity and relationship to permeability

    NASA Astrophysics Data System (ADS)

    Bernabé, Y.; Wang, Y.; Qi, T.; Li, M.

    2016-02-01

    The main purpose of this work is to investigate the relationship between passive advection-dispersion and permeability in porous materials presumed to be statistically homogeneous at scales larger than the pore scale but smaller than the reservoir scale. We simulated fluid flow through pipe network realizations with different pipe radius distributions and different levels of connectivity. The flow simulations used periodic boundary conditions, allowing monitoring of the advective motion of solute particles in a large periodic array of identical network realizations. In order to simulate dispersion, we assumed that the solute particles obeyed Taylor dispersion in individual pipes. When a particle entered a pipe, a residence time consistent with local Taylor dispersion was randomly assigned to it. When exiting the pipe, the particle randomly proceeded into one of the pipes connected to the original one according to probabilities proportional to the outgoing volumetric flow in each pipe. For each simulation we tracked the motion of at least 6000 solute particles. The mean fluid velocity was 10-3 ms-1, and the distance traveled was on the order of 10 m. Macroscopic dispersion was quantified using the method of moments. Despite differences arising from using different types of lattices (simple cubic, body-centered cubic, and face-centered cubic), a number of general observations were made. Longitudinal dispersion was at least 1 order of magnitude greater than transverse dispersion, and both strongly increased with decreasing pore connectivity and/or pore size variability. In conditions of variable hydraulic radius and fixed pore connectivity and pore size variability, the simulated dispersivities increased as power laws of the hydraulic radius and, consequently, of permeability, in agreement with previously published experimental results. Based on these observations, we were able to resolve some of the complexity of the relationship between dispersivity and permeability.

  3. Multiscale approach to (micro)porosity quantification in continental spring carbonate facies: Case study from the Cakmak quarry (Denizli, Turkey)

    NASA Astrophysics Data System (ADS)

    De Boever, Eva; Foubert, Anneleen; Oligschlaeger, Dirk; Claes, Steven; Soete, Jeroen; Bertier, Pieter; Özkul, Mehmet; Virgone, Aurélien; Swennen, Rudy

    2016-07-01

    Carbonate spring deposits gained renewed interest as potential contributors to subsurface reservoirs and as continental archives of environmental changes. In contrast to their fabrics, petrophysical characteristics - and especially the importance of microporosity (< 1µm) - are less understood. This study presents the combination of advanced petrophysical and imaging techniques to investigate the pore network characteristics of three, common and widespread spring carbonate facies, as exposed in the Pleistocene Cakmak quarry (Denizli, Turkey): the extended Pond, the dipping crystalline Proximal Slope Facies and the draping Apron and Channel Facies deposits formed by encrustation of biological substrate. Integrating mercury injection capillary pressure, bulk and diffusion Nuclear Magnetic Resonance (NMR), NMR profiling and Brunauer-Emmett-Teller (BET) measurements with microscopy and micro-computer tomography (µ-CT), shows that NMR T2 distributions systematically display a single group of micro-sized pore bodies, making up between 6 and 33% of the pore space (average NMR T2 cut-off value: 62 ms). Micropore bodies are systematically located within cloudy crystal cores of granular and dendritic crystal textures in all facies. The investigated properties therefore do not reveal differences in micropore size or shape with respect to more or less biology-associated facies. The pore network of the travertine facies is distinctive in terms of (i) the percentage of microporosity, (ii) the connectivity of micropores with meso- to macropores, and (ii) the degree of heterogeneity at micro- and macroscale. Results show that an approach involving different NMR experiments provided the most complete view on the 3-D pore network especially when microporosity and connectivity are of interest.

  4. Mass fractal dimension and spectral dimension to characterize different horizons in La Herreria (Sierra de Guadarrama, Spain)

    NASA Astrophysics Data System (ADS)

    Inclan, Rosa Maria

    2016-04-01

    Knowledge on three dimensional soil pore architecture is important to improve our understanding of the factors that control a number of critical soil processes as it controls biological, chemical and physical processes at various scales. Computed Tomography (CT) images provide increasingly reliable information about the geometry of pores and solids in soils at very small scale with the benefit that is a non-invasive technique. Fractal formalism has revealed as a useful tool in these cases where highly complex and heterogeneous meda are studied. One of these quantifications is mass dimension (Dm) and spectral dimension (d) applied to describe the water and gas diffusion coefficients in soils (Tarquis et al., 2012). In this work, intact soil samples were collected from the first three horizons of La Herreria soil. This station is located in the lowland mountain area of Sierra de Guadarrama (Santolaria et al., 2015) and it represents a highly degraded type of site as a result of the livestock keeping. The 3D images, of 45.1 micro-m resolution (256x256x256 voxels), were obtained and then binarized following the singularity-CA method (Martín-Sotoca et al. 2016). Based on these images Dm and d were estimated. The results showed an statistical difference in porosity, Dm and d for each horizon. This fact has a direct implication in diffusion parameters for a pore network modeling based on both fractal dimensions. These soil parameters will constitute a basis for site characterization for further studies regarding soil degradation; determining the interaction between soil, plant and atmosphere with respect to human induced activities as well as the basis for several nitrogen and carbon cycles modeling. References Martin Sotoca; J.J. Ana M. Tarquis, Antonio Saa Requejo, and Juan B. Grau (2016). Pore detection in Computed Tomography (CT) soil 3D images using singularity map analysis. Geophysical Research Abstracts, 18, EGU2016-829. Santolaria-Canales, Edmundo and the GuMNet Consortium Team (2015). GuMNet - Guadarrama Monitoring Network. Installation and set up of a high altitude monitoring network, north of Madrid. Spain. Geophysical Research Abstracts, 17, EGU2015-13989-2. Tarquis, A. M., Sanchez, M. E., Antón, J. M., Jimenez, J., Saa-Requejo, A., Andina, D., & Crawford, J. W. (2012). Variation in spectral and mass dimension on three-dimensional soil image processing. Soil Science, 177(2), 88-97. Web: http://www.ucm.es/gumnet/

  5. Rugged Energy Landscapes in Multiphase Porous Media Flow: A Discrete-Domain Description

    NASA Astrophysics Data System (ADS)

    Cueto-Felgueroso, L.; Juanes, R.

    2015-12-01

    Immiscible displacements in porous media involve a complex sequence of pore-scale events, from the smooth, reversible displacement of interfaces to abrupt interfacial reconfigurations and rapid pore invasion cascades. Discontinuous changes in pressure or saturation have been referred to as Haines jumps, and they emerge as a key mechanism to understand the origin of hysteresis in porous media flow. Hysteresis persists at the many-pore scale: when multiple cycles of drainage and imbibition of a porous sample are conducted, a dense hysteresis diagram emerges. The interpretation of hysteresis as a consequence of irreversible transitions and multistability is at the heart of early hysteresis models, and in recent experiments, and points to an inherently non-equilibrium behavior. For a given volume fraction of fluids occupying the pore space, many stable configurations are possible, due to the tortuous network of nonuniform pores and throats that compose the porous medium, and to complex wetting and capillary transitions. Multistability indicates that porous media systems exhibit rugged energy landscapes, where the system may remain pinned at local energy minima for long times. We address the question of developing a zero-dimensional model that inherits the path-dependence and `'bursty'' behavior of immiscible displacements, and propose a discrete-domain model that captures the role of metastability and local equilibria in the origin of hysteresis. We describe the porous medium and fluid system as a discrete set of weakly connected, multistable compartments, charaterized by a unique free energy function. This description does not depend explicitly on past saturations, turning points, or drainage/imbibition labels. The system behaves hysteretically, and we rationalize its behavior as sweeping a complex metastability diagram, with dissipation arising from discrete switches among metastable branches. The hysteretic behavior of the pressure-saturation curve is controlled by the topography of the energy landscape, through the number of metastable regions of the compartments and characteristic height of the energy barriers separating the different basins. Our model opens the door to fully explore the interplay between hysteresis and fluctuations in multiphase displacements in porous media.

  6. Nano-engineered intrapores in nanoparticles of PtNi networks for increased oxygen reduction reaction activity

    NASA Astrophysics Data System (ADS)

    Ding, Jieting; Ji, Shan; Wang, Hui; Key, Julian; Brett, Dan J. L.; Wang, Rongfang

    2018-01-01

    Network-like metallic alloys of solid nanoparticles have been frequently reported as promising electrocatalysts for fuel cells. The three-dimensional structure of such networks is rich in pores in the form of voids between nanoparticles, which collectively expose a large surface area for catalytic activity. Herein, we present a novel solution to this problem using a precursor comprising a flocculent core-shell PtNi@Ni to produce PtNi network catalysts with nanoparticle intraporosity after carefully controlled electrochemical dealloying. Physical characterization shows a hierarchical level of nanoporosity (intrapores within nanoparticles and pores between them) evolves during the controlled electrochemical dealloying, and that a Pt-rich surface also forms after 22 cycles of Ni leaching. In ORR cycling, the PtNi networks gain 4-fold activity in both jECSA and jmass over a state of the art Pt/C electrocatalyst, and also significantly exceed previously reported PtNi networks. In ORR degradation tests, the PtNi networks also proved stable, dropping by 30.4% and 62.6% in jECSA and jmass respectively. The enhanced performance of the catalyst is evident, and we also propose that the presented synthesis procedure can be generally applied to developing other metallic networks.

  7. Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.

    PubMed

    Pomès, Régis; Roux, Benoît

    2002-05-01

    The conduction of protons in the hydrogen-bonded chain of water molecules (or "proton wire") embedded in the lumen of gramicidin A is studied with molecular dynamics free energy simulations. The process may be described as a "hop-and-turn" or Grotthuss mechanism involving the chemical exchange (hop) of hydrogen nuclei between hydrogen-bonded water molecules arranged in single file in the lumen of the pore, and the subsequent reorganization (turn) of the hydrogen-bonded network. Accordingly, the conduction cycle is modeled by two complementary steps corresponding respectively to the translocation 1) of an ionic defect (H+) and 2) of a bonding defect along the hydrogen-bonded chain of water molecules in the pore interior. The molecular mechanism and the potential of mean force are analyzed for each of these two translocation steps. It is found that the mobility of protons in gramicidin A is essentially determined by the fine structure and the dynamic fluctuations of the hydrogen-bonded network. The translocation of H+ is mediated by spontaneous (thermal) fluctuations in the relative positions of oxygen atoms in the wire. In this diffusive mechanism, a shallow free-energy well slightly favors the presence of the excess proton near the middle of the channel. In the absence of H+, the water chain adopts either one of two polarized configurations, each of which corresponds to an oriented donor-acceptor hydrogen-bond pattern along the channel axis. Interconversion between these two conformations is an activated process that occurs through the sequential and directional reorientation of water molecules of the wire. The effect of hydrogen-bonding interactions between channel and water on proton translocation is analyzed from a comparison to the results obtained previously in a study of model nonpolar channels, in which such interactions were missing. Hydrogen-bond donation from water to the backbone carbonyl oxygen atoms lining the pore interior has a dual effect: it provides a coordination of water molecules well suited both to proton hydration and to high proton mobility, and it facilitates the slower reorientation or turn step of the Grotthuss mechanism by stabilizing intermediate configurations of the hydrogen-bonded network in which water molecules are in the process of flipping between their two preferred, polarized states. This mechanism offers a detailed molecular model for the rapid transport of protons in channels, in energy-transducing membrane proteins, and in enzymes.

  8. 3-D Distribution of Retained Colloids in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Perez-Reche, F. J.; Holzner, M.; Kinzelbach, W. K.; Otten, W.

    2013-12-01

    It is well accepted that colloid transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to colloid immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Such factors depend on interfacial conditions provided by the water saturation of the porous medium. Yet, the current understanding of the importance of colloid retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which colloidal silver particles were transported for conditions of varying water content. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the four main locations where colloids can become retained (interfaces with the liquid-solid, gas-liquid and gas-solid, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, iii) morphological characteristics of the deposited colloidal aggregates, and iv) channel widths of 3-dimensional pore-water network representations. The results presented provide, for the first time, a direct statistical evaluation on the significance of colloid retention by attachment to the liquid-solid, gas-liquid, gas-solid interfaces, and by straining in the bulk liquid. Additionally, an effective-pore structure characteristic is proposed to improve predictions of mass removal by straining under various water saturations. A) Unsaturated conditions. B) Saturated conditions. Left: Tomograph slice illustrating with false coloring Regions Of Interest corresponding to retention locations at the gas-liquid (purple), gas-solid (white) and solid-liquid interface (blue), and the bulk liquid (teal). Right: Deposition profiles of silver colloids (Ag) per retention location (T: total, GLI: gas-liquid interface, GSI: gas-solid interface, SLI: solid-liquid interface, L: bulk liquid) (Top). Depth profiles of the volume occupied by each retention location (Middle). Normalized deposition profiles of silver volume retained by its corresponding retention-location volume (Bottom).

  9. A Histidine Aspartate Ionic Lock Gates the Iron Passage in Miniferritins from Mycobacterium smegmatis*

    PubMed Central

    Williams, Sunanda Margrett; Chandran, Anu V.; Vijayabaskar, Mahalingam S.; Roy, Sourav; Balaram, Hemalatha; Vishveshwara, Saraswathi; Vijayan, Mamannamana; Chatterji, Dipankar

    2014-01-01

    Dps (DNA-binding protein from starved cells) are dodecameric assemblies belonging to the ferritin family that can bind DNA, carry out ferroxidation, and store iron in their shells. The ferritin-like trimeric pore harbors the channel for the entry and exit of iron. By representing the structure of Dps as a network we have identified a charge-driven interface formed by a histidine aspartate cluster at the pore interface unique to Mycobacterium smegmatis Dps protein, MsDps2. Site-directed mutagenesis was employed to generate mutants to disrupt the charged interactions. Kinetics of iron uptake/release of the wild type and mutants were compared. Crystal structures were solved at a resolution of 1.8–2.2 Å for the various mutants to compare structural alterations vis à vis the wild type protein. The substitutions at the pore interface resulted in alterations in the side chain conformations leading to an overall weakening of the interface network, especially in cases of substitutions that alter the charge at the pore interface. Contrary to earlier findings where conserved aspartate residues were found crucial for iron release, we propose here that in the case of MsDps2, it is the interplay of negative-positive potentials at the pore that enables proper functioning of the protein. In similar studies in ferritins, negative and positive patches near the iron exit pore were found to be important in iron uptake/release kinetics. The unique ionic cluster in MsDps2 makes it a suitable candidate to act as nano-delivery vehicle, as these gated pores can be manipulated to exhibit conformations allowing for slow or fast rates of iron release. PMID:24573673

  10. CONCEPTUAL MODEL FOR ORIGIN OF ABNORMALLY PRESSURED GAS ACCUMULATIONS IN LOW-PERMEABILITY RESERVOIRS.

    USGS Publications Warehouse

    Law, B.E.; Dickinson, W.W.

    1985-01-01

    The paper suggests that overpressured and underpressured gas accumulations of this type have a common origin. In basins containing overpressured gas accumulations, rates of thermogenic gas accumulation exceed gas loss, causing fluid (gas) pressure to rise above the regional hydrostatic pressure. Free water in the larger pores is forced out of the gas generation zone into overlying and updip, normally pressured, water-bearing rocks. While other diagenetic processes continue, a pore network with very low permeability develops. As a result, gas accumulates in these low-permeability reservoirs at rates higher than it is lost. In basins containing underpressured gas accumulations, rates of gas generation and accumulation are less than gas loss. The basin-center gas accumulation persists, but because of changes in the basin dynamics, the overpressured accumulation evolves into an underpressured system.

  11. How Nucleus Mechanics and ECM Microstructure Influence the Invasion of Single Cells and Multicellular Aggregates.

    PubMed

    Giverso, Chiara; Arduino, Alessandro; Preziosi, Luigi

    2018-05-01

    In order to move in a three-dimensional extracellular matrix, the nucleus of a cell must squeeze through the narrow spacing among the fibers and, by adhering to them, the cell needs to exert sufficiently strong traction forces. If the nucleus is too stiff, the spacing too narrow, or traction forces too weak, the cell is not able to penetrate the network. In this article, we formulate a mathematical model based on an energetic approach, for cells entering cylindrical channels composed of extracellular matrix fibers. Treating the nucleus as an elastic body covered by an elastic membrane, the energetic balance leads to the definition of a necessary criterion for cells to pass through the regular network of fibers, depending on the traction forces exerted by the cells (or possibly passive stresses), the stretchability of the nuclear membrane, the stiffness of the nucleus, and the ratio of the pore size within the extracellular matrix with respect to the nucleus diameter. The results obtained highlight the importance of the interplay between mechanical properties of the cell and microscopic geometric characteristics of the extracellular matrix and give an estimate for a critical value of the pore size that represents the physical limit of migration and can be used in tumor growth models to predict their invasive potential in thick regions of ECM.

  12. Predicting the response of soil organic matter microbial decomposition to moisture

    NASA Astrophysics Data System (ADS)

    Chenu, Claire; Garnier, Patricia; Monga, Olivier; Moyano, Fernando; Pot, Valérie; Nunan, Naoise; Coucheney, Elsa; Otten, Wilfred

    2014-05-01

    Next to temperature, soil moisture is a main driver of soil C and N transformations in soils, because it affects microbial activity and survival. The moisture sensitivity of soil organic matter decay may be a source of uncertainty of similar magnitude to that of the temperature sensitivity and receives much less attention. The basic concepts and mechanisms relating soil water to microorganisms were identified early (i.e. in steady state conditions : direct effects on microbial physiology, diffusion substrates, nutrients, extracellular enzymes, diffusion of oxygen, movement of microorganisms). However, accounting for how moisture controls soil microbial activity remains essentially empirical and poorly accounts for soil characteristics. Soil microorganisms live in a complex 3-D framework of mineral and organic particles defining pores of various sizes, connections with adjacent pores, and with pore walls of contrasted nature, which result in a variety of microhabitats. The water regime to which microorganisms are exposed can be predicted to depend the size and connectivity of pores in which they are located. Furthermore, the spatial distribution of microorganisms as well as that of organic matter is very heterogeneous, determining the diffusion distances between substrates and decomposers. A new generation of pore scale models of C dynamics in soil may challenge the difficulty of modelling such a complex system. These models are based on an explicit representation of soil structure (i.e. soil particles and voids), microorganisms and organic matter localisation. We tested here the ability of such a model to account for changes in microbial respiration with soil moisture. In the model MOSAIC II, soil pore space is described using a sphere network coming from a geometrical modelling algorithm. MicroCT tomography images were used to implement this representation of soil structure. A biological sub-model describes the hydrolysis of insoluble SOM into dissolved organic matter, its assimilation, respiration and microbial mortality. A recent improvement of the model was the description of the diffusion of soluble organic matter. We tested the model using the results from an experiment where a simple substrate (fructose) was decomposed by bacteria within a simple media (sand). Separate incubations in microcosms were carried out using five different bacterial communities at two different moisture conditions corresponding to water potentials of -0.01 and -0.1 bars. We calibrated the biological parameters using the experimental data obtained at high water content and we tested the model without any parameters change at low water content. Both the experiments and simulations showed a decrease in mineralisation with a decrease of water content, of which pattern depended on the bacterial species and its physiological characteristics. The model was able to correctly simulate the decrease of connectivity between substrate and microorganism due the decrease of water content. The potential and required developments of such models in describing how heterotrophic respiration is affected by micro-scale distribution and processes in soils and in testing scenarios regarding water regimes in a changing climate is discussed.

  13. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    USGS Publications Warehouse

    Dawson, Phillip B.; Chouet, Bernard A.; Pitt, Andrew M.

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10−3 to 7.9 × 10−3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10−4 to 3.4 × 10−3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day−1, the reservoir could supply the emission of CO2 for ∼25–1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  14. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip; Chouet, Bernard; Pitt, Andrew

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10-3 to 7.9 × 10-3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10-4 to 3.4 × 10-3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day-1, the reservoir could supply the emission of CO2 for ˜25-1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  15. Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks

    PubMed Central

    Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729

  16. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze-thaw cycling.

    PubMed

    De Kock, Tim; Boone, Marijn A; De Schryver, Thomas; Van Stappen, Jeroen; Derluyn, Hannelore; Masschaele, Bert; De Schutter, Geert; Cnudde, Veerle

    2015-03-03

    Freeze-thaw cycling stresses many environments which include porous media such as soil, rock and concrete. Climate change can expose new regions and subject others to a changing freeze-thaw frequency. Therefore, understanding and predicting the effect of freeze-thaw cycles is important in environmental science, the built environment and cultural heritage preservation. In this paper, we explore the possibilities of state-of-the-art micro-CT in studying the pore scale dynamics related to freezing and thawing. The experiments show the development of a fracture network in a porous limestone when cooling to -9.7 °C, at which an exothermal temperature peak is a proxy for ice crystallization. The dynamics of the fracture network are visualized with a time frame of 80 s. Theoretical assumptions predict that crystallization in these experiments occurs in pores of 6-20.1 nm under transient conditions. Here, the crystallization-induced stress exceeds rock strength when the local crystal fraction in the pores is 4.3%. The location of fractures is strongly related to preferential water uptake paths and rock texture, which are visually identified. Laboratory, continuous X-ray micro-CT scanning opens new perspectives for the pore-scale study of ice crystallization in porous media as well as for environmental processes related to freeze-thaw fracturing.

  17. 3D reconstruction of the porous microstructure of Al2O3-coatings based on sequentially revealed surface data

    NASA Astrophysics Data System (ADS)

    Loftfield, Nina; Kästner, Markus; Reithmeier, Eduard

    2018-06-01

    Local and global liquid transport properties correlate strongly with the morphology of porous materials. Therefore, by characterizing the porous network information is indirectly gained on the materials properties. Properties like the open-porosity are easily accessible with techniques like mercury porosimetry. However, the 3D image reconstruction, destructive or non-destructive, holds advantages like an accurate spatially resolved representation of the investigated material. Common 3D data acquisition is done by x-ray microtomography or a combination of focused ion beam based milling and scanning electron microscopy. In this work a reconstruction approach similar to the latter one is implemented. The porous network is reconstructed based on an alternating process of milling the surface by fly cutting and measuring the surface data with a confocal laser scanning microscope. This has the benefit of reconstructing the pore network on the basis of surface height data, measuring the structure boundaries directly. The stack of milled surface height data needs to be registered and the pore structure to be segmented. The segmented pore structure is connected throughout each height layer and afterwards meshed. The investigated materials are porous surface coatings of aluminum oxide for the usage in tribological pairings.

  18. Intercellular Genomics of Subsurface Microbial Colonies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortoleva, Peter; Tuncay, Kagan; Gannon, Dennis

    2007-02-14

    This report summarizes progress in the second year of this project. The objective is to develop methods and software to predict the spatial configuration, properties and temporal evolution of microbial colonies in the subsurface. To accomplish this, we integrate models of intracellular processes, cell-host medium exchange and reaction-transport dynamics on the colony scale. At the conclusion of the project, we aim to have the foundations of a predictive mathematical model and software that captures the three scales of these systems – the intracellular, pore, and colony wide spatial scales. In the second year of the project, we refined our transcriptionalmore » regulatory network discovery (TRND) approach that utilizes gene expression data along with phylogenic similarity and gene ontology analyses and applied it successfully to E.coli, human B cells, and Geobacter sulfurreducens. We have developed a new Web interface, GeoGen, which is tailored to the reconstruction of microbial TRNs and solely focuses on Geobacter as one of DOE’s high priority microbes. Our developments are designed such that the frameworks for the TRND and GeoGen can readily be used for other microbes of interest to the DOE. In the context of modeling a single bacterium, we are actively pursuing both steady-state and kinetic approaches. The steady-state approach is based on a flux balance that uses maximizing biomass growth rate as its objective, subjected to various biochemical constraints, for the optimal values of reaction rates and uptake/release of metabolites. For the kinetic approach, we use Karyote, a rigorous cell model developed by us for an earlier DOE grant and the DARPA BioSPICE Project. We are also investigating the interplay between bacterial colonies and environment at both pore and macroscopic scales. The pore scale models use detailed representations for realistic porous media accounting for the distribution of grain size whereas the macroscopic models employ the Darcy-type flow equations and up-scaled advective-diffusive transport equations for chemical species. We are rigorously testing the relationship between these two scales by evaluating macroscopic parameters using the volume averaging methodology applied to pore scale model results.« less

  19. Adsorption-Induced Deformation of Hierarchically Structured Mesoporous Silica—Effect of Pore-Level Anisotropy

    PubMed Central

    2017-01-01

    The goal of this work is to understand adsorption-induced deformation of hierarchically structured porous silica exhibiting well-defined cylindrical mesopores. For this purpose, we performed an in situ dilatometry measurement on a calcined and sintered monolithic silica sample during the adsorption of N2 at 77 K. To analyze the experimental data, we extended the adsorption stress model to account for the anisotropy of cylindrical mesopores, i.e., we explicitly derived the adsorption stress tensor components in the axial and radial direction of the pore. For quantitative predictions of stresses and strains, we applied the theoretical framework of Derjaguin, Broekhoff, and de Boer for adsorption in mesopores and two mechanical models of silica rods with axially aligned pore channels: an idealized cylindrical tube model, which can be described analytically, and an ordered hexagonal array of cylindrical mesopores, whose mechanical response to adsorption stress was evaluated by 3D finite element calculations. The adsorption-induced strains predicted by both mechanical models are in good quantitative agreement making the cylindrical tube the preferable model for adsorption-induced strains due to its simple analytical nature. The theoretical results are compared with the in situ dilatometry data on a hierarchically structured silica monolith composed by a network of mesoporous struts of MCM-41 type morphology. Analyzing the experimental adsorption and strain data with the proposed theoretical framework, we find the adsorption-induced deformation of the monolithic sample being reasonably described by a superposition of axial and radial strains calculated on the mesopore level. The structural and mechanical parameters obtained from the model are in good agreement with expectations from independent measurements and literature, respectively. PMID:28547995

  20. Adsorption-Induced Deformation of Hierarchically Structured Mesoporous Silica-Effect of Pore-Level Anisotropy.

    PubMed

    Balzer, Christian; Waag, Anna M; Gehret, Stefan; Reichenauer, Gudrun; Putz, Florian; Hüsing, Nicola; Paris, Oskar; Bernstein, Noam; Gor, Gennady Y; Neimark, Alexander V

    2017-06-06

    The goal of this work is to understand adsorption-induced deformation of hierarchically structured porous silica exhibiting well-defined cylindrical mesopores. For this purpose, we performed an in situ dilatometry measurement on a calcined and sintered monolithic silica sample during the adsorption of N 2 at 77 K. To analyze the experimental data, we extended the adsorption stress model to account for the anisotropy of cylindrical mesopores, i.e., we explicitly derived the adsorption stress tensor components in the axial and radial direction of the pore. For quantitative predictions of stresses and strains, we applied the theoretical framework of Derjaguin, Broekhoff, and de Boer for adsorption in mesopores and two mechanical models of silica rods with axially aligned pore channels: an idealized cylindrical tube model, which can be described analytically, and an ordered hexagonal array of cylindrical mesopores, whose mechanical response to adsorption stress was evaluated by 3D finite element calculations. The adsorption-induced strains predicted by both mechanical models are in good quantitative agreement making the cylindrical tube the preferable model for adsorption-induced strains due to its simple analytical nature. The theoretical results are compared with the in situ dilatometry data on a hierarchically structured silica monolith composed by a network of mesoporous struts of MCM-41 type morphology. Analyzing the experimental adsorption and strain data with the proposed theoretical framework, we find the adsorption-induced deformation of the monolithic sample being reasonably described by a superposition of axial and radial strains calculated on the mesopore level. The structural and mechanical parameters obtained from the model are in good agreement with expectations from independent measurements and literature, respectively.

  1. Nonlinear transport of soft droplets in pore networks

    NASA Astrophysics Data System (ADS)

    Vernerey, Franck; Benet Cerda, Eduard; Koo, Kanghyeon

    A large number of biological and technological processes depend on the transport of soft colloidal particles through porous media; this includes the transport and separation of cells, viruses or drugs through tissues, membranes and microfluidic devices. In these systems, the interactions between soft particles, background fluid and the surrounding pore space yield complex, nonlinear behaviors such as non-Darcy flows, localization and jamming. We devise a computational strategy to investigate the transport of non-wetting and deformable water droplets in a microfluidic device made of a random distribution of cylindrical obstacles. We first derive scaling laws for the entry of the droplet in a single pore and discuss the role of surface tension, contact angle and size in this process. This information is then used to study the transport of multiple droplets in an obstacle network. We find that when the droplet size is close to the pore size, fluid flow and droplet trafficking strongly interact, leading to local redistributions in pressure fields, intermittent clogging and jamming. Importantly, it is found that the overall droplet and fluid transport display three different scaling regimes depending on the forcing pressure, and that these regimes can be related to droplet properties.

  2. Numerical simulation on hydromechanical coupling in porous media adopting three-dimensional pore-scale model.

    PubMed

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view.

  3. Numerical Simulation on Hydromechanical Coupling in Porous Media Adopting Three-Dimensional Pore-Scale Model

    PubMed Central

    Liu, Jianjun; Song, Rui; Cui, Mengmeng

    2014-01-01

    A novel approach of simulating hydromechanical coupling in pore-scale models of porous media is presented in this paper. Parameters of the sandstone samples, such as the stress-strain curve, Poisson's ratio, and permeability under different pore pressure and confining pressure, are tested in laboratory scale. The micro-CT scanner is employed to scan the samples for three-dimensional images, as input to construct the model. Accordingly, four physical models possessing the same pore and rock matrix characteristics as the natural sandstones are developed. Based on the micro-CT images, the three-dimensional finite element models of both rock matrix and pore space are established by MIMICS and ICEM software platform. Navier-Stokes equation and elastic constitutive equation are used as the mathematical model for simulation. A hydromechanical coupling analysis in pore-scale finite element model of porous media is simulated by ANSYS and CFX software. Hereby, permeability of sandstone samples under different pore pressure and confining pressure has been predicted. The simulation results agree well with the benchmark data. Through reproducing its stress state underground, the prediction accuracy of the porous rock permeability in pore-scale simulation is promoted. Consequently, the effects of pore pressure and confining pressure on permeability are revealed from the microscopic view. PMID:24955384

  4. Synthesis and characterization of high-surface-area millimeter-sized silica beads with hierarchical multi-modal pore structure by the addition of agar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yosep; Choi, Junhyun; Tong, Meiping, E-mail: tongmeiping@iee.pku.edu.cn

    2014-04-01

    Millimeter-sized spherical silica foams (SSFs) with hierarchical multi-modal pore structure featuring high specific surface area and ordered mesoporous frameworks were successfully prepared using aqueous agar addition, foaming and drop-in-oil processes. The pore-related properties of the prepared spherical silica (SSs) and SSFs were systematically characterized by field emission-scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), Hg intrusion porosimetry, and N{sub 2} adsorption–desorption isotherm measurements. Improvements in the BET surface area and total pore volume were observed at 504 m{sup 2} g{sup −1} and 5.45 cm{sup 3} g{sup −1}, respectively, after an agar addition and foaming process. Despitemore » the increase in the BET surface area, the mesopore wall thickness and the pore size of the mesopores generated from the block copolymer with agar addition were unchanged based on the SAXRD, TEM, and BJH methods. The SSFs prepared in the present study were confirmed to have improved BET surface area and micropore volume through the agar loading, and to exhibit interconnected 3-dimensional network macropore structure leading to the enhancement of total porosity and BET surface area via the foaming process. - Highlights: • Millimeter-sized spherical silica foams (SSFs) are successfully prepared. • SSFs exhibit high BET surface area and ordered hierarchical pore structure. • Agar addition improves BET surface area and micropore volume of SSFs. • Foaming process generates interconnected 3-D network macropore structure of SSFs.« less

  5. Research Opportunities for Materials with Ultrafine Microstructures

    DTIC Science & Technology

    1989-12-31

    monodispersed particles and hydrothermal synthesis of composites. Of recent interest in polymeric materials has been the development of rigid-rod...network with uniformly large pores (see Figure 2). An acidic DCCA, such as oxalic acid, in contrast, results in a somewhat smaller-scale network

  6. Formation factor in Bentheimer and Fontainebleau sandstones: Theory compared with pore-scale numerical simulations

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Berg, Carl F.

    2017-09-01

    Accurate quantification of formation resistivity factor F (also called formation factor) provides useful insight into connectivity and pore space topology in fully saturated porous media. In particular the formation factor has been extensively used to estimate permeability in reservoir rocks. One of the widely applied models to estimate F is Archie's law (F = ϕ- m in which ϕ is total porosity and m is cementation exponent) that is known to be valid in rocks with negligible clay content, such as clean sandstones. In this study we compare formation factors determined by percolation and effective-medium theories as well as Archie's law with numerical simulations of electrical resistivity on digital rock models. These digital models represent Bentheimer and Fontainebleau sandstones and are derived either by reconstruction or directly from micro-tomographic images. Results show that the universal quadratic power law from percolation theory accurately estimates the calculated formation factor values in network models over the entire range of porosity. However, it crosses over to the linear scaling from the effective-medium approximation at the porosity of 0.75 in grid models. We also show that the effect of critical porosity, disregarded in Archie's law, is nontrivial, and the Archie model inaccurately estimates the formation factor in low-porosity homogeneous sandstones.

  7. Can the three pore model correctly describe peritoneal transport of protein?

    PubMed

    Waniewski, Jacek; Poleszczuk, Jan; Antosiewicz, Stefan; Baczynński, Daniel; Gałach, Magda; Pietribiasi, Mauro; Wanńkowicz, Zofia

    2014-01-01

    The three pore model (3PM) includes large pores for the description of protein leak to the peritoneal cavity during peritoneal dialysis. However, the reliability of this description has been not fully tested against clinical data yet. Peritoneal transport parameters were estimated using 3PM, extended 3p model (with estimation of fraction of large pores, ext3PM), ext3PM with modified size of pores and proteins (mext3PM), and simplified two pore (2PM, small and ultrasmall pores) models for 32 patients on peritoneal dialysis investigated using the sequential peritoneal equilibration test (consecutive peritoneal equilibration test [PET]: glucose 2.27%, 4 h, and miniPET: glucose 3.86%, 1 h). Urea, creatinine, glucose, sodium, phosphate, albumin, and IgM concentrations were measured in dialysis fluid and plasma. Ext3PM and mext3PM, with large pore fraction of about 0.14, provided a good description of fluid and small solute kinetics, but their predictions for albumin transport were less accurate. Two pore model precisely described the data on fluid and small solute transport. The 3p models could not describe the diffusive-convective transport of albumin as precisely as the transport of fluid, small solutes, and IgM. The 2p model (not applicable for proteins) was an efficient tool for modeling fluid and small solute transport.

  8. Identifying microbial habitats in soil using quantum dots and x-ray fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Dohnalkova, A.; Durall, D. M.; Gursoy, D.; Jones, M. D.; Kovarik, L.; Lai, B.; Roehrig, C.; Sullivan, S.; Vogt, S.; Kemner, K. M.

    2015-12-01

    The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout the three-dimensional pore network of the soil. Here we use a novel combination of imaging techniques with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to locate bacteria in the three-dimensional pore network of a soil aggregate. First, we show using confocal and aberration-corrected transmission electron microscopies that bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Pseudomonas protogens) actively take up and internalize CdSe/ZnS core/shell QDs conjugated to biologically relevant substrates. Next, we show that cells bearing QDs can be identified using fluorescence imaging with hard x-rays at 2ID-D at the Advanced Photon Source (APS). Finally, we demonstrate that the Se constituent to the QDs can be used to label bacteria in three-dimensional tomographic reconstructions of natural soil at 0.5 nm spatial resolution using hard x-rays at 2ID-E at the APS. This is the first time soil bacteria have been imaged in the intact soil matrix at such high resolution. These results offer a new way to experimentally investigate basic bacterial ecology in situ, revealing constraints on microbial function in soil that will help improve connections between pore-scale and ecosystem-scale processes in models.

  9. Fluid flow simulation and permeability computation in deformed porous carbonate grainstones

    NASA Astrophysics Data System (ADS)

    Zambrano, Miller; Tondi, Emanuele; Mancini, Lucia; Lanzafame, Gabriele; Trias, F. Xavier; Arzilli, Fabio; Materazzi, Marco; Torrieri, Stefano

    2018-05-01

    In deformed porous carbonates, the architecture of the pore network may be modified by deformation or diagenetic processes altering the permeability with respect to the pristine rock. The effects of the pore texture and morphology on permeability in porous rocks have been widely investigated due to the importance during the evaluation of geofluid reservoirs. In this study, these effects are assessed by combining synchrotron X-ray computed microtomography (SR micro-CT) and computational fluid dynamics. The studied samples pertain to deformed porous carbonate grainstones highly affected by deformation bands (DBs) exposed in Northwestern Sicily and Abruzzo regions, Italy. The high-resolution SR micro-CT images of the samples, acquired at the SYRMEP beamline of the Elettra - Sincrotrone Trieste laboratory (Italy), were used for simulating a pressure-driven flow by using the lattice-Boltzmann method (LBM). For the experiments, a multiple relaxation time (MRT) model with the D3Q19 scheme was used to avoid viscosity-dependent results of permeability. The permeability was calculated using Darcy's law once steady conditions were reached. After the simulations, the pore-network properties (effective porosity, specific surface area, and geometrical tortuosity) were calculated using 3D images of the velocity fields. These images were segmented considering a velocity threshold value higher than zero. The study showed that DBs may generate significant heterogeneity and anisotropy of the permeability of the evaluated rock samples. Cataclasis and cementation process taking place within the DBs reduce the effective porosity and therefore the permeability. Contrary to this, pressure dissolution and faulting may generate connected channels which contribute to the permeability only parallel to the DB.

  10. Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platero-Prats, Ana E.; League, Aaron B.; Bernales, Varinia

    2017-07-24

    Metal-organic frameworks (MOFs), with their well-ordered pore networks and tunable surface chemistries, offer a versatile platform for preparing well-defined nanostructures wherein functionality such as catalysis can be incorporated. We resolved the atomic structure of Ni-oxo species deposited in the MOF NU-1000 through atomic layer deposition using local and long-range structure probes, including X-ray absorption spectroscopy, pair distribution function analysis and difference envelope density analysis, with electron microscopy imaging and computational modeling.

  11. Combined Neutron and X-Ray Radiographic/Tomographic Analysis of Dissolution Limestones under Acidic Conditions

    NASA Astrophysics Data System (ADS)

    Anovitz, L. M.; Cole, D. R.; Hussey, D. S.; LaManna, J.; Swift, A.; Jacobson, D. L.

    2016-12-01

    Carbon dioxide capture and sequestration in deep geological formations is an important option for reducing greenhouse gas emissions. While the importance of porosity and pore-evolution has long been recognized, the evolution of porosity and permeability in reactive carbonates exposed to CO2-loaded brines is not well constrained. A typical pH range for CO2-acidified brine is 3 to 4.5 depending on alkalinity. This represents a substantial perturbation of typical brines that range from pH 6 to 8. The key questions include how accessible are the pores to fluid transport and how does the pore network evolve as the matrix reacts with the acidic solution? Limestones and dolostones contain nano- to macroscale porosity comprised of cracks, grain boundaries, fluid inclusions, single pores, vugs and networks of pores of random shapes and orientations. Accessible, interconnected pores may act as pore throats, constraining overall flow and are the most likely locations for extensive rock alteration. Neutron imaging is well suited to interrogation of fluid flow in porous media. Because of the large scattering cross section of hydrogen it can be used to directly image water or hydrocarbons without an added contrast medium that might modify interfacial tension and fluid/fluid interactions. In order to understand the reaction of acidified fluids we used simultaneous neutron and X-ray tomography to study the uptake and reaction of water and an acidic fluid (pH 1 HCl) with two types of Indiana limestone, one with a permeability of 2-4 mD, and the other 70 mD. One set of experiments explored capillary uptake in a dry core. These documented rapid uptake and CO2 bubble formation at the inlet. A second set introduced at a constant forced flow rate of 10 ml/min. Both core types exhibited wormhole formation, but the low perm limestone wormhole consisted of one well-delineated channel with a few side "tributaries," whereas the high perm core exhibited a more diffuse array of channels. Post-flow neutron and X-ray tomography showed that grain boundaries and other initial parts of the porous network play an important role in controlling the dissolution process. Neutron radiography and tomography have the potential to significantly advance our understanding of fluid flow and reactive behavior relevant to a wide variety of subsurface applications.

  12. Comparative Kinetic Analysis of Closed-Ended and Open-Ended Porous Sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Yiliang; Gaur, Girija; Mernaugh, Raymond L.; Laibinis, Paul E.; Weiss, Sharon M.

    2016-09-01

    Efficient mass transport through porous networks is essential for achieving rapid response times in sensing applications utilizing porous materials. In this work, we show that open-ended porous membranes can overcome diffusion challenges experienced by closed-ended porous materials in a microfluidic environment. A theoretical model including both transport and reaction kinetics is employed to study the influence of flow velocity, bulk analyte concentration, analyte diffusivity, and adsorption rate on the performance of open-ended and closed-ended porous sensors integrated with flow cells. The analysis shows that open-ended pores enable analyte flow through the pores and greatly reduce the response time and analyte consumption for detecting large molecules with slow diffusivities compared with closed-ended pores for which analytes largely flow over the pores. Experimental confirmation of the results was carried out with open- and closed-ended porous silicon (PSi) microcavities fabricated in flow-through and flow-over sensor configurations, respectively. The adsorption behavior of small analytes onto the inner surfaces of closed-ended and open-ended PSi membrane microcavities was similar. However, for large analytes, PSi membranes in a flow-through scheme showed significant improvement in response times due to more efficient convective transport of analytes. The experimental results and theoretical analysis provide quantitative estimates of the benefits offered by open-ended porous membranes for different analyte systems.

  13. Pore-Scale Characterization of Biogeochemical Controls on Iron and Uranium Speciation under Flow Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, Carolyn I.; Wilkins, Michael J.; Zhang, Changyong

    2012-09-17

    Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray Microprobe and X-ray Absorption Spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced inmore » the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting re-oxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.« less

  14. Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2014-12-01

    The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 < Kn < 0.5). Currently, the study of slip-flows is for the most part limited to simple tube and channel geometries, however, the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion-beam scanning electron microscopy. These results are analyzed to determine grid-independent resolutions, and used to explore the relationship between effective permeability and Knudsen number in complex geometries.

  15. Particle size effects on protein and virus-like particle adsorption on perfusion chromatography media.

    PubMed

    Wu, Yige; Abraham, Dicky; Carta, Giorgio

    2015-01-02

    The resin structure, chromatographic behavior, and adsorption kinetics of proteins and virus-like-particles (VLPs) are studied for POROS HS 20 and POROS HS 50 (23 and 52 μm mean diameter, respectively) to determine the effects of particle size on perfusion chromatography and to determine the predictive ability of available models. Transmission electron microscopy (TEM) and inverse size-exclusion chromatography (iSEC) show similar structures for the two resins, both containing 200-1000 nm pores that transect a network of much smaller pores. For non-binding conditions, trends of the height equivalent to a theoretical plate (HETP) as a function of reduced velocity are consistent with perfusion. The estimated intraparticle flow fractions for these conditions are 0.0018 and 0.00063 for POROS HS 20 and HS 50, respectively. For strong binding conditions, confocal laser scanning microscopy (CLSM) shows asymmetrical intraparticle concentrations profiles and enhanced rates of IgG adsorption on POROS HS 20 at 1000 cm/h. The corresponding effective diffusivity under flow is 2-3 times larger than for non-flow conditions and much larger than observed for POROS HS 50, consistent with available models. For VLPs, however, adsorption is confined to a thin layer near the particle surface for both resins, suggesting that the bound VLPs block the pores. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Maximization of permanent trapping of CO{sub 2} and co-contaminants in the highest-porosity formations of the Rock Springs Uplift (Southwest Wyoming): experimentation and multi-scale modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piri, Mohammad

    2014-03-31

    Under this project, a multidisciplinary team of researchers at the University of Wyoming combined state-of-the-art experimental studies, numerical pore- and reservoir-scale modeling, and high performance computing to investigate trapping mechanisms relevant to geologic storage of mixed scCO{sub 2} in deep saline aquifers. The research included investigations in three fundamental areas: (i) the experimental determination of two-phase flow relative permeability functions, relative permeability hysteresis, and residual trapping under reservoir conditions for mixed scCO{sub 2}-­brine systems; (ii) improved understanding of permanent trapping mechanisms; (iii) scientifically correct, fine grid numerical simulations of CO{sub 2} storage in deep saline aquifers taking into account themore » underlying rock heterogeneity. The specific activities included: (1) Measurement of reservoir-­conditions drainage and imbibition relative permeabilities, irreducible brine and residual mixed scCO{sub 2} saturations, and relative permeability scanning curves (hysteresis) in rock samples from RSU; (2) Characterization of wettability through measurements of contact angles and interfacial tensions under reservoir conditions; (3) Development of physically-­based dynamic core-­scale pore network model; (4) Development of new, improved high-­performance modules for the UW-­team simulator to provide new capabilities to the existing model to include hysteresis in the relative permeability functions, geomechanical deformation and an equilibrium calculation (Both pore-­ and core-­scale models were rigorously validated against well-­characterized core-­ flooding experiments); and (5) An analysis of long term permanent trapping of mixed scCO{sub 2} through high-­resolution numerical experiments and analytical solutions. The analysis takes into account formation heterogeneity, capillary trapping, and relative permeability hysteresis.« less

  17. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching.

    PubMed

    Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem

    2016-08-06

    We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.

  18. Analytical Expressions for Thermo-Osmotic Permeability of Clays

    NASA Astrophysics Data System (ADS)

    Gonçalvès, J.; Ji Yu, C.; Matray, J.-M.; Tremosa, J.

    2018-01-01

    In this study, a new formulation for the thermo-osmotic permeability of natural pore solutions containing monovalent and divalent cations is proposed. The mathematical formulation proposed here is based on the theoretical framework supporting thermo-osmosis which relies on water structure alteration in the pore space of surface-charged materials caused by solid-fluid electrochemical interactions. The ionic content balancing the surface charge of clay minerals causes a disruption in the hydrogen bond network when more structured water is present at the clay surface. Analytical expressions based on our heuristic model are proposed and compared to the available data for NaCl solutions. It is shown that the introduction of divalent cations reduces the thermo-osmotic permeability by one third compared to the monovalent case. The analytical expressions provided here can be used to advantage for safety calculations in deep underground nuclear waste repositories.

  19. The Application of Fractal and Multifractal Theory in Hydraulic-Flow-Unit Characterization and Permeability Estimation

    NASA Astrophysics Data System (ADS)

    Chen, X.; Yao, G.; Cai, J.

    2017-12-01

    Pore structure characteristics are important factors in influencing the fluid transport behavior of porous media, such as pore-throat ratio, pore connectivity and size distribution, moreover, wettability. To accurately characterize the diversity of pore structure among HFUs, five samples selected from different HFUs (porosities are approximately equal, however permeability varies widely) were chosen to conduct micro-computerized tomography test to acquire direct 3D images of pore geometries and to perform mercury injection experiments to obtain the pore volume-radii distribution. To characterize complex and high nonlinear pore structure of all samples, three classic fractal geometry models were applied. Results showed that each HFU has similar box-counting fractal dimension and generalized fractal dimension in the number-area model, but there are significant differences in multifractal spectrums. In the radius-volume model, there are three obvious linear segments, corresponding to three fractal dimension values, and the middle one is proved as the actual fractal dimension according to the maximum radius. In the number-radius model, the spherical-pore size distribution extracted by maximum ball algorithm exist a decrease in the number of small pores compared with the fractal power rate rather than the traditional linear law. Among the three models, only multifractal analysis can classify the HFUs accurately. Additionally, due to the tightness and low-permeability in reservoir rocks, connate water film existing in the inner surface of pore channels commonly forms bound water. The conventional model which is known as Yu-Cheng's model has been proved to be typically not applicable. Considering the effect of irreducible water saturation, an improved fractal permeability model was also deduced theoretically. The comparison results showed that the improved model can be applied to calculate permeability directly and accurately in such unconventional rocks.

  20. Porosity characterization of fresh and altered stones by ultrasound velocity and mercury intrusion porosimetry

    NASA Astrophysics Data System (ADS)

    Scrivano, Simona; Gaggero, Laura; Gisbert Aguilar, Josep

    2016-04-01

    Porosity is the main physical feature dealing with rocks durability and storage capacity. The analysis of this parameter is key factor in predicting rock performances (Molina et al., 2011). There are several techniques that can be applied to acquire the widest information range possible about pores (e.g. size, shape, distribution), leading to a better understanding of decay processes and trapping capacity. The coupling of a detailed minero-petrographic analysis with physical measures such as ultrasounds and mercury intrusion porosimetry (MIP) proved to be a valid tool for understanding the porous network and its evolution during weathering processes. Both fresh and salt-weathered samples were analysed to investigate the modification triggered in the porous network by crystallization. The ageing process was induced using a Na2SO4 saturated saline solution with the partial continuous immersion method (Benavente et al., 2001). The study was addressed to four sedimentary lithotypes: 1) Arenaria Macigno, a greywacke made up of thickened clasts of quartz, plagioclase and K-feldspar cemented by micritic calcite and phyllosilicates; 2) Breccia Aurora, a calcareous breccia with nodules of compact limestone and micritic cement joints; 3) Rosso Verona, a biomicrite where the compact bio-micrite matrix is cut by clay minerals veins; and 4) Vicenza Stone, an organogenic limestone rich in micro- and macro foraminifera, algae, bryozoans and remains of echinoderms, with iron oxides. An appropriate description of the porous network variation and recognition of the origin of secondary porosity was attained. The study defined that the pore shape and distribution (anisotropy coefficient K) has a fluctuation up to the 50% after weathering treatments and pore-size distribution (defined in a range between 0,0025 - 75 μm), allowing modelling the mechanisms of water transport and evaluating decay susceptibility of these lithotypes. Molina E, Cultrone G, Sebastián E, Alonso FJ, Carrizo L, Gisbert J, et al. The pore system of sedimentary rocks as a key factor in the durability of building materials. Eng Geol 118 (2011) 110-21. D. Benavente, M.A. Garcia del Cura, A. Bernabeu, S. Ordonez. Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Eng Geol 59 (2001) 313-325.

  1. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy

    PubMed Central

    Kabir, Mohammad Rizviul; Richter, Henning

    2017-01-01

    A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework. PMID:28772504

  2. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.

    PubMed

    Kabir, Mohammad Rizviul; Richter, Henning

    2017-02-08

    A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework.

  3. New general pore size distribution model by classical thermodynamics application: Activated carbon

    USGS Publications Warehouse

    Lordgooei, M.; Rood, M.J.; Rostam-Abadi, M.

    2001-01-01

    A model is developed using classical thermodynamics to characterize pore size distributions (PSDs) of materials containing micropores and mesopores. The thermal equation of equilibrium adsorption (TEEA) is used to provide thermodynamic properties and relate the relative pore filling pressure of vapors to the characteristic pore energies of the adsorbent/adsorbate system for micropore sizes. Pore characteristic energies are calculated by averaging of interaction energies between adsorbate molecules and adsorbent pore walls as well as considering adsorbate-adsorbate interactions. A modified Kelvin equation is used to characterize mesopore sizes by considering variation of the adsorbate surface tension and by excluding the adsorbed film layer for the pore size. The modified-Kelvin equation provides similar pore filling pressures as predicted by density functional theory. Combination of these models provides a complete PSD of the adsorbent for the micropores and mesopores. The resulting PSD is compared with the PSDs from Jaroniec and Choma and Horvath and Kawazoe models as well as a first-order approximation model using Polanyi theory. The major importance of this model is its basis on classical thermodynamic properties, less simplifying assumptions in its derivation compared to other methods, and ease of use.

  4. Sherwood correlation for dissolution of pooled NAPL in porous media

    NASA Astrophysics Data System (ADS)

    Aydin Sarikurt, Derya; Gokdemir, Cagri; Copty, Nadim K.

    2017-11-01

    The rate of interphase mass transfer from non-aqueous phase liquids (NAPLs) entrapped in the subsurface into the surrounding mobile aqueous phase is commonly expressed in terms of Sherwood (Sh) correlations that are expressed as a function of flow and porous media properties. Because of the lack of precise methods for the estimation of the interfacial area separating the NAPL and aqueous phases, most studies have opted to use modified Sherwood expressions that lump the interfacial area into the interphase mass transfer coefficient. To date, there are only two studies in the literature that have developed non-lumped Sherwood correlations; however, these correlations have undergone limited validation. In this paper controlled dissolution experiments from pooled NAPL were conducted. The immobile NAPL mass is placed at the bottom of a flow cell filled with porous media with water flowing horizontally on top. Effluent aqueous phase concentrations were measured for a wide range of aqueous phase velocities and for two different porous media. To interpret the experimental results, a two-dimensional pore network model of the NAPL dissolution kinetics and aqueous phase transport was developed. The observed effluent concentrations were then used to compute best-fit mass transfer coefficients. Comparison of the effluent concentrations computed with the two-dimensional pore network model to those estimated with one-dimensional analytical solutions indicates that the analytical model which ignores the transport in the lateral direction can lead to under-estimation of the mass transfer coefficient. Based on system parameters and the estimated mass transfer coefficients, non-lumped Sherwood correlations were developed and compared to previously published data. The developed correlations, which are a significant improvement over currently available correlations that are associated with large uncertainties, can be incorporated into future modeling studies requiring non-lumped Sh expressions.

  5. Micro-mechanical modelling of cellulose aerogels from molten salt hydrates.

    PubMed

    Rege, Ameya; Schestakow, Maria; Karadagli, Ilknur; Ratke, Lorenz; Itskov, Mikhail

    2016-09-14

    In this paper, a generalised micro-mechanical model capable of capturing the mechanical behaviour of polysaccharidic aerogels, in particular cellulose aerogels, is proposed. To this end, first the mechanical structure and properties of these highly nanoporous cellulose aerogels prepared from aqueous salt hydrate melts (calcium thiocyanate, Ca(SCN)2·6H2O and zinc chloride, ZnCl2·4H2O) are studied. The cellulose content within these aerogels is found to have a direct relation to the microstructural quantities such as the fibril length and diameter. This, along with porosity, appears to influence the resulting mechanical properties. Furthermore, experimental characterisation of cellulose aerogels was done using scanning electron microscopy (SEM), pore-size data analysis, and compression tests. Cellulose aerogels are of a characteristic cellular microstructures and accordingly a network formed by square shaped cells is considered in the micro-mechanical model proposed in this paper. This model is based on the non-linear bending and collapse of such cells of varying pore sizes. The extended Euler-Bernoulli beam theory for large deflections is used to describe the bending in the cell walls. The proposed model is physically motivated and demonstrates a good agreement with our experimental data of both ZnCl2 and Ca(SCN)2 based cellulose aerogels with different cellulose contents.

  6. Synthesis of capillary pressure curves from post-stack seismic data with the use of intelligent estimators: A case study from the Iranian part of the South Pars gas field, Persian Gulf Basin

    NASA Astrophysics Data System (ADS)

    Golsanami, Naser; Kadkhodaie-Ilkhchi, Ali; Erfani, Amir

    2015-01-01

    Capillary pressure curves are important data for reservoir rock typing, analyzing pore throat distribution, determining height above free water level, and reservoir simulation. Laboratory experiments provide accurate data, however they are expensive, time-consuming and discontinuous through the reservoir intervals. The current study focuses on synthesizing artificial capillary pressure (Pc) curves from seismic attributes with the use of artificial intelligent systems including Artificial Neural Networks (ANNs), Fuzzy logic (FL) and Adaptive Neuro-Fuzzy Inference Systems (ANFISs). The synthetic capillary pressure curves were achieved by estimating pressure values at six mercury saturation points. These points correspond to mercury filled pore volumes of core samples (Hg-saturation) at 5%, 20%, 35%, 65%, 80%, and 90% saturations. To predict the synthetic Pc curve at each saturation point, various FL, ANFIS and ANN models were constructed. The varying neural network models differ in their training algorithm. Based on the performance function, the most accurately functioning models were selected as the final solvers to do the prediction process at each of the above-mentioned mercury saturation points. The constructed models were then tested at six depth points of the studied well which were already unforeseen by the models. The results show that the Fuzzy logic and neuro-fuzzy models were not capable of making reliable estimations, while the predictions from the ANN models were satisfyingly trustworthy. The obtained results showed a good agreement between the laboratory derived and synthetic capillary pressure curves. Finally, a 3D seismic cube was captured for which the required attributes were extracted and the capillary pressure cube was estimated by using the developed models. In the next step, the synthesized Pc cube was compared with the seismic cube and an acceptable correspondence was observed.

  7. Opportunities and challenges for the application of SP measurements to monitor subsurface flow (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Vinogradov, J.; MacAllister, D.; Butler, A. P.; Leinov, E.; Zhang, J.

    2013-12-01

    Measurements of self-potential (SP) have been proposed or applied to monitor flow in the shallow subsurface in numerous settings, including volcanoes, earthquake zones, geothermal fields and hydrocarbon reservoirs, to detect leaks from dams, tanks and embankments, and to characterize groundwater flow and hydraulic properties. To interpret the measurements, it is generally assumed that the SP is dominated by the streaming potential, arising from the drag of excess electrical charge in the diffuse part of the electrical double layer at the mineral-fluid interfaces. The constitutive equation relating electrical current density j to the driving forces ▽V and ▽P is then j = -σ▽V -σC▽P=-σ▽V + Qv (1) where V is the streaming potential, P is the water pressure, σ is the saturated rock conductivity, v is the Darcy velocity, C is the streaming potential coupling coefficient, and Q is the excess charge transported by the flow. Equation (1) shows that there is a close relationship between flow properties of interest, such as the pressure gradient or Darcy velocity, and the streaming potential component of the SP. Hence SP measurements are an attractive method to monitor subsurface flow. However, the problem with interpreting the measurements is that both C and Q can vary over orders of magnitude, in response to variations in pore-water salinity, temperature, rock texture, and the presence of NAPLs in the pore-space. Moreover, additional current sources may be present if there are gradients in concentration or temperature, arising from differential rates of ion migration down gradient (diffusion potentials), and because of charge exclusion from the pore-space (exclusion potentials). In general, these additional current sources are neglected. This talk suggests a potential new opportunity for the application of SP measurements to monitor subsurface flow, in which the signal of interest arises from salinity rather than pressure gradients. Saline intrusion into freshwater aquifers is a global problem, threatening the water supply of millions of people in coastal settlements. Abstraction rates could be much more efficiently managed if encroaching saline water could be detected before it arrived at the borehole. However, current monitoring is based largely on borehole conductivity measurements, which requires a dense network of monitoring boreholes to map the saline front. Recent laboratory and field experiments suggest that the concentration gradient associated with the front generates an SP signal which can be detected at an abstraction well prior to the arrival of the front, potentially allowing monitoring using a comparatively cheap array of non-polarising borehole electrodes. Current challenges in interpreting SP measurements for subsurface flow are also discussed, particularly the use of models to predict the values of C and Q. The importance of accounting for the pore-level distribution of flow and excess charge in such models is emphasised, and a way forward is suggested in which pore-scale network models, used previously to predict relative permeability and capillary pressure, are extended to include charge transport at the pore-level.

  8. 3D Nanoporous Anodic Alumina Structures for Sustained Drug Release

    PubMed Central

    Xifré-Pérez, Elisabet; Eckstein, Chris; Ferré-Borrull, Josep

    2017-01-01

    The use of nanoporous anodic alumina (NAA) for the development of drug delivery systems has gained much attention in recent years. The release of drugs loaded inside NAA pores is complex and depends on the morphology of the pores. In this study, NAA, with different three-dimensional (3D) pore structures (cylindrical pores with several pore diameters, multilayered nanofunnels, and multilayered inverted funnels) were fabricated, and their respective drug delivery rates were studied and modeled using doxorubicin as a model drug. The obtained results reveal optimal modeling of all 3D pore structures, differentiating two drug release stages. Thus, an initial short-term and a sustained long-term release were successfully modeled by the Higuchi and the Korsmeyer–Peppas equations, respectively. This study demonstrates the influence of pore geometries on drug release rates, and further presents a sustained long-term drug release that exceeds 60 days without an undesired initial burst. PMID:28825654

  9. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.

    PubMed

    Tarafder, Solaiman; Dernell, William S; Bandyopadhyay, Amit; Bose, Susmita

    2015-04-01

    The presence of interconnected macro pores allows guided tissue regeneration in tissue engineering scaffolds. However, highly porous scaffolds suffer from having poor mechanical strength. Previously, we showed that microwave sintering could successfully be used to improve mechanical strength of macro porous tricalcium phosphate (TCP) scaffolds. This study reports the presence of SrO and MgO as dopants in TCP scaffolds improves mechanical and in vivo biological performance. We have used direct three dimensional printing (3DP) technology for scaffold fabrication. These 3DP scaffolds possessed multiscale porosity, that is, 3D interconnected designed macro pores along with intrinsic micro pores. A significant increase in mechanical strength, between 37 and 41%, was achieved due to SrO and MgO doping in TCP as compared with pure TCP. Maximum compressive strengths of 9.38 ± 1.86 MPa and 12.01 ± 1.56 MPa were achieved by conventional and microwave sintering, respectively, for SrO-MgO-doped 3DP scaffolds with 500 μm designed pores. Histomorphological and histomorphometric analysis revealed a significantly higher osteoid, bone and haversian canal formation induced by the presence of SrO and MgO dopants in 3DP TCP as compared with pure TCP scaffolds when tested in rabbit femoral condyle defect model. Increased osteon and thus enhanced network of blood vessel formation, and osteocalcin expression were observed in the doped TCP scaffolds. Our results show that these 3DP SrO-MgO-doped TCP scaffolds have the potential for early wound healing through accelerated osteogenesis and vasculogenesis. © 2014 Wiley Periodicals, Inc.

  10. Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hsiu-Wen; Anovitz, Lawrence; Burg, Avihu

    Backscattered scanning electron micrograph and ultra small- and small-angle neutron scattering data have been combined to provide statistically meaningful data on the pore/grain structure and pore evolution of combustion metamorphic complexes from the Hatrurim basin, Israel. Three processes, anti-sintering roughening, alteration of protolith (dehydration, decarbonation, and oxidation) and crystallization of high-temperature minerals, occurred simultaneously, leading to significant changes in observed pore/grain structures. Pore structures in the protoliths, and in lowand high-grade metamorphic rocks show surface (Ds) and mass (Dm) pore fractal geometries with gradual increases in both Ds and Dm values as a function of metamorphic grade. This suggests thatmore » increases in pore volume and formation of less branching pore networks are accompanied by a roughening of pore/grain interfaces. Additionally, pore evolution during combustion metamorphism is also characterized by reduced contributions from small-scale pores to the cumulative porosity in the high-grade rocks. At high temperatures, small-scale pores may be preferentially closed by the formation of high-temperature minerals, producing a rougher morphology with increasing temperature. Alternatively, large-scale pores may develop at the expense of small-scale pores. These observations (pore fractal geometry and cumulative porosity) indicate that the evolution of pore/grain structures is correlated with the growth of high-temperature phases and is a consequence of the energy balance between pore/grain surface energy and energy arising from heterogeneous phase contacts. The apparent pore volume density further suggests that the localized time/temperature development of the high-grade Hatrurim rocks is not simply an extension of that of the low-grade rocks. The former likely represents the "hot spots (burning foci)" in the overall metamorphic terrain while the latter may represent contact aureoles.« less

  11. Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products

    NASA Astrophysics Data System (ADS)

    Brown, Jennifer R.; Brox, Timothy I.; Vogt, Sarah J.; Seymour, Joseph D.; Skidmore, Mark L.; Codd, Sarah L.

    2012-12-01

    Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and molecular diffusion, useful for probing pore structure and transport dynamics in porous systems, were used to physically characterize the unfrozen vein network structure in ice and its response to the presence of metabolic products produced by V3519-10, a cold tolerant microorganism isolated from the Vostok ice core. Recent research has found microorganisms that can remain viable and even metabolically active within icy environments at sub-zero temperatures. One potential mechanism of survival for V3519-10 is secretion of an extracellular ice binding protein that binds to the prism face of ice crystals and inhibits ice recrystallization, a coarsening process resulting in crystal growth with ice aging. Understanding the impact of ice binding activity on the bulk vein network structure in ice is important to modeling of frozen geophysical systems and in development of ice interacting proteins for biotechnology applications, such as cryopreservation of cell lines, and manufacturing processes in food sciences. Here, we present the first observations of recrystallization inhibition in low porosity ice containing V3519-10 extracellular protein extract as measured with Nuclear Magnetic Resonance and Magnetic Resonance Imaging.

  12. Mechanical trapping of particles in granular media

    NASA Astrophysics Data System (ADS)

    Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A.

    2018-02-01

    Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.

  13. Mechanical trapping of particles in granular media.

    PubMed

    Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A

    2018-02-01

    Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.

  14. Concerted Motions Networking Pores and Distant Ferroxidase Centers Enable Bacterioferritin Function and Iron Traffic£ξ

    PubMed Central

    Yao, Huili; Rui, Huan; Kumar, Ritesh; Eshelman, Kate; Lovell, Scott; Battaile, Kevin P.; Im, Wonpil; Rivera, Mario

    2015-01-01

    X-ray crystallography, molecular dynamics (MD) simulations and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility, and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral. PMID:25640193

  15. Preventing Mesh Pore Collapse by Designing Mesh Pores With Auxetic Geometries: A Comprehensive Evaluation Via Computational Modeling.

    PubMed

    Knight, Katrina M; Moalli, Pamela A; Abramowitch, Steven D

    2018-05-01

    Pelvic organ prolapse (POP) meshes are exposed to predominately tensile loading conditions in vivo that can lead to pore collapse by 70-90%, decreasing overall porosity and providing a plausible mechanism for the contraction/shrinkage of mesh observed following implantation. To prevent pore collapse, we proposed to design synthetic meshes with a macrostructure that results in auxetic behavior, the pores expand laterally, instead of contracting when loaded. Such behavior can be achieved with a range of auxetic structures/geometries. This study utilized finite element analysis (FEA) to assess the behavior of mesh models with eight auxetic pore geometries subjected to uniaxial loading to evaluate their potential to allow for pore expansion while simultaneously providing resistance to tensile loading. Overall, substituting auxetic geometries for standard pore geometries yielded more pore expansion, but often at the expense of increased model elongation, with two of the eight auxetics not able to maintain pore expansion at higher levels of tension. Meshes with stable pore geometries that remain open with loading will afford the ingrowth of host tissue into the pores and improved integration of the mesh. Given the demonstrated ability of auxetic geometries to allow for pore size maintenance (and pore expansion), auxetically designed meshes have the potential to significantly impact surgical outcomes and decrease the likelihood of major mesh-related complications.

  16. Development of hierarchical, tunable pore size polymer foams for ICF targets

    DOE PAGES

    Hamilton, Christopher E.; Lee, Matthew Nicholson; Parra-Vasquez, A. Nicholas Gerardo

    2016-08-01

    In this study, one of the great challenges of inertial confinement fusion experiments is poor understanding of the effects of reactant heterogeneity on fusion reactions. The Marble campaign, conceived at Los Alamos National Laboratory, aims to gather new insights into this issue by utilizing target capsules containing polymer foams of variable pore sizes, tunable over an order of magnitude. Here, we describe recent and ongoing progress in the development of CH and CH/CD polymer foams in support of Marble. Hierarchical and tunable pore sizes have been achieved by utilizing a sacrificial porogen template within an open-celled poly(divinylbenzene) or poly(divinylbenzene-co-styrene) aerogelmore » matrix, resulting in low-density foams (~30 mg/ml) with continuous multimodal pore networks.« less

  17. Confined water: a Mercedes-Benz model study.

    PubMed

    Urbic, T; Vlachy, V; Dill, K A

    2006-03-16

    We study water that is confined within small geometric spaces. We use the Mercedes-Benz (MB) model of water, in NVT and muVT Monte Carlo computer simulations. For MB water molecules between two planes separated by a distance d, we explore the structures, hydrogen bond networks, and thermodynamics as a function of d, temperature T, and water chemical potential mu. We find that squeezing the planes close enough together leads to a vaporization of waters out of the cavity. This vaporization transition has a corresponding peak in the heat capacity of the water. We also find that, in small pores, hydrogen bonding is not isotropic but, rather, it preferentially forms chains along the axis of the cavity. This may be relevant for fast proton transport in pores. Our simulations show oscillations in the forces between the inert plates, due to water structure, even for plate separations of 5-10 water diameters, consistent with experiments by Israelachvili et al. [Nature 1983, 306, 249]. Finally, we find that confinement affects water's heat capacity, consistent with recent experiments of Tombari et al. on Vycor nanopores [J. Chem. Phys. 2005, 122, 104712].

  18. Temperature gradient effects on vapor diffusion in partially-saturated porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, S.W.

    1999-07-01

    Vapor diffusion in porous media in the presence of its own liquid may be enhanced due to pore-scale processes, such as condensation and evaporation across isolated liquid islands. Webb and Ho (1997) developed one-and two-dimensional mechanistic pore-scale models of these processes in an ideal porous medium. For isothermal and isobaric boundary conditions with a concentration gradient, the vapor diffusion rate was significantly enhanced by these liquid island processes compared to a dry porous media. The influence of a temperature gradient on the enhanced vapor diffusion rate is considered in this paper. The two-dimensional pore network model which is used inmore » the present study is shown. For partially-saturated conditions, a liquid island is introduced into the top center pore. Boundary conditions on the left and right sides of the model are specified to give the desired concentration and temperature gradients. Vapor condenses on one side of the liquid island and evaporates off the other side due to local vapor pressure lowering caused by the interface curvature, even without a temperature gradient. Rather than acting as an impediment to vapor diffusion, the liquid island actually enhances the vapor diffusion rate. The enhancement of the vapor diffusion rate can be significant depending on the liquid saturation. Vapor diffusion is enhanced by up to 40% for this single liquid island compared to a dry porous medium; enhancement factors of up to an order of magnitude have been calculated for other conditions by Webb and Ho (1997). The dominant effect on the enhancement factor is the concentration gradient; the influence of the temperature gradient is smaller. The significance of these results, which need to be confirmed by experiments, is that the dominant model of enhanced vapor diffusion (EVD) by Philip and deVries (1957) predicts that temperature gradients must exist for EVD to occur. If there is no temperature gradient, there is no enhancement. The present results indicate that EVD is predominantly driven by concentration gradients; temperature gradients are less important. Therefore, the EVD model of Philip and deVries may need to be modified to reflect these results.« less

  19. Fines migration during CO 2 injection: Experimental results interpreted using surface forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Quan; Saeedi, Ali; Delle Piane, Claudio

    The South West Hub project is one of the Australian Flagship Carbon Capture and Storage projects located in the south-west of Western Australia. To evaluate the injectivity potential during the forthcoming full-scale CO 2 injection, we conducted three core-flooding experiments using reservoir core plugs from the well Harvey-1. We aimed to investigate in this paper whether the injection of CO 2 leads to fines migration and permeability reduction due to the relatively high kaolinite content (up to 13%) in the injection interval of the target formation (i.e. the Wonnerup Member of the Lesueur Formation). We imaged the core samples beforemore » flooding to verify the presence of kaolinite at the pore-scale using scanning electron microscopy (SEM). We also examined the pore network of the core plugs before and after the core-flooding experiments using Nuclear Magnetic Resonance (NMR). Moreover, to gain a better understanding of any kaolinite fines migration, we delineated surface force using two models based on Derjaguin-Landau-Verwey-Overbeek (denoted by DLVO) theory coupled hydrodynamic force: (1) sphere/flat model representing interaction between kaolinite/quartz, and (2) flat/flat model representing interaction between kaolinite/kaolinite. Our core-flooding experimental results showed that CO 2/brine injection triggered moderate to significant reduction in the permeability of the core samples with a negligible porosity change. NMR measurements supported the core-flooding results, suggesting that the relatively large pores disappeared in favour of a higher proportion of the medium to small pores after flooding. The DLVO calculations showed that some kaolinite particles probably lifted off and detached from neighbouring kaolinite particles rather than quartz grains. Moreover, the modelling results showed that the kaolinite fines migration would not occur under normal reservoir multiphase flow conditions. This is not because of the low hydrodynamic force. It is rather because the geometries of the particles dominate their interplay. Finally and overall, both of the experimental and analytical modelling results point to the fines migration to be the most likely cause of the permeability impairment observed during core-flooding experiments.« less

  20. Fines migration during CO 2 injection: Experimental results interpreted using surface forces

    DOE PAGES

    Xie, Quan; Saeedi, Ali; Delle Piane, Claudio; ...

    2017-09-04

    The South West Hub project is one of the Australian Flagship Carbon Capture and Storage projects located in the south-west of Western Australia. To evaluate the injectivity potential during the forthcoming full-scale CO 2 injection, we conducted three core-flooding experiments using reservoir core plugs from the well Harvey-1. We aimed to investigate in this paper whether the injection of CO 2 leads to fines migration and permeability reduction due to the relatively high kaolinite content (up to 13%) in the injection interval of the target formation (i.e. the Wonnerup Member of the Lesueur Formation). We imaged the core samples beforemore » flooding to verify the presence of kaolinite at the pore-scale using scanning electron microscopy (SEM). We also examined the pore network of the core plugs before and after the core-flooding experiments using Nuclear Magnetic Resonance (NMR). Moreover, to gain a better understanding of any kaolinite fines migration, we delineated surface force using two models based on Derjaguin-Landau-Verwey-Overbeek (denoted by DLVO) theory coupled hydrodynamic force: (1) sphere/flat model representing interaction between kaolinite/quartz, and (2) flat/flat model representing interaction between kaolinite/kaolinite. Our core-flooding experimental results showed that CO 2/brine injection triggered moderate to significant reduction in the permeability of the core samples with a negligible porosity change. NMR measurements supported the core-flooding results, suggesting that the relatively large pores disappeared in favour of a higher proportion of the medium to small pores after flooding. The DLVO calculations showed that some kaolinite particles probably lifted off and detached from neighbouring kaolinite particles rather than quartz grains. Moreover, the modelling results showed that the kaolinite fines migration would not occur under normal reservoir multiphase flow conditions. This is not because of the low hydrodynamic force. It is rather because the geometries of the particles dominate their interplay. Finally and overall, both of the experimental and analytical modelling results point to the fines migration to be the most likely cause of the permeability impairment observed during core-flooding experiments.« less

  1. Permeability-porosity relationships in sedimentary rocks

    USGS Publications Warehouse

    Nelson, Philip H.

    1994-01-01

    In many consolidated sandstone and carbonate formations, plots of core data show that the logarithm of permeability (k) is often linearly proportional to porosity (??). The slope, intercept, and degree of scatter of these log(k)-?? trends vary from formation to formation, and these variations are attributed to differences in initial grain size and sorting, diagenetic history, and compaction history. In unconsolidated sands, better sorting systematically increases both permeability and porosity. In sands and sandstones, an increase in gravel and coarse grain size content causes k to increase even while decreasing ??. Diagenetic minerals in the pore space of sandstones, such as cement and some clay types, tend to decrease log(k) proportionately as ?? decreases. Models to predict permeability from porosity and other measurable rock parameters fall into three classes based on either grain, surface area, or pore dimension considerations. (Models that directly incorporate well log measurements but have no particular theoretical underpinnings from a fourth class.) Grain-based models show permeability proportional to the square of grain size times porosity raised to (roughly) the fifth power, with grain sorting as an additional parameter. Surface-area models show permeability proportional to the inverse square of pore surface area times porosity raised to (roughly) the fourth power; measures of surface area include irreducible water saturation and nuclear magnetic resonance. Pore-dimension models show permeability proportional to the square of a pore dimension times porosity raised to a power of (roughly) two and produce curves of constant pore size that transgress the linear data trends on a log(k)-?? plot. The pore dimension is obtained from mercury injection measurements and is interpreted as the pore opening size of some interconnected fraction of the pore system. The linear log(k)-?? data trends cut the curves of constant pore size from the pore-dimension models, which shows that porosity reduction is always accompanied by a reduction in characteristic pore size. The high powers of porosity of the grain-based and surface-area models are required to compensate for the inclusion of the small end of the pore size spectrum.

  2. Modelling of pore coarsening in the high burn-up structure of UO2 fuel

    NASA Astrophysics Data System (ADS)

    Veshchunov, M. S.; Tarasov, V. I.

    2017-05-01

    The model for coalescence of randomly distributed immobile pores owing to their growth and impingement, applied by the authors earlier to consideration of the porosity evolution in the high burn-up structure (HBS) at the UO2 fuel pellet periphery (rim zone), was further developed and validated. Predictions of the original model, taking into consideration only binary impingements of growing immobile pores, qualitatively correctly describe the decrease of the pore number density with the increase of the fractional porosity, however notably underestimate the coalescence rate at high burn-ups attained in the outmost region of the rim zone. In order to overcome this discrepancy, the next approximation of the model taking into consideration triple impingements of growing pores was developed. The advanced model provides a reasonable consent with experimental data, thus demonstrating the validity of the proposed pore coarsening mechanism in the HBS.

  3. Near-field observations of an offshore Mw 6.0 earthquake from an integrated seafloor and subseafloor monitoring network at the Nankai Trough, southwest Japan

    NASA Astrophysics Data System (ADS)

    Wallace, L. M.; Araki, E.; Saffer, D.; Wang, X.; Roesner, A.; Kopf, A.; Nakanishi, A.; Power, W.; Kobayashi, R.; Kinoshita, C.; Toczko, S.; Kimura, T.; Machida, Y.; Carr, S.

    2016-11-01

    An Mw 6.0 earthquake struck 50 km offshore the Kii Peninsula of southwest Honshu, Japan on 1 April 2016. This earthquake occurred directly beneath a cabled offshore monitoring network at the Nankai Trough subduction zone and within 25-35 km of two borehole observatories installed as part of the International Ocean Discovery Program's NanTroSEIZE project. The earthquake's location close to the seafloor and subseafloor network offers a unique opportunity to evaluate dense seafloor geodetic and seismological data in the near field of a moderate-sized offshore earthquake. We use the offshore seismic network to locate the main shock and aftershocks, seafloor pressure sensors, and borehole observatory data to determine the detailed distribution of seafloor and subseafloor deformation, and seafloor pressure observations to model the resulting tsunami. Contractional strain estimated from formation pore pressure records in the borehole observatories (equivalent to 0.37 to 0.15 μstrain) provides a key to narrowing the possible range of fault plane solutions. Together, these data show that the rupture occurred on a landward dipping thrust fault at 9-10 km below the seafloor, most likely on the plate interface. Pore pressure changes recorded in one of the observatories also provide evidence for significant afterslip for at least a few days following the main shock. The earthquake and its aftershocks are located within the coseismic slip region of the 1944 Tonankai earthquake (Mw 8.0), and immediately downdip of swarms of very low frequency earthquakes in this region, illustrating the complex distribution of megathrust slip behavior at a dominantly locked seismogenic zone.

  4. A Comparison of Coarse-Grained and Continuum Models for Membrane Bending in Lipid Bilayer Fusion Pores

    PubMed Central

    Yoo, Jejoong; Jackson, Meyer B.; Cui, Qiang

    2013-01-01

    To establish the validity of continuum mechanics models quantitatively for the analysis of membrane remodeling processes, we compare the shape and energies of the membrane fusion pore predicted by coarse-grained (MARTINI) and continuum mechanics models. The results at these distinct levels of resolution give surprisingly consistent descriptions for the shape of the fusion pore, and the deviation between the continuum and coarse-grained models becomes notable only when the radius of curvature approaches the thickness of a monolayer. Although slow relaxation beyond microseconds is observed in different perturbative simulations, the key structural features (e.g., dimension and shape of the fusion pore near the pore center) are consistent among independent simulations. These observations provide solid support for the use of coarse-grained and continuum models in the analysis of membrane remodeling. The combined coarse-grained and continuum analysis confirms the recent prediction of continuum models that the fusion pore is a metastable structure and that its optimal shape is neither toroidal nor catenoidal. Moreover, our results help reveal a new, to our knowledge, bowing feature in which the bilayers close to the pore axis separate more from one another than those at greater distances from the pore axis; bowing helps reduce the curvature and therefore stabilizes the fusion pore structure. The spread of the bilayer deformations over distances of hundreds of nanometers and the substantial reduction in energy of fusion pore formation provided by this spread indicate that membrane fusion can be enhanced by allowing a larger area of membrane to participate and be deformed. PMID:23442963

  5. Pore Helices Play a Dynamic Role as Integrators of Domain Motion during Kv11.1 Channel Inactivation Gating*

    PubMed Central

    Perry, Matthew D.; Ng, Chai Ann; Vandenberg, Jamie I.

    2013-01-01

    Proteins that form ion-selective pores in the membrane of cells are integral to many rapid signaling processes, including regulating the rhythm of the heartbeat. In potassium channels, the selectivity filter is critical for both endowing an exquisite selectivity for potassium ions, as well as for controlling the flow of ions through the pore. Subtle rearrangements in the complex hydrogen-bond network that link the selectivity filter to the surrounding pore helices differentiate conducting (open) from nonconducting (inactivated) conformations of the channel. Recent studies suggest that beyond the selectivity filter, inactivation involves widespread rearrangements of the channel protein. Here, we use rate equilibrium free energy relationship analysis to probe the structural changes that occur during selectivity filter gating in Kv11.1 channels, at near atomic resolution. We show that the pore helix plays a crucial dynamic role as a bidirectional interface during selectivity filter gating. We also define the molecular bases of the energetic coupling between the pore helix and outer helix of the pore domain that occurs early in the transition from open to inactivated states, as well as the coupling between the pore helix and inner helix late in the transition. Our data demonstrate that the pore helices are more than just static structural elements supporting the integrity of the selectivity filter; instead they play a crucial dynamic role during selectivity filter gating. PMID:23471968

  6. Numerous nanopores developed in organo-clay complexes during the shale formations

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Wang, T.; Lu, H.; Liao, J.

    2017-12-01

    Shale gas as new energy resource is either stored in nano pores and microfractures or absorbed on the surface of kerogen and clay aggregate (Chalmers et al., 2012). Nano pores developed in organic matters is very important, because these organic pores have better connectivity than inorganic pores (Loucks et al., 2012) and can form an effective pore system where shale gas flows dominantly (Curtis et al., 2010). In order to figure out how the organic pores is affected by shale compositions, we conduct in-situ FE-SEM and EDS analysis on organic-rich Longmaxi shales. The data indicate that 1) organic matter, mixed with clay minerals, can form an organo-clay complex containing many nanopores; 2)furthermore, larger organic pores are developed in organo-clay complexes with higher clay content than in those with lower clay content(Wang et al., 2017). It seems that the presence of organo-clay complex raises the heterogeneous than pure organic matters. Organo-clay complex may bring in lots of intergranular nanopores between organic matter and clay minerals. Another potential interpretation is that clay minerals may influence kerogen thermal decomposition, generation of hydrocarbons and thus the development of organic pores. The presence of numerous nanopores in organo-clay complexes may promote the connectivity of the pore network and enhance the hydrocarbon production efficiency for shale gas field.

  7. Pore-Scale X-ray Micro-CT Imaging and Analysis of Oil Shales

    NASA Astrophysics Data System (ADS)

    Saif, T.

    2015-12-01

    The pore structure and the connectivity of the pore space during the pyrolysis of oil shales are important characteristics which determine hydrocarbon flow behaviour and ultimate recovery. We study the effect of temperature on the evolution of pore space and subsequent permeability on five oil shale samples: (1) Vernal Utah United States, (2) El Lajjun Al Karak Jordan, (3) Gladstone Queensland Australia (4) Fushun China and (5) Kimmerdige United Kingdom. Oil Shale cores of 5mm in diameter were pyrolized at 300, 400 and 500 °C. 3D imaging of 5mm diameter core samples was performed at 1μm voxel resolution using X-ray micro computed tomography (CT) and the evolution of the pore structures were characterized. The experimental results indicate that the thermal decomposition of kerogen at high temperatures is a major factor causing micro-scale changes in the internal structure of oil shales. At the early stage of pyrolysis, micron-scale heterogeneous pores were formed and with a further increase in temperature, the pores expanded and became interconnected by fractures. Permeability for each oil shale sample at each temperature was computed by simulation directly on the image voxels and by pore network extraction and simulation. Future work will investigate different samples and pursue insitu micro-CT imaging of oil shale pyrolysis to characterize the time evolution of the pore space.

  8. Nuclear pore complex tethers to the cytoskeleton.

    PubMed

    Goldberg, Martin W

    2017-08-01

    The nuclear envelope is tethered to the cytoskeleton. The best known attachments of all elements of the cytoskeleton are via the so-called LINC complex. However, the nuclear pore complexes, which mediate the transport of soluble and membrane bound molecules, are also linked to the microtubule network, primarily via motor proteins (dynein and kinesins) which are linked, most importantly, to the cytoplasmic filament protein of the nuclear pore complex, Nup358, by the adaptor BicD2. The evidence for such linkages and possible roles in nuclear migration, cell cycle control, nuclear transport and cell architecture are discussed. Copyright © 2017. Published by Elsevier Ltd.

  9. Origin of the Giant Honeycomb Network of Quinones on Cu(111)

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Kim, Kwangmoo; Wyrick, Jon; Cheng, Zhihai; Bartels, Ludwig; Berland, Kristian; Hyldgaard, Per

    2011-03-01

    We discuss the factors that lead to the amazing regular giant honeycomb network formed by quinones on Cu(111). Using a related lattice gas model with many characteristic energies, we can reproduce many experimental features. These models require a long-range attraction, which can be attributed to indirect interactions mediated by the Shockley surface state of Cu(111). However, Wyrick's preceding talk gave evidence that the network self-selects for the size of the pore rather than for the periodicity of the superstructure, suggesting that confined states are the key ingredient. We discuss this phenomenon in terms of the magic numbers of 2D quantum dots. We also report calculations of the effects of anthraquinones (AQ) in modifying the surface states by considering a superlattice of AQ chains with various separations. We discuss implications of these results for tuning the electronic states and, thence, superstructures. Supported by (TLE) NSF CHE 07-50334 & UMD MRSEC DMR 05-20471, (JW & LB) NSF CHE NSF CHE 07-49949, (KB & PH) Swedish Vetenskapsrådet VR 621-2008-4346.

  10. Understanding the role of hydrogen bonding in the aggregation of fumed silica particles in triglyceride solvents.

    PubMed

    Whitby, Catherine P; Krebsz, Melinda; Booty, Samuel J

    2018-10-01

    Fumed silica particles are thought to thicken organic solvents into gels by aggregating to form networks. Hydrogen bonding between silanol groups on different particle surfaces causes the aggregation. The gel structure and hence flow behaviour is altered by varying the proportion of silanol groups on the particle surfaces. However, characterising the gel using rheology measurements alone is not sufficient to optimise the aggregation. We have used confocal microscopy to characterise the changes in the network microstructure caused by altering the particle surface chemistry. Organogels were formed by dispersing fumed silica nanoparticles in a triglyceride solvent. The particle surface chemistry was systematically varied from oleophobic to oleophilic by functionalisation with hydrocarbons. We directly visualised the particle networks using confocal scanning laser microscopy and investigated the correlations between the network structure and the shear response of the organogels. Our key finding is that the sizes of the pore spaces in the networks depend on the fraction of silanol groups available to form hydrogen bonds. The reduction in the network elasticity of gels formed by methylated particles can be accounted for by the increasing pore size and tenuous nature of the networks. This is the first report that characterises the changes in the microstructure of fumed silica particle networks in non-polar solvents caused by manipulating the particle surface chemistry. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE PAGES

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart; ...

    2016-12-05

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  12. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this paper, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting water pH,more » were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10–100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. Finally, this finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  13. Pore-scale supercritical CO 2 dissolution and mass transfer under drainage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Chun; Zhou, Quanlin; Oostrom, Mart

    Abstract: Recently, both core- and pore-scale imbibition experiments have shown non-equilibrium dissolution of supercritical CO 2 (scCO 2) and a prolonged depletion of residual scCO 2. In this study, pore-scale scCO 2 dissolution and mass transfer under drainage conditions were investigated using a two-dimensional heterogeneous micromodel and a novel fluorescent water dye with a sensitive pH range between 3.7 and 6.5. Drainage experiments were conducted at 9 MPa and 40 °C by injecting scCO 2 into the sandstone-analogue pore network initially saturated by water without dissolved CO 2 (dsCO 2). During the experiments, time-lapse images of dye intensity, reflecting watermore » pH, were obtained. These images show non-uniform pH in individual pores and pore clusters, with average pH levels gradually decreasing with time. Further analysis on selected pores and pore clusters shows that (1) rate-limited mass transfer prevails with slowly decreasing pH over time when the scCO 2-water interface area is low with respect to the volume of water-filled pores and pore clusters, (2) fast scCO 2 dissolution and phase equilibrium occurs when scCO 2 bubbles invade into water-filled pores, significantly enhancing the area-to-volume ratio, and (3) a transition from rate-limited to diffusion-limited mass transfer occurs in a single pore when a medium area-to-volume ratio is prevalent. The analysis also shows that two fundamental processes – scCO 2 dissolution at phase interfaces and diffusion of dsCO 2 at the pore scale (10-100 µm) observed after scCO 2 bubble invasion into water-filled pores without pore throat constraints – are relatively fast. The overall slow dissolution of scCO 2 in the millimeter-scale micromodel can be attributed to the small area-to-volume ratios that represent pore-throat configurations and characteristics of phase interfaces. This finding is applicable for the behavior of dissolution at pore, core, and field scales when water-filled pores and pore clusters of varying size are surrounded by scCO 2 at narrow pore throats.« less

  14. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory.

    PubMed

    Hlushak, Stepan

    2018-01-03

    Temperature, pressure and pore-size dependences of the heat of adsorption, adsorption stress, and adsorption capacity of methane in simple models of slit and cylindrical carbon pores are studied using classical density functional theory (CDFT) and grand-canonical Monte-Carlo (MC) simulation. Studied properties depend nontrivially on the bulk pressure and the size of the pores. Heat of adsorption increases with loading, but only for sufficiently narrow pores. While the increase is advantageous for gas storage applications, it is less significant for cylindrical pores than for slits. Adsorption stress and the average adsorbed fluid density show oscillatory dependence on the pore size and increase with bulk pressure. Slit pores exhibit larger amplitude of oscillations of the normal adsorption stress with pore size increase than cylindrical pores. However, the increase of the magnitude of the adsorption stress with bulk pressure increase is more significant for cylindrical than for slit pores. Adsorption stress appears to be negative for a wide range of pore sizes and external conditions. The pore size dependence of the average delivered density of the gas is analyzed and the optimal pore sizes for storage applications are estimated. The optimal width of slit pore appears to be almost independent of storage pressure at room temperature and pressures above 10 bar. Similarly to the case of slit pores, the optimal radius of cylindrical pores does not exhibit much dependence on the storage pressure above 15 bar. Both optimal width and optimal radii of slit and cylindrical pores increase as the temperature decreases. A comparison of the results of CDFT theory and MC simulations reveals subtle but important differences in the underlying fluid models employed by the approaches. The differences in the high-pressure behaviour between the hard-sphere 2-Yukawa and Lennard-Jones models of methane, employed by the CDFT and MC approaches, respectively, result in an overestimation of the heat of adsorption by the CDFT theory at higher loadings. However, both adsorption stress and adsorption capacity appear to be much less sensitive to the differences between the models and demonstrate excellent agreement between the theory and the computer experiment.

  15. Molecular Dynamic Simulation of Water Vapor and Determination of Diffusion Characteristics in the Pore

    NASA Astrophysics Data System (ADS)

    Nikonov, Eduard G.; Pavluš, Miron; Popovičová, Mária

    2018-02-01

    One of the varieties of pores, often found in natural or artificial building materials, are the so-called blind pores of dead-end or saccate type. Three-dimensional model of such kind of pore has been developed in this work. This model has been used for simulation of water vapor interaction with individual pore by molecular dynamics in combination with the diffusion equation method. Special investigations have been done to find dependencies between thermostats implementations and conservation of thermodynamic and statistical values of water vapor - pore system. The two types of evolution of water - pore system have been investigated: drying and wetting of the pore. Full research of diffusion coefficient, diffusion velocity and other diffusion parameters has been made.

  16. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    NASA Astrophysics Data System (ADS)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three-dimensional pore network, the dependence of the mass balance in all major directions is taken into account, either as a three-dimensional network of pores with specific geometry (cylinders, sinusoidal cells), or as a homogeneous random medium (Darcy description). The distribution of the crystals along the porous medium was calculated in the case of selective crystallization on the walls, which is the predominant effect to date in the experiments. The crystals distribution was also examined in the case where crystallization was carried out in the bulk solution. Salts sedimentation experiments were simulated both in an unsaturated porous medium and in a medium saturated with an oil phase. A comparison of the simulation results with corresponding experimental results was performed in order to design improved selective sedimentation of salts systems in porous formations. ACKNOWLEDGMENTS This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational program "Education and Lifelong Learning" under the action Aristeia II (Code No 4420).

  17. Pore-Scale Determination of Gas Relative Permeability in Hydrate-Bearing Sediments Using X-Ray Computed Micro-Tomography and Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Chen, Xiongyu; Verma, Rahul; Espinoza, D. Nicolas; Prodanović, Maša.

    2018-01-01

    This work uses X-ray computed micro-tomography (μCT) to monitor xenon hydrate growth in a sandpack under the excess gas condition. The μCT images give pore-scale hydrate distribution and pore habit in space and time. We use the lattice Boltzmann method to calculate gas relative permeability (krg) as a function of hydrate saturation (Shyd) in the pore structure of the experimental hydrate-bearing sand retrieved from μCT data. The results suggest the krg - Shyd data fit well a new model krg = (1-Shyd)·exp(-4.95·Shyd) rather than the simple Corey model. In addition, we calculate krg-Shyd curves using digital models of hydrate-bearing sand based on idealized grain-attaching, coarse pore-filling, and dispersed pore-filling hydrate habits. Our pore-scale measurements and modeling show that the krg-Shyd curves are similar regardless of whether hydrate crystals develop grain-attaching or coarse pore-filling habits. The dispersed pore filling habit exhibits much lower gas relative permeability than the other two, but it is not observed in the experiment and not compatible with Ostwald ripening mechanisms. We find that a single grain-shape factor can be used in the Carman-Kozeny equation to calculate krg-Shyd data with known porosity and average grain diameter, suggesting it is a useful model for hydrate-bearing sand.

  18. The exocytotic fusion pore modeled as a lipidic pore.

    PubMed Central

    Nanavati, C; Markin, V S; Oberhauser, A F; Fernandez, J M

    1992-01-01

    Freeze-fracture electron micrographs from degranulating cells show that the lumen of the secretory granule is connected to the extracellular compartment via large (20 to 150 nm diameter) aqueous pores. These exocytotic fusion pores appear to be made up of a highly curved bilayer that spans the plasma and granule membranes. Conductance measurements, using the patch-clamp technique, have been used to study the fusion pore from the instant it conducts ions. These measurements reveal the presence of early fusion pores that are much smaller than those observed in electron micrographs. Early fusion pores open abruptly, fluctuate, and then either expand irreversibly or close. The molecular structure of these early fusion pores is unknown. In the simplest extremes, these early fusion pores could be either ion channel like protein pores or lipidic pores. Here, we explored the latter possibility, namely that of the early exocytotic fusion pore modeled as a lipid-lined pore whose free energy was composed of curvature elastic energy and work done by tension. Like early exocytotic fusion pores, we found that these lipidic pores could open abruptly, fluctuate, and expand irreversibly. Closure of these lipidic pores could be caused by slight changes in lipid composition. Conductance distributions for stable lipidic pores matched those of exocytotic fusion pores. These findings demonstrate that lipidic pores can exhibit the properties of exocytotic fusion pores, thus providing an alternate framework with which to understand and interpret exocytotic fusion pore data. PMID:1420930

  19. An Image-based Micro-continuum Pore-scale Model for Gas Transport in Organic-rich Shale

    NASA Astrophysics Data System (ADS)

    Guo, B.; Tchelepi, H.

    2017-12-01

    Gas production from unconventional source rocks, such as ultra-tight shales, has increased significantly over the past decade. However, due to the extremely small pores ( 1-100 nm) and the strong material heterogeneity, gas flow in shale is still not well understood and poses challenges for predictive field-scale simulations. In recent years, digital rock analysis has been applied to understand shale gas transport at the pore-scale. An issue with rock images (e.g. FIB-SEM, nano-/micro-CT images) is the so-called "cutoff length", i.e., pores and heterogeneities below the resolution cannot be resolved, which leads to two length scales (resolved features and unresolved sub-resolution features) that are challenging for flow simulations. Here we develop a micro-continuum model, modified from the classic Darcy-Brinkman-Stokes framework, that can naturally couple the resolved pores and the unresolved nano-porous regions. In the resolved pores, gas flow is modeled with Stokes equation. In the unresolved regions where the pore sizes are below the image resolution, we develop an apparent permeability model considering non-Darcy flow at the nanoscale including slip flow, Knudsen diffusion, adsorption/desorption, surface diffusion, and real gas effect. The end result is a micro-continuum pore-scale model that can simulate gas transport in 3D reconstructed shale images. The model has been implemented in the open-source simulation platform OpenFOAM. In this paper, we present case studies to demonstrate the applicability of the model, where we use 3D segmented FIB-SEM and nano-CT shale images that include four material constituents: organic matter, clay, granular mineral, and pore. In addition to the pore structure and the distribution of the material constituents, we populate the model with experimental measurements (e.g. size distribution of the sub-resolution pores from nitrogen adsorption) and parameters from the literature and identify the relative importance of different physics on gas production. Overall, the micro-continuum model provides a novel tool for digital rock analysis of organic-rich shale.

  20. Kinetic models of controllable pore growth of anodic aluminum oxide membrane

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Zeng, Hong-yan; Zhao, Ce; Qu, Ye-qing; Zhang, Pin

    2012-06-01

    An anodized Al2O3 (AAO) membrane with apertures about 72 nm in diameter was prepared by two-step anodic oxidation. The appearance and pore arrangement of the AAO membrane were characterized by energy dispersive x-ray spectroscopy and scanning electron microscopy. It was confirmed that the pores with high pore aspect ratio were parallel, well-ordered, and uniform. The kinetics of pores growth in the AAO membrane was derived, and the kinetic models showed that pores stopped developing when the pressure ( σ) trended to equal the surface tension at the end of anodic oxidation. During pore expansion, the effects of the oxalic acid concentration and expansion time on the pore size were investigated, and the kinetic behaviors were explained with two kinetic models derived in this study. They showed that the pore size increased with extended time ( r= G· t+ G'), but decreased with increased concentration ( r = - K·ln c- K') through the derived mathematic formula. Also, the values of G, G', K, and K' were derived from our experimental data.

  1. Numerical Models of Pore Pressure and Stress Changes along Basement Faults due to Wastewater Injection: Applications to Potentially Induced Seismicity in Southern Kansas

    NASA Astrophysics Data System (ADS)

    Koltermann, C.; Hearn, E. H.

    2015-12-01

    As hydrocarbon extraction techniques that generate large volumes of wastewater have come into widespread use in the central United States, increased volumes have been injected into deep disposal wells, with a corresponding dramatic increase in seismicity rates. South-central Kansas is of particular scientific interest because fluid injection rates have recently increased due to renewed gas and oil production from the Mississippi Lime Play, and the local seismicity is being monitored with a seismometer network deployed by the USGS. In addition, since only a small percentage of injection wells seem to induce seismicity, it is important to characterize contributing factors. We have developed groundwater flow models using MODFLOW-USG to (1) assess hydrogeologic conditions under which seismicity may be triggered, for cases in which wastewater is injected into sedimentary strata overlying fractured crystalline basement rock and to (2) explore the possible relationship between wastewater injection and the November 2014 M 4.8 Milan, Kansas earthquake. The USG version of MODFLOW allows us to use unstructured meshes, which vastly reduces computation time while allowing dense meshing near injection wells and faults. Our single-well test model has been benchmarked to published models (Zhang et al., 2013) and will be used to evaluate sensitivity pore pressures and stresses to model parameters. Our south Kansas model represents high-rate injection wells, as well as oil and gas wells producing from the Arbuckle and overlying Mississippian formations in a 40-km square region. Based on modeled pore pressure and stress changes along the target fault, we will identify conditions that would be consistent with inducing an earthquake at the Milan hypocenter. Parameters to be varied include hydraulic properties of sedimentary rock units, crystalline basement and the fault zone, as well as the (poorly resolved) Milan earthquake hypocenter depth.

  2. Multiphase flow experiments, mathematical modeling and numerical simulation of the water - gas - solute movement

    NASA Astrophysics Data System (ADS)

    Li, Y.; Ma, X.; Su, N.

    2013-12-01

    The movement of water and solute into and through the vadose zone is, in essence, an issue of immiscible displacement in pore-space network of a soil. Therefore, multiphase flow and transport in porous media, referring to three medium: air, water, and the solute, pose one of the largest unresolved challenges for porous medium fluid seepage. However, this phenomenon has always been largely neglected. It is expected that a reliable analysis model of the multi-phase flow in soil can truly reflect the process of natural movement about the infiltration, which is impossible to be observed directly. In such cases, geophysical applications of the nuclear magnetic resonance (NMR) provides the opportunity to measure the water movements into soils directly over a large scale from tiny pore to regional scale, accordingly enable it available both on the laboratory and on the field. In addition, the NMR provides useful information about the pore space properties. In this study, we proposed both laboratory and field experiments to measure the multi-phase flow parameters, together with optimize the model in computer programming based on the fractional partial differential equations (fPDE). In addition, we establish, for the first time, an infiltration model including solute flowing with water, which has huge influence on agriculture and soil environment pollution. Afterwards, with data collected from experiments, we simulate the model and analyze the spatial variability of parameters. Simulations are also conducted according to the model to evaluate the effects of airflow on water infiltration and other effects such as solute and absorption. It has significant meaning to oxygen irrigation aiming to higher crop yield, and shed more light into the dam slope stability. In summary, our framework is a first-time model added in solute to have a mathematic analysis with the fPDE and more instructive to agriculture activities.

  3. Root induced changes of effective 1D hydraulic properties in a soil column.

    PubMed

    Scholl, P; Leitner, D; Kammerer, G; Loiskandl, W; Kaul, H-P; Bodner, G

    Roots are essential drivers of soil structure and pore formation. This study aimed at quantifying root induced changes of the pore size distribution (PSD). The focus was on the extent of clogging vs. formation of pores during active root growth. Parameters of Kosugi's lognormal PSD model were determined by inverse estimation in a column experiment with two cover crops (mustard, rye) and an unplanted control. Pore dynamics were described using a convection-dispersion like pore evolution model. Rooted treatments showed a wider range of pore radii with increasing volumes of large macropores >500 μm and micropores <2.5 μm, while fine macropores, mesopores and larger micropores decreased. The non-rooted control showed narrowing of the PSD and reduced porosity over all radius classes. The pore evolution model accurately described root induced changes, while structure degradation in the non-rooted control was not captured properly. Our study demonstrated significant short term root effects with heterogenization of the pore system as dominant process of root induced structure formation. Pore clogging is suggested as a partial cause for reduced pore volume. The important change in micro- and large macropores however indicates that multiple mechanic and biochemical processes are involved in root-pore interactions.

  4. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes

    PubMed Central

    Delavari, Armin; Baltus, Ruth

    2017-01-01

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle–membrane interactions at the pore mouth result in particle “funneling” in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined. PMID:28796197

  5. Nanostructured silicon membranes for control of molecular transport.

    PubMed

    Srijanto, Bernadeta R; Retterer, Scott T; Fowlkes, Jason D; Doktycz, Mitchel J

    2010-11-01

    A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane.

  6. Modelling in conventional electroporation for model cell with organelles using COMSOL Multiphysics

    NASA Astrophysics Data System (ADS)

    Sulaeman, M. Y.; Widita, R.

    2016-03-01

    Conventional electroporation is a formation of pores in the membrane cell due to the external electric field applied to the cell. The purpose of creating pores in the cell using conventional electroporation are to increase the effectiveness of chemotherapy (electrochemotherapy) and to kill cancer tissue using irreversible electroporation. Modeling of electroporation phenomenon on a model cell had been done by using software COMSOL Multiphysics 4.3b with the applied external electric field with intensity at 1.1 kV/cm to find transmembrane voltage and pore density. It can be concluded from the results of potential distribution and transmembrane voltage, it show that pores formation only occurs in the membrane cells and it could not penetrate into inside the model cell so there is not pores formation in its organells.

  7. A role for TREK1 in generating the slow afterhyperpolarization in developing starburst amacrine cells.

    PubMed

    Ford, Kevin J; Arroyo, David A; Kay, Jeremy N; Lloyd, Eric E; Bryan, Robert M; Sanes, Joshua R; Feller, Marla B

    2013-05-01

    Slow afterhyperpolarizations (sAHPs) play an important role in establishing the firing pattern of neurons that in turn influence network activity. sAHPs are mediated by calcium-activated potassium channels. However, the molecular identity of these channels and the mechanism linking calcium entry to their activation are still unknown. Here we present several lines of evidence suggesting that the sAHPs in developing starburst amacrine cells (SACs) are mediated by two-pore potassium channels. First, we use whole cell and perforated patch voltage clamp recordings to characterize the sAHP conductance under different pharmacological conditions. We find that this conductance was calcium dependent, reversed at EK, blocked by barium, insensitive to apamin and TEA, and activated by arachidonic acid. In addition, pharmacological inhibition of calcium-activated phosphodiesterase reduced the sAHP. Second, we performed gene profiling on isolated SACs and found that they showed strong preferential expression of the two-pore channel gene kcnk2 that encodes TREK1. Third, we demonstrated that TREK1 knockout animals exhibited an altered frequency of retinal waves, a frequency that is set by the sAHPs in SACs. With these results, we propose a model in which depolarization-induced decreases in cAMP lead to disinhibition of the two-pore potassium channels and in which the kinetics of this biochemical pathway dictate the slow activation and deactivation of the sAHP conductance. Our model offers a novel pathway for the activation of a conductance that is physiologically important.

  8. Fibril growth kinetics link buffer conditions and topology of 3D collagen I networks.

    PubMed

    Kalbitzer, Liv; Pompe, Tilo

    2018-02-01

    Three-dimensional fibrillar networks reconstituted from collagen I are widely used as biomimetic scaffolds for in vitro and in vivo cell studies. Various physicochemical parameters of buffer conditions for in vitro fibril formation are well known, including pH-value, ion concentrations and temperature. However, there is a lack of a detailed understanding of reconstituting well-defined 3D network topologies, which is required to mimic specific properties of the native extracellular matrix. We screened a wide range of relevant physicochemical buffer conditions and characterized the topology of the reconstituted 3D networks in terms of mean pore size and fibril diameter. A congruent analysis of fibril formation kinetics by turbidimetry revealed the adjustment of the lateral growth phase of fibrils by buffer conditions to be key in the determination of pore size and fibril diameter of the networks. Although the kinetics of nucleation and linear growth phase were affected by buffer conditions as well, network topology was independent of those two growth phases. Overall, the results of our study provide necessary insights into how to engineer 3D collagen matrices with an independent control over topology parameters, in order to mimic in vivo tissues in in vitro experiments and tissue engineering applications. The study reports a comprehensive analysis of physicochemical conditions of buffer solutions to reconstitute defined 3D collagen I matrices. By a combined analysis of network topology, i.e., pore size and fibril diameter, and the kinetics of fibril formation we can reveal the dependence of 3D network topology on buffer conditions, such as pH-value, phosphate concentration and sodium chloride content. With those results we are now able to provide engineering strategies to independently tune the topology parameters of widely used 3D collagen scaffolds based on the buffer conditions. By that, we enable the straightforward mimicking of extracellular matrices of in vivo tissues for in vitro cell culture experiments and tissue engineering applications. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Hydraulic conductivity of variably saturated porous media: Film and corner flow in angular pore space

    NASA Astrophysics Data System (ADS)

    Tuller, Markus; Or, Dani

    2001-05-01

    Many models for hydraulic conductivity of partially saturated porous media rely on oversimplified representation of the pore space as a bundle of cylindrical capillaries and disregard flow in liquid films. Recent progress in modeling liquid behavior in angular pores of partially saturated porous media offers an alternative framework. We assume that equilibrium liquid-vapor interfaces provide well-defined and stable boundaries for slow laminar film and corner flow regimes in pore space comprised of angular pores connected to slit-shaped spaces. Knowledge of liquid configuration in the assumed geometry facilitates calculation of average liquid velocities in films and corners and enables derivation of pore-scale hydraulic conductivity as a function of matric potential. The pore-scale model is statistically upscaled to represent hydraulic conductivity for a sample of porous medium. Model parameters for the analytical sample-scale expressions are estimated from measured liquid retention data and other measurable medium properties. Model calculations illustrate the important role of film flow, whose contribution dominates capillary flow (in full pores and corners) at relatively high matric potentials (approximately -100 to -300 J kg-1, or -1 to 3 bars). The crossover region between film and capillary flow is marked by a significant change in the slope of the hydraulic conductivity function as often observed in measurements. Model predictions are compared with the widely applied van Genuchten-Mualem model and yield reasonable agreement with measured retention and hydraulic conductivity data over a wide range of soil textural classes.

  10. Modeling the interaction of ultrasound with pores

    NASA Technical Reports Server (NTRS)

    Lu, Yichi; Wadley, Haydn N. G.; Parthasarathi, Sanjai

    1991-01-01

    Factors that affect ultrasonic velocity sensing of density during consolidation of metal powders are examined. A comparison is made between experimental results obtained during the final stage of densification and the predictions of models that assume either a spherical or a spheroidal pore shape. It is found that for measurements made at low frequencies during the final stage of densification, relative density (pore fraction) and pore shape are the two most important factors determining the ultrasonic velocity, the effect of pore size is negligible.

  11. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.

    PubMed

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2008-01-01

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbon materials and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (<2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (>50 nm) at which pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, which show the significant effects of pore curvature on the supercapacitor properties of nanoporous carbon materials. It is shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials, including activated carbon materials, template carbon materials, and novel carbide-derived carbon materials, and with diverse electrolytes, including organic electrolytes, such as tetraethylammonium tetrafluoroborate (TEABF(4)) and tetraethylammonium methylsulfonate (TEAMS) in acetonitrile, aqueous H(2)SO(4) and KOH electrolytes, and even an ionic liquid electrolyte, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size It may lend support for the systematic optimization of the properties of carbon supercapacitors through experiments. On the basis of the insight obtained from the new model, we also discuss the effects of the kinetic solvation/desolvation process, multimodal (versus unimodal) pore size distribution, and exohedral (versus endohedral) capacitors on the electrochemical properties of supercapacitors.

  12. Modification of electrical properties of silicon dioxide through intrinsic nano-patterns

    NASA Astrophysics Data System (ADS)

    Majee, Subimal; Barshilia, Devesh; Banerjee, Debashree; Kumar, Sanjeev; Mishra, Prabhash; Akhtar, Jamil

    2018-05-01

    The inherent network of nanopores and voids in silicon dioxide (SiO2) is generally undesirable for aspects of film quality, electrical insulation and dielectric performance. However, if we view these pores as natural nano-patterns embedded in a dielectric matrix then that opens up new vistas for exploration. The nano-pattern platform can be used to tailor electrical, optical, magnetic and mechanical properties of the carrier film. In this article we report the tunable electrical properties of thermal SiO2 thin-film achieved through utilization of the metal-nanopore network where the pores are filled with metallic Titanium (Ti). Without any intentional chemical doping, we have shown that the electrical resistivity of the oxide film can be controlled through physical filling up of the intrinsic oxide nanopores with Ti. The electrical resistivity of the composite film remains constant even after complete removal of the metal from the film surface except the pores. Careful morphological, electrical and structural analyses are carried out to establish that the presence of Ti in the nanopores play a crucial role in the observed conductive nature of the nanoporous film.

  13. Effective pore-scale dispersion upscaling with a correlated continuous time random walk approach

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Bolster, D.; Dentz, M.; de Anna, P.; Tartakovsky, A.

    2011-12-01

    We investigate the upscaling of dispersion from a pore-scale analysis of Lagrangian velocities. A key challenge in the upscaling procedure is to relate the temporal evolution of spreading to the pore-scale velocity field properties. We test the hypothesis that one can represent Lagrangian velocities at the pore scale as a Markov process in space. The resulting effective transport model is a continuous time random walk (CTRW) characterized by a correlated random time increment, here denoted as correlated CTRW. We consider a simplified sinusoidal wavy channel model as well as a more complex heterogeneous pore space. For both systems, the predictions of the correlated CTRW model, with parameters defined from the velocity field properties (both distribution and correlation), are found to be in good agreement with results from direct pore-scale simulations over preasymptotic and asymptotic times. In this framework, the nontrivial dependence of dispersion on the pore boundary fluctuations is shown to be related to the competition between distribution and correlation effects. In particular, explicit inclusion of spatial velocity correlation in the effective CTRW model is found to be important to represent incomplete mixing in the pore throats.

  14. A dual-porous, biophysical void structure model of soil for the understanding of the conditions causing nitrous oxide emission

    NASA Astrophysics Data System (ADS)

    Matthews, G. Peter; Maurizio Laudone, G.; Whalle, W. Richard; Bird, Nigel; Gregory, Andrew; Cardenas, Laura; Misselbrook, Tom

    2010-05-01

    Nitrous oxide is the fourth most important greenhouse gas. It is 300 times more potent than carbon dioxide, and two-thirds of anthropogenic nitrous oxide is emitted by agricultural land. This presentation will begin with a brief overview of the laboratory measurements of nitrous oxide emission from carefully characterised soils, presented in more detail by Cardenas et al.. The measurements were made in a twelve-chamber, gas chromatographic apparatus at North Wyke Research (formerly IGER). The presentation will then continue with a description of a void network model of sufficient accuracy and authenticity that it can be used to explain and predict the nitrous oxide production, and the modelling of the biological, chemical and physical processes for the production of nitrous oxide within the constructed network. Finally, conclusions will be drawn from a comparison of the model results with experiment. The void network model Nitrous oxide is produced by microbial activity located in ‘hotspots' within the microstructure of soil, and nutrients and gases flow or diffuse to and from these hotspots through the water or gas-filled macro-porosity. It is clear, therefore, that a network model to describe and explain nitrous oxide production must encompass the full size range of pore space active within the process, which covers 6 orders of magnitude, and must make realistic suppositions about the positional relationship of the hotspots relative to the soil macro-porosity. Previous experimental (Tsakiroglou, C. D. et al, European J.Soil Sci., 2008) and theoretical approaches to the modelling of soil void structure cannot generally meet these two requirements. We have therefore built on the success of the previous uni-porous model of soil (Matthews, G. P. et al, Wat.Resour.Res, 2010), and the concept of a critical percolation path, to develop a dual porous model (Laudone, G. M. et al, European J.Soil Sci., 2010) with the following features: • A porous unit cell, with periodic boundary conditions, and with a critical percolation path with the correct percolation characteristics and void volume of the macro-porosity of the soil. • A solid phase between the pores of the large unit cell, with the correct volume of the fraction of larger soil aggregates (larger 1 mm). • All the remaining pores of the large unit cell, which are not part of the critical percolation path, filled with smaller unit cells, which account for the micro-porosity of the soil sample. We describe the construction of a model that closely matches the following characteristics of a specific example of typical arable soil, taken from the Warren field of the Rothamsted experimental farm at Woburn, although the model can be used for a wide range of soils: (i) macroporosity and microporosity as measured by the water retention curve, (ii) the shape of the water retention characteristic under a wide range of tensions, (iii) the soil texture, and (iv) the extent of irreducible water content. Process model We will describe the insertion of Michaelis-Menten kinetics and Crank-Nicholson diffusion equations into the precisely scaled model, building on previous diffusion modelling (Laudone, G. M. et al, Chem.Eng.Sci., 2008). Comparison with experiment A comparison with experimental results sheds light on (i) the positional relationships of aerobic and anaerobic bacteria relative to the critical percolation path, (ii) the relationship between the critical percolation path and the preferential / critical flow path (Figure 4), (iii) the extent of ignorance about the reaction kinetics of some of the fundamental processes occurring, (iv) the soil conditions that cause nitrous oxide emission, and (v) the effect of soil compaction on the emission. Acknowledgement This presentation is a summary of the some of the work of the BBSRC funded U.K. soil research consortium "Soil Programme for Quality and Resilience" (BB/E001793/1 and others), of which Matthews is principal investigator.

  15. A novel approach to model hydraulic and electrical conductivity in fractal porous media

    NASA Astrophysics Data System (ADS)

    Ghanbarian, B.; Daigle, H.; Sahimi, M.

    2014-12-01

    Accurate prediction of conductivity in partially-saturated porous media has broad applications in various phenomena in porous media, and has been studied intensively since the 1940s by petroleum, chemical and civil engineers, and hydrologists. Many of the models developed in the past are based on the bundle of capillary tubes. In addition, pore network models have also been developed for simulating multiphase fluid flow in porous media and computing the conductivity in unsaturated porous media. In this study, we propose a novel approach using concepts from the effective-medium approximation (EMA) and percolation theory to model hydraulic and electrical conductivity in fractal porous media whose pore-size distributions exhibit power-law scaling. In our approach, the EMA, originally developed for predicting electrical conductivity of composite materials, is used to predict the effective conductivity, from complete saturation to some intermediate water content that represents a crossover point. Below the crossover water content, but still above a critical saturation (percolation threshold), a universal scaling predicted by percolation theory, a power law that expresses the dependence of the conductivity on the water content (less a critical water saturation) with an exponent of 2, is invoked to describe the effective conductivity. In order to evaluate the accuracy of the approach, experimental data were used from the literature. The predicted hydraulic conductivities for most cases are in excellent agreement with the data. In a few cases the theory underestimates the hydraulic conductivities, which correspond to porous media with very broad pore-size distribution in which the largest pore radius is more than 7 orders of magnitude greater than the smallest one. The approach is also used to predict the saturation dependence of the electrical conductivity for experiments in which capillary pressure data are available. The results indicate that the universal scaling of the electrical conductivity is valid from the percolation threshold all the way up to the complete saturation point. Our results confirm those reported previously by Ewing and Hunt (2006) who argued that the electrical conductivity should follow universal scaling over the entire range of saturation.

  16. Microstructure and Mechanical Properties of Porous Mullite

    NASA Astrophysics Data System (ADS)

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the two doped intergranular glasses and their interfaces with mullite were quite similar. The reductions in strength and toughness were traced to differences in the ACM network structure and mass-distribution that are hypothesized to result from dopant-altered ACM nucleation and growth kinetics. X-ray computed tomography, a non-destructive 3-D imaging technique, played a key role in this work, enabling the measurement of needle diameters, quantification of the ACM structural network, and finite element analysis of ACM's mechanical response.

  17. Influence of pore structure on carbon retention/loss in soil macro-aggregates

    NASA Astrophysics Data System (ADS)

    Quigley, Michelle; Kravchenko, Alexandra; Rivers, Mark

    2017-04-01

    Carbon protection within soil macro-aggregates is an important component of soil carbon sequestration. Pores, as the transportation network for microorganisms, water, air and nutrients within macro-aggregates, are among the factors controlling carbon protection through restricting physical accessibility of carbon to microorganisms. The understanding of how the intra-aggregate pore structure relates to the degree of carbon physical protection, however, is currently lacking. This knowledge gap can lead to potentially inaccurate models and predictions of soil carbon's fate and storage in future changing climates. This study utilized the natural isotopic difference between C3 and C4 plants to trace the location of newly added carbon within macro-aggregates before and after decomposition and explored how location of this carbon relates to characteristics of intra-aggregate pores. To mimic the effect of decomposition, aggregates were incubated at 23˚ C for 28 days. Computed micro-tomographic images were used to determine pore characteristics at 6 μm resolution before and after incubation. Soil (0-10 cm depth) from a 20 year continuous corn (C4 plant) experiment was used. Two soil treatments were considered: 1) "destroyed-structure", where 1 mm sieved soil was used and 2) "intact-structure", where intact blocks of soil were used. Cereal rye (Secale cereale L.) (C3 plant) was grown in the planting boxes (2 intact, 3 destroyed, and one control) for three months in a greenhouse. From each box, ˜5 macro-aggregates of ˜5 mm size were collected for a total of 27 macro-aggregates. Half of the aggregates were cut into 5-11 sections, with relative positions of the sections within the aggregate recorded, and analyzed for δ13C. The remaining aggregates were incubated and then subjected to cutting and δ13C analysis. While there were no significant differences between the aggregate pore size distributions of the two treatments, the roles that specific pores sizes played in carbon protect were disparate. In intact-structure aggregates, prior to incubation, there was no association between carbon distribution and pores. After incubation, significant correlations (α=0.05) were observed between abundance of 6-40 μm pores and both soil organic carbon (SOC) and δ13C. Sections containing more 6-40 μm pores also had increased amounts of SOC (r2=0.23) with higher presence of C4 carbon (r2=0.27). This indicates preferential preservation of older carbon in the pores of this size range. Prior to incubation, destroyed-structure aggregates had higher amounts of C3 carbon associated with 40-95 μm pores (r2=0.14), pointing to a greater presence of newly added carbon within these pores. However, after incubation there was a significant loss of SOC from these pores (r2=0.22) and, specifically, the loss of C3 carbon (r2=0.16). In the studied soil, pores of 6-40 μm size range appeared to control the preservation of older carbon, while 40-95 μm pores controlled the fate of newly added carbon. Older carbon preservation in 6-40 μm pores was mostly observed in macro-aggregates from the soil with intact structure, while the associations between 40-95 μm pores and gains and losses of newly added carbon were primarily observed in the macro-aggregates that were formed anew in the sieved soil during the plant growing experiment.

  18. Drug release through liposome pores.

    PubMed

    Dan, Nily

    2015-02-01

    Electrical, ultrasound and other types of external fields are known to induce the formation of pores in cellular and model membranes. This paper examines drug release through field induced liposome pores using Monte Carlo simulations. We find that drug release rates vary as a function of pore size and spacing, as well as the overall fraction of surface area covered by pores: The rate of release from liposomes is found to increase rapidly with pore surface coverage, approaching that of the fully ruptured liposome at fractional pore areas. For a given pore surface coverage, the pore size affects the release rate in the limit of low coverage, but not when the pores cover a relatively high fraction of the liposome surface area. On the other hand, for a given pore size and surface coverage, the distribution of pores significantly affects the release in the limit of high surface coverage: The rate of release from a liposome covered with a regularly spaced array of pores is, in this limit, higher than the release rate from (most) systems where the pores are distributed randomly on the liposome surface. In contrast, there is little effect of the pore distribution on release when the pore surface coverage is low. The simulation results are in good agreement with the predictions of detailed diffusion models. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Investigating Hydrophilic Pores in Model Lipid Bilayers using Molecular Simulations: Correlating Bilayer Properties with Pore Formation Thermodynamics

    PubMed Central

    Hu, Yuan; Sinha, Sudipta Kumar

    2015-01-01

    Cell-penetrating and antimicrobial peptides show remarkable ability to translocate across physiological membranes. Along with factors such as electric potential induced-perturbations of membrane structure and surface tension effects, experiments invoke pore-like membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a non-trivial free energy cost, thus necessitating consideration of the factors associated with pore formation and attendant free energetics. Due to experimental and modeling challenges related to the long timescales of the translocation process, we use umbrella-sampling molecular dynamics simulations with a lipid-density based order parameter to investigate membrane pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of head-groups, charge states, acyl chain lengths and saturation. We probe the dependence of pore-formation barriers on area per lipid, lipid bilayer thickness, membrane bending rigidities in three different lipid classes. The pore formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. Pore formation free energy is higher in peptide-lipid systems relative to the peptide-free lipid systems due to penalties to maintain solvation of charged hydrophilic solutes within the membrane environment. PMID:25614183

  20. Preparation of amine-impregnated silica foams using agar as the gelling agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardim, Iara M., E-mail: iaramj01@yahoo.com.br

    In this work we successfully prepared amine-impregnated gel-cast silica foams using agar and atmospheric air as the gelling agent and heat treatment atmosphere, respectively. The concentration of 3,6-anhydrogalactose in agar was evaluated by ultraviolet–visible spectroscopy (UV–Vis). The obtained foams were examined by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG) coupled to mass spectrometry (TG-MS), scanning electron microscopy (SEM), X-ray microtomography (micro-CT), and Archimedes method. The cold crushing strength of the materials prepared in this work was assessed using a mechanical testing stage available in the micro-CT system. The obtained foams exhibited a highly interconnected pore network, with an expressivemore » presence of open pores. Samples heat-treated at 1300 °C for 2 h showed both an expressive porosity (≈ 77%) and a significant cold crushing strength (≈ 1.4 MPa). It was observed that the calcination of the prepared materials at 1200 °C for times as long as 16 h may lead to the rupture of pore walls. FTIR and TG-MS revealed that amine groups were properly incorporated into the foams structure. - Highlights: •Successful preparation of amine-impregnated gel-cast silica foams •Agar used as the gelling agent •Samples with expressive porosity and cold crushing strength •Sintering times as long as 16 h led to the rupture of the pore network.« less

  1. Modeling of coupled heat transfer and reactive transport processesin porous media: Application to seepage studies at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix.more » These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO2 volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.« less

  2. Modeling of coupled heat transfer and reactive transport processesin porous media: Application to seepage studies at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, S.; Sonnenthal, E.L.; Spycher, N.

    When hot radioactive waste is placed in subsurface tunnels, a series of complex changes occurs in the surrounding medium. The water in the pore space of the medium undergoes vaporization and boiling. Subsequently, vapor migrates out of the matrix pore space, moving away from the tunnel through the permeable fracture network. This migration is propelled by buoyancy, by the increased vapor pressure caused by heating and boiling, and through local convection. In cooler regions, the vapor condenses on fracture walls, where it drains through the fracture network. Slow imbibition of water thereafter leads to gradual rewetting of the rock matrix.more » These thermal and hydrological processes also bring about chemical changes in the medium. Amorphous silica precipitates from boiling and evaporation, and calcite from heating and CO{sub 2} volatilization. The precipitation of amorphous silica, and to a much lesser extent calcite, results in long-term permeability reduction. Evaporative concentration also results in the precipitation of gypsum (or anhydrite), halite, fluorite and other salts. These evaporative minerals eventually redissolve after the boiling period is over, however, their precipitation results in a significant temporary decrease in permeability. Reduction of permeability is also associated with changes in fracture capillary characteristics. In short, the coupled thermal-hydrological-chemical (THC) processes dynamically alter the hydrological properties of the rock. A model based on the TOUGHREACT reactive transport software is presented here to investigate the impact of THC processes on flow near an emplacement tunnel at Yucca Mountain, Nevada. We show how transient changes in hydrological properties caused by THC processes often lead to local flow channeling and saturation increases above the tunnel. For models that include only permeability changes to fractures, such local flow channeling may lead to seepage relative to models where THC effects are ignored. However, coupled THC seepage models that include both permeability and capillary changes to fractures may not show this additional seepage.« less

  3. Application of Mortar Coupling in Multiscale Modelling of Coupled Flow, Transport, and Biofilm Growth in Porous Media

    NASA Astrophysics Data System (ADS)

    Laleian, A.; Valocchi, A. J.; Werth, C. J.

    2017-12-01

    Multiscale models of reactive transport in porous media are capable of capturing complex pore-scale processes while leveraging the efficiency of continuum-scale models. In particular, porosity changes caused by biofilm development yield complex feedbacks between transport and reaction that are difficult to quantify at the continuum scale. Pore-scale models, needed to accurately resolve these dynamics, are often impractical for applications due to their computational cost. To address this challenge, we are developing a multiscale model of biofilm growth in which non-overlapping regions at pore and continuum spatial scales are coupled with a mortar method providing continuity at interfaces. We explore two decompositions of coupled pore-scale and continuum-scale regions to study biofilm growth in a transverse mixing zone. In the first decomposition, all reaction is confined to a pore-scale region extending the transverse mixing zone length. Only solute transport occurs in the surrounding continuum-scale regions. Relative to a fully pore-scale result, we find the multiscale model with this decomposition has a reduced run time and consistent result in terms of biofilm growth and solute utilization. In the second decomposition, reaction occurs in both an up-gradient pore-scale region and a down-gradient continuum-scale region. To quantify clogging, the continuum-scale model implements empirical relations between porosity and continuum-scale parameters, such as permeability and the transverse dispersion coefficient. Solutes are sufficiently mixed at the end of the pore-scale region, such that the initial reaction rate is accurately computed using averaged concentrations in the continuum-scale region. Relative to a fully pore-scale result, we find accuracy of biomass growth in the multiscale model with this decomposition improves as the interface between pore-scale and continuum-scale regions moves downgradient where transverse mixing is more fully developed. Also, this decomposition poses additional challenges with respect to mortar coupling. We explore these challenges and potential solutions. While recent work has demonstrated growing interest in multiscale models, further development is needed for their application to field-scale subsurface contaminant transport and remediation.

  4. Predicting Essential Components of Signal Transduction Networks: A Dynamic Model of Guard Cell Abscisic Acid Signaling

    PubMed Central

    Li, Song; Assmann, Sarah M; Albert, Réka

    2006-01-01

    Plants both lose water and take in carbon dioxide through microscopic stomatal pores, each of which is regulated by a surrounding pair of guard cells. During drought, the plant hormone abscisic acid (ABA) inhibits stomatal opening and promotes stomatal closure, thereby promoting water conservation. Dozens of cellular components have been identified to function in ABA regulation of guard cell volume and thus of stomatal aperture, but a dynamic description is still not available for this complex process. Here we synthesize experimental results into a consistent guard cell signal transduction network for ABA-induced stomatal closure, and develop a dynamic model of this process. Our model captures the regulation of more than 40 identified network components, and accords well with previous experimental results at both the pathway and whole-cell physiological level. By simulating gene disruptions and pharmacological interventions we find that the network is robust against a significant fraction of possible perturbations. Our analysis reveals the novel predictions that the disruption of membrane depolarizability, anion efflux, actin cytoskeleton reorganization, cytosolic pH increase, the phosphatidic acid pathway, or K+ efflux through slowly activating K+ channels at the plasma membrane lead to the strongest reduction in ABA responsiveness. Initial experimental analysis assessing ABA-induced stomatal closure in the presence of cytosolic pH clamp imposed by the weak acid butyrate is consistent with model prediction. Simulations of stomatal response as derived from our model provide an efficient tool for the identification of candidate manipulations that have the best chance of conferring increased drought stress tolerance and for the prioritization of future wet bench analyses. Our method can be readily applied to other biological signaling networks to identify key regulatory components in systems where quantitative information is limited. PMID:16968132

  5. Hybrid network modeling and the effect of image resolution on digitally-obtained petrophysical and two-phase flow properties

    NASA Astrophysics Data System (ADS)

    Aghaei, A.

    2017-12-01

    Digital imaging and modeling of rocks and subsequent simulation of physical phenomena in digitally-constructed rock models are becoming an integral part of core analysis workflows. One of the inherent limitations of image-based analysis, at any given scale, is image resolution. This limitation becomes more evident when the rock has multiple scales of porosity such as in carbonates and tight sandstones. Multi-scale imaging and constructions of hybrid models that encompass images acquired at multiple scales and resolutions are proposed as a solution to this problem. In this study, we investigate the effect of image resolution and unresolved porosity on petrophysical and two-phase flow properties calculated based on images. A helical X-ray micro-CT scanner with a high cone-angle is used to acquire digital rock images that are free of geometric distortion. To remove subjectivity from the analyses, a semi-automated image processing technique is used to process and segment the acquired data into multiple phases. Direct and pore network based models are used to simulate physical phenomena and obtain absolute permeability, formation factor and two-phase flow properties such as relative permeability and capillary pressure. The effect of image resolution on each property is investigated. Finally a hybrid network model incorporating images at multiple resolutions is built and used for simulations. The results from the hybrid model are compared against results from the model built at the highest resolution and those from laboratory tests.

  6. Analyzing and modeling the kinetics of amyloid beta pores associated with Alzheimer’s disease pathology

    DOE PAGES

    Ullah, Ghanim; Demuro, Angelo; Parker, Ian; ...

    2015-09-08

    Amyloid beta (Aβ) oligomers associated with Alzheimer’s disease (AD) form Ca 2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca 2+) homeostasis. The resultant up-regulation of intracellular Ca 2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca 2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca 2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. Themore » fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. As a result, we demonstrate the up-regulation of gating of various Ca 2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca 2+ permeability transition into those with high open probability and Ca 2+ permeability.« less

  7. Feasibility of estimating cementation rates in a brittle fault zone using Sr/Ca partition coefficients for sedimentary diagenesis

    NASA Astrophysics Data System (ADS)

    Hadizadeh, Jafar; Foit, Franklin F.

    2000-04-01

    Cement phases such as calcite or quartz often incorporate trace elements from the parent fluids as they crystallize. Experimental sedimentary diagenesis indicates that trace element partition coefficients reflect rates of cementation. The applicability of these findings to fault zone cementation is examined as we make a preliminary attempt to estimate calcite cementation rate in a brittle fault zone directly from the fault-rock composition data. Samples for this study were collected from the Knoxville outcrop of the Saltville fault in Tennessee. The cementation rates for the fault rock samples range from 1×10 -12 to 3×10 -13 m3/ h per m, in agreement with some experimental rates and the rates reported for samples from the DSDP sites. When applied to a non-responsive pore-system model, these rates result in rapid precipitation sealing indicating the influence exerted by the surface-area/volume ratio of the pore network. We find it feasible to obtain a reasonable range of values for the cementation rate using the trace element partition method. However, the study also indicates the need for relatively accurate values for the trace/carrier element ratio in the fault zone syntectonic pore fluid, and exhumed cement.

  8. Pore Formation During Solidification of Aluminum: Reconciliation of Experimental Observations, Modeling Assumptions, and Classical Nucleation Theory

    NASA Astrophysics Data System (ADS)

    Yousefian, Pedram; Tiryakioğlu, Murat

    2018-02-01

    An in-depth discussion of pore formation is presented in this paper by first reinterpreting in situ observations reported in the literature as well as assumptions commonly made to model pore formation in aluminum castings. The physics of pore formation is reviewed through theoretical fracture pressure calculations based on classical nucleation theory for homogeneous and heterogeneous nucleation, with and without dissolved gas, i.e., hydrogen. Based on the fracture pressure for aluminum, critical pore size and the corresponding probability of vacancies clustering to form that size have been calculated using thermodynamic data reported in the literature. Calculations show that it is impossible for a pore to nucleate either homogeneously or heterogeneously in aluminum, even with dissolved hydrogen. The formation of pores in aluminum castings can only be explained by inflation of entrained surface oxide films (bifilms) under reduced pressure and/or with dissolved gas, which involves only growth, avoiding any nucleation problem. This mechanism is consistent with the reinterpretations of in situ observations as well as the assumptions made in the literature to model pore formation.

  9. Pore growth in U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Kim, Yeon Soo; Jeong, G. Y.; Sohn, D.-S.; Jamison, L. M.

    2016-09-01

    U-Mo/Al dispersion fuel is currently under development in the DOE's Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.

  10. Prediction of porosity of food materials during drying: Current challenges and directions.

    PubMed

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  11. Pore-Confined Carriers and Biomolecules in Mesoporous Silica for Biomimetic Separation and Targeting

    NASA Astrophysics Data System (ADS)

    Zhou, Shanshan

    Selectively permeable biological membranes composed of lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. This work imparts selective permeability to lipid-filled pores of silica thin film composite membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids confined inside the pores of silica are proven to be a more effective barrier than bilayers formed on the porous surface through vesicle fusion, which is critical for quantifying the function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid bilayer to reversibly bind the target solute and transport it through the membrane is demonstrated. Through the functionalization of the silica surface with enzymes, enzymatic catalysis and biomimetic separations can be combined on this nanostructured composite platform. The successful development of biomimetic nanocomposite membrane can provide for efficient dilute aqueous solute upgrading or separations using engineered carrier/catalyst/support systems. While the carrier-mediated biomimetic membranes hold great potential, fully understanding of the transport processes in composite synthetic membranes is essential for improve the membrane performance. Electrochemical impedance spectroscopy (EIS) technique is demonstrated to be a useful tool for characterizing the thin film pore accessibility. Furthermore, the effect of lipid bilayer preparation methods on the silica thin film (in the form of pore enveloping, pore filling) on ion transport is explored, as a lipid bilayer with high electrically insulation is essential for detecting activity of proteins or biomimetic carriers in the bilayer. This study provides insights for making better barriers on mesoporous support for carrier-mediated membrane separation process. Porous silica nanoparticles (pSNPs) with pore sizes appropriate for biomolecule loading are potential for encapsulating dsRNA within the pores to achieve effective delivery of dsRNA to insects for RNA interference (RNAi). The mobility of dsRNA in the nanopores of the pSNPs is expected to have a functional effect on delivery of dsRNA to insects. The importance of pores to a mobile dsRNA network is demonstrated by the lack of measurable mobility for both lengths of RNA on nonporous materials. In addition, when the dsRNA could not penetrate the pores, dsRNA mobility is also not measurable at the surface of the particle. Thus, the pores seem to serve as a "sink" in providing a mobile network of dsRNA on the surface of the particle. This work successfully demonstrates the loading of RNA on functionalized pSNPs and identified factors that affects RNA loading and releasing, which provides basis for the delivery of RNA-loaded silica particles in vivo.

  12. Fracture Networks from a deterministic physical model as 'forerunners' of Maze Caves

    NASA Astrophysics Data System (ADS)

    Ferer, M. V.; Smith, D. H.; Lace, M. J.

    2013-12-01

    'Fractures are the chief forerunners of caves because they transmit water much more rapidly than intergranular pores.[1] Thus, the cave networks can follow the fracture networks from which the Karst caves formed by a variety of processes. Traditional models of continental Karst define water flow through subsurface geologic formations, slowly dissolving the rock along the pathways (e.g. water saturated with respect to carbon dioxide flowing through fractured carbonate formations). We have developed a deterministic, physical model of fracturing in a model geologic layer of a given thickness, when that layer is strained in one direction and subsequently in a perpendicular direction. It was observed that the connected fracture networks from our model visually resemble maps of maze caves. Since these detailed cave maps offer critical tools in modeling cave development patterns and conduit flow in Karst systems, we were able to test the qualitative resemblance by using statistical analyses to compare our model networks in geologic layers of four different thicknesses with the corresponding statistical analyses of four different maze caves, formed in a variety of geologic settings. The statistical studies performed are: i) standard box-counting to determine if either the caves or the model networks are fractal. We found that both are fractal with a fractal dimension Df ≈ 1.75 . ii) for each section inside a closed path, we determined the area and perimeter-length, enabling a study of the tortuosity of the networks. From the dependence of the section's area upon its perimeter-length, we have found a power-law behavior (for sufficiently large sections) characterized by a 'tortuosity' exponent. These exponents have similar values for both the model networks and the maze caves. The best agreement is between our thickest model layer and the maze-like part of Wind Cave in South Dakota where the data from the model and the cave overlie each other. For the present networks from the physical model, we assumed that the geologic layer was of uniform thickness and that the strain in both directions were the same. The latter may not be the case for the Brazilian, Toca de Boa Cave. These assumptions can be easily modified in our computer code to reflect different geologic histories. Even so the quantitative agreement suggests that our model networks are statistically realistic both for the 'forerunners' of caves and for general fracture networks in geologic layers, which should assist the study of underground fluid flow in many applications for which fracture patterns and fluid flow are difficult to determine (e.g., hydrology, watershed management, oil recovery, carbon dioxide sequestration, etc.). Keywords - Fracture Networks, Karst, Caves, Structurally Variable Pathways, hydrogeological modeling 1 Arthur N. Palmer, CAVE GEOLOGY, pub. Cave Books, Dayton OH, (2007).

  13. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  14. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  15. Reticular synthesis of porous molecular 1D nanotubes and 3D networks.

    PubMed

    Slater, A G; Little, M A; Pulido, A; Chong, S Y; Holden, D; Chen, L; Morgan, C; Wu, X; Cheng, G; Clowes, R; Briggs, M E; Hasell, T; Jelfs, K E; Day, G M; Cooper, A I

    2017-01-01

    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  16. Reticular synthesis of porous molecular 1D nanotubes and 3D networks

    NASA Astrophysics Data System (ADS)

    Slater, A. G.; Little, M. A.; Pulido, A.; Chong, S. Y.; Holden, D.; Chen, L.; Morgan, C.; Wu, X.; Cheng, G.; Clowes, R.; Briggs, M. E.; Hasell, T.; Jelfs, K. E.; Day, G. M.; Cooper, A. I.

    2017-01-01

    Synthetic control over pore size and pore connectivity is the crowning achievement for porous metal-organic frameworks (MOFs). The same level of control has not been achieved for molecular crystals, which are not defined by strong, directional intermolecular coordination bonds. Hence, molecular crystallization is inherently less controllable than framework crystallization, and there are fewer examples of 'reticular synthesis', in which multiple building blocks can be assembled according to a common assembly motif. Here we apply a chiral recognition strategy to a new family of tubular covalent cages to create both 1D porous nanotubes and 3D diamondoid pillared porous networks. The diamondoid networks are analogous to MOFs prepared from tetrahedral metal nodes and linear ditopic organic linkers. The crystal structures can be rationalized by computational lattice-energy searches, which provide an in silico screening method to evaluate candidate molecular building blocks. These results are a blueprint for applying the 'node and strut' principles of reticular synthesis to molecular crystals.

  17. Mesoporous Silicate Materials in Sensing

    PubMed Central

    Melde, Brian J.; Johnson, Brandy J.; Charles, Paul T.

    2008-01-01

    Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules. PMID:27873810

  18. The assessment of pore connectivity in hierarchical zeolites using positron annihilation lifetime spectroscopy: instrumental and morphological aspects.

    PubMed

    Zubiaga, Asier; Warringham, Robbie; Boltz, Marilyne; Cooke, David; Crivelli, Paolo; Gidley, David; Pérez-Ramírez, Javier; Mitchell, Sharon

    2016-04-07

    Recent studies demonstrated the power of positron annihilation lifetime spectroscopy (PALS) to characterise the connectivity and corresponding effectiveness of hierarchical pore networks in zeolites. This was based on the fractional escape of ortho-positronium (Ps), formed within the micropore framework, to vacuum. To further develop this technique, here we assess the impact of the positron implantation energy and of the zeolite crystal size and the particle morphology. Conventional measurements using fast positrons and beam measurements applying moderated positrons both readily distinguish purely microporous ZSM-5 zeolites comprised of single crystals or crystal aggregates. Unlike beam measurements, however, conventional measurements fail to discriminate model hierarchical zeolites with open or constricted mesopore architectures. Several steps are taken to rationalise these observations. The dominant contribution of Ps diffusion to the PALS response is confirmed by capping the external surface of the zeolite crystals with tetraethylorthosilicate, which greatly enhances the sensitivity to the micropore network. A one-dimensional model is constructed to predict the out-diffusion of Ps from a zeolite crystal, which is validated experimentally by comparing coffin-shaped single crystals of varying size. Calculation of the trends expected on the application of fast or moderated positrons indicates that the distinctions in the initial distribution of Ps at the crystal level cannot explain the limited sensitivity of the former to the mesopore architecture. Instead, we propose that the greater penetration of fast positrons within the sample increases the probability of Ps re-entry from intercrystalline voids into mesopores connected with the external surface of zeolite crystals, thereby reducing their fractional escape.

  19. Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Zhang, Duan Z.

    2016-11-01

    The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.

  20. Molecular accessibility in solvent swelled coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kispert, L.D.

    1991-08-01

    Research continued on the determination of pore size and number distribution changes after swelling the coal samples with various solvents. A paper has just been submitted to the journal Fuel on the Low temperature Swelling of Argonne Premium Coal samples using solvents of varying polarity. The variation in the shape of the pore was followed as a function of temperature and swelling solvent polarity. This change in pore structure was attributed to break-up of the hydrogen bonding network in coal by polar solvents. The modification in pore shape from spherical to cylindrical was attributed to anisotropy in hydrogen bond densities.more » A copy of this paper has been attached to this report. Wojciech Sady has determine the structural changes in the pores that occur when APCS coal is dehydrated prior to swelling with polar solvents. These changes are different from those that occur in the absence of prior dehydration. He has also completed a study on the variation in the hydrogen bonding character of the pore wall as the coals are swelled with various polar solvents. A statistical analysis of the data is currently underway to determine important trends in his data. 9 refs.« less

  1. Using regional pore-fluid pressure response following the 3 Sep 2016 M­­w5.8 Pawnee, Oklahoma earthquake to constrain far-field seismicity rate forecasts

    NASA Astrophysics Data System (ADS)

    Kroll, K.; Murray, K. E.; Cochran, E. S.

    2016-12-01

    The 3 Sep 2016 M­­w5.8 Pawnee, Oklahoma earthquake was the largest event to occur in recorded history of the state. Widespread shaking from the event was felt in seven central U.S. states and caused damage as far away as Oklahoma City ( 115 km SSW). The Pawnee earthquake occurred soon after the deployment of a subsurface pore-fluid pressure monitoring network in Aug 2016. Eight pressure transducers were installed downhole in inactive saltwater disposal wells that were completed in the basal sedimentary zone (the Arbuckle Group). The transducers are located in Alfalfa, Grant, and Payne Counties at distances of 48 to 140 km from the Pawnee earthquake. We observed coseismic fluid pressure changes in all monitoring wells, indicating a large-scale poroelastic response in the Arbuckle. Two wells in Payne County lie in a zone of volumetric compression 48-52 km SSE of the rupture and experienced a co-seismic rise in fluid pressures that we conclude was related to poroelastic rebound of the Arbuckle reservoir. We compare measurements of the pore-fluid pressure change to estimated values given by the product of the volumetric strain, a Skempton's coefficient of 0.33, and a Bulk modulus of 25 GPa for fractured granitic basement rocks. We explore the possibility that the small increase in pore-fluid pressure may increase the rate of seismicity in regions outside of the mainshock region. We test this hypothesis by supplementing the Oklahoma Geological Survey earthquake catalog by semi-automated detection smaller magnitude (<2.6 M) earthquakes on seismic stations that are located in the vicinity of the wells. Using the events that occur in the week before the mainshock (27 Aug to 3 Sep 2016) as the background seismicity rate and the estimated pore-fluid pressure increase, we use a rate-state model to predict the seismicity rate change in the week following the event. We then compare the model predictions to the observed seismicity in the week following the Pawnee earthquake. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Pore-throat radius and tortuosity estimation from formation resistivity data for tight-gas sandstone reservoirs

    NASA Astrophysics Data System (ADS)

    Ziarani, Ali S.; Aguilera, Roberto

    2012-08-01

    A new model is proposed for estimation of pore-throat aperture size from formation resistivity factor and permeability data. The model is validated with data from the Mesaverde sandstone using brine salinities ranging from 20,000 to 200,000 ppm. The data analyzed includes various basins such as Green River, Piceance, Sand Wash, Powder River, Uinta, Washakie and Wind River, available in the literature. For pore-throat radii analysis the methodology involves the use of log-log plots of pore-throat radius versus the product of formation resistivity factor and permeability (rT = a(FK)b + c). The model fits over 280 samples from the Mesaverde formation with coefficients of determination varying between 0.95 and 0.99 depending primarily on the type of model used for pore throat radius calculation. The brine salinity has some minor effects on the results. The model can provide better estimates of pore-throat radii if it is calibrated with experimental techniques such as mercury porosimetry. The results show pore-throat radii varying between 0.001 and 5 μm for the Mesaverde tight sandstone; however, most of the samples fall in a range between 0.01 and 1 μm. For tortuosity analysis, the calculation involves the use of product of formation factor and porosity data. Results indicate that the estimated tortuosity values range mainly between 1 and 5. For samples with lower porosities (< 5%), tortuosity values show a wider scatter (between 1 and 8); whereas for samples with larger porosities (> 15%), the scattering in tortuosity decreases significantly. In general, for tortuosity calculation in tight gas sandstone formations, a square root model with a parameter (bf) representing various types of connecting pores, i.e., sheet-like and tubular pores, is recommended.

  3. Modelling the diffusion-available pore space of an unaltered granitic rock matrix using a micro-DFN approach

    NASA Astrophysics Data System (ADS)

    Svensson, Urban; Löfgren, Martin; Trinchero, Paolo; Selroos, Jan-Olof

    2018-04-01

    In sparsely fractured rock, the ubiquitous heterogeneity of the matrix, which has been observed in different laboratory and in situ experiments, has been shown to have a significant influence on retardation mechanisms that are of importance for the safety of deep geological repositories for nuclear waste. Here, we propose a conceptualisation of a typical heterogeneous granitic rock matrix based on micro-Discrete Fracture Networks (micro-DFN). Different sets of fractures are used to represent grain-boundary pores as well as micro fractures that transect different mineral grains. The micro-DFN model offers a great flexibility in the way inter- and intra-granular space is represented as the different parameters that characterise each fracture set can be fine tuned to represent samples of different characteristics. Here, the parameters of the model have been calibrated against experimental observations from granitic rock samples taken at Forsmark (Sweden) and different variant cases have been used to illustrate how the model can be tied to rock samples with different attributes. Numerical through-diffusion simulations have been carried out to infer the bulk properties of the model as well as to compare the computed mass flux with the experimental data from an analogous laboratory experiment. The general good agreement between the model results and the experimental observations shows that the model presented here is a reliable tool for the understanding of retardation mechanisms occurring at the mm-scale in the matrix.

  4. Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure.

    PubMed

    Ferrer, O; Gibert, O; Cortina, J L

    2016-10-15

    Reverse osmosis (RO) membrane exposure to bisulphite, chlorite, bromide and iron(III) was assessed in terms of membrane composition, structure and performance. Membrane composition was determined by Rutherford backscattering spectrometry (RBS) and membrane performance was assessed by water and chloride permeation, using a modified version of the solution-diffusion model. Iron(III) dosage in presence of bisulphite led to an autooxidation of the latter, probably generating free radicals which damaged the membrane. It comprised a significant raise in chloride passage (chloride permeation coefficient increased 5.3-5.1 fold compared to the virgin membrane under the conditions studied) rapidly. No major differences in terms of water permeability and membrane composition were observed. Nevertheless, an increase in the size of the network pores, and a raise in the fraction of aggregate pores of the polyamide (PA) layer were identified, but no amide bond cleavage was observed. These structural changes were therefore, in accordance with the transport properties observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex.

    PubMed

    Ketterer, Philip; Ananth, Adithya N; Laman Trip, Diederik S; Mishra, Ankur; Bertosin, Eva; Ganji, Mahipal; van der Torre, Jaco; Onck, Patrick; Dietz, Hendrik; Dekker, Cees

    2018-03-02

    The nuclear pore complex (NPC) is the gatekeeper for nuclear transport in eukaryotic cells. A key component of the NPC is the central shaft lined with intrinsically disordered proteins (IDPs) known as FG-Nups, which control the selective molecular traffic. Here, we present an approach to realize artificial NPC mimics that allows controlling the type and copy number of FG-Nups. We constructed 34 nm-wide 3D DNA origami rings and attached different numbers of NSP1, a model yeast FG-Nup, or NSP1-S, a hydrophilic mutant. Using (cryo) electron microscopy, we find that NSP1 forms denser cohesive networks inside the ring compared to NSP1-S. Consistent with this, the measured ionic conductance is lower for NSP1 than for NSP1-S. Molecular dynamics simulations reveal spatially varying protein densities and conductances in good agreement with the experiments. Our technique provides an experimental platform for deciphering the collective behavior of IDPs with full control of their type and position.

  6. Indirect Reconstruction of Pore Morphology for Parametric Computational Characterization of Unidirectional Porous Iron.

    PubMed

    Kovačič, Aljaž; Borovinšek, Matej; Vesenjak, Matej; Ren, Zoran

    2018-01-26

    This paper addresses the problem of reconstructing realistic, irregular pore geometries of lotus-type porous iron for computer models that allow for simple porosity and pore size variation in computational characterization of their mechanical properties. The presented methodology uses image-recognition algorithms for the statistical analysis of pore morphology in real material specimens, from which a unique fingerprint of pore morphology at a certain porosity level is derived. The representative morphology parameter is introduced and used for the indirect reconstruction of realistic and statistically representative pore morphologies, which can be used for the generation of computational models with an arbitrary porosity. Such models were subjected to parametric computer simulations to characterize the dependence of engineering elastic modulus on the porosity of lotus-type porous iron. The computational results are in excellent agreement with experimental observations, which confirms the suitability of the presented methodology of indirect pore geometry reconstruction for computational simulations of similar porous materials.

  7. Non-invasive quantification of hemodynamics in human choriocapillaries

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Rou; An, Senyou; McDonough, James; Gelfand, Bradley; Yao, Jun

    2016-11-01

    The development of retinal disease is inextricably linked to defects in the choroidal blood supply. However, to date a description of the hemodynamics in the human choroidal circulation is lacking. Through high resolution choroidal vascular network mapped from immunofluorescent labeling and confocal microscopy of human cadaver donor eyes. We noninvasively quantify hemodynamics including velocity, pressure, and wall-shear stress (WSS) in choriocapillaries through mesoscale modeling and GPU-accelerated fast computation. This is the first-ever map of hemodynamic parameters (WSS, pressure, and velocity) in anatomically accurate human choroidal vasculature in health and disease. The pore scale simulation results are used to evaluate porous media models with the same porosity and boundary conditions. School of Medicine, Indiana University.

  8. Energetics and Self-Assembly of Amphipathic Peptide Pores in Lipid Membranes

    PubMed Central

    Zemel, Assaf; Fattal, Deborah R.; Ben-Shaul, Avinoam

    2003-01-01

    We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking α-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1–6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the “toroidal” pore model, whereby a membrane rim larger than ∼1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form “barrel-stave” pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change in ambient conditions. PMID:12668433

  9. Poring over two-pore channel pore mutants

    PubMed Central

    Penny, Christopher J.; Patel, Sandip

    2016-01-01

    Two-pore channels are members of the voltage-gated ion channel superfamily. They localise to the endolysosomal system and are likely targets for the Ca2+ mobilising messenger NAADP. In this brief review, we relate mutagenesis of the TPC pore to a recently published homology model and discuss how pore mutants are informing us of TPC function. Molecular physiology of these ubiquitous proteins is thus emerging. PMID:27226934

  10. Dual porosity gas evolving electrode

    DOEpatents

    Townsend, Carl W.

    1994-01-01

    A dual porosity electrode for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  11. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.

    PubMed

    Singh, Rajveer; Sivaguru, Mayandi; Fried, Glenn A; Fouke, Bruce W; Sanford, Robert A; Carrera, Martin; Werth, Charles J

    2017-09-01

    Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500μm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Investigating Hydrophilic Pores in Model Lipid Bilayers Using Molecular Simulations: Correlating Bilayer Properties with Pore-Formation Thermodynamics.

    PubMed

    Hu, Yuan; Sinha, Sudipta Kumar; Patel, Sandeep

    2015-06-23

    Cell-penetrating and antimicrobial peptides show a remarkable ability to translocate across physiological membranes. Along with factors such as electric-potential-induced perturbations of membrane structure and surface tension effects, experiments invoke porelike membrane configurations during the solute transfer process into vesicles and cells. The initiation and formation of pores are associated with a nontrivial free-energy cost, thus necessitating a consideration of the factors associated with pore formation and the attendant free energies. Because of experimental and modeling challenges related to the long time scales of the translocation process, we use umbrella sampling molecular dynamics simulations with a lipid-density-based order parameter to investigate membrane-pore-formation free energy employing Martini coarse-grained models. We investigate structure and thermodynamic features of the pore in 18 lipids spanning a range of headgroups, charge states, acyl chain lengths, and saturation. We probe the dependence of pore-formation barriers on the area per lipid, lipid bilayer thickness, and membrane bending rigidities in three different lipid classes. The pore-formation free energy in pure bilayers and peptide translocating scenarios are significantly coupled with bilayer thickness. Thicker bilayers require more reversible work to create pores. The pore-formation free energy is higher in peptide-lipid systems than in peptide-free lipid systems due to penalties to maintain the solvation of charged hydrophilic solutes within the membrane environment.

  13. In silico study on the effects of matrix structure in controlled drug release

    NASA Astrophysics Data System (ADS)

    Villalobos, Rafael; Cordero, Salomón; Maria Vidales, Ana; Domínguez, Armando

    2006-07-01

    Purpose: To study the effects of drug concentration and spatial distribution of the medicament, in porous solid dosage forms, on the kinetics and total yield of drug release. Methods: Cubic networks are used as models of drug release systems. They were constructed by means of the dual site-bond model framework, which allows a substrate to have adequate geometrical and topological distribution of its pore elements. Drug particles can move inside the networks by following a random walk model with excluded volume interactions between the particles. The drug release time evolution for different drug concentration and different initial drug spatial distribution has been monitored. Results: The numerical results show that in all the studied cases, drug release presents an anomalous behavior, and the consequences of the matrix structural properties, i.e., drug spatial distribution and drug concentration, on the drug release profile have been quantified. Conclusions: The Weibull function provides a simple connection between the model parameters and the microstructure of the drug release device. A critical modeling of drug release from matrix-type delivery systems is important in order to understand the transport mechanisms that are implicated, and to predict the effect of the device design parameters on the release rate.

  14. Hydro-mechanical model for wetting/drying and fracture development in geomaterials

    DOE PAGES

    Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.; ...

    2013-12-28

    This study presents a modeling approach for studying hydro-mechanical coupled processes, including fracture development, within geological formations. This is accomplished through the novel linking of two codes: TOUGH2, which is a widely used simulator of subsurface multiphase flow based on the finite volume method; and an implementation of the Rigid-Body-Spring Network (RBSN) method, which provides a discrete (lattice) representation of material elasticity and fracture development. The modeling approach is facilitated by a Voronoi-based discretization technique, capable of representing discrete fracture networks. The TOUGH–RBSN simulator is intended to predict fracture evolution, as well as mass transport through permeable media, under dynamicallymore » changing hydrologic and mechanical conditions. Numerical results are compared with those of two independent studies involving hydro-mechanical coupling: (1) numerical modeling of swelling stress development in bentonite; and (2) experimental study of desiccation cracking in a mining waste. The comparisons show good agreement with respect to moisture content, stress development with changes in pore pressure, and time to crack initiation. Finally, the observed relationship between material thickness and crack patterns (e.g., mean spacing of cracks) is captured by the proposed modeling approach.« less

  15. Design principles of nuclear receptor signaling: how complex networking improves signal transduction

    PubMed Central

    Kolodkin, Alexey N; Bruggeman, Frank J; Plant, Nick; Moné, Martijn J; Bakker, Barbara M; Campbell, Moray J; van Leeuwen, Johannes P T M; Carlberg, Carsten; Snoep, Jacky L; Westerhoff, Hans V

    2010-01-01

    The topology of nuclear receptor (NR) signaling is captured in a systems biological graphical notation. This enables us to identify a number of ‘design' aspects of the topology of these networks that might appear unnecessarily complex or even functionally paradoxical. In realistic kinetic models of increasing complexity, calculations show how these features correspond to potentially important design principles, e.g.: (i) cytosolic ‘nuclear' receptor may shuttle signal molecules to the nucleus, (ii) the active export of NRs may ensure that there is sufficient receptor protein to capture ligand at the cytoplasmic membrane, (iii) a three conveyor belts design dissipating GTP-free energy, greatly aids response, (iv) the active export of importins may prevent sequestration of NRs by importins in the nucleus and (v) the unspecific nature of the nuclear pore may ensure signal-flux robustness. In addition, the models developed are suitable for implementation in specific cases of NR-mediated signaling, to predict individual receptor functions and differential sensitivity toward physiological and pharmacological ligands. PMID:21179018

  16. Mechanical behavior of concrete and related porous materials under partial saturation: The effective stress and the viscous softening due to movement of nanometer-scale pore fluid

    NASA Astrophysics Data System (ADS)

    Vlahinic, Ivan

    It has been said that porous materials are like music: the gaps are as important as the filled-in bits. In other words, in addition to the solid structure, pore characteristics such as size and morphology play a crucial role in defining the overall physical properties of the porous materials. This work goes a step further and examines the behaviors of some porous media that arise when the pore network is occupied by two fluids, principally air and water, as a result of drying or wetting. Such a state gives rise to fluid capillarity which can generate significant negative fluid pressures. In the first part, a constitutive model for drying of an elastic porous medium is proposed and then extended to derive a novel expression for effective stress in partially saturated media. The model is motivated by the fact that in a system that is saturated by two different fluids, two different pressure inherently act on the surfaces of the pore network. This causes a non-uniform strain field in the solid structure, something that is not explicitly accounted for in the classic formulations of this problem. We use some standard micromechanical homogenization techniques to estimate the extent of the 'non-uniformity' and on this basis, evaluate the validity of the classic Bishop effective stress expression for partially saturated materials. In the second part, we examine a diverse class of porous materials which behave in an unexpected (and even counterintuitive) way under the internal moisture fluctuations. In particular, during wetting and drying alike, the solid viscosity of these materials appears to soften, sometimes by an order of magnitude or more. Under load, this can lead to significantly increased rates of deformations. On account of the recent experimental and theoretical findings on the nature of water flow in nanometer-size hydrophillic spaces, we provide a physical explanation for the viscous softening and propose a constitutive law on this basis. To this end, it also becomes necessary to describe the fluid flow in a double porosity medium, i.e. a medium containing both macro- and nano-scale porosity. We show that the proposed model can quantitatively capture the key observations that have thus far evaded a simple mechanical description. The materials more closely examined in this work enjoy a wide variety of practical uses. Wood and concrete are used as a basis for infrastructure the world over; porous glass with engineered nanometer-sized openings is used for its sorptive and filtering abilities; KevlarRTM and similar synthetic polymers are used for their high strength-to-weight ratio in creating body armor, ropes, and even sails.

  17. Evolutionarily Conserved Sequence Features Regulate the Formation of the FG Network at the Center of the Nuclear Pore Complex

    PubMed Central

    Peyro, M.; Soheilypour, M.; Lee, B.L.; Mofrad, M.R.K.

    2015-01-01

    The nuclear pore complex (NPC) is the portal for bidirectional transportation of cargos between the nucleus and the cytoplasm. While most of the structural elements of the NPC, i.e. nucleoporins (Nups), are well characterized, the exact transport mechanism is still under much debate. Many of the functional Nups are rich in phenylalanine-glycine (FG) repeats and are believed to play the key role in nucleocytoplasmic transport. We present a bioinformatics study conducted on more than a thousand FG Nups across 252 species. Our results reveal the regulatory role of polar residues and specific sequences of charged residues, named ‘like charge regions’ (LCRs), in the formation of the FG network at the center of the NPC. Positively charged LCRs prepare the environment for negatively charged cargo complexes and regulate the size of the FG network. The low number density of charged residues in these regions prevents FG domains from forming a relaxed coil structure. Our results highlight the significant role of polar interactions in FG network formation at the center of the NPC and demonstrate that the specific localization of LCRs, FG motifs, charged, and polar residues regulate the formation of the FG network at the center of the NPC. PMID:26541386

  18. Anisotropic Dye Adsorption and Anhydrous Proton Conductivity in Smectic Liquid Crystal Networks: The Role of Cross-Link Density, Order, and Orientation.

    PubMed

    Liang, Ting; van Kuringen, Huub P C; Mulder, Dirk J; Tan, Shuai; Wu, Yong; Borneman, Zandrie; Nijmeijer, Kitty; Schenning, Albertus P H J

    2017-10-11

    In this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films. For the proton conduction, an optimum was found in the amount of cross-linker and the smectic organization results in the highest anhydrous proton conduction. The polymer films show anisotropic proton conductivity with a 54 times higher conductivity in the direction perpendicular to the molecular director. After a base treatment of the smectic liquid crystalline network, a nanoporous polymer film is obtained that also shows anisotropic adsorption of dye molecules and again straight smectic pores are favored over disordered pores in nematic and isotropic networks. The highly cross-linked films show size-selective adsorption of dyes. Low cross-linked materials do not show this difference due to swelling, which decreases the order and creates openings in the two-dimensional polymer layers. The latter is, however, beneficial for fast adsorption kinetics.

  19. Biosorption of Methylene Blue by De-Oiled Algal Biomass: Equilibrium, Kinetics and Artificial Neural Network Modelling

    PubMed Central

    Maurya, Rahulkumar; Ghosh, Tonmoy; Paliwal, Chetan; Shrivastav, Anupama; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Arup; Mishra, Sandhya

    2014-01-01

    The main objective of the present study is to effectively utilize the de-oiled algal biomass (DAB) to minimize the waste streams from algal biofuel by using it as an adsorbent. Methylene blue (MB) was used as a sorbate for evaluating the potential of DAB as a biosorbent. The DAB was characterized by SEM, FTIR, pHPZC, particle size, pore volume and pore diameter to understand the biosorption mechanism. The equilibrium studies were carried out by variation in different parameters, i.e., pH (2–9), temperature (293.16–323.16 K), biosorbent dosage (1–10 g L−1), contact time (0–1,440 min), agitation speed (0–150 rpm) and dye concentration (25–2,500 mg L−1). MB removal was greater than 90% in both acidic and basic pH. The optimum result of MB removal was found at 5–7 g L−1 DAB concentration. DAB removes 86% dye in 5 minutes under static conditions and nearly 100% in 24 hours when agitated at 150 rpm. The highest adsorption capacity was found 139.11 mg g−1 at 2,000 mg L−1 initial MB concentration. The process attained equilibrium in 24 hours. It is an endothermic process whose spontaneity increases with temperature. MB biosorption by DAB follows pseudo-second order kinetics. Artificial neural network (ANN) model also validates the experimental dye removal efficiency (R2 = 0.97) corresponding with theoretically predicted values. Sensitivity analysis suggests that temperature and agitation speed affect the process most with 23.62% and 21.08% influence on MB biosorption, respectively. Dye adsorption capacity of DAB in fixed bed column was 107.57 mg g−1 in preliminary study while it went up to 139.11 mg g−1 in batch studies. The probable mechanism for biosorption in this study is chemisorptions via surface active charges in the initial phase followed by physical sorption by occupying pores of DAB. PMID:25310576

  20. Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin

    2013-06-01

    In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less

  1. Computational fluid dynamics models of conifer bordered pits show how pit structure affects flow.

    PubMed

    Schulte, Paul J

    2012-02-01

    • The flow of xylem sap through conifer bordered pits, particularly through the pores in the pit membrane, is not well understood, but is critical for an understanding of water transport through trees. • Models solving the Navier-Stokes equation governing fluid flow were based on the geometry of bordered pits in black spruce (Picea mariana) and scanning electron microscopy images showing details of the pores in the margo of the pit membrane. • Solutions showed that the pit canals contributed a relatively small fraction of resistance to flow, whereas the torus and margo pores formed a large fraction, which depended on the structure of the individual pit. The flow through individual pores in the margo was strongly dependent on pore area, but also on the radial location of the pore with respect to the edge of the torus. • Model results suggest that only a few per cent of the pores in the margo account for nearly half of the flow and these pores tend to be located in the inner region of the margo where their contribution will be maximized. A high density of strands in outer portions of the margo (hence narrower pores) may be more significant for mechanical support of the torus. © 2011 The Author. New Phytologist © 2011 New Phytologist Trust.

  2. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas.

    PubMed

    Liu, Ruili; Shi, Yifeng; Wan, Ying; Meng, Yan; Zhang, Fuqiang; Gu, Dong; Chen, Zhenxia; Tu, Bo; Zhao, Dongyuan

    2006-09-06

    Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.

  3. Changes in the pore network structure of Hanford sediment after reaction with caustic tank wastes.

    PubMed

    Crandell, L E; Peters, C A; Um, W; Jones, K W; Lindquist, W B

    2012-04-01

    At the former nuclear weapon production site in Hanford, WA, caustic radioactive tank waste leaks into subsurface sediments and causes dissolution of quartz and aluminosilicate minerals, and precipitation of sodalite and cancrinite. This work examines changes in pore structure due to these reactions in a previously-conducted column experiment. The column was sectioned and 2D images of the pore space were generated using backscattered electron microscopy and energy dispersive X-ray spectroscopy. A pre-precipitation scenario was created by digitally removing mineral matter identified as secondary precipitates. Porosity, determined by segmenting the images to distinguish pore space from mineral matter, was up to 0.11 less after reaction. Erosion-dilation analysis was used to compute pore and throat size distributions. Images with precipitation had more small and fewer large pores. Precipitation decreased throat sizes and the abundance of large throats. These findings agree with previous findings based on 3D X-ray CMT imaging, observing decreased porosity, clogging of small throats, and little change in large throats. However, 2D imaging found an increase in small pores, mainly in intragranular regions or below the resolution of the 3D images. Also, an increase in large pores observed via 3D imaging was not observed in the 2D analysis. Changes in flow conducting throats that are the key permeability-controlling features were observed in both methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang

    The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scalesmore » of interest.« less

  5. An improved method for permeability estimation of the bioclastic limestone reservoir based on NMR data

    NASA Astrophysics Data System (ADS)

    Ge, Xinmin; Fan, Yiren; Liu, Jianyu; Zhang, Li; Han, Yujiao; Xing, Donghui

    2017-10-01

    Permeability is an important parameter in formation evaluation since it controls the fluid transportation of porous rocks. However, it is challengeable to compute the permeability of bioclastic limestone reservoirs by conventional methods linking petrophysical and geophysical data, due to the complex pore distributions. A new method is presented to estimate the permeability based on laboratory and downhole nuclear magnetic resonance (NMR) measurements. We divide the pore space into four intervals by the inflection points between the pore radius and the transversal relaxation time. Relationships between permeability and percentages of different pore intervals are investigated to investigate influential factors on the fluid transportation. Furthermore, an empirical model, which takes into account of the pore size distributions, is presented to compute the permeability. 212 core samples in our case show that the accuracy of permeability calculation is improved from 0.542 (SDR model), 0.507 (TIM model), 0.455 (conventional porosity-permeability regressions) to 0.803. To enhance the precision of downhole application of the new model, we developed a fluid correction algorithm to construct the water spectrum of in-situ NMR data, aiming to eliminate the influence of oil on the magnetization. The result reveals that permeability is positively correlated with percentages of mega-pores and macro-pores, but negatively correlated with the percentage of micro-pores. Poor correlation is observed between permeability and the percentage of meso-pores. NMR magnetizations and T2 spectrums after the fluid correction agree well with laboratory results for samples saturated with water. Field application indicates that the improved method provides better performance than conventional models such as Schlumberger-Doll Research equation, Timur-Coates equation, and porosity-permeability regressions.

  6. A universal model for nanoporous carbon supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2009-01-01

    Supercapacitors based on nanoporous carbon materials, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. Nanoporous carbon supercapacitors are generally viewed as a parallel-plate capacitor since supercapacitors store energy by charge separation in an electric double layer formed at the electrode/electrolyte interface. The EDLC model has been used to characterize the energy storage of supercapacitors for decades. We comment in this chapter on the shortcomings of the EDLC model when applied to nanoporous carbon supercapacitors. In response to the latest experimentalmore » breakthrough in nanoporous carbon supercapacitors, we have proposed a heuristic model that takes pore curvature into account as a replacement for the EDLC model. When the pore size is in the mesopore regime (2 50 nm), electrolyte counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm), where pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced to the EDLC model. With the backing of experimental data and quantum density functional theory calculations, we have shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials and electrolytes. The strengths and limitations of this new model are discussed. The new model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration, dielectric constant, and solute ion size, and may lend support to the systematic optimization of the properties of carbon supercapacitors through experiments.« less

  7. An Engineered Membrane to Measure Electroporation: Effect of Tethers and Bioelectronic Interface

    PubMed Central

    Hoiles, William; Krishnamurthy, Vikram; Cranfield, Charles G.; Cornell, Bruce

    2014-01-01

    This article reports on the construction and predictive models for a platform comprised of an engineered tethered membrane. The platform provides a controllable and physiologically relevant environment for the study of the electroporation process. The mixed self-assembled membrane is formed via a rapid solvent exchange technique. The membrane is tethered to the gold electrode and includes an ionic reservoir separating the membrane and gold surface. Above the membrane, there is an electrolyte solution, and a gold counterelectrode. A voltage is applied between the gold electrodes and the current measured. The current is dependent on the energy required to form aqueous pores and the conductance of each pore. A two-level predictive model, consisting of a macroscopic and a continuum model, is developed to relate the pore dynamics to the measured current. The macroscopic model consists of an equivalent circuit model of the tethered membrane, and asymptotic approximations to the Smoluchowski-Einstein equation of electroporation that is dependent on the pore conductance and the energy required to form aqueous pores. The continuum model is a generalized Poisson-Nernst-Planck (GPNP) system where an activity coefficient to account for steric effects of ions is added to the standard PNP system. The GPNP is used to evaluate the conductance of aqueous pores, and the electrical energy required to form the pores. As an outcome of the setup of the device and the two-level model, biologically important variables can be estimated from experimental measurements. To validate the accuracy of the two-level model, the predicted current is compared with experimentally measured current for different tethering densities. PMID:25229142

  8. Influence of pore structure on compressive strength of cement mortar.

    PubMed

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  9. Influence of Pore Structure on Compressive Strength of Cement Mortar

    PubMed Central

    Zhao, Haitao; Xiao, Qi; Huang, Donghui

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414

  10. Fabrication of mesoporous silica for ultra-low-k interlayer dielectrics

    NASA Astrophysics Data System (ADS)

    Fujii, Nobutoshi; Kohmura, Kazuo; Nakayama, Takahiro; Tanaka, Hirofumi; Hata, Nobuhiro; Seino, Yutaka; Kikkawa, Takamaro

    2005-11-01

    We have developed sol-gel self-assembly techniques to control the pore structure and diameter of ultra-low-k interlayer dielectric (ILD) films. Porous silica films have been fabricated using cationic and nonionic surfactants as templates, resulting in 2D-hexagonal and disordered pore structures, respectively. The disordered mesoporous silica film has a worm-hole like network of pore channels having a uniform diameter. Precursors of the mesoporous silica films were synthesized by use of tetraethyl-orthosilicate (TEOS), inorganic acid, water, ethanol and various surfactants. The surfactants used were cationic alkyltrimethyl-ammonium (ATMA) chloride surfactants for 2D-hexagonal pores and nonionic tri-block copolymer for disordered structures. Dimethyldiethoxysilane (DMDEOS) was added for forming the disordered mesoporous silica. The disordered cylindrical pore structure with a uniform pore size was fabricated by controlling the static electrical interaction between the surfactant and the silica oligomer with methyl group of DMDEOS. Tetramethylcycrotetrasiloxane (TMCTS) vapor treatment was developed, which improved the mechanical strength of mesoporous silica films. The TMCTS polymer covered the pore wall surface and cross-linked to passivate the mechanical defects in the silica wall. Significant enhancement of mechanical strength was demonstrated by TMCTS vapor treatment. The porous silica film modified with a catalyst and a plasma treatment achieved higher mechanical strength and lower dielectric constant than conventional porous silica films because the TMCTS vapor treatment was more effective for mechanical reinforcement and hydrophobicity.

  11. Small-angle neutron scattering study of micropore collapse in amorphous solid water.

    PubMed

    Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas

    2014-08-14

    Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.

  12. Modeling of viscoelastic properties of nonpermeable porous rocks saturated with highly viscous fluid at seismic frequencies at the core scale

    NASA Astrophysics Data System (ADS)

    Wang, Zizhen; Schmitt, Douglas R.; Wang, Ruihe

    2017-08-01

    A core scale modeling method for viscoelastic properties of rocks saturated with viscous fluid at low frequencies is developed based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. Based on this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the storage moduli and the stress-strain phase lag of saturated rocks. And we also compared the modeling results to the Hashin-Shtrikman bounds and the coherent potential approximation (CPA). The dynamic moduli calculated from the modeling are lower than the predictions of CPA, and both of these fall between the Hashin-Shtrikman bounds. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and aspect ratio affect the rock frame stiffness and result in different viscoelastic behaviors of the saturated rocks. The stress-strain phase lags are larger with smaller stiffness contrasts between the rock frame and the pore fluid. The viscoelastic properties of saturated rocks are more sensitive to aspect ratio compared to other pore structure parameters. The results suggest that significant seismic dispersion (at about 50-200 Hz) might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids.Plain Language SummaryWe develop a core scale modeling method to simulate the viscoelastic properties of rocks saturated with viscous fluid at low frequencies based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. By using this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the composite's viscoelastic properties. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and pore aspect ratio affect the rock frame stiffness and result in different viscoelastic behavior of the saturated rocks. The lower the rock frame stiffness, the larger the stress-strain phase lags. The viscoelastic properties of saturated rocks are more sensitive to the pore aspect ratio. The results suggest that significant seismic dispersion might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids. This will be important in the context of heavy hydrocarbon reservoirs and igneous rocks saturated with silicate melt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016FrMat...3...38Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016FrMat...3...38Z"><span>The pore characteristics of geopolymer foam concrete and their impact on the compressive strength and modulus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Zuhua; Wang, Hao</p> <p>2016-08-01</p> <p>The pore characteristics of GFCs manufactured in the laboratory with 0-16% foam additions were examined using image analysis (IA) and vacuum water saturation techniques. The pore size distribution, pore shape and porosity were obtained. The IA method provides a suitable approach to obtain the information of large pores, which are more important in affecting the compressive strength of GFC. By examining the applicability of the existing models of predicting compressive strength of foam concrete, a modified Ryshkevitch’s model is proposed for GFC, in which only the porosity that is contributed by the pores over a critical diameter (>100 μm) is considered. This “critical void model” is shown to have very satisfying prediction capability in the studied range of porosity. A compression-modulus model for Portland cement concrete is recommended for predicting the compression modulus elasticity of GFC. This study confirms that GFC have similar pore structures and mechanical behavior as those Portland cement foam concrete and can be used alternatively in the industry for the construction and insulation purposes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70037423','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70037423"><span>Elements of an improved model of debris-flow motion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Iverson, R.M.</p> <p>2009-01-01</p> <p>A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states. ?? 2009 American Institute of Physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1180959','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1180959"><span>The pore-lining region of shaker voltage-gated potassium channels: comparison of beta-barrel and alpha-helix bundle models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kerr, I D; Sansom, M S</p> <p>1997-01-01</p> <p>Although there is a large body of site-directed mutagenesis data that identify the pore-lining sequence of the voltage-gated potassium channel, the structure of this region remains unknown. We have interpreted the available biochemical data as a set of topological and orientational restraints and employed these restraints to produce molecular models of the potassium channel pore region, H5. The H5 sequence has been modeled either as a tetramer of membrane-spanning beta-hairpins, thus producing an eight-stranded beta-barrel, or as a tetramer of incompletely membrane-spanning alpha-helical hairpins, thus producing an eight-staved alpha-helix bundle. In total, restraints-directed modeling has produced 40 different configurations of the beta-barrel model, each configuration comprising an ensemble of 20 structures, and 24 different configurations of the alpha-helix bundle model, each comprising an ensemble of 24 structures. Thus, over 1300 model structures for H5 have been generated. Configurations have been ranked on the basis of their predicted pore properties and on the extent of their agreement with the biochemical data. This ranking is employed to identify particular configurations of H5 that may be explored further as models of the pore-lining region of the voltage-gated potassium channel pore. Images FIGURE 7 FIGURE 12 PMID:9251779</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1893c0127S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1893c0127S"><span>Multiscale modeling of porous ceramics using movable cellular automaton method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smolin, Alexey Yu.; Smolin, Igor Yu.; Smolina, Irina Yu.</p> <p>2017-10-01</p> <p>The paper presents a multiscale model for porous ceramics based on movable cellular automaton method, which is a particle method in novel computational mechanics of solid. The initial scale of the proposed approach corresponds to the characteristic size of the smallest pores in the ceramics. At this scale, we model uniaxial compression of several representative samples with an explicit account of pores of the same size but with the unique position in space. As a result, we get the average values of Young's modulus and strength, as well as the parameters of the Weibull distribution of these properties at the current scale level. These data allow us to describe the material behavior at the next scale level were only the larger pores are considered explicitly, while the influence of small pores is included via effective properties determined earliar. If the pore size distribution function of the material has N maxima we need to perform computations for N-1 levels in order to get the properties step by step from the lowest scale up to the macroscale. The proposed approach was applied to modeling zirconia ceramics with bimodal pore size distribution. The obtained results show correct behavior of the model sample at the macroscale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ApSS..248..446V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ApSS..248..446V"><span>Modelling the influence of pore size on the response of materials to infrared lasers An application to human enamel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vila Verde, A.; Ramos, Marta M. D.</p> <p>2005-07-01</p> <p>We present an analytical model for a ceramic material (hydroxyapatite, HA) containing nanometre-scale water pores, and use it to estimate the pressure at the pore as a function of temperature at the end of a single 0.35 μs laser pulse by Er:YAG (2.94 μm) and CO 2 (10.6 μm) lasers. Our results suggest that the pressure at the pore is directly related to pore temperature, and that very high pressures can be generated simply by the thermal expansion of liquid water. Since the temperature reached in the pores at the end of the laser pulse is a strong function of pore size for Er:YAG lasers, but is independent of pore size for CO 2 lasers, our present results provide a possible explanation for the fact that human dental enamel threshold ablation fluences vary more for Er:YAG lasers than for CO 2 lasers. This suggests that experimentalists should analyse their results accounting for factors, like age or type of tooth, that may change the pore size distribution in their samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24416759','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24416759"><span>Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan</p> <p>2014-03-07</p> <p>Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016STAdM..17..313S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016STAdM..17..313S"><span>Gas permeability of ice-templated, unidirectional porous ceramics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.</p> <p>2016-01-01</p> <p>We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMEP..tmp.1618T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMEP..tmp.1618T"><span>Effect of Pore Size, Morphology and Orientation on the Bulk Stiffness of a Porous Ti35Nb4Sn Alloy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres-Sanchez, Carmen; McLaughlin, John; Bonallo, Ross</p> <p>2018-04-01</p> <p>The metal foams of a titanium alloy were designed to study porosity as well as pore size and shape independently. These were manufactured using a powder metallurgy/space-holder technique that allowed a fine control of the pore size and morphology; and then characterized and tested against well-established models to predict a relationship between porosity, pore size and shape, and bulk stiffness. Among the typically used correlations, existing power-law models were found to be the best fit for the prediction of macropore morphology against compressive elastic moduli, outperforming other models such as exponential, polynomial or binomial. Other traditional models such as linear ones required of updated coefficients to become relevant to metal porous sintered macrostructures. The new coefficients reported in this study contribute toward a design tool that allows the tailoring of mechanical properties through porosity macrostructure. The results show that, for the same porosity range, pore shape and orientation have a significant effect on mechanical performance and that they can be predicted. Conversely, pore size has only a mild impact on bulk stiffness.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/764653','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/764653"><span>Bubble Formation Modeling in IE-911</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fondeur, F.F.</p> <p>2000-09-27</p> <p>The author used diffusion modeling to determine the hydrogen and oxygen concentration inside IE-911. The study revealed gas bubble nucleation will not occur in the bulk solution inside the pore or on the pore wall. This finding results from the fast oxygen and hydrogen gas molecular diffusion and a very confined pore space. The net steady state concentration of these species inside the pore proves too low to drive bubble nucleation. This study did not investigate other gas bubble nucleating mechanism such as suspended particles in solution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H43F1510W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H43F1510W"><span>Electrical conductivity modeling in fractal non-saturated porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wei, W.; Cai, J.; Hu, X.; Han, Q.</p> <p>2016-12-01</p> <p>The variety of electrical conductivity in non-saturated conditions is important to study electric conduction in natural sedimentary rocks. The electrical conductivity in completely saturated porous media is a porosity-function representing the complex connected behavior of single conducting phases (pore fluid). For partially saturated conditions, the electrical conductivity becomes even more complicated since the connectedness of pore. Archie's second law is an empirical electrical conductivity-porosity and -saturation model that has been used to predict the formation factor of non-saturated porous rock. However, the physical interpretation of its parameters, e.g., the cementation exponent m and the saturation exponent n, remains questionable. On basis of our previous work, we combine the pore-solid fractal (PSF) model to build an electrical conductivity model in non-saturated porous media. Our theoretical porosity- and saturation-dependent models contain endmember properties, such as fluid electrical conductivities, pore fractal dimension and tortuosity fractal dimension (representing the complex degree of electrical flowing path). We find the presented model with non-saturation-dependent electrical conductivity datasets indicate excellent match between theory and experiments. This means the value of pore fractal dimension and tortuosity fractal dimension change from medium to medium and depends not only on geometrical properties of pore structure but also characteristics of electrical current flowing in the non-saturated porous media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2944392','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2944392"><span>Atomic layer deposition-based functionalization of materials for medical and environmental health applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Narayan, Roger J.; Adiga, Shashishekar P.; Pellin, Michael J.; Curtiss, Larry A.; Hryn, Alexander J.; Stafslien, Shane; Chisholm, Bret; Shih, Chun-Che; Shih, Chun-Ming; Lin, Shing-Jong; Su, Yea-Yang; Jin, Chunming; Zhang, Junping; Monteiro-Riviere, Nancy A.; Elam, Jeffrey W.</p> <p>2010-01-01</p> <p>Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications. PMID:20308114</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1433958-proton-diffusion-through-bilayer-pores','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1433958-proton-diffusion-through-bilayer-pores"><span>Proton Diffusion through Bilayer Pores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>McDaniel, Jesse G.; Yethiraj, Arun</p> <p>2017-09-26</p> <p>The transport of protons through channels in complex environments is important in biology and materials science. In this work, we use multistate empirical valence bond simulations to study proton transport within a well-defined bilayer pore in a lamellar L β phase lyotropic liquid crystal (LLC). The LLC is formed from the self-assembly of dicarboxylate gemini surfactants in water, and a bilayer-spanning pore of radius of approximately 3–5 Å results from the uneven partitioning of surfactants between the two leaflets of the lamella. Local proton diffusion within the pore is significantly faster than diffusion at the bilayer surface, which is duemore » to the greater hydrophobicity of the surfactant/water interface within the pore. Proton diffusion proceeds by surface transport along exposed hydrophobic pockets at the surfactant/water interface and depends on the continuity of hydronium–water hydrogen bond networks. At the bilayer surface, there is a reduced fraction of the “Zundel” intermediates that are central to the Grotthuss transport mechanism, whereas the fraction of these species within the bilayer pore is similar to that in bulk water. Our results demonstrate that the chemical nature of the confining interface, in addition to confinement length scale, is an important determiner of local proton transport in nanoconfined aqueous environments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.H23D0981O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.H23D0981O"><span>Adaptive particle-based pore-level modeling of incompressible fluid flow in porous media: a direct and parallel approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ovaysi, S.; Piri, M.</p> <p>2009-12-01</p> <p>We present a three-dimensional fully dynamic parallel particle-based model for direct pore-level simulation of incompressible viscous fluid flow in disordered porous media. The model was developed from scratch and is capable of simulating flow directly in three-dimensional high-resolution microtomography images of naturally occurring or man-made porous systems. It reads the images as input where the position of the solid walls are given. The entire medium, i.e., solid and fluid, is then discretized using particles. The model is based on Moving Particle Semi-implicit (MPS) technique. We modify this technique in order to improve its stability. The model handles highly irregular fluid-solid boundaries effectively. It takes into account viscous pressure drop in addition to the gravity forces. It conserves mass and can automatically detect any false connectivity with fluid particles in the neighboring pores and throats. It includes a sophisticated algorithm to automatically split and merge particles to maintain hydraulic connectivity of extremely narrow conduits. Furthermore, it uses novel methods to handle particle inconsistencies and open boundaries. To handle the computational load, we present a fully parallel version of the model that runs on distributed memory computer clusters and exhibits excellent scalability. The model is used to simulate unsteady-state flow problems under different conditions starting from straight noncircular capillary tubes with different cross-sectional shapes, i.e., circular/elliptical, square/rectangular and triangular cross-sections. We compare the predicted dimensionless hydraulic conductances with the data available in the literature and observe an excellent agreement. We then test the scalability of our parallel model with two samples of an artificial sandstone, samples A and B, with different volumes and different distributions (non-uniform and uniform) of solid particles among the processors. An excellent linear scalability is obtained for sample B that has more uniform distribution of solid particles leading to a superior load balancing. The model is then used to simulate fluid flow directly in REV size three-dimensional x-ray images of a naturally occurring sandstone. We analyze the quality and consistency of the predicted flow behavior and calculate absolute permeability, which compares well with the available network modeling and Lattice-Boltzmann permeabilities available in the literature for the same sandstone. We show that the model conserves mass very well and is stable computationally even at very narrow fluid conduits. The transient- and the steady-state fluid flow patterns are presented as well as the steady-state flow rates to compute absolute permeability. Furthermore, we discuss the vital role of our adaptive particle resolution scheme in preserving the original pore connectivity of the samples and their narrow channels through splitting and merging of fluid particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PhDT.......141D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PhDT.......141D"><span>Modeling the Soft Geometry of Biological Membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daly, K.</p> <p></p> <p>This dissertation presents work done applying the techniques of physics to biological systems. The difference in length scales of the thickness of the phospolipid bilayer and overall size of a biological cell allows bilayer to be modeled elastically as a thin sheet. The Helfrich free energy is extended applied to models representing various biological systems, in order to find quasi-equilibrium states as well as transitions between states. Morphologies are approximated as axially sym-metric. Stable morphologies are de-termined analytically and through the use of computer simulation. The simple morphologies examined analytically give a model for the pearling transition seen in growing biological cells. An analytic model of celluar bulging in gram-negative bacteria predicts a critical pore radius for bulging of 20 nanometers. This model is extended to the membrane dynamics of human red blood cells, predicting three morphologic phases which are seen in vivo. A computer simulation was developed to study more complex morphologies with models representing different bilayer compositions. Single and multi-component bilayer models reproduce morphologies previously predicted by Seifert. A mean field model representing the intrinsic curvature of proteins coupling to membrane curvature is used to explore the stability of the particular morphology of rod outer segment cells. The process of pore formation and expansion in cell-cell fusion is not well understood. Simulation of the pore created in cell-cell fusion led to the finding of a minimal pore radius required for pore expansion, suggesting pores formed in nature are formed with a minimum size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1222472','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1222472"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ullah, Ghanim; Demuro, Angelo; Parker, Ian</p> <p></p> <p>Amyloid beta (Aβ) oligomers associated with Alzheimer’s disease (AD) form Ca 2+-permeable plasma membrane pores, leading to a disruption of the otherwise well-controlled intracellular calcium (Ca 2+) homeostasis. The resultant up-regulation of intracellular Ca 2+ concentration has detrimental implications for memory formation and cell survival. The gating kinetics and Ca 2+ permeability of Aβ pores are not well understood. We have used computational modeling in conjunction with the ability of optical patch-clamping for massively parallel imaging of Ca 2+ flux through thousands of pores in the cell membrane of Xenopus oocytes to elucidate the kinetic properties of Aβ pores. Themore » fluorescence time-series data from individual pores were idealized and used to develop data-driven Markov chain models for the kinetics of the Aβ pore at different stages of its evolution. Our study provides the first demonstration of developing Markov chain models for ion channel gating that are driven by optical-patch clamp data with the advantage of experiments being performed under close to physiological conditions. As a result, we demonstrate the up-regulation of gating of various Ca 2+ release channels due to Aβ pores and show that the extent and spatial range of such up-regulation increases as Aβ pores with low open probability and Ca 2+ permeability transition into those with high open probability and Ca 2+ permeability.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoJI.211..883R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoJI.211..883R"><span>Axisymmetric deformation of a poroelastic layer overlying an elastic half-space due to surface loading</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rani, Sunita; Rani, Sunita</p> <p>2017-11-01</p> <p>The axisymmetric deformation of a homogeneous, isotropic, poroelastic layer of uniform thickness overlying a homogeneous, isotropic, elastic half-space due to surface loads has been obtained. The fluid and the solid constituents of the porous layer are compressible and the permeability in vertical direction is different from its permeability in horizontal direction. The displacements and pore-pressure are taken as basic state variables. An analytical solution for the pore-pressure, displacements and stresses has been obtained using the Laplace-Hankel transform technique. The case of normal disc loading is discussed in detail. Diffusion of pore-pressure is obtained in the space-time domain. The Laplace inversion is evaluated using the fixed Talbot algorithm and the Hankel inversion using the extended Simpson's rule. Two different models of the Earth have been considered: continental crust model and oceanic crust model. For continental crust model, the layer is assumed to be of Westerly Granite and for the oceanic crust model of Hanford Basalt. The effect of the compressibilities of the fluid as well as solid constituents and anisotropy in permeability has been studied on the diffusion of pore-pressure. Contour maps have been plotted for the diffusion of pore-pressure for both models. It is observed that the pore-pressure changes to compression for the continental crust model with time, which is not true for the oceanic crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1327669-experimental-study-porosity-changes-shale-caprocks-exposed-co2-saturated-brines-evolution-mineralogy-pore-connectivity-pore-size-distribution-surface-area','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1327669-experimental-study-porosity-changes-shale-caprocks-exposed-co2-saturated-brines-evolution-mineralogy-pore-connectivity-pore-size-distribution-surface-area"><span>Experimental Study of Porosity Changes in Shale Caprocks Exposed to CO 2-Saturated Brines I: Evolution of Mineralogy, Pore Connectivity, Pore Size Distribution, and Surface Area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mouzakis, Katherine M.; Navarre-Sitchler, Alexis K.; Rother, Gernot; ...</p> <p>2016-07-18</p> <p>Carbon capture, utilization, and storage, one proposed method of reducing anthropogenic emissions of CO 2, relies on low permeability formations, such as shales, above injection formations to prevent upward migration of the injected CO 2. Porosity in caprocks evaluated for sealing capacity before injection can be altered by geochemical reactions induced by dissolution of injected CO 2 into pore fluids, impacting long-term sealing capacity. Therefore, long-term performance of CO 2 sequestration sites may be dependent on both initial distribution and connectivity of pores in caprocks, and on changes induced by geochemical reaction after injection of CO 2, which are currentlymore » poorly understood. This paper presents results from an experimental study of changes to caprock porosity and pore network geometry in two caprock formations under conditions relevant to CO 2 sequestration. Pore connectivity and total porosity increased in the Gothic Shale; while total porosity increased but pore connectivity decreased in the Marine Tuscaloosa. Gothic Shale is a carbonate mudstone that contains volumetrically more carbonate minerals than Marine Tuscaloosa. Carbonate minerals dissolved to a greater extent than silicate minerals in Gothic Shale under high CO 2 conditions, leading to increased porosity at length scales <~200 nm that contributed to increased pore connectivity. In contrast, silicate minerals dissolved to a greater extent than carbonate minerals in Marine Tuscaloosa leading to increased porosity at all length scales, and specifically an increase in the number of pores >~1 μm. Mineral reactions also contributed to a decrease in pore connectivity, possibly as a result of precipitation in pore throats or hydration of the high percentage of clays. Finally, this study highlights the role that mineralogy of the caprock can play in geochemical response to CO 2 injection and resulting changes in sealing capacity in long-term CO 2 storage projects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1327669','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1327669"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mouzakis, Katherine M.; Navarre-Sitchler, Alexis K.; Rother, Gernot</p> <p></p> <p>Carbon capture, utilization, and storage, one proposed method of reducing anthropogenic emissions of CO 2, relies on low permeability formations, such as shales, above injection formations to prevent upward migration of the injected CO 2. Porosity in caprocks evaluated for sealing capacity before injection can be altered by geochemical reactions induced by dissolution of injected CO 2 into pore fluids, impacting long-term sealing capacity. Therefore, long-term performance of CO 2 sequestration sites may be dependent on both initial distribution and connectivity of pores in caprocks, and on changes induced by geochemical reaction after injection of CO 2, which are currentlymore » poorly understood. This paper presents results from an experimental study of changes to caprock porosity and pore network geometry in two caprock formations under conditions relevant to CO 2 sequestration. Pore connectivity and total porosity increased in the Gothic Shale; while total porosity increased but pore connectivity decreased in the Marine Tuscaloosa. Gothic Shale is a carbonate mudstone that contains volumetrically more carbonate minerals than Marine Tuscaloosa. Carbonate minerals dissolved to a greater extent than silicate minerals in Gothic Shale under high CO 2 conditions, leading to increased porosity at length scales <~200 nm that contributed to increased pore connectivity. In contrast, silicate minerals dissolved to a greater extent than carbonate minerals in Marine Tuscaloosa leading to increased porosity at all length scales, and specifically an increase in the number of pores >~1 μm. Mineral reactions also contributed to a decrease in pore connectivity, possibly as a result of precipitation in pore throats or hydration of the high percentage of clays. Finally, this study highlights the role that mineralogy of the caprock can play in geochemical response to CO 2 injection and resulting changes in sealing capacity in long-term CO 2 storage projects.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188563','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188563"><span>Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>McCoy, S.W.; Kean, Jason W.; Coe, Jeffrey A.; Tucker, G.E.; Staley, Dennis M.; Wasklewicz, T.A.</p> <p>2012-01-01</p> <p>Debris flows can dramatically increase their volume, and hence their destructive potential, by entraining sediment. Yet quantitative constraints on rates and mechanics of sediment entrainment by debris flows are limited. Using an in situ sensor network in the headwaters of a natural catchment we measured flow and bed properties during six erosive debris-flow events. Despite similar flow properties and thicknesses of bed sediment entrained across all events, time-averaged entrainment rates were significantly faster for bed sediment that was saturated prior to flow arrival compared with rates for sediment that was dry. Bed sediment was entrained from the sediment-surface downward in a progressive fashion and occurred during passage of dense granular fronts as well as water-rich, inter-surge flow.En massefailure of bed sediment along the sediment-bedrock interface was never observed. Large-magnitude, high-frequency fluctuations in total normal basal stress were dissipated within the upper 5 cm of bed sediment. Within this near surface layer, concomitant fluctuations in Coulomb frictional resistance are expected, irrespective of the influence of pore fluid pressure or fluctuations in shear stress. If the near-surface sediment was wet as it was overridden by a flow, additional large-magnitude, high-frequency pore pressure fluctuations were measured in the near-surface bed sediment. These pore pressure fluctuations propagated to depth at subsonic rates and in a diffusive manner. The depth to which large excess pore pressures propagated was typically less than 10 cm, but scaled as (D/fi)0.5, in which D is the hydraulic diffusivity and fi is the frequency of a particular pore pressure fluctuation. Shallow penetration depths of granular-normal-stress fluctuations and excess pore pressures demonstrate that only near-surface bed sediment experiences the full dynamic range of effective-stress fluctuations, and as a result, can be more easily entrained than deeper sediment. These data provide robust tests for mechanical models of entrainment and demonstrate that a debris flow over wet bed sediment will be larger than the same flow over dry bed sediment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4640619','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4640619"><span>Life and death of a single catalytic cracking particle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Meirer, Florian; Kalirai, Sam; Morris, Darius; Soparawalla, Santosh; Liu, Yijin; Mesu, Gerbrand; Andrews, Joy C.; Weckhuysen, Bert M.</p> <p>2015-01-01</p> <p>Fluid catalytic cracking (FCC) particles account for 40 to 45% of worldwide gasoline production. The hierarchical complex particle pore structure allows access of long-chain feedstock molecules into active catalyst domains where they are cracked into smaller, more valuable hydrocarbon products (for example, gasoline). In this process, metal deposition and intrusion is a major cause for irreversible catalyst deactivation and shifts in product distribution. We used x-ray nanotomography of industrial FCC particles at differing degrees of deactivation to quantify changes in single-particle macroporosity and pore connectivity, correlated to iron and nickel deposition. Our study reveals that these metals are incorporated almost exclusively in near-surface regions, severely limiting macropore accessibility as metal concentrations increase. Because macropore channels are “highways” of the pore network, blocking them prevents feedstock molecules from reaching the catalytically active domains. Consequently, metal deposition reduces conversion with time on stream because the internal pore volume, although itself unobstructed, becomes largely inaccessible. PMID:26601160</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1913171V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1913171V"><span>Forecasting the brittle failure of heterogeneous, porous geomaterials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vasseur, Jérémie; Wadsworth, Fabian; Heap, Michael; Main, Ian; Lavallée, Yan; Dingwell, Donald</p> <p>2017-04-01</p> <p>Heterogeneity develops in magmas during ascent and is dominated by the development of crystal and importantly, bubble populations or pore-network clusters which grow, interact, localize, coalesce, outgas and resorb. Pore-scale heterogeneity is also ubiquitous in sedimentary basin fill during diagenesis. As a first step, we construct numerical simulations in 3D in which randomly generated heterogeneous and polydisperse spheres are placed in volumes and which are permitted to overlap with one another, designed to represent the random growth and interaction of bubbles in a liquid volume. We use these simulated geometries to show that statistical predictions of the inter-bubble lengthscales and evolving bubble surface area or cluster densities can be made based on fundamental percolation theory. As a second step, we take a range of well constrained random heterogeneous rock samples including sandstones, andesites, synthetic partially sintered glass bead samples, and intact glass samples and subject them to a variety of stress loading conditions at a range of temperatures until failure. We record in real time the evolution of the number of acoustic events that precede failure and show that in all scenarios, the acoustic event rate accelerates toward failure, consistent with previous findings. Applying tools designed to forecast the failure time based on these precursory signals, we constrain the absolute error on the forecast time. We find that for all sample types, the error associated with an accurate forecast of failure scales non-linearly with the lengthscale between the pore clusters in the material. Moreover, using a simple micromechanical model for the deformation of porous elastic bodies, we show that the ratio between the equilibrium sub-critical crack length emanating from the pore clusters relative to the inter-pore lengthscale, provides a scaling for the error on forecast accuracy. Thus for the first time we provide a potential quantitative correction for forecasting the failure of porous brittle solids that build the Earth's crust.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6829886','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6829886"><span>Dual porosity gas evolving electrode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Townsend, C.W.</p> <p>1994-11-15</p> <p>A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23758867','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23758867"><span>Tailoring the affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Rong; Kanezashi, Masakoto; Yoshioka, Tomohisa; Okuda, Tetsuji; Ohshita, Joji; Tsuru, Toshinori</p> <p>2013-07-10</p> <p>Bis(triethoxysilyl)ethylene (BTESEthy) was used as a novel precursor to develop a microporous organosilica membrane via the sol-gel technique. Water sorption measurements confirmed that ethenylene-bridged BTESEthy networks had a higher affinity for water than that of ethane-bridged organosilica materials. High permeance of CO2 with high CO2/N2 selectivity was explained relative to the strong CO2 adsorption on the network with π-bond electrons. The introduction of polarizable and rigid ethenylene bridges in the network structure led to improved water permeability and high NaCl rejection (>98.5%) in reverse osmosis (RO). Moreover, the aqueous ozone modification promoted significant improvement in the water permeability of the membrane. After 60 min of ozone exposure, the water permeability reached 1.1 × 10(-12) m(3)/(m(2) s Pa), which is close to that of a commercial seawater RO membrane. Meanwhile, molecular weight cutoff measurements indicated a gradual increase in the effective pore size with ozone modification, which may present new options for fine-tuning of membrane pore sizes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24044351','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24044351"><span>Three-dimensional {Co(3+)-Zn2+} and {Co(3+)-Cd2+} networks originated from carboxylate-rich building blocks: syntheses, structures, and heterogeneous catalysis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kumar, Girijesh; Gupta, Rajeev</p> <p>2013-10-07</p> <p>The present work shows the utilization of Co(3+) complexes appended with either para- or meta-arylcarboxylic acid groups as the molecular building blocks for the construction of three-dimensional {Co(3+)-Zn(2+)} and {Co(3+)-Cd(2+)} heterobimetallic networks. The structural characterizations of these networks show several interesting features including well-defined pores and channels. These networks function as heterogeneous and reusable catalysts for the regio- and stereoselective ring-opening reactions of various epoxides and size-selective cyanation reactions of assorted aldehydes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H41F1378S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H41F1378S"><span>Modeling Flow in Porous Media with Double Porosity/Permeability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seyed Joodat, S. H.; Nakshatrala, K. B.; Ballarini, R.</p> <p>2016-12-01</p> <p>Although several continuum models are available to study the flow of fluids in porous media with two pore-networks [1], they lack a firm theoretical basis. In this poster presentation, we will present a mathematical model with firm thermodynamic basis and a robust computational framework for studying flow in porous media that exhibit double porosity/permeability. The mathematical model will be derived by appealing to the maximization of rate of dissipation hypothesis, which ensures that the model is in accord with the second law of thermodynamics. We will also present important properties that the solutions under the model satisfy, along with an analytical solution procedure based on the Green's function method. On the computational front, a stabilized mixed finite element formulation will be derived based on the variational multi-scale formalism. The equal-order interpolation, which is computationally the most convenient, is stable under this formulation. The performance of this formulation will be demonstrated using patch tests, numerical convergence study, and representative problems. It will be shown that the pressure and velocity profiles under the double porosity/permeability model are qualitatively and quantitatively different from the corresponding ones under the classical Darcy equations. Finally, it will be illustrated that the surface pore-structure is not sufficient in characterizing the flow through a complex porous medium, which pitches a case for using advanced characterization tools like micro-CT. References [1] G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, "Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]," Journal of Applied Mathematics and Mechanics, vol. 24, pp. 1286-1303, 1960.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21901372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21901372"><span>Superporous polyacrylate/chitosan IPN hydrogels for protein delivery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gümüşderelioğlu, Menemşe; Erce, Deniz; Demirtaş, T Tolga</p> <p>2011-11-01</p> <p>In this study, poly(acrylamide), poly(AAm), and poly(acrylamide-co-acrylic acid), poly(AAm-co-AA) superporous hydrogels (SPHs) were synthesized by radical polymerization in the presence of gas blowing agent, sodium bicarbonate. In addition, ionically crosslinked chitosan (CH) superporous hydrogels were synthesized to form interpenetrating superporous hydrogels, i.e. poly(AAm)-CH and poly(AAm-co-AA)-CH SPH-IPNs. The hydrogels have a structure of interconnected pores with pore sizes of approximately 100-150 μm. Although the extent of swelling increased when AA were incorporated to the poly(AAm) structure, the time to reach the equilibrium swelling (~30 s) was not affected so much. In the presence of chitosan network mechanical properties significantly improved when compared with SPHs, however, equilibrium swelling time (~30 min) was prolonged significantly as due to the lower porosities and pore sizes of SPH-IPNs than that of SPHs. Model protein bovine serum albumin (BSA) was loaded into SPHs and SPH-IPNs by solvent sorption in very short time (<1 h) and very high capacities (~30-300 mg BSA/g dry gel) when compared to conventional hydrogels. BSA release profiles from SPHs and SPH-IPNs were characterized by an initial burst of protein during the first 20 min followed by a completed release within 1 h. However, total releasable amount of BSA from SPH-IPNs was lower than that of SPHs as due to the electrostatic interactions between chitosan and BSA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29197695','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29197695"><span>Probing numerical Laplace inversion methods for two and three-site molecular exchange between interconnected pore structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Silletta, Emilia V; Franzoni, María B; Monti, Gustavo A; Acosta, Rodolfo H</p> <p>2018-01-01</p> <p>Two-dimension (2D) Nuclear Magnetic Resonance relaxometry experiments are a powerful tool extensively used to probe the interaction among different pore structures, mostly in inorganic systems. The analysis of the collected experimental data generally consists of a 2D numerical inversion of time-domain data where T 2 -T 2 maps are generated. Through the years, different algorithms for the numerical inversion have been proposed. In this paper, two different algorithms for numerical inversion are tested and compared under different conditions of exchange dynamics; the method based on Butler-Reeds-Dawson (BRD) algorithm and the fast-iterative shrinkage-thresholding algorithm (FISTA) method. By constructing a theoretical model, the algorithms were tested for a two- and three-site porous media, varying the exchange rates parameters, the pore sizes and the signal to noise ratio. In order to test the methods under realistic experimental conditions, a challenging organic system was chosen. The molecular exchange rates of water confined in hierarchical porous polymeric networks were obtained, for a two- and three-site porous media. Data processed with the BRD method was found to be accurate only under certain conditions of the exchange parameters, while data processed with the FISTA method is precise for all the studied parameters, except when SNR conditions are extreme. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28441880','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28441880"><span>A three-dimensional collagen-fiber network model of the extracellular matrix for the simulation of the mechanical behaviors and micro structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dong, Shoubin; Huang, Zetao; Tang, Liqun; Zhang, Xiaoyang; Zhang, Yongrou; Jiang, Yi</p> <p>2017-07-01</p> <p>The extracellular matrix (ECM) provides structural and biochemical support to cells and tissues, which is a critical factor for modulating cell dynamic behavior and intercellular communication. In order to further understand the mechanisms of the interactive relationship between cell and the ECM, we developed a three-dimensional (3D) collagen-fiber network model to simulate the micro structure and mechanical behaviors of the ECM and studied the stress-strain relationship as well as the deformation of the ECM under tension. In the model, the collagen-fiber network consists of abundant random distributed collagen fibers and some crosslinks, in which each fiber is modeled as an elastic beam and a crosslink is modeled as a linear spring with tensile limit, it means crosslinks will fail while the tensile forces exceed the limit of spring. With the given parameters of the beam and the spring, the simulated tensile stress-strain relation of the ECM highly matches the experimental results including damaged and failed behaviors. Moreover, by applying the maximal inscribed sphere method, we measured the size distribution of pores in the fiber network and learned the variation of the distribution with deformation. We also defined the alignment of the collagen-fibers to depict the orientation of fibers in the ECM quantitatively. By the study of changes of the alignment and the damaged crosslinks against the tensile strain, this paper reveals the comprehensive mechanisms of four stages of 'toe', 'linear', 'damage' and 'failure' in the tensile stress-strain relation of the ECM which can provide further insight in the study of cell-ECM interaction.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MMTA...47.2985N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MMTA...47.2985N"><span>A Theoretical Analysis of the Interaction Between Pores and Inclusions During the Continuous Casting of Steel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nick, Arash Safavi; Vynnycky, Michael; Fredriksson, Hasse</p> <p>2016-06-01</p> <p>A mathematical model is derived to predict the trajectories of pores and inclusions that are nucleated in the interdendritic region during the continuous casting of steel. Using basic fluid mechanics and heat transfer, scaling analysis, and asymptotic methods, the model accounts for the possible lateral drift of the pores as a result of the dependence of the surface tension on temperature and sulfur concentration. Moreover, the soluto-thermocapillary drift of such pores prior to final solidification, coupled to the fact that any inclusions present can only have a vertical trajectory, can help interpret recent experimental observations of pore-inclusion clusters in solidified steel castings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025795','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025795"><span>Pore space analysis of NAPL distribution in sand-clay media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Matmon, D.; Hayden, N.J.</p> <p>2003-01-01</p> <p>This paper introduces a conceptual model of clays and non-aqueous phase liquids (NAPLs) at the pore scale that has been developed from a mathematical unit cell model, and direct micromodel observation and measurement of clay-containing porous media. The mathematical model uses a unit cell concept with uniform spherical grains for simulating the sand in the sand-clay matrix (???10% clay). Micromodels made with glass slides and including different clay-containing porous media were used to investigate the two clays (kaolinite and montmorillonite) and NAPL distribution within the pore space. The results were used to understand the distribution of NAPL advancing into initially saturated sand and sand-clay media, and provided a detailed analysis of the pore-scale geometry, pore size distribution, NAPL entry pressures, and the effect of clay on this geometry. Interesting NAPL saturation profiles were observed as a result of the complexity of the pore space geometry with the different packing angles and the presence of clays. The unit cell approach has applications for enhancing the mechanistic understanding and conceptualization, both visually and mathematically, of pore-scale processes such as NAPL and clay distribution. ?? 2003 Elsevier Science Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JTST...26.1183Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JTST...26.1183Z"><span>Multiscale Pores in TBCs for Lower Thermal Conductivity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Wei-Wei; Li, Guang-Rong; Zhang, Qiang; Yang, Guan-Jun</p> <p>2017-08-01</p> <p>The morphology and pattern (including orientation and aspect ratio) of pores in thermal barrier coatings (TBCs) significantly affect their thermal insulation performance. In this work, finite element analysis was used to comprehensively understand the thermal insulation effect of pores and correlate the effective thermal conductivity with the structure. The results indicated that intersplat pores, and in particular their aspect ratio, dominantly affect the heat transfer in the top coat. The effective thermal conductivity decreased as a function of aspect ratio, since a larger aspect ratio often corresponds to a greater proportion of effective length of the pores. However, in conventional plasma-sprayed TBCs, intersplat pores often fail to maximize thermal insulation due to their distinct lower aspect ratios. Therefore, considering this effect of aspect ratio, a new structure design with multiscale pores is proposed and a corresponding structural model developed to correlate the thermal properties with this pore-rich structure. The predictions of the model are well consistent with experimental data. This study provides comprehensive understanding of the effect of pores on the thermal insulation performance, shedding light on the possibility of structural tailoring to obtain advanced TBCs with lower thermal conductivity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012WRR....48.3518E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012WRR....48.3518E"><span>Modeling intragranular diffusion in low-connectivity granular media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ewing, Robert P.; Liu, Chongxuan; Hu, Qinhong</p> <p>2012-03-01</p> <p>Characterizing the diffusive exchange of solutes between bulk water in an aquifer and water in the intragranular pores of the solid phase is still challenging despite decades of study. Many disparities between observation and theory could be attributed to low connectivity of the intragranular pores. The presence of low connectivity indicates that a useful conceptual framework is percolation theory. The present study was initiated to develop a percolation-based finite difference (FD) model, and to test it rigorously against both random walk (RW) simulations of diffusion starting from nonequilibrium, and data on Borden sand published by Ball and Roberts (1991a,b) and subsequently reanalyzed by Haggerty and Gorelick (1995) using a multirate mass transfer (MRMT) approach. The percolation-theoretical model is simple and readily incorporated into existing FD models. The FD model closely matches the RW results using only a single fitting parameter, across a wide range of pore connectivities. Simulation of the Borden sand experiment without pore connectivity effects reproduced the MRMT analysis, but including low pore connectivity effects improved the fit. Overall, the theory and simulation results show that low intragranular pore connectivity can produce diffusive behavior that appears as if the solute had undergone slow sorption, despite the absence of any sorption process, thereby explaining some hitherto confusing aspects of intragranular diffusion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1438985-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1438985-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution"><span>Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla</p> <p></p> <p>The state-of-the-art multiscale modeling of GPFs including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtration on a singlemore » channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. The microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1415777-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1415777-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution"><span>Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla; ...</p> <p>2018-01-03</p> <p>The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1415777-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1415777-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution"><span>Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla</p> <p></p> <p>The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28235361','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28235361"><span>Nanoporous Polymer Films of Cyanate Ester Resins Designed by Using Ionic Liquids as Porogens.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fainleib, Alexander; Vashchuk, Alina; Starostenko, Olga; Grigoryeva, Olga; Rogalsky, Sergiy; Nguyen, Thi-Thanh-Tam; Grande, Daniel</p> <p>2017-12-01</p> <p>Novel nanoporous film materials of thermostable cyanate ester resins (CERs) were generated by polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying amounts (from 20 to 40 wt%) of an ionic liquid (IL), i.e., 1-heptylpyridinium tetrafluoroborate, followed by its quantitative extraction after complete CER network formation. The completion of CER formation and IL extraction was assessed using gel fraction content determination, FTIR, 1 H NMR, and energy-dispersive X-ray spectroscopy (EDX). SEM and DSC-based thermoporometry analyses demonstrated the formation of nanoporous structures after IL removal from CER networks, thus showing the effective role of IL as a porogen. Pore sizes varied from ~20 to ~180 nm with an average pore diameter of around 45-60 nm depending on the initial IL content. The thermal stability of nanoporous CER-based films was investigated by thermogravimetric analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NRL....12..126F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NRL....12..126F"><span>Nanoporous Polymer Films of Cyanate Ester Resins Designed by Using Ionic Liquids as Porogens</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fainleib, Alexander; Vashchuk, Alina; Starostenko, Olga; Grigoryeva, Olga; Rogalsky, Sergiy; Nguyen, Thi-Thanh-Tam; Grande, Daniel</p> <p>2017-02-01</p> <p>Novel nanoporous film materials of thermostable cyanate ester resins (CERs) were generated by polycyclotrimerization of dicyanate ester of bisphenol E in the presence of varying amounts (from 20 to 40 wt%) of an ionic liquid (IL), i.e., 1-heptylpyridinium tetrafluoroborate, followed by its quantitative extraction after complete CER network formation. The completion of CER formation and IL extraction was assessed using gel fraction content determination, FTIR, 1H NMR, and energy-dispersive X-ray spectroscopy (EDX). SEM and DSC-based thermoporometry analyses demonstrated the formation of nanoporous structures after IL removal from CER networks, thus showing the effective role of IL as a porogen. Pore sizes varied from 20 to 180 nm with an average pore diameter of around 45-60 nm depending on the initial IL content. The thermal stability of nanoporous CER-based films was investigated by thermogravimetric analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHyd..543..796K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHyd..543..796K"><span>Modelling karst aquifer evolution in fractured, porous rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaufmann, Georg</p> <p>2016-12-01</p> <p>The removal of material in soluble rocks by physical and chemical dissolution is an important process enhancing the secondary porosity of soluble rocks. Depending on the history of the soluble rock, dissolution can occur either along fractures and bedding partings of the rock in the case of a telogenetic origin, or within the interconnected pore space in the case of eogenetic origin. In soluble rocks characterised by both fractures and pore space, dissolution in both flow compartments is possible. We investigate the dissolution of calcite both along fractures and within the pore space of a limestone rock by numerical modelling. The limestone rock is treated as fractured, porous aquifer, in which the hydraulic conductivity increases with time both for the fractures and the pore spaces. We show that enlargement of pore space by dissolution will accelerate the development of a classical fracture-dominated telogenetic karst aquifer, breakthrough occurs faster. In the case of a pore-controlled aquifer as in eogenetic rocks, enlargement of pores results in a front of enlarged pore spaces migrating into the karst aquifer, with more homogeneous enlargement around this dissolution front, and later breakthrough.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33E1737D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33E1737D"><span>Pore-scale simulation of CO2-water-rock interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deng, H.; Molins, S.; Steefel, C. I.; DePaolo, D. J.</p> <p>2017-12-01</p> <p>In Geologic Carbon Storage (GCS) systems, the migration of scCO2 versus CO2-acidifed brine ultimately determines the extent of mineral trapping and caprock integrity, i.e. the long-term storage efficiency and security. While continuum scale multiphase reactive transport models are valuable for large scale investigations, they typically (over-)simplify pore-scale dynamics and cannot capture local heterogeneities that may be important. Therefore, pore-scale models are needed in order to provide mechanistic understanding of how fine scale structural variations and heterogeneous processes influence the transport and geochemistry in the context of multiphase flow, and to inform parameterization of continuum scale modeling. In this study, we investigate the interplay of different processes at pore scale (e.g. diffusion, reactions, and multiphase flow) through the coupling of a well-developed multiphase flow simulator with a sophisticated reactive transport code. The objectives are to understand where brine displaced by scCO2 will reside in a rough pore/fracture, and how the CO2-water-rock interactions may affect the redistribution of different phases. In addition, the coupled code will provide a platform for model testing in pore-scale multiphase reactive transport problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26346603','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26346603"><span>Electroviscous Effects in Ceramic Nanofiltration Membranes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Farsi, Ali; Boffa, Vittorio; Christensen, Morten Lykkegaard</p> <p>2015-11-16</p> <p>Membrane permeability and salt rejection of a γ-alumina nanofiltration membrane were studied and modeled for different salt solutions. Salt rejection was predicted by using the Donnan-steric pore model, in which the extended Nernst-Planck equation was applied to predict ion transport through the pores. The solvent flux was modeled by using the Hagen-Poiseuille equation by introducing electroviscosity instead of bulk viscosity. γ-Alumina particles were used for ζ-potential measurements. The ζ-potential measurements show that monovalent ions did not adsorb on the γ-alumina surface, whereas divalent ions were highly adsorbed. Thus, for divalent ions, the model was modified, owing to pore shrinkage caused by ion adsorption. The ζ-potential lowered the membrane permeability, especially for membranes with a pore radius lower than 3 nm, a ζ-potential higher than 20 mV, and an ionic strength lower than 0.01 m. The rejection model showed that, for a pore radius lower than 3 nm and for solutions with ionic strengths lower than 0.01 m, there is an optimum ζ-potential for rejection, because of the concurrent effects of electromigration and convection. Hence, the model can be used as a prediction tool to optimize membrane perm-selectivity by designing a specific pore size and surface charge for application at specific ionic strengths and pH levels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JCAMD..30..559R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JCAMD..30..559R"><span>Side chain flexibility and the pore dimensions in the GABAA receptor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rossokhin, Alexey V.; Zhorov, Boris S.</p> <p>2016-07-01</p> <p>Permeation of ions through open channels and their accessibility to pore-targeting drugs depend on the pore cross-sectional dimensions, which are known only for static X-ray and cryo-EM structures. Here, we have built homology models of the closed, open and desensitized α1β2γ2 GABAA receptor (GABAAR). The models are based, respectively, on the X-ray structure of α3 glycine receptor (α3 GlyR), cryo-EM structure of α1 GlyR and X-ray structure of β3 GABAAR. We employed Monte Carlo energy minimizations to explore how the pore lumen may increase due to repulsions of flexible side chains from a variable-diameter electroneutral atom (an expanding sphere) pulled through the pore. The expanding sphere computations predicted that the pore diameter averaged along the permeation pathway is larger by approximately 3 Å than that computed for the models with fixed sidechains. Our models predict three major pore constrictions located at the levels of -2', 9' and 20' residues. Residues around the -2' and 9' rings are known to form the desensitization and activation gates of GABAAR. Our computations predict that the 20' ring may also serve as GABAAR gate whose physiological role is unclear. The side chain flexibility of residues -2', 9' and 20' and hence the dimensions of the constrictions depend on the GABAAR functional state.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013APS..DFDH31007P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013APS..DFDH31007P"><span>Pore-scale modeling of Capillary Penetration of Wetting Liquid into 3D Fibrous Media: A Critical Examination of Equivalent Capillary Concept</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Palakurthi, Nikhil Kumar; Ghia, Urmila; Comer, Ken</p> <p>2013-11-01</p> <p>Capillary penetration of liquid through fibrous porous media is important in many applications such as printing, drug delivery patches, sanitary wipes, and performance fabrics. Historically, capillary transport (with a distinct liquid propagating front) in porous media is modeled using capillary-bundle theory. However, it is not clear if the capillary model (Washburn equation) describes the fluid transport in porous media accurately, as it assumes uniformity of pore sizes in the porous medium. The present work investigates the limitations of the applicability of the capillary model by studying liquid penetration through virtual fibrous media with uniform and non-uniform pore-sizes. For the non-uniform-pore fibrous medium, the effective capillary radius of the fibrous medium was estimated from the pore-size distribution curve. Liquid penetration into the 3D virtual fibrous medium at micro-scale was simulated using OpenFOAM, and the numerical results were compared with the Washburn-equation capillary-model predictions. Preliminary results show that the Washburn equation over-predicts the height rise in the early stages (purely inertial and visco-inertial stages) of capillary transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.7733S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.7733S"><span>Analysing Structure Dynamics in Arable Soils using X-ray Micro-Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schlüter, S.; Weller, U.; Vogel, H.-J.</p> <p>2009-04-01</p> <p>Structure is a dynamic property of soil. It interacts with many biotic and abiotic features and controls various soil functions. We analyzed soil structure within different plots of the ''Static Fertilisation Experiment'' at the agricultural research station in Bad Lauchstaedt (Germany) using X-ray micro tomography. The aim was to investigate in how far different levels of organic carbon, increased microbial activity and enhanced plant growth affects structural properties of an arable soil. Since 106 years one plot has experienced a constant application of farmyard manure and fertilisers, whereas the other has never been fertilised in this period. Intact soil cores from the chernozem soil at the two plots were taken from a depth of 5 to 15 cm (Ap-horizon) and 35 to 45 cm (Ah-horizon) to analyse structural changes with depth and in two different seasons (spring and summer) to investigate structure dynamics. The pore structure was analysed by quantifying the mean geometrical and topological characteristics of the pore network as a function of pore size. This was done by a combination of Minkowski functionals and morphological size distibution. For small structural features close to the image resolution the results clearly depend on the applied filtering technique and segmentation thresholds. Therefore the application of different image enhancement techniques is discussed. Furthermore, a new method for an automated determination of grey value thesholds for the segmentation of CT-images into pore space and solid is developed and evaluated. We highlight the relevance of image resolution for structure analysis. Results of the structure analysis reveal that the spring samples of the ploughed layer (Ap-horizon) from the fertilised plot have significantly higher macroporosities (P < 0.05) than those from the non-fertilised plot. The internal connectivity of the pore network is better in the fertilised plot and the pore size distribution was found to be different, too. The differences in porosity and pore connectivity increase from spring to summer. Both plots were compacted by a rolling machine in late winter. So the difference in structure dynamics is interpreted as an enhanced structure resiliency in the fertilised and carbon enriched plot after that compaction. A comparison with porosity features of a nearby reference profil under grassland demonstrates that the impact of tillage on pore structure is higher than the different contents in organic carbon. The carbon enriched horizon beneath the ploughed layer (Ah-horizon) shows no differences in pore size distribution and connectivity as a function of fertilisation. Thus, at that soil depth, no long-term effects of fertilization in terms of soil structure are detectable. Obviously, the highly different energy input during 106 years only affects the structure of the top soil.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21774424','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21774424"><span>Fungal colonization in soils with different management histories: modeling growth in three-dimensional pore volumes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kravchenko, Alexandra; Falconer, Ruth E; Grinev, Dmitri; Otten, Wilfred</p> <p>2011-06-01</p> <p>Despite the importance of fungi in soil functioning they have received comparatively little attention, and our understanding of fungal interactions and communities is lacking. This study aims to combine a physiologically based model of fungal growth with digitized images of internal pore volume of samples of undisturbed soil from contrasting management practices to determine the effect of physical structure on fungal growth dynamics. We quantified pore geometries of the undisturbed-soil samples from two contrasting agricultural practices, conventionally plowed (chisel plow) (CT) and no till (NT), and from native-species vegetation land use on land that was taken out of production in 1989 (NS). Then we modeled invasion of a fungal species within the soil samples and evaluated the role of soil structure on the progress of fungal colonization of the soil pore space. The size of the studied pores was > or =110 microm. The dynamics of fungal invasion was quantified through parameters of a mathematical model fitted to the fungal invasion curves. Results indicated that NT had substantially lower porosity and connectivity than CT and NS soils. For example, the largest connected pore volume occupied 79% and 88% of pore space in CT and NS treatments, respectively, while it only occupied 45% in NT. Likewise, the proportion of pore space available to fungal colonization was much greater in NS and CT than in NT treatment, and the dynamics of the fungal invasion differed among the treatments. The relative rate of fungal invasion at the onset of simulation was higher in NT samples, while the invasion followed a more sigmoidal pattern with relatively slow invasion rates at the initial time steps in NS and CT samples. Simulations allowed us to elucidate the contribution of physical structure to the rates and magnitudes of fungal invasion processes. It appeared that fragmented pore space disadvantaged fungal invasion in soils under long-term no-till, while large connected pores in soils under native vegetation or in tilled agriculture promoted the invasion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15214670','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15214670"><span>Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yao, Yan; Lenhoff, Abraham M</p> <p>2004-05-28</p> <p>The macroscopic properties of porous chromatographic adsorbents are directly influenced by the pore structure, with the pore size distribution (PSD) playing a major role beyond simply the mean pore size. Inverse size-exclusion chromatography (ISEC), a widely used chromatographic method for determining the PSD of porous media, provides more relevant information on liquid chromatographic materials in situ than traditional methods, such as gas sorption and mercury intrusion. The fundamentals and applications of ISEC in the characterization of the pore structure are reviewed. The description of the probe solutes and the pore space, as well as theoretical models for deriving the PSD from solute partitioning behavior, are discussed. Precautions to ensure integrity of the experiments are also outlined, including accounting for probe polydispersity and minimization of solute-adsorbent interactions. The results that emerge are necessarily model-dependent, but ISEC nonetheless represents a powerful and non-destructive source of quantitative pore structure information that can help to elucidate chromatographic performance observations covering both retention and rate aspects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4132870','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4132870"><span>Electroosmosis in a Finite Cylindrical Pore: Simple Models of End Effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2015-01-01</p> <p>A theoretical model of electroosmosis through a circular pore of radius a that traverses a membrane of thickness h is investigated. Both the cylindrical surface of the pore and the outer surfaces of the membrane are charged. When h ≫ a, end effects are negligible, and the results of full numerical computations of electroosmosis in an infinite pore agree with theory. When h = 0, end effects dominate, and computations again agree with analysis. For intermediate values of h/a, an approximate analysis that combines these two limiting cases captures the main features of computational results when the Debye length κ–1 is small compared with the pore radius a. However, the approximate analysis fails when κ–1 ≫ a, when the charge cloud due to the charged cylindrical walls of the pore spills out of the ends of the pore, and the electroosmotic flow is reduced. When this spilling out is included in the analysis, agreement with computation is restored. PMID:25020257</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/925605','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/925605"><span>Pore-scale spectral induced polarization (SIP) signaturesassociated with FeS biomineral transformations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Slater, Lee; Ntarlagiannis, Dimitrios; Personna, Yves R.</p> <p>2007-10-01</p> <p>The authors measured Spectral Induced Polarization (SIP) signatures in sand columns during (1) FeS biomineralization produced by sulfate reducing bacteria (D. vulgaris) under anaerboci conditions, and (2) subsequent biomineral dissolution upon return to an aerobic state. The low-frequency (0.1-10 Hz peak) relaxations produced during biomineralization can be modeled with a Cole-Cole formulation, from which the evolution of the polarization magnitude and relaxation length scale can be estimated. They find that the modeled time constant is consistent with the polarizable elements being biomineral encrused pores. Evolution of the model parameters is consistent with FeS surface area increases and pore-size reduction duringmore » biomineral growth, and subsequent biomineral dissolution (FeS surface area decreases and pore expansion) upon return to the aerobic state. They conclude that SIP signatures are diagnostic of pore-scale geometrical changes associated with FeS biomineralization by sulfate reducing bacteria.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Fract..2550042W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Fract..2550042W"><span>a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu</p> <p></p> <p>A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>