Sample records for pore size compared

  1. Investigation of thermal conduction in symmetric and asymmetric nanoporous structures

    NASA Astrophysics Data System (ADS)

    Yu, Ziqi; Ferrer-Argemi, Laia; Lee, Jaeho

    2017-12-01

    Nanoporous structures with a critical dimension comparable to or smaller than the phonon mean free path have demonstrated significant thermal conductivity reductions that are attractive for thermoelectric applications, but the presence of various geometric parameters complicates the understanding of governing mechanisms. Here, we use a ray tracing technique to investigate phonon boundary scattering phenomena in Si nanoporous structures of varying pore shapes, pore alignments, and pore size distributions, and identify mechanisms that are primarily responsible for thermal conductivity reductions. Our simulation results show that the neck size, or the smallest distance between nearest pores, is the key parameter in understanding nanoporous structures of varying pore shapes and the same porosities. When the neck size and the porosity are both identical, asymmetric pore shapes provide a lower thermal conductivity compared with symmetric pore shapes, due to localized heat fluxes. Asymmetric nanoporous structures show possibilities of realizing thermal rectification even with fully diffuse surface boundaries, in which optimal arrangements of triangular pores show a rectification ratio up to 13 when the injection angles are optimally controlled. For symmetric nanoporous structures, hexagonal-lattice pores achieve larger thermal conductivity reductions than square-lattice pores due to the limited line of sight for phonons. We also show that nanoporous structures of alternating pore size distributions from large to small pores yield a lower thermal conductivity compared with those of uniform pore size distributions in the given porosity. These findings advance the understanding of phonon boundary scattering phenomena in complex geometries and enable optimal designs of artificial nanostructures for thermoelectric energy harvesting and solid-state cooling systems.

  2. New general pore size distribution model by classical thermodynamics application: Activated carbon

    USGS Publications Warehouse

    Lordgooei, M.; Rood, M.J.; Rostam-Abadi, M.

    2001-01-01

    A model is developed using classical thermodynamics to characterize pore size distributions (PSDs) of materials containing micropores and mesopores. The thermal equation of equilibrium adsorption (TEEA) is used to provide thermodynamic properties and relate the relative pore filling pressure of vapors to the characteristic pore energies of the adsorbent/adsorbate system for micropore sizes. Pore characteristic energies are calculated by averaging of interaction energies between adsorbate molecules and adsorbent pore walls as well as considering adsorbate-adsorbate interactions. A modified Kelvin equation is used to characterize mesopore sizes by considering variation of the adsorbate surface tension and by excluding the adsorbed film layer for the pore size. The modified-Kelvin equation provides similar pore filling pressures as predicted by density functional theory. Combination of these models provides a complete PSD of the adsorbent for the micropores and mesopores. The resulting PSD is compared with the PSDs from Jaroniec and Choma and Horvath and Kawazoe models as well as a first-order approximation model using Polanyi theory. The major importance of this model is its basis on classical thermodynamic properties, less simplifying assumptions in its derivation compared to other methods, and ease of use.

  3. Size effects of pore density and solute size on water osmosis through nanoporous membrane.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2012-11-15

    Understanding the behavior of osmotic transport across nanoporous membranes at molecular level is critical to their design and applications, and it is also beneficial to the comprehension of the mechanism of biological transmembrane transport processes. Pore density is an important parameter for nanoporous membranes. To better understand the influence of pore density on osmotic transport, we have performed systematic molecular dynamics simulations on water osmosis across nanoporous membranes with different pore densities (i.e., number of pores per unit area of membrane). The simulation results reveal that significant size effects occur when the pore density is so high that the center-to-center distance between neighboring nanopores is comparable to the solute size. The size effects are independent of the pore diameter and solute concentration. A simple quantitative correlation between pore density, solute size, and osmotic flux has been established. The results are excellently consistent with the theoretical predictions. It is also shown that solute hydration plays an important role in real osmotic processes. Solute hydration strengthens the size effects of pore density on osmotic processes due to the enlarged effective solute size induced by hydration. The influence of pore density, solute size, and solute hydration on water osmosis through nanoporous membranes can be introduced to eliminate the deviations of real osmotic processes from ideal behavior.

  4. Significant Effect of Pore Sizes on Energy Storage in Nanoporous Carbon Supercapacitors.

    PubMed

    Young, Christine; Lin, Jianjian; Wang, Jie; Ding, Bing; Zhang, Xiaogang; Alshehri, Saad M; Ahamad, Tansir; Salunkhe, Rahul R; Hossain, Shahriar A; Khan, Junayet Hossain; Ide, Yusuke; Kim, Jeonghun; Henzie, Joel; Wu, Kevin C-W; Kobayashi, Naoya; Yamauchi, Yusuke

    2018-04-20

    Mesoporous carbon can be synthesized with good control of surface area, pore-size distribution, and porous architecture. Although the relationship between porosity and supercapacitor performance is well known, there are no thorough reports that compare the performance of numerous types of carbon samples side by side. In this manuscript, we describe the performance of 13 porous carbon samples in supercapacitor devices. We suggest that there is a "critical pore size" at which guest molecules can pass through the pores effectively. In this context, the specific surface area (SSA) and pore-size distribution (PSD) are used to show the point at which the pore size crosses the threshold of critical size. These measurements provide a guide for the development of new kinds of carbon materials for supercapacitor devices. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Gas Release Behavior of Cu-TiH2 Composite Powder and Its Application as a Blowing Agent to Fabricate Aluminum Foams with Low Porosity and Small Pore Size

    NASA Astrophysics Data System (ADS)

    Cheng, Ying; Li, Yanxiang; Chen, Xiang; Liu, Zhiyong; Zhou, Xu; Wang, Ningzhen

    2018-06-01

    Compared to traditional pore structure with high porosity (≥ 80 pct) and large pore size (≥ 3 mm), aluminum foams with low porosity (60 to 70 pct) and small pore size (≤ 2 mm) possess higher compressive property and formability. In order to achieve the goal of reducing pore size, Cu-TiH2 composite powder prepared by ball milling preoxidized TiH2 with Cu powder was used as a blowing agent. Its gas release behavior was characterized by thermogravimetric analysis and differential scanning calorimetry. The results show that the ball milling treatment can advance the gas release process and slow the gas release rate at the same time. All these changes are favorable to the reduction of porosity and pore size. Such Cu-TiH2 composite powder provides an alternative way to fabricate aluminum foams with low porosity and small pore size.

  6. Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen.

    PubMed

    Sell, Scott; Barnes, Catherine; Simpson, David; Bowlin, Gary

    2008-04-01

    The purpose of this study was to construct a flowmeter that could accurately measure the hydraulic permeability of electrospun fibrinogen scaffolds, providing insight into the transport properties of electrospun scaffolds while making the measurement of their topographical features (fiber diameter and pore size) more accurate. Three different concentrations of fibrinogen were used (100, 120, and 150 mg/mL) to create scaffolds with three different fiber diameters and pore sizes. The fiber diameters and pore sizes of the electrospun scaffolds were first analyzed with scanning electron microscopy and image analysis software. The permeability of each scaffold was measured with the flowmeter and used to calculate permeability-based fiber diameters and pore sizes, which were compared to values obtained through image analysis. Permeability measurement revealed scaffold permeability to increase with fibrinogen concentration, much like average fiber diameter and pore size. Comparison between the two measurement methods demonstrated the efficacy of the flowmeter as a way to measure scaffold features. Copyright 2007 Wiley Periodicals, Inc.

  7. Influence of pore structure on compressive strength of cement mortar.

    PubMed

    Zhao, Haitao; Xiao, Qi; Huang, Donghui; Zhang, Shiping

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure.

  8. Influence of Pore Structure on Compressive Strength of Cement Mortar

    PubMed Central

    Zhao, Haitao; Xiao, Qi; Huang, Donghui

    2014-01-01

    This paper describes an experimental investigation into the pore structure of cement mortar using mercury porosimeter. Ordinary Portland cement, manufactured sand, and natural sand were used. The porosity of the manufactured sand mortar is higher than that of natural sand at the same mix proportion; on the contrary, the probable pore size and threshold radius of manufactured sand mortar are finer. Besides, the probable pore size and threshold radius increased with increasing water to cement ratio and sand to cement ratio. In addition, the existing models of pore size distribution of cement-based materials have been reviewed and compared with test results in this paper. Finally, the extended Bhattacharjee model was built to examine the relationship between compressive strength and pore structure. PMID:24757414

  9. Size Control of Porous Silicon-Based Nanoparticles via Pore-Wall Thinning.

    PubMed

    Secret, Emilie; Leonard, Camille; Kelly, Stefan J; Uhl, Amanda; Cozzan, Clayton; Andrew, Jennifer S

    2016-02-02

    Photoluminescent silicon nanocrystals are very attractive for biomedical and electronic applications. Here a new process is presented to synthesize photoluminescent silicon nanocrystals with diameters smaller than 6 nm from a porous silicon template. These nanoparticles are formed using a pore-wall thinning approach, where the as-etched porous silicon layer is partially oxidized to silica, which is dissolved by a hydrofluoric acid solution, decreasing the pore-wall thickness. This decrease in pore-wall thickness leads to a corresponding decrease in the size of the nanocrystals that make up the pore walls, resulting in the formation of smaller nanoparticles during sonication of the porous silicon. Particle diameters were measured using dynamic light scattering, and these values were compared with the nanocrystallite size within the pore wall as determined from X-ray diffraction. Additionally, an increase in the quantum confinement effect is observed for these particles through an increase in the photoluminescence intensity of the nanoparticles compared with the as-etched nanoparticles, without the need for a further activation step by oxidation after synthesis.

  10. The Effect of the Pore Entrance on Particle Motion in Slit Pores: Implications for Ultrathin Membranes

    PubMed Central

    Delavari, Armin; Baltus, Ruth

    2017-01-01

    Membrane rejection models generally neglect the effect of the pore entrance on intrapore particle transport. However, entrance effects are expected to be particularly important with ultrathin membranes, where membrane thickness is typically comparable to pore size. In this work, a 2D model was developed to simulate particle motion for spherical particles moving at small Re and infinite Pe from the reservoir outside the pore into a slit pore. Using a finite element method, particles were tracked as they accelerated across the pore entrance until they reached a steady velocity in the pore. The axial position in the pore where particle motion becomes steady is defined as the particle entrance length (PEL). PELs were found to be comparable to the fluid entrance length, larger than the pore size and larger than the thickness typical of many ultrathin membranes. Results also show that, in the absence of particle diffusion, hydrodynamic particle–membrane interactions at the pore mouth result in particle “funneling” in the pore, yielding cross-pore particle concentration profiles focused at the pore centerline. The implications of these phenomena on rejection from ultrathin membranes are examined. PMID:28796197

  11. Mesoporous Akaganeite of Adjustable Pore Size Synthesized using Mixed Templates

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ge, D. L.; Ren, H. P.; Fan, Y. J.; Wu, L. M.; Sun, Z. X.

    2017-12-01

    Mesoporous akaganeite with large and adjustable pore size was synthesized through a co-template method, which was achieved by the combined interaction between PEG2000 and alkyl amines with different lengths of the straight carbon chain. The characterized results indicate that the synthesized samples show comparatively narrow BJH pore size distributions and centered at 14.3 nm when PEG and HEPA was used, and it could be enlarged to 16.8 and 19.4 nm respectively through changing the alkyl amines to DDA and HDA. Meanwhile, all the synthesized akaganeite possess relativity high specific surface area ranging from 183 to 281 m2/g and high total pore volume of 0.98 to 1.5 cm3/g. A possible mechanism leading to the pore size changing was also proposed.

  12. Do Surface Porosity and Pore Size Influence Mechanical Properties and Cellular Response to PEEK?

    PubMed

    Torstrick, F Brennan; Evans, Nathan T; Stevens, Hazel Y; Gall, Ken; Guldberg, Robert E

    2016-11-01

    Despite its widespread use in orthopaedic implants such as soft tissue fasteners and spinal intervertebral implants, polyetheretherketone (PEEK) often suffers from poor osseointegration. Introducing porosity can overcome this limitation by encouraging bone ingrowth; however, the corresponding decrease in implant strength can potentially reduce the implant's ability to bear physiologic loads. We have previously shown, using a single pore size, that limiting porosity to the surface of PEEK implants preserves strength while supporting in vivo osseointegration. However, additional work is needed to investigate the effect of pore size on both the mechanical properties and cellular response to PEEK. (1) Can surface porous PEEK (PEEK-SP) microstructure be reliably controlled? (2) What is the effect of pore size on the mechanical properties of PEEK-SP? (3) Do surface porosity and pore size influence the cellular response to PEEK? PEEK-SP was created by extruding PEEK through NaCl crystals of three controlled ranges: 200 to 312, 312 to 425, and 425 to 508 µm. Micro-CT was used to characterize the microstructure of PEEK-SP. Tensile, fatigue, and interfacial shear tests were performed to compare the mechanical properties of PEEK-SP with injection-molded PEEK (PEEK-IM). The cellular response to PEEK-SP, assessed by proliferation, alkaline phosphatase activity, vascular endothelial growth factor production, and calcium content of osteoblast, mesenchymal stem cell, and preosteoblast (MC3T3-E1) cultures, was compared with that of machined smooth PEEK and Ti6Al4V. Micro-CT analysis showed that PEEK-SP layers possessed pores that were 284 ± 35 µm, 341 ± 49 µm, and 416 ± 54 µm for each pore size group. Porosity and pore layer depth ranged from 61% to 69% and 303 to 391 µm, respectively. Mechanical testing revealed tensile strengths > 67 MPa and interfacial shear strengths > 20 MPa for all three pore size groups. All PEEK-SP groups exhibited > 50% decrease in ductility compared with PEEK-IM and demonstrated fatigue strength > 38 MPa at one million cycles. All PEEK-SP groups also supported greater proliferation and cell-mediated mineralization compared with smooth PEEK and Ti6Al4V. The PEEK-SP formulations evaluated in this study maintained favorable mechanical properties that merit further investigation into their use in load-bearing orthopaedic applications and supported greater in vitro osteogenic differentiation compared with smooth PEEK and Ti6Al4V. These results are independent of pore sizes ranging 200 µm to 508 µm. PEEK-SP may provide enhanced osseointegration compared with current implants while maintaining the structural integrity to be considered for several load-bearing orthopaedic applications such as spinal fusion or soft tissue repair.

  13. Exploitation of 3D face-centered cubic mesoporous silica as a carrier for a poorly water soluble drug: influence of pore size on release rate.

    PubMed

    Zhu, Wenquan; Wan, Long; Zhang, Chen; Gao, Yikun; Zheng, Xin; Jiang, Tongying; Wang, Siling

    2014-01-01

    The purposes of the present work were to explore the potential application of 3D face-centered cubic mesoporous silica (FMS) with pore size of 16.0nm as a delivery system for poorly soluble drugs and investigate the effect of pore size on the dissolution rate. FMS with different pore sizes (16.0, 6.9 and 3.7nm) was successfully synthesized by using Pluronic block co-polymer F127 as a template and adjusting the reaction temperatures. Celecoxib (CEL), which is a BCS class II drug, was used as a model drug and loaded into FMS with different pore sizes by the solvent deposition method at a drug-silica ratio of 1:4. Characterization using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformation infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), nitrogen adsorption, X-ray diffraction (XRD), and differential scanning calorimetry (DSC) was used to systematically investigate the drug loading process. The results obtained showed that CEL was in a non-crystalline state after incorporation of CEL into the pores of FMS-15 with pore size of 16.0nm. In vitro dissolution was carried out to demonstrate the effects of FMS with different pore sizes on the release of CEL. The results obtained indicated that the dissolution rate of CEL from FMS-15 was significantly enhanced compared with pure CEL. This could be explained by supposing that CEL encountered less diffusion resistance and its crystallinity decreased due to the large pore size of 16.0nm and the nanopore channels of FMS-15. Moreover, drug loading and pore size both play an important role in enhancing the dissolution properties for the poorly water-soluble drugs. As the pore size between 3.7 and 16.0nm increased, the dissolution rate of CEL from FMS gradually increased. © 2013.

  14. Removal of bacteriophages with different surface charges by diverse ceramic membrane materials in pilot spiking tests.

    PubMed

    Hambsch, B; Bösl, M; Eberhagen, I; Müller, U

    2012-01-01

    This study examines mechanisms for removal of bacteriophages (MS2 and phiX174) by ceramic membranes without application of flocculants. The ceramic membranes considered included ultra- and microfiltration membranes of different materials. Phages were spiked into the feed water in pilot scale tests in a waterworks. The membranes with pore sizes of 10 nm provided a 2.5-4.0 log removal of the phages. For pore sizes of 50 nm, the log removal dropped to 0.96-1.8. The membrane with a pore size of 200 nm did not remove phages. So, the removal of both MS2- and phiX174-phages depended on the pore size of the membranes. But apart from pore size also other factors influence the removal of phages. Removal was 0.5-0.9 log higher for MS2-phages compared with phiX174-phages. Size exclusion seems to be the major but not the only mechanism which influences the efficiency of phage removal by ceramic membranes.

  15. a New Method for Calculating Fractal Dimensions of Porous Media Based on Pore Size Distribution

    NASA Astrophysics Data System (ADS)

    Xia, Yuxuan; Cai, Jianchao; Wei, Wei; Hu, Xiangyun; Wang, Xin; Ge, Xinmin

    Fractal theory has been widely used in petrophysical properties of porous rocks over several decades and determination of fractal dimensions is always the focus of researches and applications by means of fractal-based methods. In this work, a new method for calculating pore space fractal dimension and tortuosity fractal dimension of porous media is derived based on fractal capillary model assumption. The presented work establishes relationship between fractal dimensions and pore size distribution, which can be directly used to calculate the fractal dimensions. The published pore size distribution data for eight sandstone samples are used to calculate the fractal dimensions and simultaneously compared with prediction results from analytical expression. In addition, the proposed fractal dimension method is also tested through Micro-CT images of three sandstone cores, and are compared with fractal dimensions by box-counting algorithm. The test results also prove a self-similar fractal range in sandstone when excluding smaller pores.

  16. Gas permeability of ice-templated, unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  17. Experimental study on pore structure and performance of sintered porous wick

    NASA Astrophysics Data System (ADS)

    He, Da; Wang, Shufan; Liu, Rutie; Wang, Zhubo; Xiong, Xiang; Zou, Jianpeng

    2018-02-01

    Porous wicks were prepared via powder metallurgy using NH4HCO3 powders as pore-forming agent. The pore-forming agent particle size was varied to control the pore structure and equivalent pore size distribution feature of porous wick. The effect of pore-forming agent particle size on the porosity, pore structures, equivalent pore size distribution and capillary pumping performance were investigated. Results show that with the particle size of pore-forming agent decrease, the green density and the volume shrinkage of the porous wicks gradually increase and the porosity reduces slightly. There are two types of pores inside the porous wick, large-sized prefabricated pores and small-sized gap pores. With the particle size of pore-forming agent decrease, the size of the prefabricated pores becomes smaller and the distribution tends to be uniform. Gap pores and prefabricated pores inside the wick can make up different types of pore channels. The equivalent pore size of wick is closely related to the structure of pore channels. Furthermore, the equivalent pore size distribution of wick shows an obvious double-peak feature when the pore-forming agent particle size is large. With the particle size of pore-forming agent decrease, the two peaks of equivalent pore size distribution approach gradually to each other, resulting in a single-peak feature. Porous wick with single-peak feature equivalent pore size distribution possesses the better capillary pumping performances.

  18. A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering.

    PubMed

    McHugh, Kevin J; Tao, Sarah L; Saint-Geniez, Magali

    2013-07-01

    Porous scaffolds have the ability to minimize transport barriers for both two- (2D) and three-dimensional tissue engineering. However, current porous scaffolds may be non-ideal for 2D tissues such as epithelium due to inherent fabrication-based characteristics. While 2D tissues require porosity to support molecular transport, pores must be small enough to prevent cell migration into the scaffold in order to avoid non-epithelial tissue architecture and compromised function. Though electrospun meshes are the most popular porous scaffolds used today, their heterogeneous pore size and intense topography may be poorly-suited for epithelium. Porous scaffolds produced using other methods have similar unavoidable limitations, frequently involving insufficient pore resolution and control, which make them incompatible with 2D tissues. In addition, many of these techniques require an entirely new round of process development in order to change material or pore size. Herein we describe "pore casting," a fabrication method that produces flat scaffolds with deterministic pore shape, size, and location that can be easily altered to accommodate new materials or pore dimensions. As proof-of-concept, pore-cast poly(ε-caprolactone) (PCL) scaffolds were fabricated and compared to electrospun PCL in vitro using canine kidney epithelium, human colon epithelium, and human umbilical vein endothelium. All cell types demonstrated improved morphology and function on pore-cast scaffolds, likely due to reduced topography and universally small pore size. These results suggest that pore casting is an attractive option for creating 2D tissue engineering scaffolds, especially when the application may benefit from well-controlled pore size or architecture.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, K.; Tonks, M.; Zhang, Y.

    A detailed phase field model for the effect of pore drag on grain growth kinetics was implemented in MARMOT. The model takes into consideration both the curvature-driven grain boundary motion and pore migration by surface diffusion. As such, the model accounts for the interaction between pore and grain boundary kinetics, which tends to retard the grain growth process. Our 2D and 3D simulations demonstrate that the model capture all possible pore-grain boundary interactions proposed in theoretical models. For high enough surface mobility, the pores move along with the migrating boundary as a quasi-rigid-body, albeit hindering its migration rate compared tomore » the pore-free case. For less mobile pores, the migrating boundary can separate from the pores. For the pore-controlled grain growth kinetics, the model predicts a strong dependence of the growth rate on the number of pores, pore size, and surface diffusivity in agreement with theroretical models. An evolution equation for the grain size that includes these parameters was derived and showed to agree well with numerical solution. It shows a smooth transition from boundary-controlled kinetics to pore-controlled kinetics as the surface diffusivity decreases or the number of pores or their size increases. This equation can be utilized in BISON to give accurate estimate for the grain size evolution. This will be accomplished in the near future. The effect of solute drag and anisotropy of grain boundary on grain growth will be investigated in future studies.« less

  20. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers

    NASA Technical Reports Server (NTRS)

    Ishaug-Riley, S. L.; Crane-Kruger, G. M.; Yaszemski, M. J.; Mikos, A. G.

    1998-01-01

    Neonatal rat calvarial osteoblasts were cultured in 90% porous, 75:25 poly(DL-lactic-co-glycolic acid) (PLGA) foam scaffolds for up to 56 days to examine the effects of the cell seeding density, scaffold pore size, and foam thickness on the proliferation and function of the cells in this three-dimensional environment. Osteoblasts were seeded at either 11.1 x 10(5) or 22.1 x 10(5) cells per cm2 onto PLGA scaffolds having pore sizes in the range of 150-300 or 500-710 microm with a thickness of either 1.9 or 3.2 mm. After 1 day in culture, 75.6 and 68.6% of the seeded cells attached and proliferated on the 1.9 mm thick scaffolds of 150-300 microm pore size for the low and high seeding densities, respectively. The number of osteoblasts continued to increase throughout the study and eventually leveled off near 56 days, as indicated by a quantitative DNA assay. Osteoblast/foam constructs with a low cell seeding density achieved comparable DNA content and alkaline phosphatase (ALPase) activity after 14 days, and mineralization results after 56 days to those with a high cell seeding density. A maximum penetration depth of osseous tissue of 220+/-40 microm was reached after 56 days in the osteoblast/foam constructs of 150-300 microm pore size initially seeded with a high cell density. For constructs of 500-710 microm pore size, the penetration depth was 190+/-40 microm under the same conditions. Scaffold pore size and thickness did not significantly affect the proliferation or function of osteoblasts as demonstrated by DNA content, ALPase activity, and mineralized tissue formation. These data show that comparable bone-like tissues can be engineered in vitro over a 56 day period using different rat calvarial osteoblast seeding densities onto biodegradable polymer scaffolds with pore sizes in the range of 150-710 microm. When compared with the results of a previous study where similar polymer scaffolds were seeded and cultured with marrow stromal cells, this study demonstrates that PLGA foams are suitable substrates for osteoblast growth and differentiated function independent of cell source.

  1. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.

    PubMed

    Im, Ji Sun; Woo, Sang-Wook; Jung, Min-Jung; Lee, Young-Seak

    2008-11-01

    Nano-sized carbon fibers were prepared by using electrospinning, and their electrochemical properties were investigated as a possible electrode material for use as an electric double-layer capacitor (EDLC). To improve the electrode capacitance of EDLC, we implemented a three-step optimization. First, metal catalyst was introduced into the carbon fibers due to the excellent conductivity of metal. Vanadium pentoxide was used because it could be converted to vanadium for improved conductivity as the pore structure develops during the carbonization step. Vanadium catalyst was well dispersed in the carbon fibers, improving the capacitance of the electrode. Second, pore-size development was manipulated to obtain small mesopore sizes ranging from 2 to 5 nm. Through chemical activation, carbon fibers with controlled pore sizes were prepared with a high specific surface and pore volume, and their pore structure was investigated by using a BET apparatus. Finally, polyacrylonitrile was used as a carbon precursor to enrich for nitrogen content in the final product because nitrogen is known to improve electrode capacitance. Ultimately, the electrospun activated carbon fibers containing vanadium show improved functionality in charge/discharge, cyclic voltammetry, and specific capacitance compared with other samples because of an optimal combination of vanadium, nitrogen, and fixed pore structures.

  2. [Preparation of nano-nacre artificial bone].

    PubMed

    Chen, Jian-ting; Tang, Yong-zhi; Zhang, Jian-gang; Wang, Jian-jun; Xiao, Ying

    2008-12-01

    To assess the improvements in the properties of nano-nacre artificial bone prepared on the basis of nacre/polylactide acid composite artificial bone and its potential for clinical use. The compound of nano-scale nacre powder and poly-D, L-lactide acid (PDLLA) was used to prepare the cylindrical hollow artificial bone, whose properties including raw material powder scale, pore size, porosity and biomechanical characteristics were compared with another artificial bone made of micron-scale nacre powder and PDLLA. Scanning electron microscope showed that the average particle size of the nano-nacre powder was 50.4-/+12.4 nm, and the average pore size of the artificial bone prepared using nano-nacre powder was 215.7-/+77.5 microm, as compared with the particle size of the micron-scale nacre powder of 5.0-/+3.0 microm and the pore size of the resultant artificial bone of 205.1-/+72.0 microm. The porosities of nano-nacre artificial bone and the micron-nacre artificial bone were (65.4-/+2.9)% and (53.4-/+2.2)%, respectively, and the two artificial bones had comparable compressive strength and Young's modulus, but the flexural strength of the nano-nacre artificial bone was lower than that of the micro-nacre artificial bone. The nano-nacre artificial bone allows better biodegradability and possesses appropriate pore size, porosity and biomechanical properties for use as a promising material in bone tissue engineering.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jomekian, A.; Faculty of Chemical Engineering, Iran University of Science and Technology; Behbahani, R.M., E-mail: behbahani@put.ac.ir

    Ultra porous ZIF-8 particles synthesized using PEO/PA6 based poly(ether-block-amide) (Pebax 1657) as structure directing agent. Structural properties of ZIF-8 samples prepared under different synthesis parameters were investigated by laser particle size analysis, XRD, N{sub 2} adsorption analysis, BJH and BET tests. The overall results showed that: (1) The mean pore size of all ZIF-8 samples increased remarkably (from 0.34 nm to 1.1–2.5 nm) compared to conventionally synthesized ZIF-8 samples. (2) Exceptional BET surface area of 1869 m{sup 2}/g was obtained for a ZIF-8 sample with mean pore size of 2.5 nm. (3) Applying high concentrations of Pebax 1657 to themore » synthesis solution lead to higher surface area, larger pore size and smaller particle size for ZIF-8 samples. (4) Both, Increase in temperature and decrease in molar ratio of MeIM/Zn{sup 2+} had increasing effect on ZIF-8 particle size, pore size, pore volume, crystallinity and BET surface area of all investigated samples. - Highlights: • The pore size of ZIF-8 samples synthesized with Pebax 1657 increased remarkably. • The BET surface area of 1869 m{sup 2}/gr obtained for a ZIF-8 synthesized sample with Pebax. • Increase in temperature had increasing effect on textural properties of ZIF-8 samples. • Decrease in MeIM/Zn{sup 2+} had increasing effect on textural properties of ZIF-8 samples.« less

  4. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3-dimensional printing and injection molding.

    PubMed

    Lee, Kee-Won; Wang, Shanfeng; Lu, Lichun; Jabbari, Esmaiel; Currier, Bradford L; Yaszemski, Michael J

    2006-10-01

    Poly(propylene fumarate) (PPF) is an injectable, biodegradable polymer that has been used for fabricating preformed scaffolds in tissue engineering applications because of in situ crosslinking characteristics. Aiming for understanding the effects of pore structure parameters on bone tissue ingrowth, 3-dimensional (3D) PPF scaffolds with controlled pore architecture have been produced in this study from computer-aided design (CAD) models. We have created original scaffold models with 3 pore sizes (300, 600, and 900 microm) and randomly closed 0%, 10%, 20%, or 30% of total pores from the original models in 3 planes. PPF scaffolds were fabricated by a series steps involving 3D printing of support/build constructs, dissolving build materials, injecting PPF, and dissolving support materials. To investigate the effects of controlled pore size and interconnectivity on scaffolds, we compared the porosities between the models and PPF scaffolds fabricated thereby, examined pore morphologies in surface and cross-section using scanning electron microscopy, and measured permeability using the falling head conductivity test. The thermal properties of the resulting scaffolds as well as uncrosslinked PPF were determined by differential scanning calorimetry and thermogravimetric analysis. Average pore sizes and pore shapes of PPF scaffolds with 600- and 900-microm pores were similar to those of CAD models, but they depended on directions in those with 300-microm pores. Porosity and permeability of PPF scaffolds decreased as the number of closed pores in original models increased, particularly when the pore size was 300 microm as the result of low porosity and pore occlusion. These results show that 3D printing and injection molding technique can be applied to crosslinkable polymers to fabricate 3D porous scaffolds with controlled pore structures, porosity, and permeability using their CAD models.

  5. Effects of Porous Polystyrene Resin Parameters on Candida antarctica Lipase B Adsorption, Distribution, and Polyester Synthesis Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,B.; Miller, M.; Gross, R.

    2007-01-01

    Polystyrene resins with varied particle sizes (35 to 350-600 {mu}m) and pore diameters (300-1000 {angstrom}) were employed to study the effects of immobilization resin particle size and pore diameter on Candida antarctica Lipase B (CALB) loading, distribution within resins, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed rapidly (saturation time {<=}4 min) for particle sizes 120 {mu}m (pore size = 300 {angstrom}). Infrared microspectroscopy showed that CALB forms protein loading fronts regardless of resin particle size at similar enzyme loadings ({approx}8%). From the IR images, the fractions of total surface area available to the enzyme aremore » 21, 33, 35, 37, and 88% for particle sizes 350-600, 120, 75, 35 {mu}m (pore size 300 {angstrom}), and 35 {mu}m (pore size 1000 {angstrom}), respectively. Titration with methyl p-nitrophenyl n-hexylphosphate (MNPHP) showed that the fraction of active CALB molecules adsorbed onto resins was {approx}60%. The fraction of active CALB molecules was invariable as a function of resin particle and pore size. At {approx}8% (w/w) CALB loading, by increasing the immobilization support pore diameter from 300 to 1000 {angstrom}, the turnover frequency (TOF) of {var_epsilon}-caprolactone ({var_epsilon}-CL) to polyester increased from 12.4 to 28.2 s{sup -1}. However, the {var_epsilon}-CL conversion rate was not influenced by changes in resin particle size. Similar trends were observed for condensation polymerizations between 1,8-octanediol and adipic acid. The results herein are compared to those obtained with a similar series of methyl methacrylate resins, where variations in particle size largely affected CALB distribution within resins and catalyst activity for polyester synthesis.« less

  6. A solid with a hierarchical tetramodal micro-meso-macro pore size distribution

    PubMed Central

    Ren, Yu; Ma, Zhen; Morris, Russell E.; Liu, Zheng; Jiao, Feng; Dai, Sheng; Bruce, Peter G.

    2013-01-01

    Porous solids have an important role in addressing some of the major energy-related problems facing society. Here we describe a porous solid, α-MnO2, with a hierarchical tetramodal pore size distribution spanning the micro-, meso- and macro pore range, centred at 0.48, 4.0, 18 and 70 nm. The hierarchical tetramodal structure is generated by the presence of potassium ions in the precursor solution within the channels of the porous silica template; the size of the potassium ion templates the microporosity of α-MnO2, whereas their reactivity with silica leads to larger mesopores and macroporosity, without destroying the mesostructure of the template. The hierarchical tetramodal pore size distribution influences the properties of α-MnO2 as a cathode in lithium batteries and as a catalyst, changing the behaviour, compared with its counterparts with only micropores or bimodal micro/mesopores. The approach has been extended to the preparation of LiMn2O4 with a hierarchical pore structure. PMID:23764887

  7. Bioaccessible Porosity in Soil Aggregates and Implications for Biodegradation of High Molecular Weight Petroleum Compounds.

    PubMed

    Akbari, Ali; Ghoshal, Subhasis

    2015-12-15

    We evaluated the role of soil aggregate pore size on biodegradation of essentially insoluble petroleum hydrocarbons that are biodegraded primarily at the oil-water interface. The size and spatial distribution of pores in aggregates sampled from biodegradation experiments of a clayey, aggregated, hydrocarbon-contaminated soil with relatively high bioremediation end point were characterized by image analyses of X-ray micro-CT scans and N2 adsorption. To determine the bioaccessible pore sizes, we performed separate experiments to assess the ability of hydrocarbon degrading bacteria isolated from the soil to pass through membranes with specific sized pores and to access hexadecane (model insoluble hydrocarbon). Hexadecane biodegradation occurred only when pores were 5 μm or larger, and did not occur when pores were 3 μm and smaller. In clayey aggregates, ∼ 25% of the aggregate volume was attributed to pores larger than 4 μm, which was comparable to that in aggregates from a sandy, hydrocarbon-contaminated soil (~23%) scanned for comparison. The ratio of volumes of inaccessible pores (<4 μm) to bioaccessible pores (>4 μm) in the clayey aggregates was 0.32, whereas in the sandy aggregates it was approximately 10 times lower. The role of soil microstructure on attainable bioremediation end points could be qualitatively assessed in various soils by the aggregate characterization approach outlined herein.

  8. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  9. Performance of Small Pore Microchannel Plates

    NASA Technical Reports Server (NTRS)

    Siegmund, O. H. W.; Gummin, M. A.; Ravinett, T.; Jelinsky, S. R.; Edgar, M.

    1995-01-01

    Small pore size microchannel plates (MCP's) are needed to satisfy the requirements for future high resolution small and large format detectors for astronomy. MCP's with pore sizes in the range 5 micron to 8 micron are now being manufactured, but they are of limited availability and are of small size. We have obtained sets of Galileo 8 micron and 6.5 micron MCP's, and Philips 6 micron and 7 micron pore MCP's, and compared them to our larger pore MCP Z stacks. We have tested back to back MCP stacks of four of these MCP's and achieved gains greater than 2 x 1O(exp 7) with pulse height distributions of less than 40% FWHM, and background rates of less than 0.3 events sec(exp -1) cm(exp -2). Local counting rates up to approx. 100 events/pore/sec have been attained with little drop of the MCP gain. The bare MCP quantum efficiencies are somewhat lower than those expected, however. Flat field images are characterized by an absence of MCP fixed pattern noise.

  10. Characterization of pore structure in cement-based materials using pressurization-depressurization cycling mercury intrusion porosimetry (PDC-MIP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Jian, E-mail: Jian.Zhou@tudelft.n; Ye Guang, E-mail: g.ye@tudelft.n; Magnel Laboratory for Concrete Research, Department of Structural Engineering, Ghent University, Technologiepark-Zwijnaarde 904 B-9052, Ghent

    2010-07-15

    Numerous mercury intrusion porosimetry (MIP) studies have been carried out to investigate the pore structure in cement-based materials. However, the standard MIP often results in an underestimation of large pores and an overestimation of small pores because of its intrinsic limitation. In this paper, an innovative MIP method is developed in order to provide a more accurate estimation of pore size distribution. The new MIP measurements are conducted following a unique mercury intrusion procedure, in which the applied pressure is increased from the minimum to the maximum by repeating pressurization-depressurization cycles instead of a continuous pressurization followed by a continuousmore » depressurization. Accordingly, this method is called pressurization-depressurization cycling MIP (PDC-MIP). By following the PDC-MIP testing sequence, the volumes of the throat pores and the corresponding ink-bottle pores can be determined at every pore size. These values are used to calculate pore size distribution by using the newly developed analysis method. This paper presents an application of PDC-MIP on the investigation of the pore size distribution in cement-based materials. The experimental results of PDC-MIP are compared with those measured by standard MIP. The PDC-MIP is further validated with the other experimental methods and numerical tool, including nitrogen sorption, backscanning electron (BSE) image analysis, Wood's metal intrusion porosimetry (WMIP) and the numerical simulation by the cement hydration model HYMOSTRUC3D.« less

  11. Synthesis, characterization, and evaluation of a superficially porous particle with unique, elongated pore channels normal to the surface.

    PubMed

    Wei, Ta-Chen; Mack, Anne; Chen, Wu; Liu, Jia; Dittmann, Monika; Wang, Xiaoli; Barber, William E

    2016-04-01

    In recent years, superficially porous particles (SPPs) have drawn great interest because of their special particle characteristics and improvement in separation efficiency. Superficially porous particles are currently manufactured by adding silica nanoparticles onto solid cores using either a multistep multilayer process or one-step coacervation process. The pore size is mainly controlled by the size of the silica nanoparticles and the tortuous pore channel geometry is determined by how those nanoparticles randomly aggregate. Such tortuous pore structure is also similar to that of all totally porous particles used in HPLC today. In this article, we report on the development of a next generation superficially porous particle with a unique pore structure that includes a thinner shell thickness and ordered pore channels oriented normal to the particle surface. The method of making the new superficially porous particles is a process called pseudomorphic transformation (PMT), which is a form of micelle templating. Porosity is no longer controlled by randomly aggregated nanoparticles but rather by micelles that have an ordered liquid crystal structure. The new particle possesses many advantages such as a narrower particle size distribution, thinner porous layer with high surface area and, most importantly, highly ordered, non-tortuous pore channels oriented normal to the particle surface. This PMT process has been applied to make 1.8-5.1μm SPPs with pore size controlled around 75Å and surface area around 100m(2)/g. All particles with different sizes show the same unique pore structure with tunable pore size and shell thickness. The impact of the novel pore structure on the performance of these particles is characterized by measuring van Deemter curves and constructing kinetic plots. Reduced plate heights as low as 1.0 have been achieved on conventional LC instruments. This indicates higher efficiency of such particles compared to conventional totally porous and superficially porous particles. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Gas permeability of ice-templated, unidirectional porous ceramics.

    PubMed

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 [Formula: see text]m and 19.1 [Formula: see text]m. The maximum permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) was measured in samples with the highest total pore volume (72%) and pore size (19.1 [Formula: see text]m). However, we demonstrate that it is possible to achieve a similar permeability ([Formula: see text] [Formula: see text] m[Formula: see text]) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity ([Formula: see text]) is mainly controlled by pore size, unlike in isotropic porous structures where [Formula: see text] is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  13. Effective Thermal Conductivity of an Aluminum Foam + Water Two Phase System

    NASA Technical Reports Server (NTRS)

    Moskito, John

    1996-01-01

    This study examined the effect of volume fraction and pore size on the effective thermal conductivity of an aluminum foam and water system. Nine specimens of aluminum foam representing a matrix of three volume fractions (4-8% by vol.) and three pore sizes (2-4 mm) were tested with water to determine relationships to the effective thermal conductivity. It was determined that increases in volume fraction of the aluminum phase were correlated to increases in the effective thermal conductivity. It was not statistically possible to prove that changes in pore size of the aluminum foam correlated to changes in the effective thermal conductivity. However, interaction effects between the volume fraction and pore size of the foam were statistically significant. Ten theoretical models were selected from the published literature to compare against the experimental data. Models by Asaad, Hadley, and de Vries provided effective thermal conductivity predictions within a 95% confidence interval.

  14. Mercury porosimetry for comparing piece-wise hydraulic properties with full range pore characteristics of soil aggregates and porous rocks

    NASA Astrophysics Data System (ADS)

    Turturro, Antonietta Celeste; Caputo, Maria C.; Gerke, Horst H.

    2017-04-01

    Unsaturated hydraulic properties are essential in the modeling of water and solute movement in the vadose zone. Since standard hydraulic techniques are limited to specific moisture ranges, maybe affected by air entrapment, wettability problems, limitations due to water vapor pressure, and are depending on the initial saturation, the continuous maximal drying curves of the complete hydraulic functions can mostly not reflect the basic pore size distribution. The aim of this work was to compare the water retention curves of soil aggregates and porous rocks with their porosity characteristics. Soil aggregates of Haplic Luvisols from Loess L (Hneveceves, Czech Republic) and glacial Till T (Holzendorf, Germany) and two lithotypes of porous rock C (Canosa) and M (Massafra), Italy, were analyzed using, suction table, evaporation, psychrometry methods, and the adopted Quasi-Steady Centrifuge method for determination of unsaturated hydraulic conductivity. These various water-based techniques were applied to determine the piece-wise retention and the unsaturated hydraulic conductivity functions in the range of pore water saturations. The pore-size distribution was determined with the mercury intrusion porosimetry (MIP). MIP results allowed assessing the volumetric mercury content at applied pressures up to 420000 kPa. Greater intrusion and porosity values were found for the porous rocks than for the soil aggregates. Except for the aggregate samples from glacial till, maximum liquid contents were always smaller than porosity. Multimodal porosities and retention curves were observed for both porous rocks and aggregate soils. Two pore-size peaks with pore diameters of 0.135 and 27.5 µm, 1.847 and 19.7 µm, and 0.75 and 232 µm were found for C, M and T, respectively, while three peaks of 0.005, 0.392 and 222 µm were identified for L. The MIP data allowed describing the retention curve in the entire mercury saturation range as compared to water retention curves that required combining several methods for limited suction ranges. Although the soil aggregates and porous rocks differed in pore geometries and pore size distributions, MIP provided additional information for characterizing the relation between pore structure and hydraulic properties for both.

  15. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    PubMed

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  16. Physical parameters of Fluvisols on flooded and non-flooded terraces

    NASA Astrophysics Data System (ADS)

    Kercheva, Milena; Sokołowska, Zofia; Hajnos, Mieczysław; Skic, Kamil; Shishkov, Toma

    2017-01-01

    The heterogeneity of soil physical properties of Fluvisols, lack of large pristine areas, and different moisture regimes on non-flooded and flooded terraces impede the possibility to find a soil profile which can serve as a baseline for estimating the impact of natural or anthropogenic factors on soil evolution. The aim of this study is to compare the pore size distribution of pristine Fluvisols on flooded and non-flooded terraces using the method of the soil water retention curve, mercury intrusion porosimetry, nitrogen adsorption isotherms, and water vapour sorption. The pore size distribution of humic horizons of pristine Fluvisols on the non-flooded terrace differs from pore size distribution of Fluvisols on the flooded terrace. The peaks of textural and structural pores are higher in the humic horizons under more humid conditions. The structural characteristics of subsoil horizons depend on soil texture and evolution stage. The peaks of textural pores at about 1 mm diminish with lowering of the soil organic content. Structureless horizons are characterized by uni-modal pore size distribution. Although the content of structural pores of the subsoil horizons of Fluvisols on the non-flooded terrace is low, these pores are represented by biopores, as the coefficient of filtration is moderately high. The difference between non-flooded and flooded profiles is well expressed by the available water storage, volume and mean radius of pores, obtained by mercury intrusion porosimetry and water desorption, which are higher in the surface horizons of frequently flooded Fluvisols.

  17. In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina

    PubMed Central

    Song, Yuanhui; Ju, Yang; Song, Guanbin; Morita, Yasuyuki

    2013-01-01

    Cell adhesion, migration, and proliferation are significantly affected by the surface topography of the substrates on which the cells are cultured. Alumina is one of the most popular implant materials used in orthopedics, but few data are available concerning the cellular responses of mesenchymal stem cells (MSCs) grown on nanoporous structures. MSCs were cultured on smooth alumina substrates and nanoporous alumina substrates to investigate the interaction between surface topographies of nanoporous alumina and cellular behavior. Nanoporous alumina substrates with pore sizes of 20 nm and 100 nm were used to evaluate the effect of pore size on MSCs as measured by proliferation, morphology, expression of integrin β1, and osteogenic differentiation. An MTT assay was used to measure cell viability of MSCs on different substrates, and determined that cell viability decreased with increasing pore size. Scanning electron microscopy was used to investigate the effect of pore size on cell morphology. Extremely elongated cells and prominent cell membrane protrusions were observed in cells cultured on alumina with the larger pore size. The expression of integrin β1 was enhanced in MSCs cultured on porous alumina, revealing that porous alumina substrates were more favorable for cell growth than smooth alumina substrates. Higher levels of osteoblastic differentiation markers such as alkaline phosphatase, osteocalcin, and mineralization were detected in cells cultured on alumina with 100 nm pores compared with cells cultured on alumina with either 20 nm pores or smooth alumina. This work demonstrates that cellular behavior is affected by variation in pore size, providing new insight into the potential application of this novel biocompatible material for the developing field of tissue engineering. PMID:23935364

  18. Effects of pore size and dissolved organic matters on diffusion of arsenate in aqueous solution.

    PubMed

    Wang, Yulong; Wang, Shaofeng; Wang, Xin; Jia, Yongfeng

    2017-02-01

    Presented here is the influence of membrane pore size and dissolved organic matters on the diffusion coefficient (D) of aqueous arsenate, investigated by the diffusion cell method for the first time. The pH-dependent diffusion coefficient of arsenate was determined and compared with values from previous studies; the coefficient was found to decrease with increasing pH, showing the validity of our novel diffusion cell method. The D value increased dramatically as a function of membrane pore size at small pore sizes, and then increased slowly at pore sizes larger than 2.0μm. Using the ExpAssoc model, the maximum D value was determined to be 11.2565×10 -6 cm 2 /sec. The presence of dissolved organic matters led to a dramatic increase of the D of arsenate, which could be attributed to electrostatic effects and ionic effects of salts. These results improve the understanding of the diffusion behavior of arsenate, especially the important role of various environmental parameters in the study and prediction of the migration of arsenate in aquatic water systems. Copyright © 2016. Published by Elsevier B.V.

  19. Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media

    NASA Astrophysics Data System (ADS)

    Grunewald, E.; Knight, R.

    2008-12-01

    The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over which heterogeneous pores are encountered in bimodal grain packs of pure quartz (long T2S) and hematite (short T2S). The scale of heterogeneity is varied by changing the mean grain size and relative mineral concentrations. When the mean grain size is small and the mineral concentrations are comparable, the T2-distribution is roughly monomodal indicating strong pore coupling. As the grain size is increased or the mineral concentrations are made increasingly uneven, the T2- distribution develops a bimodal character, more representative of the actual distribution of pore types. Numerical simulations of measurements in both experiment groups allow us to more closely investigate how the relaxing magnetization evolves in both time and space. Collectively, these experiments provide important insights into the effects of pore coupling on NMR measurements in heterogeneous systems and contribute to our ultimate goal of improving the interpretation of these data in complex near-surface sediments.

  20. Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal

    USGS Publications Warehouse

    Radlinski, A.P.; Mastalerz, Maria; Hinde, A.L.; Hainbuchner, M.; Rauch, H.; Baron, M.; Lin, J.S.; Fan, L.; Thiyagarajan, P.

    2004-01-01

    This paper discusses the applicability of small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS) techniques for determining the porosity, pore size distribution and internal specific surface area in coals. The method is noninvasive, fast, inexpensive and does not require complex sample preparation. It uses coal grains of about 0.8 mm size mounted in standard pellets as used for petrographic studies. Assuming spherical pore geometry, the scattering data are converted into the pore size distribution in the size range 1 nm (10 A??) to 20 ??m (200,000 A??) in diameter, accounting for both open and closed pores. FTIR as well as SAXS and SANS data for seven samples of oriented whole coals and corresponding pellets with vitrinite reflectance (Ro) values in the range 0.55% to 5.15% are presented and analyzed. Our results demonstrate that pellets adequately represent the average microstructure of coal samples. The scattering data have been used to calculate the maximum surface area available for methane adsorption. Total porosity as percentage of sample volume is calculated and compared with worldwide trends. By demonstrating the applicability of SAXS and SANS techniques to determine the porosity, pore size distribution and surface area in coals, we provide a new and efficient tool, which can be used for any type of coal sample, from a thin slice to a representative sample of a thick seam. ?? 2004 Elsevier B.V. All rights reserved.

  1. Decreasing transmembrane segment length greatly decreases perfringolysin O pore size

    DOE PAGES

    Lin, Qingqing; Li, Huilin; Wang, Tong; ...

    2015-04-08

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less

  2. Unsaturated hydraulic properties of porous sedimentary rocks explained by mercury porosimetry

    NASA Astrophysics Data System (ADS)

    Clementina Caputo, Maria; Turturro, Celeste; Gerke, Horst H.

    2016-04-01

    The understanding of hydraulic properties is essential in the modeling of flow and solute transport including contaminants through the vadose zone, which consists of the soil as well as of the underlying porous sediments or rocks. The aim of this work is to study the relationships between unsaturated hydraulic properties of porous rocks and their pore size distribution. For this purpose, two different lithotypes belonging to Calcarenite di Gravina Formation, a Plio-Pleistocene sedimentary rock of marine origin, were investigated. The two lithotypes differ mainly in texture and came from two distinct quarry districts, Canosa di Puglia (C) and Massafra (M) in southern Italy, respectively. This relatively porous rock formation (porosities range between 43% for C and 41% for M) often constitutes a thick layer of vadose zone in several places of Mediterranean basin. The water retention curves (WRCs) and the unsaturated hydraulic conductivity functions were determined using four different experimental methods that cover the full range from low to high water contents: the WP4 psychrometer test, the Wind's evaporation method, the Stackman's method and the Quasi-steady centrifuge method. Pore size estimation by means of mercury intrusion porosimetry (MIP) was performed. WRCs were compared with the pore size distributions to understand the influence of fabric, in terms of texture and porosity, features of pores and pore size distribution on the hydraulic behavior of rocks. The preliminary results show that the pore size distributions obtained by MIP do not cover the entire pore size range of the investigated Calcarenite. In fact, some pores in the rock samples of both lithotypes were larger than the maximum size that could be investigated by MIP. This implies that for explaining the unsaturated hydraulic properties over the full moisture range MIP results need to be combined with results obtained by other methods such as image analysis and SEM.

  3. A Comparative Study of T1 and T2 Relaxation in Shale

    NASA Astrophysics Data System (ADS)

    Keating, K.; Obasi, C. C.; Pashin, J. C.

    2015-12-01

    Nuclear magnetic resonance (NMR) relaxation measurement have been used extensively in petroleum and, more recently, in groundwater resource evaluation to estimate the porosity, pore-size distributions, permeability, fluid saturation, and fluid mobility. In shale, the transverse decay rate of NMR signal is sensitive to the microporosity, but is also affected by the paramagnetic contributions of clay and other iron-bearing minerals. Furthermore, contrasts in the magnetic susceptibility of the mineral matrix and pore fluids that result in an inhomogeneous magnetic field within the pore space results in an extra term in transverse relaxation. These issues can cause errors in NMR-based estimates of pore-size distribution and permeability. In this study we compare T1 and T2 relaxation time distributions in order to study the molecular mechanism of relaxation in brine-saturated mixtures of clay and other common minerals. We collected measurements on a range of mixtures of clay minerals common in shale (illite, glauconite, celadonite, chamosite, montmorillonite and kaolinite) and pyrite. To constrain the interpretation of the NMR data, we measured the magnetic susceptibility and surface area of all samples. We are confident that by accounting for the presence and variations of clay and pyrite in shale, we can substantially improve both the NMR estimate of pore-size distribution and permeability.

  4. Isolating the effect of pore size distribution on electrochemical double-layer capacitance using activated fluid coke

    NASA Astrophysics Data System (ADS)

    Zuliani, Jocelyn E.; Tong, Shitang; Kirk, Donald W.; Jia, Charles Q.

    2015-12-01

    Electrochemical double-layer capacitors (EDLCs) use physical ion adsorption in the capacitive electrical double layer of high specific surface area (SSA) materials to store electrical energy. Previous work shows that the SSA-normalized capacitance increases when pore diameters are less than 1 nm. However, there still remains uncertainty about the charge storage mechanism since the enhanced SSA-normalized capacitance is not observed in all microporous materials. In previous studies, the total specific surface area and the chemical composition of the electrode materials were not controlled. The current work is the first reported study that systematically compares the performance of activated carbon prepared from the same raw material, with similar chemical composition and specific surface area, but different pore size distributions. Preparing samples with similar SSAs, but different pores sizes is not straightforward since increasing pore diameters results in decreasing the SSA. This study observes that the microporous activated carbon has a higher SSA-normalized capacitance, 14.1 μF cm-2, compared to the mesoporous material, 12.4 μF cm-2. However, this enhanced SSA-normalized capacitance is only observed above a threshold operating voltage. Therefore, it can be concluded that a minimum applied voltage is required to induce ion adsorption in these sub-nanometer micropores, which increases the capacitance.

  5. The effects of pore structure on the behavior of water in lignite coal and activated carbon.

    PubMed

    Nwaka, Daniel; Tahmasebi, Arash; Tian, Lu; Yu, Jianglong

    2016-09-01

    The effects of physical structure (pore structure) on behavior of water in lignite coal and activated carbon (AC) samples were investigated by using Differential Scanning Calorimetry (DSC) and low-temperature X-ray diffraction (XRD) techniques. AC samples with different pore structures were prepared at 800°C in steam and the results were compared with that of parent lignite coal. The DSC results confirmed the presence of two types of freezable water that freeze at -8°C (free water) and -42°C (freezable bound water). A shift in peak position of free water (FW) towards lower temperature was observed in AC samples compared to the lignite coal with decreasing water loading. The amount of free water (FW) increased with increasing gasification conversion. The amounts of free and freezable bound water (FBW) in AC samples were calculated and correlated to pore volume and average pore size. The amount of FW in AC samples is well correlated to the pore volume and average pore size of the samples, while an opposite trend was observed for FBW. The low-temperature XRD analysis confirmed the existence of non-freezable water (NFW) in coal and AC with the boundary between the freezable and non-freezable water (NFW) determined. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Determination by Small-angle X-ray Scattering of Pore Size Distribution in Nanoporous Track-etched Polycarbonate Membranes

    NASA Astrophysics Data System (ADS)

    Jonas, A. M.; Legras, R.; Ferain, E.

    1998-03-01

    Nanoporous track-etched membranes with narrow pore size distributions and average pore size diameters tunable from 100 to 1000 Åare produced by the chemical etching of latent tracks in polymer films after irradiation by a beam of accelerated heavy ions. Nanoporous membranes are used for highly demanding filtration purposes, or as templates to obtain metallic or polymeric nanowires (L. Piraux et al., Nucl. Instr. Meth. Phys. Res. 1997, B131, 357). Such applications call for developments in nanopore size characterization techniques. In this respect, we report on the characterization by small-angle X-ray scattering (SAXS) of nanopore size distribution (nPSD) in polycarbonate track-etched membranes. The obtention of nPSD requires inverting an ill-conditioned inhomogeneous equation. We present different numerical routes to overcome the amplification of experimental errors in the resulting solutions, including a regularization technique allowing to obtain the nPSD without a priori knowledge of its shape. The effect of deviations from cylindrical pore shape on the resulting distributions are analyzed. Finally, SAXS results are compared to results obtained by electron microscopy and conductometry.

  7. Investigation of pore size and energy distributions by statistical physics formalism applied to agriculture products

    NASA Astrophysics Data System (ADS)

    Aouaini, Fatma; Knani, Salah; Yahia, Manel Ben; Bahloul, Neila; Ben Lamine, Abdelmottaleb; Kechaou, Nabil

    2015-12-01

    In this paper, we present a new investigation that allows determining the pore size distribution (PSD) in a porous medium. This PSD is achieved by using the desorption isotherms of four varieties of olive leaves. This is by the means of statistical physics formalism and Kelvin's law. The results are compared with those obtained with scanning electron microscopy. The effect of temperature on the distribution function of pores has been studied. The influence of each parameter on the PSD is interpreted. A similar function of adsorption energy distribution, AED, is deduced from the PSD.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Qingqing; Li, Huilin; Wang, Tong

    Perfringolysin O (PFO) is a transmembrane (TM) β-barrel protein that inserts into mammalian cell membranes. Once inserted into membranes, PFO assembles into pore-forming oligomers containing 30–50 PFO monomers. These form a pore of up to 300 Å, far exceeding the size of most other proteinaceous pores. In this study, we found that altering PFO TM segment length can alter the size of PFO pores. A PFO mutant with lengthened TM segments oligomerized to a similar extent as wild-type PFO, and exhibited pore-forming activity and a pore size very similar to wild-type PFO as measured by electron microscopy and a leakagemore » assay. In contrast, PFO with shortened TM segments exhibited a large reduction in pore-forming activity and pore size. This suggests that the interaction between TM segments can greatly affect the size of pores formed by TM β-barrel proteins. PFO may be a promising candidate for engineering pore size for various applications.« less

  9. Nondestructive assessment of pore size in foam-based hybrid composite materials

    NASA Astrophysics Data System (ADS)

    Chen, M. Y.; Ko, R. T.

    2012-05-01

    In-situ non-destructive evaluation (NDE) during processing of high temperature polymer based hybrids offers great potential to gain close control and achieve the desired level of pore size, with low overall development cost. During the polymer curing cycle, close control over the evolution of volatiles would be beneficial to avoid the presence of pores or at least control their sizes. Traditional NDE methods cannot realistically be expected to evaluate individual pores in such components, as each pore evolves and grows during curing. However, NDE techniques offer the potential to detect and quantify the macroscopic response of many pores that are undesirable or intentionally introduced into these advanced materials. In this paper, preliminary results will be presented for nondestructive assessment of pore size in foam-based hybrid composite materials using ultrasonic techniques. Pore size was evaluated through the frequency content of the ultrasonic signal. The effects of pore size on the attenuation of ultrasound were studied. Feasibility of this method was demonstrated on two types of foams with various pore sizes.

  10. Numerical Simulation of Multiphase Flow in Nanoporous Organic Matter With Application to Coal and Gas Shale Systems

    NASA Astrophysics Data System (ADS)

    Song, Wenhui; Yao, Jun; Ma, Jingsheng; Sun, Hai; Li, Yang; Yang, Yongfei; Zhang, Lei

    2018-02-01

    Fluid flow in nanoscale organic pores is known to be affected by fluid transport mechanisms and properties within confined pore space. The flow of gas and water shows notably different characteristics compared with conventional continuum modeling approach. A pore network flow model is developed and implemented in this work. A 3-D organic pore network model is constructed from 3-D image that is reconstructed from 2-D shale SEM image of organic-rich sample. The 3-D pore network model is assumed to be gas-wet and to contain initially gas-filled pores only, and the flow model is concerned with drainage process. Gas flow considers a full range of gas transport mechanisms, including viscous flow, Knudsen diffusion, surface diffusion, ad/desorption, and gas PVT and viscosity using a modified van der Waals' EoS and a correlation for natural gas, respectively. The influences of slip length, contact angle, and gas adsorption layer on water flow are considered. Surface tension considers the pore size and temperature effects. Invasion percolation is applied to calculate gas-water relative permeability. The results indicate that the influences of pore pressure and temperature on water phase relative permeabilities are negligible while gas phase relative permeabilities are relatively larger in higher temperatures and lower pore pressures. Gas phase relative permeability increases while water phase relative permeability decreases with the shrinkage of pore size. This can be attributed to the fact that gas adsorption layer decreases the effective flow area of the water phase and surface diffusion capacity for adsorbed gas is enhanced in small pore size.

  11. Nano-Pore Size Analysis by SAXS Method of Cementitious Mortars Undergoing Delayed Ettringite Formation

    NASA Astrophysics Data System (ADS)

    Shekar, Yamini

    This research investigates the nano-scale pore structure of cementitious mortars undergoing delayed ettringite formation (DEF) using small angle x-ray scattering (SAXS). DEF has been known to cause expansion and cracking during later ages (around 4000 days) in concrete that has been heat cured at temperatures of 70°C or above. Though DEF normally occurs in heat cured concrete, mass cured concrete can also experience DEF. Large crystalline pressures result in smaller pore sizes. The objectives of this research are: (1) to investigate why some samples expand early than later expansion, (2) to evaluate the effects of curing conditions and pore size distributions at high temperatures, and (3) to assess the evolution of the pore size distributions over time. The most important outcome of the research is the pore sizes obtained from SAXS were used in the development of a 3-stage model. From the data obtained, the pore sizes increase in stage 1 due to initial ettringite formation and in turn filling up the smallest pores. Once the critical pore size threshold is reached (around 20nm) stage 2 is formed due to cracking which tends to decrease in the pore sizes. Finally, in stage 3, the cracking continues, therefore increasing in the pore size.

  12. Hydroxyapatite coatings containing Zn and Si on Ti-6Al-4Valloy by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Hwang, In-Jo; Choe, Han-Cheol

    2018-02-01

    In this study, hydroxyapatite coatings containing Zn and Si on Ti-6Al-4Valloy by plasma electrolytic oxidation were researched using various experimental instruments. The pore size is depended on the electrolyte concentration and the particle size and number of pore increase on surface part and pore part. In the case of Zn/Si sample, pore size was larger than that of Zn samples. The maximum size of pores decreased and minimum size of pores increased up to 10Zn/Si and Zn and Si affect the formation of pore shapes. As Zn ion concentration increases, the size of the particle tends to increase, the number of particles on the surface part is reduced, whereas the size of the particles and the number of particles on pore part increased. Zn is mainly detected at pore part, and Si is mainly detected at surface part. The crystallite size of anatase increased as the Zn ion concentration, whereas, in the case of Si ion added, crystallite size of anatase decreased.

  13. Exploring molecular sieve capabilities of activated carbon fibers to reduce the impact of NOM preloading on trichloroethylene adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanju Karanfil; Seyed A. Dastgheib; Dina Mauldin

    2006-02-15

    Adsorption of trichloroethylene (TCE) by two activated carbon fibers ACF10 and ACF20H and two granular activated carbons, coal-based F400 and Macro preloaded with hydrophobic and transphilic fractions of natural organic matter (NOM) was examined. ACF10, the most microporous activated carbon used in this study, had over 90% of its pore volume in pores smaller than 10 {angstrom}. It also had the highest volume in pores 5-8 {angstrom}, which is the optimum pore size region for TCE adsorption, among the four activated carbons. Adsorption of NOM fractions by ACF10 was, in general, negligible. Therefore, ACF10, functioning as a molecular sieve duringmore » preloading, exhibited the least NOM uptake for each fraction, and subsequently the highest TCE adsorption. The other three sorbents had wider pore size distributions, including high volumes in pores larger than 10 {angstrom}, where NOM molecules can adsorb. As a result, they showed a higher degree of uptake for all NOM fractions, and subsequently lower adsorption capacities for TCE, as compared to ACF10. The results obtained in this study showed that understanding the interplay between the optimum pore size region for the adsorption of target synthetic organic contaminant (SOC) and the pore size region for the adsorption of NOM molecules is important for controlling NOM-SOC competitions. Experiments with different NOM fractions indicated that the degree of NOM loading is important in terms of preloading effects; however the way that the carbon pores are filled and loaded by different NOM fractions can be different and may create an additional negative impact on TCE adsorption. 40 refs., 3 figs., 2 tabs.« less

  14. Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution

    PubMed Central

    Esmaeeli, Hadi S.; Farnam, Yaghoob; Bentz, Dale P.; Zavattieri, Pablo D.; Weiss, Jason

    2016-01-01

    This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to −35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained. PMID:28082830

  15. Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution.

    PubMed

    Esmaeeli, Hadi S; Farnam, Yaghoob; Bentz, Dale P; Zavattieri, Pablo D; Weiss, Jason

    2017-02-01

    This paper presents a one-dimensional finite difference model that is developed to describe the freeze-thaw behavior of an air-entrained mortar containing deicing salt solution. A phenomenological model is used to predict the temperature and the heat flow for mortar specimens during cooling and heating. Phase transformations associated with the freezing/melting of water/ice or transition of the eutectic solution from liquid to solid are included in this phenomenological model. The lever rule is used to calculate the quantity of solution that undergoes the phase transformation, thereby simulating the energy released/absorbed during phase transformation. Undercooling and pore size effects are considered in the numerical model. To investigate the effect of pore size distribution, this distribution is considered using the Gibbs-Thomson equation in a saturated mortar specimen. For an air-entrained mortar, the impact of considering pore size (and curvature) on freezing was relatively insignificant; however the impact of pore size is much more significant during melting. The fluid inside pores smaller than 5 nm (i.e., gel pores) has a relatively small contribution in the macroscopic freeze-thaw behavior of mortar specimens within the temperature range used in this study (i.e., +24 °C to -35 °C), and can therefore be neglected for the macroscopic freeze-thaw simulations. A heat sink term is utilized to simulate the heat dissipation during phase transformations. Data from experiments performed using a low-temperature longitudinal guarded comparative calorimeter (LGCC) on mortar specimens fully saturated with various concentration NaCl solutions or partially saturated with water is compared to the numerical results and a promising agreement is generally obtained.

  16. Measurement of variation in soil solute tracer concentration across a range of effective pore sizes

    USGS Publications Warehouse

    Harvey, Judson W.

    1993-01-01

    Solute transport concepts in soil are based on speculation that solutes are distributed nonuniformly within large and small pores. Solute concentrations have not previously been measured across a range of pore sizes and examined in relation to soil hydrological properties. For this study, modified pressure cells were used to measure variation in concentration of a solute tracer across a range of pore sizes. Intact cores were removed from the site of a field tracer experiment, and soil water was eluted from 10 or more discrete classes of pore size. Simultaneous changes in water content and unsaturated hydraulic conductivity were determined on cores using standard pressure cell techniques. Bromide tracer concentration varied by as much as 100% across the range of pore sizes sampled. Immediately following application of the bromide tracer on field plots, bromide was most concentrated in the largest pores; concentrations were lower in pores of progressively smaller sizes. After 27 days, bromide was most dilute in the largest pores and concentrations were higher in the smaller pores. A sharp, threefold decrease in specific water capacity during elution indicated separation of two major pore size classes at a pressure of 47 cm H2O and a corresponding effective pore diameter of 70 μm. Variation in tracer concentration, on the other hand, was spread across the entire range of pore sizes investigated in this study. A two-porosity characterization of the transport domain, based on water retention criteria, only broadly characterized the pattern of variation in tracer concentration across pore size classes during transport through a macroporous soil.

  17. Pore invasion dynamics during fluid front displacement in porous media determine functional pore size distribution and phase entrapment

    NASA Astrophysics Data System (ADS)

    Moebius, F.; Or, D.

    2012-12-01

    Dynamics of fluid fronts in porous media shape transport properties of the unsaturated zone and affect management of petroleum reservoirs and their storage properties. What appears macroscopically as smooth and continuous motion of a displacement fluid front may involve numerous rapid interfacial jumps often resembling avalanches of invasion events. Direct observations using high-speed camera and pressure sensors in sintered glass micro-models provide new insights on the influence of flow rates, pore size, and gravity on invasion events and on burst size distribution. Fundamental differences emerge between geometrically-defined pores and "functional" pores invaded during a single burst (invasion event). The waiting times distribution of individual invasion events and decay times of inertial oscillations (following a rapid interfacial jump) are characteristics of different displacement regimes. An invasion percolation model with gradients and including the role of inertia provide a framework for linking flow regimes with invasion sequences and phase entrapment. Model results were compared with measurements and with early studies on invasion burst sizes and waiting times distribution during slow drainage processes by Måløy et al. [1992]. The study provides new insights into the discrete invasion events and their weak links with geometrically-deduced pore geometry. Results highlight factors controlling pore invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment shaping hydraulic properties after the passage of a fluid front.

  18. Pore-scale modeling of capillary trapping in water-wet porous media: A new cooperative pore-body filling model

    NASA Astrophysics Data System (ADS)

    Ruspini, L. C.; Farokhpoor, R.; Øren, P. E.

    2017-10-01

    We present a pore-network model study of capillary trapping in water-wet porous media. The amount and distribution of trapped non-wetting phase is determined by the competition between two trapping mechanisms - snap-off and cooperative pore-body filling. We develop a new model to describe the pore-body filling mechanism in geologically realistic pore-networks. The model accounts for the geometrical characteristics of the pore, the spatial location of the connecting throats and the local fluid topology at the time of the displacement. We validate the model by comparing computed capillary trapping curves with published data for four different water-wet rocks. Computations are performed on pore-networks extracted from micro-CT images and process-based reconstructions of the actual rocks used in the experiments. Compared with commonly used stochastic models, the new model describes more accurately the experimental measurements, especially for well connected porous systems where trapping is controlled by subtleties of the pore structure. The new model successfully predicts relative permeabilities and residual saturation for Bentheimer sandstone using in-situ measured contact angles as input to the simulations. The simulated trapped cluster size distributions are compared with predictions from percolation theory.

  19. Ectopic osteogenesis and angiogenesis regulated by porous architecture of hydroxyapatite scaffolds with similar interconnecting structure in vivo

    PubMed Central

    Li, Jinyu; Zhi, Wei; Xu, Taotao; Shi, Feng; Duan, Ke; Wang, Jianxin; Mu, Yandong; Weng, Jie

    2016-01-01

    The macro-pore sizes of porous scaffold play a key role for regulating ectopic osteogenesis and angiogenesis but many researches ignored the influence of interconnection between macro-pores with different sizes. In order to accurately reveal the relationship between ectopic osteogenesis and macro-pore sizes in dorsal muscle and abdominal cavities of dogs, hydroxyapatite (HA) scaffolds with three different macro-pore sizes of 500–650, 750–900 and 1100–1250 µm were prepared via sugar spheres-leaching process, which also had similar interconnecting structure determined by keeping the d/s ratio of interconnecting window diameter to macro-pore size constant. The permeability test showed that the seepage flow of fluid through the porous scaffolds increased with the increase of macro-pore sizes. The cell growth in three scaffolds was not affected by the macro-pore sizes. The in vivo ectopic implantation results indicated that the macro-pore sizes of HA scaffolds with the similar interconnecting structure have impact not only the speed of osteogenesis and angiogenesis but also the space distribution of newly formed bone. The scaffold with macro-pore sizes of 750–900 µm exhibited much faster angiogenesis and osteogenesis, and much more uniformly distribution of new bone than those with other macro-pore sizes. This work illustrates the importance of a suitable macro-pore sizes in HA scaffolds with the similar interconnecting structure which provides the environment for ectopic osteogenesis and angiogenesis. PMID:27699059

  20. Pore-scale modeling of Capillary Penetration of Wetting Liquid into 3D Fibrous Media: A Critical Examination of Equivalent Capillary Concept

    NASA Astrophysics Data System (ADS)

    Palakurthi, Nikhil Kumar; Ghia, Urmila; Comer, Ken

    2013-11-01

    Capillary penetration of liquid through fibrous porous media is important in many applications such as printing, drug delivery patches, sanitary wipes, and performance fabrics. Historically, capillary transport (with a distinct liquid propagating front) in porous media is modeled using capillary-bundle theory. However, it is not clear if the capillary model (Washburn equation) describes the fluid transport in porous media accurately, as it assumes uniformity of pore sizes in the porous medium. The present work investigates the limitations of the applicability of the capillary model by studying liquid penetration through virtual fibrous media with uniform and non-uniform pore-sizes. For the non-uniform-pore fibrous medium, the effective capillary radius of the fibrous medium was estimated from the pore-size distribution curve. Liquid penetration into the 3D virtual fibrous medium at micro-scale was simulated using OpenFOAM, and the numerical results were compared with the Washburn-equation capillary-model predictions. Preliminary results show that the Washburn equation over-predicts the height rise in the early stages (purely inertial and visco-inertial stages) of capillary transport.

  1. Shape-memory polymer foam device for treating aneurysms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Jason M.; Benett, William J.; Small, Ward

    A system for treating an aneurysm in a blood vessel or vein, wherein the aneurysm has a dome, an interior, and a neck. The system includes a shape memory polymer foam in the interior of the aneurysm between the dome and the neck. The shape memory polymer foam has pores that include a first multiplicity of pores having a first pore size and a second multiplicity of pores having a second pore size. The second pore size is larger than said first pore size. The first multiplicity of pores are located in the neck of the aneurysm. The second multiplicitymore » of pores are located in the dome of the aneurysm.« less

  2. Formation of porous inner architecture at the interface of magnetic pulse welded Al/Cu joints

    NASA Astrophysics Data System (ADS)

    Sapanathan, T.; Raoelison, R. N.; Yang, K.; Buiron, N.; Rachik, M.

    2016-10-01

    Porous inner architecture has been revealed at the interface of magnetic pulse welded aluminum/copper (Al/Cu) joints. These materials could serve the purpose of heterogeneous architectured materials, while their makeup of inner architecture of porous interface with the pore sizes of sub-micron to a few microns, could offer potential attributes in energy storage application. Two welding cases with various impact intensities are compared. An input voltage of 6.5 kV with an initial air gap of 1.5 mm and a higher voltage of 7.5 kV with a large initial air gap of 5 mm are respectively considered as two cases with low and high velocity impacts. Overall morphology of the porous medium was revealed at the interface either in layered or pocketed structures. The allocation of the porous zone and pore sizes vary with the impact condition. The low velocity impact welding conditions also produces smaller pores compared to the high velocity impact case, where the pore sizes varies in submicron to a few microns (<10μm). By investigating the potential mechanism of the porous zone formation, it was identified that a combined phenomena of cavitation and coalescence play a major role in nucleation and growth of the pores where a rapid cooling that eventually freezes the porous structure at the interface.

  3. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith P.; Gantzer, Clark J.; Anderson, Stephen H.; Assouline, Shmuel

    2016-05-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diameter < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5 by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6 μm resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray CMT. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3-DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 µm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), and characteristic coordination number (3.74 and 3.94; p = 0.02) were significantly different between the low-density than the high-density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  4. The long-term behavior of lightweight and heavyweight meshes used to repair abdominal wall defects is determined by the host tissue repair process provoked by the mesh.

    PubMed

    Pascual, Gemma; Hernández-Gascón, Belén; Rodríguez, Marta; Sotomayor, Sandra; Peña, Estefania; Calvo, Begoña; Bellón, Juan M

    2012-11-01

    Although heavyweight (HW) or lightweight (LW) polypropylene (PP) meshes are widely used for hernia repair, other alternatives have recently appeared. They have the same large-pore structure yet are composed of polytetrafluoroethylene (PTFE). This study compares the long-term (3 and 6 months) behavior of meshes of different pore size (HW compared with LW) and composition (PP compared with PTFE). Partial defects were created in the lateral wall of the abdomen in New Zealand White rabbits and then repaired by the use of a HW or LW PP mesh or a new monofilament, large-pore PTFE mesh (Infinit). At 90 and 180 days after implantation, tissue incorporation, gene and protein expression of neocollagens (reverse transcription-polymerase chain reaction/immunofluorescence), macrophage response (immunohistochemistry), and biomechanical strength were determined. Shrinkage was measured at 90 days. All three meshes induced good host tissue ingrowth, yet the macrophage response was significantly greater in the PTFE implants (P < .05). Collagen 1/3 mRNA levels failed to vary at 90 days yet in the longer term, the LW meshes showed the reduced genetic expression of both collagens (P < .05) accompanied by increased neocollagen deposition, indicating more efficient mRNA translation. After 90-180 days of implant, tensile strengths and elastic modulus values were similar for all 3 implants (P > .05). Host collagen deposition is mesh pore size dependent whereas the macrophage response induced is composition dependent with a greater response shown by PTFE. In the long term, macroporous meshes show comparable biomechanical behavior regardless of their pore size or composition. Copyright © 2012 Mosby, Inc. All rights reserved.

  5. Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks

    PubMed Central

    Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729

  6. Pore size distribution of OPC and SRPC mortars in presence of chlorides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suryavanshi, A.K.; Scantlebury, J.D.; Lyon, S.B.

    1995-07-01

    The pore structure of chloride-free ordinary portland cement (OPC) and sulphate resistant portland cement (SRPC) mortars are compared with the corresponding mortars with NaCl and CaCl{sub 2} added during mixing. In both OPC and SRPC mortars the addition of chlorides reduced the total accessible pore volumes compared to the corresponding chloride-free mortars. Also, in the presence of chlorides, the number of coarse pores were increased. These changes in the pore structure are believed to be due to dense calcium silicate hydrate (C-S-H) gel morphology formed in the presence of chlorides. The SRPC showed greater changes in pore structures than themore » OPC with equivalent amounts of chlorides added. This may be due to the lower chloride binding capacity of the SRPC and hence the higher availability of free chlorides to modify the gel morphology.« less

  7. Unlocking the Physiochemical Controls on Organic Carbon Dynamics from the Soil Pore- to Core-Scale

    NASA Astrophysics Data System (ADS)

    Smith, A. P.; Tfaily, M. M.; Bond-Lamberty, B. P.; Todd-Brown, K. E.; Bailey, V. L.

    2015-12-01

    The physical organization of soil includes pore networks of varying size and connectivity. These networks control microbial access to soil organic carbon (C) by spatially separating microorganisms and C by both distance and size exclusion. The extent to which this spatially isolated C is vulnerable to microbial transformation under hydrologically dynamic conditions is unknown, and limits our ability to predict the source and sink capacity of soils. We investigated the effects of shifting hydrologic connectivity and soil structure on greenhouse gas C emissions from surface soils collected from the Disney Wilderness Preserve (Florida, USA). We subjected intact soil cores and re-packed homogenized soil cores to simulated groundwater rise or precipitation, monitoring their CO2 and CH4 emissions over 24 hours. Soil pore water was then extracted from each core using different suctions to sample water retained by pore throats of different sizes and then characterized by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Greater respiration rates were observed from homogenized cores compared to intact cores, and from soils wet from below, in which the wetting front is driven by capillary forces, filling fine pores first. This suggests that C located in fine pores may turn over via diffusion processes that lead to the colocation of this C with other resources and microorganisms. Both the complexity and concentration of soluble-C increased with decreasing pore size domains. Pore water extracted from homogenized cores had greater C concentrations than from intact cores, with the greatest concentrations in pore waters sampled from very fine pores, highlighting the importance of soil structure in physically protecting C. These results suggest that the spatial separation of decomposers from C is a key mechanism stabilizing C in these soils. Further research is ongoing to accurately represent this protection mechanism, and the conditions under which it breaks down, in new and improved Earth system models.

  8. Capillary trapping quantification in sandstones using NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Connolly, Paul R. J.; Vogt, Sarah J.; Iglauer, Stefan; May, Eric F.; Johns, Michael L.

    2017-09-01

    Capillary trapping of a non-wetting phase arising from two-phase immiscible flow in sedimentary rocks is critical to many geoscience scenarios, including oil and gas recovery, aquifer recharge and, with increasing interest, carbon sequestration. Here we demonstrate the successful use of low field 1H Nuclear Magnetic Resonance [NMR] to quantify capillary trapping; specifically we use transverse relaxation time [T2] time measurements to measure both residual water [wetting phase] content and the surface-to-volume ratio distribution (which is proportional to pore size] of the void space occupied by this residual water. Critically we systematically confirm this relationship between T2 and pore size by quantifying inter-pore magnetic field gradients due to magnetic susceptibility contrast, and demonstrate that our measurements at all water saturations are unaffected. Diffusion in such field gradients can potentially severely distort the T2-pore size relationship, rendering it unusable. Measurements are performed for nitrogen injection into a range of water-saturated sandstone plugs at reservoir conditions. Consistent with a water-wet system, water was preferentially displaced from larger pores while relatively little change was observed in the water occupying smaller pore spaces. The impact of cyclic wetting/non-wetting fluid injection was explored and indicated that such a regime increased non-wetting trapping efficiency by the sequential occupation of the most available larger pores by nitrogen. Finally the replacement of nitrogen by CO2 was considered; this revealed that dissolution of paramagnetic minerals from the sandstone caused by its exposure to carbonic acid reduced the in situ bulk fluid T2 relaxation time on a timescale comparable to our core flooding experiments. The implications of this for the T2-pore size relationship are discussed.

  9. Application of real rock pore-threat statistics to a regular pore network model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakibul, M.; Sarker, H.; McIntyre, D.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data.« less

  10. Application of real rock pore-throat statistics to a regular pore network model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarker, M.R.; McIntyre, D.; Ferer, M.

    2011-01-01

    This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throatmore » sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data. Introduction« less

  11. 1.9 μm superficially porous packing material with radially oriented pores and tailored pore size for ultra-fast separation of small molecules and biomolecules.

    PubMed

    Min, Yi; Jiang, Bo; Wu, Ci; Xia, Simin; Zhang, Xiaodan; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2014-08-22

    In this work, 1.9 μm reversed-phase packing materials with superficially porous structure were prepared to achieve the rapid and high efficient separation of peptides and proteins. The silica particles were synthesized via three steps, nonporous silica particle preparation by a modified seeded growth method, mesoporous shell formation by a one pot templated dissolution and redeposition strategy, and pore size expansion via acid-refluxing. By such a method, 1.9 μm superficially porous materials with 0.18 μm shell thickness and tailored pore diameter (10 nm, 15 nm) were obtained. After pore enlargement, the formerly dense arrays of mesoporous structure changed, the radially oriented pores dominated the superficially porous structure. The chromatographic performance of such particles was investigated after C18 derivatization. For packing materials with 1.9 μm diameter and 10 nm pore size, the column efficiency could reach 211,300 plates per m for naphthalene. To achieve the high resolution separation of peptides and proteins, particles with pore diameter of 15 nm were tailored, by which the baseline separation of 5 peptides and 5 intact proteins could be respectively achieved within 1 min, demonstrating the superiority in the high efficiency and high throughput analysis of biomolecules. Furthermore, BSA digests were well separated with peak capacity of 120 in 30 min on a 15 cm-long column. Finally, we compared our columns with a 1.7 μm Kinetex C18 column under the same conditions, our particles with 10nm pore size demonstrated similar performance for separation of the large intact proteins. Moreover, the particles with 15 nm pore size showed more symmetrical peaks for the separation of large proteins (BSA, OVA and IgG) and provided rapid separation of protein extracts from Escherichia coli in 5 min. All these results indicated that the synthesized 1.9 μm superficially porous silica packing materials would be promising in the ultra-fast and high-resolution separation of biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Tuning the Pore Geometry of Ordered Mesoporous Carbons for Enhanced Adsorption of Bisphenol-A

    PubMed Central

    Libbrecht, Wannes; Vandaele, Koen; De Buysser, Klaartje; Verberckmoes, An; Thybaut, Joris W.; Poelman, Hilde; De Clercq, Jeriffa; Van Der Voort, Pascal

    2015-01-01

    Mesoporous carbons were synthesized via both soft and hard template methods and compared to a commercial powder activated carbon (PAC) for the adsorption ability of bisphenol-A (BPA) from an aqueous solution. The commercial PAC had a BET-surface of 1027 m2/g with fine pores of 3 nm and less. The hard templated carbon (CMK-3) material had an even higher BET-surface of 1420 m2/g with an average pore size of 4 nm. The soft templated carbon (SMC) reached a BET-surface of 476 m2/g and a pore size of 7 nm. The maximum observed adsorption capacity (qmax) of CMK-3 was the highest with 474 mg/g, compared to 290 mg/g for PAC and 154 mg/g for SMC. The difference in adsorption capacities was attributed to the specific surface area and hydrophobicity of the adsorbent. The microporous PAC showed the slowest adsorption, while the ordered mesopores of SMC and CMK-3 enhanced the BPA diffusion into the adsorbent. This difference in adsorption kinetics is caused by the increase in pore diameter. However, CMK-3 with an open geometry consisting of interlinked nanorods allows for even faster intraparticle diffusion. PMID:28788023

  13. Effect of freezing conditions on β-Tricalcium Phosphate /Camphene scaffold with micro sized particles fabricated by freeze casting.

    PubMed

    Singh, Gurdev; Soundarapandian, S

    2018-03-01

    The long standing need of the implant manufacturing industries is to fabricate multi-matrix, customized porous scaffold as cost-effectively. In recent years, freeze casting has shown greater opportunity in the fabrication of porous scaffolds (tricalcium phosphate, hydroxyapatite, bioglass, alumina, etc.) such as at ease and good control over pore size, porosity, a range of materials and economic feasibility. In particular, tricalcium phosphate (TCP) has proved as it possesses good biocompatible (osteoinduction, osteoconduction, etc.) and biodegradability hence beta-tricalcium phosphate (β-TCP, particle size of 10µm) was used as base material and camphene was used as a freezing vehicle in this study. Both freezing conditions such as constant freezing temperature (CFT) and constant freezing rate (CFR) were used for six different conditional samples (CFT: 30, 35 and 40vol% solid loading; similarly CFR: 30, 35 and 40vol% solid loading) to study and understand the effect of various properties (pore size, porosity and compressive strength) of the freeze-cast porous scaffold. It was observed that the average size of the pore was varying linearly as from lower to higher when the solid loading was varying higher to lower. With the help of scanning electron micrographs (SEM), it was observed that the average size of pore during CFR (9.7/ 6.5/ 4.9µm) was comparatively higher than the process of CFT (6.0/ 4.8/ 2.6µm) with respect to the same solid loading (30/ 35/ 40vol%) conditions. From the Gas pycnometer analysis, it was found that the porosity in both freezing conditions (CFT, CFR) were almost near values such as 32.8% and 28.5%. Further to be observed that with the increase in solid loading, the total porosity value has decreased due to the reduction in the concentration of the freezing vehicle. Hence, the freezing vehicle was found as responsible for the formation of appropriate size and orientation of pores during freeze casting. The compressive strength (CS) testing was clearly indicated that the CS was majorly depending on the size of pore which was depending on solid loading. The CS of CFT-based samples (smaller pore sizes and higher resistance to the propagation of crack) were higher due to the higher solid content (pore size) in compared with CFR-based samples on the similar solid loading conditions. As evidently, it was noted that the CFT-based sample with 40% solid loading has given the compressive strength which has come in the range of cancellous bone. The positive note was that the ratio of Ca/P has come as 1.68 (natural bone) after sintering and that was the required value recommended by the food and drug administration (FDI) for manufacturing of bone implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mesoporous carbon synthesized from different pore sizes of SBA-15 for high density electrode supercapacitor application

    NASA Astrophysics Data System (ADS)

    Jamil, Farinaa Md; Sulaiman, Mohd Ali; Ibrahim, Suhaina Mohd; Masrom, Abdul Kadir; Yahya, Muhd Zu Azhan

    2017-12-01

    A series of mesoporous carbon sample was synthesized using silica template, SBA-15 with two different pore sizes. Impregnation method was applied using glucose as a precursor for converting it into carbon. An appropriate carbonization and silica removal process were carried out to produce a series of mesoporous carbon with different pore sizes and surface areas. Mesoporous carbon sample was then assembled as electrode and its performance was tested using cyclic voltammetry and impedance spectroscopy to study the effect of ion transportation into several pore sizes on electric double layer capacitor (EDLC) system. 6M KOH was used as electrolyte at various scan rates of 10, 20, 30 and 50 mVs-1. The results showed that the pore size of carbon increased as the pore size of template increased and the specific capacitance improved as the increasing of the pore size of carbon.

  15. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  16. Changes in pore structure of coal caused by coal-to-gas bioconversion

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2017-06-19

    Microbial enhanced coalbed methane (ME-CBM) recovery is critically examined as a viable technology for natural gas recovery from coalbed methane (CBM) reservoirs. Since the majority of gas-in-place (GIP) is stored as an adsorbed phase in fine pores of coal matrix, the nano-pore structure directly influences gas storage and transport properties. Only limited studies have quantified the alteration of the nano-pore structure due to ME-CBM treatment. This study examines the evolution of the pore structure using a combination of small angle X-ray scattering (SAXS), low-pressure N 2 and CO 2 adsorption (LPGA) and high-pressure methane adsorption methods. The results show thatmore » the surface fractal dimension decreases for the two bioconverted coals compared to the untreated coal. After bio-treatment, the mesopore surface area and pore volume decrease with the average pore diameter increases, while the micropore surface area increases with pore volume decreases. Both inaccessible meso-/micropore size distributions decrease after bioconversion, while the accessible micropore size distribution increases, making a portion of closed micropore network accessible. In addition, the methane adsorption capacities increase after bio-treatment, which is confirmed by the increase of micropore surface area. A conceptual physical model of methanogenesis is proposed based on the evolution of the pore structure.« less

  17. Characterization of porosity in sulfide ore minerals: A USANS/SANS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, F.; Zhao, J.; Etschmann, B. E.

    Porosity plays a key role in the formation and alteration of sulfide ore minerals, yet our knowledge of the nature and formation of the residual pores is very limited. Herein, we report the application of ultra-small-angle neutron scattering and small-angle neutron scattering (USANS/SANS) to assess the porosity in five natural sulfide minerals (violarite, marcasite, pyrite, chalcopyrite, and bornite) possibly formed by hydrothermal mineral replacement reactions and two synthetic sulfide minerals (violarite and marcasite) prepared experimentally by mimicking natural hydrothermal conditions. USANS/SANS data showed very different pore size distributions for these minerals. Natural violarite and marcasite tend to possess less poresmore » in the small size range (<100 nm) compared with their synthetic counterparts. This phenomenon is consistent with a higher degree of pore healing or diagenetic compaction experienced by the natural violarite and marcasite. Surprisingly, nanometer-sized (<20 nm) pores were revealed for a natural pyrite cube from La Rioga, Spain, and the sample has a pore volume fraction of ~7.7%. Both chalcopyrite and bornite from the massive sulfide assemblage of the Olympic Dam deposit in Roxby Downs, South Australia, were found to be porous with a similar pore volume fraction (~15%), but chalcopyrite tends to have a higher proportion of nanometer-size pores centered at ~4 nm while bornite tends to have a broader pore size distribution. The specific surface area is generally low for these minerals ranging from 0.94 to 6.28 m2/g, and the surfaces are generally rough as surface fractal behavior was observed for all these minerals. This investigation has demonstrated that USANS/SANS is a very useful tool for analyzing porosity in ore minerals. We believe that with this quantified porosity information a deeper understanding of the complex fluid flow behavior within the porous minerals can be expected.« less

  18. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching.

    PubMed

    Siddiqui, Muhammad Usama; Arif, Abul Fazal Muhammad; Bashmal, Salem

    2016-08-06

    We present a modeling approach to determine the permeability-selectivity tradeoff for microfiltration and ultrafiltration membranes with a distribution of pore sizes and pore shapes. Using the formulated permeability-selectivity model, the effect of pore aspect ratio and pore size distribution on the permeability-selectivity tradeoff of the membrane is analyzed. A finite element model is developed to study the effect of membrane stretching on the distribution of pore sizes and shapes in the stretched membrane. The effect of membrane stretching on the permeability-selectivity tradeoff of membranes is also analyzed. The results show that increasing pore aspect ratio improves membrane performance while increasing the width of pore size distribution deteriorates the performance. It was also found that the effect of membrane stretching on the permeability-selectivity tradeoff is greatly affected by the uniformity of pore distribution in the membrane. Stretching showed a positive shift in the permeability-selectivity tradeoff curve of membranes with well-dispersed pores while in the case of pore clustering, a negative shift in the permeability-selectivity tradeoff curve was observed.

  19. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    PubMed

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Magnetic nanoparticles entrapped in siliceous mesocellular foam: a new catalyst support.

    PubMed

    Lee, Su Seong; Riduan, Siti Nurhanna; Erathodiyil, Nandanan; Lim, Jaehong; Cheong, Jian Liang; Cha, Junhoe; Han, Yu; Ying, Jackie Y

    2012-06-11

    γ-Fe(2)O(3) nanoparticles were formed inside the cage-like pores of mesocellular foam (MCF). These magnetic nanoparticles showed a uniform size distribution that could be easily controlled by the MCF pore size, as well as by the hydrocarbon chain length used for MCF surface modification. Throughout the entrapment process, the pore structure and surface area of the MCF remained intact. The resulting magnetic MCF facilitated the immobilization of biocatalysts, homogeneous catalysts, and nanoclusters. Moreover, the MCF allowed for facile catalyst recovery by using a simple magnet. The supported catalysts exhibited excellent catalytic efficiencies that were comparable to their homogeneous counterparts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Immobilization of chloroperoxidase on mesoporous materials for the oxidation of 4,6-dimethyldibenzothiophene, a recalcitrant organic sulfur compound present in petroleum fractions.

    PubMed

    Terrés, Eduardo; Montiel, Mayra; Le Borgne, Sylvie; Torres, Eduardo

    2008-01-01

    The catalytic potential of chloroperoxidase (CPO) immobilized on mesoporous materials was evaluated for the oxidation of 4,6-dimethyldibenzothiophene in water/acetonitrile mixtures. Two different types of materials were used for the immobilization: a metal containing Al-MCM-41 material with a pore size of 26 A and SBA-16 materials with three different pore sizes: 40, 90 and 117 A. The SBA-16 40 A did not retain any CPO. The nature and the pore size of the material affected the catalytic activity of the enzyme as well as its stability. Compared to the free enzyme, the thermal stability of CPO at 45 degrees C was two and three times higher than when immobilized on Al-MCM-41 and SBA-16 90 A, respectively.

  2. Study into the correlation of dominant pore throat size and SIP relaxation frequency

    NASA Astrophysics Data System (ADS)

    Kruschwitz, Sabine; Prinz, Carsten; Zimathies, Annett

    2016-12-01

    There is currently a debate within the SIP community about the characteristic textural length scale controlling relaxation time of consolidated porous media. One idea is that the relaxation time is dominated by the pore throat size distribution or more specifically the modal pore throat size as determined in mercury intrusion capillary pressure tests. Recently new studies on inverting pore size distributions from SIP data were published implying that the relaxation mechanisms and controlling length scale are well understood. In contrast new analytical model studies based on the Marshall-Madden membrane polarization theory suggested that two relaxation processes might compete: the one along the short narrow pore (the throat) with one across the wider pore in case the narrow pores become relatively long. This paper presents a first systematically focused study into the relationship of pore throat sizes and SIP relaxation times. The generality of predicted trends is investigated across a wide range of materials differing considerably in chemical composition, specific surface and pore space characteristics. Three different groups of relaxation behaviors can be clearly distinguished. The different behaviors are related to clay content and type, carbonate content, size of the grains and the wide pores in the samples.

  3. Transverse thermal conductivity of porous materials made from aligned nano- and microcylindrical pores

    NASA Astrophysics Data System (ADS)

    Prasher, Ravi

    2006-09-01

    Nanoporous and microporous materials made from aligned cylindrical pores play important roles in present technologies and will play even bigger roles in future technologies. The insight into the phonon thermal conductivity of these materials is important and relevant in many technologies and applications. Since the mean free path of phonons can be comparable to the pore size and interpore distance, diffusion-approximation based effective medium models cannot be used to predict the thermal conductivity of these materials. Strictly speaking, the Boltzmann transport equation (BTE) must be solved to capture the ballistic nature of thermal transport; however, solving BTE in such a complex network of pores is impractical. As an alternative, we propose an approximate ballistic-diffusive microscopic effective medium model for predicting the thermal conductivity of phonons in two-dimensional nanoporous and microporous materials made from aligned cylindrical pores. The model captures the size effects due to the pore diameter and the interpore distance and reduces to diffusion-approximation based models for macroporous materials. The results are in good agreement with experimental data.

  4. Silica incorporated membrane for wastewater based filtration

    NASA Astrophysics Data System (ADS)

    Fernandes, C. S.; Bilad, M. R.; Nordin, N. A. H. M.

    2017-10-01

    Membrane technology has long been applied for waste water treatment industries due to its numerous advantages compared to other conventional processes. However, the biggest challenge in pressure driven membrane process is membrane fouling. Fouling decreases the productivity and efficiency of the filtration, reduces the lifespan of the membrane and reduces the overall efficiency of water treatment processes. In this study, a novel membrane material is developed for water filtration. The developed membrane incorporates silica nanoparticles mainly to improve its structural properties. Membranes with different loadings of silica nanoparticles were applied in this study. The result shows an increase in clean water permeability and filterability of the membrane for treating activated sludge, microalgae solution, secondary effluent and raw sewage as feed. Adding silica into the membrane matrix does not significantly alter contact angle and membrane pore size. We believe that silica acts as an effective pore forming agent that increases the number of pores without significantly altering the pore sizes. A higher number of small pores on the surface of the membrane could reduce membrane fouling because of a low specific loading imposed to individual pores.

  5. A USANS/SANS study of the accessibility of pores in the Barnett Shale to methane and water

    USGS Publications Warehouse

    Ruppert, Leslie F.; Sakurovs, Richard; Blach, Tomasz P.; He, Lilin; Melnichenko, Yuri B.; Mildner, David F.; Alcantar-Lopez, Leo

    2013-01-01

    Shale is an increasingly important source of natural gas in the United States. The gas is held in fine pores that need to be accessed by horizontal drilling and hydrofracturing techniques. Understanding the nature of the pores may provide clues to making gas extraction more efficient. We have investigated two Mississippian Barnett Shale samples, combining small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) to determine the pore size distribution of the shale over the size range 10 nm to 10 μm. By adding deuterated methane (CD4) and, separately, deuterated water (D2O) to the shale, we have identified the fraction of pores that are accessible to these compounds over this size range. The total pore size distribution is essentially identical for the two samples. At pore sizes >250 nm, >85% of the pores in both samples are accessible to both CD4 and D2O. However, differences in accessibility to CD4 are observed in the smaller pore sizes (~25 nm). In one sample, CD4 penetrated the smallest pores as effectively as it did the larger ones. In the other sample, less than 70% of the smallest pores (4, but they were still largely penetrable by water, suggesting that small-scale heterogeneities in methane accessibility occur in the shale samples even though the total porosity does not differ. An additional study investigating the dependence of scattered intensity with pressure of CD4 allows for an accurate estimation of the pressure at which the scattered intensity is at a minimum. This study provides information about the composition of the material immediately surrounding the pores. Most of the accessible (open) pores in the 25 nm size range can be associated with either mineral matter or high reflectance organic material. However, a complementary scanning electron microscopy investigation shows that most of the pores in these shale samples are contained in the organic components. The neutron scattering results indicate that the pores are not equally proportioned in the different constituents within the shale. There is some indication from the SANS results that the composition of the pore-containing material varies with pore size; the pore size distribution associated with mineral matter is different from that associated with organic phases.

  6. The membrane separation mechanism in protein concentration from the extract of waste press cake in biofuel manufacturing process of Jatropha seeds

    NASA Astrophysics Data System (ADS)

    Chung, T. W.; Chen, C. K.; Hsu, S. H.

    2017-11-01

    Protein concentration process using filter membrane has a significant advantage on energy saving compared to the traditional drying processes. However, fouling on large membrane area and frequent membrane cleaning will increase the energy consumption and operation cost for the protein concentration process with filter membrane. In this study, the membrane filtration for protein concentration will be conducted and compared with the recent protein concentration technology. The analysis of operating factors for protein concentration process using filter membrane was discussed. The separation mechanism of membrane filtration was developed according to the size difference between the pore of membrane and the particle of filter material. The Darcy’s Law was applied to discuss the interaction on flux, TMP (transmembrane pressure) and resistance in this study. The effect of membrane pore size, pH value and TMP on the steady-state flux (Jst) and protein rejection (R) were studied. It is observed that the Jst increases with decreasing membrane pore size, the Jst increases with increasing TMP, and R increased with decreasing solution pH value. Compare to other variables, the pH value is the most significant variable for separation between protein and water.

  7. Ion transport in sub-5-nm graphene nanopores.

    PubMed

    Suk, Myung E; Aluru, N R

    2014-02-28

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

  8. Porosity characterization for heterogeneous shales using integrated multiscale microscopy

    NASA Astrophysics Data System (ADS)

    Rassouli, F.; Andrew, M.; Zoback, M. D.

    2016-12-01

    Pore size distribution analysis plays a critical role in gas storage capacity and fluid transport characterization of shales. Study of the diverse distribution of pore size and structure in such low permeably rocks is withheld by the lack of tools to visualize the microstructural properties of shale rocks. In this paper we try to use multiple techniques to investigate the full pore size range in different sample scales. Modern imaging techniques are combined with routine analytical investigations (x-ray diffraction, thin section analysis and mercury porosimetry) to describe pore size distribution of shale samples from Haynesville formation in East Texas to generate a more holistic understanding of the porosity structure in shales, ranging from standard core plug down to nm scales. Standard 1" diameter core plug samples were first imaged using a Versa 3D x-ray microscope at lower resolutions. Then we pick several regions of interest (ROIs) with various micro-features (such as micro-cracks and high organic matters) in the rock samples to run higher resolution CT scans using a non-destructive interior tomography scans. After this step, we cut the samples and drill 5 mm diameter cores out of the selected ROIs. Then we rescan the samples to measure porosity distribution of the 5 mm cores. We repeat this step for samples with diameter of 1 mm being cut out of the 5 mm cores using a laser cutting machine. After comparing the pore structure and distribution of the samples measured form micro-CT analysis, we move to nano-scale imaging to capture the ultra-fine pores within the shale samples. At this stage, the diameter of the 1 mm samples will be milled down to 70 microns using the laser beam. We scan these samples in a nano-CT Ultra x-ray microscope and calculate the porosity of the samples by image segmentation methods. Finally, we use images collected from focused ion beam scanning electron microscopy (FIB-SEM) to be able to compare the results of porosity measurements from all different imaging techniques. These multi-scale characterization techniques are then compared with traditional analytical techniques such as Mercury Porosimetry.

  9. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing.

    PubMed

    Melchels, Ferry P W; Barradas, Ana M C; van Blitterswijk, Clemens A; de Boer, Jan; Feijen, Jan; Grijpma, Dirk W

    2010-11-01

    The advance of rapid prototyping techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. In this work, we have assessed the influence of scaffold pore architecture on cell seeding and static culturing, by comparing a computer designed gyroid architecture fabricated by stereolithography with a random pore architecture resulting from salt leaching. The scaffold types showed comparable porosity and pore size values, but the gyroid type showed a more than 10-fold higher permeability due to the absence of size-limiting pore interconnections. The higher permeability significantly improved the wetting properties of the hydrophobic scaffolds and increased the settling speed of cells upon static seeding of immortalised mesenchymal stem cells. After dynamic seeding followed by 5 days of static culture gyroid scaffolds showed large cell populations in the centre of the scaffold, while salt-leached scaffolds were covered with a cell sheet on the outside and no cells were found in the scaffold centre. It was shown that interconnectivity of the pores and permeability of the scaffold prolonged the time of static culture before overgrowth of cells at the scaffold periphery occurred. Furthermore, novel scaffold designs are proposed to further improve the transport of oxygen and nutrients throughout the scaffolds and to create tissue engineering grafts with a designed, pre-fabricated vasculature. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Upscaling pore pressure-dependent gas permeability in shales

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Behzad; Javadpour, Farzam

    2017-04-01

    Upscaling pore pressure dependence of shale gas permeability is of great importance and interest in the investigation of gas production in unconventional reservoirs. In this study, we apply the Effective Medium Approximation, an upscaling technique from statistical physics, and modify the Doyen model for unconventional rocks. We develop an upscaling model to estimate the pore pressure-dependent gas permeability from pore throat size distribution, pore connectivity, tortuosity, porosity, and gas characteristics. We compare our adapted model with six data sets: three experiments, one pore-network model, and two lattice-Boltzmann simulations. Results showed that the proposed model estimated the gas permeability within a factor of 3 of the measurements/simulations in all data sets except the Eagle Ford experiment for which we discuss plausible sources of discrepancies.

  11. Size Dependent Pore Formation in Germanium Nanowires Undergoing Reversible Delithiation Observed by In Situ TEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaotang; He, Yang; Mao, Scott X.

    Germanium (Ge) nanowires coated with an amorphous silicon (Si) shell undergoing lithiation and delithiation were studied using in situ transmission electron microscopy (TEM). Delithiation creates pores in nanowires with diameters larger than ~25 nm, but not in smaller diameter nanowires. The formation of pores in Ge nanowires undergoing delithiation has been observed before in in situ TEM experiments, but there has been no indication that a critical diameter exists below which pores do not form. Pore formation occurs as a result of fast lithium diffusion compared to vacancy migration. We propose that a short diffusion path for vacancies to themore » nanowire surface plays a role in limiting pore formation even when lithium diffusion is fast.« less

  12. Solvent evaporation induced graphene powder with high volumetric capacitance and outstanding rate capability for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaozhe; Raj, Devaraj Vasanth; Zhou, Xufeng; Liu, Zhaoping

    2018-04-01

    Graphene-based electrode materials for supercapacitors usually suffer from poor volumetric performance due to the low density. The enhancement of volumetric capacitance by densification of graphene materials, however, is usually accompanied by deterioration of rate capability, as the huge contraction of pore size hinders rapid diffusion of electrolytes. Thus, it is important to develop suitable pore size in graphene materials, which can sustain fast ion diffusion and avoid excessive voids to acquire high density simultaneously for supercapacitor applications. Accordingly, we propose a simple solvent evaporation method to control the pore size of graphene powders by adjusting the surface tension of solvents. Ethanol is used instead of water to reduce the shrinkage degree of graphene powder during solvent evaporation process, due to its lower surface tension comparing with water. Followed by the assistance of mechanical compression, graphene powder having high compaction density of 1.30 g cm-3 and a large proportion of mesopores in the pore size range of 2-30 nm is obtained, which delivers high volumetric capacitance of 162 F cm-3 and exhibits outstanding rate performance of 76% capacity retention at a high current density of 100 A g-1 simultaneously.

  13. Characterization and Quantification of the Pore Structures of the Shale Oil Reservoir Formations in Multiscale

    NASA Astrophysics Data System (ADS)

    Liu, K.; Ostadhassan, M.

    2016-12-01

    Due to the fast development of hydraulic fracturing and horizontal drilling, shale formations now are one important resource of energy in North America. Characterizing the pore structure of these shale formations is of critical importance in understanding the original oil/gas in place and also the flow properties of the rock matrix. Pore with different properties such as pore size and pore shape can impact the physical, mechanical and chemical properties including strength, elastic modulus, permeability and conductivity. Nowadays, image analysis has been a robust method to quantify the pore information from the porous medium.SEM has been one of the most useful tools to study the pore microstructures due to its high depth of focus which can provide detailed topographical information about the surface. The suitable difference between solid matrix and pores due to the different gray level pixels can be used to study the pore structures.In this paper, we characterized and quantified the pore structures of rock samples from Middle Bakken Formation which is a typical unconventional reservoir in North America. High resolution SEM images of five samples we chose based on the gamma logs were derived after sample preparation. After determining the threshold of the images, we extracted the pore spaces. Then we analyzed the pore structures properties such as pore size distributions and pore shape distributions of the five samples and compared based on their mineral compositions. After that, we analyzed their heterogeneity and isotropy properties which have been identified as an important factor affecting reservoir productivity. Finally, we studied the impact of scale effect on the pore structures characterization.

  14. Pore size distribution and accessible pore size distribution in bituminous coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurovs, Richard; He, Lilin; Melnichenko, Yuri B

    2012-01-01

    The porosity and pore size distribution of coals determine many of their properties, from gas release to their behavior on carbonization, and yet most methods of determining pore size distribution can only examine a restricted size range. Even then, only accessible pores can be investigated with these methods. Small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) are increasingly used to characterize the size distribution of all of the pores non-destructively. Here we have used USANS/SANS to examine 24 well-characterized bituminous and subbituminous coals: three from the eastern US, two from Poland, one from New Zealand and the restmore » from the Sydney and Bowen Basins in Eastern Australia, and determined the relationships of the scattering intensity corresponding to different pore sizes with other coal properties. The range of pore radii examinable with these techniques is 2.5 nm to 7 {micro}m. We confirm that there is a wide range of pore sizes in coal. The pore size distribution was found to be strongly affected by both rank and type (expressed as either hydrogen or vitrinite content) in the size range 250 nm to 7 {micro}m and 5 to 10 nm, but weakly in intermediate regions. The results suggest that different mechanisms control coal porosity on different scales. Contrast-matching USANS and SANS were also used to determine the size distribution of the fraction of the pores in these coals that are inaccessible to deuterated methane, CD{sub 4}, at ambient temperature. In some coals most of the small ({approx} 10 nm) pores were found to be inaccessible to CD{sub 4} on the time scale of the measurement ({approx} 30 min - 16 h). This inaccessibility suggests that in these coals a considerable fraction of inherent methane may be trapped for extended periods of time, thus reducing the effectiveness of methane release from (or sorption by) these coals. Although the number of small pores was less in higher rank coals, the fraction of total pores that was inaccessible was not rank dependent. In the Australian coals, at the 10 nm to 50 nm size scales the pores in inertinites appeared to be completely accessible to CD{sub 4}, whereas the pores in the vitrinite were about 75% inaccessible. Unlike the results for total porosity that showed no regional effects on relationships between porosity and coal properties, clear regional differences in the relationships between fraction of closed porosity and coal properties were found. The 10 to 50 nm-sized pores of inertinites of the US and Polish coals examined appeared less accessible to methane than those of the inertinites of Australian coals. This difference in pore accessibility in inertinites may explain why empirical relationships between fluidity and coking properties developed using Carboniferous coals do not apply to Australian coals.« less

  15. Analysis of Effective Interconnectivity of DegraPol-foams Designed for Negative Pressure Wound Therapy

    PubMed Central

    Milleret, Vincent; Bittermann, Anne Greet; Mayer, Dieter; Hall, Heike

    2009-01-01

    Many wounds heal slowly and are difficult to manage. Therefore Negative Pressure Wound Therapy (NPWT) was developed where polymer foams are applied and a defined negative pressure removes wound fluid, reduces bacterial burden and increases the formation of granulation tissue. Although NPWT is used successfully, its mechanisms are not well understood. In particular, different NPWT dressings were never compared. Here a poly-ester urethane Degrapol® (DP)-foam was produced and compared with commercially available dressings (polyurethane-based and polyvinyl-alcohol-based) in terms of apparent pore sizes, swelling and effective interconnectivity of foam pores. DP-foams contain relatively small interconnected pores; PU-foams showed large pore size and interconnectivity; whereas PVA-foams displayed heterogeneous and poorly interconnected pores. PVA-foams swelled by 40 %, whereas DP- and PU-foams remained almost without swelling. Effective interconnectivity was investigated by submitting fluorescent beads of 3, 20 and 45 μm diameter through the foams. DP- and PU-foams removed 70-90 % of all beads within 4 h, independent of the bead diameter or bead pre-adsorption with serum albumin. For PVA-foams albumin pre-adsorbed beads circulated longer, where 20 % of 3 μm and 10 % of 20 μm diameter beads circulated after 96 h. The studies indicate that efficient bead perfusion does not only depend on pore size and swelling capacity, but effective interconnectivity might also depend on chemical composition of the foam itself. In addition due to the efficient sieve-effect of the foams uptake of wound components in vivo might occur only for short time suggesting other mechanisms being decisive for success of NPWT.

  16. Fractal Characteristics of Continental Shale Pores and its Significance to the Occurrence of Shale Oil in China: a Case Study of Biyang Depression

    NASA Astrophysics Data System (ADS)

    Li, Jijun; Liu, Zhao; Li, Junqian; Lu, Shuangfang; Zhang, Tongqian; Zhang, Xinwen; Yu, Zhiyuan; Huang, Kaizhan; Shen, Bojian; Ma, Yan; Liu, Jiewen

    Samples from seven major exploration wells in Biyang Depression of Henan Oilfield were compared using low-temperature nitrogen adsorption and shale oil adsorption experiments. Comprehensive analysis of pore development, oiliness and shale oil flowability was conducted by combining fractal dimension. The results show that the fractal dimension of shale in Biyang Depression of Henan Oilfield was negatively correlated with the average pore size and positively correlated with the specific surface area. Compared with the large pore, the small pore has great fractal dimension, indicating the pore structure is more complicated. Using S1 and chloroform bitumen A to evaluate the relationship between shale oiliness and pore structure, it was found that the more heterogeneous the shale pore structure, the higher the complexity and the poorer the oiliness. Clay minerals are the main carriers involved in crude oil adsorption, affecting the mobility of shale oil. When the pore complexity of shale was high, the content of micro- and mesopores was high, and the high specific surface area could enhance the adsorption and reduce the mobility of shale oil.

  17. Joint inversion of NMR and SIP data to estimate pore size distribution of geomaterials

    NASA Astrophysics Data System (ADS)

    Niu, Qifei; Zhang, Chi

    2018-03-01

    There are growing interests in using geophysical tools to characterize the microstructure of geomaterials because of the non-invasive nature and the applicability in field. In these applications, multiple types of geophysical data sets are usually processed separately, which may be inadequate to constrain the key feature of target variables. Therefore, simultaneous processing of multiple data sets could potentially improve the resolution. In this study, we propose a method to estimate pore size distribution by joint inversion of nuclear magnetic resonance (NMR) T2 relaxation and spectral induced polarization (SIP) spectra. The petrophysical relation between NMR T2 relaxation time and SIP relaxation time is incorporated in a nonlinear least squares problem formulation, which is solved using Gauss-Newton method. The joint inversion scheme is applied to a synthetic sample and a Berea sandstone sample. The jointly estimated pore size distributions are very close to the true model and results from other experimental method. Even when the knowledge of the petrophysical models of the sample is incomplete, the joint inversion can still capture the main features of the pore size distribution of the samples, including the general shape and relative peak positions of the distribution curves. It is also found from the numerical example that the surface relaxivity of the sample could be extracted with the joint inversion of NMR and SIP data if the diffusion coefficient of the ions in the electrical double layer is known. Comparing to individual inversions, the joint inversion could improve the resolution of the estimated pore size distribution because of the addition of extra data sets. The proposed approach might constitute a first step towards a comprehensive joint inversion that can extract the full pore geometry information of a geomaterial from NMR and SIP data.

  18. Continuously Adjustable, Molecular-Sieving “Gate” on 5A Zeolite for Distinguishing Small Organic Molecules by Size

    PubMed Central

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; Wang, Lei; Bao, Yu; Li, Shiguang; Yu, Miao

    2015-01-01

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences were effectively distinguished via appropriate misalignment. This novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation. PMID:26358480

  19. Continuously adjustable, molecular-sieving “gate” on 5A zeolite for distinguishing small organic molecules by size

    DOE PAGES

    Song, Zhuonan; Huang, Yi; Xu, Weiwei L.; ...

    2015-09-11

    Zeolites/molecular sieves with uniform, molecular-sized pores are important for many adsorption-based separation processes. Pore size gaps, however, exist in the current zeolite family. This leads to a great challenge of separating molecules with size differences at ~0.01 nm level. Here, we report a novel concept, pore misalignment, to form a continuously adjustable, molecular-sieving “gate” at the 5A zeolite pore entrance without sacrificing the internal capacity. Misalignment of the micropores of the alumina coating with the 5A zeolite pores was related with and facilely adjusted by the coating thickness. For the first time, organic molecules with sub-0.01 nm size differences weremore » effectively distinguished via appropriate misalignment. Lastly, this novel concept may have great potential to fill the pore size gaps of the zeolite family and realize size-selective adsorption separation.« less

  20. Heat of adsorption, adsorption stress, and optimal storage of methane in slit and cylindrical carbon pores predicted by classical density functional theory.

    PubMed

    Hlushak, Stepan

    2018-01-03

    Temperature, pressure and pore-size dependences of the heat of adsorption, adsorption stress, and adsorption capacity of methane in simple models of slit and cylindrical carbon pores are studied using classical density functional theory (CDFT) and grand-canonical Monte-Carlo (MC) simulation. Studied properties depend nontrivially on the bulk pressure and the size of the pores. Heat of adsorption increases with loading, but only for sufficiently narrow pores. While the increase is advantageous for gas storage applications, it is less significant for cylindrical pores than for slits. Adsorption stress and the average adsorbed fluid density show oscillatory dependence on the pore size and increase with bulk pressure. Slit pores exhibit larger amplitude of oscillations of the normal adsorption stress with pore size increase than cylindrical pores. However, the increase of the magnitude of the adsorption stress with bulk pressure increase is more significant for cylindrical than for slit pores. Adsorption stress appears to be negative for a wide range of pore sizes and external conditions. The pore size dependence of the average delivered density of the gas is analyzed and the optimal pore sizes for storage applications are estimated. The optimal width of slit pore appears to be almost independent of storage pressure at room temperature and pressures above 10 bar. Similarly to the case of slit pores, the optimal radius of cylindrical pores does not exhibit much dependence on the storage pressure above 15 bar. Both optimal width and optimal radii of slit and cylindrical pores increase as the temperature decreases. A comparison of the results of CDFT theory and MC simulations reveals subtle but important differences in the underlying fluid models employed by the approaches. The differences in the high-pressure behaviour between the hard-sphere 2-Yukawa and Lennard-Jones models of methane, employed by the CDFT and MC approaches, respectively, result in an overestimation of the heat of adsorption by the CDFT theory at higher loadings. However, both adsorption stress and adsorption capacity appear to be much less sensitive to the differences between the models and demonstrate excellent agreement between the theory and the computer experiment.

  1. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    NASA Astrophysics Data System (ADS)

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang

    2016-11-01

    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones.

  2. Pore structure characterization of Chang-7 tight sandstone using MICP combined with N2GA techniques and its geological control factors

    PubMed Central

    Cao, Zhe; Liu, Guangdi; Zhan, Hongbin; Li, Chaozheng; You, Yuan; Yang, Chengyu; Jiang, Hang

    2016-01-01

    Understanding the pore networks of unconventional tight reservoirs such as tight sandstones and shales is crucial for extracting oil/gas from such reservoirs. Mercury injection capillary pressure (MICP) and N2 gas adsorption (N2GA) are performed to evaluate pore structure of Chang-7 tight sandstone. Thin section observation, scanning electron microscope, grain size analysis, mineral composition analysis, and porosity measurement are applied to investigate geological control factors of pore structure. Grain size is positively correlated with detrital mineral content and grain size standard deviation while negatively related to clay content. Detrital mineral content and grain size are positively correlated with porosity, pore throat radius and withdrawal efficiency and negatively related to capillary pressure and pore-to-throat size ratio; while interstitial material is negatively correlated with above mentioned factors. Well sorted sediments with high debris usually possess strong compaction resistance to preserve original pores. Although many inter-crystalline pores are produced in clay minerals, this type of pores is not the most important contributor to porosity. Besides this, pore shape determined by N2GA hysteresis loop is consistent with SEM observation on clay inter-crystalline pores while BJH pore volume is positively related with clay content, suggesting N2GA is suitable for describing clay inter-crystalline pores in tight sandstones. PMID:27830731

  3. Particle seeding enhances interconnectivity in polymeric scaffolds foamed using supercritical CO(2).

    PubMed

    Collins, Niki J; Bridson, Rachel H; Leeke, Gary A; Grover, Liam M

    2010-03-01

    Foaming using supercritical CO(2) is a well-known process for the production of polymeric scaffolds for tissue engineering. However, this method typically leads to scaffolds with low pore interconnectivity, resulting in insufficient mass transport and a heterogeneous distribution of cells. In this study, microparticulate silica was added to the polymer during processing and the effects of this particulate seeding on the interconnectivity of the pore structure and pore size distribution were investigated. Scaffolds comprising polylactide and a range of silica contents (0-50 wt.%) were produced by foaming with supercritical CO(2). Scaffold structure, pore size distributions and interconnectivity were assessed using X-ray computed microtomography. Interconnectivity was also determined through physical measurements. It was found that incorporation of increasing quantities of silica particles increased the interconnectivity of the scaffold pore structure. The pore size distribution was also reduced through the addition of silica, while total porosity was found to be largely independent of silica content. Physical measurements and those derived from X-ray computed microtomography were comparable. The conclusion drawn was that the architecture of foamed polymeric scaffolds can be advantageously manipulated through the incorporation of silica microparticles. The findings of this study further establish supercritical fluid foaming as an important tool in scaffold production and show how a previous limitation can be overcome. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Synchrotron Microtomographic Quantification of Geometrical Soil Pore Characteristics Affected by Compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, Ranjith; Gantzer, Clark; Anderson, Stephen; Assouline, Shmuel

    2015-04-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2mm and < 0.5mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5-mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN)=10-CN/Co and P(PL)=10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (64 and 61 μm; p<0.04), largest pore volume (1.6 and 0.6 mm3; p=0.06), number of pores (55 and 50; p=0.09), characteristic coordination number (6.3 and 6.0; p=0.09), and characteristic path length number (116 and 105; p=0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  5. Synchrotron microtomographic quantification of geometrical soil pore characteristics affected by compaction

    NASA Astrophysics Data System (ADS)

    Udawatta, R. P.; Gantzer, C. J.; Anderson, S. H.; Assouline, S.

    2015-07-01

    Soil compaction degrades soil structure and affects water, heat, and gas exchange as well as root penetration and crop production. The objective of this study was to use X-ray computed microtomography (CMT) techniques to compare differences in geometrical soil pore parameters as influenced by compaction of two different aggregate size classes. Sieved (diam. < 2 mm and < 0.5 mm) and repacked (1.51 and 1.72 Mg m-3) Hamra soil cores of 5- by 5 mm (average porosities were 0.44 and 0.35) were imaged at 9.6-micrometer resolution at the Argonne Advanced Photon Source (synchrotron facility) using X-ray computed microtomography. Images of 58.9 mm3 volume were analyzed using 3-Dimensional Medial Axis (3DMA) software. Geometrical characteristics of the spatial distributions of pore structures (pore radii, volume, connectivity, path length, and tortuosity) were numerically investigated. Results show that the coordination number (CN) distribution and path length (PL) measured from the medial axis were reasonably fit by exponential relationships P(CN) = 10-CN/Co and P(PL) = 10-PL/PLo, respectively, where Co and PLo are the corresponding characteristic constants. Compaction reduced porosity, average pore size, number of pores, and characteristic constants. The average pore radii (63.7 and 61 μm; p < 0.04), largest pore volume (1.58 and 0.58 mm3; p = 0.06), number of pores (55 and 50; p = 0.09), characteristic coordination number (6.32 and 5.94; p = 0.09), and characteristic path length number (116 and 105; p = 0.001) were significantly greater in the low density than the high density treatment. Aggregate size also influenced measured geometrical pore parameters. This analytical technique provides a tool for assessing changes in soil pores that affect hydraulic properties and thereby provides information to assist in assessment of soil management systems.

  6. The Influence of Pore Size on the Indentation Behavior of Metallic Nanoporous Materials: A Molecular Dynamics Study

    PubMed Central

    Esqué-de los Ojos, Daniel; Pellicer, Eva; Sort, Jordi

    2016-01-01

    In general, the influence of pore size is not considered when determining the Young’s modulus of nanoporous materials. Here, we demonstrate that the pore size needs to be taken into account to properly assess the mechanical properties of these materials. Molecular dynamics simulations of spherical indentation experiments on single crystalline nanoporous Cu have been undertaken in systems with: (i) a constant degree of porosity and variable pore diameter; and (ii) a constant pore diameter and variable porosity degree. The classical Gibson and Ashby expression relating Young’s modulus with the relative density of the nanoporous metal is modified to include the influence of the pore size. The simulations reveal that, for a fixed porosity degree, the mechanical behavior of materials with smaller pores differs more significantly from the behavior of the bulk, fully dense counterpart. This effect is ascribed to the increase of the overall surface area as the pore size is reduced, together with the reduced coordination number of the atoms located at the pores edges. PMID:28773476

  7. Anomalous or regular capacitance? The influence of pore size dispersity on double-layer formation

    NASA Astrophysics Data System (ADS)

    Jäckel, N.; Rodner, M.; Schreiber, A.; Jeongwook, J.; Zeiger, M.; Aslan, M.; Weingarth, D.; Presser, V.

    2016-09-01

    The energy storage mechanism of electric double-layer capacitors is governed by ion electrosorption at the electrode surface. This process requires high surface area electrodes, typically highly porous carbons. In common organic electrolytes, bare ion sizes are below one nanometer but they are larger when we consider their solvation shell. In contrast, ionic liquid electrolytes are free of solvent molecules, but cation-anion coordination requires special consideration. By matching pore size and ion size, two seemingly conflicting views have emerged: either an increase in specific capacitance with smaller pore size or a constant capacitance contribution of all micro- and mesopores. In our work, we revisit this issue by using a comprehensive set of electrochemical data and a pore size incremental analysis to identify the influence of certain ranges in the pore size distribution to the ion electrosorption capacity. We see a difference in solvation of ions in organic electrolytes depending on the applied voltage and a cation-anion interaction of ionic liquids in nanometer sized pores.

  8. Characterization of modified zeolite as microbial immobilization media on POME anaerobic digestion

    NASA Astrophysics Data System (ADS)

    Cahyono, Rochim B.; Ismiyati, Sri; Ginting, Simparmin Br; Mellyanawaty, Melly; Budhijanto, Wiratni

    2018-03-01

    As the world’s biggest palm oil producer, Indonesia generates also huge amount of Palm Oil Mill Effluent (POME) wastewater and causes serious problem in environment. In conventional method, POME was converted into biogas using lagoon system which required extensive land area. Anaerobic Fluidized Bed Reactor (AFBR) proposes more effective biogas producing with smaller land area. In the proposed system, a immobilization media would be main factor for enhancing productivity. This research studied on characterization of Lampung natural zeolite as immobilization media in the AFBR system for POME treatment. Various activation method such as physical and chemical were attempted to create more suitable material which has larger surface area, pore size distribution as well as excellent surface structures. The physical method was applied by heating up the material till 400°C while HCl was used on the chemical activation. Based on the result, the chemical activation increased the surface area significantly into 71 m2/g compared to physical as well as original zeolite. The strong acid material was quite effective to enforce the impurities within zeolite pore structure compared to heating up the material. According to distribution data, the Lampung zeolite owned the pore size with the range of 3 – 5 μm which was mesopore material. The pore size was appropriate for immobilization media as it was smaller than size of biogas microbial. The XRD patterns verified that chemical activation could maintain the zeolite structure as the original. Obviously, the SEM photograph showed apparent structure and pore size on the modified zeolite using chemical method. The testing of modified zeolite on the batch system was done to evaluate the characterization process. The modified zeolite using chemical process resulted fast reduction of COD and stabilized the volatile fatty acid as the intermediate product of anaerobic digestion, especially in the beginning of the process. Therefore, the chemical activation process was most suitable to produce the immobilization media from Lampung natural zeolite for POME waste treatment

  9. Generation of random microstructures and prediction of sound velocity and absorption for open foams with spherical pores.

    PubMed

    Zieliński, Tomasz G

    2015-04-01

    This paper proposes and discusses an approach for the design and quality inspection of the morphology dedicated for sound absorbing foams, using a relatively simple technique for a random generation of periodic microstructures representative for open-cell foams with spherical pores. The design is controlled by a few parameters, namely, the total open porosity and the average pore size, as well as the standard deviation of pore size. These design parameters are set up exactly and independently, however, the setting of the standard deviation of pore sizes requires some number of pores in the representative volume element (RVE); this number is a procedure parameter. Another pore structure parameter which may be indirectly affected is the average size of windows linking the pores, however, it is in fact weakly controlled by the maximal pore-penetration factor, and moreover, it depends on the porosity and pore size. The proposed methodology for testing microstructure-designs of sound absorbing porous media applies the multi-scale modeling where some important transport parameters-responsible for sound propagation in a porous medium-are calculated from microstructure using the generated RVE, in order to estimate the sound velocity and absorption of such a designed material.

  10. Dependence of cell adhesion on extracellular matrix materials formed on pore bridge boundaries by nanopore opening and closing geometry.

    PubMed

    Kim, Sueon; Han, Dong Yeol; Chen, Zhenzhong; Lee, Won Gu

    2018-04-30

    In this study, we report experimental results for characterization of the growth and formation of pore bridge materials that modified the adhesion structures of cells cultured on nanomembranes with opening and closing geometry. To perform the proof-of-concept experiments, we fabricated two types of anodized alumina oxide substrates with single-sided opening (i.e., one side open, but closed at the other side) and double-sided opening (i.e., both sides open). In our experiment, we compared the densities of pores formed and of bridge materials which differently act as connective proteins depending on the size of pores. The results show that the pore opening geometry can be used to promote the net contact force between pores, resulting in the growth and formation of pore bridge materials before and after cell culture. The results also imply that the bridge materials can be used to attract the structural protrusion of filopodia that can promote the adhesion of cell-to-cell and cell-to-pore bridge. It is observed that the shape and size of cellular structures of filopodia depend on the presence of pore bridge materials. Overall, this observation brought us a significant clue that cells cultured on nanopore substrates would change the adhesion property depending on not only the formation of nanopores formed on the surface of topological substrates, but also that of pore bridge materials by its morphological growth.

  11. Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies.

    PubMed

    Fekete, Szabolcs; Veuthey, Jean-Luc; Eeltink, Sebastiaan; Guillarme, Davy

    2013-04-01

    Various recent wide-pore reversed-phase stationary phases were studied for the analysis of intact monoclonal antibodies (mAbs) of 150 kDa and their fragments possessing sizes between 25 and 50 kDa. Different types of column technology were evaluated, namely, a prototype silica-based inorganic monolith containing mesopores of ~250 Å and macropores of ~ 1.1 μm, a column packed with 3.6 μm wide-pore core-shell particles possessing a wide pore size distribution with an average around 200 Å and a column packed with fully porous 1.7 μm particles having pore size of ~300 Å. The performance of these wide-pore materials was compared with that of a poly(styrene-divinyl benzene) organic monolithic column, with a macropore size of approximately 1 μm but without mesopores (stagnant pores). A systematic investigation was carried out using model IgG1 and IgG2 mAbs, namely rituximab, panitumumab, and bevacizumab. Firstly, the recoveries of intact and reduced mAbs were compared on the two monolithic phases, and it appeared that adsorption was less pronounced on the organic monolith, probably due to the difference in chemistry (C18 versus phenyl) and the absence of mesopores (stagnant zones). Secondly, the kinetic performance was investigated in gradient elution mode for all columns. For this purpose, peak capacities per meter as well as peak capacities per time unit and per pressure unit (PPT) were calculated at various flow rates, to compare performance of columns with different dimensions. In terms of peak capacity per meter, the core-shell 3.6 μm and fully porous 1.7 μm columns outperformed the two monolithic phases, at a temperature of 60 °C. However, when considering the PPT values, the core-shell 3.6 μm column remained the best phase while the prototype silica-based monoliths became very interesting, mostly due to a very high permeability compared with the organic monolith. Therefore, these core-shell and silica-based monolith provided the fastest achievable separation. Finally, at the maximal working temperature of each column, the core-shell 3.6 μm column was far better than the other one, because it is the only one stable up to 90 °C. Lastly, the loading capacity was also measured on these four different phases. It appeared that the organic monolith was the less interesting and rapidly overloaded, due to the absence of mesopores. On the other hand, the loading capacity of prototype silica-based monolith was indeed reasonable.

  12. Multiscale Pore Throat Network Reconstruction of Tight Porous Media Constrained by Mercury Intrusion Capillary Pressure and Nuclear Magnetic Resonance Measurements

    NASA Astrophysics Data System (ADS)

    Xu, R.; Prodanovic, M.

    2017-12-01

    Due to the low porosity and permeability of tight porous media, hydrocarbon productivity strongly depends on the pore structure. Effective characterization of pore/throat sizes and reconstruction of their connectivity in tight porous media remains challenging. Having a representative pore throat network, however, is valuable for calculation of other petrophysical properties such as permeability, which is time-consuming and costly to obtain by experimental measurements. Due to a wide range of length scales encountered, a combination of experimental methods is usually required to obtain a comprehensive picture of the pore-body and pore-throat size distributions. In this work, we combine mercury intrusion capillary pressure (MICP) and nuclear magnetic resonance (NMR) measurements by percolation theory to derive pore-body size distribution, following the work by Daigle et al. (2015). However, in their work, the actual pore-throat sizes and the distribution of coordination numbers are not well-defined. To compensate for that, we build a 3D unstructured two-scale pore throat network model initialized by the measured porosity and the calculated pore-body size distributions, with a tunable pore-throat size and coordination number distribution, which we further determine by matching the capillary pressure vs. saturation curve from MICP measurement, based on the fact that the mercury intrusion process is controlled by both the pore/throat size distributions and the connectivity of the pore system. We validate our model by characterizing several core samples from tight Middle East carbonate, and use the network model to predict the apparent permeability of the samples under single phase fluid flow condition. Results show that the permeability we get is in reasonable agreement with the Coreval experimental measurements. The pore throat network we get can be used to further calculate relative permeability curves and simulate multiphase flow behavior, which will provide valuable insights into the production optimization and enhanced oil recovery design.

  13. Pore space connectivity and porosity using CT scans of tropical soils

    NASA Astrophysics Data System (ADS)

    Previatello da Silva, Livia; de Jong Van Lier, Quirijn

    2015-04-01

    Microtomography has been used in soil physics for characterization and allows non-destructive analysis with high-resolution, yielding a three-dimensional representation of pore space and fluid distribution. It also allows quantitative characterization of pore space, including pore size distribution, shape, connectivity, porosity, tortuosity, orientation, preferential pathways and is also possible predict the saturated hydraulic conductivity using Darcy's equation and a modified Poiseuille's equation. Connectivity of pore space is an important topological property of soil. Together with porosity and pore-size distribution, it governs transport of water, solutes and gases. In order to quantify and analyze pore space (quantifying connectivity of pores and porosity) of four tropical soils from Brazil with different texture and land use, undisturbed samples were collected in São Paulo State, Brazil, with PVC ring with 7.5 cm in height and diameter of 7.5 cm, depth of 10 - 30 cm from soil surface. Image acquisition was performed with a CT system Nikon XT H 225, with technical specifications of dual reflection-transmission target system including a 225 kV, 225 W high performance Xray source equipped with a reflection target with pot size of 3 μm combined with a nano-focus transmission module with a spot size of 1 μm. The images were acquired at specific energy level for each soil type, according to soil texture, and external copper filters were used in order to allow the attenuation of low frequency X-ray photons and passage of one monoenergetic beam. This step was performed aiming minimize artifacts such as beam hardening that may occur during the attenuation in the material interface with different densities within the same sample. Images were processed and analyzed using ImageJ/Fiji software. Retention curve (tension table and the pressure chamber methods), saturated hydraulic conductivity (constant head permeameter), granulometry, soil density and particle density were also performed in laboratory and results were compared with images analyzes.

  14. Adsorption and release of biocides with mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Popat, Amirali; Liu, Jian; Hu, Qiuhong; Kennedy, Michael; Peters, Brenton; Lu, Gao Qing (Max); Qiao, Shi Zhang

    2012-01-01

    In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules.In this proof-of-concept study, an agricultural biocide (imidacloprid) was effectively loaded into the mesoporous silica nanoparticles (MSNs) with different pore sizes, morphologies and mesoporous structures for termite control. This resulted in nanoparticles with a large surface area, tunable pore diameter and small particle size, which are ideal carriers for adsorption and controlled release of imidacloprid. The effect of pore size, surface area and mesoporous structure on uptake and release of imidacloprid was systematically studied. It was found that the adsorption amount and release profile of imidacloprid were dependent on the type of mesoporous structure and surface area of particles. Specifically, MCM-48 type mesoporous silica nanoparticles with a three dimensional (3D) open network structure and high surface area displayed the highest adsorption capacity compared to other types of silica nanoparticles. Release of imidacloprid from these nanoparticles was found to be controlled over 48 hours. Finally, in vivo laboratory testing on termite control proved the efficacy of these nanoparticles as delivery carriers for biopesticides. We believe that the present study will contribute to the design of more effective controlled and targeted delivery for other biomolecules. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11691j

  15. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)-chitosan scaffolds.

    PubMed

    Zhang, Jing; Zhou, Aimei; Deng, Aipeng; Yang, Yang; Gao, Lihu; Zhong, Zhaocai; Yang, Shulin

    2015-04-01

    Pore architecture of 3D scaffolds used in tissue engineering plays a critical role in the maintenance of cell survival, proliferation and further promotion of tissue regeneration. We investigated the pore size and structure, porosity, swelling as well as cell viability of a series of recombinant human collagen-peptide-chitosan (RHCC) scaffolds fabricated by lyophilization. In this paper, freezing regime containing a final temperature of freezing (Tf) and cooling rates was applied to obtain scaffolds with pore size ranging from 100μm to 120μm. Other protocols of RHC/chitosan suspension concentration and ratio modification were studied to produce more homogenous and appropriate structural scaffolds. The mean pore size decreased along with the decline of Tf at a slow cooling rate of 0.7°C/min; a more rapid cooling rate under 5°C/min resulted to a smaller pore size and more homogenous microstructure. High concentration could reduce pore size and lead to thick well of scaffold, while improved the ratio of RHC, lamellar and fiber structure coexisted with cellular pores. Human umbilical vein endothelial cells (HUVECs) were seeded on these manufactured scaffolds, the cell viability represented a negative correlation to the pore size. This study provides an alternative method to fabricate 3D RHC-chitosan scaffolds with appropriate pores for potential tissue engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Local deformation behavior of surface porous polyether-ether-ketone.

    PubMed

    Evans, Nathan T; Torstrick, F Brennan; Safranski, David L; Guldberg, Robert E; Gall, Ken

    2017-01-01

    Surface porous polyether-ether-ketone has the ability to maintain the tensile monotonic and cyclic strength necessary for many load bearing orthopedic applications while providing a surface that facilitates bone ingrowth; however, the relevant deformation behavior of the pore architecture in response to various loading conditions is not yet fully characterized or understood. The focus of this study was to examine the compressive and wear behavior of the surface porous architecture using micro Computed Tomography (micro CT). Pore architectures of various depths (~0.5-2.5mm) and pore sizes (212-508µm) were manufactured using a melt extrusion and porogen leaching process. Compression testing revealed that the pore architecture deforms in the typical three staged linear elastic, plastic, and densification stages characteristic of porous materials. The experimental moduli and yield strengths decreased as the porosity increased but there was no difference in properties between pore sizes. The porous architecture maintained a high degree of porosity available for bone-ingrowth at all strains. Surface porous samples showed no increase in wear rate compared to injection molded samples, with slight pore densification accompanying wear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Bone bonding strength of diamond-structured porous titanium-alloy implants manufactured using the electron beam-melting technique.

    PubMed

    Hara, Daisuke; Nakashima, Yasuharu; Sato, Taishi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Yoshimoto, Kensei; Yoshihara, Yusuke; Nakamura, Akihiro; Nakao, Yumiko; Iwamoto, Yukihide

    2016-02-01

    The present study examined the bone bonding strength of diamond-structured porous titanium-alloy (Porous-Ti-alloy) manufactured using the electron beam-melting technique in comparison with fiber mesh-coated or rough-surfaced implants. Cylindrical implants with four different pore sizes (500, 640, 800, and 1000μm) of Porous-Ti-alloy, titanium fiber mesh (FM), and surfaces roughened by titanium arc spray (Ti-spray) were implanted into the distal femur of rabbits. Bone bonding strength and histological bone ingrowth were evaluated at 4 and 12weeks after implantation. The bone bonding strength of Porous-Ti-alloy implants (640μm pore size) increased over time from 541.4N at 4weeks to 704.6N at 12weeks and was comparable to that of FM and Ti-spray implants at both weeks. No breakage of the porous structure after mechanical testing was found with Porous-Ti-alloy implants. Histological bone ingrowth that increased with implantation time occurred along the inner structure of Porous-Ti-alloy implants. There was no difference in bone ingrowth in Porous-Ti-alloy implants with pore sizes among 500, 640, and 800μm; however, less bone ingrowth was observed with the 1000μm pore size. These results indicated Porous-Ti-alloy implants with pore size under 800μm provided biologically active and mechanically stable surface for implant fixation to bone, and had potential advantages for weight bearing orthopedic implants such as acetabular cups. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    NASA Astrophysics Data System (ADS)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  19. High-resolution x-ray imaging using a structured scintillator.

    PubMed

    Hormozan, Yashar; Sychugov, Ilya; Linnros, Jan

    2016-02-01

    In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator array to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.

  20. High-resolution x-ray imaging using a structured scintillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hormozan, Yashar, E-mail: hormozan@kth.se; Sychugov, Ilya; Linnros, Jan

    2016-02-15

    Purpose: In this study, the authors introduce a new generation of finely structured scintillators with a very high spatial resolution (a few micrometers) compared to conventional scintillators, yet maintaining a thick absorbing layer for improved detectivity. Methods: Their concept is based on a 2D array of high aspect ratio pores which are fabricated by ICP etching, with spacings (pitches) of a few micrometers, on silicon and oxidation of the pore walls. The pores were subsequently filled by melting of powdered CsI(Tl), as the scintillating agent. In order to couple the secondary emitted photons of the back of the scintillator arraymore » to a CCD device, having a larger pixel size than the pore pitch, an open optical microscope with adjustable magnification was designed and implemented. By imaging a sharp edge, the authors were able to calculate the modulation transfer function (MTF) of this finely structured scintillator. Results: The x-ray images of individually resolved pores suggest that they have been almost uniformly filled, and the MTF measurements show the feasibility of a few microns spatial resolution imaging, as set by the scintillator pore size. Compared to existing techniques utilizing CsI needles as a structured scintillator, their results imply an almost sevenfold improvement in resolution. Finally, high resolution images, taken by their detector, are presented. Conclusions: The presented work successfully shows the functionality of their detector concept for high resolution imaging and further fabrication developments are most likely to result in higher quantum efficiencies.« less

  1. Conserved Aromatic Residue Confers Cation Selectivity in Claudin-2 and Claudin-10b*

    PubMed Central

    Li, Jiahua; Zhuo, Min; Pei, Lei; Yu, Alan S. L.

    2013-01-01

    In tight junctions, both claudin-2 and claudin-10b form paracellular cation-selective pores by the interaction of the first ECL 1 with permeating ions. We hypothesized that a highly conserved aromatic residue near the pore selectivity filter of claudins contributes to cation selectivity by cation-π interaction with the permeating cation. To test this, we generated MDCK I Tet-off cells stably transfected with claudin-2 Tyr67 mutants. The Y67L mutant showed reduced cation selectivity compared with wild-type claudin-2 due to a decrease in Na+ permeability, without affecting the Cl− permeability. The Y67A mutant enlarged the pore size and further decreased the charge selectivity due to an increase in Cl− permeability. The Y67F mutant restored the Na+ permeability, Cl− permeability, and pore size back to wild-type. The accessibility of Y67C to methanethiosulfonate modification indicated that its side chain faces the lumen of the pore. In claudin-10b, the F66L mutant reduced cation selectivity, and the F66A mutant lost pore conductance. We conclude that the conserved aromatic residue near the cation pore domain of claudins contributes to cation selectivity by a dual role of cation-π interaction and a luminal steric effect. Our findings provide new insight into how ion selectivity is achieved in the paracellular pore. PMID:23760508

  2. Determination of size distribution and encapsulation efficiency of liposome-encapsulated hemoglobin blood substitutes using asymmetric flow field-flow fractionation coupled with multi-angle static light scattering.

    PubMed

    Arifin, Dian R; Palmer, Andre F

    2003-01-01

    In this study, we investigated the size distribution, encapsulation efficiency, and oxygen affinity of liposome-encapsulated tetrameric hemoglobin (LEHb) dispersions and correlated the data with the variation in extruder membrane pore size, ionic strength of the extrusion buffer, and hemoglobin (Hb) concentration. Asymmetric flow field-flow fractionation (AFFF) in series with multi-angle static light scattering (MASLS) was used to study the LEHb size distribution. We also introduced a novel method to measure the encapsulation efficiency using a differential interferometric refractive index (DIR) detector coupled to the AFFF-MASLS system. This technique was nondestructive toward the sample and easy to implement. LEHbs were prepared by extrusion using a lipid combination of dimyristoyl-phosphatidylcholine, cholesterol, and dimyristoyl-phosphatidylglycerol in a 10:9:1 molar ratio. Five initial Hb concentrations (50, 100, 150, 200, and 300 mg Hb per mL of buffer) extruded through five different membrane pore diameters (400, 200, 100, 80, and 50 nm) were studied. Phosphate buffered saline (PBS) and phosphate buffer (PB) both at pH 7.3 were used as extrusion buffers. Despite the variation, extrusion through 400-nm pore diameter membranes produced LEHbs smaller than the pore size, extrusion through 200-nm membranes produced LEHbs with diameters close to the pore diameter, and extrusion through 100-, 80-, and 50-nm membranes produced LEHbs larger than the pore sizes. We found that the choice of extrusion buffer had the greatest effect on the LEHb size distribution compared to either Hb concentration or extruder membrane pore size. Extrusion in PBS produced larger LEHbs and more monodisperse LEHb dispersions. However, LEHbs extruded in PB generally had higher Hb encapsulation efficiencies and lower methemoglobin (metHb) levels. The choice of extrusion buffer also affected how the encapsulation efficiency correlated with Hb concentration, extruder pore size, and the metHb level. The most optimum encapsulation efficiency and amount of Hb entrapped were achieved at the highest Hb concentration and the largest pore size for both extrusion buffers (62.38% and 187.14 mg Hb/mL of LEHb dispersion extruded in PBS, and 69.98% and 209.94 mg Hb/mL of LEHb dispersion extruded in PB). All LEHbs displayed good oxygen-carrying properties as indicated by their P(50) and cooperativity coefficients. LEHbs extruded in PB had an average P(50) of 23.04 mmHg and an average Hill number of 2.29, and those extruded in PBS had average values of 27.25 mmHg and 2.49. These oxygen-binding properties indicate that LEHbs possess strong potential as artificial blood substitutes. In addition, the metHb levels in PB-LEHb dispersions are significantly low even in the absence of antioxidants such as N-acetyl-L-cysteine.

  3. A simple shape-free model for pore-size estimation with positron annihilation lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Wada, Ken; Hyodo, Toshio

    2013-06-01

    Positron annihilation lifetime spectroscopy is one of the methods for estimating pore size in insulating materials. We present a shape-free model to be used conveniently for such analysis. A basic model in classical picture is modified by introducing a parameter corresponding to an effective size of the positronium (Ps). This parameter is adjusted so that its Ps-lifetime to pore-size relation merges smoothly with that of the well-established Tao-Eldrup model (with modification involving the intrinsic Ps annihilation rate) applicable to very small pores. The combined model, i.e., modified Tao-Eldrup model for smaller pores and the modified classical model for larger pores, agrees surprisingly well with the quantum-mechanics based extended Tao-Eldrup model, which deals with Ps trapped in and thermally equilibrium with a rectangular pore.

  4. Hybrid braided 3-D scaffold for bioartificial liver assist devices.

    PubMed

    Hoque, M E; Mao, H Q; Ramakrishna, S

    2007-01-01

    Three-dimensional ex vivo hepatocyte culture is a tissue-engineering approach to improve the treatment of liver disease. The extracorporeal bioartificial liver (BAL) assists devices that are used in patients until they either recover or receive a liver transplant. The 3-D scaffold plays a key role in the design of bioreactor that is the most important component of the BAL. Presently available 3-D scaffolds used in BAL have shown good performance. However, existing scaffolds are considered to be less than ideal in terms of high-density cultures of hepatocytes maintaining long-term metabolic functions. This study aims to develop a 3-D hybrid scaffold for a BAL support system that would facilitate high-density hepatocyte anchorage with long-term metabolic functions. The scaffolds were fabricated by interlacing polyethylene terephthalate (PET) fibers onto the polysulfone hollow fibers utilizing a modern microbraiding technique. Scaffolds with various pore sizes and porosities were developed by varying braiding angle which was controlled by the gear ratio of the microbraiding machine. The morphological characteristics (pore size and porosity) of the scaffolds were found to be regulated by the gear ratio. Smaller braiding angle yields larger pore and higher porosity. On the other hand, a larger braiding angle causes smaller pore and lower porosity. In hepatocyte culture it was investigated how the morphological characteristics (pore size and porosity) of scaffolds influenced the cell anchorage and metabolic functions. Scaffolds with larger pores and higher porosity resulted in more cell anchorage and higher cellular functions, like albumin and urea secretion, compared to that of smaller pores and lower porosity.

  5. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix

    PubMed Central

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.; Gao, Shengyan

    2015-01-01

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir. PMID:26310236

  6. Micro/Nano-pore Network Analysis of Gas Flow in Shale Matrix.

    PubMed

    Zhang, Pengwei; Hu, Liming; Meegoda, Jay N; Gao, Shengyan

    2015-08-27

    The gas flow in shale matrix is of great research interests for optimized shale gas extraction. The gas flow in the nano-scale pore may fall in flow regimes such as viscous flow, slip flow and Knudsen diffusion. A 3-dimensional nano-scale pore network model was developed to simulate dynamic gas flow, and to describe the transient properties of flow regimes. The proposed pore network model accounts for the various size distributions and low connectivity of shale pores. The pore size, pore throat size and coordination number obey normal distribution, and the average values can be obtained from shale reservoir data. The gas flow regimes were simulated using an extracted pore network backbone. The numerical results show that apparent permeability is strongly dependent on pore pressure in the reservoir and pore throat size, which is overestimated by low-pressure laboratory tests. With the decrease of reservoir pressure, viscous flow is weakening, then slip flow and Knudsen diffusion are gradually becoming dominant flow regimes. The fingering phenomenon can be predicted by micro/nano-pore network for gas flow, which provides an effective way to capture heterogeneity of shale gas reservoir.

  7. Pore size dependent molecular adsorption of cationic dye in biomass derived hierarchically porous carbon.

    PubMed

    Chen, Long; Ji, Tuo; Mu, Liwen; Shi, Yijun; Wang, Huaiyuan; Zhu, Jiahua

    2017-07-01

    Hierarchically porous carbon adsorbents were successfully fabricated from different biomass resources (softwood, hardwood, bamboo and cotton) by a facile two-step process, i.e. carbonization in nitrogen and thermal oxidation in air. Without involving any toxic/corrosive chemicals, large surface area of up to 890 m 2 /g was achieved, which is comparable to commercial activated carbon. The porous carbons with various surface area and pore size were used as adsorbents to investigate the pore size dependent adsorption phenomenon. Based on the density functional theory, effective (E-SSA) and ineffective surface area (InE-SSA) was calculated considering the geometry of used probing adsorbate. It was demonstrated that the adsorption capacity strongly depends on E-SSA instead of total surface area. Moreover, a regression model was developed to quantify the adsorption capacities contributed from E-SSA and InE-SSA, respectively. The applicability of this model has been verified by satisfactory prediction results on porous carbons prepared in this work as well as commercial activated carbon. Revealing the pore size dependent adsorption behavior in these biomass derived porous carbon adsorbents will help to design more effective materials (either from biomass or other carbon resources) targeting to specific adsorption applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yang; Liu, Yang; Zhu, Guanghui

    Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less

  9. Modeling of viscoelastic properties of nonpermeable porous rocks saturated with highly viscous fluid at seismic frequencies at the core scale

    NASA Astrophysics Data System (ADS)

    Wang, Zizhen; Schmitt, Douglas R.; Wang, Ruihe

    2017-08-01

    A core scale modeling method for viscoelastic properties of rocks saturated with viscous fluid at low frequencies is developed based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. Based on this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the storage moduli and the stress-strain phase lag of saturated rocks. And we also compared the modeling results to the Hashin-Shtrikman bounds and the coherent potential approximation (CPA). The dynamic moduli calculated from the modeling are lower than the predictions of CPA, and both of these fall between the Hashin-Shtrikman bounds. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and aspect ratio affect the rock frame stiffness and result in different viscoelastic behaviors of the saturated rocks. The stress-strain phase lags are larger with smaller stiffness contrasts between the rock frame and the pore fluid. The viscoelastic properties of saturated rocks are more sensitive to aspect ratio compared to other pore structure parameters. The results suggest that significant seismic dispersion (at about 50-200 Hz) might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids.Plain Language SummaryWe develop a core scale modeling method to simulate the viscoelastic properties of rocks saturated with viscous fluid at low frequencies based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. By using this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the composite's viscoelastic properties. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and pore aspect ratio affect the rock frame stiffness and result in different viscoelastic behavior of the saturated rocks. The lower the rock frame stiffness, the larger the stress-strain phase lags. The viscoelastic properties of saturated rocks are more sensitive to the pore aspect ratio. The results suggest that significant seismic dispersion might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids. This will be important in the context of heavy hydrocarbon reservoirs and igneous rocks saturated with silicate melt.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25638722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25638722"><span>Controllable self-assembly of mesoporous hydroxyapatite.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Jingdi; Wang, Zihao; Wen, Zhenliang; Yang, Shen; Wang, Jianhua; Zhang, Qiqing</p> <p>2015-03-01</p> <p>In this paper, mesoporous hydroxyapatite (HAp) of controllable pore size was tailored with the template of a biodegradable mono-alkyl phosphate (MAP) via a simple route by hydrothermal treatment. A serial study of the various experimental parameters on pore size of HAp was investigated. The additive amount of MAP and hydrothermal temperature were important factors for the pore structure and pore size. Powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption-desorption (BET, BJH) were used to characterize the structure and composition of the HAp samples. Both XRD and BJH results indicated that regular mesoporous HAp nanoparticles (with a mean pore size of 3.5nm) were successfully produced. As shown in transmission electron microscopy (TEM), orderly uniform pore structure appeared in the HAp particles. Because of the special structure of the MAP and the interaction between ionized MAP and other ions in solution, the product presents uniform mesoporous structure with well-defined pore size. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15214670','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15214670"><span>Determination of pore size distributions of porous chromatographic adsorbents by inverse size-exclusion chromatography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yao, Yan; Lenhoff, Abraham M</p> <p>2004-05-28</p> <p>The macroscopic properties of porous chromatographic adsorbents are directly influenced by the pore structure, with the pore size distribution (PSD) playing a major role beyond simply the mean pore size. Inverse size-exclusion chromatography (ISEC), a widely used chromatographic method for determining the PSD of porous media, provides more relevant information on liquid chromatographic materials in situ than traditional methods, such as gas sorption and mercury intrusion. The fundamentals and applications of ISEC in the characterization of the pore structure are reviewed. The description of the probe solutes and the pore space, as well as theoretical models for deriving the PSD from solute partitioning behavior, are discussed. Precautions to ensure integrity of the experiments are also outlined, including accounting for probe polydispersity and minimization of solute-adsorbent interactions. The results that emerge are necessarily model-dependent, but ISEC nonetheless represents a powerful and non-destructive source of quantitative pore structure information that can help to elucidate chromatographic performance observations covering both retention and rate aspects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920067567&hterms=present+value+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpresent%2Bvalue%2Banalysis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920067567&hterms=present+value+analysis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dpresent%2Bvalue%2Banalysis"><span>Extreme value statistics analysis of fracture strengths of a sintered silicon nitride failing from pores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chao, Luen-Yuan; Shetty, Dinesh K.</p> <p>1992-01-01</p> <p>Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24019082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24019082"><span>The influence of pore size and surface area of activated carbons on the performance of ionic liquid based supercapacitors.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pohlmann, Sebastian; Lobato, Belén; Centeno, Teresa A; Balducci, Andrea</p> <p>2013-10-28</p> <p>This study analyses and compares the behaviour of 5 commercial porous carbons in the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) and its mixture with propylene carbonate (PC) as electrolytes. The results of this investigation show that the existence of a distribution of pore sizes and/or constrictions at the entrance of the pores leads to significant changes in the specific capacitance of the investigated materials. The use of PYR14TFSI as an electrolyte has a positive effect on the EDLC energy storage, but its high viscosity limits the power density. The mixture 50 : 50 wt% propylene carbonate-PYR14TFSI provides high operative voltage as well as low viscosity and thus notably enhances EDLC operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28477587','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28477587"><span>Ion distribution and selectivity of ionic liquids in microporous electrodes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Neal, Justin N; Wesolowski, David J; Henderson, Douglas; Wu, Jianzhong</p> <p>2017-05-07</p> <p>The energy density of an electric double layer capacitor, also known as supercapacitor, depends on ion distributions in the micropores of its electrodes. Herein we study ion selectivity and partitioning of symmetric, asymmetric, and mixed ionic liquids among different pores using the classical density functional theory. We find that a charged micropore in contact with mixed ions of the same valence is always selective to the smaller ions, and the ion selectivity, which is strongest when the pore size is comparable to the ion diameters, drastically falls as the pore size increases. The partitioning behavior in ionic liquids is fundamentally different from those corresponding to ion distributions in aqueous systems whereby the ion selectivity is dominated by the surface energy and entropic effects insensitive to the degree of confinement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016961','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016961"><span>Permeability-porosity relationships in sedimentary rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nelson, Philip H.</p> <p>1994-01-01</p> <p>In many consolidated sandstone and carbonate formations, plots of core data show that the logarithm of permeability (k) is often linearly proportional to porosity (??). The slope, intercept, and degree of scatter of these log(k)-?? trends vary from formation to formation, and these variations are attributed to differences in initial grain size and sorting, diagenetic history, and compaction history. In unconsolidated sands, better sorting systematically increases both permeability and porosity. In sands and sandstones, an increase in gravel and coarse grain size content causes k to increase even while decreasing ??. Diagenetic minerals in the pore space of sandstones, such as cement and some clay types, tend to decrease log(k) proportionately as ?? decreases. Models to predict permeability from porosity and other measurable rock parameters fall into three classes based on either grain, surface area, or pore dimension considerations. (Models that directly incorporate well log measurements but have no particular theoretical underpinnings from a fourth class.) Grain-based models show permeability proportional to the square of grain size times porosity raised to (roughly) the fifth power, with grain sorting as an additional parameter. Surface-area models show permeability proportional to the inverse square of pore surface area times porosity raised to (roughly) the fourth power; measures of surface area include irreducible water saturation and nuclear magnetic resonance. Pore-dimension models show permeability proportional to the square of a pore dimension times porosity raised to a power of (roughly) two and produce curves of constant pore size that transgress the linear data trends on a log(k)-?? plot. The pore dimension is obtained from mercury injection measurements and is interpreted as the pore opening size of some interconnected fraction of the pore system. The linear log(k)-?? data trends cut the curves of constant pore size from the pore-dimension models, which shows that porosity reduction is always accompanied by a reduction in characteristic pore size. The high powers of porosity of the grain-based and surface-area models are required to compensate for the inclusion of the small end of the pore size spectrum.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27444061','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27444061"><span>The effect of scaffold pore size in cartilage tissue engineering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nava, Michele M; Draghi, Lorenza; Giordano, Carmen; Pietrabissa, Riccardo</p> <p>2016-07-26</p> <p>The effect of scaffold pore size and interconnectivity is undoubtedly a crucial factor for most tissue engineering applications. The aim of this study was to examine the effect of pore size and porosity on cartilage construct development in different scaffolds seeded with articular chondrocytes. We fabricated poly-L-lactide-co-trimethylene carbonate scaffolds with different pore sizes, using a solvent-casting/particulate-leaching technique. We seeded primary bovine articular chondrocytes on these scaffolds, cultured the constructs for 2 weeks and examined cell proliferation, viability and cell-specific production of cartilaginous extracellular matrix proteins, including GAG and collagen. Cell density significantly increased up to 50% with scaffold pore size and porosity, likely facilitated by cell spreading on the internal surface of bigger pores, and by increased mass transport of gases and nutrients to cells, and catabolite removal from cells, allowed by lower diffusion barriers in scaffolds with a higher porosity. However, both the cell metabolic activity and the synthesis of cartilaginous matrix proteins significantly decreased by up to 40% with pore size. We propose that the association of smaller pore diameters, causing 3-dimensional cell aggregation, to a lower oxygenation caused by a lower porosity, could have been the condition that increased the cell-specific synthesis of cartilaginous matrix proteins in the scaffold with the smallest pores and the lowest porosity among those tested. In the initial steps of in vitro cartilage engineering, the combination of small scaffold pores and low porosity is an effective strategy with regard to the promotion of chondrogenesis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19457858','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19457858"><span>Iron translocation into and out of Listeria innocua Dps and size distribution of the protein-enclosed nanomineral are modulated by the electrostatic gradient at the 3-fold "ferritin-like" pores.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bellapadrona, Giuliano; Stefanini, Simonetta; Zamparelli, Carlotta; Theil, Elizabeth C; Chiancone, Emilia</p> <p>2009-07-10</p> <p>Elucidating pore function at the 3-fold channels of 12-subunit, microbial Dps proteins is important in understanding their role in the management of iron/hydrogen peroxide. The Dps pores are called "ferritin-like" because of the structural resemblance to the 3-fold channels of 24-subunit ferritins used for iron entry and exit to and from the protein cage. In ferritins, negatively charged residues lining the pores generate a negative electrostatic gradient that guides iron ions toward the ferroxidase centers for catalysis with oxidant and destined for the mineralization cavity. To establish whether the set of three aspartate residues that line the pores in Listeria innocua Dps act in a similar fashion, D121N, D126N, D130N, and D121N/D126N/D130N proteins were produced; kinetics of iron uptake/release and the size distribution of the iron mineral in the protein cavity were compared. The results, discussed in the framework of crystal growth in a confined space, indicate that iron uses the hydrophilic 3-fold pores to traverse the protein shell. For the first time, the strength of the electrostatic potential is observed to modulate kinetic cooperativity in the iron uptake/release processes and accordingly the size distribution of the microcrystalline iron minerals in the Dps protein population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1354648-investigation-thin-well-tunable-liquid-gas-diffusion-layers-exhibiting-superior-multifunctional-performance-low-temperature-electrolytic-water-splitting','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1354648-investigation-thin-well-tunable-liquid-gas-diffusion-layers-exhibiting-superior-multifunctional-performance-low-temperature-electrolytic-water-splitting"><span>Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kang, Zhenye; Mo, Jingke; Yang, Gaoqiang; ...</p> <p>2016-10-11</p> <p>Liquid/gas diffusion layers (LGDLs), which are located between the catalyst layer (CL) and bipolar plate (BP), play an important role in enhancing the performance of water splitting in proton exchange membrane electrolyzer cells (PEMECs). They are expected to transport electrons, heat, and reactants/products simultaneously with minimum voltage, current, thermal, interfacial, and fluidic losses. Here in this study, the thin titanium-based LGDLs with straight-through pores and well-defined pore morphologies are comprehensively investigated for the first time. The novel LGDL with a 400 μm pore size and 0.7 porosity achieved a best-ever performance of 1.66 V at 2 A cm -2 andmore » 80 °C, as compared to the published literature. The thin/well-tunable titanium based LGDLs remarkably reduce ohmic and activation losses, and it was found that porosity has a more significant impact on performance than pore size. In addition, an appropriate equivalent electrical circuit model has been established to quantify the effects of pore morphologies. The rapid electrochemical reaction phenomena at the center of the PEMEC are observed by coupling with high-speed and micro-scale visualization systems. Lastly, the observed reactions contribute reasonable and pioneering data that elucidate the effects of porosity and pore size on the PEMEC performance. This study can be a new guide for future research and development towards high-efficiency and low-cost hydrogen energy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830001864','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830001864"><span>Pore size engineering applied to starved electrochemical cells and batteries</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abbey, K. M.; Thaller, L. H.</p> <p>1982-01-01</p> <p>To maximize performance in starved, multiplate cells, the cell design should rely on techniques which widen the volume tolerance characteristics. These involve engineering capillary pressure differences between the components of an electrochemical cell and using these forces to promote redistribution of electrolyte to the desired optimum values. This can be implemented in practice by prescribing pore size distributions for porous back-up plates, reservoirs, and electrodes. In addition, electrolyte volume management can be controlled by incorporating different pore size distributions into the separator. In a nickel/hydrogen cell, the separator must contain pores similar in size to the small pores of both the nickel and hydrogen electrodes in order to maintain an optimum conductive path for the electrolyte. The pore size distributions of all components should overlap in such a way as to prevent drying of the separator and/or flooding of the hydrogen electrode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/949655-crystallization-textural-porosity-synthetic-clay-minerals','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/949655-crystallization-textural-porosity-synthetic-clay-minerals"><span>Crystallization and textural porosity of synthetic clay minerals.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Carrado, K. A.; Csencsits, R.; Thiyagarajan, P.</p> <p>2002-12-01</p> <p>The crystallization of synthetic layered magnesium silicate hectorite clays from both silica sol and organosilane sources is compared. For the silica sol-derived clays, a templating method is employed wherein organic or polymeric molecules are included during clay crystallization that are then removed from the composites via calcination. The mechanism of silane-derived hectorite formation is followed by XRD, TGA, 29Si MAS NMR, and small angle X-ray scattering (SAXS), and results are compared to those obtained for the sol-derived hectorite. The mechanism appears to be similar but the rate is approximately doubled when the silane is used rather than silica sol. Analyticalmore » transmission electron microscopy (TEM) is exploited to glean structural morphology information towards resolving the nature of the resulting pore network structures. Results are compared with nitrogen adsorption-desorption isotherm behavior; dominant hysteresis loops are present in the type IV isotherms. Pore size distributions based on both the adsorption and desorption isotherms are compared. Small angle neutron scattering (SANS) experiments reveal that the average particle size increases as synthetic laponite < sol-derived hectorite < silane-derived hectorite < natural hectorite. Contrast matching SANS studies in aqueous and organic solvents are carried out to extract information about pore accessibility.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999JChPh.110.4867M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999JChPh.110.4867M"><span>Freezing and melting of water in a single cylindrical pore: The pore-size dependence of freezing and melting behavior</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morishige, Kunimitsu; Kawano, Keiji</p> <p>1999-03-01</p> <p>In order to clarify the origin of the hysteresis between freezing and melting of pore water, we performed x-ray diffraction measurements of water confined inside the cylindrical pores of seven kinds of siliceous MCM-41 (a member of ordered mesoporous materials denoted by Mobil Oil researchers) with different pore radii (1.2-2.9 nm) and the interconnected pores of Vycor glass as a function of temperature. The hysteresis effect depends markedly on the size of the cylindrical pores: the hysteresis is negligibly small in smaller pores and becomes remarkable in larger pores. This strongly suggests that the hysteresis is arisen from size-dependent supercooling of water confined to the mesopores. For the water confined to the mesopores with pore radius of 1.2 nm, a continuous transition between a liquid and a solid precedes the first-order freezing transition of the pore water which would occur by the same mechanism as in bulk water.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18257568','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18257568"><span>Relation between the ion size and pore size for an electric double-layer capacitor.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Largeot, Celine; Portet, Cristelle; Chmiola, John; Taberna, Pierre-Louis; Gogotsi, Yury; Simon, Patrice</p> <p>2008-03-05</p> <p>The research on electrochemical double layer capacitors (EDLC), also known as supercapacitors or ultracapacitors, is quickly expanding because their power delivery performance fills the gap between dielectric capacitors and traditional batteries. However, many fundamental questions, such as the relations between the pore size of carbon electrodes, ion size of the electrolyte, and the capacitance have not yet been fully answered. We show that the pore size leading to the maximum double-layer capacitance of a TiC-derived carbon electrode in a solvent-free ethyl-methylimmidazolium-bis(trifluoro-methane-sulfonyl)imide (EMI-TFSI) ionic liquid is roughly equal to the ion size (approximately 0.7 nm). The capacitance values of TiC-CDC produced at 500 degrees C are more than 160 F/g and 85 F/cm(3) at 60 degrees C, while standard activated carbons with larger pores and a broader pore size distribution present capacitance values lower than 100 F/g and 50 F/cm(3) in ionic liquids. A significant drop in capacitance has been observed in pores that were larger or smaller than the ion size by just an angstrom, suggesting that the pore size must be tuned with sub-angstrom accuracy when selecting a carbon/ion couple. This work suggests a general approach to EDLC design leading to the maximum energy density, which has been now proved for both solvated organic salts and solvent-free liquid electrolytes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ApSS..248..446V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ApSS..248..446V"><span>Modelling the influence of pore size on the response of materials to infrared lasers An application to human enamel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vila Verde, A.; Ramos, Marta M. D.</p> <p>2005-07-01</p> <p>We present an analytical model for a ceramic material (hydroxyapatite, HA) containing nanometre-scale water pores, and use it to estimate the pressure at the pore as a function of temperature at the end of a single 0.35 μs laser pulse by Er:YAG (2.94 μm) and CO 2 (10.6 μm) lasers. Our results suggest that the pressure at the pore is directly related to pore temperature, and that very high pressures can be generated simply by the thermal expansion of liquid water. Since the temperature reached in the pores at the end of the laser pulse is a strong function of pore size for Er:YAG lasers, but is independent of pore size for CO 2 lasers, our present results provide a possible explanation for the fact that human dental enamel threshold ablation fluences vary more for Er:YAG lasers than for CO 2 lasers. This suggests that experimentalists should analyse their results accounting for factors, like age or type of tooth, that may change the pore size distribution in their samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26507935','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26507935"><span>Effect of pore size of three-dimensionally ordered macroporous chitosan-silica matrix on solubility, drug release, and oral bioavailability of loaded-nimodipine.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gao, Yikun; Xie, Yuling; Sun, Hongrui; Zhao, Qinfu; Zheng, Xin; Wang, Siling; Jiang, Tongying</p> <p>2016-01-01</p> <p>To explore the effect of the pore size of three-dimensionally ordered macroporous chitosan-silica (3D-CS) matrix on the solubility, drug release, and oral bioavailability of the loaded drug. 3D-CS matrices with pore sizes of 180 nm, 470 nm, and 930 nm were prepared. Nimodipine (NMDP) was used as the drug model. The morphology, specific surface area, and chitosan mass ratio of the 3D-CS matrices were characterized before the effect of the pore size on drug crystallinity, solubility, release, and in vivo pharmacokinetics were investigated. With the pore size of 3D-CS matrix decreasing, the drug crystallinity decreased and the aqueous solubility increased. The drug release was synthetically controlled by the pore size and chitosan content of 3D-CS matrix in a pH 6.8 medium, while in a pH 1.2 medium the erosion of the 3D-CS matrix played an important role in the decreased drug release rate. The area under the curve of the drug-loaded 3D-CS matrices with pore sizes of 930 nm, 470 nm, and 180 nm was 7.46-fold, 5.85-fold, and 3.75-fold larger than that of raw NMDP respectively. Our findings suggest that the oral bioavailability decreased with a decrease in the pore size of the matrix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5210680','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5210680"><span>Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Wu, Jingshen</p> <p>2016-01-01</p> <p>Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes. PMID:28083098</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PhRvE..83d1922D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PhRvE..83d1922D"><span>Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daly, Kristopher E.; Huang, Kerwyn Casey; Wingreen, Ned S.; Mukhopadhyay, Ranjan</p> <p>2011-04-01</p> <p>The bacterial cell wall is a network of sugar strands crosslinked by peptides that serve as the primary structure for bearing osmotic stress. Despite its importance in cellular survival, the robustness of the cell wall to network defects has been relatively unexplored. Treatment of the Gram-negative bacterium Escherichia coli with the antibiotic vancomycin, which disrupts the crosslinking of new material during growth, leads to the development of pronounced bulges and eventually of cell lysis. Here, we model the mechanics of the bulging of the cytoplasmic membrane through pores in the cell wall. We find that the membrane undergoes a transition between a nearly flat state and a spherical bulge at a critical pore radius of ~20 nm. This critical pore size is large compared to the typical distance between neighboring peptides and glycan strands, and hence pore size acts as a constraint on network integrity. We also discuss the general implications of our model to membrane deformations in eukaryotic blebbing and vesiculation in red blood cells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28374862','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28374862"><span>Biotemplating pores with size and shape diversity for Li-oxygen Battery Cathodes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Oh, Dahyun; Ozgit-Akgun, Cagla; Akca, Esin; Thompson, Leslie E; Tadesse, Loza F; Kim, Ho-Cheol; Demirci, Gökhan; Miller, Robert D; Maune, Hareem</p> <p>2017-04-04</p> <p>Synthetic porogens provide an easy way to create porous structures, but their usage is limited due to synthetic difficulties, process complexities and prohibitive costs. Here we investigate the use of bacteria, sustainable and naturally abundant materials, as a pore template. The bacteria require no chemical synthesis, come in variable sizes and shapes, degrade easier and are approximately a million times cheaper than conventional porogens. We fabricate free standing porous multiwalled carbon nanotube (MWCNT) films using cultured, harmless bacteria as porogens, and demonstrate substantial Li-oxygen battery performance improvement by porosity control. Pore volume as well as shape in the cathodes were easily tuned to improve oxygen evolution efficiency by 30% and double the full discharge capacity in repeated cycles compared to the compact MWCNT electrode films. The interconnected pores produced by the templates greatly improve the accessibility of reactants allowing the achievement of 4,942 W/kg (8,649 Wh/kg) at 2 A/g e (1.7 mA/cm 2 ).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5379672','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5379672"><span>Biotemplating pores with size and shape diversity for Li-oxygen Battery Cathodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Oh, Dahyun; Ozgit-Akgun, Çagla; Akca, Esin; Thompson, Leslie E.; Tadesse, Loza F.; Kim, Ho-Cheol; Demirci, Gökhan; Miller, Robert D.; Maune, Hareem</p> <p>2017-01-01</p> <p>Synthetic porogens provide an easy way to create porous structures, but their usage is limited due to synthetic difficulties, process complexities and prohibitive costs. Here we investigate the use of bacteria, sustainable and naturally abundant materials, as a pore template. The bacteria require no chemical synthesis, come in variable sizes and shapes, degrade easier and are approximately a million times cheaper than conventional porogens. We fabricate free standing porous multiwalled carbon nanotube (MWCNT) films using cultured, harmless bacteria as porogens, and demonstrate substantial Li-oxygen battery performance improvement by porosity control. Pore volume as well as shape in the cathodes were easily tuned to improve oxygen evolution efficiency by 30% and double the full discharge capacity in repeated cycles compared to the compact MWCNT electrode films. The interconnected pores produced by the templates greatly improve the accessibility of reactants allowing the achievement of 4,942 W/kg (8,649 Wh/kg) at 2 A/ge (1.7 mA/cm2). PMID:28374862</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016RSOS....360552C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016RSOS....360552C"><span>Halloysite nanotube-based electrospun ceramic nanofibre mat: a novel support for zeolite membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Zhuwen; Zeng, Jiaying; Lv, Dong; Gao, Jinqiang; Zhang, Jian; Bai, Shan; Li, Ruili; Hong, Mei; Wu, Jingshen</p> <p>2016-12-01</p> <p>Some key parameters of supports such as porosity, pore shape and size are of great importance for fabrication and performance of zeolite membranes. In this study, we fabricated millimetre-thick, self-standing electrospun ceramic nanofibre mats and employed them as a novel support for zeolite membranes. The nanofibre mats were prepared by electrospinning a halloysite nanotubes/polyvinyl pyrrolidone composite followed by a programmed sintering process. The interwoven nanofibre mats possess up to 80% porosity, narrow pore size distribution, low pore tortuosity and highly interconnected pore structure. Compared with the commercial α-Al2O3 supports prepared by powder compaction and sintering, the halloysite nanotube-based mats (HNMs) show higher flux, better adsorption of zeolite seeds, adhesion of zeolite membranes and lower Al leaching. Four types of zeolite membranes supported on HNMs have been successfully synthesized with either in situ crystallization or a secondary growth method, demonstrating good universality of HNMs for supporting zeolite membranes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9646494','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9646494"><span>Characterization of large-pore polymeric supports for use in perfusion biochromatography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Whitney, D; McCoy, M; Gordon, N; Afeyan, N</p> <p>1998-05-22</p> <p>Perfusion chromatography is uniquely characterized by the flow of a portion of the column eluent directly through the resin in the packed bed. The benefits of this phenomenon and some of the properties of perfusive resins have been described before, and can be summarized as enhanced mass transport to interior binding sites. Here we extend the understanding of this phenomenon by comparing resins with different pore size distributions. Resins are chosen to give approximately the same specific pore volumes (as shown in the characterization section) but the varying contribution of large pores is used to control the amount of liquid flowing through the beads. POROS R1 has the largest contribution of throughpores, and therefore the greatest intraparticle flow. POROS R2 has a lower contribution of throughpores, and a higher surface area coming from a greater population of diffusive pores, but still shows significant mass transport enhancements relative to a purely diffusive control. Oligo R3 is dominated by a high population of diffusive pores, and is used comparatively as a non-perfusive resin. Although the pore size distribution can be engineered to control mass transport rates, the resulting surface area is not the only means by which binding capacity can be controlled. Surface coatings are employed to increase binding capacity without fundamentally altering the mass transport properties. Models are used to describe the amount of flow transecting the beads, and comparisons of coated resins to uncoated (polystyrene) resins leads to the conclusion that these coatings do not obstruct the throughpore structures. This is an important conclusion since the binding capacity of the coated product, in some cases, is shown to be over 10-fold higher than the precursor polystyrene scaffold (i.e., POROS R1 or POROS R2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22591071-study-different-characteristics-doped-tri-calcium-phosphate-different-sintering-temperatures','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22591071-study-different-characteristics-doped-tri-calcium-phosphate-different-sintering-temperatures"><span>Study on different characteristics of doped tri calcium phosphate at different sintering temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Samanta, Sujan Krishna, E-mail: itssujan@rediffmail.com; Chanda, Abhijit, E-mail: abhijitchanda.biomed@gmail.com</p> <p>2016-04-13</p> <p>Pure β-tricalcium phosphate (β-TCP), Zn-doped (3wt %) β-TCP and Mg- doped (3wt %) β-TCP samples were prepared by using a wet chemical precipitation synthesis technique, followed by calcination at 800 °C in air. The developed materials were subjected to sintering at different temperatures. Density and porosity were compared. The X-ray diffractometry (XRD) and Fourier-transformed infrared (FTIR) spectrometer were used to examine the changes in crystalline phases and presence of functional groups of TCP ceramics. The scanning electron microscopy (SEM) was used to study the pore formation, pore size, grain size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190516','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190516"><span>Nanometre-sized pores in coal: Variations between coal basins and coal origin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.</p> <p>2018-01-01</p> <p>We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29133919','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29133919"><span>Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Jianhua; Jin, Zhijun; Hu, Qinhong; Jin, Zhenkui; Barber, Troy J; Zhang, Yuxiang; Bleuel, Markus</p> <p>2017-11-13</p> <p>An integration of small-angle neutron scattering (SANS), low-pressure N 2 physisorption (LPNP), and mercury injection capillary pressure (MICP) methods was employed to study the pore structure of four oil shale samples from leading Niobrara, Wolfcamp, Bakken, and Utica Formations in USA. Porosity values obtained from SANS are higher than those from two fluid-invasion methods, due to the ability of neutrons to probe pore spaces inaccessible to N 2 and mercury. However, SANS and LPNP methods exhibit a similar pore-size distribution, and both methods (in measuring total pore volume) show different results of porosity and pore-size distribution obtained from the MICP method (quantifying pore throats). Multi-scale (five pore-diameter intervals) inaccessible porosity to N 2 was determined using SANS and LPNP data. Overall, a large value of inaccessible porosity occurs at pore diameters <10 nm, which we attribute to low connectivity of organic matter-hosted and clay-associated pores in these shales. While each method probes a unique aspect of complex pore structure of shale, the discrepancy between pore structure results from different methods is explained with respect to their difference in measurable ranges of pore diameter, pore space, pore type, sample size and associated pore connectivity, as well as theoretical base and interpretation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Nanos...711580L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Nanos...711580L"><span>Synthesis of mesoporous carbon nanoparticles with large and tunable pore sizes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Chao; Yu, Meihua; Li, Yang; Li, Jiansheng; Wang, Jing; Yu, Chengzhong; Wang, Lianjun</p> <p>2015-07-01</p> <p>Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and small particle sizes may have excellent potential in drug/gene delivery.Mesoporous carbon nanoparticles (MCNs) with large and adjustable pores have been synthesized by using poly(ethylene oxide)-b-polystyrene (PEO-b-PS) as a template and resorcinol-formaldehyde (RF) as a carbon precursor. The resulting MCNs possess small diameters (100-126 nm) and high BET surface areas (up to 646 m2 g-1). By using home-designed block copolymers, the pore size of MCNs can be tuned in the range of 13-32 nm. Importantly, the pore size of 32 nm is the largest among the MCNs prepared by the soft-templating route. The formation mechanism and structure evolution of MCNs were studied by TEM and DLS measurements, based on which a soft-templating/sphere packing mechanism was proposed. Because of the large pores and small particle sizes, the resulting MCNs were excellent nano-carriers to deliver biomolecules into cancer cells. MCNs were further demonstrated with negligible toxicity. It is anticipated that this carbon material with large pores and small particle sizes may have excellent potential in drug/gene delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02389k</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11833639','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11833639"><span>Stochastic theory of size exclusion chromatography by the characteristic function approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dondi, Francesco; Cavazzini, Alberto; Remelli, Maurizio; Felinger, Attila; Martin, Michel</p> <p>2002-01-18</p> <p>A general stochastic theory of size exclusion chromatography (SEC) able to account for size dependence on both pore ingress and egress processes, moving zone dispersion and pore size distribution, was developed. The relationship between stochastic-chromatographic and batch equilibrium conditions are discussed and the fundamental role of the 'ergodic' hypothesis in establishing a link between them is emphasized. SEC models are solved by means of the characteristic function method and chromatographic parameters like plate height, peak skewness and excess are derived. The peak shapes are obtained by numerical inversion of the characteristic function under the most general conditions of the exploited models. Separate size effects on pore ingress and pore egress processes are investigated and their effects on both retention selectivity and efficiency are clearly shown. The peak splitting phenomenon and peak tailing due to incomplete sample sorption near to the exclusion limit is discussed. An SEC model for columns with two types of pores is discussed and several effects on retention selectivity and efficiency coming from pore size differences and their relative abundance are singled out. The relevance of moving zone dispersion on separation is investigated. The present approach proves to be general and able to account for more complex SEC conditions such as continuous pore size distributions and mixed retention mechanism.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4697274','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4697274"><span>Relation Between Pore Size and the Compressibility of a Confined Fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gor, Gennady Y.; Siderius, Daniel W.; Rasmussen, Christopher J.; Krekelberg, William P.; Shen, Vincent K.; Bernstein, Noam</p> <p>2015-01-01</p> <p>When a fluid is confined to a nanopore, its thermodynamic properties differ from the properties of a bulk fluid, so measuring such properties of the confined fluid can provide information about the pore sizes. Here we report a simple relation between the pore size and isothermal compressibility of argon confined in these pores. Compressibility is calculated from the fluctuations of the number of particles in the grand canonical ensemble using two different simulation techniques: conventional grand-canonical Monte Carlo and grand-canonical ensemble transition-matrix Monte Carlo. Our results provide a theoretical framework for extracting the information on the pore sizes of fluid-saturated samples by measuring the compressibility from ultrasonic experiments. PMID:26590541</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AdWR...31.1188L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AdWR...31.1188L"><span>Impact of geometrical properties on permeability and fluid phase distribution in porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lehmann, P.; Berchtold, M.; Ahrenholz, B.; Tölke, J.; Kaestner, A.; Krafczyk, M.; Flühler, H.; Künsch, H. R.</p> <p>2008-09-01</p> <p>To predict fluid phase distribution in porous media, the effect of geometric properties on flow processes must be understood. In this study, we analyze the effect of volume, surface, curvature and connectivity (the four Minkowski functionals) on the hydraulic conductivity and the water retention curve. For that purpose, we generated 12 artificial structures with 800 3 voxels (the units of a 3D image) and compared them with a scanned sand sample of the same size. The structures were generated with a Boolean model based on a random distribution of overlapping ellipsoids whose size and shape were chosen to fulfill the criteria of the measured functionals. The pore structure of sand material was mapped with X-rays from synchrotrons. To analyze the effect of geometry on water flow and fluid distribution we carried out three types of analysis: Firstly, we computed geometrical properties like chord length, distance from the solids, pore size distribution and the Minkowski functionals as a function of pore size. Secondly, the fluid phase distribution as a function of the applied pressure was calculated with a morphological pore network model. Thirdly, the permeability was determined using a state-of-the-art lattice-Boltzmann method. For the simulated structure with the true Minkowski functionals the pores were larger and the computed air-entry value of the artificial medium was reduced to 85% of the value obtained from the scanned sample. The computed permeability for the geometry with the four fitted Minkowski functionals was equal to the permeability of the scanned image. The permeability was much more sensitive to the volume and surface than to curvature and connectivity of the medium. We conclude that the Minkowski functionals are not sufficient to characterize the geometrical properties of a porous structure that are relevant for the distribution of two fluid phases. Depending on the procedure to generate artificial structures with predefined Minkowski functionals, structures differing in pore size distribution can be obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA584237','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA584237"><span>Processing and Characterization of Porous Ti2AlC with Controlled Porosity and Pore Size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-11</p> <p>fabricated by spark plasma sintering , were also characterized. The effects of porosity and/or pore size on the room temperature elastic moduli...pressureless- sintered without NaCl pore former, or fabricated by spark plasma sintering , were also characterized. The effects of porosity and/or pore size...as well as several samples sintered using spark plasma sintering (SPS). Furthermore, we demon- strate that the developed methodology can be implemented</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1261423-translational-diffusion-water-inside-hydrophobic-carbon-micropores-studied-neutron-spectroscopy-molecular-dynamics-simulation','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1261423-translational-diffusion-water-inside-hydrophobic-carbon-micropores-studied-neutron-spectroscopy-molecular-dynamics-simulation"><span>Translational diffusion of water inside hydrophobic carbon micropores studied by neutron spectroscopy and molecular dynamics simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Diallo, S. O.; Vlcek, L.; Mamontov, E.; ...</p> <p>2015-02-17</p> <p>When water molecules are confined to nanoscale spacings, such as in the nanometer-size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures (~150 K), leading to a metastable liquid state with remarkable physical properties. Here we have investigated the ambient pressure diffusive dynamics of water in microporous Kynol ACF-10 (average pore size ~11.6 Å, with primarily slit-like pores) from temperature T = 280 K in its stable liquid state down to T = 230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be, respectively, higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time (more » $${{\\tau}}$$) when compared to previous findings indicate that it is the width of the slit pores-not their curvature-that primarily affects the dynamics of water for pore sizes larger than 10 Å. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 Å gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer Q (Q ≤ 0.9 Å -1). At high Q, however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. Consequently, the simulations are compared to the experiments at low Q, where the two can be best reconciled. The best agreement is obtained for the diffusion parameter D associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bimodal exponential model, is used to parametrize the self-correlation function I (Q,t).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27615807','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27615807"><span>Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rabbi, S M F; Daniel, H; Lockwood, P V; Macdonald, C; Pereg, L; Tighe, M; Wilson, B R; Young, I M</p> <p>2016-09-12</p> <p>Aggregates play a key role in protecting soil organic carbon (SOC) from microbial decomposition. The objectives of this study were to investigate the influence of pore geometry on the organic carbon decomposition rate and bacterial diversity in both macro- (250-2000 μm) and micro-aggregates (53-250 μm) using field samples. Four sites of contrasting land use on Alfisols (i.e. native pasture, crop/pasture rotation, woodland) were investigated. 3D Pore geometry of the micro-aggregates and macro-aggregates were examined by X-ray computed tomography (μCT). The occluded particulate organic carbon (oPOC) of aggregates was measured by size and density fractionation methods. Micro-aggregates had 54% less μCT observed porosity but 64% more oPOC compared with macro-aggregates. In addition, the pore connectivity in micro-aggregates was lower than macro-aggregates. Despite both lower μCT observed porosity and pore connectivity in micro-aggregates, the organic carbon decomposition rate constant (Ksoc) was similar in both aggregate size ranges. Structural equation modelling showed a strong positive relationship of the concentration of oPOC with bacterial diversity in aggregates. We use these findings to propose a conceptual model that illustrates the dynamic links between substrate, bacterial diversity, and pore geometry that suggests a structural explanation for differences in bacterial diversity across aggregate sizes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5018812','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5018812"><span>Physical soil architectural traits are functionally linked to carbon decomposition and bacterial diversity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Rabbi, S. M. F.; Daniel, H.; Lockwood, P. V.; Macdonald, C.; Pereg, L.; Tighe, M.; Wilson, B. R.; Young, I. M.</p> <p>2016-01-01</p> <p>Aggregates play a key role in protecting soil organic carbon (SOC) from microbial decomposition. The objectives of this study were to investigate the influence of pore geometry on the organic carbon decomposition rate and bacterial diversity in both macro- (250–2000 μm) and micro-aggregates (53–250 μm) using field samples. Four sites of contrasting land use on Alfisols (i.e. native pasture, crop/pasture rotation, woodland) were investigated. 3D Pore geometry of the micro-aggregates and macro-aggregates were examined by X-ray computed tomography (μCT). The occluded particulate organic carbon (oPOC) of aggregates was measured by size and density fractionation methods. Micro-aggregates had 54% less μCT observed porosity but 64% more oPOC compared with macro-aggregates. In addition, the pore connectivity in micro-aggregates was lower than macro-aggregates. Despite both lower μCT observed porosity and pore connectivity in micro-aggregates, the organic carbon decomposition rate constant (Ksoc) was similar in both aggregate size ranges. Structural equation modelling showed a strong positive relationship of the concentration of oPOC with bacterial diversity in aggregates. We use these findings to propose a conceptual model that illustrates the dynamic links between substrate, bacterial diversity, and pore geometry that suggests a structural explanation for differences in bacterial diversity across aggregate sizes. PMID:27615807</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19578471','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19578471"><span>Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Belwalkar, A; Grasing, E; Van Geertruyden, W; Huang, Z; Misiolek, W Z</p> <p>2008-07-01</p> <p>Nanoporous anodic aluminum oxide (AAO) tubular membranes were fabricated from aluminum alloy tubes in sulfuric and oxalic acid electrolytes using a two-step anodization process. The membranes were investigated for characteristics such as pore size, interpore distance and thickness by varying applied voltage and electrolyte concentration. Morphology of the membranes was examined using light optical and scanning electron microscopy and characterized using ImageJ software. Results showed that membranes having narrow pore size and uniform pore distribution with parallel channel arrays were obtained. The pore sizes were ranging from 14 to 24 nm and the wall thicknesses as high as 76 microm. It was found that the pore size increased in direct proportion with the applied voltage and inversely with the electrolyte concentration while the interpore distance increased linearly with the applied voltage. It was also observed that increase in acid concentration increased tubular membrane wall thickness that improved mechanical handling. By using anodic alumina technology, robust ceramic tubes with uniformly distributed pore-structure and parallel nano-channels of lengths and sizes practical for industrial applications were reliably produced in quantity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2493467','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2493467"><span>Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Belwalkar, A.; Grasing, E.; Huang, Z.; Misiolek, W.Z.</p> <p>2008-01-01</p> <p>Nanoporous anodic aluminum oxide (AAO) tubular membranes were fabricated from aluminum alloy tubes in sulfuric and oxalic acid electrolytes using a two-step anodization process. The membranes were investigated for characteristics such as pore size, interpore distance and thickness by varying applied voltage and electrolyte concentration. Morphology of the membranes was examined using light optical and scanning electron microscopy and characterized using ImageJ software. Results showed that membranes having narrow pore size and uniform pore distribution with parallel channel arrays were obtained. The pore sizes were ranging from 14 to 24 nm and the wall thicknesses as high as 76 µm. It was found that the pore size increased in direct proportion with the applied voltage and inversely with the electrolyte concentration while the interpore distance increased linearly with the applied voltage. It was also observed that increase in acid concentration increased tubular membrane wall thickness that improved mechanical handling. By using anodic alumina technology, robust ceramic tubes with uniformly distributed pore-structure and parallel nano-channels of lengths and sizes practical for industrial applications were reliably produced in quantity. PMID:19578471</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDF35004H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDF35004H"><span>Pore size distribution effect on rarefied gas transport in porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hori, Takuma; Yoshimoto, Yuta; Takagi, Shu; Kinefuchi, Ikuya</p> <p>2017-11-01</p> <p>Gas transport phenomena in porous media are known to strongly influence the performance of devices such as gas separation membranes and fuel cells. Knudsen diffusion is a dominant flow regime in these devices since they have nanoscale pores. Many experiments have shown that these porous media have complex structures and pore size distributions; thus, the diffusion coefficient in these media cannot be easily assessed. Previous studies have reported that the characteristic pore diameter of porous media can be defined in light of the pore size distribution; however, tortuosity factor, which is necessary for the evaluation of diffusion coefficient, is still unknown without gas transport measurements or simulations. Thus, the relation between pore size distributions and tortuosity factors is required to obtain the gas transport properties. We perform numerical simulations to prove the relation between them. Porous media are numerically constructed while satisfying given pore size distributions. Then, the mean-square displacement simulation is performed to obtain the tortuosity factors of the constructed porous media.. This paper is based on results obtained from a project commissioned by the New Energy and Industrial Development Organization (NEDO).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.5645B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.5645B"><span>Impact of spatially correlated pore-scale heterogeneity on drying porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borgman, Oshri; Fantinel, Paolo; Lühder, Wieland; Goehring, Lucas; Holtzman, Ran</p> <p>2017-07-01</p> <p>We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media. We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our simulated drying behavior compares favorably with experiments, considering the large sensitivity of the emergent behavior to the uncertainty associated with even small manufacturing errors. We show that increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, prolonging liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our findings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets of energy, water and solutes in soils.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004OptMa..26..181R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004OptMa..26..181R"><span>Porous glasses as a matrix for incorporation of photonic materials. Pore determination by positron annihilation lifetime spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reisfeld, Pore determination by positron annihilation lifetime spectroscopy R.; Saraidarov, T.; Jasinska, B.</p> <p>2004-07-01</p> <p>Porous glasses prepared by the sol-gel technique have a variety of applications when incorporated by photonic materials: tunable lasers, sensors, luminescence solar concentrators, semiconductor quantum dots, biological markers. The known methods of pore size determinations, the nitrogen adsorption and mercury porosimetry allow to determine the sizes of open pores. Positron annihilation lifetime spectroscopy (PALS) allows to determine pore sizes also of closed pores. As an example we have performed measurements of non-doped zirconia-silica-polyurethane (ZSUR) ormocer glasses and the same glasses doped with lead sulfide quantum dots. The pore radii range between 0.25-0.38 nm, total surface area 15.5-23.8 m 2/g.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97e3104B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97e3104B"><span>Validation of model predictions of pore-scale fluid distributions during two-phase flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.</p> <p>2018-05-01</p> <p>Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=226586','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=226586"><span>Prediction of Hydraulic Conductivity as Related to Pore Size Distribution in Unsaturated Soils</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Soil pore volume as well as pore size, shape, type (i.e. biopore versus crack), continuity, and distribution in soil affect soil water and gas exchange. Vertical and lateral drainage of water by gravitational forces occurs through large, non-capillary soil pores, but redistribution and upward moveme...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR11A0290C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR11A0290C"><span>The Application of Fractal and Multifractal Theory in Hydraulic-Flow-Unit Characterization and Permeability Estimation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, X.; Yao, G.; Cai, J.</p> <p>2017-12-01</p> <p>Pore structure characteristics are important factors in influencing the fluid transport behavior of porous media, such as pore-throat ratio, pore connectivity and size distribution, moreover, wettability. To accurately characterize the diversity of pore structure among HFUs, five samples selected from different HFUs (porosities are approximately equal, however permeability varies widely) were chosen to conduct micro-computerized tomography test to acquire direct 3D images of pore geometries and to perform mercury injection experiments to obtain the pore volume-radii distribution. To characterize complex and high nonlinear pore structure of all samples, three classic fractal geometry models were applied. Results showed that each HFU has similar box-counting fractal dimension and generalized fractal dimension in the number-area model, but there are significant differences in multifractal spectrums. In the radius-volume model, there are three obvious linear segments, corresponding to three fractal dimension values, and the middle one is proved as the actual fractal dimension according to the maximum radius. In the number-radius model, the spherical-pore size distribution extracted by maximum ball algorithm exist a decrease in the number of small pores compared with the fractal power rate rather than the traditional linear law. Among the three models, only multifractal analysis can classify the HFUs accurately. Additionally, due to the tightness and low-permeability in reservoir rocks, connate water film existing in the inner surface of pore channels commonly forms bound water. The conventional model which is known as Yu-Cheng's model has been proved to be typically not applicable. Considering the effect of irreducible water saturation, an improved fractal permeability model was also deduced theoretically. The comparison results showed that the improved model can be applied to calculate permeability directly and accurately in such unconventional rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25778351','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25778351"><span>Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Fuping; Li, Jinshan; Xu, Guangsheng; Liu, Gejun; Kou, Hongchao; Zhou, Lian</p> <p>2015-06-01</p> <p>Porous titanium with average pore size of 100-650 μm and porosity of 30-70% was fabricated by diffusion bonding of titanium meshes. Pore structure was characterized by Micro-CT scan and SEM. Compressive behavior of porous titanium in the out-of-plane direction was studied. The effect of porosity and pore size on the compressive properties was also discussed based on the deformation mode. The results reveal that the fabrication process can control the porosity precisely. The average pore size of porous titanium can be tailored by adjusting the pore size of titanium meshes. The fabricated porous titanium possesses an anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The compressive Young's modulus and yield stress are in the range of 1-7.5 GPa and 10-110 MPa, respectively. The dominant compressive deformation mode is buckling of mesh wires, but some uncoordinated buckling is present in porous titanium with lower porosity. Relationship between compressive properties and porosity conforms well to the Gibson-Ashby model. The effect of pore size on compressive properties is fundamentally ascribed to the aspect ratio of titanium meshes. Porous titanium with 60-70% porosity has potential for trabecular bone implant applications. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21689824','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21689824"><span>Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Jixi; Li, Xu; Rosenholm, Jessica M; Gu, Hong-chen</p> <p>2011-09-01</p> <p>Magnetic mesoporous silica nanoparticles (M-MSNs) are emerging as one of the most appealing candidates for theranostic carriers. Herein, a simple synthesis method of M-MSNs with a single Fe(3)O(4) nanocrystal core and a mesoporous shell with radially aligned pores was elaborated using tetraethyl orthosilicate (TEOS) as silica source, cationic surfactant CTAB as template, and 1,3,5-triisopropylbenzene (TMB)/decane as pore swelling agents. Due to the special localization of TMB during the synthesis process, the pore size was increased with added TMB amount within a limited range, while further employment of TMB lead to severe particle coalescence and not well-developed pore structure. On the other hand, when a proper amount of decane was jointly incorporated with limited amounts of TMB, effective pore expansion of M-MSNs similar to that of analogous mesoporous silica nanoparticles was realized. The resultant M-MSN materials possessed smaller particle size (about 40-70 nm in diameter), tunable pore sizes (3.8-6.1 nm), high surface areas (700-1100 m(2)/g), and large pore volumes (0.44-1.54 cm(3)/g). We also demonstrate their high potential in conventional DNA loading. Maximum loading capacity of salmon sperm DNA (375 mg/g) was obtained by the use of the M-MSN sample with the largest pore size of 6.1 nm. Copyright © 2011 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1399606-heat-treatment-defective-uio-from-modulated-synthesis-adsorption-stability-studies','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1399606-heat-treatment-defective-uio-from-modulated-synthesis-adsorption-stability-studies"><span>Heat-Treatment of Defective UiO-66 from Modulated Synthesis: Adsorption and Stability Studies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Jiao, Yang; Liu, Yang; Zhu, Guanghui; ...</p> <p>2017-09-21</p> <p>Defect engineering in metal–organic frameworks (MOFs) is an emerging strategy that can be used to control physical or chemical characteristics of MOFs, including adsorption behavior and textural, mechanical, and conductive properties. Understanding the impact of defects on textural properties and chemical stability of MOFs is imperative to the development of MOFs with tunable defect sites. In this work, systematic adsorption measurements were performed with three adsorbate molecules (SO 2, benzene, and cyclohexane) to investigate changes in the pore size of defective UiO-66. Compared to the parent UiO-66, the defective UiO-66 shows significant changes in adsorption capacities among the selected adsorbatemore » molecules, demonstrating that pore size is significantly enlarged by the missing cluster defects. BET surface area analysis and DFT calculations were also performed to interrogate the chemical stability of the defective MOFs after exposure to water and acidic environments. This work shows that pore size can be tuned as a function of defect concentration. Further, it is shown that the structural incorporation of trifluoroacetate groups in defective UiO-66 leads to an increase in average pore size without sacrificing chemical stability toward water and acidic species. The results of this work advance the understanding of textural properties and chemical stability of defect-engineered MOFs and also suggest a preparation method for synthesizing defective but stable MOFs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25546834','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25546834"><span>Drug release through liposome pores.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dan, Nily</p> <p>2015-02-01</p> <p>Electrical, ultrasound and other types of external fields are known to induce the formation of pores in cellular and model membranes. This paper examines drug release through field induced liposome pores using Monte Carlo simulations. We find that drug release rates vary as a function of pore size and spacing, as well as the overall fraction of surface area covered by pores: The rate of release from liposomes is found to increase rapidly with pore surface coverage, approaching that of the fully ruptured liposome at fractional pore areas. For a given pore surface coverage, the pore size affects the release rate in the limit of low coverage, but not when the pores cover a relatively high fraction of the liposome surface area. On the other hand, for a given pore size and surface coverage, the distribution of pores significantly affects the release in the limit of high surface coverage: The rate of release from a liposome covered with a regularly spaced array of pores is, in this limit, higher than the release rate from (most) systems where the pores are distributed randomly on the liposome surface. In contrast, there is little effect of the pore distribution on release when the pore surface coverage is low. The simulation results are in good agreement with the predictions of detailed diffusion models. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4735595','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4735595"><span>Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wang, Sen; Javadpour, Farzam; Feng, Qihong</p> <p>2016-01-01</p> <p>We optimized potential parameters in a molecular dynamics model to reproduce the experimental contact angle of a macroscopic mercury droplet on graphite. With the tuned potential, we studied the effects of pore size, geometry, and temperature on the wetting of mercury droplets confined in organic-rich shale nanopores. The contact angle of mercury in a circular pore increases exponentially as pore size decreases. In conjunction with the curvature-dependent surface tension of liquid droplets predicted from a theoretical model, we proposed a technique to correct the common interpretation procedure of mercury intrusion capillary pressure (MICP) measurement for nanoporous material such as shale. Considering the variation of contact angle and surface tension with pore size improves the agreement between MICP and adsorption-derived pore size distribution, especially for pores having a radius smaller than 5 nm. The relative error produced in ignoring these effects could be as high as 44%—samples that contain smaller pores deviate more. We also explored the impacts of pore size and temperature on the surface tension and contact angle of water/vapor and oil/gas systems, by which the capillary pressure of water/oil/gas in shale can be obtained from MICP. This information is fundamental to understanding multiphase flow behavior in shale systems. PMID:26832445</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14698402','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14698402"><span>1H and 2H NMR studies of benzene confined in porous solids: melting point depression and pore size distribution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aksnes, D W; Kimtys, L</p> <p>2004-01-01</p> <p>The pore size distributions of four controlled pore glasses and three silica gels with nominal diameters in the range 4-24 nm were determined by measuring the 1H and 2H NMR signals from the non-frozen fraction of confined benzene and perdeuterated benzene as a function of temperature, in steps of ca. 0.1-1 K. The liquid and solid components of the adsorbate were distinguished, on the basis of the spin-spin relaxation time T2, by employing a spin-echo sequence. The experimental intensity curves of the liquid component are well represented by a sum of two error functions. The mean melting point depression of benzene and perdeuterated benzene confined in the four controlled pore glasses, with pore radius R, follows the simplified Gibbs-Thompson equation DeltaT=kp/R with a kp value of 44 K nm. As expected, the kp value mainly determines the position of the pore size distribution curve, i.e., the mean pore radius, while the transition width determines the shape of the pore size distribution curve. The excellent agreement between the results from the 1H and 2H measurements shows that the effect of the background absorption from protons in physisorbed water and silanol groups is negligible under the experimental conditions used. The overall pore size distributions determined by NMR are in reasonable agreement with the results specified by the manufacturer, or measured by us using the N2 sorption technique. The NMR method, which is complementary to the conventional gas sorption method, is particularly appropriate for studying pore sizes in the mesoporous range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29547396','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29547396"><span>Understanding the role of pore size homogeneity in the water transport through graphene layers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Su, Jiaye; Zhao, Yunzhen; Fang, Chang</p> <p>2018-06-01</p> <p>Graphene is a versatile 2D material and attracts an increasing amount of attention from a broad scientific community, including novel nanofluidic devices. In this work, we use molecular dynamics simulations to study the pressure driven water transport through graphene layers, focusing on the pore size homogeneity, realized by the arrangement of two pore sizes. For a given layer number, we find that water flux exhibits an excellent linear behavior with pressure, in agreement with the prediction of the Hagen-Poiseuille equation. Interestingly, the flux for concentrated pore size distribution is around two times larger than that of a uniform distribution. More surprisingly, under a given pressure, the water flux changes in an opposite way for these two distributions, where the flux ratio almost increases linearly with the layer number. For the largest layer number, more distributions suggest the same conclusion that higher water flux can be attained for more concentrated pore size distributions. Similar differences for the water translocation time and occupancy are also identified. The major reason for these results should clearly be due to the hydrogen bond and density profile distributions. Our results are helpful to delineate the exquisite role of pore size homogeneity, and should have great implications for the design of high flux nanofluidic devices and inversely the detection of pore structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Nanot..29v5706S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Nanot..29v5706S"><span>Understanding the role of pore size homogeneity in the water transport through graphene layers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Jiaye; Zhao, Yunzhen; Fang, Chang</p> <p>2018-06-01</p> <p>Graphene is a versatile 2D material and attracts an increasing amount of attention from a broad scientific community, including novel nanofluidic devices. In this work, we use molecular dynamics simulations to study the pressure driven water transport through graphene layers, focusing on the pore size homogeneity, realized by the arrangement of two pore sizes. For a given layer number, we find that water flux exhibits an excellent linear behavior with pressure, in agreement with the prediction of the Hagen–Poiseuille equation. Interestingly, the flux for concentrated pore size distribution is around two times larger than that of a uniform distribution. More surprisingly, under a given pressure, the water flux changes in an opposite way for these two distributions, where the flux ratio almost increases linearly with the layer number. For the largest layer number, more distributions suggest the same conclusion that higher water flux can be attained for more concentrated pore size distributions. Similar differences for the water translocation time and occupancy are also identified. The major reason for these results should clearly be due to the hydrogen bond and density profile distributions. Our results are helpful to delineate the exquisite role of pore size homogeneity, and should have great implications for the design of high flux nanofluidic devices and inversely the detection of pore structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830030623&hterms=reverse+osmosis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dreverse%2Bosmosis','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830030623&hterms=reverse+osmosis&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dreverse%2Bosmosis"><span>A general diagram for estimating pore size of ultrafiltration and reverse osmosis membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sarbolouki, M. N.</p> <p>1982-01-01</p> <p>A slit sieve model has been used to develop a general correlation between the average pore size of the upstream surface of a membrane and the molecular weight of the solute which it retains by better than 80%. The pore size is determined by means of the correlation using the high retention data from an ultrafiltration (UF) or a reverse osmosis (RO) experiment. The pore population density can also be calculated from the flux data via appropriate equations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26199680','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26199680"><span>Single-Crystalline, Nanoporous Gallium Nitride Films With Fine Tuning of Pore Size for Stem Cell Engineering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Han, Lin; Zhou, Jing; Sun, Yubing; Zhang, Yu; Han, Jung; Fu, Jianping; Fan, Rong</p> <p>2014-11-01</p> <p>Single-crystalline nanoporous gallium nitride (GaN) thin films were fabricated with the pore size readily tunable in 20-100 nm. Uniform adhesion and spreading of human mesenchymal stem cells (hMSCs) seeded on these thin films peak on the surface with pore size of 30 nm. Substantial cell elongation emerges as pore size increases to ∼80 nm. The osteogenic differentiation of hMSCs occurs preferentially on the films with 30 nm sized nanopores, which is correlated with the optimum condition for cell spreading, which suggests that adhesion, spreading, and stem cell differentiation are interlinked and might be coregulated by nanotopography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=200364&keyword=hygiene&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=200364&keyword=hygiene&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Efficiency of Sampling and Analysis of Asbestos Fibers on Filter Media: Implications for Exposure Assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>To measure airborne asbestos and other fibers, an air sample must represent the actual number and size of fibers. Typically, mixed cellulose ester (MCE, 0.45 or 0.8 µm pore size) and to a much lesser extent, capillary-pore polycarbonate (PC, 0.4 µm pore size) membrane filters are...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997JChPh.106.6152A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997JChPh.106.6152A"><span>Threading dynamics of a polymer through parallel pores: Potential applications to DNA size separation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Åkerman, Björn</p> <p>1997-04-01</p> <p>DNA orientation measurements by linear dichroism (LD) spectroscopy and single molecule imaging by fluorescence microscopy are used to investigate the effect of DNA size (71-740 kilo base pairs) and field strength E (1-5.9 V/cm) on the conformation dynamics during the field-driven threading of DNA molecules through a set of parallel pores in agarose gels, with average pore radii between 380 Å and 1400 Å. Locally relaxed but globally oriented DNA molecules are subjected to a perpendicular field, and the observed LD time profile is compared with a recent theory for the threading [D. Long and J.-L. Viovy, Phys. Rev. E 53, 803 (1996)] which assumes the same initial state. As predicted the DNA is driven by the ends into a U-form, leading to an overshoot in the LD. The overshoot-time scales as E-(1.2-1.4) as predicted, but grows more slowly with DNA size than the predicted linear dependence. For long molecules loops form initially in the threading process but are finally consumed by the ends, and the process of transfer of DNA segments, from the loops to the arms of the U, leads to a shoulder in the LD as predicted. The critical size below which loops do not form (as indicated by the LD shoulder being absent) is between 71 and 105 kbp (0.5% agarose, 5.9 V/cm), and considerably larger than predicted because in the initial state the DNA molecules are housed in gel cavities with effective pore sizes about four times larger than the average pore size. From the data, the separation of DNA by exploiting the threading dynamics in pulsed fields [D. Long et al., CR Acad. Sci. Paris, Ser. IIb 321, 239 (1995)] is shown to be feasible in principle in an agarose-based system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5449058','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5449058"><span>A Review: Fundamental Aspects of Silicate Mesoporous Materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>ALOthman, Zeid A.</p> <p>2012-01-01</p> <p>Silicate mesoporous materials have received widespread interest because of their potential applications as supports for catalysis, separation, selective adsorption, novel functional materials, and use as hosts to confine guest molecules, due to their extremely high surface areas combined with large and uniform pore sizes. Over time a constant demand has developed for larger pores with well-defined pore structures. Silicate materials, with well-defined pore sizes of about 2.0–10.0 nm, surpass the pore-size constraint (<2.0 nm) of microporous zeolites. They also possess extremely high surface areas (>700 m2 g−1) and narrow pore size distributions. Instead of using small organic molecules as templating compounds, as in the case of zeolites, long chain surfactant molecules were employed as the structure-directing agent during the synthesis of these highly ordered materials. The structure, composition, and pore size of these materials can be tailored during synthesis by variation of the reactant stoichiometry, the nature of the surfactant molecule, the auxiliary chemicals, the reaction conditions, or by post-synthesis functionalization techniques. This review focuses mainly on a concise overview of silicate mesoporous materials together with their applications. Perusal of the review will enable researchers to obtain succinct information about microporous and mesoporous materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27401022','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27401022"><span>Effects of Pore Size on the Osteoconductivity and Mechanical Properties of Calcium Phosphate Cement in a Rabbit Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Yi-Nan; Fan, Jun-Jun; Li, Zhi-Quan; Liu, Yan-Wu; Wu, Yao-Ping; Liu, Jian</p> <p>2017-02-01</p> <p>Calcium phosphate cement (CPC) porous scaffold is widely used as a suitable bone substitute to repair bone defect, but the optimal pore size is unclear yet. The current study aimed to evaluate the effect of different pore sizes on the processing of bone formation in repairing segmental bone defect of rabbits using CPC porous scaffolds. Three kinds of CPC porous scaffolds with 5 mm diameters and 12 mm length were prepared with the same porosity but different pore sizes (Group A: 200-300 µm, Group B: 300-450 µm, Group C: 450-600 µm, respectively). Twelve millimeter segmental bone defects were created in the middle of the radius bone and filled with different kinds of CPC cylindrical scaffolds. After 4, 12, and 24 weeks, alkaline phosphatase (ALP), histological assessment, and mechanical properties evaluation were performed in all three groups. After 4 weeks, ALP activity increased in all groups but was highest in Group A with smallest pore size. The new bone formation within the scaffolds was not obvious in all groups. After 12 weeks, the new bone formation within the scaffolds was obvious in each group and highest in Group A. At 24 weeks, no significant difference in new bone formation was observed among different groups. Besides the osteoconductive effect, Group A with smallest pore size also had the best mechanical properties in vivo at 12 weeks. We demonstrate that pore size has a significant effect on the osteoconductivity and mechanical properties of calcium phosphate cement porous scaffold in vivo. Small pore size favors the bone formation in the early stage and may be more suitable for repairing segmental bone defect in vivo. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MMTB...48..754C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MMTB...48..754C"><span>Fabrication of Aluminum Foams with Small Pore Size by Melt Foaming Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Ying; Li, Yanxiang; Chen, Xiang; Shi, Tong; Liu, Zhiyong; Wang, Ningzhen</p> <p>2017-04-01</p> <p>This article introduces an improvement to the fabrication of aluminum foams with small pore size by melt foaming method. Before added to the melt, the foaming agent (titanium hydride) was pretreated in two steps. It firstly went through the traditional pre-oxidation treatment, which delayed the decomposition of titanium hydride and made sure the dispersion stage was controllable. Then such pre-oxidized titanium hydride powder was mixed with copper powder in a planetary ball mill. This treatment can not only increase the number of foaming agent particles and make them easier to disperse in the melt, which helps to increase the number of pores, but also reduce the amount of hydrogen released in the foaming stage. Therefore, the pore size could be decreased. Using such a ball-milled foaming agent in melt foaming method, aluminum foams with small pore size (average size of 1.6 mm) were successfully fabricated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H33L..02H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H33L..02H"><span>Multiple Approaches to Characterizing Nano-Pore Structure of Barnett Shale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Q.; Gao, Z.; Ewing, R. P.; Dultz, S.; Kaufmann, J.; Hamamoto, S.; Webber, B.; Ding, M.</p> <p>2013-12-01</p> <p>Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and mass transport. This presentation discusses various approaches to investigating nano-pore structure of Barnett shale, with its implications in gas production behavior. The innovative approaches include imbibition, tracer diffusion, edge-accessible porosity, porosimetry (mercury intrusion porosimetry, nitrogen and water vapor sorption isotherms, and nuclear magnetic resonance cyroporometry), and imaging (Wood's metal impregnation followed with laser ablation-inductively coupled plasma-mass spectrometry, focused ion beam/scanning electron microscopy, and small angle neutron scattering). Results show that the shale pores are predominantly in the nm size range, with measured median pore-throat diameters about 5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low mass diffusivity appears to be caused by low pore connectivity of Barnett shale. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition and diffusion tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the nano-pore structure characteristics of shales and other natural rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/20969922-approaches-mitigate-impact-dissolved-organic-matter-adsorption-synthetic-organic-contaminants-porous-carbonaceous-sorbents','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20969922-approaches-mitigate-impact-dissolved-organic-matter-adsorption-synthetic-organic-contaminants-porous-carbonaceous-sorbents"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yanping Guo; Abhishek Yadav; Tanju Karanfil</p> <p></p> <p>Adsorption of trichloroethylene (TCE) and atrazine, two synthetic organic contaminants (SOCs) having different optimum adsorption pore regions, by four activated carbons and an activated carbon fiber (ACF) was examined. Adsorbents included two coconut-shell based granular activated carbons (GACs), two coal-based GACs (F400 and HD4000) and a phenol formaldehyde-based activated carbon fiber. The selected adsorbents had a wide range of pore size distributions but similar surface acidity and hydrophobicity. Single solute and preloading (with a dissolved organic matter (DOM)) isotherms were performed. Single solute adsorption results showed that (i) the adsorbents having higher amounts of pores with sizes about the dimensionsmore » of the adsorbate molecules exhibited higher uptakes, (ii) there were some pore structure characteristics, which were not completely captured by pore size distribution analysis, that also affected the adsorption, and (iii) the BET surface area and total pore volume were not the primary factors controlling the adsorption of SOCs. The preloading isotherm results showed that for TCE adsorbing primarily in pores <10 {angstrom}, the highly microporous ACF and GACs, acting like molecular sieves, exhibited the highest uptakes. For atrazine with an optimum adsorption pore region of 10-20 {angstrom}, which overlaps with the adsorption region of some DOM components, the GACs with a broad pore size distribution and high pore volumes in the 10-20 {angstrom} region had the least impact of DOM on the adsorption. 25 refs., 3 figs., 3 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPS...384..417R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPS...384..417R"><span>Deconstructing three-dimensional (3D) structure of absorptive glass mat (AGM) separator to tailor pore dimensions and amplify electrolyte uptake</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rawal, Amit; Rao, P. V. Kameswara; Kumar, Vijay</p> <p>2018-04-01</p> <p>Absorptive glass mat (AGM) separator is a vital technical component in valve regulated lead acid (VRLA) batteries that can be tailored for a desired application. To selectively design and tailor the AGM separator, the intricate three-dimensional (3D) structure needs to be unraveled. Herein, a toolkit of 3D analytical models of pore size distribution and electrolyte uptake expressed via wicking characteristics of AGM separators under unconfined and confined states is presented. 3D data of fiber orientation distributions obtained previously through X-ray micro-computed tomography (microCT) analysis are used as key set of input parameters. The predictive ability of pore size distribution model is assessed through the commonly used experimental set-up that usually apply high level of compressive stresses. Further, the existing analytical model of wicking characteristics of AGM separators has been extended to account for 3D characteristics, and subsequently, compared with the experimental results. A good agreement between the theory and experiments pave the way to simulate the realistic charge-discharge modes of the battery by applying cyclic loading condition. A threshold criterion describing the invariant behavior of pore size and wicking characteristics in terms of maximum permissible limit of key structural parameters during charge-discharge mode of the battery has also been proposed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019987','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019987"><span>Adsorption of SO2 on bituminous coal char and activated carbon fiber</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>DeBarr, Joseph A.; Lizzio, Anthony A.; Daley, Michael A.</p> <p>1997-01-01</p> <p>The SO2 adsorption behaviors of activated carbons produced from Illinois coal and of commercially prepared activated carbon fibers (ACFs) were compared. There was no relation between surface area of coal-based carbons and SO2 adsorption, whereas adsorption of SO2 on the series of ACFs was inversely proportional to N2 BET surface area. Higher surface area ACFs had wider pores and adsorbed less SO2; thus, pore size distribution is thought to play a significant role in SO2 adsorption for these materials. Oxidation with HNO3 and/or H2SO4, followed by heat treatment at 700−925°C to remove carbon−oxygen complexes, resulted in increased SO2 adsorption for both coal chars and ACFs. This behavior was explained by an increase in the available number of free sites, previously occupied by oxygen and now available for SO2 adsorption. The use of nitrogen-containing functional groups on ACFs of proper pore size shows promise for further increasing SO2 adsorption capacities. Knowledge of the relationship among the number of free sites, pore size, and surface chemistry on corresponding SO2 adsorption should lead to the development of more efficient adsorbents prepared from either coal or ACFs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1408449-computationally-guided-synthetic-control-over-pore-size-isostructural-porous-organic-cages','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1408449-computationally-guided-synthetic-control-over-pore-size-isostructural-porous-organic-cages"><span>Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Slater, Anna G.; Reiss, Paul S.; Pulido, Angeles; ...</p> <p>2017-06-20</p> <p>The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal-organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groupsmore » into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure-energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy-structure-function maps.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5532722','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5532722"><span>Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal–organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groups into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure–energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy–structure–function maps. PMID:28776015</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1408449','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1408449"><span>Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Slater, Anna G.; Reiss, Paul S.; Pulido, Angeles</p> <p></p> <p>The physical properties of 3-D porous solids are defined by their molecular geometry. Hence, precise control of pore size, pore shape, and pore connectivity are needed to tailor them for specific applications. However, for porous molecular crystals, the modification of pore size by adding pore-blocking groups can also affect crystal packing in an unpredictable way. This precludes strategies adopted for isoreticular metal-organic frameworks, where addition of a small group, such as a methyl group, does not affect the basic framework topology. Here, we narrow the pore size of a cage molecule, CC3, in a systematic way by introducing methyl groupsmore » into the cage windows. Computational crystal structure prediction was used to anticipate the packing preferences of two homochiral methylated cages, CC14-R and CC15-R, and to assess the structure-energy landscape of a CC15-R/CC3-S cocrystal, designed such that both component cages could be directed to pack with a 3-D, interconnected pore structure. The experimental gas sorption properties of these three cage systems agree well with physical properties predicted by computational energy-structure-function maps.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......230S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......230S"><span>Development of Multiscale Materials in Microfluidic Devices: Case Study for Viral Separation from Whole Blood</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Surawathanawises, Krissada</p> <p></p> <p>Separation and concentration of nanoscale species play an important role in various fields such as biotechnology, nanotechnology and environmental science. Inevitably, the separation efficiency strongly affects the quality of downstream detections or productions. Innovations in materials science that can separate bionanoparticles efficiently and do not require complex setups, reagents or external fields are highly demanded. This work focuses on developing new materials for the affinity separation of bio-nanoparticles such as viruses or macromolecules from a complex mixture, such as whole blood. To enhance the interaction between target nanoparticles and the capture bed, methods to produce porous matrices with a uniform pore size matching the dimension of targets are studied. Furthermore, regarding viral separation from whole blood, macroporous materials are further patterned into microarrays to allow multiscale separation. Considering the needs in resource-limited settings, these materials are integrated with microfluidic technologies to reduce the volume of samples and reagents, simplify operating processes, and enable the use of inexpensive and portable components. Beyond the application of viral separation as demonstrated in the work, the fundamental study of macroporous material formation and transport in these materials also shed light to the separation of many other nanospecies in multiscale materials. Specifically, two macroporous materials, based on template synthesis, are created in this work. The first type employs porous anodic aluminum oxide (AAO) films as the template to create hexagonal arrays of nanoposts. However, pore sizes and interpore distances (cell size) of ordered porous AAO films are limited by the conventional fabrication process. Moreover, the process usually yields defective pore morphologies and large pore and cell size distributions. To overcome these limitations, a patterning method using nanobead indentation on aluminum substrate prior to anodization is evaluated to control the growth of AAO. Together with controlled anodizing voltages and electrolytic concentrations, AAO pore and cell sizes are shown to be tunable and controllable with narrow size distributions within submicron range. A high degree of order of AAO pore arrangement is also demonstrated. In addition, overall anodization becomes more time-efficient and stable at high anodizing voltages. Secondly, a three-dimensional (3D) assembly of microbeads is used as a template to fabricate a spherical pore network with small interconnected openings. After depositing and drying a suspension containing both micro- and nanobeads, the microbeads assemble into a 3D close-packed structure while the nanobeads fill the interstitial space. When the nanobeads are melted and microbeads are removed, a spherical pore matrix then form with small interconnected openings. Such the opening size is in submicron range can be adjusted depending on the size of microbead. The advantages of the two macroporous materials are not only controllable and tunable pore size, but also high surface-to-volume ratio due to the nanoscale features. With a ratio on the order of ~1 microm-1, the porous materials provide a significantly large binding surface. Computational and experimental results reveal that porous materials with a pore size matching the nanoparticle size are suitable for their capture. Separation of human immunodeficiency virus (HIV) is used as a model and capture yields of ~99 % and ~80 % are achieved in the nanopost structure and spherical pore network, respectively, after treated with a functional chemistry. Hence, the properties of these two macroporous materials are suitable as a size-exclusion and affinity separation for viral particles. To further explore multiscale separation, i.e. capturing viruses from whole blood, micropatterned arrays of macroporous materials have been designed. In this design, a microscale gap allows the passage of microparticles such as blood cells, and the nanoscale pores promote permeation for affinity capture of bionanoparticles. Consequently, particles with a size difference of 3--4 orders of magnitude can be separated in a simple flow-through process. Computational analyses are employed to study the effect of micropattern shape and layout. A half-ring pattern is shown to reduce flow resistance and promote fluid permeation compared to a circular pattern. In the experiment, the micropatterned porous arrays yield around 4 times higher viral capture from whole blood compared with a micropatterned solid array. The micropatterned porous devices are capable of handling a large volume of fluid sample without clogging by cells. Therefore they can be used for nanoparticle concentration. Our study also indicates that the layout of micropatterns can be adjusted to improve the capture yield. For example, an increase in pattern radius, or a decrease in gap distance between each post and in width of half ring will enhance fluid permeation in the porous structure. When combined with downstream detection, these materials integrated into microfluidic platforms can be created as point-of-care diagnostics, as well as other applications for particle separation and analysis. (Abstract shortened by UMI.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1342705-evolution-pore-structure-during-early-stages-alkali-activation-reaction-situ-small-angle-neutron-scattering-investigation','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1342705-evolution-pore-structure-during-early-stages-alkali-activation-reaction-situ-small-angle-neutron-scattering-investigation"><span>Evolution of the pore structure during the early stages of the alkali-activation reaction: An in situ small-angle neutron scattering investigation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>White, Claire E.; Olds, Daniel P.; Hartl, Monika; ...</p> <p>2017-02-01</p> <p>The long-term durability of cement-based materials is influenced by the pore structure and associated permeability at the sub-micrometre length scale. With the emergence of new types of sustainable cements in recent decades, there is a pressing need to be able to predict the durability of these new materials, and therefore nondestructive experimental techniques capable of characterizing the evolution of the pore structure are increasingly crucial for investigating cement durability. Here, small-angle neutron scattering is used to analyze the evolution of the pore structure in alkali-activated materials over the initial 24 h of reaction in order to assess the characteristic poremore » sizes that emerge during these short time scales. By using a unified fitting approach for data modeling, information on the pore size and surface roughness is obtained for a variety of precursor chemistries and morphologies (metakaolin- and slag-based pastes). Furthermore, the impact of activator chemistry is elucidatedviathe analysis of pastes synthesized using hydroxide- and silicate-based activators. It is found that the main aspect influencing the size of pores that are accessible using small-angle neutron scattering analysis (approximately 10–500 Å in diameter) is the availability of free silica in the activating solution, which leads to a more refined pore structure with smaller average pore size. Furthermore, as the reaction progresses the gel pores visible using this scattering technique are seen to increase in size.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDE11005A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDE11005A"><span>Impact of pore size variability and network coupling on electrokinetic transport in porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alizadeh, Shima; Bazant, Martin Z.; Mani, Ali</p> <p>2016-11-01</p> <p>We have developed and validated an efficient and robust computational model to study the coupled fluid and ion transport through electrokinetic porous media, which are exposed to external gradients of pressure, electric potential, and concentration. In our approach a porous media is modeled as a network of many pores through which the transport is described by the coupled Poisson-Nernst-Planck-Stokes equations. When the pore sizes are random, the interactions between various modes of transport may provoke complexities such as concentration polarization shocks and internal flow circulations. These phenomena impact mixing and transport in various systems including deionization and filtration systems, supercapacitors, and lab-on-a-chip devices. In this work, we present simulations of massive networks of pores and we demonstrate the impact of pore size variation, and pore-pore coupling on the overall electrokinetic transport in porous media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMEP..tmp.1618T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMEP..tmp.1618T"><span>Effect of Pore Size, Morphology and Orientation on the Bulk Stiffness of a Porous Ti35Nb4Sn Alloy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Torres-Sanchez, Carmen; McLaughlin, John; Bonallo, Ross</p> <p>2018-04-01</p> <p>The metal foams of a titanium alloy were designed to study porosity as well as pore size and shape independently. These were manufactured using a powder metallurgy/space-holder technique that allowed a fine control of the pore size and morphology; and then characterized and tested against well-established models to predict a relationship between porosity, pore size and shape, and bulk stiffness. Among the typically used correlations, existing power-law models were found to be the best fit for the prediction of macropore morphology against compressive elastic moduli, outperforming other models such as exponential, polynomial or binomial. Other traditional models such as linear ones required of updated coefficients to become relevant to metal porous sintered macrostructures. The new coefficients reported in this study contribute toward a design tool that allows the tailoring of mechanical properties through porosity macrostructure. The results show that, for the same porosity range, pore shape and orientation have a significant effect on mechanical performance and that they can be predicted. Conversely, pore size has only a mild impact on bulk stiffness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16762408','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16762408"><span>In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Tao; Abdel-Fattah, Wafa I; Laurencin, Cato T</p> <p>2006-10-01</p> <p>A three-dimensional (3-D) scaffold is one of the major components in many tissue engineering approaches. We developed novel 3-D chitosan/poly(lactic acid-glycolic acid) (PLAGA) composite porous scaffolds by sintering together composite chitosan/PLAGA microspheres for bone tissue engineering applications. Pore sizes, pore volume, and mechanical properties of the scaffolds can be manipulated by controlling fabrication parameters, including sintering temperature and sintering time. The sintered microsphere scaffolds had a total pore volume between 28% and 37% with median pore size in the range 170-200microm. The compressive modulus and compressive strength of the scaffolds are in the range of trabecular bone making them suitable as scaffolds for load-bearing bone tissue engineering. In addition, MC3T3-E1 osteoblast-like cells proliferated well on the composite scaffolds as compared to PLAGA scaffolds. It was also shown that the presence of chitosan on microsphere surfaces increased the alkaline phosphatase activity of the cells cultured on the composite scaffolds and up-regulated gene expression of alkaline phosphatase, osteopontin, and bone sialoprotein.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22678216','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22678216"><span>A comparison of different activated carbon performances on catalytic ozonation of a model azo reactive dye.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gül, S; Eren, O; Kır, S; Onal, Y</p> <p>2012-01-01</p> <p>The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption. The highest BET surface area carbon (1,275 m(2)/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008ApPhA..92..295N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008ApPhA..92..295N"><span>Synthesis and characterization of mesoporous ZnS with narrow size distribution of small pores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nistor, L. C.; Mateescu, C. D.; Birjega, R.; Nistor, S. V.</p> <p>2008-08-01</p> <p>Pure, nanocrystalline cubic ZnS forming a stable mesoporous structure was synthesized at room temperature by a non-toxic surfactant-assisted liquid liquid reaction, in the 9.5 10.5 pH range of values. The appearance of an X-ray diffraction (XRD) peak in the region of very small angles (˜ 2°) reveals the presence of a porous material with a narrow pore size distribution, but with an irregular arrangement of the pores, a so-called worm hole or sponge-like material. The analysis of the wide angle XRD diffractograms shows the building blocks to be ZnS nanocrystals with cubic structure and average diameter of 2 nm. Transmission electron microscopy (TEM) investigations confirm the XRD results; ZnS crystallites of 2.5 nm with cubic (blende) structure are the building blocks of the pore walls with pore sizes from 1.9 to 2.5 nm, and a broader size distribution for samples with smaller pores. Textural measurements (N2 adsorption desorption isotherms) confirm the presence of mesoporous ZnS with a narrow range of small pore sizes. The relatively lower surface area of around 100 m2/g is attributed to some remaining organic molecules, which are filling the smallest pores. Their presence, confirmed by IR spectroscopy, seems to be responsible for the high stability of the resulting mesoporous ZnS as well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5618125','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5618125"><span>Preparation of Porous Stainless Steel Hollow-Fibers through Multi-Modal Particle Size Sintering towards Pore Engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Allioux, Francois-Marie; Etxeberria Benavides, Miren</p> <p>2017-01-01</p> <p>The sintering of metal powders is an efficient and versatile technique to fabricate porous metal elements such as filters, diffusers, and membranes. Neck formation between particles is, however, critical to tune the porosity and optimize mass transfer in order to minimize the densification process. In this work, macro-porous stainless steel (SS) hollow-fibers (HFs) were fabricated by the extrusion and sintering of a dope comprised, for the first time, of a bimodal mixture of SS powders. The SS particles of different sizes and shapes were mixed to increase the neck formation between the particles and control the densification process of the structure during sintering. The sintered HFs from particles of two different sizes were shown to be more mechanically stable at lower sintering temperature due to the increased neck area of the small particles sintered to the large ones. In addition, the sintered HFs made from particles of 10 and 44 μm showed a smaller average pore size (<1 μm) as compared to the micron-size pores of sintered HFs made from particles of 10 μm only and those of 10 and 20 μm. The novel HFs could be used in a range of applications, from filtration modules to electrochemical membrane reactors. PMID:28777352</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868241','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868241"><span>Metal oxide porous ceramic membranes with small pore sizes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Anderson, Marc A.; Xu, Qunyin</p> <p>1992-01-01</p> <p>A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/867770','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/867770"><span>Metal oxide porous ceramic membranes with small pore sizes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Anderson, Marc A.; Xu, Qunyin</p> <p>1991-01-01</p> <p>A method is disclosed for the production of metal oxide ceramic membranes of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24681276','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24681276"><span>The role of mesopores in MTBE removal with granular activated carbon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Redding, Adam M; Cannon, Fred S</p> <p>2014-06-01</p> <p>This activated carbon research appraised how pore size and empty-bed contact time influenced the removal of methyl tert-butyl ether (MTBE) at part-per-billion (ppb) concentrations when MTBE was the sole organic impurity. The study compared six granular activated carbons (GACs) from three parent sources; these GACs contained a range of pore volume distributions and had uniform slurry pHs of 9.7-10.4 (i.e. the carbons' bulk surface chemistries were basic). Several of these activated carbons had been specifically tailored for enhanced sorption of trace organic compounds. In these tests, MTBE was spiked into deionized-distilled water (∼pH 7); MTBE loading was measured by isotherms and by rapid small-scale column tests (RSSCTs) that simulated full-scale empty-bed contact times of 7, 14, and 28 min. The results showed that both ultra-fine micropores and small-diameter mesopores were important for MTBE adsorption. Specifically, full MTBE loading during RSSCTs bore a strong correlation (R(2) = 0.94) to the product (mL/g × mL/g) of pore volume ≤4.06 Å wide and pore volume between ∼22 Å and ∼59 Å wide. This correlation was greater than for the product of any other pore volume combinations. Also, this product exhibited a stronger correlation than for just one or the other of these two pore ranges. This multiplicative relationship implied that both of these pore sizes were important for the optimum GAC performance of these six carbons (i.e. favorable mass transfer coupled with favorable sorption). The authors also compared MTBE mass loading during RSSCTs (μg MTBE/g GAC) to isotherm capacity (μg MTBE/g GAC). This RSSCT loading "efficiency" ranged from 28% to 96% for the six GACs; this efficiency correlated most strongly to pores that were 14-200 Å wide (R(2) = 0.94). This correlation indicated that only those carbons with a sufficient volume of 14-200 Å pores could adsorb MTBE to the extent that would be predicted from isotherm data. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........33V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........33V"><span>Anodic Aluminum Oxide (AAO) Membranes for Cellular Devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ventura, Anthony P.</p> <p></p> <p>Anodic Aluminum Oxide (AAO) membranes can be fabricated with a highly tunable pore structure making them a suitable candidate for cellular hybrid devices with single-molecule selectivity. The objective of this study was to characterize the cellular response of AAO membranes with varying pore sizes to serve as a proof-of-concept for an artificial material/cell synapse system. AAO membranes with pore diameters ranging from 34-117 nm were achieved via anodization at a temperature of -1°C in a 2.7% oxalic acid electrolyte. An operating window was established for this setup to create membranes with through-pore and disordered pore morphologies. C17.2 neural stem cells were seeded onto the membranes and differentiated via serum withdrawal. The data suggests a highly tunable correlation between AAO pore diameter and differentiated cell populations. Analysis of membranes before and after cell culture indicated no breakdown of the through-pore structure. Immunocytochemistry (ICC) showed that AAO membranes had increased neurite outgrowth when compared to tissue culture treated (TCT) glass, and neurite outgrowth varied with pore diameter. Additionally, lower neuronal percentages were found on AAO as compared to TCT glass; however, neuronal population was also found to vary with pore diameter. Scanning electron microscopy (SEM) and ICC images suggested the presence of a tissue-like layer with a mixed-phenotype population. AAO membranes appear to be an excellent candidate for cellular devices, but more work must be completed to understand the surface chemistry of the AAO membranes as it relates to cellular response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR41B0408S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR41B0408S"><span>Multi-scale Pore Imaging Techniques to Characterise Heterogeneity Effects on Flow in Carbonate Rock</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shah, S. M.</p> <p>2017-12-01</p> <p>Digital rock analysis and pore-scale studies have become an essential tool in the oil and gas industry to understand and predict the petrophysical and multiphase flow properties for the assessment and exploitation of hydrocarbon reserves. Carbonate reservoirs, accounting for majority of the world's hydrocarbon reserves, are well known for their heterogeneity and multiscale pore characteristics. The pore sizes in carbonate rock can vary over orders of magnitudes, the geometry and topology parameters of pores at different scales have a great impact on flow properties. A pore-scale study is often comprised of two key procedures: 3D pore-scale imaging and numerical modelling techniques. The fundamental problem in pore-scale imaging and modelling is how to represent and model the different range of scales encountered in porous media, from the pore-scale to macroscopic petrophysical and multiphase flow properties. However, due to the restrictions of image size vs. resolution, the desired detail is rarely captured at the relevant length scales using any single imaging technique. Similarly, direct simulations of transport properties in heterogeneous rocks with broad pore size distributions are prohibitively expensive computationally. In this study, we present the advances and review the practical limitation of different imaging techniques varying from core-scale (1mm) using Medical Computed Tomography (CT) to pore-scale (10nm - 50µm) using Micro-CT, Confocal Laser Scanning Microscopy (CLSM) and Focussed Ion Beam (FIB) to characterise the complex pore structure in Ketton carbonate rock. The effect of pore structure and connectivity on the flow properties is investigated using the obtained pore scale images of Ketton carbonate using Pore Network and Lattice-Boltzmann simulation methods in comparison with experimental data. We also shed new light on the existence and size of the Representative Element of Volume (REV) capturing the different scales of heterogeneity from the pore-scale imaging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......327B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......327B"><span>Fluid Absorption and Release of Nonwovens and their Response to Compression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bateny, Fatemeh</p> <p></p> <p>Fluid handling is a key property in one of the major nonwoven applications in absorbent product such as wipes, hygiene products, and baby diapers. These products are subjected to various levels of compression in real-use. The aim of this study was to investigate the liquid absorption and release properties of nonwovens to establish the absorption structure-property relationship at various compression levels. A comprehensive methodology, considering various flow directions, was employed to establish the relationship by decoupling the effect of structural parameters and material properties in two phases of this study respectively. In the first phase, the mechanism of absorption by pore structure was investigated through considering various fiber cross-sectional size and shape, as well as heterogeneous layered structures having a pore size reduction and expansion. In the second phase, the mechanism of absorption by fiber and consequent swelling was evaluated in view of fluid diffusion into the rayon fibers in samples having different percentages of PET fiber (non-absorbent) and rayon fiber (absorbent). The analysis of absorption and release properties through the entire dissertation was based on the pore characteristics of the nonwovens by measuring the average pore sizes, pore size distribution, and solidity. The investigation revealed that the absorption and release properties of nonwovens are governed by their pore characteristics. In homogeneous non-layered nonwoven fabrics, maximum absorption is mainly governed by the available pore volume. Absorbency rate is determined according to pore size and the maximum rate of absorption is achieved at a specific range of pore sizes. This indicates that an in-depth understanding of the absorption and release properties brings about valuable information for the absorbent product engineering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28357689','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28357689"><span>Porotic paradox: distribution of cortical bone pore sizes at nano- and micro-levels in healthy vs. fragile human bone.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Milovanovic, Petar; Vukovic, Zorica; Antonijevic, Djordje; Djonic, Danijela; Zivkovic, Vladimir; Nikolic, Slobodan; Djuric, Marija</p> <p>2017-05-01</p> <p>Bone is a remarkable biological nanocomposite material showing peculiar hierarchical organization from smaller (nano, micro) to larger (macro) length scales. Increased material porosity is considered as the main feature of fragile bone at larger length-scales. However, there is a shortage of quantitative information on bone porosity at smaller length-scales, as well as on the distribution of pore sizes in healthy vs. fragile bone. Therefore, here we investigated how healthy and fragile bones differ in pore volume and pore size distribution patterns, considering a wide range of mostly neglected pore sizes from nano to micron-length scales (7.5 to 15000 nm). Cortical bone specimens from four young healthy women (age: 35 ± 6 years) and five women with bone fracture (age: 82 ± 5 years) were analyzed by mercury porosimetry. Our findings showed that, surprisingly, fragile bone demonstrated lower pore volume at the measured scales. Furtnermore, pore size distribution showed differential patterns between healthy and fragile bones, where healthy bone showed especially high proportion of pores between 200 and 15000 nm. Therefore, although fragile bones are known for increased porosity at macroscopic level and level of tens or hundreds of microns as firmly established in the literature, our study with a unique assessment range of nano-to micron-sized pores reveal that osteoporosis does not imply increased porosity at all length scales. Our thorough assessment of bone porosity reveals a specific distribution of porosities at smaller length-scales and contributes to proper understanding of bone structure which is important for designing new biomimetic bone substitute materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5453342','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5453342"><span>Limits of ZnO Electrodeposition in Mesoporous Tin Doped Indium Oxide Films in View of Application in Dye-Sensitized Solar Cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dunkel, Christian; von Graberg, Till; Smarsly, Bernd M.; Oekermann, Torsten; Wark, Michael</p> <p>2014-01-01</p> <p>Well-ordered 3D mesoporous indium tin oxide (ITO) films obtained by a templated sol-gel route are discussed as conductive porous current collectors. This paper explores the use of such films modified by electrochemical deposition of zinc oxide (ZnO) on the pore walls to improve the electron transport in dye-sensitized solar cells (DSSCs). Mesoporous ITO film were dip-coated with pore sizes of 20–25 nm and 40–45 nm employing novel poly(isobutylene)-b-poly(ethylene oxide) block copolymers as structure-directors. After electrochemical deposition of ZnO and sensitization with the indoline dye D149 the films were tested as photoanodes in DSSCs. Short ZnO deposition times led to strong back reaction of photogenerated electrons from non-covered ITO to the electrolyte. ITO films with larger pores enabled longer ZnO deposition times before pore blocking occurred, resulting in higher efficiencies, which could be further increased by using thicker ITO films consisting of five layers, but were still lower compared to nanoporous ZnO films electrodeposited on flat ITO. The major factors that currently limit the application are the still low thickness of the mesoporous ITO films, too small pore sizes and non-ideal geometries that do not allow obtaining full coverage of the ITO surface with ZnO before pore blocking occurs. PMID:28788618</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2832268','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2832268"><span>Cell Wall-Degrading Enzymes Enlarge the Pore Size of Intervessel Pit Membranes in Healthy and Xylella fastidiosa-Infected Grapevines1[C][W][OA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pérez-Donoso, Alonso G.; Sun, Qiang; Roper, M. Caroline; Greve, L. Carl; Kirkpatrick, Bruce; Labavitch, John M.</p> <p>2010-01-01</p> <p>The pit membrane (PM) is a primary cell wall barrier that separates adjacent xylem water conduits, limiting the spread of xylem-localized pathogens and air embolisms from one conduit to the next. This paper provides a characterization of the size of the pores in the PMs of grapevine (Vitis vinifera). The PM porosity (PMP) of stems infected with the bacterium Xylella fastidiosa was compared with the PMP of healthy stems. Stems were infused with pressurized water and flow rates were determined; gold particles of known size were introduced with the water to assist in determining the size of PM pores. The effect of introducing trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), oligogalacturonides, and polygalacturonic acid into stems on water flux via the xylem was also measured. The possibility that cell wall-degrading enzymes could alter the pore sizes, thus facilitating the ability of X. fastidiosa to cross the PMs, was tested. Two cell wall-degrading enzymes likely to be produced by X. fastidiosa (polygalactuoronase and endo-1,4- β -glucanase) were infused into stems, and particle passage tests were performed to check for changes in PMP. Scanning electron microscopy of control and enzyme-infused stem segments revealed that the combination of enzymes opened holes in PMs, probably explaining enzyme impacts on PMP and how a small X. fastidiosa population, introduced into grapevines by insect vectors, can multiply and spread throughout the vine and cause Pierce's disease. PMID:20107028</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9672884','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9672884"><span>On the size of pores arising in erythrocytes under the action of detergents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Senkovich, O A; Chernitsky, E A</p> <p>1998-01-01</p> <p>The size of pores arising in human erythrocytes under the action of two detergents (Triton X-100 and sodium dodecyl sulfate) and causing the slow component of hemolysis was estimated by the method of osmotic protectors. The pore diameters were found to be about 40 A. The pores responsible for the fast component of hemolysis induced by sodium dodecyl sulfate were shown to be of greater size and even molecules of polyethylene glycol 4000 could pass through them. The unusual decrease. In the rate and percentage of this hemolytic component was caused by the side action of the protectors, i.e., by the acceleration of erythrocyte vesiculation, a process that competed with pore formation. Vesiculation protected erythrocytes against fast and slow detergent-induced hemolysis. It is shown that the method of osmotic protectors can not be used for estimation of pore size in fast hemolysis by sodium dodecyl sulfate. The application of this method for hemolysis by other amphiphilic compounds is discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4887682','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4887682"><span>Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jun, Ikhyun; Cheng, Mary Hongying; Sim, Eunji; Jung, Jinsei; Suh, Bong Lim; Kim, Yonjung; Son, Hankil; Park, Kyungsoo; Kim, Chul Hoon; Yoon, Joo‐Heon; Whitcomb, David C.; Bahar, Ivet</p> <p>2016-01-01</p> <p>Key points Cellular stimuli can modulate the ion selectivity of some anion channels, such as CFTR, ANO1 and the glycine receptor (GlyR), by changing pore size.Ion selectivity of CFTR, ANO1 and GlyR is critically affected by the electric permittivity and diameter of the channel pore.Pore size change affects the energy barriers of ion dehydration as well as that of size‐exclusion of anion permeation.Pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of CFTR, ANO1 and GlyR.Dynamic change in P HC O3/ Cl may mediate many physiological and pathological processes. Abstract Chloride (Cl−) and bicarbonate (HCO3 −) are two major anions and their permeation through anion channels plays essential roles in our body. However, the mechanism of ion selection by the anion channels is largely unknown. Here, we provide evidence that pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of anion channels by reducing energy barriers of size‐exclusion and ion dehydration of HCO3 − permeation. Molecular, physiological and computational analyses of major anion channels, such as cystic fibrosis transmembrane conductance regulator (CFTR), anoctamin‐1(ANO1/TMEM16A) and the glycine receptor (GlyR), revealed that the ion selectivity of anion channels is basically determined by the electric permittivity and diameter of the pore. Importantly, cellular stimuli dynamically modulate the anion selectivity of CFTR and ANO1 by changing the pore size. In addition, pore dilatation by a mutation in the pore‐lining region alters the anion selectivity of GlyR. Changes in pore size affected not only the energy barriers of size exclusion but that of ion dehydration by altering the electric permittivity of water‐filled cavity in the pore. The dynamic increase in P HC O3/ Cl by pore dilatation may have many physiological and pathophysiological implications ranging from epithelial HCO3 − secretion to neuronal excitation. PMID:26663196</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JAVSO..41R.149H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JAVSO..41R.149H"><span>AAVSO Solar Observers Worldwide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Howe, R.</p> <p>2013-06-01</p> <p>(Abstract only) For visual solar observers there has been no biological change in the "detector" (human eye) - at century scales (eye + visual cortex) does not change much over time. Our capacity to "integrate" seeing distortions is not just simple averaging! The visual cortex plays an essential role, and until recently only the SDO-HMI (Solar Dynamics Observatory, Helioseismic and Magnetic Imager) has had the capacity to detect the smallest sunspots, called pores. Prior to this the eye was superior to photography and CCD. Imaged data are not directly comparable or substitutable to counts by eye, as the effects of sensor/optical resolution and seeing will have a different influence on the resulting sunspot counts for images when compared to the human eye. Also contributing to the complex task of counting sunspots is differentiating between a sunspot (which is usually defined as having a darker center (umbra) and lighter outer ring (penumbra)) and a pore, made even more complex by the conflicting definitions of the word "pore" in the solar context: "pore" can mean a small spot without penumbra or "pore" can mean a random intergranular blemish that is not a true sunspot. The overall agreement is that the smallest spot size is near 2,000 km or ~3 arc sec, (Loughhead, R. E. and Bray, R. J. 1961, Australian J. Phys., 14, 347). Sunspot size is dictated by granulation dynamics rather than spot size (cancellation of convective motion), and by the lifetime of the pore, which averages from 10 to 30 minutes. There is no specific aperture required for AAVSO observers contributing sunspot observations. However, the detection of the smallest spots is influenced by the resolution of the telescope. Two factors to consider are the theoretical optical resolution (unobstructed aperture), Rayleigh criterion: theta = 138 / D(mm), and Dawes criterion: theta = 116 / D(mm) (http://www.telescope-optics.net/telescope_resolution.htm). However, seeing is variable with time; daytime range will be similar for all low-altitude sites, within the range of 1.5 to 3 arc sec, (typically = 2 arc sec equivalent diameter D = 45-90 mm, the typical solar scope = 70 mm aperture). Where large apertures are more affected by size of turbulent eddies ~8-12 cm, small-aperture telescopes reduce these differences, i.e. large aperture is not always beneficial.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70030353','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70030353"><span>Meso- and micropore characteristics of coal lithotypes: Implications for CO2 adsorption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Mastalerz, Maria; Drobniak, A.; Rupp, J.</p> <p>2008-01-01</p> <p>Lithotypes (vitrain, clarain, and fusain) of high volatile bituminous Pennsylvanian coals (Ro of 0.56-0.62%) from Indiana (the Illinois Basin) have been studied with regard to meso- and micropore characteristics using low-pressure nitrogen and carbon dioxide adsorption techniques, respectively. High-pressure CO2 adsorption isotherms were obtained from lithotypes of the Lower Block Coal Member (the Brazil Formation) and the Springfield Coal Member (the Petersburg Formation), and after evacuation of CO2, the lithotypes were re-analyzed for meso- and micropore characteristics to investigate changes related to high-pressure CO2 adsorption. Coal lithotypes have differing Brunauer-Emmett-Teller (BET) surface areas and mesopore volumes, with significantly lower values in fusains than in vitrains or clarains. Fusains have very limited pore volume in the pore size width of 4-10 nm, and the volume, increases with an increase in pore size, in contrast to vitrain, for which a 4-10 nm range is the dominant pore'Wlidth. For clarain, both pores of 4-10 nm and pores larger than 20 nm contribute substantially to the mesoporosity. Micropore surface areas are the smallest for fusain (from 72.8 to 98.2 m2/g), largest for vitrain (from 125.0 to,158.4 m2 /g), and intermediate for clarain (from 110.5 to 124.4 m2/g). Similar relationships are noted for micropore volumes, and the lower values of these parameters in fusains are related to smaller volumes of all incremental micropore sizes. In the Springfield and the Lower Block Coal Members, among lithotypes studied, fusain has the lowest adsorption capacity. For the Lower Block, vitrain has significantly higher adsorption capacity than fusain and clarain, whereas for the Springfield, vitrain and clarain have comparable but still significantly higher adsorption capacities than fusain. The Lower Block vitrain and fusain have much higher adsorption capacities than those in the Springfield, whereas the clarains of the two coals are comparable. After exposure of coal to CO2 at high pressure, vitrains experienced the largest porosity changes among all lithotypes studied. These changes are dominantly manifested in the mesoporosity (decrease in mesopore volume) range; whereas little to no change occurred in the micropore size range. In other lithotypes (clarains, the dominant lithology in the coals studied, and sporadic fusains), the changes were minimal. ?? 2008 American Chemical Society.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21819070','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21819070"><span>Cavitation and pore blocking in nanoporous glasses.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reichenbach, C; Kalies, G; Enke, D; Klank, D</p> <p>2011-09-06</p> <p>In gas adsorption studies, porous glasses are frequently referred to as model materials for highly disordered mesopore systems. Numerous works suggest that an accurate interpretation of physisorption isotherms requires a complete understanding of network effects upon adsorption and desorption, respectively. The present article deals with nitrogen and argon adsorption at different temperatures (77 and 87 K) performed on a series of novel nanoporous glasses (NPG) with different mean pore widths. NPG samples contain smaller mesopores and significantly higher microporosity than porous Vycor glass or controlled pore glass. Since the mean pore width of NPG can be tuned sensitively, the evolution of adsorption characteristics with respect to a broadening pore network can be investigated starting from the narrowest nanopore width. With an increasing mean pore width, a H2-type hysteresis develops gradually which finally transforms into a H1-type. In this connection, a transition from a cavitation-induced desorption toward desorption controlled by pore blocking can be observed. Furthermore, we find concrete hints for a pore size dependence of the relative pressure of cavitation in highly disordered pore systems. By comparing nitrogen and argon adsorption, a comprehensive insight into adsorption mechanisms in novel disordered materials is provided. © 2011 American Chemical Society</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1712005F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1712005F"><span>Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora</p> <p>2015-04-01</p> <p>Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes respectively pore sizes in the soil samples occurred by air pycnometer measurement and determination of soil moisture characteristic by evaporation method according to Wind/Schindler. The present study results can be useful to find a correlation between various soil types with different grain size distributions and the suitability of these soils for example for the infiltration of treated wastewater in the context of managed aquifer recharge (MAR) measures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1348344','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1348344"><span>Ion-Gated Gas Separation through Porous Graphene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Tian, Ziqi; Mahurin, Shannon M.; Dai, Sheng</p> <p></p> <p>Porous graphene holds great promise as an atom-thin, high-permeance membrane for gas separation, but to precisely control the pore size at three to five angstroms proves challenging. Here we propose an ion-gated graphene membrane comprising a monolayer of ionic liquid coated porous graphene to dynamically modulate the pore size to achieve selective gas separation. This approach enables the otherwise non-selective large pores on the order of 1 nm in size to be selective for gases whose diameters range from three to four angstroms. We show from molecular dynamics simulations that CO 2, N 2 and CH 4 all can permeatemore » through a 1-nm pore in graphene without any selectivity. But when a monolayer of [emim][BF 4] is deposited on the porous graphene, CO 2 has much higher permeance than the other two gases. We find that the anion dynamically modulates the pore size by hovering above the pore and provides affinity for CO 2 while the larger cation (which cannot go through the pore) holds the anion in place via electrostatic attraction. This composite membrane is especially promising for CO 2/CH 4 separation, with a CO 2/CH 4 selectivity of about 42 and CO 2 permeance ~105 GPU (gas permeation unit). We further demonstrate that selectivity and permeance can be tuned by the anion size. The present work points toward a promising direction of using the atom-thin ionic-liquid/porous-graphene hybrid membrane for high-permeance, selective gas separation that allows a greater flexibility in substrate pore size control.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1348344-ion-gated-gas-separation-through-porous-graphene','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1348344-ion-gated-gas-separation-through-porous-graphene"><span>Ion-Gated Gas Separation through Porous Graphene</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Tian, Ziqi; Mahurin, Shannon M.; Dai, Sheng; ...</p> <p>2017-02-10</p> <p>Porous graphene holds great promise as an atom-thin, high-permeance membrane for gas separation, but to precisely control the pore size at three to five angstroms proves challenging. Here we propose an ion-gated graphene membrane comprising a monolayer of ionic liquid coated porous graphene to dynamically modulate the pore size to achieve selective gas separation. This approach enables the otherwise non-selective large pores on the order of 1 nm in size to be selective for gases whose diameters range from three to four angstroms. We show from molecular dynamics simulations that CO 2, N 2 and CH 4 all can permeatemore » through a 1-nm pore in graphene without any selectivity. But when a monolayer of [emim][BF 4] is deposited on the porous graphene, CO 2 has much higher permeance than the other two gases. We find that the anion dynamically modulates the pore size by hovering above the pore and provides affinity for CO 2 while the larger cation (which cannot go through the pore) holds the anion in place via electrostatic attraction. This composite membrane is especially promising for CO 2/CH 4 separation, with a CO 2/CH 4 selectivity of about 42 and CO 2 permeance ~105 GPU (gas permeation unit). We further demonstrate that selectivity and permeance can be tuned by the anion size. The present work points toward a promising direction of using the atom-thin ionic-liquid/porous-graphene hybrid membrane for high-permeance, selective gas separation that allows a greater flexibility in substrate pore size control.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97b2907K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97b2907K"><span>Mechanical trapping of particles in granular media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A.</p> <p>2018-02-01</p> <p>Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29548139','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29548139"><span>Mechanical trapping of particles in granular media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kerimov, Abdulla; Mavko, Gary; Mukerji, Tapan; Al Ibrahim, Mustafa A</p> <p>2018-02-01</p> <p>Mechanical trapping of fine particles in the pores of granular materials is an essential mechanism in a wide variety of natural and industrial filtration processes. The progress of invading particles is primarily limited by the network of pore throats and connected pathways encountered by the particles during their motion through the porous medium. Trapping of invading particles is limited to a depth defined by the size, shape, and distribution of the invading particles with respect to the size, shape, and distribution of the host porous matrix. Therefore, the trapping process, in principle, can be used to obtain information about geometrical properties, such as pore throat and particle size, of the underlying host matrix. A numerical framework is developed to simulate the mechanical trapping of fine particles in porous granular media with prescribed host particle size, shape, and distribution. The trapping of invading particles is systematically modeled in host packings with different host particle distributions: monodisperse, bidisperse, and polydisperse distributions of host particle sizes. Our simulation results show quantitatively and qualitatively to what extent trapping behavior is different in the generated monodisperse, bidisperse, and polydisperse packings of spherical particles. Depending on host particle size and distribution, the information about extreme estimates of minimal pore throat sizes of the connected pathways in the underlying host matrix can be inferred from trapping features, such as the fraction of trapped particles as a function of invading particle size. The presence of connected pathways with minimum and maximum of minimal pore throat diameters can be directly obtained from trapping features. This limited information about the extreme estimates of pore throat sizes of the connected pathways in the host granular media inferred from our numerical simulations is consistent with simple geometrical estimates of extreme value of pore and throat sizes of the densest structural arrangements of spherical particles and geometrical Delaunay tessellation analysis of the pore space of host granular media. Our results suggest simple relations between the host particle size and trapping features. These relationships can be potentially used to describe both the dynamics of the mechanical trapping process and the geometrical properties of the host granular media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25450060','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25450060"><span>Colocalization of outflow segmentation and pores along the inner wall of Schlemm's canal.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Braakman, Sietse T; Read, A Thomas; Chan, Darren W-H; Ethier, C Ross; Overby, Darryl R</p> <p>2015-01-01</p> <p>All aqueous humor draining through the conventional outflow pathway must cross the endothelium of Schlemm's canal (SC), likely by passing through micron-sized transendothelial pores. SC pores are non-uniformly distributed along the inner wall endothelium, but it is unclear how the distribution of pores relates to the non-uniform or segmental distribution of aqueous humor outflow through the trabecular meshwork. It is hypothesized that regions in the juxtacanalicular tissue (JCT) with higher local outflow should coincide with regions of greater inner wall pore density compared to JCT regions with lower outflow. Three pairs of non-glaucomatous human donor eyes were perfused at 8 mmHg with fluorescent tracer nanospheres to decorate local patterns of outflow segmentation through the JCT. The inner wall was stained for CD31 and/or vimentin and imaged en face using confocal and scanning electron microscopy (SEM). Confocal and SEM images were spatially registered to examine the spatial relationship between inner wall pore density and tracer intensity in the underlying JCT. For each eye, tracer intensity, pore density (n) and pore diameter (D) (for both transcellular "I" and paracellular "B" pores) were measured in 4-7 regions of interest (ROIs; 50 × 150 μm each). Analysis of covariance was used to examine the relationship between tracer intensity and pore density, as well as the relationship between tracer intensity and three pore metrics (nD, nD(2) and nD(3)) that represent the local hydraulic conductivity of the outflow pathway as predicted by various hydrodynamic models. Tracer intensity in the JCT correlated positively with local pore density when considering total pores (p = 0.044) and paracellular B pores on their own (p = 0.016), but not transcellular I-pores on their own (p = 0.54). Local hydraulic conductivity as predicted by the three hydrodynamic models all showed a significant positive correlation with tracer intensity when considering total pores and B-pores (p < 0.0015 and p < 10(-4)) but not I-pores (p > 0.38). These data suggest that aqueous humor passes through micron-sized pores in the inner wall endothelium of SC. Paracellular B-pores appear to have a dominant contribution towards transendothelial filtration across the inner wall relative to transcellular I-pores. Impaired pore formation, as previously described in glaucomatous SC cells, may thereby contribute to greater outflow heterogeneity, outflow obstruction, and IOP elevation in glaucoma. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4305530','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4305530"><span>Colocalization of Outflow Segmentation and Pores Along the Inner Wall of Schlemm’s Canal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Braakman, Sietse T.; Read, A. Thomas; Chan, Darren W.-H.; Ethier, C. Ross; Overby, Darryl R.</p> <p>2014-01-01</p> <p>All aqueous humor draining through the conventional outflow pathway must cross the endothelium of Schlemm’s canal (SC), likely by passing through micron-sized transendothelial pores. SC pores are non-uniformly distributed along the inner wall endothelium, but it is unclear how the distribution of pores relates to the non-uniform or segmental distribution of aqueous humor outflow through the trabecular meshwork. It is hypothesized that regions in the juxtacanalicular tissue (JCT) with higher local outflow should coincide with regions of greater inner wall pore density compared to JCT regions with lower outflow. Three pairs of non-glaucomatous human donor eyes were perfused at 8 mmHg with fluorescent tracer nanospheres to decorate local patterns of outflow segmentation through the JCT. The inner wall was stained for CD31 and/or vimentin and imaged en face using confocal and scanning electron microscopy (SEM). Confocal and SEM images were spatially registered to examine the spatial relationship between inner wall pore density and tracer intensity in the underlying JCT. For each eye, tracer intensity, pore density (n) and pore diameter (D) (for both transcellular “I” and paracellular “B” pores) were measured in 4-7 regions of interest (ROIs; 50 × 150 μm each). Analysis of covariance was used to examine the relationship between tracer intensity and pore density, as well as the relationship between tracer intensity and three pore metrics (nD, nD2 and nD3) that represent the local hydraulic conductivity of the outflow pathway as predicted by various hydrodynamic models. Tracer intensity in the JCT correlated positively with local pore density when considering total pores (p = 0.044) and paracellular B pores on their own (p = 0.016), but not transcellular I-pores on their own (p = 0.54). Local hydraulic conductivity as predicted by the three hydrodynamic models all showed a significant positive correlation with tracer intensity when considering total pores and B-pores (p < 0.0015 and p < 10−4) but not I-pores (p > 0.38). These data suggest that aqueous humor passes through micron-sized pores in the inner wall endothelium of SC. Paracellular B-pores appear to have a dominant contribution towards transendothelial filtration across the inner wall relative to transcellular I-pores. Impaired pore formation, as previously described in glaucomatous SC cells, may thereby contribute to greater outflow heterogeneity, outflow obstruction, and IOP elevation in glaucoma. PMID:25450060</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JSMTE..05..033B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JSMTE..05..033B"><span>Ion size effects upon ionic exclusion from dielectric interfaces and slit nanopores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.</p> <p>2011-05-01</p> <p>A previously developed field-theoretic model (Coalson et al 1995 J. Chem. Phys. 102 4584) that treats core collisions and Coulomb interactions on the same footing is investigated in order to understand ion size effects on the partition of neutral and charged particles at planar interfaces and the ionic selectivity of slit nanopores. We introduce a variational scheme that can go beyond the mean-field (MF) regime and couple in a consistent way pore-modified core interactions, steric effects, electrostatic solvation and image-charge forces, and surface charge induced electrostatic potential. Density profiles of neutral particles in contact with a neutral hard wall, obtained from Monte Carlo (MC) simulations are compared with the solutions of mean-field and variational equations. A recently proposed random-phase approximation (RPA) method is tested as well. We show that in the dilute limit, the MF and the variational theories agree well with simulation results, in contrast to the RPA method. The partition of charged Yukawa particles at a neutral dielectric interface (e.g. an air-water or protein-water interface) is investigated. It is shown that as a result of the competition between core collisions that push the ions toward the surface, and repulsive solvation and image forces that exclude them from the interface, a concentration peak of finite size ions sets in close to the dielectric interface. This effect is amplified with increasing ion size and bulk concentration. An integral expression for the surface tension that accounts for excluded volume effects is computed and the decrease of the surface tension with increasing ion size is illustrated. We also characterize the role played by the ion size in the ionic selectivity of neutral slit nanopores. We show that the complex interplay between electrostatic forces, excluded volume effects induced by core collisions and steric effects leads to an unexpected reversal in the ionic selectivity of the pore with varying pore size: while large pores exhibit a higher conductivity for large ions, narrow pores exclude large ions more efficiently than small ones.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1081610-sructure-dynamics-fluids-micropous-mesoporous-earth-engineered-materials','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1081610-sructure-dynamics-fluids-micropous-mesoporous-earth-engineered-materials"><span>Sructure and dynamics of fluids in micropous and mesoporous earth and engineered materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cole, David R; Mamontov, Eugene; Rother, Gernot</p> <p>2009-01-01</p> <p>The behavior of liquids in confined geometries (pores, fractures) typically differs, due to the effects of large internal surfaces and geometri-cal confinement, from their bulk behavior in many ways. Phase transitions (i.e., freezing and capillary condensation), sorption and wetting, and dy-namical properties, including diffusion and relaxation, may be modified, with the strongest changes observed for pores ranging in size from <2 nm to 50 nm the micro- and mesoporous regimes. Important factors influ-encing the structure and dynamics of confined liquids include the average pore size and pore size distribution, the degree of pore interconnection, and the character of the liquid-surfacemore » interaction. While confinement of liq-uids in hydrophobic matrices, such as carbon nanotubes, or near the sur-faces of mixed character, such as many proteins, has also been an area of rapidly growing interest, the confining matrices of interest to earth and ma-terials sciences usually contain oxide structural units and thus are hydro-philic. The pore size distribution and the degree of porosity and inter-connection vary greatly amongst porous matrices. Vycor, xerogels, aerogels, and rocks possess irregular porous structures, whereas mesopor-ous silicas (e.g., SBA-15, MCM-41, MCM-48), zeolites, and layered sys-tems, for instance clays, have high degrees of internal order. The pore type and size may be tailored by means of adjusting the synthesis regimen. In clays, the interlayer distance may depend on the level of hydration. Al-though studied less frequently, matrices such as artificial opals and chry-sotile asbestos represent other interesting examples of ordered porous structures. The properties of neutrons make them an ideal probe for com-paring the properties of bulk fluids with those in confined geometries. In this chapter, we provide a brief review of research performed on liquids confined in materials of interest to the earth and material sciences (silicas, aluminas, zeolites, clays, rocks, etc.), emphasizing those neutron scattering techniques which assess both structural modification and dynamical behav-ior. Quantitative understanding of the complex solid-fluid interactions under different thermodynamic situations will impact both the design of bet-ter substrates for technological applications (e.g., chromatography, fluid capture, storage and release, and heterogeneous catalysis) as well as our fundamental understanding of processes encountered in the environment (i.e., fluid and waste mitigation, carbon sequestration, etc.).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22799397','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22799397"><span>Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chae, Weon-Sik; Gough, Dara Van; Ham, Sung-Kyoung; Robinson, David B; Braun, Paul V</p> <p>2012-08-01</p> <p>The high surface area of nanoporous electrodes makes them promising for use in electrochemical double-layer supercapacitors, desalination and pollution remediation, and drug delivery applications. When designed well and operating near their peak power, their charging rates are limited by ion transport through their long, narrow pores. This can be alleviated by creating pores of intermediate diameter that penetrate the electrode. We have fabricated electrodes featuring these by creating colloidal crystal-templated opals of nanoporous gold formed by dealloying. The resulting electrodes contain a bimodal pore-size distribution, with large pores on the order of several 100 nm and small pores on the order of 10 nm. Electrochemical impedance spectrometry shows that porous gold opals sacrifice some capacitance, but possess a lower internal resistance, when compared to a porous gold electrode with only the smaller-diameter pores. The architectural flexibility of this approach provides a greater ability to design a balance between power density and energy density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195432','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195432"><span>Porosity of the Marcellus Shale: A contrast matching small-angle neutron scattering study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bahadur, Jitendra; Ruppert, Leslie F.; Pipich, Vitaliy; Sakurovs, Richard; Melnichenko, Yuri B.</p> <p>2018-01-01</p> <p>Neutron scattering techniques were used to determine the effect of mineral matter on the accessibility of water and toluene to pores in the Devonian Marcellus Shale. Three Marcellus Shale samples, representing quartz-rich, clay-rich, and carbonate-rich facies, were examined using contrast matching small-angle neutron scattering (CM-SANS) at ambient pressure and temperature. Contrast matching compositions of H2O, D2O and toluene, deuterated toluene were used to probe open and closed pores of these three shale samples. Results show that although the mean pore radius was approximately the same for all three samples, the fractal dimension of the quartz-rich sample was higher than for the clay-rich and carbonate-rich samples, indicating different pore size distributions among the samples. The number density of pores was highest in the clay-rich sample and lowest in the quartz-rich sample. Contrast matching with water and toluene mixtures shows that the accessibility of pores to water and toluene also varied among the samples. In general, water accessed approximately 70–80% of the larger pores (>80 nm radius) in all three samples. At smaller pore sizes (~5–80 nm radius), the fraction of accessible pores decreases. The lowest accessibility to both fluids is at pore throat size of ~25 nm radii with the quartz-rich sample exhibiting lower accessibility than the clay- and carbonate-rich samples. The mechanism for this behaviour is unclear, but because the mineralogy of the three samples varies, it is likely that the inaccessible pores in this size range are associated with organics and not a specific mineral within the samples. At even smaller pore sizes (~<2.5 nm radius), in all samples, the fraction of accessible pores to water increases again to approximately 70–80%. Accessibility to toluene generally follows that of water; however, in the smallest pores (~<2.5 nm radius), accessibility to toluene decreases, especially in the clay-rich sample which contains about 30% more closed pores than the quartz- and carbonate-rich samples. Results from this study show that mineralogy of producing intervals within a shale reservoir can affect accessibility of pores to water and toluene and these mineralogic differences may affect hydrocarbon storage and production and hydraulic fracturing characteristics</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EJASP2014....9L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EJASP2014....9L"><span>Detection, 3-D positioning, and sizing of small pore defects using digital radiography and tracking</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lindgren, Erik</p> <p>2014-12-01</p> <p>This article presents an algorithm that handles the detection, positioning, and sizing of submillimeter-sized pores in welds using radiographic inspection and tracking. The possibility to detect, position, and size pores which have a low contrast-to-noise ratio increases the value of the nondestructive evaluation of welds by facilitating fatigue life predictions with lower uncertainty. In this article, a multiple hypothesis tracker with an extended Kalman filter is used to track an unknown number of pore indications in a sequence of radiographs as an object is rotated. Each pore is not required to be detected in all radiographs. In addition, in the tracking step, three-dimensional (3-D) positions of pore defects are calculated. To optimize, set up, and pre-evaluate the algorithm, the article explores a design of experimental approach in combination with synthetic radiographs of titanium laser welds containing pore defects. The pre-evaluation on synthetic radiographs at industrially reasonable contrast-to-noise ratios indicate less than 1% false detection rates at high detection rates and less than 0.1 mm of positioning errors for more than 90% of the pores. A comparison between experimental results of the presented algorithm and a computerized tomography reference measurement shows qualitatively good agreement in the 3-D positions of approximately 0.1-mm diameter pores in 5-mm-thick Ti-6242.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22434668','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22434668"><span>The importance of dehydration in determining ion transport in narrow pores.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Richards, Laura A; Schäfer, Andrea I; Richards, Bryce S; Corry, Ben</p> <p>2012-06-11</p> <p>The transport of hydrated ions through narrow pores is important for a number of processes such as the desalination and filtration of water and the conductance of ions through biological channels. Here, molecular dynamics simulations are used to systematically examine the transport of anionic drinking water contaminants (fluoride, chloride, nitrate, and nitrite) through pores ranging in effective radius from 2.8 to 6.5 Å to elucidate the role of hydration in excluding these species during nanofiltration. Bulk hydration properties (hydrated size and coordination number) are determined for comparison with the situations inside the pores. Free energy profiles for ion transport through the pores show energy barriers depend on pore size, ion type, and membrane surface charge and that the selectivity sequence can change depending on the pore size. Ion coordination numbers along the trajectory showed that partial dehydration of the transported ion is the main contribution to the energy barriers. Ion transport is greatly hindered when the effective pore radius is smaller than the hydrated radius, as the ion has to lose some associated water molecules to enter the pore. Small energy barriers are still observed when pore sizes are larger than the hydrated radius due to re-orientation of the hydration shell or the loss of more distant water. These results demonstrate the importance of ion dehydration in transport through narrow pores, which increases the current level of mechanistic understanding of membrane-based desalination and transport in biological channels. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983AtmEn..17..115J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983AtmEn..17..115J"><span>Characteristics of nuclepore filters with large pore size—I. Physical properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>John, W.; Hering, S.; Reischl, G.; Sasaki, G.; Goren, S.</p> <p></p> <p>Measurements of pore diameter, pore density and filter thickness have been made on Nuclepore filters of 5, 8 and 12 μm pore size. The areal distribution of the pores is random, as verified by total hole counts and by counts of overlapping holes. Filter thicknesses decrease with increasing pore diameter. The Hagen-Poiseuille formula accounts for less than half of the measured pressure drop across 12 μm pore size filters. A new calculation, including a term for the pressure drop external to the filter, accounts quantitatively for the observations. There are sufficient variations among filter batches to require knowledge of the filter parameters for each batch to ensure accurate measurements using these filters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5082481','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5082481"><span>Polystyrene-block-poly(ethylene oxide) copolymers as templates for stacked, spherical large-mesopore silica coatings: dependence of silica pore size on the PS/PEO ratio</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Magnacca, Giuliana; Jadhav, Sushilkumar A; Scalarone, Dominique</p> <p>2016-01-01</p> <p>Summary Large-mesopore silica films with a narrow pore size distribution and high porosity have been obtained by a sol–gel reaction of a silicon oxide precursor (TEOS) and using polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers as templates in an acidic environment. PS-b-PEO copolymers with different molecular weight and composition have been studied in order to assess the effects of the block length on the pore size of the templated silica films. The changes in the morphology of the porous systems have been investigated by transmission electron microscopy and a systematic analysis has been carried out, evidencing the dependence between the hydrophilic/hydrophobic ratio of the two polymer blocks and the size of the final silica pores. The obtained results prove that by tuning the PS/PEO ratio, the pore size of the templated silica films can be easily and finely predicted. PMID:27826520</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19015790','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19015790"><span>Possible pore size effects on the state of tris(8-quinolinato)aluminum(III) (Alq3) adsorbed in mesoporous silicas and their temperature dependence.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tagaya, Motohiro; Ogawa, Makoto</p> <p>2008-12-07</p> <p>The states of tris(8-quinolinato)aluminum(III) (Alq3) adsorbed in mesoporous silicas with different pore sizes (2.5, 3.1 and 5.0 nm) were investigated. Alq3 was successfully occluded into the mesoporous silicas from solution and the adsorbed amount of Alq3 per BET surface area was effectively controlled by changing the added amount Alq3 to the solution. The state of Alq3 in the mesopore varied depending on the pore size as well as the adsorbed amount of Alq3 as revealed by variation of the photoluminescence spectra. The luminescence of the adsorbed Alq3 was found to be temperature-dependent, indicating the mobility of the adsorbed Alq3 to temperature variations. The temperature-dependence also depended on the pore size. The guest-guest interactions between Alq3 molecules as well as the host-guest interactions between Alq3 and the mesopore were controlled by the pore size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Nanos...720374F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Nanos...720374F"><span>Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu</p> <p>2015-12-01</p> <p>We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO4 photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06584d</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29715034','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29715034"><span>Effect of Cavity Size of Mesoporous Silica on Short DNA Duplex Stability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Masuda, Tsubasa; Shibuya, Yuuta; Arai, Shota; Kobayashi, Sayaka; Suzuki, Sotaro; Kijima, Jun; Itoh, Tetsuji; Sato, Yusuke; Nishizawa, Seiichi; Yamaguchi, Akira</p> <p>2018-05-15</p> <p>We studied the stabilities of short (4- and 3-bp) DNA duplexes within silica mesopores modified with a positively charged trimethyl aminopropyl (TMAP) monolayer (BJH pore diameter 1.6-7.4 nm). The DNA fragments with fluorescent dye were introduced into the pores, and their fluorescence resonance energy transfer (FRET) response was measured to estimate the structuring energies of the short DNA duplexes under cryogenic conditions (temperature 233-323 K). The results confirmed the enthalpic stability gain of the duplex within size-matched pores (1.6 and 2.3 nm). The hybridization equilibrium constants found for the size-matched pores were 2 orders of magnitude larger than those for large pores (≥3.5 nm), and this size-matching effect for the enhanced duplex stability was explained by a tight electrostatic interaction between the duplex and the surface TMAP groups. These results indicate the requirement of the precise regulation of mesopore size to ensure the stabilization of hydrogen-bonded supramolecular assemblies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19494461','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19494461"><span>Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jin, Le; Ng, How Yong; Ong, Say Leong</p> <p>2009-01-01</p> <p>The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4453129','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4453129"><span>Ultimate Osmosis Engineered by the Pore Geometry and Functionalization of Carbon Nanostructures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Song, Zhigong; Xu, Zhiping</p> <p>2015-01-01</p> <p>Osmosis is the key process in establishing versatile functions of cellular systems and enabling clean-water harvesting technologies. Membranes with single-atom thickness not only hold great promises in approaching the ultimate limit of these functions, but also offer an ideal test-bed to explore the underlying physical mechanisms. In this work, we explore diffusive and osmotic transport of water and ions through carbon nanotube and porous graphene based membranes by performing molecular dynamics simulations. Our comparative study shows that the cylindrical confinement in carbon nanotubes offers much higher salt rejection at similar permeability in osmosis compared to porous graphene. Moreover, chemical functionalization of the pores modulates the membrane performance by its steric and electrostatic nature, especially at small-size pores due to the fact that the optimal transport is achieved by ordered water transport near pore edges. These findings lay the ground for the ultimate design of forward osmosis membranes with optimized performance trade-off, given the capability of nano-engineering nanostructures by their geometry and chemistry. PMID:26037602</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28151575','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28151575"><span>Controlling the Pore Size of Mesoporous Carbon Thin Films through Thermal and Solvent Annealing.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhou, Zhengping; Liu, Guoliang</p> <p>2017-04-01</p> <p>Herein an approach to controlling the pore size of mesoporous carbon thin films from metal-free polyacrylonitrile-containing block copolymers is described. A high-molecular-weight poly(acrylonitrile-block-methyl methacrylate) (PAN-b-PMMA) is synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The authors systematically investigate the self-assembly behavior of PAN-b-PMMA thin films during thermal and solvent annealing, as well as the pore size of mesoporous carbon thin films after pyrolysis. The as-spin-coated PAN-b-PMMA is microphase-separated into uniformly spaced globular nanostructures, and these globular nanostructures evolve into various morphologies after thermal or solvent annealing. Surprisingly, through thermal annealing and subsequent pyrolysis of PAN-b-PMMA into mesoporous carbon thin films, the pore size and center-to-center spacing increase significantly with thermal annealing temperature, different from most block copolymers. In addition, the choice of solvent in solvent annealing strongly influences the block copolymer nanostructure and the pore size of mesoporous carbon thin films. The discoveries herein provide a simple strategy to control the pore size of mesoporous carbon thin films by tuning thermal or solvent annealing conditions, instead of synthesizing a series of block copolymers of various molecular weights and compositions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4417993','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4417993"><span>High Structural Stability of Textile Implants Prevents Pore Collapse and Preserves Effective Porosity at Strain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Klinge, Uwe; Otto, Jens; Mühl, Thomas</p> <p>2015-01-01</p> <p>Reinforcement of tissues by use of textiles is encouraged by the reduced rate of recurrent tissue dehiscence but for the price of an inflammatory and fibrotic tissue reaction to the implant. The latter mainly is affected by the size of the pores, whereas only sufficiently large pores are effective in preventing a complete scar entrapment. Comparing two different sling implants (TVT and SIS), which are used for the treatment of urinary incontinence, we can demonstrate that the measurement of the effective porosity reveals considerable differences in the textile construction. Furthermore the changes of porosity after application of a tensile load can indicate a structural instability, favouring pore collapse at stress and questioning the use for purposes that are not “tension-free.” PMID:25973427</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15261027','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15261027"><span>A dynamic wicking technique for determining the effective pore radius of pregelatinized starch sheets.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kalogianni, E P; Savopoulos, T; Karapantsios, T D; Raphaelides, S N</p> <p>2004-06-01</p> <p>A dynamic wicking technique is employed for the first time for the determination of the effective mean pore radius of a thin-layer porous food: drum dried pregelatinized starch sheets. The technique consists of measuring the penetration rate of various n-alkanes in the porous matrix of the starch sheets and using this data to calculate the effective pore radius via the Washburn equation. Pore sizes in the order of a few nanometers have been determined in the starch sheets depending on the drum dryer's operating variables (drum rotation speed, steam pressure and starch feed concentration). The conditions for the application of the technique in porous foods are discussed as compared to the conditions for single capillaries and inorganic porous material measured in other studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27351147','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27351147"><span>Pore water colloid properties in argillaceous sedimentary rocks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Degueldre, Claude; Cloet, Veerle</p> <p>2016-11-01</p> <p>The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay colloid concentration is expected to be very low (<1ppb, for 10-100nm) which restricts their relevance for radionuclide transport. Copyright © 2016. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868581','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868581"><span>Method of making metal oxide ceramic membranes with small pore sizes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Anderson, Marc A.; Xu, Qunyin</p> <p>1992-01-01</p> <p>A method for the production of metal oxide ceramic membranes is composed of very small pore size. The process is particularly useful in the creation of titanium and other transition metal oxide membranes. The method utilizes a sol-gel process in which the rate of particle formation is controlled by substituting a relatively large alcohol in the metal alkoxide and by limiting the available water. Stable, transparent metal oxide ceramic membranes are created having a narrow distribution of pore size, with the pore diameter being manipulable in the range of 5 to 40 Angstroms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2g4201T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2g4201T"><span>Drying regimes in homogeneous porous media from macro- to nanoscale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thiery, J.; Rodts, S.; Weitz, D. A.; Coussot, P.</p> <p>2017-07-01</p> <p>Magnetic resonance imaging visualization down to nanometric liquid films in model porous media with pore sizes from micro- to nanometers enables one to fully characterize the physical mechanisms of drying. For pore size larger than a few tens of nanometers, we identify an initial constant drying rate period, probing homogeneous desaturation, followed by a falling drying rate period. This second period is associated with the development of a gradient in saturation underneath the sample free surface that initiates the inward recession of the contact line. During this latter stage, the drying rate varies in accordance with vapor diffusion through the dry porous region, possibly affected by the Knudsen effect for small pore size. However, we show that for sufficiently small pore size and/or saturation the drying rate is increasingly reduced by the Kelvin effect. Subsequently, we demonstrate that this effect governs the kinetics of evaporation in nanopores as a homogeneous desaturation occurs. Eventually, under our experimental conditions, we show that the saturation unceasingly decreases in a homogeneous manner throughout the wet regions of the medium regardless of pore size or drying regime considered. This finding suggests the existence of continuous liquid flow towards the interface of higher evaporation, down to very low saturation or very small pore size. Paradoxically, even if this net flow is unidirectional and capillary driven, it corresponds to a series of diffused local capillary equilibrations over the full height of the sample, which might explain that a simple Darcy's law model does not predict the effect of scaling of the net flow rate on the pore size observed in our tests.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29527401','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29527401"><span>Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV-vis Spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goetze, Joris; Yarulina, Irina; Gascon, Jorge; Kapteijn, Freek; Weckhuysen, Bert M</p> <p>2018-03-02</p> <p>In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV-vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV-vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c -axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV-vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the deactivation of these small-pore zeolite catalysts during the MTO process.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5839605','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5839605"><span>Revealing Lattice Expansion of Small-Pore Zeolite Catalysts during the Methanol-to-Olefins Process Using Combined Operando X-ray Diffraction and UV–vis Spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2018-01-01</p> <p>In small-pore zeolite catalysts, where the size of the pores is limited by eight-ring windows, aromatic hydrocarbon pool molecules that are formed inside the zeolite during the Methanol-to-Olefins (MTO) process cannot exit the pores and are retained inside the catalyst. Hydrocarbon species whose size is comparable to the size of the zeolite cage can cause the zeolite lattice to expand during the MTO process. In this work, the formation of retained hydrocarbon pool species during MTO at a reaction temperature of 400 °C was followed using operando UV–vis spectroscopy. During the same experiment, using operando X-ray Diffraction (XRD), the expansion of the zeolite framework was assessed, and the activity of the catalyst was measured using online gas chromatography (GC). Three different small-pore zeolite frameworks, i.e., CHA, DDR, and LEV, were compared. It was shown using operando XRD that the formation of retained aromatic species causes the zeolite lattice of all three frameworks to expand. Because of the differences in the zeolite framework dimensions, the nature of the retained hydrocarbons as measured by operando UV–vis spectroscopy is different for each of the three zeolite frameworks. Consequently, the magnitude and direction of the zeolite lattice expansion as measured by operando XRD also depends on the specific combination of the hydrocarbon species and the zeolite framework. The catalyst with the CHA framework, i.e., H-SSZ-13, showed the biggest expansion: 0.9% in the direction along the c-axis of the zeolite lattice. For all three zeolite frameworks, based on the combination of operando XRD and operando UV–vis spectroscopy, the hydrocarbon species that are likely to cause the expansion of the zeolite cages are presented; methylated naphthalene and pyrene in CHA, 1-methylnaphthalene and phenalene in DDR, and methylated benzene and naphthalene in LEV. Filling of the zeolite cages and, as a consequence, the zeolite lattice expansion causes the deactivation of these small-pore zeolite catalysts during the MTO process. PMID:29527401</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9542E..0WJ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9542E..0WJ"><span>Pore size assessment during corneal endothelial cells permeabilization by femtosecond laser activated carbon nanoparticles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jumelle, C.; Mauclair, C.; Houzet, J.; Bernard, A.; He, Z.; Piselli, S.; Perrache, C.; Egaud, G.; Baubeau, E.; Gain, P.; Thuret, G.</p> <p>2015-07-01</p> <p>Corneal therapeutic molecules delivery represents a promising solution to maintain human corneal endothelial cells (HCECs) viability, but the difficulty is transport across cell membrane. A new delivery method published recently consists in ephemerally permeabilizing cell membranes using a photo-acoustic reaction produced by carbon nanoparticles (CNPs) and femtosecond laser (FsL). The aim of this work is to investigate the size of pores formed at cell membrane by this technique. To induce cell permeabilization, HCECs were put in contact with CNPs and irradiated with a 500 μm diameter Ti:Sa FsL focalized spot. Four sizes of marker molecules were delivered into HCECs to investigate pore sizes: calcein (1.2 nm), FITC-Dextran 4kDa (2.8 nm) and FITC-Dextran 70kDa (12 nm) and FITC-Dextran 2MDa (50 nm). Delivery of each molecule was assessed by flow cytometry, a technique able to measure their presence into cells. We showed that the delivery rate was dependent of their size. Calcein was delivered in 56.1±8.2% of HCECs, FITC-Dextran 4kDa in 42.2±3.5%, FITC-Dextran 70 kDa in 21.5±2.7% and finally FITC-Dextran 2MDa in 12.9±2.0%. It means that a large number of pores in the size ranging from 1.2 to 2.8 nm were formed. However, 12 nm and larger pores were almost half more infrequent. Pore sizes formed at cell membrane by the technique of cell permeabilization by FsL activated CNPs was investigated. The results indicated that the pore sizes are large enough for the efficient delivery of small, medium and big therapeutics molecules on HCECs by this technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/567698','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/567698"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Majid, Z.A.; Mahmud, H.; Shaaban, M.G.</p> <p></p> <p>Stabilization/solidification of hazardous wastes is used to convert hazardous metal hydroxide waste sludge into a solid mass with better handling properties. This study investigated the pore size development of ordinary portland cement pastes containing metal hydroxide waste sludge and rice husk ash using mercury intrusion porosimetry. The effects of acre and the addition of rice husk ash on pore size development and strength were studied. It was found that the pore structures of mixes changed significantly with curing acre. The pore size shifted from 1,204 to 324 {angstrom} for 3-day old cement paste, and from 956 to 263 {angstrom} formore » a 7-day old sample. A reduction in pore size distribution for different curing ages was also observed in the other mixtures. From this limited study, no conclusion could be made as to any correlation between strength development and porosity. 10 refs., 6 figs., 3 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25188675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25188675"><span>Dendritic silica nanomaterials (KCC-1) with fibrous pore structure possess high DNA adsorption capacity and effectively deliver genes in vitro.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Xiaoxi; Tao, Zhimin; Praskavich, John C; Goswami, Anandarup; Al-Sharab, Jafar F; Minko, Tamara; Polshettiwar, Vivek; Asefa, Tewodros</p> <p>2014-09-16</p> <p>The pore size and pore structure of nanoporous materials can affect the materials' physical properties, as well as potential applications in different areas, including catalysis, drug delivery, and biomolecular therapeutics. KCC-1, one of the newest members of silica nanomaterials, possesses fibrous, large pore, dendritic pore networks with wide pore entrances, large pore size distribution, spacious pore volume and large surface area--structural features that are conducive for adsorption and release of large guest molecules and biomacromolecules (e.g., proteins and DNAs). Here, we report the results of our comparative studies of adsorption of salmon DNA in a series of KCC-1-based nanomaterials that are functionalized with different organoamine groups on different parts of their surfaces (channel walls, external surfaces or both). For comparison the results of our studies of adsorption of salmon DNA in similarly functionalized, MCM-41 mesoporous silica nanomaterials with cylindrical pores, some of the most studied silica nanomaterials for drug/gene delivery, are also included. Our results indicate that, despite their relatively lower specific surface area, the KCC-1-based nanomaterials show high adsorption capacity for DNA than the corresponding MCM-41-based nanomaterials, most likely because of KCC-1's large pores, wide pore mouths, fibrous pore network, and thereby more accessible and amenable structure for DNA molecules to diffuse through. Conversely, the MCM-41-based nanomaterials adsorb much less DNA, presumably because their outer surfaces/cylindrical channel pore entrances can get blocked by the DNA molecules, making the inner parts of the materials inaccessible. Moreover, experiments involving fluorescent dye-tagged DNAs suggest that the amine-grafted KCC-1 materials are better suited for delivering the DNAs adsorbed on their surfaces into cellular environments than their MCM-41 counterparts. Finally, cellular toxicity tests show that the KCC-1-based materials are biocompatible. On the basis of these results, the fibrous and porous KCC-1-based nanomaterials can be said to be more suitable to carry, transport, and deliver DNAs and genes than cylindrical porous nanomaterials such as MCM-41.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28532024','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28532024"><span>The effect of pore size and porosity on mechanical properties and biological response of porous titanium scaffolds.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Torres-Sanchez, C; Al Mushref, F R A; Norrito, M; Yendall, K; Liu, Y; Conway, P P</p> <p>2017-08-01</p> <p>The effect of pore size and porosity on elastic modulus, strength, cell attachment and cell proliferation was studied for Ti porous scaffolds manufactured via powder metallurgy and sintering. Porous scaffolds were prepared in two ranges of porosities so that their mechanical properties could mimic those of cortical and trabecular bone respectively. Space-holder engineered pore size distributions were carefully determined to study the impact that small changes in pore size may have on mechanical and biological behaviour. The Young's moduli and compressive strengths were correlated with the relative porosity. Linear, power and exponential regressions were studied to confirm the predictability in the characterisation of the manufactured scaffolds and therefore establish them as a design tool for customisation of devices to suit patients' needs. The correlations were stronger for the linear and the power law regressions and poor for the exponential regressions. The optimal pore microarchitecture (i.e. pore size and porosity) for scaffolds to be used in bone grafting for cortical bone was set to <212μm with volumetric porosity values of 27-37%, and for trabecular tissues to 300-500μm with volumetric porosity values of 54-58%. The pore size range 212-300μm with volumetric porosity values of 38-56% was reported as the least favourable to cell proliferation in the longitudinal study of 12days of incubation. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5456925','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5456925"><span>Influence of Rubber Size on Properties of Crumb Rubber Mortars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yu, Yong; Zhu, Han</p> <p>2016-01-01</p> <p>Studies on the properties and applications of rubber cement-based materials are well documented. The sizes of rubbers used in these materials varied. However, information about the effects of rubber size on the properties of rubber cement-based materials, especially pore structure, mechanical strengths, and drying shrinkage properties, remains limited. Three groups of rubber with major particle sizes of 2–4 mm, 1–3 mm, and 0–2 mm were selected in this study. This paper presents experimental studies on the effects of rubber size on the consistency, fresh density, pore structure, mechanical properties, and drying shrinkage properties of crumb rubber mortars (CRMs). Results demonstrated that the consistency and fresh density of CRMs decreased with the rubber size. As to the pore structure, the total pore volume increased with the decrease of the rubber size. By contrast, the influence of the rubber size on the mesopore (<50 nm) volume is not as significant as that of the rubber content. The mechanical properties of CRMs decreased with the rubber size. Low rubber stiffness and large pore volumes, especially those of small sized rubbers, contribute to the reduction of CRMs strength. The drying shrinkage of CRM increases as the rubber size decreases. The influences of rubber size on capillary tension are not significant. Thus, the shrinkage increases with the decrease of rubber size mainly because of its function in the deformation modulus reduction of CRMs. PMID:28773649</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/1802689','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/1802689"><span>Procedures and computer program for deriving the Ferguson plot from electrophoresis in a single pore gradient gel: application to agarose gel and a polystyrene particle.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tietz, D; Gombocz, E; Chrambach, A</p> <p>1991-10-01</p> <p>This study presents a computerized evaluation of pore gradient gel electrophoretograms to arrive at estimates for both the particle-free mobility and retardation coefficient, which is related to particle size. Agarose pore gradient gels ranging from 0.2 to 1.1% agarose were formed. Gel gradients were stabilized during their formation by a density gradient of 0-20% 5-(N-2,3-dihydroxypropylacetamido)- 2,4,6-triiodo-N,N'bis-(2,3-dihydroxypropyl)-isophthalamide (Nycodenz). Densitometry of gelled-in Bromophenol Blue showed that these pore gradients exhibited a linear central segment and were reproducible. Migration distances of polystyrene sulfate microspheres (36.5 nm radius) in agarose pore gradient gel electrophoresis were determined by time-lapse photography at several durations of electrophoresis. These migration distances were evaluated as a function of migration time as previously reported (D. Tietz, Adv. Electrophoresis 1988, 2, 109-169). Although this is not necessarily required, the mathematical approach used in this study assumed linearity of both the pore gradient and the Ferguson plot for reasons of simplicity. The data evaluation on the basis of the extended Ogston model is incorporated in a user-friendly program, GRADFIT, which is designed for personal computers (Macintosh). The results obtained are compared with (1) conventional electrophoresis using several gels of single concentration with and without Nycodenz, and (ii) a different mathematical approach for the analysis of gradient gels (Rodbard et al., Anal. Biochem. 1971, 40, 135-157). Moreover, a simple procedure for evaluating linear pore gradient gels using linear regression analysis is presented. It is concluded that the values of particle-free mobility and retardation coefficient derived from pore gradient gel electrophoresis using the different mathematical methods are statistically indistinguishable from each other. However, these values are different, albeit close, to those obtained from conventional Ferguson plots. One of the possible reasons for this relatively minor discrepancy is that the particle-free mobility changed slightly during electrophoresis, which has a different effect on electrophoresis in homogeneous gels (single time measurement) and pore gradient gels (multiple time measurements). The characterization of particles according to size and charge by pore gradient electrophoresis provides a significant operational simplification and sample economy compared to that requiring the use of several gel concentrations, although at the price of increased requirements of instrumentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22689620-geometrical-characterization-perlite-metal-syntactic-foam','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22689620-geometrical-characterization-perlite-metal-syntactic-foam"><span>Geometrical characterization of perlite-metal syntactic foam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Borovinšek, Matej, E-mail: matej.borovinsek@um.si</p> <p></p> <p>This paper introduces an improved method for the detailed geometrical characterization of perlite-metal syntactic foam. This novel metallic foam is created by infiltrating a packed bed of expanded perlite particles with liquid aluminium alloy. The geometry of the solidified metal is thus defined by the perlite particle shape, size and morphology. The method is based on a segmented micro-computed tomography data and allows for automated determination of the distributions of pore size, sphericity, orientation and location. The pore (i.e. particle) size distribution and pore orientation is determined by a multi-criteria k-nearest neighbour algorithm for pore identification. The results indicate amore » weak density gradient parallel to the casting direction and a slight preference of particle orientation perpendicular to the casting direction. - Highlights: •A new method for identification of pores in porous materials was developed. •It was applied on perlite-metal syntactic foam samples. •A porosity decrease in the axial direction of the samples was determined. •Pore shape analysis showed a high percentage of spherical pores. •Orientation analysis showed that more pores are oriented in the radial direction.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21370476-porosity-control-nanoporous-carbide-derived-carbon-oxidation-air-carbon-dioxide','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21370476-porosity-control-nanoporous-carbide-derived-carbon-oxidation-air-carbon-dioxide"><span>Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Osswald, S.; Portet, C.; Gogotsi, Y., E-mail: gogotsi@drexel.ed</p> <p>2009-07-15</p> <p>Carbide-derived carbons (CDC) allow a precise control over the pore size through the selection of the carbide precursor and varying of the synthesis conditions. However, their pore volume is limited by the carbide stoichiometry. While activation of carbons derived from various organic precursors has been widely studied, this process may similarly be able to increase the pore volume and specific surface area of CDC. Oxidation of carbide-derived carbon in air and CO{sub 2} at different temperatures and times allows for significant increase in pore volume and specific surface area as well as control over average pore size with subnanometer accuracy.more » The effect of activation and associated changes in the pore volume and surface area on the hydrogen uptake are also discussed. - Graphical abstract: Carbide-derived carbons (CDC) provide great potential for sorption of toxicants and gas storage applications. Activation of CDC in air and CO{sub 2} at different temperatures and times is applied in order to maximize pore volume and specific surface area, and control the average pore size with subnanometer accuracy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4294680','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4294680"><span>Visual and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gillies, Laura A; Du, Han; Peters, Bjoern; Knudson, C. Michael; Newmeyer, Donald D.; Kuwana, Tomomi</p> <p>2015-01-01</p> <p>Bax induces mitochondrial outer membrane permeabilization (MOMP), a critical step in apoptosis in which proteins are released into the cytoplasm. To resolve aspects of the mechanism, we used cryo-electron microscopy (cryo-EM) to visualize Bax-induced pores in purified mitochondrial outer membranes (MOMs). We observed solitary pores that exhibited negative curvature at their edges. Over time, the pores grew to ∼100–160 nm in diameter after 60–90 min, with some pores measuring more than 300 nm. We confirmed these results using flow cytometry, which we used to monitor the release of fluorescent dextrans from isolated MOM vesicles. The dextran molecules were released gradually, in a manner constrained by pore size. However, the release rates were consistent over a range of dextran sizes (10–500 kDa). We concluded that the pores were not static but widened dramatically to release molecules of different sizes. Taken together, the data from cryo-EM and flow cytometry argue that Bax promotes MOMP by inducing the formation of large, growing pores through a mechanism involving membrane-curvature stress. PMID:25411335</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1302791','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1302791"><span>Energetics and Self-Assembly of Amphipathic Peptide Pores in Lipid Membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zemel, Assaf; Fattal, Deborah R.; Ben-Shaul, Avinoam</p> <p>2003-01-01</p> <p>We present a theoretical study of the energetics, equilibrium size, and size distribution of membrane pores composed of electrically charged amphipathic peptides. The peptides are modeled as cylinders (mimicking α-helices) carrying different amounts of charge, with the charge being uniformly distributed over a hydrophilic face, defined by the angle subtended by polar amino acid residues. The free energy of a pore of a given radius, R, and a given number of peptides, s, is expressed as a sum of the peptides' electrostatic charging energy (calculated using Poisson-Boltzmann theory), and the lipid-perturbation energy associated with the formation of a membrane rim (which we model as being semitoroidal) in the gap between neighboring peptides. A simple phenomenological model is used to calculate the membrane perturbation energy. The balance between the opposing forces (namely, the radial free energy derivatives) associated with the electrostatic free energy that favors large R, and the membrane perturbation term that favors small R, dictates the equilibrium properties of the pore. Systematic calculations are reported for circular pores composed of various numbers of peptides, carrying different amounts of charge (1–6 elementary, positive charges) and characterized by different polar angles. We find that the optimal R's, for all (except, possibly, very weakly) charged peptides conform to the “toroidal” pore model, whereby a membrane rim larger than ∼1 nm intervenes between neighboring peptides. Only weakly charged peptides are likely to form “barrel-stave” pores where the peptides essentially touch one another. Treating pore formation as a two-dimensional self-assembly phenomenon, a simple statistical thermodynamic model is formulated and used to calculate pore size distributions. We find that the average pore size and size polydispersity increase with peptide charge and with the amphipathic polar angle. We also argue that the transition of peptides from the adsorbed to the inserted (membrane pore) state is cooperative and thus occurs rather abruptly upon a change in ambient conditions. PMID:12668433</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26802441','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26802441"><span>Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chang, Bei; Song, Wen; Han, Tianxiao; Yan, Jun; Li, Fuping; Zhao, Lingzhou; Kou, Hongchao; Zhang, Yumei</p> <p>2016-03-01</p> <p>The present work assesses the potential of three-dimensional (3D) porous titanium (pore size of 188-390 μm and porosity of 70%) fabricated by vacuum diffusion bonding of titanium meshes for applications in bone engineering. Rat bone marrow mesenchymal stem cells were used to investigate the proliferation and differentiation of cells on titanium scaffolds with different pore sizes at day 7, day 14 and day 21 based on DNA contents, alkaline phosphatase (ALP) activity, collagen (COL) secretion and osteogenic gene expressions including ALP, COL-1, bone morphogenetic protein-2 (BMP-2), osteopontin (OPN), runt-related transcription factor 2 (RUNX2), using smooth solid titanium plate as reference material. The rabbit models with distal femoral condyles defect were used to investigate the bone ingrowth into the porous titanium. All samples were subjected to Micro-CT and histological analysis after 4 and 12 weeks of healing. A one-way ANOVA followed by Tukey post hoc tests was used to analyze the data. It was found that the differentiation stage of cells on the porous titanium delayed compared with the smooth solid titanium plate and Ti 188 was more inclined to promote cell differentiation at the initial stage (day 14) while cell proliferation (day 1, 4, 7, 10, 14 and 21) and bone ingrowth (4 and 12 weeks) were biased to Ti 313 and Ti 390. The study indicates that the hybrid porous implant design which combines the advantages of different pore sizes may be meaningful and promising for bone defect restoration. One of the significant challenges in bone defect restoration is the integration of biomaterials and surrounding bone tissue. Porous titanium may be a promising choice for bone ingrowth and mineralization with appropriate mechanical and biological properties. In this study, based on porous titanium fabricated by vacuum diffusion bonding of titanium meshes, we have evaluated the influence of various pore sizes on rat bone marrow mesenchymal stem cells (rBMMSCs) penetration in vitro and bone ingrowth in vivo. It was interesting that we found the proliferation and differentiation abilities of rBMMSCs, as well as bone ingrowth were related to different pore sizes of such porous scaffolds. The results may provide guidance for porous titanium design for bone defect restoration. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDE35003F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDE35003F"><span>Effect of Pore Size and Pore Connectivity on Unidirectional Capillary Penetration Kinetics in 3-D Porous Media using Direct Numerical Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fu, An; Palakurthi, Nikhil; Konangi, Santosh; Comer, Ken; Jog, Milind</p> <p>2017-11-01</p> <p>The physics of capillary flow is used widely in multiple fields. Lucas-Washburn equation is developed by using a single pore-sized capillary tube with continuous pore connection. Although this equation has been extended to describe the penetration kinetics into porous medium, multiple studies have indicated L-W does not accurately predict flow patterns in real porous media. In this study, the penetration kinetics including the effect of pore size and pore connectivity will be closely examined since they are expected to be the key factors effecting the penetration process. The Liquid wicking process is studied from a converging and diverging capillary tube to the complex virtual 3-D porous structures with Direct Numerical Simulation (DNS) using the Volume-Of-Fluid (VOF) method within the OpenFOAM CFD Solver. Additionally Porous Medium properties such as Permeability (k) , Tortuosity (τ) will be also analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001JChPh.114..950S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001JChPh.114..950S"><span>Melting/freezing behavior of a fluid confined in porous glasses and MCM-41: Dielectric spectroscopy and molecular simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sliwinska-Bartkowiak, Malgorzata; Dudziak, Grazyna; Sikorski, Roman; Gras, Roman; Radhakrishnan, Ravi; Gubbins, Keith E.</p> <p>2001-01-01</p> <p>We report both experimental measurements and molecular simulations of the melting and freezing behavior of fluids in nanoporous media. The experimental studies are for nitrobenzene in the silica-based pores of controlled pore glass, Vycor, and MCM-41. Dielectric relaxation spectroscopy is used to determine melting points and the orientational relaxation times of the nitrobenzene molecules in the bulk and the confined phase. Monte Carlo simulations, together with a bond orientational order parameter method, are used to determine the melting point and fluid structure inside cylindrical pores modeled on silica. Qualitative comparison between experiment and simulation are made for the shift in the freezing temperatures and the structure of confined phases. From both the experiments and the simulations, it is found that the confined fluid freezes into a single crystalline structure for average pore diameters greater than 20σ, where σ is the diameter of the fluid molecule. For average pore sizes between 20σ and 15σ, part of the confined fluid freezes into a frustrated crystal structure with the rest forming an amorphous region. For pore sizes smaller than 15σ, even the partial crystallization did not occur. Our measurements and calculations show clear evidence of a novel intermediate "contact layer" phase lying between liquid and crystal; the contact layer is the confined molecular layer adjacent to the pore wall and experiences a deeper fluid-wall potential energy compared to the inner layers. We also find evidence of a liquid to "hexatic" transition in the quasi-two-dimensional contact layer at high temperatures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B32E..04T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B32E..04T"><span>Linking Intra-Aggregate Pore Size Distribution with Organic Matter Decomposition Status, Evidence from FTIR and X-Ray Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toosi, E. R.; Quigley, M.; Kravchenko, A. N.</p> <p>2014-12-01</p> <p>It has been reported that conversion of intensively cultivated lands to less disturbed systems enhances soil OM storage capacity, primarily through OM stabilization in macroaggregates. We hypothesized that the potential for OM stabilization inside macro-aggregates is influenced by presence and abundance of intra-aggregate pores. Pores determine microbial access to OM and regulate diffusion of solution/gases within aggregates which drives microbial functioning. We investigated the influence of longterm disturbance intensity on soil OM composition and its relation to pore size distribution within macroaggregates. We used quantitative FTIR to determine OM decomposition status and X-ray micro-tomography to assess pore size distribution in macroaggregates as affected by management and landuse. Macroaggregates 4-6 mm in size where selected from topsoil under long term conventional tillage (CT), cover-crop (CC), and native succession vegetation (NS) treatments at Kellogg Biological Station, Michigan. Comparison of main soil OM functional groups suggested that with increasing disturbance intensity, the proportion of aromatic and carboxylic/carbohydrates associated compounds increased and it was concomitant with a decrease in the proportion of aliphatic associated compounds and lignin derivatives. Further, FTIR-based decomposition indices revealed that overall decomposition status of macroaggregates followed the pattern of CT > CC ≈ NS. X-ray micro-tomography findings suggested that greater OM decomposition within the macroaggregates was associated with i) greater percent of pores >13 micron in size within the aggregates, as well as ii) greater proportion of small to medium pores (13-110 micron). The results develop previous findings, suggesting that shift in landuse or management indirectly affects soil OM stabilization through alteration of pore size distribution within macroaggregates that itself, is coupled with OM decomposition status.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ResPh...8..879S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ResPh...8..879S"><span>Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sahmani, S.; Aghdam, M. M.</p> <p>2018-03-01</p> <p>A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhyB..407.3797H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhyB..407.3797H"><span>Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hassan, Jamal</p> <p>2012-09-01</p> <p>The pore size distribution (PSD) of nano-material MCM-41 is determined using two different approaches: N2 adsorption-desorption and 1H NMR signal of water confined in silica nano-pores of MCM-41. The first approach is based on the recently modified Kelvin equation [J.V. Rocha, D. Barrera, K. Sapag, Top. Catal. 54(2011) 121-134] which deals with the known underestimation in pore size distribution for the mesoporous materials such as MCM-41 by introducing a correction factor to the classical Kelvin equation. The second method employs the Gibbs-Thompson equation, using NMR, for melting point depression of liquid in confined geometries. The result shows that both approaches give similar pore size distribution to some extent, and also the NMR technique can be considered as an alternative direct method to obtain quantitative results especially for mesoporous materials. The pore diameter estimated for the nano-material used in this study was about 35 and 38 Å for the modified Kelvin and NMR methods respectively. A comparison between these methods and the classical Kelvin equation is also presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H21C0742C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H21C0742C"><span>Percolation Pore Network Study on the Residue Gas Saturation of Dry Reservoir Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, T.; Tang, Y. B.; Zou, G. Y.; Jiang, K.; Li, M.</p> <p>2014-12-01</p> <p>We tried to model the effect of pore size heterogeneity and pore connectivity on the residue gas saturation for dry gas reservoir rocks. If we consider that snap-off does not exist and only piston displacement takes place in all pores with the same size during imbibition process, in the extreme case, the residue gas saturation will be equal to zero. Thus we can suppose that the residue gas saturation of dry rocks is mainly controlled by the pore size distribution. To verify the assumption, percolation pore networks (i.e., three-dimensional simple cubic (SC) and body-center cubic (BCC)) were used in the study. The connectivity and the pore size distribution in percolation pore network could be changed randomly. The concept of water phase connectivity zw(i.e., water coordination number) and gas phase connectivity zg (i.e., gas coordination number) was introduced here. zw and zg will change during simulation and can be estimated numerically from the results of simulations through gradually saturated networks by water. The Simulation results show that when zg less than or equal to 1.5 during water quasi - static imbibition, the gas will be trapped in rock pores. Network simulation results also shows that the residue gas saturation Srg follows a power law relationship (i.e.,Srg∝σrα, where σr is normalized standard deviation of the pore radius distribution, and exponent α is a function of coordination number). This indicates that the residue gas saturation has no explicit relationship with porosity and permeability as it should have in light of previous study, pore radius distribution is the principal factor in determining the residue gas saturation of dry reservoir rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25669282','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25669282"><span>The effect of particle shape and size distribution on the acoustical properties of mixtures of hemp particles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Glé, Philippe; Gourdon, Emmanuel; Arnaud, Laurent; Horoshenkov, Kirill-V; Khan, Amir</p> <p>2013-12-01</p> <p>Hemp concrete is an attractive alternative to traditional materials used in building construction. It has a very low environmental impact, and it is characterized by high thermal insulation. Hemp aggregate particles are parallelepiped in shape and can be organized in a plurality of ways to create a considerable proportion of open pores with a complex connectivity pattern, the acoustical properties of which have never been examined systematically. Therefore this paper is focused on the fundamental understanding of the relations between the particle shape and size distribution, pore size distribution, and the acoustical properties of the resultant porous material mixture. The sound absorption and the transmission loss of various hemp aggregates is characterized using laboratory experiments and three theoretical models. These models are used to relate the particle size distribution to the pore size distribution. It is shown that the shape of particles and particle size control the pore size distribution and tortuosity in shiv. These properties in turn relate directly to the observed acoustical behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22099590','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22099590"><span>Comparative analysis of histopathologic effects of synthetic meshes based on material, weight, and pore size in mice.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Orenstein, Sean B; Saberski, Ean R; Kreutzer, Donald L; Novitsky, Yuri W</p> <p>2012-08-01</p> <p>While synthetic prosthetics have essentially become mandatory for hernia repair, mesh-induced chronic inflammation and scarring can lead to chronic pain and limited mobility. Mesh propensity to induce such adverse effects is likely related to the prosthetic's material, weight, and/or pore size. We aimed to compare histopathologic responses to various synthetic meshes after short- and long-term implantations in mice. Samples of macroporous polyester (Parietex [PX]), heavyweight microporous polypropylene (Trelex[TX]), midweight microporous polypropylene (ProLite[PL]), lightweight macroporous polypropylene (Ultrapro[UP]), and expanded polytetrafluoroethylene (DualMesh[DM]) were implanted subcutaneously in mice. Four and 12 wk post-implantation, meshes were assessed for inflammation, foreign body reaction (FBR), and fibrosis. All meshes induced varying levels of inflammatory responses. PX induced the greatest inflammatory response and marked FBR. DM induced moderate FBR and a strong fibrotic response with mesh encapsulation at 12 wk. UP and PL had the lowest FBR, however, UP induced a significant chronic inflammatory response. Although inflammation decreased slightly for TX, marked FBR was present throughout the study. Of the three polypropylene meshes, fibrosis was greatest for TX and slightly reduced for PL and UP. For UP and PL, there was limited fibrosis within each mesh pore. Polyester mesh induced the greatest FBR and lasting chronic inflammatory response. Likewise, marked fibrosis and encapsulation was seen surrounding ePTFE. Heavier polypropylene meshes displayed greater early and persistent fibrosis; the reduced-weight polypropylene meshes were associated with the least amount of fibrosis. Mesh pore size was inversely proportional to bridging fibrosis. Moreover, reduced-weight polypropylene meshes demonstrated the smallest FBR throughout the study. Overall, we demonstrated that macroporous, reduced-weight polypropylene mesh exhibited the highest degree of biocompatibility at sites of mesh implantation. Copyright © 2012 Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29593081','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29593081"><span>Cuticular gas exchange by Antarctic sea spiders.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lane, Steven J; Moran, Amy L; Shishido, Caitlin M; Tobalske, Bret W; Woods, H Arthur</p> <p>2018-04-25</p> <p>Many marine organisms and life stages lack specialized respiratory structures, like gills, and rely instead on cutaneous respiration, which they facilitate by having thin integuments. This respiratory mode may limit body size, especially if the integument also functions in support or locomotion. Pycnogonids, or sea spiders, are marine arthropods that lack gills and rely on cutaneous respiration but still grow to large sizes. Their cuticle contains pores, which may play a role in gas exchange. Here, we examined alternative paths of gas exchange in sea spiders: (1) oxygen diffuses across pores in the cuticle, a common mechanism in terrestrial eggshells, (2) oxygen diffuses directly across the cuticle, a common mechanism in small aquatic insects, or (3) oxygen diffuses across both pores and cuticle. We examined these possibilities by modeling diffusive oxygen fluxes across all pores in the body of sea spiders and asking whether those fluxes differed from measured metabolic rates. We estimated fluxes across pores using Fick's law parameterized with measurements of pore morphology and oxygen gradients. Modeled oxygen fluxes through pores closely matched oxygen consumption across a range of body sizes, which means the pores facilitate oxygen diffusion. Furthermore, pore volume scaled hypermetrically with body size, which helps larger species facilitate greater diffusive oxygen fluxes across their cuticle. This likely presents a functional trade-off between gas exchange and structural support, in which the cuticle must be thick enough to prevent buckling due to external forces but porous enough to allow sufficient gas exchange. © 2018. Published by The Company of Biologists Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJP..133...88K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJP..133...88K"><span>MD-based computational design of new engineered Ni-based nanocatalysts: An in-depth study of the underlying mechanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kardani, Arash; Mehrafrooz, Behzad; Montazeri, Abbas</p> <p>2018-03-01</p> <p>Porous nickel-based nanocatalysts have attracted great attention thanks to their high surface-to-volume ratio and desired mechanical properties. One of the major challenges associated with their applications is weakening their shear properties due to their contact with the high fluid flow values at elevated service temperatures. On the other hand, their shear behavior is dominantly influenced by the size and distribution of pores available in their structure. In this study, different nickel samples containing periodic distribution surface porosities with 2 nm diameter are examined via molecular dynamics simulation. Moreover, to explore the effects of porosities distribution, the obtained results are compared with those of the samples having concentrated pores at the bigger size of 10nm. Accordingly, shear loading conditions are imposed to capture the dependency of the shear characteristics of the samples on the location and on the geometrical factors of the aforementioned porosities. Surprisingly, it is revealed that the existence of randomly distributed pores can lead to an enhancement of their yield strain compared to that of non-porous counterparts. The underlying mechanism governing this special behavior is thoroughly studied employing several case studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70185213','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70185213"><span>Development of a pore network simulation model to study nonaqueous phase liquid dissolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dillard, Leslie A.; Blunt, Martin J.</p> <p>2000-01-01</p> <p>A pore network simulation model was developed to investigate the fundamental physics of nonequilibrium nonaqueous phase liquid (NAPL) dissolution. The network model is a lattice of cubic chambers and rectangular tubes that represent pore bodies and pore throats, respectively. Experimental data obtained by Powers [1992] were used to develop and validate the model. To ensure the network model was representative of a real porous medium, the pore size distribution of the network was calibrated by matching simulated and experimental drainage and imbibition capillary pressure‐saturation curves. The predicted network residual styrene blob‐size distribution was nearly identical to the observed distribution. The network model reproduced the observed hydraulic conductivity and produced relative permeability curves that were representative of a poorly consolidated sand. Aqueous‐phase transport was represented by applying the equation for solute flux to the network tubes and solving for solute concentrations in the network chambers. Complete mixing was found to be an appropriate approximation for calculation of chamber concentrations. Mass transfer from NAPL blobs was represented using a corner diffusion model. Predicted results of solute concentration versus Peclet number and of modified Sherwood number versus Peclet number for the network model compare favorably with experimental data for the case in which NAPL blob dissolution was negligible. Predicted results of normalized effluent concentration versus pore volume for the network were similar to the experimental data for the case in which NAPL blob dissolution occurred with time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23303665','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23303665"><span>A facile method for the preparation of monodisperse beads with uniform pore sizes for cell culture.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moon, Seung-Kwan; Oh, Myeong-Jin; Paik, Dong-Hyun; Ryu, Tae-Kyung; Park, Kyeongsoon; Kim, Sung-Eun; Park, Jong-Hoon; Kim, Jung-Hyun; Choi, Sung-Wook</p> <p>2013-03-12</p> <p>This paper describes a facile method for the preparation of porous gelatin beads with uniform pore sizes using a simple fluidic device and their application as supporting materials for cell culture. An aqueous gelatin droplet containing many uniform toluene droplets, produced in the fluidic device, is dropped into liquid nitrogen for instant freezing and the small toluene droplets evolve into pores in the gelatin beads after removal of toluene and then freeze-drying. The porous gelatin beads exhibit a uniform pore size and monodisperse diameter as well as large open pores at the surface. Fluorescence microscopy images of fibroblast-loaded gelatin beads confirm the attachment and proliferation of the cells throughout the porous gelatin beads. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1149694','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1149694"><span>Metal-organic frameworks for Xe/Kr separation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang</p> <p>2014-07-22</p> <p>Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1093277','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1093277"><span>Metal-organic frameworks for Xe/Kr separation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ryan, Patrick J.; Farha, Omar K.; Broadbelt, Linda J.; Snurr, Randall Q.; Bae, Youn-Sang</p> <p>2013-08-27</p> <p>Metal-organic framework (MOF) materials are provided and are selectively adsorbent to xenon (Xe) over another noble gas such as krypton (Kr) and/or argon (Ar) as a result of having framework voids (pores) sized to this end. MOF materials having pores that are capable of accommodating a Xe atom but have a small enough pore size to receive no more than one Xe atom are desired to preferentially adsorb Xe over Kr in a multi-component (Xe--Kr mixture) adsorption method. The MOF material has 20% or more, preferably 40% or more, of the total pore volume in a pore size range of 0.45-0.75 nm which can selectively adsorb Xe over Kr in a multi-component Xe--Kr mixture over a pressure range of 0.01 to 1.0 MPa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28007299','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28007299"><span>Size exclusion chromatography with superficially porous particles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schure, Mark R; Moran, Robert E</p> <p>2017-01-13</p> <p>A comparison is made using size-exclusion chromatography (SEC) of synthetic polymers between fully porous particles (FPPs) and superficially porous particles (SPPs) with similar particle diameters, pore sizes and equal flow rates. Polystyrene molecular weight standards with a mobile phase of tetrahydrofuran are utilized for all measurements conducted with standard HPLC equipment. Although it is traditionally thought that larger pore volume is thermodynamically advantageous in SEC for better separations, SPPs have kinetic advantages and these will be shown to compensate for the loss in pore volume compared to FPPs. The comparison metrics include the elution range (smaller with SPPs), the plate count (larger for SPPs), the rate production of theoretical plates (larger for SPPs) and the specific resolution (larger with FPPs). Advantages to using SPPs for SEC are discussed such that similar separations can be conducted faster using SPPs. SEC using SPPs offers similar peak capacities to that using FPPs but with faster operation. This also suggests that SEC conducted in the second dimension of a two-dimensional liquid chromatograph may benefit with reduced run time and with equivalently reduced peak width making SPPs advantageous for sampling the first dimension by the second dimension separator. Additional advantages are discussed for biomolecules along with a discussion of optimization criteria for size-based separations. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29364986','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29364986"><span>Investigation on size tolerance of pore defect of girth weld pipe.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yan; Shuai, Jian; Xu, Kui</p> <p>2018-01-01</p> <p>Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5783411','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5783411"><span>Investigation on size tolerance of pore defect of girth weld pipe</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shuai, Jian; Xu, Kui</p> <p>2018-01-01</p> <p>Welding quality control is an important parameter for safe operation of oil and gas pipes, especially for high-strength steel pipes. Size control of welding defect is a bottleneck problem for current pipe construction. As a key part of construction procedure for butt-welding of pipes, pore defects in girth weld is difficult to ignore. A three-dimensional non-linear finite element numerical model is established to study applicability of size control indices based on groove shape and softening phenomenon of material in heat-affected zone of practical pipe girth weld. Taking design criteria of pipe as the basis, basic tensile, extremely tensile and extremely compressive loading conditions are determined for pipe stress analysis, and failure criteria based on flow stress is employed to perform stress analysis for pipe girth weld with pore defect. Results show that pipe girth welding stresses of pores at various radial locations are similar. Whereas, stress for pores of different sharpness varied significantly. Besides, tolerance capability of API 5L X90 grade pipe to pore defect of girth weld is lower than that of API 5L X80 grade pipe, and size control index of 3 mm related to pore defect in current standards is applicable to API 5L X80 and X90 grade girth welded pipes with radially non-sharp pore defects. PMID:29364986</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26599320','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26599320"><span>Facile fabrication of BiVO4 nanofilms with controlled pore size and their photoelectrochemical performances.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Feng, Chenchen; Jiao, Zhengbo; Li, Shaopeng; Zhang, Yan; Bi, Yingpu</p> <p>2015-12-28</p> <p>We demonstrate a facile method for the rational fabrication of pore-size controlled nanoporous BiVO(4) photoanodes, and confirmed that the optimum pore-size distributions could effectively absorb visible light through light diffraction and confinement functions. Furthermore, in situ X-ray photoelectron spectroscopy (XPS) reveals more efficient photoexcited electron-hole separation than conventional particle films, induced by light confinement and rapid charge transfer in the inter-crossed worm-like structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8793E..1GS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8793E..1GS"><span>Heterogeneous porous structures for the fastest liquid absorption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shou, Dahua; Ye, Lin; Fan, Jintu</p> <p>2013-08-01</p> <p>Engineered porous materials, which have fast absorption of liquids under global constraints (e.g. volume, surface area, or cost of the materials), are useful in many applications including moisture management fabrics, medical wound dressings, paper-based analytical devices, liquid molding composites, etc.. The absorption in capillary tubes and porous media is driven by the surface tension of liquid, which is inversely proportional to the pore size. On the contrary, the ability of conduction (or permeability) of liquid in porous materials is linear with the square of pore size. Both mechanisms superimpose with each other leading to a possibility of the fastest absorption for a porous structure. In this work, we explore the flow behaviors for the fastest absorption using heterogeneous porous architectures, from two-portion tubes to two-layer porous media. The absorption time for filling up the voids in these porous materials is expressed in terms of pore size, height and porosity. It is shown that under the given height and void volume, these two-component porous structures with a negative gradient of pore size/porosity against the imbibition direction, have a faster absorption rate than controlled samples with uniform pore size/porosity. Particularly, optimal structural parameters including pore size, height and porosity are found for the minimum absorption time. The obtained results will be used as a priori for the design of porous structures with excellent water absorption and moisture management property in various fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25859853','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25859853"><span>Supercritical CO2 foaming of thermoplastic materials derived from maize: proof-of-concept use in mammalian cell culture applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de Los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore</p> <p>2015-01-01</p> <p>Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4393026','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4393026"><span>Supercritical CO2 Foaming of Thermoplastic Materials Derived from Maize: Proof-of-Concept Use in Mammalian Cell Culture Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Trujillo-de Santiago, Grissel; Portales-Cabrera, Cynthia Guadalupe; Portillo-Lara, Roberto; Araiz-Hernández, Diana; Del Barone, Maria Cristina; García-López, Erika; Rojas-de Gante, Cecilia; de los Angeles De Santiago-Miramontes, María; Segoviano-Ramírez, Juan Carlos; García-Lara, Silverio; Rodríguez-González, Ciro Ángel; Alvarez, Mario Moisés; Di Maio, Ernesto; Iannace, Salvatore</p> <p>2015-01-01</p> <p>Background Foams are high porosity and low density materials. In nature, they are a common architecture. Some of their relevant technological applications include heat and sound insulation, lightweight materials, and tissue engineering scaffolds. Foams derived from natural polymers are particularly attractive for tissue culture due to their biodegradability and bio-compatibility. Here, the foaming potential of an extensive list of materials was assayed, including slabs elaborated from whole flour, the starch component only, or the protein fraction only of maize seeds. Methodology/Principal Findings We used supercritical CO2 to produce foams from thermoplasticized maize derived materials. Polyethylene-glycol, sorbitol/glycerol, or urea/formamide were used as plasticizers. We report expansion ratios, porosities, average pore sizes, pore morphologies, and pore size distributions for these materials. High porosity foams were obtained from zein thermoplasticized with polyethylene glycol, and from starch thermoplasticized with urea/formamide. Zein foams had a higher porosity than starch foams (88% and 85%, respectively) and a narrower and more evenly distributed pore size. Starch foams exhibited a wider span of pore sizes and a larger average pore size than zein (208.84 vs. 55.43 μm2, respectively). Proof-of-concept cell culture experiments confirmed that mouse fibroblasts (NIH 3T3) and two different prostate cancer cell lines (22RV1, DU145) attached to and proliferated on zein foams. Conclusions/Significance We conducted screening and proof-of-concept experiments on the fabrication of foams from cereal-based bioplastics. We propose that a key indicator of foamability is the strain at break of the materials to be foamed (as calculated from stress vs. strain rate curves). Zein foams exhibit attractive properties (average pore size, pore size distribution, and porosity) for cell culture applications; we were able to establish and sustain mammalian cell cultures on zein foams for extended time periods. PMID:25859853</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1964b0002E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1964b0002E"><span>Preparation and characterization of coating sodium trisilicate (Na2O.nSiO2) at calcium carbonate (CaCO3) for blowing agent in Mg alloy foam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Erryani, Aprilia; Lestari, Franciska Pramuji; Annur, Dhyah; Kartika, Ika</p> <p>2018-05-01</p> <p>The role of blowing agent in the manufacture of porous metal alloys is very important to produce the desired pore. The thermal stability and speed of foam formation have an effect on the resulting pore structure. In porous metal alloys, uniformity of size and pore deployment are the main determinants of the resulting alloys. The coating process of calcium carbonate (CaCO3) has been done using Sodium trisilicate solution by sol-gel method. Foaming agent was pretreated by coating SiO2 passive layer on the surface of CaCO3. This coating aims to produce a more stable blowing agent so that the foaming process can produce a more uniform pore size. The microstructure of the SiO2 passive was observed using Scanning Electron Microscope (SEM) equipped by Energy Dispersive X-Ray Spectrometer (EDS) mapping. The results showed coating CaCO3 using sodium trisilicate was successfully done creating a passive layer of SiO2 on the surface of CaCO3. By the coating process, the thermal stability of coated CaCO3 increased compared to uncoated CaCO3.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FrMS...11..307M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FrMS...11..307M"><span>Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maitlo, Inamullah; Ali, Safdar; Akram, Muhammad Yasir; Shehzad, Farooq Khurum; Nie, Jun</p> <p>2017-12-01</p> <p>Porous polymer scaffolds designed by the cryogel method are attractive materials for a range of tissue engineering applications. However, the use of toxic crosslinker for retaining the pore structure limits their clinical applications. In this research, acrylates (HEA/PEGDA, HEMA/PEGDA and PEGDA) were used in the low-temperature solid-state photopolymerization to produce porous scaffolds with good structural retention. The morphology, pore diameter, mineral deposition and water absorption of the scaffold were characterized by SEM and water absorption test respectively. Elemental analysis and cytotoxicity of the biomineralized scaffold were revealed by using XRD and MTT assay test. The PEGDA-derived scaffold showed good water absorption ability and a higher degree of porosity with larger pore size compared to others. XRD patterns and IR results confirmed the formation of hydroxyapatite crystals from an alternative socking process. The overall cell proliferation was excellent, where PEGDA-derived scaffold had the highest and the most uniform cell growth, while HEMA/PEGDA scaffold showed the least. These results suggest that the cell proliferation and adhesion are directly proportional to the pore size, the shape and the porosity of scaffolds.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28415469','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28415469"><span>Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yan, Leiming; Wu, Jisi; Zhang, Lei; Liu, Xinli; Zhou, Kechao; Su, Bo</p> <p>2017-06-01</p> <p>Porous titanium scaffolds with long-range lamellar structure were fabricated using a novel bidirectional freeze casting method. Compared with the ordinarily porous titanium materials made by traditional freeze casting, the titanium walls can offer the structure of ordered arrays with parallel to each other in the transverse cross-sections. And titanium scaffolds with different pore width, wall size and porosity can be synthesized in terms of adjusting the fabrication parameters. As the titanium content was increased from 15vol.% to 25vol.%, the porosity and pore width decreased from 67±3% to 50±2% and 80±10μm to 67±7μm, respectively. On the contrary, as the wall size was increased from 18±2μm to 30±3μm, the compressive strength and stiffness were increased from 58±8MPa to 162±10MPa and from 2.5±0.7GPa to 6.5±0.9GPa, respectively. The porous titanium scaffolds with long-range lamellar structure and controllable pore structure produced in present work will be capable of having potential application as bone tissue scaffold materials. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptMa..75..814K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptMa..75..814K"><span>Optical properties of phosphor-in-glass through modification of pore properties for LED packaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Sunil; Kim, Hyungsun</p> <p>2018-01-01</p> <p>The volume and size of the voids present between the frit and the phosphor particles used before sintering determine the pore properties of the resulting phosphor-in-glass (PIG). The pores formed from the voids influence the path of the incident light, thus changing the optical properties of the PIG. Therefore, the trends observed for the shrinkage and the green and sintered densities of the PIG were investigated using SiO2-B2O3-ZnO-K2O glass frit of four sizes to understand the tendency for the pore size, porosity, and optical properties of PIG. It has been demonstrated that variation in the pore properties according to the particle size influences parameters defining the light scattering phenomenon, such as the scattering angle of the light and the scattering coefficient, as well as the color rendering index, correlated color temperature, and package efficacy. The results obtained for the variation in the optical properties with the frit size can be used as a reference to select the appropriate glass frit size to achieve the required optical properties for a light-emitting diode (LED) package.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1437961-morphology-driven-control-metabolite-selectivity-using-nanostructure-initiator-mass-spectrometry','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1437961-morphology-driven-control-metabolite-selectivity-using-nanostructure-initiator-mass-spectrometry"><span>Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gao, Jian; Louie, Katherine B.; Steinke, Philipp; ...</p> <p>2017-05-26</p> <p>Nanostructure-initiator mass spectrometry (NIMS) is a laser desorption/ionization analysis technique based on the vaporization of a nanostructure-trapped liquid "initiator" phase. Here we report an intriguing relationship between NIMS surface morphology and analyte selectivity. Scanning electron microscopy and spectroscopic ellipsometry were used to characterize the surface morphologies of a series of NIMS substrates generated by anodic electrochemical etching. Mass spectrometry imaging was applied to compare NIMS sensitivity of these various surfaces toward the analysis of diverse analytes. The porosity of NIMS surfaces was found to increase linearly with etching time where the pore size ranged from 4 to 12 nm withmore » corresponding porosities estimated to be 7-70%. Surface morphology was found to significantly and selectively alter NIMS sensitivity. The small molecule ( < 2k Da) sensitivity was found to increase with increased porosity, whereas low porosity had the highest sensitivity for the largest molecules examined. Estimation of molecular sizes showed that this transition occurs when the pore size is < 3× the maximum of molecular dimensions. While the origins of selectivity are unclear, increased signal from small molecules with increased surface area is consistent with a surface area restructuring-driven desorption/ionization process where signal intensity increases with porosity. In contrast, large molecules show highest signal for the low-porosity and small-pore-size surfaces. We attribute this to strong interactions between the initiator-coated pore structures and large molecules that hinder desorption/ionization by trapping large molecules. This finding may enable us to design NIMS surfaces with increased specificity to molecules of interest.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H11G1269C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H11G1269C"><span>Geometrical characteristics of sandstone with different sample sizes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheon, D. S.; Takahashi, M., , Dr</p> <p>2017-12-01</p> <p>In many rock engineering projects such as CO2 underground storage, engineering geothermal system, it is important things to understand the fluid flow behavior in the deep geological conditions. This fluid flow is generally affected by the geometrical characteristics of rock, especially porous media. Furthermore, physical properties in rock may depend on the existence of voids space in rock. Total porosity and pore size distribution can be measured by Mercury Intrusion Porosimetry and the other geometrical and spatial information of pores can be obtained through micro-focus X-ray CT. Using the micro-focus X-ray CT, we obtained the extracted void space and transparent image from the original CT voxel images of with different sample sizes like 1 mm, 2 mm, 3 mm cubes. The test samples are Berea sandstone and Otway sandstone. The former is well-known sandstone and it is used for the standard sample to compared to the result from the Otway sandstone. Otway sandstone was obtained from the CO2CRC Otway pilot site for the CO2 geosequestraion project. From the X-ray scan and ExFACT software, we get the informations including effective pore radii, coordination number, tortuosity and effective throat/pore radius ratio etc. The geometrical information analysis showed that for Berea sandstone and Otway sandstone, there is rarely differences with different sample sizes and total value of coordination number show high porosity, the tortuosity of Berea sandstone is higher than the Otway sandstone. In the future, these information will be used for the permeability of the samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..206a2003J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..206a2003J"><span>Physical Activation of Oil Palm Empty Fruit Bunch via CO2 Activation Gas for CO2 Adsorption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joseph, C. G.; Quek, K. S.; Daud, W. M. A. W.; Moh, P. Y.</p> <p>2017-06-01</p> <p>In this study, different parameters for the preparation of activated carbon were investigated for their yield and CO2 capture capabilities. The activated carbon was prepared from Oil Palm Empty Fruit Bunch (OPEFB) via a 2-step physical activation process. The OPEFB was pyrolyzed under inert conditions at 500 °C and activated via CO2. A 2-factorial design was employed and the effects of activation temperature, activation dwell time and gas flow rate on yield and CO2 capture capabilities were compared and studied. The yield obtained ranged from between 20 - 26, whereby the temperature was determined to be the most significant factor in influencing CO2 uptake. The CO2 capture capacity was determined using Temperature Programmed Desorption (TPD) technique. The CO2 uptake of EFB activated carbon achieved was between 1.85 - 2.09 mmol/g. TPD analysis has shown that the surface of AC were of basic nature. AC was found to be able to withhold the CO2 up to 663°C before maximum desorption occurs. The surface area and pore size of OPEFB obtained from BET analysis is 2.17 m2 g-1 and 0.01 cm3 g-1. After activation, both surface area and pore size increased with a maximum observed surface area and pore size of 548.07 m2 g-1 and 0.26 cm3 g-1. Surface morphology, functional groups, pore size and surface area were analyzed using SEM, FT-IR, TPD and BET.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26592565','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26592565"><span>Mesoporous Silica Gel-Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y; Huo, Fengwei</p> <p>2015-11-23</p> <p>The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4-30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1438985-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1438985-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution"><span>Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla</p> <p></p> <p>The state-of-the-art multiscale modeling of GPFs including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtration on a singlemore » channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. The microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1415777-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1415777-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution"><span>Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla; ...</p> <p>2018-01-03</p> <p>The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4655366','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4655366"><span>Mesoporous Silica Gel–Based Mixed Matrix Membranes for Improving Mass Transfer in Forward Osmosis: Effect of Pore Size of Filler</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lee, Jian-Yuan; Wang, Yining; Tang, Chuyang Y.; Huo, Fengwei</p> <p>2015-01-01</p> <p>The efficiency of forward osmosis (FO) process is generally limited by the internal concentration polarization (ICP) of solutes inside its porous substrate. In this study, mesoporous silica gel (SG) with nominal pore size ranging from 4–30 nm was used as fillers to prepare SG-based mixed matrix substrates. The resulting mixed matrix membranes had significantly reduced structural parameter and enhanced membrane water permeability as a result of the improved surface porosity of the substrates. An optimal filler pore size of ~9 nm was observed. This is in direct contrast to the case of thin film nanocomposite membranes, where microporous nanoparticle fillers are loaded to the membrane rejection layer and are designed in such a way that these fillers are able to retain solutes while allowing water to permeate through them. In the current study, the mesoporous fillers are designed as channels to both water and solute molecules. FO performance was enhanced at increasing filler pore size up to 9 nm due to the lower hydraulic resistance of the fillers. Nevertheless, further increasing filler pore size to 30 nm was accompanied with reduced FO efficiency, which can be attributed to the intrusion of polymer dope into the filler pores. PMID:26592565</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1415777-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1415777-importance-filters-microstructure-dynamic-filtration-modeling-gasoline-particulate-filters-gpfs-inhomogeneous-porosity-pore-size-distribution"><span>Importance of filter’s microstructure in dynamic filtration modeling of gasoline particulate filters (GPFs): Inhomogeneous porosity and pore size distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gong, Jian; Stewart, Mark L.; Zelenyuk, Alla</p> <p></p> <p>The state-of-the-art multiscale modeling of gasoline particulate filter (GPF) including channel scale, wall scale, and pore scale is described. The microstructures of two GPFs were experimentally characterized. The pore size distributions of the GPFs were determined by mercury porosimetry. The porosity was measured by X-ray computed tomography (CT) and found to be inhomogeneous across the substrate wall. The significance of pore size distribution with respect to filtration performance was analyzed. The predictions of filtration efficiency were improved by including the pore size distribution in the filtration model. A dynamic heterogeneous multiscale filtration (HMF) model was utilized to simulate particulate filtrationmore » on a single channel particulate filter with realistic particulate emissions from a spark-ignition direct-injection (SIDI) gasoline engine. The dynamic evolution of filter’s microstructure and macroscopic filtration characteristics including mass- and number-based filtration efficiencies and pressure drop were predicted and discussed. In conclusion, the microstructure of the GPF substrate including inhomogeneous porosity and pore size distribution is found to significantly influence local particulate deposition inside the substrate and macroscopic filtration performance and is recommended to be resolved in the filtration model to simulate and evaluate the filtration performance of GPFs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5424733','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5424733"><span>Easy-to-Fabricate and High-Sensitivity LSPR Type Specific Protein Detection Sensor Using AAO Nano-Pore Size Control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kim, Sae-Wan; Lee, Jae-Sung; Lee, Sang-Won; Kang, Byoung-Ho; Kwon, Jin-Beom; Kim, Ok-Sik; Kim, Ju-Seong; Kim, Eung-Soo; Kwon, Dae-Hyuk; Kang, Shin-Won</p> <p>2017-01-01</p> <p>In this study, we developed a pore size/pore area-controlled optical biosensor-based anodic aluminum oxide (AAO) nanostructure. As the pore size of AAO increases, the unit cell of AAO increases, which also increases the non-pore area to which the antibody binds. The increase in the number of antibodies immobilized on the surface of the AAO enables effective detection of trace amounts of antigen, because increased antigen-antibody bonding results in a larger surface refractive index change. High sensitivity was thus achieved through amplification of the interference wave of two vertically-incident reflected waves through the localized surface plasmon resonance phenomenon. The sensitivity of the fabricated sensor was evaluated by measuring the change in wavelength with the change in the refractive index of the device surface, and sensitivity was increased with increasing pore-size and non-pore area. The sensitivity of the fabricated sensor was improved and up to 11.8 ag/mL serum amyloid A1 antigen was detected. In addition, the selectivity of the fabricated sensor was confirmed through a reaction with a heterogeneous substance, C-reactive protein antigen. By using hard anodization during fabrication of the AAO, the fabrication time of the device was reduced and the AAO chip was fabricated quickly and easily. PMID:28406469</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ResPh...9.1428T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ResPh...9.1428T"><span>Investigating the effect of sputtering conditions on the physical properties of aluminum thin film and the resulting alumina template</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taheriniya, Shabnam; Parhizgar, Sara Sadat; Sari, Amir Hossein</p> <p>2018-06-01</p> <p>To study the alumina template pore size distribution as a function of Al thin film grain size distribution, porous alumina templates were prepared by anodizing sputtered aluminum thin films. To control the grain size the aluminum samples were sputtered with the rate of 0.5, 1 and 2 Å/s and the substrate temperature was either 25, 75 or 125 °C. All samples were anodized for 120 s in 1 M sulfuric acid solution kept at 1 °C while a 15 V potential was being applied. The standard deviation value for samples deposited at room temperature but with different rates is roughly 2 nm in both thin film and porous template form but it rises to approximately 4 nm with substrate temperature. Samples with the average grain size of 13, 14, 18.5 and 21 nm respectively produce alumina templates with an average pore size of 8.5, 10, 15 and 16 nm in that order which shows the average grain size limits the average pore diameter in the resulting template. Lateral correlation length and grain boundary effect are other factors that affect the pore formation process and pore size distribution by limiting the initial current density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1917d0002B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1917d0002B"><span>Revealing the influence of water-cement ratio on the pore size distribution in hydrated cement paste by using cyclohexane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bede, Andrea; Ardelean, Ioan</p> <p>2017-12-01</p> <p>Varying the amount of water in a concrete mix will influence its final properties considerably due to the changes in the capillary porosity. That is why a non-destructive technique is necessary for revealing the capillary pore distribution inside hydrated cement based materials and linking the capillary porosity with the macroscopic properties of these materials. In the present work, we demonstrate a simple approach for revealing the differences in capillary pore size distributions introduced by the preparation of cement paste with different water-to-cement ratios. The approach relies on monitoring the nuclear magnetic resonance transverse relaxation distribution of cyclohexane molecules confined inside the cement paste pores. The technique reveals the whole spectrum of pores inside the hydrated cement pastes, allowing a qualitative and quantitative analysis of different pore sizes. The cement pastes with higher water-to-cement ratios show an increase in capillary porosity, while for all the samples the intra-C-S-H and inter-C-S-H pores (also known as gel pores) remain unchanged. The technique can be applied to various porous materials with internal mineral surfaces.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22736839','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22736839"><span>Partitioning of habitable pore space in earthworm burrows.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gorres, Josef H; Amador, Jose A</p> <p>2010-03-01</p> <p>Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, V(s), varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total V(s) of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3380515','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3380515"><span>Partitioning of habitable pore space in earthworm burrows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Amador, Jose A.</p> <p>2010-01-01</p> <p>Earthworms affect macro-pore structure of soils. However, some studies suggest that earthworm burrow walls and casts themselves differ greatly in structure from surrounding soils, potentially creating habitat for microbivorours nematodes which accelerate the decomposition and C and N mineralization. In this study aggregates were sampled from the burrow walls of the anecic earthworm Lumbricus terrestris and bulk soil (not altered by earthworms) from mesocosm incubated in the lab for 0, 1, 3, 5 and 16 weeks. Pore volumes and pore sizes were measured in triplicate with Mercury Intrusion Porosimetry (MIP). This method is well suited to establish pore size structure in the context of habitat, because it measures the stepwise intrusion of mercury from the outside of the aggregate into ever smaller pores. The progress of mercury into the aggregate interior thus resembles potential paths of a nematode into accessible habitable pore spaces residing in an aggregate. Total specific pore volume, Vs, varied between 0.13 and 0.18 mL/g and increased from 3 to 16 weeks in both burrow and bulk soil. Differences between total Vs of bulk and burrow samples were not significant on any sampling date. However, differences were significant for pore size fractions at the scale of nematode body diameter. PMID:22736839</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5391558','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5391558"><span>Tailoring Pore Size and Chemical Interior of near 1 nm Sized Pores in a Nanoporous Polymer Based on a Discotic Liquid Crystal</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>A triazine based disc shaped molecule with two hydrolyzable units, imine and ester groups, was polymerized via acyclic diene metathesis in the columnar hexagonal (Colhex) LC phase. Fabrication of a cationic nanoporous polymer (pore diameter ∼1.3 nm) lined with ammonium groups at the pore surface was achieved by hydrolysis of the imine linkage. Size selective aldehyde uptake by the cationic porous polymer was demonstrated. The anilinium groups in the pores were converted to azide as well as phenyl groups by further chemical treatment, leading to porous polymers with neutral functional groups in the pores. The pores were enlarged by further hydrolysis of the ester groups to create ∼2.6 nm pores lined with −COONa surface groups. The same pores could be obtained in a single step without first hydrolyzing the imine linkage. XRD studies demonstrated that the Colhex order of the monomer was preserved after polymerization as well as in both the nanoporous polymers. The porous anionic polymer lined with −COOH groups was further converted to the −COOLi, −COONa, −COOK, −COOCs, and −COONH4 salts. The porous polymer lined with −COONa groups selectively adsorbs a cationic dye, methylene blue, over an anionic dye. PMID:28416888</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910052387&hterms=couple&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcouple','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910052387&hterms=couple&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcouple"><span>Linear-sweep voltammetry of a soluble redox couple in a cylindrical electrode</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weidner, John W.</p> <p>1991-01-01</p> <p>An approach is described for using the linear sweep voltammetry (LSV) technique to study the kinetics of flooded porous electrodes by assuming a porous electrode as a collection of identical noninterconnected cylindrical pores that are filled with electrolyte. This assumption makes possible to study the behavior of this ideal electrode as that of a single pore. Alternatively, for an electrode of a given pore-size distribution, it is possible to predict the performance of different pore sizes and then combine the performance values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1245821-freeze-cast-alumina-pore-networks-effects-freezing-conditions-dispersion-medium','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1245821-freeze-cast-alumina-pore-networks-effects-freezing-conditions-dispersion-medium"><span>Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miller, S. M.; Xiao, X.; Faber, K. T.</p> <p></p> <p>Alumina ceramics were freeze-cast from water- and camphene-based slurries under varying freezing conditions and examined using X-ray computed tomography (XCT). Pore network characteristics, i.e., porosity, pore size, geometric surface area, and tortuosity, were measured from XCT reconstructions and the data were used to develop a model to predict feature size from processing conditions. Classical solidification theory was used to examine relationships between pore size, temperature gradients, and freezing front velocity. Freezing front velocity was subsequently predicted from casting conditions via the two-phase Stefan problem. Resulting models for water-based samples agreed with solidification-based theories predicting lamellar spacing of binary eutectic alloys,more » and models for camphene-based samples concurred with those for dendritic growth. Relationships between freezing conditions and geometric surface area were also modeled by considering the inverse relationship between pore size and surface area. Tortuosity was determined to be dependent primarily on the type of dispersion medium. (C) 2015 Elsevier Ltd. All rights reserved.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004JAP....95.2355L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004JAP....95.2355L"><span>Structural characterization of porous low-k thin films prepared by different techniques using x-ray porosimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Hae-Jeong; Soles, Christopher L.; Liu, Da-Wei; Bauer, Barry J.; Lin, Eric K.; Wu, Wen-li; Grill, Alfred</p> <p>2004-03-01</p> <p>Three different types of porous low-k dielectric films, with similar dielectric constants, are characterized using x-ray porosimetry (XRP). XRP is used to extract critical structural information, such as the average density, wall density, porosity, and pore size distribution. The materials include a plasma-enhanced-chemical-vapor-deposited carbon-doped oxide film composed of Si, C, O, and H (SiCOH) and two spin cast silsesquioxane type films—methylsilsesquioxane with a polymeric porogen (porous MSQ) and hydrogensilsesquioxane with a high boiling point solvent (porous HSQ). The porous SiCOH film displays the smallest pore sizes, while porous HSQ film has both the highest density wall material and porosity. The porous MSQ film exhibits a broad range of pores with the largest average pore size. We demonstrate that the average pore size obtained by the well-established method of neutron scattering and x-ray reflectivity is in good agreement with the XRP results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28302946','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28302946"><span>Influence of lyophilization factors and gelatin concentration on pore structures of atelocollagen/gelatin sponge biomaterial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Longqiang; Tanabe, Koji; Miura, Tadashi; Yoshinari, Masao; Takemoto, Shinji; Shintani, Seikou; Kasahara, Masataka</p> <p>2017-07-26</p> <p>This study aimed to investigate influences of lyophilization factors and gelatin concentration on pore structures of ACG sponge. ACG sponges of different freezing temperatures (-30, -80 and -196 o C), freezing times (1, 2 and 24 h), gelatin concentrations (0.6%AC+0.15%G, 0.6%AC+0.6%G and 0.6%AC+2.4%G), and with 500 μM fluvastatin were fabricated. Pore structures including porosity and pore size were analyzed by scanning electron microscopy and ImageJ. The cytotoxic effects of ACG sponges were evaluated in vitro. Freezing temperature did not affect porosity while high freezing temperature (-30 o C) increased pore size. The high gelatin concentration group (0.6%AC+2.4%G) had decreased porosity and pore size. Freezing time and 500 μM fluvastatin did not affect pore structures. The cytotoxicity and cell proliferation assays revealed that ACG sponges had no cytotoxic effects on human mesenchymal stromal cell growth and proliferation. These results indicate that ACG sponge may be a good biomaterial scaffold for bone regeneration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5459163','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5459163"><span>Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Pengwei; Hu, Liming; Meegoda, Jay N.</p> <p>2017-01-01</p> <p>Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix. PMID:28772465</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28772465','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28772465"><span>Pore-Scale Simulation and Sensitivity Analysis of Apparent Gas Permeability in Shale Matrix.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Pengwei; Hu, Liming; Meegoda, Jay N</p> <p>2017-01-25</p> <p>Extremely low permeability due to nano-scale pores is a distinctive feature of gas transport in a shale matrix. The permeability of shale depends on pore pressure, porosity, pore throat size and gas type. The pore network model is a practical way to explain the macro flow behavior of porous media from a microscopic point of view. In this research, gas flow in a shale matrix is simulated using a previously developed three-dimensional pore network model that includes typical bimodal pore size distribution, anisotropy and low connectivity of the pore structure in shale. The apparent gas permeability of shale matrix was calculated under different reservoir pressures corresponding to different gas exploitation stages. Results indicate that gas permeability is strongly related to reservoir gas pressure, and hence the apparent permeability is not a unique value during the shale gas exploitation, and simulations suggested that a constant permeability for continuum-scale simulation is not accurate. Hence, the reservoir pressures of different shale gas exploitations should be considered. In addition, a sensitivity analysis was also performed to determine the contributions to apparent permeability of a shale matrix from petro-physical properties of shale such as pore throat size and porosity. Finally, the impact of connectivity of nano-scale pores on shale gas flux was analyzed. These results would provide an insight into understanding nano/micro scale flows of shale gas in the shale matrix.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3770300','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3770300"><span>Modeling Vascularized Bone Regeneration Within a Porous Biodegradable CaP Scaffold Loaded with Growth Factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sun, X; Kang, Y; Bao, J; Zhang, Y; Yang, Y; Zhou, X</p> <p>2013-01-01</p> <p>Osteogenetic microenvironment is a complex constitution in which extracellular matrix (ECM) molecules, stem cells and growth factors each interact to direct the coordinate regulation of bone tissue development. Importantly, angiogenesis improvement and revascularization are critical for osteogenesis during bone tissue regeneration processes. In this study, we developed a three-dimensional (3D) multi-scale system model to study cell response to growth factors released from a 3D biodegradable porous calcium phosphate (CaP) scaffold. Our model reconstructed the 3D bone regeneration system and examined the effects of pore size and porosity on bone formation and angiogenesis. The results suggested that scaffold porosity played a more dominant role in affecting bone formation and angiogenesis compared with pore size, while the pore size could be controlled to tailor the growth factor release rate and release fraction. Furthermore, a combination of gradient VEGF with BMP2 and Wnt released from the multi-layer scaffold promoted angiogenesis and bone formation more readily than single growth factors. These results demonstrated that the developed model can be potentially applied to predict vascularized bone regeneration with specific scaffold and growth factors. PMID:23566802</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950026861','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950026861"><span>The effect of sample holder material on ion mobility spectrometry reproducibility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jadamec, J. Richard; Su, Chih-Wu; Rigdon, Stephen; Norwood, Lavan</p> <p>1995-01-01</p> <p>When a positive detection of a narcotic occurs during the search of a vessel, a decision has to be made whether further intensive search is warranted. This decision is based in part on the results of a second sample collected from the same area. Therefore, the reproducibility of both sampling and instrumental analysis is critical in terms of justifying an in depth search. As reported at the 2nd Annual IMS Conference in Quebec City, the U.S. Coast Guard has determined that when paper is utilized as the sample desorption medium for the Barringer IONSCAN, the analytical results using standard reference samples are reproducible. A study was conducted utilizing papers of varying pore sizes and comparing their performance as a desorption material relative to the standard Barringer 50 micron Teflon. Nominal pore sizes ranged from 30 microns down to 2 microns. Results indicate that there is some peak instability in the first two to three windows during the analysis. The severity of the instability was observed to increase as the pore size of the paper is decreased. However, the observed peak instability does not create a situation that results in a decreased reliability or reproducibility in the analytical result.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3907800','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3907800"><span>Synthesis and Characterization of β-Cyclodextrin Functionalized Ionic Liquid Polymer as a Macroporous Material for the Removal of Phenols and As(V)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Raoov, Muggundha; Mohamad, Sharifah; Abas, Mhd Radzi</p> <p>2014-01-01</p> <p>β-Cyclodextrin-ionic liquid polymer (CD-ILP) was first synthesized by functionalized β-cyclodextrin (CD) with 1-benzylimidazole (BIM) to form monofunctionalized CD (βCD-BIMOTs) and was further polymerized using a toluene diisocyanate (TDI) linker to form insoluble CD-ILP (βCD-BIMOTs-TDI). The βCD-BIMOTs-TDI polymer was characterized using various tools and the results obtained were compared with those derived from the native β-cyclodextrin polymer (βCD-TDI). The SEM result shows that the presence of ionic liquid (IL) increases the pore size, while the thermo gravimetric analysis (TGA) result shows that the presence of IL increases the stability of the polymer. Meanwhile, Brunauer-Emmett-Teller (BET) results show that βCD-BIMOTs-TDI polymer has 1.254 m2/g surface areas and the Barret-Joyner-Halenda (BJH) pore size distribution result reveals that the polymer exhibits macropores with a pore size of 77.66 nm. Preliminary sorption experiments were carried out and the βCD-BIMOTs-TDI polymer shows enhanced sorption capacity and high removal towards phenols and As(V). PMID:24366065</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4830587','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4830587"><span>Faecal Parasitology: Concentration Methodology Needs to be Better Standardised</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Manser, Monika M.; Saez, Agatha Christie Santos; Chiodini, Peter L.</p> <p>2016-01-01</p> <p>Aim To determine whether variation in the preservative, pore size of the sieve, solvent, centrifugal force and centrifugation time used in the Ridley-Allen Concentration method for examining faecal specimens for parasite stages had any effect on their recovery in faecal specimens. Methods A questionnaire was sent to all participants in the UK NEQAS Faecal Parasitology Scheme. The recovery of parasite stages was compared using formalin diluted in water or formalin diluted in saline as the fixative, 3 different pore sizes of sieve, ether or ethyl acetate as a solvent, 7 different centrifugal forces and 6 different centrifugation times according to the methods described by participants completing the questionnaire. Results The number of parasite stages recovered was higher when formalin diluted in water was used as fixative, a smaller pore size of sieve was used, ethyl acetate along with Triton X 100 was used as a solvent and a centrifugal force of 3,000 rpm for 3 minutes were employed. Conclusions This study showed that differences in methodology at various stages of the concentration process affect the recovery of parasites from a faecal specimen and parasites present in small numbers could be missed if the recommended methodology is not followed. PMID:27073836</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5495S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5495S"><span>Effects of the soil pore network architecture on the soil's physical functionalities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smet, Sarah; Beckers, Eléonore; Léonard, Angélique; Degré, Aurore</p> <p>2017-04-01</p> <p>The soil fluid movement's prediction is of major interest within an agricultural or environmental scope because many processes depend ultimately on the soil fluids dynamic. It is common knowledge that the soil microscopic pore network structure governs the inner-soil convective fluids flow. There isn't, however, a general methodthat consider the pore network structure as a variable in the prediction of thecore scale soil's physical functionalities. There are various possible representations of the microscopic pore network: sample scale averaged structural parameters, extrapolation of theoretic pore network, or use of all the information available by modeling within the observed pore network. Different representations implydifferent analyzing methodologies. To our knowledge, few studies have compared the micro-and macroscopic soil's characteristics for the same soil core sample. The objective of our study is to explore the relationship between macroscopic physical properties and microscopic pore network structure. The saturated hydraulic conductivity, the air permeability, the retention curve, and others classical physical parameters were measured for ten soil samples from an agricultural field. The pore network characteristics were quantified through the analyses of X-ray micro-computed tomographic images(micro-CT system Skyscan-1172) with a voxel size of 22 µm3. Some of the first results confirmed what others studies had reported. Then, the comparison between macroscopic properties and microscopic parameters suggested that the air movements depended mostly on the pore connectivity and tortuosity than on the total porosity volume. We have also found that the fractal dimension calculated from the X-ray images and the fractal dimension calculated from the retention curve were significantly different. Our communication will detailthose results and discuss the methodology: would the results be similar with a different voxel size? What are the calculated and measured parameters uncertainties? Sarah Smet, as a research fellow, acknowledges the support of the National Fund for Scientific Research (Brussels, Belgium).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25835808','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25835808"><span>Investigation of the Effect of the Tortuous Pore Structure on Water Diffusion through a Polymer Film Using Lattice Boltzmann Simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gebäck, Tobias; Marucci, Mariagrazia; Boissier, Catherine; Arnehed, Johan; Heintz, Alexei</p> <p>2015-04-23</p> <p>Understanding how the pore structure influences the mass transport through a porous material is important in several applications, not the least in the design of polymer film coatings intended to control drug release. In this study, a polymer film made of ethyl cellulose and hydroxypropyl cellulose was investigated. The 3D structure of the films was first experimentally characterized using confocal laser scanning microscopy data and then mathematically reconstructed for the whole film thickness. Lattice Boltzmann simulations were performed to compute the effective diffusion coefficient of water in the film and the results were compared to experimental data. The local porosities and pore sizes were also analyzed to determine how the properties of the internal film structure affect the water effective diffusion coefficient. The results show that the top part of the film has lower porosity, lower pore size, and lower connectivity, which results in a much lower effective diffusion coefficient in this part, largely determining the diffusion rate through the entire film. Furthermore, the local effective diffusion coefficients were not proportional to the local film porosity, indicating that the results cannot be explained by a single tortuosity factor. In summary, the proposed methodology of combining microscopy data, mass transport simulations, and pore space analysis can give valuable insights on how the film structure affects the mass transport through the film.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5589096','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5589096"><span>Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vogl, Florian; Bernet, Benjamin; Bolognesi, Daniele; Taylor, William R.</p> <p>2017-01-01</p> <p>Purpose Cortical porosity is a key characteristic governing the structural properties and mechanical behaviour of bone, and its quantification is therefore critical for understanding and monitoring the development of various bone pathologies such as osteoporosis. Axial transmission quantitative acoustics has shown to be a promising technique for assessing bone health in a fast, non-invasive, and radiation-free manner. One major hurdle in bringing this approach to clinical application is the entanglement of the effects of individual characteristics (e.g. geometry, porosity, anisotropy etc.) on the measured wave propagation. In order to address this entanglement problem, we therefore propose a systematic bottom-up approach, in which only one bone property is varied, before addressing interaction effects. This work therefore investigated the sensitivity of low-frequency quantitative acoustics to changes in porosity as well as individual pore characteristics using specifically designed cortical bone phantoms. Materials and methods 14 bone phantoms were designed with varying pore size, axial-, and radial pore number, resulting in porosities (bone volume fraction) between 0% and 15%, similar to porosity values found in human cortical bone. All phantoms were manufactured using laser sintering, measured using axial-transmission acoustics and analysed using a full-wave approach. Experimental results were compared to theoretical predictions based on a modified Timoshenko theory. Results A clear dependence of phase velocity on frequency and porosity produced by increasing pore size or radial pore number was demonstrated, with the velocity decreasing by between 2–5 m/s per percent of additional porosity, which corresponds to -0.5% to -1.0% of wave speed. While the change in phase velocity due to axial pore number was consistent with the results due to pore size and radial pore number, the relative uncertainties for the estimates were too high to draw any conclusions for this parameter. Conclusions This work has shown the capability of low-frequency quantitative acoustics to reflect changes in porosity and individual pore characteristics and demonstrated that additive manufacturing is an appropriate method that allows the influence of individual bone properties on the wave propagation to be systematically assessed. The results of this work opens perspectives for the efficient development of a multi-frequency, multi-mode approach to screen, diagnose, and monitor bone pathologies in individuals. PMID:28880868</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28880868','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28880868"><span>Towards assessing cortical bone porosity using low-frequency quantitative acoustics: A phantom-based study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vogl, Florian; Bernet, Benjamin; Bolognesi, Daniele; Taylor, William R</p> <p>2017-01-01</p> <p>Cortical porosity is a key characteristic governing the structural properties and mechanical behaviour of bone, and its quantification is therefore critical for understanding and monitoring the development of various bone pathologies such as osteoporosis. Axial transmission quantitative acoustics has shown to be a promising technique for assessing bone health in a fast, non-invasive, and radiation-free manner. One major hurdle in bringing this approach to clinical application is the entanglement of the effects of individual characteristics (e.g. geometry, porosity, anisotropy etc.) on the measured wave propagation. In order to address this entanglement problem, we therefore propose a systematic bottom-up approach, in which only one bone property is varied, before addressing interaction effects. This work therefore investigated the sensitivity of low-frequency quantitative acoustics to changes in porosity as well as individual pore characteristics using specifically designed cortical bone phantoms. 14 bone phantoms were designed with varying pore size, axial-, and radial pore number, resulting in porosities (bone volume fraction) between 0% and 15%, similar to porosity values found in human cortical bone. All phantoms were manufactured using laser sintering, measured using axial-transmission acoustics and analysed using a full-wave approach. Experimental results were compared to theoretical predictions based on a modified Timoshenko theory. A clear dependence of phase velocity on frequency and porosity produced by increasing pore size or radial pore number was demonstrated, with the velocity decreasing by between 2-5 m/s per percent of additional porosity, which corresponds to -0.5% to -1.0% of wave speed. While the change in phase velocity due to axial pore number was consistent with the results due to pore size and radial pore number, the relative uncertainties for the estimates were too high to draw any conclusions for this parameter. This work has shown the capability of low-frequency quantitative acoustics to reflect changes in porosity and individual pore characteristics and demonstrated that additive manufacturing is an appropriate method that allows the influence of individual bone properties on the wave propagation to be systematically assessed. The results of this work opens perspectives for the efficient development of a multi-frequency, multi-mode approach to screen, diagnose, and monitor bone pathologies in individuals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20099009','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20099009"><span>Hydroxyapatite scaffolds processed using a TBA-based freeze-gel casting/polymer sponge technique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Tae Young; Lee, Jung Min; Yoon, Seog Young; Park, Hong Chae</p> <p>2010-05-01</p> <p>A novel freeze-gel casting/polymer sponge technique has been introduced to fabricate porous hydroxyapatite scaffolds with controlled "designer" pore structures and improved compressive strength for bone tissue engineering applications. Tertiary-butyl alcohol (TBA) was used as a solvent in this work. The merits of each production process, freeze casting, gel casting, and polymer sponge route were characterized by the sintered microstructure and mechanical strength. A reticulated structure with large pore size of 180-360 microm, which formed on burn-out of polyurethane foam, consisted of the strut with highly interconnected, unidirectional, long pore channels (approximately 4.5 microm in dia.) by evaporation of frozen TBA produced in freeze casting together with the dense inner walls with a few, isolated fine pores (<2 microm) by gel casting. The sintered porosity and pore size generally behaved in an opposite manner to the solid loading, i.e., a high solid loading gave low porosity and small pore size, and a thickening of the strut cross section, thus leading to higher compressive strengths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29653500','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29653500"><span>Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wei, Dai-Xu; Dao, Jin-Wei; Liu, Hua-Wei; Chen, Guo-Qiang</p> <p>2018-04-13</p> <p>Different forms of biopolyester PHBVHHx microspheres were prepared so as to compare the mammalian cell behaviors in suspension cultivation system. Based on a microbial terpolyester PHBVHHx consisting of 3-hydroxybutyrate (HB), 3-hydroxyvalerate (HV), and 3-hydroxyhexanoate (HHx), solid microspheres (SMSs), hollow microspheres (HMSs), and porous microspheres (PMS) were successfully prepared by a modified solvent evaporation method involving gas-in-oil-in-water (G1/O/W2) double emulsion, water-in-oil-in-water (W1/O/W2) double emulsion and oil-in-water (O/W) single emulsion, respectively. Generally, PMSs have diameters ranging from 330 to 400 μm with pore sizes of 10 to 60 μm. The pores inside the PMSs were found well interconnected compared with PHBVHHx prepared by the traditional solvent evaporation method, resulting in the highest water uptake ratio. When inoculated with human osteoblast-like cells lasting 6 days, PMS showed much better cell attachment and proliferation compared with other less porous microspheres due to its large inner space as a 3 D carrier. Cell migration towards surface and other interconnected inner pores was clearly observable. Dead or apoptotic cells were found more common among less porous SMSs or HMSs compared with highly porous PMSs. It is therefore concluded that porous PHBVHHx microspheres with larger surface open pores and interconnected inner pores can serve as a carrier or scaffold supporting more and better cell growth for either injectable purposes or simply supporting cell growth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhDT.......182H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhDT.......182H"><span>Structural control in the synthesis of inorganic porous materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holland, Brian Thomas</p> <p></p> <p>Mesoporous (2.0--50.0 nm pore diameter) and macroporous (50.0 nm on up) materials have been the basis of my studies. These materials, for many years, possessed large pore size distributions. Recently, however, it has been possible to synthesize both mesoporous and macroporous materials that possess highly ordered uniform pores throughout the material. Workers at Mobil Corporation in 1992 discovered a hexagonally arrayed mesoporous material, designated MCM-41, which exhibited uniform pores ranging from 2.0--10.0 nm in diameter. In my work MCM-41 was used as a host for the incorporation of meso-tetrakis(5-trimethylammoniumpentyl)porphyrin (TMAP-Cl) and as a model for the synthesis of mesoporous alumino- and galloaluminophosphates which were created using cluster precursors of the type MO4Al 12(OH)24(H2O)12 7+, M = Al or Ga. Macroporous materials with uniform pore sizes have been synthesized by our group with frameworks consisting of a variety of metal oxides, metals, organosilanes, aluminophosphates and bimodal pores. These materials are synthesized from the addition of metal precursors to preordered polystyrene spheres. Removal of the spheres results in the formation of macropores with highly uniform pores extending microns in length. Porous materials with uniform and adjustable pore sizes in the mesoporous and macroporous size regimes offer distinct advantages over non-ordered materials for numerous reasons. First, catalysis reactions that are based on the ability of the porous materials to impose size and shape restrictions on the substrate are of considerable interest in the petroleum and petrochemical industries. As pore diameters increase larger molecules can be incorporated into the pores, i.e., biological molecules, dyes, etc. For the macroporous materials synthesized by our group it has been envisioned that these structures may not only be used for catalysis because of increased efficiencies of flow but for more advanced applications, e.g., photonic crystals, porous electrodes, electrochemical capacitors, etc. One of the more interesting macroporous materials takes advantage of having silicalite as the framework. This bimodal pore material may find use as an acid catalyst as aluminum is doped into the framework.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1893c0127S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1893c0127S"><span>Multiscale modeling of porous ceramics using movable cellular automaton method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smolin, Alexey Yu.; Smolin, Igor Yu.; Smolina, Irina Yu.</p> <p>2017-10-01</p> <p>The paper presents a multiscale model for porous ceramics based on movable cellular automaton method, which is a particle method in novel computational mechanics of solid. The initial scale of the proposed approach corresponds to the characteristic size of the smallest pores in the ceramics. At this scale, we model uniaxial compression of several representative samples with an explicit account of pores of the same size but with the unique position in space. As a result, we get the average values of Young's modulus and strength, as well as the parameters of the Weibull distribution of these properties at the current scale level. These data allow us to describe the material behavior at the next scale level were only the larger pores are considered explicitly, while the influence of small pores is included via effective properties determined earliar. If the pore size distribution function of the material has N maxima we need to perform computations for N-1 levels in order to get the properties step by step from the lowest scale up to the macroscale. The proposed approach was applied to modeling zirconia ceramics with bimodal pore size distribution. The obtained results show correct behavior of the model sample at the macroscale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15120292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15120292"><span>Modeling of submicrometer aerosol penetration through sintered granular membrane filters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marre, Sonia; Palmeri, John; Larbot, André; Bertrand, Marielle</p> <p>2004-06-01</p> <p>We present a deep-bed aerosol filtration model that can be used to estimate the efficiency of sintered granular membrane filters in the region of the most penetrating particle size. In this region the capture of submicrometer aerosols, much smaller than the filter pore size, takes place mainly via Brownian diffusion and direct interception acting in synergy. By modeling the disordered sintered grain packing of such filters as a simple cubic lattice, and mapping the corresponding 3D connected pore volume onto a discrete cylindrical pore network, the efficiency of a granular filter can be estimated, using new analytical results for the efficiency of cylindrical pores. This model for aerosol penetration in sintered granular filters includes flow slip and the kinetics of particle capture by the pore surface. With a unique choice for two parameters, namely the structural tortuosity and effective kinetic coefficient of particle adsorption, this semiempirical model can account for the experimental efficiency of a new class of "high-efficiency particulate air" ceramic membrane filters as a function of particle size over a wide range of filter thickness and texture (pore size and porosity) and operating conditions (face velocity).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JAG....86...70W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JAG....86...70W"><span>Fractal analysis and its impact factors on pore structure of artificial cores based on the images obtained using magnetic resonance imaging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Heming; Liu, Yu; Song, Yongchen; Zhao, Yuechao; Zhao, Jiafei; Wang, Dayong</p> <p>2012-11-01</p> <p>Pore structure is one of important factors affecting the properties of porous media, but it is difficult to describe the complexity of pore structure exactly. Fractal theory is an effective and available method for quantifying the complex and irregular pore structure. In this paper, the fractal dimension calculated by box-counting method based on fractal theory was applied to characterize the pore structure of artificial cores. The microstructure or pore distribution in the porous material was obtained using the nuclear magnetic resonance imaging (MRI). Three classical fractals and one sand packed bed model were selected as the experimental material to investigate the influence of box sizes, threshold value, and the image resolution when performing fractal analysis. To avoid the influence of box sizes, a sequence of divisors of the image was proposed and compared with other two algorithms (geometric sequence and arithmetic sequence) with its performance of partitioning the image completely and bringing the least fitted error. Threshold value selected manually and automatically showed that it plays an important role during the image binary processing and the minimum-error method can be used to obtain an appropriate or reasonable one. Images obtained under different pixel matrices in MRI were used to analyze the influence of image resolution. Higher image resolution can detect more quantity of pore structure and increase its irregularity. With benefits of those influence factors, fractal analysis on four kinds of artificial cores showed the fractal dimension can be used to distinguish the different kinds of artificial cores and the relationship between fractal dimension and porosity or permeability can be expressed by the model of D = a - bln(x + c).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27993396','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27993396"><span>Size-exclusion chromatography using core-shell particles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pirok, Bob W J; Breuer, Pascal; Hoppe, Serafine J M; Chitty, Mike; Welch, Emmet; Farkas, Tivadar; van der Wal, Sjoerd; Peters, Ron; Schoenmakers, Peter J</p> <p>2017-02-24</p> <p>Size-exclusion chromatography (SEC) is an indispensable technique for the separation of high-molecular-weight analytes and for determining molar-mass distributions. The potential application of SEC as second-dimension separation in comprehensive two-dimensional liquid chromatography demands very short analysis times. Liquid chromatography benefits from the advent of highly efficient core-shell packing materials, but because of the reduced total pore volume these materials have so far not been explored in SEC. The feasibility of using core-shell particles in SEC has been investigated and contemporary core-shell materials were compared with conventional packing materials for SEC. Columns packed with very small core-shell particles showed excellent resolution in specific molar-mass ranges, depending on the pore size. The analysis times were about an order of magnitude shorter than what could be achieved using conventional SEC columns. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1388524-non-scaling-behavior-electroosmotic-flow-voltage-gated-nanopores','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1388524-non-scaling-behavior-electroosmotic-flow-voltage-gated-nanopores"><span>Non-scaling behavior of electroosmotic flow in voltage-gated nanopores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lian, Cheng; Gallegos, Alejandro; Liu, Honglai</p> <p>2017-01-01</p> <p>Ionic size effects and electrostatic correlations result in the non-monotonic dependence of the electrical conductivity on the pore size. For ion transport at a high gating voltage, the conductivity oscillates with the pore size due to a significant overlap of the electric double layers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21446054','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21446054"><span>Pore size regulates cell and tissue interactions with PLGA-CaP scaffolds used for bone engineering.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sicchieri, Luciana Gonçalves; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Beloti, Marcio Mateus; Rosa, Adalberto Luiz</p> <p>2012-02-01</p> <p>A common subject in bone tissue engineering is the need for porous scaffolds to support cell and tissue interactions aiming at repairing bone tissue. As poly(lactide-co-glycolide)-calcium phosphate (PLGA-CaP) scaffolds can be manufactured with different pore sizes, the aim of this study was to evaluate the effect of pore diameter on osteoblastic cell responses and bone tissue formation. Scaffolds were prepared with 85% porosity, with pore diameters in the ranges 470-590, 590-850 and 850-1200 µm. Rat bone marrow stem cells differentiated into osteoblasts were cultured on the scaffolds for up to 10 days to evaluate cell growth, alkaline phosphatase (ALP) activity and the gene expression of the osteoblast markers RUNX2, OSX, COL, MSX2, ALP, OC and BSP by real-time PCR. Scaffolds were implanted in critical size rat calvarial defects for 2, 4, and 8 weeks for histomorphometric analysis. Cell growth and ALP activity were not affected by the pore size; however, there was an increase in the gene expression of osteoblastic markers with the increase in the pore sizes. At 2 weeks all scaffolds displayed a similar amount of bone and blood vessels formation. At 4 and 8 weeks much more bone formation and an increased number of blood vessels were observed in scaffolds with pores of 470-590 µm. These results show that PLGA-CaP is a promising biomaterial for bone engineering. However, ideally, combinations of larger (-1000 µm) and smaller (-500 µm) pores in a single scaffold would optimize cellular and tissue responses during bone healing. Copyright © 2011 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JPhD...40.5266P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JPhD...40.5266P"><span>Structural evolution of nanoporous silica thin films studied by positron annihilation spectroscopy and Fourier transform infrared spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patel, N.; Mariazzi, S.; Toniutti, L.; Checchetto, R.; Miotello, A.; Dirè, S.; Brusa, R. S.</p> <p>2007-09-01</p> <p>Three series of silica thin films with thicknesses in the 300 nm range were deposited by spin coating on Si substrates using different compositions of the sol precursors. Film samples were thermally treated in static air at temperatures ranging from 300 to 900 °C. The effect of sol precursors and thermal treatment temperature on the film porosity was analysed by Fourier transform infrared (FTIR) spectroscopy, depth profiling with positron annihilation spectroscopy (DP-PAS) and the analysis of the capacitance-voltage (C-V) characteristic. The maximum of the total porosity was found to occur at a temperature of 600 °C when removal of porogen and OH groups was completed. Film densification due to the collapsing of the pores was observed after drying at 900 °C. DP-PAS provides evidence that the increase in the total porosity is related to a progressive increase in the pore size. The increase in the pore size never gives rise to the onset of connected porosity. In the silica film samples prepared using a low acidity sol precursor, the pore size is always lower than 1 nm. By increasing the acid catalyst ratio in the sol, larger pores are formed. Pores with size larger than 2.3 nm can be obtained by adding porogen to the sol. In each series of silica film samples the shift of the antisymmetric Si-O-Si transversal optical (TO3) mode upon thermal treatment correlates with a change of the pore size as evidenced by DP-PAS analysis. The pore microstructure of the three series of silica films is different at all the examined treatment temperatures and depends on the composition of the precursor sol.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22923215','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22923215"><span>Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tan, J Y; Chua, C K; Leong, K F</p> <p>2013-02-01</p> <p>Advanced scaffold fabrication techniques such as Rapid Prototyping (RP) are generally recognized to be advantageous over conventional fabrication methods in terms architectural control and reproducibility. Yet, most RP techniques tend to suffer from resolution limitations which result in scaffolds with uncontrollable, random-size pores and low porosity, albeit having interconnected channels which is characteristically present in most RP scaffolds. With the increasing number of studies demonstrating the profound influences of scaffold pore architecture on cell behavior and overall tissue growth, a scaffold fabrication method with sufficient architectural control becomes imperative. The present study demonstrates the use of RP fabrication techniques to create scaffolds having interconnected channels as well as controllable micro-size pores. Adopted from the concepts of porogen leaching and indirect RP techniques, the proposed fabrication method uses monodisperse microspheres to create an ordered, hexagonal closed packed (HCP) array of micro-pores that surrounds the existing channels of the RP scaffold. The pore structure of the scaffold is shaped using a single sacrificial construct which comprises the microspheres and a dissolvable RP mold that were sintered together. As such, the size of pores as well as the channel configuration of the scaffold can be tailored based on the design of the RP mold and the size of microspheres used. The fabrication method developed in this work can be a promising alternative way of preparing scaffolds with customized pore structures that may be required for specific studies concerning cell-scaffold interactions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.111f1902B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.111f1902B"><span>Shock initiation of explosives: High temperature hot spots explained</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bassett, Will P.; Johnson, Belinda P.; Neelakantan, Nitin K.; Suslick, Kenneth S.; Dlott, Dana D.</p> <p>2017-08-01</p> <p>We investigated the shock initiation of energetic materials with a tabletop apparatus that uses km s-1 laser-driven flyer plates to initiate tiny explosive charges and obtains complete temperature histories with a high dynamic range. By comparing various microstructured formulations, including a pentaerythritol tetranitrate (PETN) based plastic explosive (PBX) denoted XTX-8003, we determined that micron-scale pores were needed to create high hot spot temperatures. In charges where micropores (i.e., micron-sized pores) were present, a hot spot temperature of 6000 K was observed; when the micropores were pre-compressed to nm scale, however, the hot spot temperature dropped to ˜4000 K. By comparing XTX-8003 with an analog that replaced PETN by nonvolatile silica, we showed that the high temperatures require gas in the pores, that the high temperatures were created by adiabatic gas compression, and that the temperatures observed can be controlled by the choice of ambient gases. The hot spots persist in shock-compressed PBXs even in vacuum because the initially empty pores became filled with gas created in-situ by shock-induced chemical decomposition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/411959-predicting-permeability-nmr-imaging-edwards-limestone-stuart-city-trend','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/411959-predicting-permeability-nmr-imaging-edwards-limestone-stuart-city-trend"><span>Predicting permeability with NMR imaging in the Edwards Limestone/Stuart City Trend</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dewitt, H.; Globe, M.; Sorenson, R.</p> <p>1996-09-01</p> <p>Determining pore size and pore geometry relationships in carbonate rocks and relating both to permeability is difficult using traditional logging methods. This problem is further complicated by the presence of abundant microporosity (pore size less than 62 microns) in the Edwards Limestone. The use of Nuclear Magnetic Resonance Imaging (NMR) allows for an alternative approach to evaluating the pore types present by examining the response of hydrogen nuclei contained within the free fluid pore space. By testing the hypothesis that larger pore types exhibit an NMR signal decay much slower than smaller pore types, an estimate of the pore typemore » present, (i.e.) vuggy, interparticle, or micropores, can be inferred. Calibration of the NMR decay curve to known samples with measured petrophysical properties allows for improved predictability of pore types and permeability. The next stage of the analysis involves the application of the calibration technique to the borehole environment using an NMR logging tool to more accurately predict production performance.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864500','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864500"><span>Ribbed electrode substrates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Breault, Richard D.; Goller, Glen J.</p> <p>1983-01-01</p> <p>A ribbed substrate for an electrochemical cell electrode is made from a mixture of carbon fibers and carbonizable resin and has a mean pore size in the ribs which is 60-75% of the mean pore size of the web portions of the substrate which interconnect the ribs. Preferably the mean pore size of the web portion is 25-45 microns; and, if the substrate includes edge seals parallel to the ribs, the edge seals preferably have a mean pore size no greater than about ten microns. Most preferably the substrate has the same ratio of carbon fibers to polymeric carbon in all areas, including the ribs, webs, and edge seals. A substrate according to the present invention will have better overall performance than prior art substrates and minimizes the substrate thickness required for the substrate to perform all its functions well.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ApSS..310..184L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ApSS..310..184L"><span>Pore structure modification of diatomite as sulfuric acid catalyst support by high energy electron beam irradiation and hydrothermal treatment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Chong; Zhang, Guilong; Wang, Min; Chen, Jianfeng; Cai, Dongqing; Wu, Zhengyan</p> <p>2014-08-01</p> <p>High energy electron beam (HEEB) irradiation and hydrothermal treatment (HT), were applied in order to remove the impurities and enlarge the pore size of diatomite, making diatomite more suitable to be a catalyst support. The results demonstrated that, through thermal, charge, impact and etching effects, HEEB irradiation could make the impurities in the pores of diatomite loose and remove some of them. Then HT could remove rest of them from the pores and contribute significantly to the modification of the pore size distribution of diatomite due to thermal expansion, water swelling and thermolysis effects. Moreover, the pore structure modification improved the properties (BET (Brunauer-Emmett-Teller) specific surface area, bulk density and pore volume) of diatomite and the catalytic efficiency of the catalyst prepared from the treated diatomite.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JChPh.140s4702C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JChPh.140s4702C"><span>Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Collell, Julien; Galliero, Guillaume</p> <p>2014-05-01</p> <p>The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. ["Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects," Mol. Phys. 110, 1069-1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effects of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22254857-determination-thermodynamic-correction-factor-fluids-confined-nano-metric-slit-pores-from-molecular-simulation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22254857-determination-thermodynamic-correction-factor-fluids-confined-nano-metric-slit-pores-from-molecular-simulation"><span>Determination of the thermodynamic correction factor of fluids confined in nano-metric slit pores from molecular simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Collell, Julien; Galliero, Guillaume, E-mail: guillaume.galliero@univ-pau.fr</p> <p>2014-05-21</p> <p>The multi-component diffusive mass transport is generally quantified by means of the Maxwell-Stefan diffusion coefficients when using molecular simulations. These coefficients can be related to the Fick diffusion coefficients using the thermodynamic correction factor matrix, which requires to run several simulations to estimate all the elements of the matrix. In a recent work, Schnell et al. [“Thermodynamics of small systems embedded in a reservoir: A detailed analysis of finite size effects,” Mol. Phys. 110, 1069–1079 (2012)] developed an approach to determine the full matrix of thermodynamic factors from a single simulation in bulk. This approach relies on finite size effectsmore » of small systems on the density fluctuations. We present here an extension of their work for inhomogeneous Lennard Jones fluids confined in slit pores. We first verified this extension by cross validating the results obtained from this approach with the results obtained from the simulated adsorption isotherms, which allows to determine the thermodynamic factor in porous medium. We then studied the effects of the pore width (from 1 to 15 molecular sizes), of the solid-fluid interaction potential (Lennard Jones 9-3, hard wall potential) and of the reduced fluid density (from 0.1 to 0.7 at a reduced temperature T* = 2) on the thermodynamic factor. The deviation of the thermodynamic factor compared to its equivalent bulk value decreases when increasing the pore width and becomes insignificant for reduced pore width above 15. We also found that the thermodynamic factor is sensitive to the magnitude of the fluid-fluid and solid-fluid interactions, which softens or exacerbates the density fluctuations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Nanos...719557Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Nanos...719557Y"><span>A multifunctional role of trialkylbenzenes for the preparation of aqueous colloidal mesostructured/mesoporous silica nanoparticles with controlled pore size, particle diameter, and morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yamada, Hironori; Ujiie, Hiroto; Urata, Chihiro; Yamamoto, Eisuke; Yamauchi, Yusuke; Kuroda, Kazuyuki</p> <p>2015-11-01</p> <p>Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology.Both the pore size and particle diameter of aqueous colloidal mesostructured/mesoporous silica nanoparticles (CMSS/CMPS) derived from tetrapropoxysilane were effectively and easily controlled by the addition of trialkylbenzenes (TAB). Aqueous highly dispersed CMPS with large pores were successfully obtained through removal of surfactants and TAB by a dialysis process. The pore size (from 4 nm to 8 nm) and particle diameter (from 50 nm to 380 nm) were more effectively enlarged by the addition of 1,3,5-triisopropylbenzene (TIPB) than 1,3,5-trimethylbenzene (TMB), and the enlargement did not cause the variation of the mesostructure and particle morphology. The larger molecular size and higher hydrophobicity of TIPB than TMB induce the incorporation of TIPB into micelles without the structural change. When TMB was used as TAB, the pore size of CMSS was also enlarged while the mesostructure and particle morphology were varied. Interestingly, when tetramethoxysilane and TIPB were used, CMSS with a very small particle diameter (20 nm) with concave surfaces and large mesopores were obtained, which may strongly be related to the initial nucleation of CMSS. A judicious choice of TAB and Si sources is quite important to control the mesostructure, size of mesopores, particle diameter, and morphology. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04465k</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016267','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016267"><span>Hybrid Filter Membrane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Laicer, Castro; Rasimick, Brian; Green, Zachary</p> <p>2012-01-01</p> <p>Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of dust particles on the filter surface and to facilitate dust removal with pulse or back airflow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MsT.........38M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MsT.........38M"><span>Petrophysical Properties of the Yeso, Abo and Cisco Formations in the Permian Basin in New Mexico, U.S.A</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mann, Griffin</p> <p></p> <p>The area that comprises the Northwest Shelf in Lea Co., New Mexico has been heavily drilled over the past half century. The main target being shallow reservoirs within the Permian section (San Andres and Grayburg Formations). With a focus shifting towards deeper horizons, there is a need for more petrophysical data pertaining to these formations, which is the focus of this study through a variety of techniques. This study involves the use of contact angle measurements, fluid imbibition tests, Mercury Injection Capillary Pressure (MICP) and log analysis to evaluate the nano-petrophysical properties of the Yeso, Abo and Cisco Formation within the Northwest Shelf area of southeast New Mexico. From contact angle measurements, all of the samples studied were found to be oil-wetting as n-decane spreads on to the rock surface much quicker than the other fluids (deionized water and API brine) tested. Imbibition tests resulted in a well-connected pore network being observed for all of the samples with the highest values of imbibition slopes being recorded for the Abo samples. MICP provided a variety of pore structure data which include porosity, pore-throat size distributions, permeability and tortuosity. The Abo samples saw the highest porosity percentages, which were above 15%, with all the other samples ranging from 4 - 7%. The majority of the pore-throat sizes for most of the samples fell within the 1 - 10 mum range. The only exceptions to this being the Paddock Member within the Yeso Formation, which saw a higher percentage of larger pores (10 - 1000mum) and one of the Cisco Formation samples, which had the majority of its pore sizes fall in the 0.1 - 1 mum range. The log analysis created log calculations and curves for cross-plot porosity and water saturation that were then used to derive a value for permeability. The porosity and permeability values were comparable with those measured from our MICP and literature values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003JAP....94.3427G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003JAP....94.3427G"><span>Porosity in plasma enhanced chemical vapor deposited SiCOH dielectrics: A comparative study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grill, A.; Patel, V.; Rodbell, K. P.; Huang, E.; Baklanov, M. R.; Mogilnikov, K. P.; Toney, M.; Kim, H.-C.</p> <p>2003-09-01</p> <p>The low dielectric constant (k) of plasma enhanced chemical vapor deposited SiCOH films has been attributed to porosity in the films. We have shown previously that the dielectric constant of such materials can be extended from the typical k values of 2.7-2.9 to ultralow-k values of k=2.0. The reduction in the dielectric constants has been achieved by enhancing the porosity in the films through the addition of an organic material to the SiCOH precursor and annealing the films to remove the thermally less-stable organic fractions. In order to confirm the relation between dielectric constant and film porosity the latter has been evaluated for SiCOH films with k values from 2.8 to 2.05 using positron annihilation spectroscopy, positron annihilation lifetime spectroscopy, small angle x-ray scattering, specular x-ray reflectivity, and ellipsometric porosimetry measurements. It has been found that the SiCOH films with k=2.8 had no detectable porosity, however the porosity increased with decreasing dielectric constant reaching values of 28%-39% for k values of 2.05. The degree of porosity and the pore size determined by the dissimilar techniques agreed within reasonable limits, especially when one takes into account the small pore size in these films and the different assumptions used by the different techniques. The pore size increases with decreasing k, however the diameter remains below 5 nm for k=2.05, most of the pores being smaller than 2.5 nm.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18556060','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18556060"><span>Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ryan, Garrett E; Pandit, Abhay S; Apatsidis, Dimitrios P</p> <p>2008-09-01</p> <p>One of the main issues in orthopaedic implant design is the fabrication of scaffolds that closely mimic the biomechanical properties of the surrounding bone. This research reports on a multi-stage rapid prototyping technique that was successfully developed to produce porous titanium scaffolds with fully interconnected pore networks and reproducible porosity and pore size. The scaffolds' porous characteristics were governed by a sacrificial wax template, fabricated using a commercial 3D-printer. Powder metallurgy processes were employed to generate the titanium scaffolds by filling around the wax template with titanium slurry. In the attempt to optimise the powder metallurgy technique, variations in slurry concentration, compaction pressure and sintering temperature were investigated. By altering the wax design template, pore sizes ranging from 200 to 400 microm were achieved. Scaffolds with porosities of 66.8 +/- 3.6% revealed compression strengths of 104.4+/-22.5 MPa in the axial direction and 23.5 +/- 9.6 MPa in the transverse direction demonstrating their anisotropic nature. Scaffold topography was characterised using scanning electron microscopy and microcomputed tomography. Three-dimensional reconstruction enabled the main architectural parameters such as pore size, interconnecting porosity, level of anisotropy and level of structural disorder to be determined. The titanium scaffolds were compared to their intended designs, as governed by their sacrificial wax templates. Although discrepancies in architectural parameters existed between the intended and the actual scaffolds, overall the results indicate that the porous titanium scaffolds have the properties to be potentially employed in orthopaedic applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013WRR....49.1149C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013WRR....49.1149C"><span>Pore geometry effects on intrapore viscous to inertial flows and on effective hydraulic parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chaudhary, Kuldeep; Cardenas, M. Bayani; Deng, Wen; Bennett, Philip C.</p> <p>2013-02-01</p> <p>In this article, the effects of different diverging-converging pore geometries were investigated, and the microscale fluid flow and effective hydraulic properties from these pores were compared with that of a pipe from viscous to inertial laminar flow regimes. The flow fields are obtained using computational fluid dynamics, and the comparative analysis is based on a new dimensionless hydraulic shape factor β, which is the "specific surface" scaled by the length of pores. Results from all diverging-converging pores show an inverse pattern in velocity and vorticity distributions relative to the pipe flow. The hydraulic conductivity K of all pores is dependent on and can be predicted from β with a power function with an exponent of 3/2. The differences in K are due to the differences in distribution of local friction drag on the pore walls. At Reynolds number (Re) ˜ 0 flows, viscous eddies are found to exist almost in all pores in different sizes, but not in the pipe. Eddies grow when Re → 1 and leads to the failure of Darcy's law. During non-Darcy or Forchheimer flows, the apparent hydraulic conductivity Ka decreases due to the growth of eddies, which constricts the bulk flow region. At Re > 1, the rate of decrease in Ka increases, and at Re >> 1, it decreases to where the change in Ka ≈ 0, and flows once again exhibits a Darcy-type relationship. The degree of nonlinearity during non-Darcy flow decreases for pores with increasing β. The nonlinear flow behavior becomes weaker as β increases to its maximum value in the pipe, which shows no nonlinearity in the flow; in essence, Darcy's law stays valid in the pipe at all laminar flow conditions. The diverging-converging geometry in pores plays a critical role in modifying the intrapore fluid flow, implying that this property should be incorporated in effective larger-scale models, e.g., pore-network models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JPS...176..396K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JPS...176..396K"><span>Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Ji-Young; Kim, Kwang Heon; Kim, Kwang Bum</p> <p></p> <p>Carbon nanotube (CNT)/polypyrrole (PPy) composites with controlled pore size in a three-dimensional entangled structure of a CNT film are prepared as electrode materials for a pseudocapacitor. A CNT film electrode containing nanosize silica between the CNTs is first fabricated using an electrostatic spray deposition of a mixed suspension of CNTs and nanosize silica on to a platinium-coated silicon wafer. Later, nanosize silica is removed leaving a three-dimensional entangled structure of a CNT film. Before removal of the silica from the CNT/silica film electrode, PPy is electrochemically deposited on to the CNTs to anchor them in their entangled structure. Control of the pore size of the final CNT/PPy composite film can be achieved by changing the amount of silica in the mixed suspension of CNTs and nanosize silica. Nanosize silica acts as a sacrificial filler to change the pore size of the entangled CNT film. Scanning electron microscopy of the electrochemically prepared PPy on the CNT film substrate shows that the PPy nucleated heterogeneously and deposited on the surface of the CNTs. The specific capacitance and rate capability of the CNT/PPy composite electrode with a heavy loading of PPy of around 80 wt.% can be improved when it is made to have a three-dimensional network of entangled CNTs with interconnected pores through pore size control.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20095748','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20095748"><span>Detecting diffusion-diffraction patterns in size distribution phantoms using double-pulsed field gradient NMR: Theory and experiments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shemesh, Noam; Ozarslan, Evren; Basser, Peter J; Cohen, Yoram</p> <p>2010-01-21</p> <p>NMR observable nuclei undergoing restricted diffusion within confining pores are important reporters for microstructural features of porous media including, inter-alia, biological tissues, emulsions and rocks. Diffusion NMR, and especially the single-pulsed field gradient (s-PFG) methodology, is one of the most important noninvasive tools for studying such opaque samples, enabling extraction of important microstructural information from diffusion-diffraction phenomena. However, when the pores are not monodisperse and are characterized by a size distribution, the diffusion-diffraction patterns disappear from the signal decay, and the relevant microstructural information is mostly lost. A recent theoretical study predicted that the diffusion-diffraction patterns in double-PFG (d-PFG) experiments have unique characteristics, such as zero-crossings, that make them more robust with respect to size distributions. In this study, we theoretically compared the signal decay arising from diffusion in isolated cylindrical pores characterized by lognormal size distributions in both s-PFG and d-PFG methodologies using a recently presented general framework for treating diffusion in NMR experiments. We showed the gradual loss of diffusion-diffraction patterns in broadening size distributions in s-PFG and the robustness of the zero-crossings in d-PFG even for very large standard deviations of the size distribution. We then performed s-PFG and d-PFG experiments on well-controlled size distribution phantoms in which the ground-truth is well-known a priori. We showed that the microstructural information, as manifested in the diffusion-diffraction patterns, is lost in the s-PFG experiments, whereas in d-PFG experiments the zero-crossings of the signal persist from which relevant microstructural information can be extracted. This study provides a proof of concept that d-PFG may be useful in obtaining important microstructural features in samples characterized by size distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1389292-construction-hierarchically-porous-metalorganic-frameworks-through-linker-labilization','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1389292-construction-hierarchically-porous-metalorganic-frameworks-through-linker-labilization"><span>Construction of hierarchically porous metal–organic frameworks through linker labilization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; ...</p> <p>2017-05-25</p> <p>One major goal of metal–organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. W present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragmentsmore » by acid treatment. We also demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5445918','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5445918"><span>Advances in Porous Biomaterials for Dental and Orthopaedic Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mour, Meenakshi; Das, Debarun; Winkler, Thomas; Hoenig, Elisa; Mielke, Gabriela; Morlock, Michael M.; Schilling, Arndt F.</p> <p>2010-01-01</p> <p>The connective hard tissues bone and teeth are highly porous on a micrometer scale, but show high values of compression strength at a relatively low weight. The fabrication of porous materials has been actively researched and different processes have been developed that vary in preparation complexity and also in the type of porous material that they produce. Methodologies are available for determination of pore properties. The purpose of the paper is to give an overview of these methods, the role of porosity in natural porous materials and the effect of pore properties on the living tissues. The minimum pore size required to allow the ingrowth of mineralized tissue seems to be in the order of 50 µm: larger pore sizes seem to improve speed and depth of penetration of mineralized tissues into the biomaterial, but on the other hand impair the mechanical properties. The optimal pore size is therefore dependent on the application and the used material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCo...815356Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCo...815356Y"><span>Construction of hierarchically porous metal-organic frameworks through linker labilization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng; Li, Jialuo; Huang, Lan; Feng, Liang; Wang, Xuan; Bosch, Mathieu; Alsalme, Ali; Cagin, Tahir; Zhou, Hong-Cai</p> <p>2017-05-01</p> <p>A major goal of metal-organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. Herein, we present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragments by acid treatment. We demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1389292','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1389292"><span>Construction of hierarchically porous metal–organic frameworks through linker labilization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yuan, Shuai; Zou, Lanfang; Qin, Jun-Sheng</p> <p></p> <p>One major goal of metal–organic framework (MOF) research is the expansion of pore size and volume. Although many approaches have been attempted to increase the pore size of MOF materials, it is still a challenge to construct MOFs with precisely customized pore apertures for specific applications. W present a new method, namely linker labilization, to increase the MOF porosity and pore size, giving rise to hierarchical-pore architectures. Microporous MOFs with robust metal nodes and pro-labile linkers were initially synthesized. The mesopores were subsequently created as crystal defects through the splitting of a pro-labile-linker and the removal of the linker fragmentsmore » by acid treatment. We also demonstrate that linker labilization method can create controllable hierarchical porous structures in stable MOFs, which facilitates the diffusion and adsorption process of guest molecules to improve the performances of MOFs in adsorption and catalysis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29606354','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29606354"><span>Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shin, Wonchul; Ge, Lihao; Arpino, Gianvito; Villarreal, Seth A; Hamid, Edaeni; Liu, Huisheng; Zhao, Wei-Dong; Wen, Peter J; Chiang, Hsueh-Cheng; Wu, Ling-Gang</p> <p>2018-05-03</p> <p>Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMMR51A0342J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMMR51A0342J"><span>Characterization of nanoporous shales with gas sorption</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joewondo, N.; Prasad, M.</p> <p>2017-12-01</p> <p>The understanding of the fluid flow in porous media requires the knowledge of the pore system involved. Fluid flow in fine grained shales falls under different regime than transport regime in conventional reservoir due to the different average pore sizes in the two materials; the average pore diameter of conventional sandstones is on the micrometer scale, while of shales can be as small as several nanometers. Mercury intrusion porosimetry is normally used to characterize the pores of conventional reservoir, however with increasingly small pores, the injection pressure required to imbibe the pores becomes infinitely large due to surface tension. Characterization of pores can be expressed by a pore size distribution (PSD) plot, which reflects distribution of pore volume or surface area with respect to pore size. For the case of nanoporous materials, the surface area, which serves as the interface between the rock matrix and fluid, becomes increasingly large and important. Physisorption of gas has been extensively studied as a method of nanoporous solid characterization (particularly for the application of catalysis, metal organic frameworks, etc). The PSD is obtained by matching the experimental result to the calculated theoretical result (using Density Functional Theory (DFT), a quantum mechanics based modelling method for molecular scale interactions). We present the challenges and experimental result of Nitrogen and CO2 gas sorption on shales with various mineralogy and the interpreted PSD obtained by DFT method. Our result shows significant surface area contributed by the nanopores of shales, hence the importance of surface area measurements for the characterization of shales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24594027','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24594027"><span>Investigation of the stability of Platinum nanoparticles incorporated in mesoporous silica with different pore sizes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yano, Kazuhisa; Zhang, Shuyi; Pan, Xiaoqing; Tatsuda, Narihito</p> <p>2014-05-01</p> <p>The effect of the pore size of mesoporous silica on the stability of Pt nanoparticles (NPs) has been investigated. TEM observation and XRD measurement were conducted in situ for Pt loaded mesoporous silica with different mesopore sizes. It turns out that smaller pores are more effective to stabilize Pt NPs below 600 °C. However, aggregation of Pt NPs on the surface of particles is not fully suppressed more than 1000 °C in ambient atmosphere even though smaller mesopore size is applied. The type of precursor does not affect the stability of Pt NPs. Copyright © 2014. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31D1538M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31D1538M"><span>Multiscale modeling of fluid flow and mass transport</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Masuoka, K.; Yamamoto, H.; Bijeljic, B.; Lin, Q.; Blunt, M. J.</p> <p>2017-12-01</p> <p>In recent years, there are some reports on a simulation of fluid flow in pore spaces of rocks using Navier-Stokes equations. These studies mostly adopt a X-ray CT to create 3-D numerical grids of the pores in micro-scale. However, results may be of low accuracy when the rock has a large pore size distribution, because pores, whose size is smaller than resolution of the X-ray CT may be neglected. We recently found out by tracer tests in a laboratory using a brine saturated Ryukyu limestone and inject fresh water that a decrease of chloride concentration took longer time. This phenomenon can be explained due to weak connectivity of the porous networks. Therefore, it is important to simulate entire pore spaces even those of very small sizes in which diffusion is dominant. We have developed a new methodology for multi-level modeling for pore scale fluid flow in porous media. The approach is to combine pore-scale analysis with Darcy-flow analysis using two types of X-ray CT images in different resolutions. Results of the numerical simulations showed a close match with the experimental results. The proposed methodology is an enhancement for analyzing mass transport and flow phenomena in rocks with complicated pore structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6153E..2SB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6153E..2SB"><span>Reducing bottom anti-reflective coating (BARC) defects: optimizing and decoupling the filtration and dispense process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brakensiek, Nickolas L.; Martin, Gary; Simmons, Sean; Batchelder, Traci</p> <p>2006-03-01</p> <p>Semiconductor device manufacturing is one of the cleanest manufacturing operations that can be found in the world today. It has to be that way; a particle on a wafer today can kill an entire device, which raises the costs, and therefore reduces the profits, of the manufacturing company in two ways: it must produce extra wafers to make up for the lost die, and it has less product to sell. In today's state-of-the-art fab, everything is filtered to the lowest pore size available. This practice is fairly easy for gases because a gas molecule is very small compared to the pore size of the filter. Filtering liquids, especially photochemicals such as photoresists and BARCs, can be much harder because the molecules that form the polymers used to manufacture the photochemicals are approaching the filter pore size. As a result, filters may plug up, filtration rates may drop, pressure drops across the filter may increase, or a filter may degrade. These conditions can then cause polymer shearing, microbubble formation, gel particle formation, and BARC chemical changes to occur before the BARC reaches the wafer. To investigate these possible interactions, an Entegris(R) IntelliGen(R) pump was installed on a TEL Mk8 TM track to see if the filtration process would have an effect on the BARC chemistry and coating defects. Various BARC chemicals such as DUV112 and DUV42P were pumped through various filter media having a variety of pore sizes at different filtration rates to investigate the interaction between the dispense process and the filtration process. The IntelliGen2 pump has the capability to filter the BARC independent of the dispense process. By using a designed experiment to look at various parameters such as dispense rate, filtration rate, and dispense volume, the effects of the complete pump system can be learned, and appropriate conditions can be applied to yield the cleanest BARC coating process. Results indicate that filtration rate and filter pore size play a dramatic role in the defect density on a coated wafer with the actual dispense properties such as dispense wafer speed and dispense time playing a lesser role.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27265169','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27265169"><span>Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jørgensen, Camilla Elise; Abrahamsen, Roger K; Rukke, Elling-Olav; Johansen, Anne-Grethe; Schüller, Reidar B; Skeie, Siv B</p> <p>2016-08-01</p> <p>The objective of this study was to investigate how ceramic membrane pore size and filtration temperature influence the protein fractionation of skim milk by cross flow microfiltration (MF). Microfiltration was performed at a uniform transmembrane pressure with constant permeate flux to a volume concentration factor of 2.5. Three different membrane pore sizes, 0.05, 0.10, and 0.20µm, were used at a filtration temperature of 50°C. Furthermore, at pore size 0.10µm, 2 different filtration temperatures were investigated: 50 and 60°C. The transmission of proteins increased with increasing pore size, giving the permeate from MF with the 0.20-µm membrane a significantly higher concentration of native whey proteins compared with the permeates from the 0.05- and 0.10-µm membranes (0.50, 0.24, and 0.39%, respectively). Significant amounts of caseins permeated the 0.20-µm membrane (1.4%), giving a permeate with a whitish appearance and a casein distribution (αS2-CN: αS1-CN: κ-CN: β-CN) similar to that of skim milk. The 0.05- and 0.10-µm membranes were able to retain all caseins (only negligible amounts were detected). A permeate free from casein is beneficial in the production of native whey protein concentrates and in applications where transparency is an important functional characteristic. Microfiltration of skim milk at 50°C with the 0.10-µm membrane resulted in a permeate containing significantly more native whey proteins than the permeate from MF at 60°C. The more rapid increase in transmembrane pressure and the significantly lower concentration of caseins in the retentate at 60°C indicated that a higher concentration of caseins deposited on the membrane, and consequently reduced the native whey protein transmission. Optimal protein fractionation of skim milk into a casein-rich retentate and a permeate with native whey proteins were obtained by 0.10-µm MF at 50°C. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27498424','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27498424"><span>Characterization and investigation of the deformation behavior of porous magnesium scaffolds with entangled architectured pore channels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Guofeng; Li, Qiuyan; Wang, Cunlong; Dong, Jie; He, Guo</p> <p>2016-12-01</p> <p>We report a kind of porous magnesium with entangled architectured pore structure for potential applications in biomedical implant. The pore size, spatial structure and Young׳s modulus of the as-prepared porous Mg are suitable for bone tissue engineering applications. Particularly, with regard to the load-bearing conditions, a new analytical model is employed to investigate its structure and mechanical response under compressive stress based on Gibson-Ashby model. It is found that there are three types of stress-strain behaviors in the large range of porosity from 20% to 80%. When the porosity is larger than an upper critical value, the porous magnesium exhibits densifying behavior with buckling deformation mechanism. When the porosity is smaller than a lower critical value, the porous magnesium exhibits shearing behavior with cracking along the maximum shear stress. Between the two critical porosities, both the buckling deformation and shearing behavior coexist. The upper critical porosity is experimentally determined to be 60% for 270μm pore size and 62% for 400μm pore size, while the lower critical porosity is 40% for 270μm pore size and 42% for 400μm pore size. A new analytical model could be used to accurately predict the mechanical response of the porous magnesium. No matter the calculated critical porosity or yielding stress in a large range of porosity by using the new model are well consistent with the experimental values. All these results could help to provide valuable data for developing the present porous magnesium for potential bio applications. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H23D1608M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H23D1608M"><span>Local X-ray Computed Tomography Imaging for Mineralogical and Pore Characterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mills, G.; Willson, C. S.</p> <p>2015-12-01</p> <p>Sample size, material properties and image resolution are all tradeoffs that must be considered when imaging porous media samples with X-ray computed tomography. In many natural and engineered samples, pore and throat sizes span several orders of magnitude and are often correlated with the material composition. Local tomography is a nondestructive technique that images a subvolume, within a larger specimen, at high resolution and uses low-resolution tomography data from the larger specimen to reduce reconstruction error. The high-resolution, subvolume data can be used to extract important fine-scale properties but, due to the additional noise associated with the truncated dataset, it makes segmentation of different materials and mineral phases a challenge. The low-resolution data of a larger specimen is typically of much higher-quality making material characterization much easier. In addition, the imaging of a larger domain, allows for mm-scale bulk properties and heterogeneities to be determined. In this research, a 7 mm diameter and ~15 mm in length sandstone core was scanned twice. The first scan was performed to cover the entire diameter and length of the specimen at an image voxel resolution of 4.1 μm. The second scan was performed on a subvolume, ~1.3 mm in length and ~2.1 mm in diameter, at an image voxel resolution of 1.08 μm. After image processing and segmentation, the pore network structure and mineralogical features were extracted from the low-resolution dataset. Due to the noise in the truncated high-resolution dataset, several image processing approaches were applied prior to image segmentation and extraction of the pore network structure and mineralogy. Results from the different truncated tomography segmented data sets are compared to each other to evaluate the potential of each approach in identifying the different solid phases from the original 16 bit data set. The truncated tomography segmented data sets were also compared to the whole-core tomography segmented data set in two ways: (1) assessment of the porosity and pore size distribution at different scales; and (2) comparison of the mineralogical composition and distribution. Finally, registration of the two datasets will be used to show how the pore structure and mineralogy details at the two scales can be used to supplement each other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910022483','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910022483"><span>Factors affecting plant growth in membrane nutrient delivery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.; Knott, W. M.</p> <p>1990-01-01</p> <p>The development of the tubular membrane plant growth unit for the delivery of water and nutrients to roots in microgravity has recently focused on measuring the effects of changes in physical variables controlling solution availability to the plants. Significant effects of membrane pore size and the negative pressure used to contain the solution were demonstrated. Generally, wheat grew better in units with a larger pore size but equal negative pressure and in units with the same pore size but less negative pressure. Lettuce also exhibited better plant growth at less negative pressure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040112250&hterms=Plot&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPlot','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040112250&hterms=Plot&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DPlot"><span>In-situ polymerized PLOT columns III: divinylbenzene copolymers and dimethacrylate homopolymers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shen, T. C.; Fong, M. M.</p> <p>1994-01-01</p> <p>Studies of divinylbenzene copolymers and dimethacrylate homopolymers indicate that the polymer pore size controls the separation of water and ammonia on porous-layer-open-tubular (PLOT) columns. To a lesser degree, the polarity of the polymers also affects the separation of a water-ammonia gas mixture. Our results demonstrate that the pore size can be regulated by controlling the cross-linking density or the chain length between the cross-linking functional groups. An optimum pore size will provide the best separation of water and ammonia.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..121e2049C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..121e2049C"><span>Study of shale reservoir nanometer-sized pores in Member 1 of Shahejie Formation in JX area, Liaozhong sag</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Yong; Zhang, Yu; Wen, Yiming</p> <p>2018-02-01</p> <p>The microscopic pore structure is the key of the shale reservoir study; however, traditional Scanning Electron Microscopy (SEM) methods cannot identify the irregular morphology caused by mechanical polishing. In this work, Scanning Electron Microscopy combined argon ion polishing technology was taken to study the characteristics of shale reservoir pores of Member 1 of Shahejie Formation (E3s1) located in JX1-1 area of Liaozhong Sag. The results show that pores between clay platelets, intraplatelet pores within clay aggregates and organic-matter pores are very rich in the area and with good pore connectivity, so these types of pores are of great significance for oil-gas exporation. Pores between clay platelets are formed by directional or semi-directional contact between edge and surface, edge and edge or surface and surface of laminated clay minerals, whose shapes are linear, mesh, and irregular with the size of 500 nm to 5 μm. The intraplatelet pores within clay aggregates are formed in the process of the transformation and compaction of clay minerals, whose shapes are usually linear with the width of 30 to 500 nm and the length of 2 to 50 μm. The organic-matter pores are from the process of the conversion from organic matters to the hydrocarbon under thermal evolution, whose shapes are gneissic, irregular, pitted and elliptical with the size of 100 nm to 2 μm. This study is of certain guiding significance to selecting target zones, evaluating resource potential and exploring & developing of shale gas in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22689594-individual-pore-interconnection-size-analysis-macroporous-ceramic-scaffolds-using-high-resolution-ray-tomography','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22689594-individual-pore-interconnection-size-analysis-macroporous-ceramic-scaffolds-using-high-resolution-ray-tomography"><span>Individual pore and interconnection size analysis of macroporous ceramic scaffolds using high-resolution X-ray tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jerban, Saeed, E-mail: saeed.jerban@usherbrooke.ca</p> <p>2016-08-15</p> <p>The pore interconnection size of β-tricalcium phosphate scaffolds plays an essential role in the bone repair process. Although, the μCT technique is widely used in the biomaterial community, it is rarely used to measure the interconnection size because of the lack of algorithms. In addition, discrete nature of the μCT introduces large systematic errors due to the convex geometry of interconnections. We proposed, verified and validated a novel pore-level algorithm to accurately characterize the individual pores and interconnections. Specifically, pores and interconnections were isolated, labeled, and individually analyzed with high accuracy. The technique was verified thoroughly by visually inspecting andmore » verifying over 3474 properties of randomly selected pores. This extensive verification process has passed a one-percent accuracy criterion. Scanning errors inherent in the discretization, which lead to both dummy and significantly overestimated interconnections, have been examined using computer-based simulations and additional high-resolution scanning. Then accurate correction charts were developed and used to reduce the scanning errors. Only after the corrections, both the μCT and SEM-based results converged, and the novel algorithm was validated. Material scientists with access to all geometrical properties of individual pores and interconnections, using the novel algorithm, will have a more-detailed and accurate description of the substitute architecture and a potentially deeper understanding of the link between the geometric and biological interaction. - Highlights: •An algorithm is developed to analyze individually all pores and interconnections. •After pore isolating, the discretization errors in interconnections were corrected. •Dummy interconnections and overestimated sizes were due to thin material walls. •The isolating algorithm was verified through visual inspection (99% accurate). •After correcting for the systematic errors, algorithm was validated successfully.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28863575','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28863575"><span>Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chevillotte, Fabien; Perrot, Camille</p> <p>2017-08-01</p> <p>The purpose of this work is to systematically study the effect of the throat and the pore sizes on the sound absorbing properties of open-cell foams. The three-dimensional idealized unit cell used in this work enables to mimic the acoustical macro-behavior of a large class of cellular solid foams. This study is carried out for a normal incidence and also for a diffuse field excitation, with a relatively large range of sample thicknesses. The transport and sound absorbing properties are numerically studied as a function of the throat size, the pore size, and the sample thickness. The resulting diagrams show the ranges of the specific throat sizes and pore sizes where the sound absorption grading is maximized due to the pore morphology as a function of the sample thickness, and how it correlates with the corresponding transport parameters. These charts demonstrate, together with typical examples, how the morphological characteristics of foam could be modified in order to increase the visco-thermal dissipation effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21191879','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21191879"><span>Enhanced adsorption of humic acids on ordered mesoporous carbon compared with microporous activated carbon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Fengling; Xu, Zhaoyi; Wan, Haiqin; Wan, Yuqiu; Zheng, Shourong; Zhu, Dongqiang</p> <p>2011-04-01</p> <p>Humic acids are ubiquitous in surface and underground waters and may pose potential risk to human health when present in drinking water sources. In this study, ordered mesoporous carbon was synthesized by means of a hard template method and further characterized by X-ray diffraction, N2 adsorption, transition electron microscopy, elemental analysis, and zeta-potential measurement. Batch experiments were conducted to evaluate adsorption of two humic acids from coal and soil, respectively, on the synthesized carbon. For comparison, a commercial microporous activated carbon and nonporous graphite were included as additional adsorbents; moreover, phenol was adopted as a small probe adsorbate. Pore size distribution characterization showed that the synthesized carbon had ordered mesoporous structure, whereas the activated carbon was composed mainly of micropores with a much broader pore size distribution. Accordingly, adsorption of the two humic acids was substantially lower on the activated carbon than on the synthesized carbon, because of the size-exclusion effect. In contrast, the synthesized carbon and activated carbon showed comparable adsorption for phenol when the size-exclusion effect was not in operation. Additionally, we verified by size-exclusion chromatography studies that the synthesized carbon exhibited greater adsorption for the large humic acid fraction than the activated carbon. The pH dependence of adsorption on the three carbonaceous adsorbents was also compared between the two test humic acids. The findings highlight the potential of using ordered mesoporous carbon as a superior adsorbent for the removal of humic acids. Copyright © 2011 SETAC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MMTA...49..920S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MMTA...49..920S"><span>A Study on the Effect of Electrodeposition Parameters on the Morphology of Porous Nickel Electrodeposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sengupta, Srijan; Patra, Arghya; Jena, Sambedan; Das, Karabi; Das, Siddhartha</p> <p>2018-03-01</p> <p>In this study, the electrodeposition of nickel foam by dynamic hydrogen bubble-template method is optimized, and the effects of key deposition parameters (applied voltage and deposition time) and bath composition (concentration of Ni2+, pH of the bath, and roles of Cl- and SO4 2- ions) on pore size, distribution, and morphology and crystal structure are studied. Nickel deposit from 0.1 M NiCl2 bath concentration is able to produce the honeycomb-like structure with regular-sized holes. Honeycomb-like structure with cauliflower morphology is deposited at higher applied voltages of 7, 8, and 9 V; and a critical time (>3 minutes) is required for the development of the foamy structure. Compressive residual stresses are developed in the porous electrodeposits after 30 seconds of deposition time (-189.0 MPa), and the nature of the residual stress remains compressive upto 10 minutes of deposition time (-1098.6 MPa). Effect of pH is more pronounced in a chloride bath compared with a sulfate bath. The increasing nature of pore size in nickel electrodeposits plated from a chloride bath (varying from 21 to 48 μm), and the constant pore size (in the range of 22 to 24 μm) in deposits plated from a sulfate bath, can be ascribed to the striking difference in the magnitude of the corresponding current-time profiles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JOM....68b.635F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JOM....68b.635F"><span>Effects of Coke Calcination Level on Pore Structure in Carbon Anodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fang, Ning; Xue, Jilai; Lang, Guanghui; Bao, Chongai; Gao, Shoulei</p> <p>2016-02-01</p> <p>Effects of coke calcination levels on pore structure of carbon anodes have been investigated. Bench anodes were prepared by 3 types of cokes with 4 calcination temperatures (800°C, 900°C, 1000°C and 1100°C). The cokes and anodes were characterized using hydrostatic method, air permeability determination, mercury porosimetry, image analysis and confocal microscopy (CSLM). The cokes with different calcination levels are almost the same in LC values (19-20 Å) and real density (1.967-1.985 g/cm3), while the anode containing coke calcined at 900°C has the lowest open porosity and air permeability. Pore size distribution (represented by Anode H sample) can be roughly divided into two ranges: small and medium pores in diameter of 10-400 μm and large pores of 400-580 μm. For the anode containing coke calcined at 800°C, a number of long, narrow pores in the pore size range of 400-580 μm are presented among cokes particles. Formation of these elongated pores may be attributed to coke shrinkages during the anode baking process, which may develop cracking in the anode under cell operations. More small or medium rounded pores with pore size range of 10-400 μm emerge in the anodes with coke calcination temperatures of 900°C, 1000°C and 1100°C, which may be generated due to release of volatiles from the carbon anode during baking. For the anode containing coke calcined at 1100°C, it is found that many rounded pores often closely surround large coke particles, which have potential to form elongated, narrow pores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H43F1569C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H43F1569C"><span>Visualizing and Quantifying Bioaccessible Pores in Field-Aged Petroleum Hydrocarbon-Contaminated Clay Soils Using Synchrotron-based X-ray Computed Tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chang, W.; Kim, J.; Zhu, N.; McBeth, J. M.</p> <p>2015-12-01</p> <p>Microbial hydrocarbon degradation is environmentally significant and applicable to contaminated site remediation practices only when hydrocarbons (substrates) are physically bioaccessible to bacteria in soil matrices. Powerful X-rays are produced by synchrotron radiation, allowing for bioaccessible pores in soil (larger than 4 microns), where bacteria can be accommodated, colonize and remain active, can be visualized at a much higher resolution. This study visualized and quantified such bioaccessible pores in intact field-aged, oil-contaminated unsaturated soil fractions, and examined the relationship between the abundance of bioaccessible pores and hydrocarbon biodegradation. Using synchrotron-based X-ray Computed Tomography (CT) at the Canadian Light Source, a large dataset of soil particle characteristics, such as pore volumes, surface areas, number of pores and pore size distribution, was generated. Duplicate samples of five different soil fractions with different soil aggregate sizes and water contents (13, 18 and 25%) were examined. The method for calculating the number and distribution of bioaccessible pores using CT images was validated using the known porosity of Ottawa sand. This study indicated that the distribution of bioaccessible pore sizes in soil fractions are very closely related to microbial enhancement. A follow-up aerobic biodegradation experiment for the soils at 17 °C (average site temperature) over 90 days confirmed that a notable decrease in hydrocarbon concentrations occurred in soils fractions with abundant bioaccessible pores and with a larger number of pores between 10 and 100 μm. The hydrocarbon degradation in bioactive soil fractions was extended to relatively high-molecular-weight hydrocarbons (C16-C34). This study provides quantitative information about how internal soil pore characteristics can influence bioremediation performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JFM...841..351E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JFM...841..351E"><span>Mean turbulence statistics in boundary layers over high-porosity foams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Efstathiou, Christoph; Luhar, Mitul</p> <p>2018-04-01</p> <p>This paper reports turbulent boundary layer measurements made over open-cell reticulated foams with varying pore size and thickness, but constant porosity ($\\epsilon \\approx 0.97$). The foams were flush-mounted into a cutout on a flat plate. A Laser Doppler Velocimeter (LDV) was used to measure mean streamwise velocity and turbulence intensity immediately upstream of the porous section, and at multiple measurement stations along the porous substrate. The friction Reynolds number upstream of the porous section was $Re_\\tau \\approx 1690$. For all but the thickest foam tested, the internal boundary layer was fully developed by $<10 \\delta$ downstream from the porous transition, where $\\delta$ is the boundary layer thickness. Fully developed mean velocity profiles showed the presence of a substantial slip velocity at the porous interface ($>30\\%$ of the free stream velocity) and a mean velocity deficit relative to the canonical smooth-wall profile further from the wall. While the magnitude of the mean velocity deficit increased with average pore size, the slip velocity remained approximately constant. Fits to the mean velocity profile suggest that the logarithmic region is shifted relative to a smooth wall, and that this shift increases with pore size until it becomes comparable to substrate thickness $h$. For all foams, the turbulence intensity was found to be elevated further into the boundary layer to $y/ \\delta \\approx 0.2$. An outer peak in intensity was also evident for the largest pore sizes. Velocity spectra indicate that this outer peak is associated with large-scale structures resembling Kelvin-Helmholtz vortices that have streamwise length scale $2\\delta-4\\delta$. Skewness profiles suggest that these large-scale structures may have an amplitude-modulating effect on the interfacial turbulence.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26375614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26375614"><span>Replacement of filters for respirable quartz measurement in coal mine dust by infrared spectroscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Farcas, Daniel; Lee, Taekhee; Chisholm, William P; Soo, Jhy-Charm; Harper, Martin</p> <p>2016-01-01</p> <p>The objective of this article is to compare and characterize nylon, polypropylene (PP), and polyvinyl chloride (PVC) membrane filters that might be used to replace the vinyl/acrylic co-polymer (DM-450) filter currently used in the Mine Safety and Health Administration (MSHA) P-7 method (Quartz Analytical Method) and the National Institute for Occupational Safety and Health (NIOSH) Manual of Analytical Methods 7603 method (QUARTZ in coal mine dust, by IR re-deposition). This effort is necessary because the DM-450 filters are no longer commercially available. There is an impending shortage of DM-450 filters. For example, the MSHA Pittsburgh laboratory alone analyzes annually approximately 15,000 samples according to the MSHA P-7 method that requires DM-450 filters. Membrane filters suitable for on-filter analysis should have high infrared (IR) transmittance in the spectral region 600-1000 cm(-1). Nylon (47 mm, 0.45 µm pore size), PP (47 mm, 0.45 µm pore size), and PVC (47 mm, 5 µm pore size) filters meet this specification. Limits of detection and limits of quantification were determined from Fourier transform infrared spectroscopy (FTIR) measurements of blank filters. The average measured quartz mass and coefficient of variation were determined from test filters spiked with respirable α-quartz following MSHA P-7 and NIOSH 7603 methods. Quartz was also quantified in samples of respirable coal dust on each test filter type using the MSHA and NIOSH analysis methods. The results indicate that PP and PVC filters may replace the DM-450 filters for quartz measurement in coal dust by FTIR. PVC filters of 5 µm pore size seemed to be suitable replacement although their ability to retain small particulates should be checked by further experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9800E..16E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9800E..16E"><span>Simulation of controllable permeation in PNIPAAm coated membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ehrenhofer, Adrian; Wallmersperger, Thomas; Richter, Andreas</p> <p>2016-04-01</p> <p>Membranes separate fluid compartments and can comprise transport structures for selective permeation. In biology, channel proteins are specialized in their atomic structure to allow transport of specific compounds (selectivity). Conformational changes in protein structure allow the control of the permeation abilities by outer stimuli (gating). In polymeric membranes, the selectivity is due to electrostatic or size-exclusion. It can thus be controlled by size variation or electric charges. Controllable permeation can be useful to determine particle-size distributions in continuous flow, e.g. in microfluidics and biomedicine to gain cell diameter profiles in blood. The present approach uses patterned polyethylene terephthalate (PET) membranes with hydrogel surface coating for permeation control by size-exclusion. The thermosensitive hydrogel poly(N-isopropylacrylamide) (PNIPAAm) is structured with a cross-shaped pore geometry. A change in the temperature of the water flow through the membrane leads to a pore shape variation. The temperature dependent behavior of PNIPAAm can be numerically modeled with a temperature expansion model, where the swelling and deswelling is depicted by temperature dependent expansion coefficients. In the present study, the free swelling behavior was implemented to the Finite Element tool ABAQUS for the complex composite structure of the permeation control membrane. Experimental values of the geometry characteristics were derived from microscopy images with the tool Image J and compared to simulation results. Numerical simulations using the derived thermo-mechanical model for different pore geometries (circular, rectangle, cross and triangle) were performed. With this study, we show that the temperature expansion model with values from the free swelling behavior can be used to adequately predict the deformation behavior of the complex membrane system. The predictions can be used to optimize the behavior of the membrane pores and the overall performance of the smart membrane.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5456619','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5456619"><span>Synthesis and Characterization of N-Doped Porous TiO2 Hollow Spheres and Their Photocatalytic and Optical Properties</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Hongliang; Liu, Hui; Fu, Aiping; Wu, Guanglei; Xu, Man; Pang, Guangsheng; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song</p> <p>2016-01-01</p> <p>Three kinds of N-doped mesoporous TiO2 hollow spheres with different N-doping contents, surface area, and pore size distributions were prepared based on a sol–gel synthesis and combined with a calcination process. Melamine formaldehyde (MF) microspheres have been used as sacrificial template and cetyltrimethyl ammonium bromide (CTAB) or polyvinylpyrrolidone (PVP) was selected as pore-directing agent. Core–shell intermediate spheres of titania-coated MF with diameters of 1.2–1.6 μm were fabricated by varying the volume concentration of TiO2 precursor from 1 to 3 vol %. By calcining the core–shell composite spheres at 500 °C for 3 h in air, an in situ N-doping process occurred upon the decomposition of the MF template and CTAB or PVP pore-directing surfactant. N-doped mesoporous TiO2 hollow spheres with sizes in the range of 0.4–1.2 μm and shell thickness from 40 to 110 nm were obtained. The composition and N-doping content, thermal stability, morphology, surface area and pore size distribution, wall thickness, photocatalytic activities, and optical properties of the mesoporous TiO2 hollow spheres derived from different conditions were investigated and compared based on Fourier-transformation infrared (FTIR), SEM, TEM, thermogravimetric analysis (TGA), nitrogen adsorption–desorption, and UV–vis spectrophotoscopy techniques. The influences of particle size, N-doping, porous, and hollow characteristics of the TiO2 hollow spheres on their photocatalytic activities and optical properties have been studied and discussed based on the composition analysis, structure characterization, and optical property investigation of these hollow spherical TiO2 matrices. PMID:28773967</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23042491','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23042491"><span>Selective molecular sieving through porous graphene.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koenig, Steven P; Wang, Luda; Pellegrino, John; Bunch, J Scott</p> <p>2012-11-01</p> <p>Membranes act as selective barriers and play an important role in processes such as cellular compartmentalization and industrial-scale chemical and gas purification. The ideal membrane should be as thin as possible to maximize flux, mechanically robust to prevent fracture, and have well-defined pore sizes to increase selectivity. Graphene is an excellent starting point for developing size-selective membranes because of its atomic thickness, high mechanical strength, relative inertness and impermeability to all standard gases. However, pores that can exclude larger molecules but allow smaller molecules to pass through would have to be introduced into the material. Here, we show that ultraviolet-induced oxidative etching can create pores in micrometre-sized graphene membranes, and the resulting membranes can be used as molecular sieves. A pressurized blister test and mechanical resonance are used to measure the transport of a range of gases (H(2), CO(2), Ar, N(2), CH(4) and SF(6)) through the pores. The experimentally measured leak rate, separation factors and Raman spectrum agree well with models based on effusion through a small number of ångstrom-sized pores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1419454','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1419454"><span>Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin</p> <p></p> <p>Here, we demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through anmore » h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1419454-fabrication-subnanometer-precision-nanopores-hexagonal-boron-nitride','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1419454-fabrication-subnanometer-precision-nanopores-hexagonal-boron-nitride"><span>Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin; ...</p> <p>2017-11-08</p> <p>Here, we demonstrate the fabrication of individual nanopores in hexagonal boron nitride (h-BN) with atomically precise control of the pore shape and size. Previous methods of pore production in other 2D materials typically create pores with irregular geometry and imprecise diameters. In contrast, other studies have shown that with careful control of electron irradiation, defects in h-BN grow with pristine zig-zag edges at quantized triangular sizes, but they have failed to demonstrate production and control of isolated defects. In this work, we combine these techniques to yield a method in which we can create individual size-quantized triangular nanopores through anmore » h-BN sheet. The pores are created using the electron beam of a conventional transmission electron microscope; which can strip away multiple layers of h-BN exposing single-layer regions, introduce single vacancies, and preferentially grow vacancies only in the single-layer region. We further demonstrate how the geometry of these pores can be altered beyond triangular by changing beam conditions. Precisely size- and geometry-tuned nanopores could find application in molecular sensing, DNA sequencing, water desalination, and molecular separation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/23243','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/23243"><span>Pervious pavements - installation, operations and strength part 1 : pervious concrete.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-08-01</p> <p>Pervious pavement systems are now being recognized as a best management practice by the Environmental Protection Agency and the state of Florida. The pervious concrete system is designed to have enhanced pore sizes in the surface layer compared to co...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/23245','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/23245"><span>Pervious pavements - installation, operations and strength part 3 : permeable paver systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-08-01</p> <p>Pervious pavement systems are now being recognized as a best management practice by the Environmental Protection Agency and the state of Florida. The pervious pavement systems are designed to have enhanced pore sizes in the surface layer compared to ...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/23244','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/23244"><span>Pervious pavements - installation, operations and strength part 2 : porous asphalt systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-08-01</p> <p>Pervious pavement systems are now being recognized as a best management practice by the Environmental Protection Agency and the state of Florida. The pervious pavement systems are designed to have enhanced pore sizes in the surface layer compared to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25849656','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25849656"><span>SLM produced porous titanium implant improvements for enhanced vascularization and osteoblast seeding.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matena, Julia; Petersen, Svea; Gieseke, Matthias; Kampmann, Andreas; Teske, Michael; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo</p> <p>2015-04-02</p> <p>To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12885646','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12885646"><span>The pressure-dependence of the size of extruded vesicles.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Patty, Philipus J; Frisken, Barbara J</p> <p>2003-08-01</p> <p>Variations in the size of vesicles formed by extrusion through small pores are discussed in terms of a simple model. Our model predicts that the radius should decrease as the square root of the applied pressure, consistent with data for vesicles extruded under various conditions. The model also predicts dependencies on the pore size used and on the lysis tension of the vesicles being extruded that are consistent with our data. The pore size was varied by using track-etched polycarbonate membranes with average pore diameters ranging from 50 to 200 nm. To vary the lysis tension, vesicles made from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine), mixtures of POPC and cholesterol, and mixtures of POPC and C(16)-ceramide were studied. The lysis tension, as measured by an extrusion-based technique, of POPC:cholesterol vesicles is higher than that of pure POPC vesicles whereas POPC:ceramide vesicles have lower lysis tensions than POPC vesicles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27144657','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27144657"><span>Strategies for Tailoring the Pore-Size Distribution of Virus Retention Filter Papers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gustafsson, Simon; Mihranyan, Albert</p> <p>2016-06-08</p> <p>The goal of this work is to demonstrate how the pore-size distribution of the nanocellulose-based virus-retentive filter can be tailored. The filter paper was produced using cellulose nanofibers derived from Cladophora sp. green algae using the hot-press drying at varying drying temperatures. The produced filters were characterized using scanning electron microscopy, atomic force microscopy, and N2 gas sorption analysis. Further, hydraulic permeability and retention efficiency toward surrogate 20 nm model particles (fluorescent carboxylate-modified polystyrene spheres) were assessed. It was shown that by controlling the rate of water evaporation during hot-press drying the pore-size distribution can be precisely tailored in the region between 10 and 25 nm. The mechanism of pore formation and critical parameters are discussed in detail. The results are highly valuable for development of advanced separation media, especially for virus-retentive size-exclusion filtration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AIPC.1426..255N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AIPC.1426..255N"><span>Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.</p> <p>2012-03-01</p> <p>High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApSS..374...19S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApSS..374...19S"><span>Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils</p> <p>2016-06-01</p> <p>Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.H13E1593A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.H13E1593A"><span>Smart Fluids in Hydrology: Use of Non-Newtonian Fluids for Pore Structure Characterization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Abou Najm, M. R.; Atallah, N. M.; Selker, J. S.; Roques, C.; Stewart, R. D.; Rupp, D. E.; Saad, G.; El-Fadel, M.</p> <p>2015-12-01</p> <p>Classic porous media characterization relies on typical infiltration experiments with Newtonian fluids (i.e., water) to estimate hydraulic conductivity. However, such experiments are generally not able to discern important characteristics such as pore size distribution or pore structure. We show that introducing non-Newtonian fluids provides additional unique flow signatures that can be used for improved pore structure characterization while still representing the functional hydraulic behavior of real porous media. We present a new method for experimentally estimating the pore structure of porous media using a combination of Newtonian and non-Newtonian fluids. The proposed method transforms results of N infiltration experiments using water and N-1 non-Newtonian solutions into a system of equations that yields N representative radii (Ri) and their corresponding percent contribution to flow (wi). This method allows for estimating the soil retention curve using only saturated experiments. Experimental and numerical validation comparing the functional flow behavior of different soils to their modeled flow with N representative radii revealed the ability of the proposed method to represent the water retention and infiltration behavior of real soils. The experimental results showed the ability of such fluids to outsmart Newtonian fluids and infer pore size distribution and unsaturated behavior using simple saturated experiments. Specifically, we demonstrate using synthetic porous media that the use of different non-Newtonian fluids enables the definition of the radii and corresponding percent contribution to flow of multiple representative pores, thus improving the ability of pore-scale models to mimic the functional behavior of real porous media in terms of flow and porosity. The results advance the knowledge towards conceptualizing the complexity of porous media and can potentially impact applications in fields like irrigation efficiencies, vadose zone hydrology, soil-root-plant continuum, carbon sequestration into geologic formations, soil remediation, petroleum reservoir engineering, oil exploration and groundwater modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25618235','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25618235"><span>Limited retention of micro-organisms using commercialized needle filters.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elbaz, W; McCarthy, G; Mawhinney, T; Goldsmith, C E; Moore, J E</p> <p>2015-03-01</p> <p>A study was undertaken to compare a commercialized needle filter with a 0.2-μm filtered epidural set and a non-filtered standard needle. No culturable bacteria were detected following filtration through the 0.2-μm filter. Bacterial breakthrough was observed with the filtered needle (pore size 5 μm) and the non-filtered needle. Filtered systems (0.2 μm) should be employed to achieve total bacterial retention. This highlights that filtration systems with different pore sizes will have varying ability to retain bacteria. Healthcare professionals need to know what type/capability of filter is implied on labels used by manufacturers, and to assess whether the specification has the desired functionality to prevent bacterial translocation through needles. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16924612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16924612"><span>Highly porous 3D nanofiber scaffold using an electrospinning technique.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Geunhyung; Kim, WanDoo</p> <p>2007-04-01</p> <p>A successful 3D tissue-engineering scaffold must have a highly porous structure and good mechanical stability. High porosity and optimally designed pore size provide structural space for cell accommodation and migration and enable the exchange of nutrients between the scaffold and environment. Poly(epsilon-carprolactone) fibers were electrospun using an auxiliary electrode and chemical blowing agent (BA), and characterized according to porosity, pore size, and their mechanical properties. We also investigated the effect of the BA on the electrospinning processability. The growth characteristic of human dermal fibroblasts cells cultured in the webs showed the good adhesion with the blown web relative to a normal electrospun mat. The blown nanofiber web had good tensile properties and high porosity compared to a typical electrospun nanofiber scaffold. (c) 2006 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5554028','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5554028"><span>Porous Materials from Thermally Activated Kaolinite: Preparation, Characterization and Application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Luo, Jun; Jiang, Tao; Li, Guanghui; Peng, Zhiwei; Rao, Mingjun; Zhang, Yuanbo</p> <p>2017-01-01</p> <p>In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also investigated. The results show that the specific surface area (SSA) of porous alumina/silica increases with silica/alumina dissolution, but without marked change of the BJH pore size. Furthermore, change in pore volume is more dependent on activation temperature. The porous alumina and silica obtained from alkali leaching of kaolinite activated at 1150 °C for 15 min and acid leaching of kaolinite activated at 850 °C for 15 min are mesoporous, with SSAs, BJH pore sizes and pore volumes of 55.8 m2/g and 280.3 m2/g, 6.06 nm and 3.06 nm, 0.1455 mL/g and 0.1945 mL/g, respectively. According to the adsorption tests, porous alumina has superior adsorption capacities for Cu2+, Pb2+ and Cd2+ compared with porous silica and activated carbon. The maximum capacities of porous alumina for Cu2+, Pb2+ and Cd2+ are 134 mg/g, 183 mg/g and 195 mg/g, respectively, at 30 °C. PMID:28773002</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15697305','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15697305"><span>Nanoporous thermosetting polymers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raman, Vijay I; Palmese, Giuseppe R</p> <p>2005-02-15</p> <p>Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16649769','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16649769"><span>Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Min Soo; Joo, Wonchul; Kim, Jin Kon</p> <p>2006-05-09</p> <p>We investigate the effects of interfacial energy between water and solvent as well as polymer concentration on the formation of porous structures of polymer films prepared by spin coating of cellulose acetate butyrate (CAB) in mixed solvent of tetrahydrofuran (THF) and chloroform under humid condition. The interfacial energy between water and the solvent was gradually changed by the addition of chloroform to the solvent. At a high polymer concentration (0.15 g/cm3 in THF), porous structures were limited only at the top surfaces of CAB films, regardless of interfacial energies, due to the high viscosity of the solution. At a medium concentration (approximately 0.08 g/cm3 in THF), CAB film had relatively uniform pores at the top surface and very small pores inside the film because of the mixing of the water droplets with THF solution. When chloroform was added to THF, pores at the inner CAB film had a comparable size with those at the top surface because of the reduced degree of the mixing between the water droplets and the mixed solvent. A further decrease in polymer concentration (0.05 g/cm3 in THF) caused the final films to have a two-layer porous structure, and the size of pores at each layer was almost the same.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24568789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24568789"><span>Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zuriaga-Agustí, E; Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I; Mendoza-Roca, J A</p> <p>2014-05-01</p> <p>Ultrafiltration membrane processes have become an established technology in the treatment and reuse of secondary effluents. Nevertheless, membrane fouling arises as a major obstacle in the efficient operation of these systems. In the current study, the performance of tubular ultrafiltration ceramic membranes was evaluated according to the roles exerted by membrane pore size, transmembrane pressure and feed concentration on a binary foulant system simulating textile wastewater. For that purpose, carboxymethyl cellulose sodium salt (CMC) and an azo dye were used as colloidal and organic foulants, respectively. Results showed that a larger pore size enabled more solutes to get adsorbed into the pores, producing a sharp permeate flux decline attributed to the rapid pore blockage. Besides, an increase in CMC concentration enhanced severe fouling in the case of the tighter membrane. Concerning separation efficiency, organic matter was almost completely removed with removal efficiency above 98.5%. Regarding the dye, 93% of rejection was achieved. Comparable removal efficiencies were attributed to the dynamic membrane formed by the cake layer, which governed process performance in terms of rejection and selectivity. As a result, none of the evaluated parameters showed significant influence on separation efficiency, supporting the significant role of cake layer on filtration process. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.894a2087S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.894a2087S"><span>Multiscale Simulation of Porous Ceramics Based on Movable Cellular Automaton Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smolin, A.; Smolin, I.; Eremina, G.; Smolina, I.</p> <p>2017-10-01</p> <p>The paper presents a model for simulating mechanical behaviour of multiscale porous ceramics based on movable cellular automaton method, which is a novel particle method in computational mechanics of solid. The initial scale of the proposed approach corresponds to the characteristic size of the smallest pores in the ceramics. At this scale, we model uniaxial compression of several representative samples with an explicit account of pores of the same size but with the random unique position in space. As a result, we get the average values of Young’s modulus and strength, as well as the parameters of the Weibull distribution of these properties at the current scale level. These data allow us to describe the material behaviour at the next scale level were only the larger pores are considered explicitly, while the influence of small pores is included via the effective properties determined at the previous scale level. If the pore size distribution function of the material has N maxima we need to perform computations for N - 1 levels in order to get the properties from the lowest scale up to the macroscale step by step. The proposed approach was applied to modelling zirconia ceramics with bimodal pore size distribution. The obtained results show correct behaviour of the model sample at the macroscale.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29775952','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29775952"><span>Molecular simulation and experimental validation of resorcinol adsorption on Ordered Mesoporous Carbon (OMC).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ahmad, Zaki Uddin; Chao, Bing; Konggidinata, Mas Iwan; Lian, Qiyu; Zappi, Mark E; Gang, Daniel Dianchen</p> <p>2018-04-27</p> <p>Numerous research works have been devoted in the adsorption area using experimental approaches. All these approaches are based on trial and error process and extremely time consuming. Molecular simulation technique is a new tool that can be used to design and predict the performance of an adsorbent. This research proposed a simulation technique that can greatly reduce the time in designing the adsorbent. In this study, a new Rhombic ordered mesoporous carbon (OMC) model is proposed and constructed with various pore sizes and oxygen contents using Materials Visualizer Module to optimize the structure of OMC for resorcinol adsorption. The specific surface area, pore volume, small angle X-ray diffraction pattern, and resorcinol adsorption capacity were calculated by Forcite and Sorption module in Materials Studio Package. The simulation results were validated experimentally through synthesizing OMC with different pore sizes and oxygen contents prepared via hard template method employing SBA-15 silica scaffold. Boric acid was used as the pore expanding reagent to synthesize OMC with different pore sizes (from 4.6 to 11.3 nm) and varying oxygen contents (from 11.9% to 17.8%). Based on the simulation and experimental validation, the optimal pore size was found to be 6 nm for maximum adsorption of resorcinol. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1261452-pore-size-dependence-characteristics-water-diffusion-slitlike-micropores','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1261452-pore-size-dependence-characteristics-water-diffusion-slitlike-micropores"><span>Pore-size dependence and characteristics of water diffusion in slitlike micropores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Diallo, S. O.</p> <p>2015-07-16</p> <p>The temperature dependence of the dynamics of water inside microporous activated carbon fibers (ACF) is investigated by means of incoherent elastic and quasielastic neutron-scattering techniques. The aim is to evaluate the effect of increasing pore size on the water dynamics in these primarily hydrophobic slit-shaped channels. Using two different micropore sizes (similar to 12 and 18 angstrom, denoted, respectively, ACF-10 and ACF-20), a clear suppression of the mobility of the water molecules is observed as the pore gap or temperature decreases. Suppression, we found, is accompanied by a systematic dependence of the average translational diffusion coefficient D-r and relaxation timemore » [tau(0)] of the restricted water on pore size and temperature. We observed D-r values and tested against a proposed scaling law, in which the translational diffusion coefficient D-r of water within a porous matrix was found to depend solely on two single parameters, a temperature-independent translational diffusion coefficient D-c associated with the water bound to the pore walls and the ratio theta of this strictly confined water to the total water inside the pore, yielding unique characteristic parameters for water transport in these carbon channels across the investigated temperature range.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5126630','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5126630"><span>Research of CO2 and N2 Adsorption Behavior in K-Illite Slit Pores by GCMC Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chen, Guohui; Lu, Shuangfang; Zhang, Junfang; Xue, Qingzhong; Han, Tongcheng; Xue, Haitao; Tian, Shansi; Li, Jinbu; Xu, Chenxi; Pervukhina, Marina; Clennell, Ben</p> <p>2016-01-01</p> <p>Understanding the adsorption mechanisms of CO2 and N2 in illite, one of the main components of clay in shale, is important to improve the precision of the shale gas exploration and development. We investigated the adsorption mechanisms of CO2 and N2 in K-illite with varying pore sizes at the temperature of 333, 363 and 393 K over a broad range of pressures up to 30 MPa using the grand canonical Monte Carlo (GCMC) simulation method. The simulation system is proved to be reasonable and suitable through the discussion of the impact of cation dynamics and pore wall thickness. The simulation results of the excess adsorption amount, expressed per unit surface area of illite, is in general consistency with published experimental results. It is found that the sorption potential overlaps in micropores, leading to a decreasing excess adsorption amount with the increase of pore size at low pressure, and a reverse trend at high pressure. The excess adsorption amount increases with increasing pressure to a maximum and then decreases with further increase in the pressure, and the decreasing amount is found to increase with the increasing pore size. For pores with size greater larger than 2 nm, the overlap effect disappears. PMID:27897232</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012MMI....18..433H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012MMI....18..433H"><span>Kinetic models of controllable pore growth of anodic aluminum oxide membrane</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Yan; Zeng, Hong-yan; Zhao, Ce; Qu, Ye-qing; Zhang, Pin</p> <p>2012-06-01</p> <p>An anodized Al2O3 (AAO) membrane with apertures about 72 nm in diameter was prepared by two-step anodic oxidation. The appearance and pore arrangement of the AAO membrane were characterized by energy dispersive x-ray spectroscopy and scanning electron microscopy. It was confirmed that the pores with high pore aspect ratio were parallel, well-ordered, and uniform. The kinetics of pores growth in the AAO membrane was derived, and the kinetic models showed that pores stopped developing when the pressure ( σ) trended to equal the surface tension at the end of anodic oxidation. During pore expansion, the effects of the oxalic acid concentration and expansion time on the pore size were investigated, and the kinetic behaviors were explained with two kinetic models derived in this study. They showed that the pore size increased with extended time ( r= G· t+ G'), but decreased with increased concentration ( r = - K·ln c- K') through the derived mathematic formula. Also, the values of G, G', K, and K' were derived from our experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JPCS...70.1395D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JPCS...70.1395D"><span>Ceramic membrane by tape casting and sol-gel coating for microfiltration and ultrafiltration application</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Das, Nandini; Maiti, H. S.</p> <p>2009-11-01</p> <p>Alumina membrane filters in the form of thin (0.3-0.8 mm) discs of 25-30 mm diameter suitable for microfiltration application have been fabricated by tape-casting technique. Further using this microfiltration membrane as substrate, boehmite sol coating was applied on it and ultrafiltration membrane with very small thickness was formed. The pore size of the microfiltration membrane could be varied in the range of 0.1-0.7 μm through optimisation of experimental parameter. In addition, each membrane shows a very narrow pore size distribution. The most important factor, which determines the pore size of the membrane, is the initial particle size and its distribution of the ceramic powder. The top thin ultrafiltration, boehmite layer was prepared by sol-gel method, with a thickness of 0.5 μm. Particle size of the sol was approximately 30-40 nm. The structure and formation of the layer was analysed through TEM. At 550 °C formation of the top layer was completed. The pore size of the ultrafiltration membrane measured from TEM micrograph was almost 10 nm. Results of microbial (Escherichia coli—smallest-sized water-borne bacteria) test confirm the possibility of separation through this membrane</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3810806','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3810806"><span>Osmotic water transport in aquaporins: evidence for a stochastic mechanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zeuthen, Thomas; Alsterfjord, Magnus; Beitz, Eric; MacAulay, Nanna</p> <p>2013-01-01</p> <p>We test a novel, stochastic model of osmotic water transport in aquaporins. A solute molecule present at the pore mouth can either be reflected or permeate the pore. We assume that only reflected solute molecules induce osmotic transport of water through the pore, while permeating solute molecules give rise to no water transport. Accordingly, the rate of water transport is proportional to the reflection coefficient σ, while the solute permeability, PS, is proportional to 1 –σ. The model was tested in aquaporins heterologously expressed in Xenopus oocytes. A variety of aquaporin channel sizes and geometries were obtained with the two aquaporins AQP1 and AQP9 and mutant versions of these. Osmotic water transport was generated by adding 20 mm of a range of different-sized osmolytes to the outer solution. The osmotic water permeability and the reflection coefficient were measured optically at high resolution and compared to the solute permeability obtained from short-term uptake of radio-labelled solute under isotonic conditions. For each type of aquaporin there was a linear relationship between solute permeability and reflection coefficient, in accordance with the model. We found no evidence for coupling between water and solute fluxes in the pore. In confirmation of molecular dynamic simulations, we conclude that the magnitude of the osmotic water permeability and the reflection coefficient are determined by processes at the arginine selectivity filter located at the outward-facing end of the pore. PMID:23959676</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1149753-sorption-phase-supercritical-co2-silica-aerogel-experiments-mesoscale-computer-simulations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1149753-sorption-phase-supercritical-co2-silica-aerogel-experiments-mesoscale-computer-simulations"><span>Sorption Phase of Supercritical CO2 in Silica Aerogel: Experiments and Mesoscale Computer Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw</p> <p>2014-01-01</p> <p>Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21773976','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21773976"><span>X-ray microanalysis of porous materials using Monte Carlo simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Poirier, Dominique; Gauvin, Raynald</p> <p>2011-01-01</p> <p>Quantitative X-ray microanalysis models, such as ZAF or φ(ρz) methods, are normally based on solid, flat-polished specimens. This limits their use in various domains where porous materials are studied, such as powder metallurgy, catalysts, foams, etc. Previous experimental studies have shown that an increase in porosity leads to a deficit in X-ray emission for various materials, such as graphite, Cr(2) O(3) , CuO, ZnS (Ichinokawa et al., '69), Al(2) O(3) , and Ag (Lakis et al., '92). However, the mechanisms responsible for this decrease are unclear. The porosity by itself does not explain the loss in intensity, other mechanisms have therefore been proposed, such as extra energy loss by the diffusion of electrons by surface plasmons generated at the pores-solid interfaces, surface roughness, extra charging at the pores-solid interface, or carbon diffusion in the pores. However, the exact mechanism is still unclear. In order to better understand the effects of porosity on quantitative microanalysis, a new approach using Monte Carlo simulations was developed by Gauvin (2005) using a constant pore size. In this new study, the X-ray emissions model was modified to include a random log normal distribution of pores size in the simulated materials. This article presents, after a literature review of the previous works performed about X-ray microanalysis of porous materials, some of the results obtained with Gauvin's modified model. They are then compared with experimental results. Copyright © 2011 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26831782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26831782"><span>Effective pore size and radius of capture for K(+) ions in K-channels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David</p> <p>2016-02-02</p> <p>Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (r(E)) in several K-channel crystal structures. r(E) was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent r(E) estimates for MthK and Kv1.2/2.1 structures, with r(E) = 5.3-5.9 Å and r(E) = 4.5-5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (r(C)) for two electrophysiological counterparts, the large conductance calcium activated K-channel (r(C) = 2.2 Å) and the Shaker Kv-channel (r(C) = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between r(E) and r(C), produced consistent size radii of 3.1-3.7 Å and 3.6-4.4 Å for hydrated K(+) ions. These hydrated K(+) estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1049070-neutrons-measure-phase-behavior-pores-angstrom-size','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1049070-neutrons-measure-phase-behavior-pores-angstrom-size"><span>Neutrons measure phase behavior in pores at Angstrom size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bardoel, Agatha A; Melnichenko, Yuri B</p> <p></p> <p>Researchers have measured the phase behavior of green house gases in pores at the Angstrom-level, using small angle neutron scattering (SANS) at the Oak Ridge National Laboratory's High Flux Isotope Reactor. Yuri Melnichenko, an instrument scientist on the General Purpose Small Angle Neutron Scattering (GP SANS) Diffractometer at ORNL's High Flux Isotope Reactor, his postdoctoral associate Lilin He and collaborators Nidia Gallego and Cristian Contescu from the Material Sciences Division (ORNL) were engaged in the work. They were studying nanoporous carbons to assess their attractiveness as storage media for hydrogen, with a view to potential use for on-board hydrogen storagemore » for transportation applications. Nanoporous carbons can also serve as electrode material for supercapacitors and batteries. The researchers successfully determined that the most efficiently condensing pore size in a carbon nanoporous material for hydrogen storage is less than one nanometer. In a paper recently published by the Journal of the American Chemical Society, the collaborators used small angle neutron scattering to study how hydrogen condenses in small pores at ambient temperature. They discovered that the surface-molecule interactions create internal pressures in pores that may exceed the external gas pressure by a factor of up to 50. 'This is an exciting result,' Melnichenko said, 'as you achieve extreme densification in pores 'for free', i.e. without spending any energy. These results can be used to guide the development of new carbon adsorbents tailored to maximize hydrogen storage capacities.' Another important factor that defines the adsorption capacity of sub-nanometer pores is their shape. In order to get accurate structural information and maximize sorption capacity, it is important that pores are small and of approximately uniform size. In collaboration with Drexel University's Yury Gogotsi who supplied the samples, Melnichenko and his collaborators used the GP SANS instrument to study how the size and shape of pores in sub-nanometer porous carbons varies, depending on the manufacturing conditions. While small angle X-ray scattering (SAXS) can do the job too, Melnichenko says, the SANS method broke new ground in analyzing the shape and behavior of pores at subnanometer size, when subjected to varying synthesis temperature. 'We found that these very small pores are in fact spherical, and that when we change the synthesis conditions, they become elongated, even 'slit-like', and all of this on a subnanometer scale,' Melnichenko said.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Nanot..28D5301C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Nanot..28D5301C"><span>SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Qi; Wang, Yifan; Deng, Tao; Liu, Zewen</p> <p>2017-07-01</p> <p>Solid-state nanopores with feature sizes around 5 nm play a critical role in bio-sensing fields, especially in single molecule detection and sequencing of DNA, RNA and proteins. In this paper we present a systematic study on shrinkage and site-selective modification of single-crystal silicon nanopores with a conventional scanning electron microscope (SEM). Square nanopores with measurable sizes as small as 8 nm × 8 nm and rectangle nanopores with feature sizes (the smaller one between length and width) down to 5 nm have been obtained, using the SEM-induced shrinkage technique. The analysis of energy dispersive x-ray spectroscopy and the recovery of the pore size and morphology reveal that the grown material along with the edge of the nanopore is the result of deposition of hydrocarbon compounds, without structural damage during the shrinking process. A simplified model for pore shrinkage has been developed based on observation of the cross-sectional morphology of the shrunk nanopore. The main factors impacting on the task of controllably shrinking the nanopores, such as the accelerating voltage, spot size, scanned area of e-beam, and the initial pore size have been discussed. It is found that single-crystal silicon nanopores shrink linearly with time under localized irradiation by SEM e-beam in all cases, and the pore shrinkage rate is inversely proportional to the initial equivalent diameter of the pore under the same e-beam conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1906n0008D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1906n0008D"><span>Time evolution of pore system in lime - Pozzolana composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Doleželová, Magdaléna; Čáchová, Monika; Scheinherrová, Lenka; Keppert, Martin</p> <p>2017-11-01</p> <p>The lime - pozzolana mortars and plasters are used in restoration works on building cultural heritage but these materials are also following the trend of energy - efficient solutions in civil engineering. Porosity and pore size distribution is one of crucial parameters influencing engineering properties of porous materials. The pore size distribution of lime based system is changing in time due to chemical processes occurring in the material. The present paper describes time evolution of pore system in lime - pozzolana composites; the obtained results are useful in prediction of performance of lime - pozzolana systems in building structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhTea..51...28S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhTea..51...28S"><span>Modeling the Dynamics of Gel Electrophorresis in the High School Classroom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saucedo, Skyler R.</p> <p>2013-01-01</p> <p>Gel electrophoresis, used by geneticists and forensic experts alike, is an immensely popular technique that utilizes an electric field to separate molecules and proteins by size and charge. At the microscopic level, a dye or complex protein like DNA is passed through agarose, a gelatinous three-dimensional matrix of pores and nano-sized tunnels. When forced through a maze of holes, the molecule unravels, forming a long chain, slithering through the field of pores in a process colloquially coined "reputation." As a result, the smaller molecules travel farther through the gel when compared to molecules of larger molecular weight. This highly effective "molecular sieve" provides consistent data and allows scientists to compare similar sequences of DNA base pairs in a routine fashion.2 When performed at the high school level, gel electrophoresis provides students the opportunity to learn about a contemporary lab technique of great scientific relevance. Doing real science certainly excites students and motivates them to learn more.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3918769','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3918769"><span>Guest–host interactions of a rigid organic molecule in porous silica frameworks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wu, Di; Hwang, Son-Jong; Zones, Stacey I.; Navrotsky, Alexandra</p> <p>2014-01-01</p> <p>Molecular-level interactions at organic–inorganic interfaces play crucial roles in many fields including catalysis, drug delivery, and geological mineral precipitation in the presence of organic matter. To seek insights into organic–inorganic interactions in porous framework materials, we investigated the phase evolution and energetics of confinement of a rigid organic guest, N,N,N-trimethyl-1-adamantammonium iodide (TMAAI), in inorganic porous silica frameworks (SSZ-24, MCM-41, and SBA-15) as a function of pore size (0.8 nm to 20.0 nm). We used hydrofluoric acid solution calorimetry to obtain the enthalpies of interaction between silica framework materials and TMAAI, and the values range from −56 to −177 kJ per mole of TMAAI. The phase evolution as a function of pore size was investigated by X-ray diffraction, IR, thermogravimetric differential scanning calorimetry, and solid-state NMR. The results suggest the existence of three types of inclusion depending on the pore size of the framework: single-molecule confinement in a small pore, multiple-molecule confinement/adsorption of an amorphous and possibly mobile assemblage of molecules near the pore walls, and nanocrystal confinement in the pore interior. These changes in structure probably represent equilibrium and minimize the free energy of the system for each pore size, as indicated by trends in the enthalpy of interaction and differential scanning calorimetry profiles, as well as the reversible changes in structure and mobility seen by variable temperature NMR. PMID:24449886</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010CG.....36.1236V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010CG.....36.1236V"><span>Quantification of soil structure based on Minkowski functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogel, H.-J.; Weller, U.; Schlüter, S.</p> <p>2010-10-01</p> <p>The structure of soils and other geologic media is a complex three-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to the structure given by the pore space and its spatial distribution. It is an old dream and still a formidable challenge to relate structural features of porous media to their functional properties. Using tomographic techniques, soil structure can be directly observed at a range of spatial scales. In this paper we present a scale-invariant concept to quantify complex structures based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size or aggregate size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on the size of pores and aggregates, the pore surface area and the pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the pore structure of an arable soil and the pore structure of a sand both obtained by X-ray micro-tomography. We also analyze the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale using samples of different size recorded at different resolutions. The results demonstrate that objects smaller than 5 voxels are critical for quantitative analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1331274-development-hierarchical-tunable-pore-size-polymer-foams-icf-targets','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1331274-development-hierarchical-tunable-pore-size-polymer-foams-icf-targets"><span>Development of hierarchical, tunable pore size polymer foams for ICF targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Hamilton, Christopher E.; Lee, Matthew Nicholson; Parra-Vasquez, A. Nicholas Gerardo</p> <p>2016-08-01</p> <p>In this study, one of the great challenges of inertial confinement fusion experiments is poor understanding of the effects of reactant heterogeneity on fusion reactions. The Marble campaign, conceived at Los Alamos National Laboratory, aims to gather new insights into this issue by utilizing target capsules containing polymer foams of variable pore sizes, tunable over an order of magnitude. Here, we describe recent and ongoing progress in the development of CH and CH/CD polymer foams in support of Marble. Hierarchical and tunable pore sizes have been achieved by utilizing a sacrificial porogen template within an open-celled poly(divinylbenzene) or poly(divinylbenzene-co-styrene) aerogelmore » matrix, resulting in low-density foams (~30 mg/ml) with continuous multimodal pore networks.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AdWR...32.1396C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AdWR...32.1396C"><span>Tomographic analysis of reactive flow induced pore structure changes in column experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cai, Rong; Lindquist, W. Brent; Um, Wooyong; Jones, Keith W.</p> <p>2009-09-01</p> <p>We utilize synchrotron X-ray computed micro-tomography to capture and quantify snapshots in time of dissolution and secondary precipitation in the microstructure of Hanford sediments exposed to simulated caustic waste in flow-column experiments. The experiment is complicated somewhat as logistics dictated that the column spent significant amounts of time in a sealed state (acting as a batch reactor). Changes accompanying a net reduction in porosity of 4% were quantified including: (1) a 25% net decrease in pores resulting from a 38% loss in the number of pores <10-4mm in volume and a 13% increase in the number of pores of larger size; and (2) a 38% decrease in the number of throats. The loss of throats resulted in decreased coordination number for pores of all sizes and significant reduction in the number of pore pathways.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JChPh.148e4503D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JChPh.148e4503D"><span>Effect of pore geometry on the compressibility of a confined simple fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dobrzanski, Christopher D.; Maximov, Max A.; Gor, Gennady Y.</p> <p>2018-02-01</p> <p>Fluids confined in nanopores exhibit properties different from the properties of the same fluids in bulk; among these properties is the isothermal compressibility or elastic modulus. The modulus of a fluid in nanopores can be extracted from ultrasonic experiments or calculated from molecular simulations. Using Monte Carlo simulations in the grand canonical ensemble, we calculated the modulus for liquid argon at its normal boiling point (87.3 K) adsorbed in model silica pores of two different morphologies and various sizes. For spherical pores, for all the pore sizes (diameters) exceeding 2 nm, we obtained a logarithmic dependence of fluid modulus on the vapor pressure. Calculation of the modulus at saturation showed that the modulus of the fluid in spherical pores is a linear function of the reciprocal pore size. The calculation of the modulus of the fluid in cylindrical pores appeared too scattered to make quantitative conclusions. We performed additional simulations at higher temperature (119.6 K), at which Monte Carlo insertions and removals become more efficient. The results of the simulations at higher temperature confirmed both regularities for cylindrical pores and showed quantitative difference between the fluid moduli in pores of different geometries. Both of the observed regularities for the modulus stem from the Tait-Murnaghan equation applied to the confined fluid. Our results, along with the development of the effective medium theories for nanoporous media, set the groundwork for analysis of the experimentally measured elastic properties of fluid-saturated nanoporous materials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMMR14A..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMMR14A..07H"><span>Testing Mercury Porosimetry with 3D Printed Porosity Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasiuk, F.; Ewing, R. P.; Hu, Q.</p> <p>2014-12-01</p> <p>Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JNR....18...55T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JNR....18...55T"><span>Comparative study of silver nanoparticle permeation using Side-Bi-Side and Franz diffusion cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trbojevich, Raul A.; Fernandez, Avelina; Watanabe, Fumiya; Mustafa, Thikra; Bryant, Matthew S.</p> <p>2016-03-01</p> <p>Better understanding the mechanisms of nanoparticle permeation through membranes and packaging polymers has important implications for the evaluation of drug transdermal uptake, in food safety and the environmental implications of nanotechnology. In this study, permeation of 21 nm diameter silver nanoparticles (AgNPs) was tested using Side-Bi-Side and Franz static diffusion cells through hydrophilic 0.1 and 0.05 µm pore diameter 125 µm thick synthetic cellulose membranes, and 16 and 120 µm thick low-density polyethylene (LDPE) films. Experiments performed with LDPE films discarded permeation of AgNPs or Ag ions over the investigated time-frame in both diffusion systems. But controlled release of AgNPs has been quantified using semipermeable hydrophilic membranes. The permeation followed a quasi-linear time-dependent model during the experimental time-frame, which represents surface reaction-limited permeation. Diffusive flux, diffusion coefficients, and membrane permeability were determined as a function of pore size and diffusion model. Concentration gradient and pore size were key to understand mass transfer phenomena in the diffusion systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18678532','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18678532"><span>Shape-memory NiTi foams produced by replication of NaCl space-holders.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bansiddhi, A; Dunand, D C</p> <p>2008-11-01</p> <p>NiTi foams were created with a structure (32-36% open pores 70-400 microm in size) and mechanical properties (4-25 GPa stiffness, >1000 MPa compressive strength, >42% compressive ductility, and shape-memory strains up to 4%) useful for bone implant applications. A mixture of NiTi and NaCl powders was hot-isostatically pressed at 950 and 1065 degrees C and the NaCl phase was then dissolved in water. The resulting NiTi foams show interconnected pores that replicate the shape and size of the NaCl powders, indicating that NiTi powders densified significantly before NaCl melted at 801 degrees C. Densifying NiTi or other metal powders above the melting point of the space-holder permits the use of NaCl, with the following advantages compared with higher-melting, solid space-holders such as oxides and fluorides used to date: (i) no temperature limit for densification; (ii) lower cost; (iii) greater flexibility in powder (and thus pore) shape; (iv) faster dissolution; (v) reduced metal corrosion during dissolution; (vi) lower toxicity if space-holder residues remain in the foam.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20704238','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20704238"><span>Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Shujuan; Shao, Ting; Kose, H Selcen; Karanfil, Tanju</p> <p>2010-08-15</p> <p>Adsorption of three aromatic organic compounds (AOCs) by four types of carbonaceous adsorbents [a granular activated carbon (HD4000), an activated carbon fiber (ACF10), two single-walled carbon nanotubes (SWNT, SWNT-HT), and a multiwalled carbon nanotube (MWNT)] with different structural characteristics but similar surface polarities was examined in aqueous solutions. Isotherm results demonstrated the importance of molecular sieving and micropore effects in the adsorption of AOCs by carbonaceous porous adsorbents. In the absence of the molecular sieving effect, a linear relationship was found between the adsorption capacities of AOCs and the surface areas of adsorbents, independent of the type of adsorbent. On the other hand, the pore volume occupancies of the adsorbents followed the order of ACF10 > HD4000 > SWNT > MWNT, indicating that the availability of adsorption site was related to the pore size distributions of the adsorbents. ACF10 and HD4000 with higher microporous volumes exhibited higher adsorption affinities to low molecular weight AOCs than SWNT and MWNT with higher mesopore and macropore volumes. Due to their larger pore sizes, SWNTs and MWNTs are expected to be more efficient in adsorption of large size molecules. Removal of surface oxygen-containing functional groups from the SWNT enhanced adsorption of AOCs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26749566','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26749566"><span>Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guneta, Vipra; Loh, Qiu Li; Choong, Cleo</p> <p>2016-05-01</p> <p>Three dimensional (3D) alginate scaffolds with tunable mechanical and structural properties are explored for investigating the effect of the scaffold properties on stem cell behavior and extracellular matrix (ECM) formation. Varying concentrations of crosslinker (20 - 60%) are used to tune the stiffness, porosity, and the pore sizes of the scaffolds post-fabrication. Enhanced cell proliferation and adipogenesis occur in scaffolds with 3.52 ± 0.59 kPa stiffness, 87.54 ± 18.33% porosity and 68.33 ± 0.88 μm pore size. On the other hand, cells in scaffolds with stiffness greater than 11.61 ± 1.74 kPa, porosity less than 71.98 ± 6.25%, and pore size less than 64.15 ± 4.34 μm preferentially undergo osteogenesis. When cultured in differentiation media, adipose-derived stem cells (ASCs) undergoing terminal adipogenesis in 20% firming buffer (FB) scaffolds and osteogenesis in 40% and 60% FB scaffolds show the highest secretion of collagen as compared to other groups of scaffolds. Overall, this study demonstrates the three-way relationship between 3D scaffolds, ECM composition, and stem cell differentiation. © 2016 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24391805','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24391805"><span>Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wolf, Alexandra B; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A</p> <p>2013-01-01</p> <p>The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGD.....7.2997P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGD.....7.2997P"><span>Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.</p> <p>2010-04-01</p> <p>Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a Critical Filtration Size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGeo....7.3177P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGeo....7.3177P"><span>Percolation properties of 3-D multiscale pore networks: how connectivity controls soil filtration processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perrier, E. M. A.; Bird, N. R. A.; Rieutord, T. B.</p> <p>2010-10-01</p> <p>Quantifying the connectivity of pore networks is a key issue not only for modelling fluid flow and solute transport in porous media but also for assessing the ability of soil ecosystems to filter bacteria, viruses and any type of living microorganisms as well inert particles which pose a contamination risk. Straining is the main mechanical component of filtration processes: it is due to size effects, when a given soil retains a conveyed entity larger than the pores through which it is attempting to pass. We postulate that the range of sizes of entities which can be trapped inside soils has to be associated with the large range of scales involved in natural soil structures and that information on the pore size distribution has to be complemented by information on a critical filtration size (CFS) delimiting the transition between percolating and non percolating regimes in multiscale pore networks. We show that the mass fractal dimensions which are classically used in soil science to quantify scaling laws in observed pore size distributions can also be used to build 3-D multiscale models of pore networks exhibiting such a critical transition. We extend to the 3-D case a new theoretical approach recently developed to address the connectivity of 2-D fractal networks (Bird and Perrier, 2009). Theoretical arguments based on renormalisation functions provide insight into multi-scale connectivity and a first estimation of CFS. Numerical experiments on 3-D prefractal media confirm the qualitative theory. These results open the way towards a new methodology to estimate soil filtration efficiency from the construction of soil structural models to be calibrated on available multiscale data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26652423','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26652423"><span>Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Taniguchi, Naoya; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Sasaki, Kiyoyuki; Otsuki, Bungo; Nakamura, Takashi; Matsushita, Tomiharu; Kokubo, Tadashi; Matsuda, Shuichi</p> <p>2016-02-01</p> <p>Selective laser melting (SLM) is an additive manufacturing technique with the ability to produce metallic scaffolds with accurately controlled pore size, porosity, and interconnectivity for orthopedic applications. However, the optimal pore structure of porous titanium manufactured by SLM remains unclear. In this study, we evaluated the effect of pore size with constant porosity on in vivo bone ingrowth in rabbits into porous titanium implants manufactured by SLM. Three porous titanium implants (with an intended porosity of 65% and pore sizes of 300, 600, and 900μm, designated the P300, P600, and P900 implants, respectively) were manufactured by SLM. A diamond lattice was adapted as the basic structure. Their porous structures were evaluated and verified using microfocus X-ray computed tomography. Their bone-implant fixation ability was evaluated by their implantation as porous-surfaced titanium plates into the cortical bone of the rabbit tibia. Bone ingrowth was evaluated by their implantation as cylindrical porous titanium implants into the cancellous bone of the rabbit femur for 2, 4, and 8weeks. The average pore sizes of the P300, P600, and P900 implants were 309, 632, and 956μm, respectively. The P600 implant demonstrated a significantly higher fixation ability at 2weeks than the other implants. After 4weeks, all models had sufficiently high fixation ability in a detaching test. Bone ingrowth into the P300 implant was lower than into the other implants at 4weeks. Because of its appropriate mechanical strength, high fixation ability, and rapid bone ingrowth, our results indicate that the pore structure of the P600 implant is a suitable porous structure for orthopedic implants manufactured by SLM. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614575N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614575N"><span>Influence of pore size distributions on decomposition of maize leaf residue: evidence from X-ray computed micro-tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Negassa, Wakene; Guber, Andrey; Kravchenko, Alexandra; Rivers, Mark</p> <p>2014-05-01</p> <p>Soil's potential to sequester carbon (C) depends not only on quality and quantity of organic inputs to soil but also on the residence time of the applied organic inputs within the soil. Soil pore structure is one of the main factors that influence residence time of soil organic matter by controlling gas exchange, soil moisture and microbial activities, thereby soil C sequestration capacity. Previous attempts to investigate the fate of organic inputs added to soil did not allow examining their decomposition in situ; the drawback that can now be remediated by application of X-ray computed micro-tomography (µ-CT). The non-destructive and non-invasive nature of µ-CT gives an opportunity to investigate the effect of soil pore size distributions on decomposition of plant residues at a new quantitative level. The objective of this study is to examine the influence of pore size distributions on the decomposition of plant residue added to soil. Samples with contrasting pore size distributions were created using aggregate fractions of five different sizes (<0.05, 0.05-0.1, 0.10-05, 0.5-1.0 and 1.0-2.0 mm). Weighted average pore diameters ranged from 10 µm (<0.05 mm fraction) to 104 µm (1-2 mm fraction), while maximum pore diameter were in a range from 29 µm (<0.05 mm fraction) to 568 µm (1-2 mm fraction) in the created soil samples. Dried pieces of maize leaves 2.5 mg in size (equivalent to 1.71 mg C g-1 soil) were added to half of the studied samples. Samples with and without maize leaves were incubated for 120 days. CO2 emission from the samples was measured at regular time intervals. In order to ensure that the observed differences are due to differences in pore structure and not due to differences in inherent properties of the studied aggregate fractions, we repeated the whole experiment using soil from the same aggregate size fractions but ground to <0.05 mm size. Five to six replicated samples were used for intact and ground samples of all sizes with and without leaves. Two replications of the intact aggregate fractions of all sizes with leaves were subjected to µ-CT scanning before and after incubation, whereas all the remaining replications of both intact and ground aggregate fractions of <0.05, 0.05-0.1, and 1.0-2.0 mm sizes with leaves were scanned with µ-CT after the incubation. The µ-CT image showed that approximately 80% of the leaves in the intact samples of large aggregate fractions (0.5-1.0 and 1.0-2.0 mm) was decomposed during the incubation, while only 50-60% of the leaves were decomposed in the intact samples of smaller sized fractions. Even lower percent of leaves (40-50%) was decomposed in the ground samples, with very similar leaf decomposition observed in all ground samples regardless of the aggregate fraction size. Consistent with µ-CT results, the proportion of decomposed leaf estimated with the conventional mass loss method was 48% and 60% for the <0.05 mm and 1.0-2.0 mm soil size fractions of intact aggregates, and 40-50% in ground samples, respectively. The results of the incubation experiment demonstrated that, while greater C mineralization was observed in samples of all size fractions amended with leaf, the effect of leaf presence was most pronounced in the smaller aggregate fractions (0.05-0.1 mm and 0.05 mm) of intact aggregates. The results of the present study unequivocally demonstrate that differences in pore size distributions have a major effect on the decomposition of plant residues added to soil. Moreover, in presence of plant residues, differences in pore size distributions appear to also influence the rates of decomposition of the intrinsic soil organic material.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MMTA...48.2682L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MMTA...48.2682L"><span>Evolution of Micro-Pores in a Single-Crystal Nickel-Based Superalloy During Solution Heat Treatment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xiangwei; Wang, Li; Dong, Jiasheng; Lou, Langhong; Zhang, Jian</p> <p>2017-06-01</p> <p>Evolution of micro-pores in a third-generation single-crystal nickel-based superalloy during solution heat treatment at 1603 K (1330 °C) was investigated by X-ray computed tomography. 3D information including morphology, size, number, and volume fraction of micro-pores formed during solidification (S-pores) and solution (H-pores) was analyzed. The growth behaviors of both S-pores and H-pores can be related to the vacancy formation and diffusion during heat treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27554019','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27554019"><span>Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Ju-Ang; Lim, Jiwon; Naren, Raja; Yun, Hui-Suk; Park, Eui Kyun</p> <p>2016-10-15</p> <p>Similar to calcium phosphates, magnesium phosphate (MgP) ceramics have been shown to be biocompatible and support favorable conditions for bone cells. Micropores below 25μm (MgP25), between 25 and 53μm (MgP53), or no micropores (MgP0) were introduced into MgP scaffolds using different sizes of an NaCl template. The porosities of MgP25 and MgP53 were found to be higher than that of MgP0 because of their micro-sized pores. Both in vitro and in vivo analysis showed that MgP scaffolds with high porosity promoted rapid biodegradation. Implantation of the MgP0, MgP25, and MgP53 scaffolds into rabbit calvarial defects (with 4- and 6-mm diameters) was assessed at two times points (4 and 8weeks), followed by analysis of bone regeneration. The micro-CT and histologic analyses of the 4-mm defect showed that the MgP25 and MgP53 scaffolds were degraded completely at 4weeks with simultaneous bone and marrow-like structure regeneration. For the 6-mm defect, a similar pattern of regeneration was observed. These results indicate that the rate of degradation is associated with bone regeneration. The MgP25 and MgP53 scaffold-implanted bone showed a better lamellar structure and enhanced calcification compared to the MgP0 scaffold because of their porosity and degradation rate. Tartrate-resistant acid phosphatase (TRAP) staining indicated that the newly formed bone was undergoing maturation and remodeling. Overall, these data suggest that the pore architecture of MgP ceramic scaffolds greatly influence bone formation and remodeling activities and thus should be considered in the design of new scaffolds for long-term bone tissue regeneration. The pore structural conditions of scaffold, including porosity, pore size, pore morphology, and pore interconnectivity affect cell ingrowth, mechanical properties and biodegradabilities, which are key components of scaffold in bone tissue regeneration. In this study, we designed hierarchical pore structure of the magnesium phosphate (MgP) scaffold by combination of the 3D printing process, self-setting reaction and salt-leaching technique, and first studied the effect of pore structures of bioceramic scaffolds on bone tissue regeneration through both in vitro and in vivo studies (rabbit calvarial model). The MgP scaffolds with higher porosity promoted more rapid biodegradation and enhanced new bone formation and remodeling activities at the same time. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H12B..07O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H12B..07O"><span>Fluid Transport in Porous Media probed by Relaxation-Exchange NMR</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olaru, A. M.; Kowalski, J.; Sethi, V.; Blümich, B.</p> <p>2011-12-01</p> <p>The characterization of fluid transport in porous media represents a matter of high interest in fields like the construction industry, oil exploitation, and soil science. Moisture migration or flow at low rates, such as those occurring in soil during rain are difficult to characterize by classical high-field NMR velocimetry due to the dedicated hardware and elaborate techniques required for adequate signal encoding. The necessity of field studies raises additional technical problems, which can be solved only by the use of portable low-field NMR instruments. In this work we extend the use of low-field relaxation exchange experiments from the study of diffusive transport to that of advection. Relaxation exchange experiments were performed using a home-built Halbach magnet on model porous systems with controlled pore-size distributions and on natural porous systems (quartz sand with a broad pore-size distribution) exposed to unidirectional flow. Different flow rates leave distinctive marks on the exchange maps obtained by inverse Laplace transformation of the time domain results, due to the superposition of exchange, diffusion and inflow/outflow in multiple relaxation sites of the liquids in the porous media. In the case of slow velocities there is no loss of signal due to outflow, and the relaxation-exchange effects prevail, leading to a tilt of the diagonal distribution around a pivot point with increasing mixing time. The tilt suggests an asymmetry in the exchange between relaxation sites of large and small decay rates. Another observed phenomenon is the presence of a bigger number of exchange cross-peaks compared to the exchange maps obtained for the same systems in zero-flow conditions. We assume that this is due to enhanced exchange caused by the superposition of flow. For high velocities the outflow effects dominate and the relaxation-time distribution collapses towards lower values of the average relaxation times. In both cases the pore-size distribution has a strong effect on the results, the asymmetries being more obvious in the natural porous systems than in the glass bead packs used as models, while the enhanced exchange phenomenon appears predominantly in the maps obtained on the model systems. This is probably due to diffusion occurring in the presence of different internal field gradients. Shifts and tilts in the exchange maps can be simulated by solving the relaxation site-averaged Bloch-Torrey system forward in time and assuming an asymmetric closure for the transport, which might be realistic for preferential flow phenomena or for pore-size distributions with two or more clearly distinct pore size classes. When comparing the simulations results with the experimental data we observed a correspondence of signal collapse and translation towards lower relaxation times. The asymmetries could be qualitatively reproduced by making further assumptions on the pore structure, but further work is required to characterize and model the physical phenomenon behind. The results obtained reveal the possibility of characterizing advective fluid transport in porous systems by simple correlation experiments performed with inexpensive and mobile hardware.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70035974','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70035974"><span>Characterization of the CO2 fluid adsorption in coal as a function of pressure using neutron scattering techniques (SANS and USANS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Melnichenko, Y.B.; Radlinski, A.P.; Mastalerz, Maria; Cheng, G.; Rupp, J.</p> <p>2009-01-01</p> <p>Small angle neutron scattering techniques have been applied to investigate the phase behavior of CO2 injected into coal and possible changes in the coal pore structure that may result from this injection. Three coals were selected for this study: the Seelyville coal from the Illinois Basin (Ro = 0.53%), Baralaba coal from the Bowen Basin (Ro = 0.67%), and Bulli 4 coal from the Sydney Basin (Ro = 1.42%). The coals were selected from different depths to represent the range of the underground CO2 conditions (from subcritical to supercritical) which may be realized in the deep subsurface environment. The experiments were conducted in a high pressure cell and CO2 was injected under a range of pressure conditions, including those corresponding to in-situ hydrostatic subsurface conditions for each coal. Our experiments indicate that the porous matrix of all coals remains essentially unchanged after exposure to CO2 at pressures up to 200??bar (1??bar = 105??Pa). Each coal responds differently to the CO2 exposure and this response appears to be different in pores of various sizes within the same coal. For the Seelyville coal at reservoir conditions (16????C, 50??bar), CO2 condenses from a gas into liquid, which leads to increased average fluid density in the pores (??pore) with sizes (r) 1 ?? 105 ??? r ??? 1 ?? 104???? (??pore ??? 0.489??g/cm3) as well as in small pores with size between 30 and 300???? (??pore ??? 0.671??g/cm3). These values are by a factor of three to four higher than the density of bulk CO2 (??CO2) under similar thermodynamic conditions (??CO2 ??? 0.15??g/cm3). At the same time, in the intermediate size pores with r ??? 1000???? the average fluid density is similar to the density of bulk fluid, which indicates that adsorption does not occur in these pores. At in situ conditions for the Baralaba coal (35 OC, 100??bar), the average fluid density of CO2 in all pores is lower than that of the bulk fluid (??pore / ??CO2 ??? 0.6). Neutron scattering from the Bulli 4 coal did not show any significant variation with pressure, a phenomenon which we assign to the extremely small amount of porosity of this coal in the pore size range between 35 and 100,000????. ?? 2008 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H21A1430R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H21A1430R"><span>Relationship between pore geometric characteristics and SIP/NMR parameters observed for mudstones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, J.; Slater, L. D.; Keating, K.; Parker, B. L.; Robinson, T.</p> <p>2017-12-01</p> <p>The reliable estimation of permeability remains one of the most challenging problems in hydrogeological characterization. Cost effective, non-invasive geophysical methods such as spectral induced polarization (SIP) and nuclear magnetic resonance (NMR) offer an alternative to traditional sampling methods as they are sensitive to the mineral surfaces and pore spaces that control permeability. We performed extensive physical characterization, SIP and NMR geophysical measurements on fractured rock cores extracted from a mudstone site in an effort to compare 1) the pore size characterization determined from traditional and geophysical methods and 2) the performance of permeability models based on these methods. We focus on two physical characterizations that are well-correlated with hydraulic properties: the pore volume normalized surface area (Spor) and an interconnected pore diameter (Λ). We find the SIP polarization magnitude and relaxation time are better correlated with Spor than Λ, the best correlation of these SIP measures for our sample dataset was found with Spor divided by the electrical formation factor (F). NMR parameters are, similarly, better correlated with Spor than Λ. We implement previously proposed mechanistic and empirical permeability models using SIP and NMR parameters. A sandstone-calibrated SIP model using a polarization magnitude does not perform well while a SIP model using a mean relaxation time performs better in part by more sufficiently accounting for the effects of fluid chemistry. A sandstone-calibrated NMR permeability model using an average measure of the relaxation time does not perform well, presumably due to small pore sizes which are either not connected or contain water of limited mobility. An NMR model based on the laboratory determined portions of the bound versus mobile portions of the relaxation distribution performed reasonably well. While limitations exist, there are many opportunities to use geophysical data to predict permeability in mudstone formations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JCHyd..94..178B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JCHyd..94..178B"><span>The dissolution kinetics of major elements in municipal solid waste incineration bottom ash particles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bendz, David; Tüchsen, Peter L.; Christensen, Thomas H.</p> <p>2007-12-01</p> <p>Leaching and tracer experiments in batches at L/S 20 were performed with 3-month-old MSWI bottom ash separated into eight different particle sizes. The time-dependent leaching of major elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) was monitored for up to 747 h. Physical properties of the particles, the specific surface (BET), pore volume and pore volume distribution over pore sizes (BJH) were determined for all particle classes by N 2 adsorption/desorption experiments. Some common features of physical pore structure for all particles were revealed. The specific surface and the particle pore volume were found to be negatively correlated with particle size, ranging from 3.2 m 2/g to 25.7 m 2/g for the surface area and from 0.0086 cm 3/g to 0.091 cm 3/g for the pore volume. Not surprisingly, the specific surface area was found to be the major material parameter that governed the leaching behavior for all elements (Ca 2+, K +, Na +, Cl - and SO 4- 2 ) and particle sizes. The diffusion resistance was determined independently by separate tracer (tritium) experiments. Diffusion gave a significant contribution to the apparent leaching kinetics for all elements during the first 10-40 h (depending on the particle size) of leaching and surface reaction was the overall rate controlling mechanism at late times for all particle sizes. For Ca 2+ and SO 4- 2 , the coupled effect of diffusion resistance and the degree of undersaturation in the intra particle pore volume was found to be a major rate limiting dissolution mechanism for both early and late times. The solubility control in the intra particulate porosity may undermine any attempt to treat bottom ash by washing out the sulfate. Even for high liquid/solid ratios, the solubility in the intra-particular porosity will limit the release rate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011JAP...110k3525L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011JAP...110k3525L"><span>Sound absorption characteristics of aluminum foam with spherical cells</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yunjie; Wang, Xinfu; Wang, Xingfu; Ren, Yuelu; Han, Fusheng; Wen, Cuie</p> <p>2011-12-01</p> <p>Aluminum foams were fabricated by an infiltration process. The foams possess spherical cells with a fixed porosity of 65% and varied pore sizes which ranged from 1.3 to 1.9 mm. The spherical cells are interconnected by small pores or pore openings on the cell walls that cause the foams show a characteristic of open cell structures. The sound absorption coefficient of the aluminum foams was measured by a standing wave tube and calculated by a transfer function method. It is shown that the sound absorption coefficient increases with an increase in the number of pore openings in the unit area or with a decrease of the diameter of the pore openings in the range of 0.3 to 0.4 mm. If backed with an air cavity, the resonant absorption peaks in the sound absorption coefficient versus frequency curves will be shifted toward lower frequencies as the cavity depth is increased. The samples with the same pore opening size but different pore size show almost the same absorption behavior, especially in the low frequency range. The present results are in good agreement with some theoretical predictions based on the acoustic impedance measurements of metal foams with circular apertures and cylindrical cavities and the principle of electroacoustic analogy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5992226-computer-simulation-pore-pressure-anomalies-aid-exploration-lenticular-reservoirs-mature-basins','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5992226-computer-simulation-pore-pressure-anomalies-aid-exploration-lenticular-reservoirs-mature-basins"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rostron, B.; Toth, J.</p> <p></p> <p>Lenticular reservoirs are accompanied by diagnostic pore-pressure anomalies when situated in a field of formation-fluid flow. Computer simulations have shown that these anomalies depend on the size and shape of the lens, the direction and intensity of flow, and the hydraulic conductivity contrast between the lens and the surrounding rock. Furthermore, the anomalies reflect the position of the petroleum-saturated portion of a lens since hydraulic conductivity is related to hydrocarbon content. Studies to date have shown that for an oil-free lens a pair of oppositely directed, symmetrical pressure anomalies exists. Pore-pressure distributions from drill-stem tests in mature, well-explored regions canmore » be compared to computer-simulated pore-pressure anomaly patterns. Results can be interpreted in terms of the lens geometry and degree of hydrocarbon saturation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JTST...26..456K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JTST...26..456K"><span>3D Analysis of Porosity in a Ceramic Coating Using X-ray Microscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klement, Uta; Ekberg, Johanna; Kelly, Stephen T.</p> <p>2017-02-01</p> <p>Suspension plasma spraying (SPS) is a new, innovative plasma spray technique using a feedstock consisting of fine powder particles suspended in a liquid. Using SPS, ceramic coatings with columnar microstructures have been produced which are used as topcoats in thermal barrier coatings. The microstructure contains a wide pore size range consisting of inter-columnar spacings, micro-pores and nano-pores. Hence, determination of total porosity and pore size distribution is a challenge. Here, x-ray microscopy (XRM) has been applied for describing the complex pore space of the coatings because of its capability to image the (local) porosity within the coating in 3D at a resolution down to 50 nm. The possibility to quantitatively segment the analyzed volume allows analysis of both open and closed porosity. For an yttria-stabilized zirconia coating with feathery microstructure, both open and closed porosity were determined and it could be revealed that 11% of the pore volumes (1.4% of the total volume) are closed pores. The analyzed volume was reconstructed to illustrate the distribution of open and closed pores in 3D. Moreover, pore widths and pore volumes were determined. The results on the complex pore space obtained by XRM are discussed in connection with other porosimetry techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6241891','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/6241891"><span>Microporous alumina ceramic membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Anderson, M.A.; Guangyao Sheng.</p> <p>1993-05-04</p> <p>Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/868772','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/868772"><span>Microporous alumina ceramic membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Anderson, Marc A.; Sheng, Guangyao</p> <p>1993-01-01</p> <p>Several methods are disclosed for the preparation microporous alumina ceramic membranes. For the first time, porous alumina membranes are made which have mean pore sizes less than 100 Angstroms and substantially no pores larger than that size. The methods are based on improved sol-gel techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1355029-effects-management-pore-characteristics-organic-matter-composition-macroaggregates-evidence-from-characterization-organic-matter-imaging-pore-characteristics-om-composition-macroaggregates','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1355029-effects-management-pore-characteristics-organic-matter-composition-macroaggregates-evidence-from-characterization-organic-matter-imaging-pore-characteristics-om-composition-macroaggregates"><span>Effects of management and pore characteristics on organic matter composition of macroaggregates: evidence from characterization of organic matter and imaging: Pore characteristics and OM composition of macroaggregates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Toosi, E. R.; Kravchenko, A. N.; Mao, J.</p> <p></p> <p>Macroaggregates are of interest because of their fast response to land management and their role in the loss or restoration of soil organic carbon (SOC). The study included two experiments. In Experiment I, we investigated the effect of long-term (27 years) land management on the chemical composition of organic matter (OM) of macroaggregates. Macroaggregates were sampled from topsoil under conventional cropping, cover cropping and natural succession systems. The OM of macroaggregates from conventional cropping was more decomposed than that of cover cropping and especially natural succession, based on larger δ 15N values and decomposition indices determined by multiple magic-angle spinningmore » nuclear magnetic resonance ( 13C CP/MAS NMR) and Fourier transform infrared (FTIR) spectroscopy. Previous research at the sites studied suggested that this was mainly because of reduced diversity and activity of the decomposer community, change in nutrient stoichiometry from fertilization and contrasting formation pathways of macroaggregates in conventional cropping compared with cover cropping and, specifically, natural succession. In Experiment II, we investigated the relation between OM composition and pore characteristics of macroaggregates. Macroaggregates from the natural succession system only were studied. We determined 3-D pore-size distribution of macroaggregates with X-ray microtomography, for which we cut the macroaggregates into sections that had contrasting dominant pore sizes. Then, we characterized the OM of macroaggregate sections with FTIR and δ15N methods. The results showed that within a macroaggregate, the OM was less decomposed in areas where the small (13–32 µm) or large (136–260 µm) pores were abundant. This was attributed to the role of large pores in supplying fresh OM and small pores in the effective protection of OM in macroaggregates. Previous research at the site studied had shown increased abundance of large and small intra-aggregate pores following adoption of less intensive management systems. It appears that land management can alter the OM composition of macroaggregates, partly by the regulation of OM turnover at the intra-aggregate scale.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAESc.154..271L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAESc.154..271L"><span>Characterization of macropore structure of Malan loess in NW China based on 3D pipe models constructed by using computed tomography technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yanrong; He, Shengdi; Deng, Xiaohong; Xu, Yongxin</p> <p>2018-04-01</p> <p>Malan loess is a grayish yellow or brownish yellow, clastic, highly porous and brittle late Quaternary sediment formed by the accumulation of windblown dust. The present-day pore structure of Malan loess is crucial for understanding the loessification process in history, loess strengths and mechanical behavior. This study employed a modern computed tomography (CT) device to scan Malan loess samples, which were obtained from the east part of the Loess Plateau of China. A sophisticated and efficient workflow for processing the CT images and constructing 3D pore models was established by selecting and programming relevant mathematical algorithms in MATLAB, such as the maximum entropy method, medial axis method, and node recognition algorithm. Individual pipes within the Malan loess were identified and constructed by partitioning and recombining links in the 3D pore model. The macropore structure of Malan loess was then depicted using quantitative parameters. The parameters derived from 2D images of CT scanning included equivalent radius, length and aspect ratio of pores, porosity, and pore distribution entropy, whereas those derived from the constructed 3D structure models included porosity, coordination number, node density, pipe radius, length, length density, dip angle, and dip direction. The analysis of these parameters revealed that Malan loess is a strongly anisotropic geomaterial with a dense and complex network of pores and pipes. The pores discovered on horizontal images, perpendicular to the vertical direction, were round and relatively uniform in shape and size and evenly distributed, whereas the pores discovered on vertical images varied in shape and size and were distributed in clusters. The pores showed good connectivity in vertical direction and formed vertically aligned pipes but displayed weak connectivity in horizontal directions. The pipes in vertical direction were thick, long, and straight compared with those in horizontal directions. These results were in good agreement with both numerical simulation and laboratory permeability tests, which indicate that Malan loess is more permeable in the vertical direction than in the horizontal directions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18576455','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18576455"><span>A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent</p> <p>2008-01-01</p> <p>Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbon materials and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (<2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (>50 nm) at which pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, which show the significant effects of pore curvature on the supercapacitor properties of nanoporous carbon materials. It is shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials, including activated carbon materials, template carbon materials, and novel carbide-derived carbon materials, and with diverse electrolytes, including organic electrolytes, such as tetraethylammonium tetrafluoroborate (TEABF(4)) and tetraethylammonium methylsulfonate (TEAMS) in acetonitrile, aqueous H(2)SO(4) and KOH electrolytes, and even an ionic liquid electrolyte, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size It may lend support for the systematic optimization of the properties of carbon supercapacitors through experiments. On the basis of the insight obtained from the new model, we also discuss the effects of the kinetic solvation/desolvation process, multimodal (versus unimodal) pore size distribution, and exohedral (versus endohedral) capacitors on the electrochemical properties of supercapacitors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..334a2016H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..334a2016H"><span>Characterization of bio char derived from tapioca skin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasnan, F. I.; Iamail, K. N.; Musa, M.; Jaapar, J.; Alwi, H.; Hamid, K. K. K.</p> <p>2018-03-01</p> <p>Pyrolysis of tapioca skin was conducted to produce bio chars in the range between 500°C–800°C. Surface modification treatment were performed on bio chars by using chemicals within 24 hours at 30°C and hot water within 1 hour to enhance the bio char’s adsorption properties according to surface area, pore volume, pore size, crystallinity structure and functional groups. The samples were characterized by using BET, XRD, FTIR and Methylene Blue adsorption. Based on BET result, it showed the surface area increased as the pyrolysis temperature increased followed by pore volume and pore size for S0. The optimum temperature for SNaOH, SHW and SMeOH was at 600°C, 700°C and 800°C with the surface area of 75.9874, 274.5066 and 351.5531 m2/g respectively compared to S0 while SP3HO4 has the worst result since it felt on macroporous structure. The percentage of MB adsorption was followed the size of bio chars surface area. Based on FTIR result, at temperature 500°C to 700°C, the bio chars still have functional groups while at 800°C, many functional groups were diminished due to high temperature struck on them. XRD result showed all the bio chars were amorphous. In conclusion, the best surface modification treatment was by Methanol followed by hot water and Sodium Hydroxide at temperature of 700°C and 800°C while Ortho-Phosphoric acid was the worst one and was not suitable for bio char’s surface modification for adsorption purpose.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=298122','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=298122"><span>Utilization of porous carbons derived from coconut shell and wood in natural rubber</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The porous carbons derived from cellulose are renewable and environmentally friendly. Coconut shell and wood derived porous carbons were characterized with elemental analysis, ash content, x-ray diffraction, infrared absorbance, particle size, surface area, and pore volume. The results were compared...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25818443','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25818443"><span>The phenotype of cancer cell invasion controlled by fibril diameter and pore size of 3D collagen networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sapudom, Jiranuwat; Rubner, Stefan; Martin, Steve; Kurth, Tony; Riedel, Stefanie; Mierke, Claudia T; Pompe, Tilo</p> <p>2015-06-01</p> <p>The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter--and not pore size--to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MMTA...49..272S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MMTA...49..272S"><span>Manufacturing of Open-Cell Zn-22Al-2Cu Alloy Foams by a Centrifugal-Replication Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sánchez, A.; Cruz, A.; Rivera, J. E.; Romero, J. A.; Suárez, M. A.; Gutiérrez, V. H.</p> <p>2018-01-01</p> <p>Centrifugal force was used to produce open-cell Zn-22Al-2Cu alloy foams by the replication method. Three different sizes (0.50, 0.69, and 0.95 mm) of NaCl spherical particles were used as space holders. A relatively low infiltration pressure was required to infiltrate completely the liquid metal into the three pore sizes, and it was determined based on the centrifugation system parameters. The infiltration pressure required was decreased when the diameter of the particle was increased. The porosity of the foam was increased from 58 to 63 pct, when the pore size was increased from 0.50 to 0.95 mm, while the relative density was decreased from 0.42 to 0.36. The NaCl preform was preheated to avoid the freezing and to keep the rheological properties of the melt. The centrifugal-replication method is a suitable technique for the fabrication of open-cell Zn-Al-Cu alloy foams with small pore size. The compressive mechanical properties of the open-cell Zn-22Al-2Cu foams increased when the pore size decreased.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.879a2014L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.879a2014L"><span>Modelling the physical properties of glasslike carbon foams</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Letellier, M.; Macutkevic, J.; Bychanok, D.; Kuzhir, P.; Delgado-Sanchez, C.; Naguib, H.; Ghaffari Mosanenzadeh, S.; Fierro, V.; Celzard, A.</p> <p>2017-07-01</p> <p>In this work, model alveolar materials - carbon cellular and/or carbon reticulated foams - were produced in order to study and to model their physical properties. It was shown that very different morphologies could be obtained whereas the constituting vitreous carbon from which they were made remained exactly the same. Doing so, the physical properties of these foams were expected to depend neither on the composition nor on the carbonaceous texture but only on the porous structure, which could be tuned for the first time for having a constant pore size in a range of porosities, or a range of pore sizes at fixed porosity. The physical properties were then investigated through mechanical, acoustic, thermal and electromagnetic measurements. The results demonstrate the roles played by bulk density and cell size on all physical properties. Whereas some of the latter strongly depend on porosity and/or pore size, others are independent of pore size. It is expected that these results apply to many other kinds of rigid foams used in a broad range of different applications. The present results therefore open the route to their optimisation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1142038-control-both-particle-pore-size-nanoporous-palladium-alloy-powders','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1142038-control-both-particle-pore-size-nanoporous-palladium-alloy-powders"><span>Control of both particle and pore size in nanoporous palladium alloy powders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Jones, Christopher G.; Cappillino, Patrick J.; Stavila, Vitalie; ...</p> <p>2014-07-15</p> <p>Energy storage materials often involve chemical reactions with bulk solids. Porosity within the solids can enhance reaction rates. The porosity can be either within or between individual particles of the material. Greater control of the size and uniformity of both types of pore should lead to enhancements of charging and discharging rates in energy storage systems. Furthermore, to control both particle and pore size in nanoporous palladium (Pd)-based hydrogen storage materials, first we created uniformly sized copper particles of about 1 μm diameter by the reduction of copper sulfate with ascorbic acid. In turn, these were used as reducing agentsmore » for tetrachloropalladate in the presence of a block copolymer surfactant. The copper reductant particles are geometrically self-limiting, so the resulting Pd particles are of similar size. The surfactant induces formation of 10 nm-scale pores within the particles. Some residual copper is alloyed with the Pd, reducing hydrogen storage capacity; use of a more reactive Pd salt can mitigate this. The reaction is conveniently performed in gram-scale batches.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1375355-solute-mixing-regulates-heterogeneity-mineral-precipitation-porous-media-effect-solute-mixing-precipitation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1375355-solute-mixing-regulates-heterogeneity-mineral-precipitation-porous-media-effect-solute-mixing-precipitation"><span>Solute mixing regulates heterogeneity of mineral precipitation in porous media: Effect of Solute Mixing on Precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cil, Mehmet B.; Xie, Minwei; Packman, Aaron I.</p> <p></p> <p>Synchrotron X-ray microtomography was used to track the spatiotemporal evolution of mineral precipitation and the consequent alteration of the pore structure. Column experiments were conducted by injecting CaCl2 and NaHCO3 solutions into granular porous media either as a premixed supersaturated solution (external mixing) or as separate solutions that mixed within the specimen (internal mixing). The two mixing modes produced distinct mineral growth patterns. While internal mixing promoted transverse heterogeneity with precipitation at the mixing zone, external mixing favored relatively homogeneous precipitation along the flow direction. The impact of precipitation on pore water flow and permeability was assessed via 3-D flowmore » simulations, which indicated anisotropic permeability evolution for both mixing modes. Under both mixing modes, precipitation decreased the median pore size and increased the skewness of the pore size distribution. Such similar pore-scale evolution patterns suggest that the clogging of individual pores depends primarily on local supersaturation state and pore geometry.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/988372','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/988372"><span>Water nano-filtration device</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Judkins, Roddie R [Knoxville, TN</p> <p>2009-02-03</p> <p>A water filter includes a porous support characterized by a mean porosity in the range of 20 to 50% and a mean pore size of 2 to 5 .mu.m; and a carbon filter membrane disposed thereon which is characterized by a mean particle size of no more than 50 .mu.m and a mean pore size of no more than 7.2 .mu.m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11931440','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11931440"><span>Variations of permeability and pore size distribution of porous media with pressure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Quan; Kinzelbach, Wolfgang; Ye, Chaohui; Yue, Yong</p> <p>2002-01-01</p> <p>Porosity and permeability of porous and fractured geological media decrease with the exploitation of formation fluids such as petroleum, natural gas, or ground water. This may result in ground subsidence and a decrease of recovery of petroleum, natural gas, or ground water. Therefore, an evaluation of the behavior of permeability and porosity under formation fluid pressure changes is important to petroleum and ground water industries. This study for the first time establishes a method, which allows for the measurement of permeability, porosity, and pore size distribution of cores simultaneously. From the observation of the pore size distribution by low-field nuclear magnetic resonance (NMR) relaxation time spectrometry the mechanisms of pressure-dependent porosity and permeability change can be derived. This information cannot be obtained by traditional methods. As the large-size pores or fractures contribute significantly to the permeability, their change consequently leads to a large permeability change. The contribution of fractures to permeability is even larger than that of pores. Thus, the permeability of the cores with fractures decreased more than that of cores without fractures during formation pressure decrease. Furthermore, it did not recover during formation pressure increase. It can be concluded that in fractures, mainly plastic deformation takes place, while matrix pores mainly show elastic deformation. Therefore, it is very important to keep an appropriate formation fluid pressure during the exploitation of ground water and petroleum in a fractured formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMMR23A4340G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMMR23A4340G"><span>Subcritical growth of natural hydraulic fractures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garagash, D.</p> <p>2014-12-01</p> <p>Joints are the most common example of brittle tensile failure in the crust. Their genesis at depth is linked to the natural hydraulic fracturing, which requires pore fluid pressure in excess of the minimum in situ stress [Pollard and Aidyn, JSG1988]. Depending on the geological setting, high pore pressure can result form burial compaction of interbedded strata, diagenesis, or tectonics. Common to these loading scenarios is slow build-up of pore pressure over a geological timescale, until conditions for initiation of crack growth are met on favorably oriented/sized flaws. The flaws can vary in size from grain-size cracks in igneous rocks to a fossil-size flaws in clastic rock, and once activated, are inferred to propagate mostly subcritically [Segall JGR 1984; Olson JGR 1993]. Despite many observational studies of natural hydraulic fractures, the modeling attempts appear to be few [Renshaw and Harvey JGR 1994]. Here, we use boundary integral formulation for the pore fluid inflow from the permeable rock into a propagating joint [Berchenko et al. IJRMMS 1997] coupled with the criteria for subcritical propagation assisted by the environmental effects of pore fluid at the crack tip to solve for the evolution of a penny-shape joint, which, in interbedded rock, may eventually evolve to short-blade geometry (propagation confined to a bed). Initial growth is exceedingly slow, paced by the stress corrosion reaction kinetics at the crack tip. During this stage the crack is fully-drained (i.e. the fluid pressure in the crack is equilibrated with the ambient pore pressure). This "slow" stage is followed by a rapid acceleration, driven by the increase of the mechanical stress intensity factor with the crack length, towards the terminal joint velocity. We provide an analytical expression for the latter as a function of the rock diffusivity, net pressure loading at the initiation (or flaw lengthscale), and parameters describing resistance to fracture growth. Due to a much slower rate of the crack volume expansion of short-blade joints compared to that of penny-shape joints, the former would propagate much faster than the latter under otherwise identical conditions. Finally, we speculate about possible relation of the predicted patterns of joint development with morphology of joint fracture surfaces observed in sedimentary rock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19947707','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19947707"><span>Free energies of stable and metastable pores in lipid membranes under tension.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>den Otter, Wouter K</p> <p>2009-11-28</p> <p>The free energy profile of pore formation in a lipid membrane, covering the entire range from a density fluctuation in an intact bilayer to a large tension-stabilized pore, has been calculated by molecular dynamics simulations with a coarse-grained lipid model. Several fixed elongations are used to obtain the Helmholtz free energy as a function of pore size for thermodynamically stable, metastable, and unstable pores, and the system-size dependence of these elongations is discussed. A link to the Gibbs free energy at constant tension, commonly known as the Litster model, is established by a Legendre transformation. The change of genus upon pore formation is exploited to estimate the saddle-splay modulus or Gaussian curvature modulus of the membrane leaflets. Details are provided of the simulation approach, which combines the potential of mean constraint force method with a reaction coordinate based on the local lipid density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19755156','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19755156"><span>Nano-sized water-in-oil-in-water emulsion enhances intestinal absorption of calcein, a high solubility and low permeability compound.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Koga, Kenjiro; Takarada, Nobuo; Takada, Kanji</p> <p>2010-02-01</p> <p>Our goal was to develop safe and stable multilayer emulsions capable of enhancing intestinal absorption of biopharmaceutics classification system (BCS) class III drugs. First, w/o emulsions were prepared using calcein as a model BCS class III compound and condensed ricinoleic acid tetraglycerin ester as a hydrophobic emulsifier. Then water-in-oil-in-water (w/o/w) emulsions were prepared with shirasu porous glass (SPG) membranes. Particle size analyses and calcein leakage from oil droplets in w/o/w emulsions led us to select stearic acid hexaglycerin esters (HS-11) and Gelucire 44/14 as hydrophilic emulsifiers. Analyses of the absorption-enhancing effects of w/o/w emulsions on intestinal calcein absorption in rats showed that calcein bioavailability after intraduodenal (i.d.) administration of HS-11 or Gelucire 44/14+polyvinyl alcohol (PVA) w/o/w emulsions prepared with 0.1-microm pore-sized SPGs was significantly higher than that of the calcein control. However, serum calcein concentration vs. time profiles after i.d. administration of w/o/w emulsions prepared with 1.1-microm and 30-microm pore-sized SPGs and an emulsion prepared with a calcein-containing outer water phase were comparable to control profiles. These results suggested that HS-11 or Gelucire 44/14+PVA are safe outer water phase additives and that 0.1-microm pore-sized SPGs are important for preparing w/o/w emulsions that enhanced intestinal calcein absorption. Copyright (c) 2009 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1093288','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1093288"><span>Catalytic nanoporous membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Pellin, Michael J; Hryn, John N; Elam, Jeffrey W</p> <p>2013-08-27</p> <p>A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MMTA...49..563Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MMTA...49..563Y"><span>Pore Formation During Solidification of Aluminum: Reconciliation of Experimental Observations, Modeling Assumptions, and Classical Nucleation Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yousefian, Pedram; Tiryakioğlu, Murat</p> <p>2018-02-01</p> <p>An in-depth discussion of pore formation is presented in this paper by first reinterpreting in situ observations reported in the literature as well as assumptions commonly made to model pore formation in aluminum castings. The physics of pore formation is reviewed through theoretical fracture pressure calculations based on classical nucleation theory for homogeneous and heterogeneous nucleation, with and without dissolved gas, i.e., hydrogen. Based on the fracture pressure for aluminum, critical pore size and the corresponding probability of vacancies clustering to form that size have been calculated using thermodynamic data reported in the literature. Calculations show that it is impossible for a pore to nucleate either homogeneously or heterogeneously in aluminum, even with dissolved hydrogen. The formation of pores in aluminum castings can only be explained by inflation of entrained surface oxide films (bifilms) under reduced pressure and/or with dissolved gas, which involves only growth, avoiding any nucleation problem. This mechanism is consistent with the reinterpretations of in situ observations as well as the assumptions made in the literature to model pore formation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29560789','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29560789"><span>Metalloporphyrin-based porous polymers prepared via click chemistry for size-selective adsorption of protein.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhu, Dailian; Qin, Cunqi; Ao, Shanshi; Su, Qiuping; Sun, Xiying; Jiang, Tengfei; Pei, Kemei; Ni, Huagang; Ye, Peng</p> <p>2018-08-01</p> <p>Zinc porphyrin-based porous polymers (PPs-Zn) with different pore sizes were prepared by controlling the reaction condition of click chemistry, and the protein adsorption in PPs-Zn and the catalytic activity of immobilized enzyme were investigated. PPs-Zn-1 with 18 nm and PPS-Zn-2 with 90 nm of pore size were characterized by FTIR, NMR and nitrogen absorption experiments. The amount of adsorbed protein in PPs-Zn-1 was more than that in PPs-Zn-2 for small size proteins, such as lysozyme, lipase and bovine serum albumin (BSA). And for large size proteins including myosin and human fibrinogen (HFg), the amount of adsorbed protein in PPs-Zn-1 was less than that in PPs-Zn-2. The result indicates that the protein adsorption is size-selective in PPs-Zn. Both the protein size and the pore size have a significant effect on the amount of adsorbed protein in the PPs-Zn. Lipase and lysozyme immobilized in PPs-Zn exhibited excellent reuse stability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/3296872','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/3296872"><span>Distribution of transvascular pathway sizes through the pulmonary microvascular barrier.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McNamee, J E</p> <p>1987-01-01</p> <p>Mathematical models of solute and water exchange in the lung have been helpful in understanding factors governing the volume flow rate and composition of pulmonary lymph. As experimental data and models become more encompassing, parameter identification becomes more difficult. Pore sizes in these models should approach and eventually become equivalent to actual physiological pathway sizes as more complex and accurate models are tried. However, pore sizes and numbers vary from model to model as new pathway sizes are added. This apparent inconsistency of pore sizes can be explained if it is assumed that the pulmonary blood-lymph barrier is widely heteroporous, for example, being composed of a continuous distribution of pathway sizes. The sieving characteristics of the pulmonary barrier are reproduced by a log normal distribution of pathway sizes (log mean = -0.20, log s.d. = 1.05). A log normal distribution of pathways in the microvascular barrier is shown to follow from a rather general assumption about the nature of the pulmonary endothelial junction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1303220','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1303220"><span>The Pressure-Dependence of the Size of Extruded Vesicles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Patty, Philipus J.; Frisken, Barbara J.</p> <p>2003-01-01</p> <p>Variations in the size of vesicles formed by extrusion through small pores are discussed in terms of a simple model. Our model predicts that the radius should decrease as the square root of the applied pressure, consistent with data for vesicles extruded under various conditions. The model also predicts dependencies on the pore size used and on the lysis tension of the vesicles being extruded that are consistent with our data. The pore size was varied by using track-etched polycarbonate membranes with average pore diameters ranging from 50 to 200 nm. To vary the lysis tension, vesicles made from POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine), mixtures of POPC and cholesterol, and mixtures of POPC and C16-ceramide were studied. The lysis tension, as measured by an extrusion-based technique, of POPC:cholesterol vesicles is higher than that of pure POPC vesicles whereas POPC:ceramide vesicles have lower lysis tensions than POPC vesicles. PMID:12885646</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3811000','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3811000"><span>Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Martinez, Jonathan O.; Chiappini, Ciro; Ziemys, Arturas; Faust, Ari M.; Kojic, Milos; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio</p> <p>2013-01-01</p> <p>Nanovectors hold substantial promise in abating the off-target effects of therapeutics by providing a means to selectively accumulate payloads at the target lesion, resulting in an increase in the therapeutic index. A sophisticated understanding of the factors that govern the degradation and release dynamics of these nanovectors is imperative to achieve these ambitious goals. In this work, we elucidate the relationship that exists between variations in pore size and the impact on the degradation, loading, and release of multistage nanovectors. Larger pored vectors displayed faster degradation and higher loading of nanoparticles, while exhibiting the slowest release rate. The degradation of these particles was characterized to occur in a multi-step progression where they initially decreased in size leaving the porous core isolated, while the pores gradually increased in size. Empirical loading and release studies of nanoparticles along with diffusion modeling revealed that this prolonged release was modulated by the penetration within the porous core of the vectors regulated by their pore size. PMID:23911070</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004ZNatA..59..550B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004ZNatA..59..550B"><span>1H NMR Cryoporometry Study of the Melting Behavior of Water in White Cement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boguszyńska, Joanna; Tritt-Goc, Jadwiga</p> <p>2004-09-01</p> <p>The pore size of white cement samples is studied by the melting behaviour of water confined in it, using 1H NMR cryopormetry. The influence of the preparing method and antifreeze admixture on the pore size and distribution in cement samples is investigated at 283 K. The addition of an antifreeze admixture [containing 1% Sika Rapid 2 by weight of the dry cement] influences the porosity. In wet prepared samples we observed a significant increase in the quantity of mesopores between 0.8 and 5 nm and a smaller increase of mesopores between 5 and 10 nm, when compared to cement without admixture. The compressive strength is related to the porosity of the cement. Therefore the cement with Sika Rapid 2, wet prepared at 278 K shows a higher strength than all other measured samples.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Nanot..26.4001S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Nanot..26.4001S"><span>Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan</p> <p>2015-08-01</p> <p>Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26180043','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26180043"><span>Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan</p> <p>2015-08-07</p> <p>Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AdWR...94..174B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AdWR...94..174B"><span>Single-phase and two-phase flow properties of mesaverde tight sandstone formation; random-network modeling approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bashtani, Farzad; Maini, Brij; Kantzas, Apostolos</p> <p>2016-08-01</p> <p>3D random networks are constructed in order to represent the tight Mesaverde formation which is located in north Wyoming, USA. The porous-space is represented by pore bodies of different shapes and sizes which are connected to each other by pore throats of varying length and diameter. Pore bodies are randomly distributed in space and their connectivity varies based on the connectivity number distribution which is used in order to generate the network. Network representations are then validated using publicly available mercury porosimetry experiments. The network modeling software solves the fundamental equations of two-phase immiscible flow incorporating wettability and contact angle variability. Quasi-static displacement is assumed. Single phase macroscopic properties (porosity, permeability) are calculated and whenever possible are compared to experimental data. Using this information drainage and imbibition capillary pressure, and relative permeability curves are predicted and (whenever possible) compared to experimental data. The calculated information is grouped and compared to available literature information on typical behavior of tight formations. Capillary pressure curve for primary drainage process is predicted and compared to experimental mercury porosimetry in order to validate the virtual porous media by history matching. Relative permeability curves are also calculated and presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3951847','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3951847"><span>Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hou, Huiyuan; Nieto, Alejandra; Ma, Feiyan; Freeman, William R.; Sailor, Michael J.; Cheng, Lingyun</p> <p>2014-01-01</p> <p>Daunorubicin (DNR) is an effective inhibitor of an array of proteins involved in neovascularization, including VEGF and PDGF. These growth factors are directly related to retina scar formation in many devastating retinal diseases. Due to the short vitreous half-life and narrow therapeutic window, ocular application of DNR is limited. It has been shown that a porous silicon (pSi) based delivery system can extend DNR vitreous residence from a few days to 3 months. In this study we investigated the feasibility of altering the pore size of the silicon particles to regulate the payload release. Modulation of the etching parameters allowed control of the nano-pore size from 15 nm to 95 nm. In vitro studies showed that degradation of pSi O2 increased with increasing pore size and the degradation of pSi O2 was approximately constant for a given particle type. The degradation of pSi O2 with 43 nm pores was significantly greater than the other two particles with smaller pores, judged by observed and normalized mean Si concentration of the dissolution samples (44.2±8.9 vs 25.7±5.6 or 21.2±4.2 µg/mL, p<0.0001). In vitro dynamic DNR release revealed that pSiO2-CO2H:DNR (Porous silicon dioxide with covalent loading of daunorubicin) with large pores (43 nm) yielded a significantly higher DNR level than particles with 15 or 26 nm pores (13.5±6.9 ng/mL vs. 2.3±1.6 ng/mL and 1.1±0.9 ng/mL, p<0.0001). After two months of in vitro dynamic release, 54% of the pSiO2-CO2H:DNR particles still remained in the dissolution chamber by weight. In vivo drug release study demonstrated that free DNR in vitreous at post-injection day 14 was 66.52 ng/mL for 95 nm pore size pSiO2-CO2H:DNR, 10.76 ng/mL for 43 nm pSi O2-CO2 H:DNR, and only 1.05 ng/mL for 15 nm pSi O2-CO2 H:DNR. Pore expansion from 15 nm to 95 nm led to a 63 folds increase of DNR release (p<0.0001) and a direct correlation between the pore size and the drug levels in the living eye vitreous was confirmed. The present study demonstrates the feasibility of regulating DNR release from pSi O2 covalently loaded with DNR by engineering the nano-pore size of pSi. PMID:24424270</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24424270','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24424270"><span>Tunable sustained intravitreal drug delivery system for daunorubicin using oxidized porous silicon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hou, Huiyuan; Nieto, Alejandra; Ma, Feiyan; Freeman, William R; Sailor, Michael J; Cheng, Lingyun</p> <p>2014-03-28</p> <p>Daunorubicin (DNR) is an effective inhibitor of an array of proteins involved in neovascularization, including VEGF and PDGF. These growth factors are directly related to retina scar formation in many devastating retinal diseases. Due to the short vitreous half-life and narrow therapeutic window, ocular application of DNR is limited. It has been shown that a porous silicon (pSi) based delivery system can extend DNR vitreous residence from a few days to 3months. In this study we investigated the feasibility of altering the pore size of the silicon particles to regulate the payload release. Modulation of the etching parameters allowed control of the nano-pore size from 15nm to 95nm. In vitro studies showed that degradation of pSiO2 increased with increasing pore size and the degradation of pSiO2 was approximately constant for a given particle type. The degradation of pSiO2 with 43nm pores was significantly greater than the other two particles with smaller pores, judged by observed and normalized mean Si concentration of the dissolution samples (44.2±8.9 vs 25.7±5.6 or 21.2±4.2μg/mL, p<0.0001). In vitro dynamic DNR release revealed that pSiO2-CO2H:DNR (porous silicon dioxide with covalent loading of daunorubicin) with large pores (43nm) yielded a significantly higher DNR level than particles with 15 or 26nm pores (13.5±6.9ng/mL vs. 2.3±1.6ng/mL and 1.1±0.9ng/mL, p<0.0001). After two months of in vitro dynamic release, 54% of the pSiO2-CO2H:DNR particles still remained in the dissolution chamber by weight. In vivo drug release study demonstrated that free DNR in the vitreous at post-injection day 14 was 66.52ng/mL for 95nm pore size pSiO2-CO2H:DNR, 10.76ng/mL for 43nm pSiO2-CO2H:DNR, and only 1.05ng/mL for 15nm pSiO2-CO2H:DNR. Pore expansion from 15nm to 95nm led to a 63 fold increase of DNR release (p<0.0001) and a direct correlation between the pore size and the drug levels in the living eye vitreous was confirmed. The present study demonstrates the feasibility of regulating DNR release from pSiO2 covalently loaded with DNR by engineering the nano-pore size of pSi. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3837988','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3837988"><span>Differences in Purinergic Amplification of Osmotic Cell Lysis by the Pore-Forming RTX Toxins Bordetella pertussis CyaA and Actinobacillus pleuropneumoniae ApxIA: the Role of Pore Size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fiser, Radovan; Linhartova, Irena; Osicka, Radim; Bumba, Ladislav; Hewlett, Erik L.; Benz, Roland; Sebo, Peter</p> <p>2013-01-01</p> <p>A large subgroup of the repeat in toxin (RTX) family of leukotoxins of Gram-negative pathogens consists of pore-forming hemolysins. These can permeabilize mammalian erythrocytes (RBCs) and provoke their colloid osmotic lysis (hemolytic activity). Recently, ATP leakage through pannexin channels and P2X receptor-mediated opening of cellular calcium and potassium channels were implicated in cell permeabilization by pore-forming toxins. In the study described here, we examined the role played by purinergic signaling in the cytolytic action of two RTX toxins that form pores of different sizes. The cytolytic potency of ApxIA hemolysin of Actinobacillus pleuropneumoniae, which forms pores about 2.4 nm wide, was clearly reduced in the presence of P2X7 receptor antagonists or an ATP scavenger, such as pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), Brilliant Blue G, ATP oxidized sodium salt, or hexokinase. In contrast, antagonists of purinergic signaling had no impact on the hemolytic potency of the adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis, which forms pores of 0.6 to 0.8 nm in diameter. Moreover, the conductance of pores formed by ApxIA increased with the toxin concentration, while the conductance of the CyaA single pore units was constant at various toxin concentrations. However, the P2X7 receptor antagonist PPADS inhibited in a concentration-dependent manner the exacerbated hemolytic activity of a CyaA-ΔN489 construct (lacking 489 N-terminal residues of CyaA), which exhibited a strongly enhanced pore-forming propensity (>20-fold) and also formed severalfold larger conductance units in planar lipid bilayers than intact CyaA. These results point to a pore size threshold of purinergic amplification involvement in cell permeabilization by pore-forming RTX toxins. PMID:24082076</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2791359','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2791359"><span>Adsorption of Poly(methyl methacrylate) on Concave Al2O3 Surfaces in Nanoporous Membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nunnery, Grady; Hershkovits, Eli; Tannenbaum, Allen; Tannenbaum, Rina</p> <p>2009-01-01</p> <p>The objective of this study was to determine the influence of polymer molecular weight and surface curvature on the adsorption of polymers onto concave surfaces. Poly(methyl methacrylate) (PMMA) of various molecular weights was adsorbed onto porous aluminum oxide membranes having various pore sizes, ranging from 32 to 220 nm. The surface coverage, expressed as repeat units per unit surface area, was observed to vary linearly with molecular weight for molecular weights below ~120 000 g/mol. The coverage was independent of molecular weight above this critical molar mass, as was previously reported for the adsorption of PMMA on convex surfaces. Furthermore, the coverage varied linearly with pore size. A theoretical model was developed to describe curvature-dependent adsorption by considering the density gradient that exists between the surface and the edge of the adsorption layer. According to this model, the density gradient of the adsorbed polymer segments scales inversely with particle size, while the total coverage scales linearly with particle size, in good agreement with experiment. These results show that the details of the adsorption of polymers onto concave surfaces with cylindrical geometries can be used to calculate molecular weight (below a critical molecular weight) if pore size is known. Conversely, pore size can also be determined with similar adsorption experiments. Most significantly, for polymers above a critical molecular weight, the precise molecular weight need not be known in order to determine pore size. Moreover, the adsorption developed and validated in this work can be used to predict coverage also onto surfaces with different geometries. PMID:19415910</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29091586','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29091586"><span>Enhanced water transport and salt rejection through hydrophobic zeolite pores.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N</p> <p>2017-12-15</p> <p>The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Nanot..28X5703H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Nanot..28X5703H"><span>Enhanced water transport and salt rejection through hydrophobic zeolite pores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.</p> <p>2017-12-01</p> <p>The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H13D1013T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H13D1013T"><span>Evaluation of a High-Resolution Benchtop Micro-CT Scanner for Application in Porous Media Research</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tuller, M.; Vaz, C. M.; Lasso, P. O.; Kulkarni, R.; Ferre, T. A.</p> <p>2010-12-01</p> <p>Recent advances in Micro Computed Tomography (MCT) provided the motivation to thoroughly evaluate and optimize scanning, image reconstruction/segmentation and pore-space analysis capabilities of a new generation benchtop MCT scanner and associated software package. To demonstrate applicability to soil research the project was focused on determination of porosities and pore size distributions of two Brazilian Oxisols from segmented MCT-data. Effects of metal filters and various acquisition parameters (e.g. total rotation, rotation step, and radiograph frame averaging) on image quality and acquisition time are evaluated. Impacts of sample size and scanning resolution on CT-derived porosities and pore-size distributions are illustrated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009Nanot..20t4012P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009Nanot..20t4012P"><span>Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Purewal, J. J.; Kabbour, H.; Vajo, J. J.; Ahn, C. C.; Fultz, B.</p> <p>2009-05-01</p> <p>Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19420660','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19420660"><span>Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Purewal, J J; Kabbour, H; Vajo, J J; Ahn, C C; Fultz, B</p> <p>2009-05-20</p> <p>Pore size distributions (PSD) and supercritical H2 isotherms have been measured for two activated carbon fiber (ACF) samples. The surface area and the PSD both depend on the degree of activation to which the ACF has been exposed. The low-surface-area ACF has a narrow PSD centered at 0.5 nm, while the high-surface-area ACF has a broad distribution of pore widths between 0.5 and 2 nm. The H2 adsorption enthalpy in the zero-coverage limit depends on the relative abundance of the smallest pores relative to the larger pores. Measurements of the H2 isosteric adsorption enthalpy indicate the presence of energy heterogeneity in both ACF samples. Additional measurements on a microporous, coconut-derived activated carbon are presented for reference.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1911166Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1911166Q"><span>Influence of pore structure on carbon retention/loss in soil macro-aggregates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Quigley, Michelle; Kravchenko, Alexandra; Rivers, Mark</p> <p>2017-04-01</p> <p>Carbon protection within soil macro-aggregates is an important component of soil carbon sequestration. Pores, as the transportation network for microorganisms, water, air and nutrients within macro-aggregates, are among the factors controlling carbon protection through restricting physical accessibility of carbon to microorganisms. The understanding of how the intra-aggregate pore structure relates to the degree of carbon physical protection, however, is currently lacking. This knowledge gap can lead to potentially inaccurate models and predictions of soil carbon's fate and storage in future changing climates. This study utilized the natural isotopic difference between C3 and C4 plants to trace the location of newly added carbon within macro-aggregates before and after decomposition and explored how location of this carbon relates to characteristics of intra-aggregate pores. To mimic the effect of decomposition, aggregates were incubated at 23˚ C for 28 days. Computed micro-tomographic images were used to determine pore characteristics at 6 μm resolution before and after incubation. Soil (0-10 cm depth) from a 20 year continuous corn (C4 plant) experiment was used. Two soil treatments were considered: 1) "destroyed-structure", where 1 mm sieved soil was used and 2) "intact-structure", where intact blocks of soil were used. Cereal rye (Secale cereale L.) (C3 plant) was grown in the planting boxes (2 intact, 3 destroyed, and one control) for three months in a greenhouse. From each box, ˜5 macro-aggregates of ˜5 mm size were collected for a total of 27 macro-aggregates. Half of the aggregates were cut into 5-11 sections, with relative positions of the sections within the aggregate recorded, and analyzed for δ13C. The remaining aggregates were incubated and then subjected to cutting and δ13C analysis. While there were no significant differences between the aggregate pore size distributions of the two treatments, the roles that specific pores sizes played in carbon protect were disparate. In intact-structure aggregates, prior to incubation, there was no association between carbon distribution and pores. After incubation, significant correlations (α=0.05) were observed between abundance of 6-40 μm pores and both soil organic carbon (SOC) and δ13C. Sections containing more 6-40 μm pores also had increased amounts of SOC (r2=0.23) with higher presence of C4 carbon (r2=0.27). This indicates preferential preservation of older carbon in the pores of this size range. Prior to incubation, destroyed-structure aggregates had higher amounts of C3 carbon associated with 40-95 μm pores (r2=0.14), pointing to a greater presence of newly added carbon within these pores. However, after incubation there was a significant loss of SOC from these pores (r2=0.22) and, specifically, the loss of C3 carbon (r2=0.16). In the studied soil, pores of 6-40 μm size range appeared to control the preservation of older carbon, while 40-95 μm pores controlled the fate of newly added carbon. Older carbon preservation in 6-40 μm pores was mostly observed in macro-aggregates from the soil with intact structure, while the associations between 40-95 μm pores and gains and losses of newly added carbon were primarily observed in the macro-aggregates that were formed anew in the sieved soil during the plant growing experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29424378','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29424378"><span>Atomistic and continuum scale modeling of functionalized graphyne membranes for water desalination.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Raju, Muralikrishna; Govindaraju, Pavan B; van Duin, Adri C T; Ihme, Matthias</p> <p>2018-02-22</p> <p>Recent theoretical and experimental studies reported ultra-high water permeability and salt rejection in nanoporous single-layer graphene. However, creating and controlling the size and distribution of nanometer-scale pores pose significant challenges to application of these membranes for water desalination. Graphyne and hydrogenated graphyne have tremendous potential as ultra-permeable membranes for desalination and wastewater reclamation due to their uniform pore-distribution, atomic thickness and mechano-chemical stability. Using molecular dynamics (MD) simulations and upscale continuum analysis, the desalination performance of bare and hydrogenated α-graphyne and γ-{2,3,4}-graphyne membranes is evaluated as a function of pore size, pore geometry, chemical functionalization and applied pressure. MD simulations show that pores ranging from 20 to 50 Å 2 reject in excess of 90% of the ions for pressures up to 1 GPa. Water permeability is found to range up to 85 L cm -2 day -1 MPa -1 , which is up to three orders of magnitude larger than commercial seawater reverse osmosis (RO) membranes and up to ten times that of nanoporous graphene. Pore chemistry, functionalization and geometry are shown to play a critical role in modulating the water flux, and these observations are explained by water velocity, density, and energy barriers in the pores. The atomistic scale investigations are complemented by upscale continuum analysis to examine the performance of these membranes in application to cross-flow RO systems. This upscale analysis, however, shows that the significant increase in permeability, observed from MD simulations, does not fully translate to current RO systems due to transport limitations. Nevertheless, upscale calculations predict that the higher permeability of graphyne membranes would allow up to six times higher permeate recovery or up to 6% less energy consumption as compared to thin-film composite membranes at currently accessible operating conditions. Significantly higher energy savings and permeate recovery can be achieved if higher feed-flow rates can be realized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H51B1466K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H51B1466K"><span>Comparison of Pore-Network and Lattice Boltzmann Models for Pore-Scale Modeling of Geological Storage of CO2 in Natural Reservoir Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohanpur, A. H.; Chen, Y.; Valocchi, A. J.; Tudek, J.; Crandall, D.</p> <p>2016-12-01</p> <p>CO2-brine flow in deep natural rocks is the focus of attention in geological storage of CO2. Understanding rock/flow properties at pore-scale is a vital component in field-scale modeling and prediction of fate of injected CO2. There are many challenges in working at the pore scale, such as size and selection of representative elementary volume (REV), particularly for material with complex geometry and heterogeneity, and the high computational costs. These issues factor into trade-offs that need to be made in choosing and applying pore-scale models. On one hand, pore-network modeling (PNM) simplifies the geometry and flow equations but can provide characteristic curves on fairly large samples. On the other hand, the lattice Boltzmann method (LBM) solves Navier-Stokes equations on the real geometry but is limited to small samples due to its high computational costs. Thus, both methods have some advantages but also face some challenges, which warrants a more detailed comparison and evaluation. In this study, we used industrial and micro-CT scans of actual reservoir rock samples to characterize pore structure at different resolutions. We ran LBM models directly on the characterized geometry and PNM on the equivalent 3D extracted network to determine single/two-phase flow properties during drainage and imbibition processes. Specifically, connectivity, absolute permeability, relative permeability curve, capillary pressure curve, and interface location are compared between models. We also did simulations on several subsamples from different locations including different domain sizes and orientations to encompass analysis of heterogeneity and isotropy. This work is primarily supported as part of the Center for Geologic Storage of CO2, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and partially supported by the International Institute for Carbon-Neutral Energy Research (WPI-I2CNER) based at Kyushu University, Japan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3804864','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3804864"><span>TLM-PSD model for optimization of energy and power density of vertically aligned carbon nanotube supercapacitor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ghosh, Arunabha; Le, Viet Thong; Bae, Jung Jun; Lee, Young Hee</p> <p>2013-01-01</p> <p>Electrochemical capacitors with fast charging-discharging rates are very promising for hybrid electric vehicle industries including portable electronics. Complicated pore structures have been implemented in active materials to increase energy storage capacity, which often leads to degrade dynamic response of ions. In order to understand this trade-off phenomenon, we report a theoretical model based on transmission line model which is further combined with pore size distribution function. The model successfully explained how pores length, and pore radius of active materials and electrolyte conductivity can affect capacitance and dynamic performance of different capacitors. The powerfulness of the model was confirmed by comparing with experimental results of a micro-supercapacitor consisted of vertically aligned multiwalled carbon nanotubes (v-MWCNTs), which revealed a linear current increase up to 600 Vs−1 scan rate demonstrating an ultrafast dynamic behavior, superior to randomly entangled singlewalled carbon nanotube device, which is clearly explained by the theoretical model. PMID:24145831</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20493719','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20493719"><span>Novel structure formation at the bottom surface of porous anodic alumina fabricated by single step anodization process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ali, Ghafar; Ahmad, Maqsood; Akhter, Javed Iqbal; Maqbool, Muhammad; Cho, Sung Oh</p> <p>2010-08-01</p> <p>A simple approach for the growth of long-range highly ordered nanoporous anodic alumina film in H(2)SO(4) electrolyte through a single step anodization without any additional pre-anodizing procedure is reported. Free-standing porous anodic alumina film of 180 microm thickness with through hole morphology was obtained. A simple and single step process was used for the detachment of alumina from aluminum substrate. The effect of anodizing conditions, such as anodizing voltage and time on the pore diameter and pore ordering is discussed. The metal/oxide and oxide/electrolyte interfaces were examined by high resolution scanning transmission electron microscope. The arrangement of pores on metal/oxide interface was well ordered with smaller diameters than that of the oxide/electrolyte interface. The inter-pore distance was larger in metal/oxide interface as compared to the oxide/electrolyte interface. The size of the ordered domain was found to depend strongly upon anodizing voltage and time. (c) 2010 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27976501','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27976501"><span>Pore Topology Effects in Positron Annihilation Spectroscopy of Zeolites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zubiaga, Asier; Warringham, Robbie; Mitchell, Sharon; Gerchow, Lars; Cooke, David; Crivelli, Paolo; Pérez-Ramírez, Javier</p> <p>2017-03-03</p> <p>Positron annihilation spectroscopy (PAS) is a powerful method to study the size and connectivity of pores in zeolites. The lifetime of positronium within the host material is commonly described by the Tao-Eldrup model. However, one of its largest limitations arises from the simple geometries considered for the shape of the pores, which cannot describe accurately the complex topologies in zeolites. Here, an atomic model that combines the Tao potential with the crystallographic structure is introduced to calculate the distribution and lifetime of Ps intrinsic to a given framework. A parametrization of the model is undertaken for a set of widely applied zeolite framework types (*BEA, FAU, FER, MFI, MOR, UTL), before extending the model to all known structures. The results are compared to structural and topological descriptors, and to the Tao-Eldrup model adapted for zeolites, demonstrating the intricate dependence of the lifetime on the pore architecture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DFDA20005L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DFDA20005L"><span>Transport of Brownian spheroidal nanoparticles in near-wall vascular flows for cancer therapy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Tiras Y.; Shah, Preyas N.; Smith, Bryan R.; Shaqfeh, Eric S. G.</p> <p>2016-11-01</p> <p>The microenvironment local to a tumor is characterized by a leaky vasculature induced by angiogenesis from tumor growth. Small pores form in the blood vessel walls, and these pores provide a pathway for cancer-ameliorating nanoparticle drug carriers. Using both simulations and microfluidics experiments, we investigate the extravasation of nanoparticles through pores. Using Brownian dynamics simulations, we evolve the stochastic equations for both point particles and finite-size spheroids of varying aspect ratio. We investigate the effect of wall shear flow and pore suction flow (Sampson flow) on the extravasation process. We consider pores of two types: physiologically relevant short pores with a length equal to the particle size and long pores which are relevant to diffusion through membranes. Additionally, we perform microfluidics experiments in which the extravasation rates of various nanoparticles tagged with fluorescent dye through pores are measured. In particular, using fluorometry we measure the flux of nanoparticles across a track-etched membrane, which separates two chambers. Our preliminary results indicate that the flux measured from experiment agrees reasonably with the simulations done with long pores, and we discuss the effect of pore length on extravasation. T.Y.L. is supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16080699','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16080699"><span>Characterization of oxygen transfer in miniature and lab-scale bubble column bioreactors and comparison of microbial growth performance based on constant k(L)a.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Doig, Steven D; Ortiz-Ochoa, Kenny; Ward, John M; Baganz, Frank</p> <p>2005-01-01</p> <p>This work describes the engineering characterization of miniature (2 mL) and laboratory-scale (100 mL) bubble column bioreactors useful for the cultivation of microbial cells. These bioreactors were constructed of glass and used a range of sintered glass gas diffusers with differently sized pores to disperse humidified air within the liquid biomedium. The effect of the pressure of this supplied air on the breakthrough point for gas diffusers with different pore sizes was examined and could be predicted using the Laplace-Young equation. The influence of the superficial gas velocity (u(g)) on the volumetric mass transfer coefficient (k(L)a) was determined, and values of up to 0.09 s(-1) were observed in this work. Two modeling approaches were considered in order to predict and provide comparison criteria. The first related the volumetric power consumption (P/V) to the k(L)a and a good correlation was obtained for differently sized reactors with a given pore size, but this correlation was not satisfactory for bubble columns with different gas diffusers. Values for P/V ranged from about 10 to 400 W.m(-3). Second, a model was developed predicting bubble size (d(b)), bubble rising velocity (u(b)), gas hold-up (phi), liquid side mass transfer coefficient (k(L)), and thus the k(L)a using established theory and empirical correlations. Good agreement was found with our experimental data at different scales and pore sizes. Values for d(b) varied from 0.1 to 0.6 mm, and k(L) values between 1.7 and 9.8 x 10(-4) m.s(-1) were determined. Several E. coli cultivations were performed in the miniature bubble column at low and high k(L)a values, and the results were compared to those from a conventional stirred tank operated under identical k(L)a values. Results from the two systems were similar in terms of biomass growth rate and carbon source utilization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4021889','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4021889"><span>Comparison of Polytetrafluoroethylene Flat-Sheet Membranes with Different Pore Sizes in Application to Submerged Membrane Bioreactor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nittami, Tadashi; Hitomi, Tetsuo; Matsumoto, Kanji; Nakamura, Kazuho; Ikeda, Takaharu; Setoguchi, Yoshihiro; Motoori, Manabu</p> <p>2012-01-01</p> <p>This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE). A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm) was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm). On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri) i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size. PMID:24958174</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28024618','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28024618"><span>Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jing, Xin; Mi, Hao-Yang; Turng, Lih-Sheng</p> <p>2017-03-01</p> <p>In this work, three-dimensional poly(caprolactone) (PCL) tissue engineering scaffolds were prepared by co-extrusion and gas foaming. Biocompatible hydroxyapatite (HA) and halloysite nanotubes (HNT) were added to the polymer matrix to enhance the mechanical properties and bioactivity of the composite scaffolds. The effects of HA and HNT on the rheological behavior, microstructure, and mechanical properties of the composite scaffolds were systematically compared. It was found that the HNT improved viscosity more significantly than HA, and reduced the pore size of scaffolds, while the mechanical performance of PCL/HNT scaffolds was higher than PCL/HA scaffolds with the same filler content. Human mesenchymal stem cells (hMSCs) were used as the cell model to compare the biological properties of two composite scaffolds. The results demonstrated that cells could survive on all scaffolds, and showed a more flourishing living state on the composite scaffolds. The cell differentiation for 5% HA and 1% HNT scaffolds were significantly higher than other scaffolds, while the differentiation of 5% HNT scaffolds was lower than that of 1% HNT scaffolds mainly because of the reduced pore size and pore interconnectivity. Therefore, this study suggested that, with proper filler content and control of microstructure through processing, HNT could be a suitable substitute for HA for bone tissue engineering to reduce the cost and improve mechanical performance. Copyright © 2016. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21901372','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21901372"><span>Superporous polyacrylate/chitosan IPN hydrogels for protein delivery.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gümüşderelioğlu, Menemşe; Erce, Deniz; Demirtaş, T Tolga</p> <p>2011-11-01</p> <p>In this study, poly(acrylamide), poly(AAm), and poly(acrylamide-co-acrylic acid), poly(AAm-co-AA) superporous hydrogels (SPHs) were synthesized by radical polymerization in the presence of gas blowing agent, sodium bicarbonate. In addition, ionically crosslinked chitosan (CH) superporous hydrogels were synthesized to form interpenetrating superporous hydrogels, i.e. poly(AAm)-CH and poly(AAm-co-AA)-CH SPH-IPNs. The hydrogels have a structure of interconnected pores with pore sizes of approximately 100-150 μm. Although the extent of swelling increased when AA were incorporated to the poly(AAm) structure, the time to reach the equilibrium swelling (~30 s) was not affected so much. In the presence of chitosan network mechanical properties significantly improved when compared with SPHs, however, equilibrium swelling time (~30 min) was prolonged significantly as due to the lower porosities and pore sizes of SPH-IPNs than that of SPHs. Model protein bovine serum albumin (BSA) was loaded into SPHs and SPH-IPNs by solvent sorption in very short time (<1 h) and very high capacities (~30-300 mg BSA/g dry gel) when compared to conventional hydrogels. BSA release profiles from SPHs and SPH-IPNs were characterized by an initial burst of protein during the first 20 min followed by a completed release within 1 h. However, total releasable amount of BSA from SPH-IPNs was lower than that of SPHs as due to the electrostatic interactions between chitosan and BSA.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1352799-thermal-hydraulic-performance-metal-foam-heat-exchangers-under-dry-operating-conditions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1352799-thermal-hydraulic-performance-metal-foam-heat-exchangers-under-dry-operating-conditions"><span>Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.</p> <p>2017-03-14</p> <p>High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1352799','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1352799"><span>Thermal-hydraulic performance of metal foam heat exchangers under dry operating conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nawaz, Kashif; Bock, Jessica; Jacobi, Anthony M.</p> <p></p> <p>High porosity metal foams with novel thermal, mechanical, electrical, and acoustic properties are being more widely adopted for application. Due to their large surface-area-to-volume ratio and complex structure which induces better fluid mixing, boundary layer restarting and wake destruction, they hold promise for heat transfer applications. In this study, the thermal-hydraulic performance of open-cell aluminum metal foam heat exchanger has been evaluated. The impact of flow conditions and metal foam geometry on the heat transfer coefficient and gradient have been investigated. Metal foam heat exchanger with same geometry (face area, flow depth and fin dimensions) consisting of four different typemore » of metal foams have been built for the study. Experiments are conducted in a closed-loop wind tunnel at different flow rate under dry operating condition. Metal foams with a smaller pore size (40 PPI) have a larger heat transfer coefficient compared to foams with a larger pore size (5 PPI). However, foams with larger pores result in relatively smaller pressure gradients. Current thermal-hydraulic modeling practices have been reviewed and potential issues have been identified. Permeability and inertia coefficients are determined and compared to data reported in open literature. Finally, on the basis of the new experimental results, correlations are developed relating the foam characteristics and flow conditions through the friction factor f and the Colburn j factor.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4425029','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4425029"><span>SLM Produced Porous Titanium Implant Improvements for Enhanced Vascularization and Osteoblast Seeding</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Matena, Julia; Petersen, Svea; Gieseke, Matthias; Kampmann, Andreas; Teske, Michael; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo</p> <p>2015-01-01</p> <p>To improve well-known titanium implants, pores can be used for increasing bone formation and close bone-implant interface. Selective Laser Melting (SLM) enables the production of any geometry and was used for implant production with 250-µm pore size. The used pore size supports vessel ingrowth, as bone formation is strongly dependent on fast vascularization. Additionally, proangiogenic factors promote implant vascularization. To functionalize the titanium with proangiogenic factors, polycaprolactone (PCL) coating can be used. The following proangiogenic factors were examined: vascular endothelial growth factor (VEGF), high mobility group box 1 (HMGB1) and chemokine (C-X-C motif) ligand 12 (CXCL12). As different surfaces lead to different cell reactions, titanium and PCL coating were compared. The growing into the porous titanium structure of primary osteoblasts was examined by cross sections. Primary osteoblasts seeded on the different surfaces were compared using Live Cell Imaging (LCI). Cross sections showed cells had proliferated, but not migrated after seven days. Although the cell count was lower on titanium PCL implants in LCI, the cell count and cell spreading area development showed promising results for titanium PCL implants. HMGB1 showed the highest migration capacity for stimulating the endothelial cell line. Future perspective would be the incorporation of HMGB1 into PCL polymer for the realization of a slow factor release. PMID:25849656</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26651496','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26651496"><span>Application of Consistency Criteria To Calculate BET Areas of Micro- And Mesoporous Metal-Organic Frameworks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gómez-Gualdrón, Diego A; Moghadam, Peyman Z; Hupp, Joseph T; Farha, Omar K; Snurr, Randall Q</p> <p>2016-01-13</p> <p>Metal-organic frameworks (MOFs) can exhibit exceptionally high surface areas, which are experimentally estimated by applying the BET theory to measured nitrogen isotherms. The Brunauer, Emmett, and Teller (BET)-estimated nitrogen monolayer loading is thus converted to a "BET area," but the meaning of MOF BET areas remains under debate. Recent emphasis has been placed on the usage of four so-called "BET consistency criteria." Using these criteria and simulated nitrogen isotherms for perfect crystals, we calculated BET areas for graphene and 25 MOFs having different pore-size distributions. BET areas were compared with their corresponding geometrically calculated, nitrogen-accessible surface areas (NASAs). Analysis of simulation snapshots elucidated the contributions of "pore-filling" and "monolayer-formation" to the nitrogen adsorption loadings in different MOF pores, revealing the origin of inaccuracies in BET-calculated monolayer loadings, which largely explain discrepancies between BET areas and NASAs. We also find that even if all consistency criteria are satisfied, the BET calculation can significantly overestimate the true monolayer loading, especially in MOFs combining mesopores (d ≥ 20 Å) and large micropores (d = 10-20 Å), due to the overlap of pore-filling and monolayer-formation regimes of these two kinds of pores. While it is not always possible to satisfy all consistency criteria, it is critical to minimize the deviation from these criteria during BET range selection to consistently compare BET areas of different MOFs and for comparing simulated and experimental BET areas of a given MOF. To accurately assess the quality of a MOF sample, it is best to compare experimental BET areas with simulated BET areas rather than with calculated NASAs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25034394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25034394"><span>Self-ordering of small-diameter metal nanoparticles by dewetting on hexagonal mesh templates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meshot, Eric R; Zhao, Zhouzhou; Lu, Wei; Hart, A John</p> <p>2014-09-07</p> <p>Arrays of small-diameter nanoparticles with high spatial order are useful for chemical and biological sensors, data storage, synthesis of nanowires and nanotubes, and many other applications. We show that self-ordered metal nanoparticle arrays can be formed by dewetting of thin films on hexagonal mesh substrates made of anodic aluminum oxide (AAO). Upon heating, the metal (Fe) film dewets onto the interstitial sites (i.e., the node points) between pores on the top surface of the AAO. We investigated the particle morphology and dynamics of dewetting using a combination of atomic force microscopy (AFM), grazing-incidence small-angle X-ray scattering (GISAXS), and numerical simulations. Templated metal particles are more monodisperse and have higher local order than those formed by the same dewetting process on flat, nonporous alumina. The degree of order depends on the initial film thickness, and for the optimal thickness tested (nominally 2 nm), we achieved uniform coverage and high order of the particles, comparable to that of the AAO template itself. Computational modeling of dewetting on templates with various pore order and size shows that the order of AAO pores is primarily influential in determining particle position and spacing, while the variance in pore size is less impactful. Potential uses of these ordered nanoparticle arrays on porous materials include plasmonic sensors and spatially controlled catalysts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26873096','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26873096"><span>Analysis of microstructures and macrotextures for different apple cultivars based on parenchyma morphology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hou, Jumin; Sun, Yonghai; Chen, Fangyuan; Yu, Libo; Mao, Qian; Wang, Lu; Guo, Xiaolei; Liu, Chao</p> <p>2016-04-01</p> <p>Fuji, Golden Delicious, and Jonagold parenchyma were imaged by confocal laser scanning microscopy to be extracted morphology characteristics, which were used to analyze the relationship with macrotexture of apples tested by penetration and compression. Before analyzing the relationship, the significantly different morphology parameters were reduced in dimensions by principal component analysis and were proved to be availably used for distinguishing the different apple cultivars. For compression results, cell did not absolutely determine the hardness in different apple cultivars, and the pore should also be taken into consideration. With the same size in cell feret diameter, the bigger the pore feret diameter was, the softer the apple became. If no difference existed in pore feret diameter size, the cultivar became harder with a narrower distribution in cell feret diameter. The texture parameters were compared with the roundness parameters in the same or inverse changing trends to explore the relationship. High correlations were found between the texture parameters (energy required in whole penetration (Wt), fracture force (Fp), crispness) and pore solidity (R(2)  > 0.924, P < 0.001). Compactness of parenchyma played an important role in fruit texture. This research could provide the comprehension about relationship between microstructure and macrotexture of apple cultivars and morphological values for modeling apple parenchyma, contributing to numerical simulation for constitutive relation of fruit. © 2016 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1127385-tunable-water-desalination-across-graphene-oxide-framework-membranes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1127385-tunable-water-desalination-across-graphene-oxide-framework-membranes"><span>Tunable water desalination across Graphene Oxide Framework membranes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Nicolai, Adrien; Sumpter, Bobby G; Meunier, V.</p> <p>2014-01-01</p> <p>The performance of graphene oxide framework (GOF) membranes for water desalination is assessed using classical molecular dynamics (MD) simulations. The coupling between water permeability and salt rejection GOF membranes is studied as a function of linker concentration n, thickness h and applied pressure DP. The simulations reveal that water permeability in GOF-(n,h) membranes can be tuned from 5 (n = 32 and h = 6.5 nm) to 400 L/cm2/day/MPa (n = 64 and h = 2.5 nm) and follows the law Cnh an . For a given pore size (n = 16 or 32), water permeability of GOF membranes increasesmore » when the pore spacing decreases, whereas for a given pore spacing (n = 32 or 64), water permeability increases by up to two orders of magnitude when the pore size increases. Furthermore, for linker concentrations n 32, the high water permeability corresponds to a 100% salt rejection, elevating this type of GOF membrane as an ideal candidate for water desalination. Compared to experimental performance of reverse osmosis membranes, our calculations suggest that under the same conditions of applied pressure and characteristics of membranes (DP 10 MPa and h 100 nm), one can expect a perfect salt rejection coupled to a water permeability two orders of magnitude higher than existing technologies, i.e., from a few cL/cm2/day/MPa to a few L/cm2/day/MPa.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4735802','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4735802"><span>Effective pore size and radius of capture for K+ ions in K-channels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Moldenhauer, Hans; Díaz-Franulic, Ignacio; González-Nilo, Fernando; Naranjo, David</p> <p>2016-01-01</p> <p>Reconciling protein functional data with crystal structure is arduous because rare conformations or crystallization artifacts occur. Here we present a tool to validate the dimensions of open pore structures of potassium-selective ion channels. We used freely available algorithms to calculate the molecular contour of the pore to determine the effective internal pore radius (rE) in several K-channel crystal structures. rE was operationally defined as the radius of the biggest sphere able to enter the pore from the cytosolic side. We obtained consistent rE estimates for MthK and Kv1.2/2.1 structures, with rE = 5.3–5.9 Å and rE = 4.5–5.2 Å, respectively. We compared these structural estimates with functional assessments of the internal mouth radii of capture (rC) for two electrophysiological counterparts, the large conductance calcium activated K-channel (rC = 2.2 Å) and the Shaker Kv-channel (rC = 0.8 Å), for MthK and Kv1.2/2.1 structures, respectively. Calculating the difference between rE and rC, produced consistent size radii of 3.1–3.7 Å and 3.6–4.4 Å for hydrated K+ ions. These hydrated K+ estimates harmonize with others obtained with diverse experimental and theoretical methods. Thus, these findings validate MthK and the Kv1.2/2.1 structures as templates for open BK and Kv-channels, respectively. PMID:26831782</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18464400','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18464400"><span>Anomalous absorption of isolated silver nanoparticulate films in visible region of electromagnetic field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kim, Sang Woo; Hui, Bang Jae; Bae, Dong-Sik</p> <p>2008-02-01</p> <p>Anomalous absorption of isolated silver nanoparticulate films with different morphological patterns prepared by the wet colloidal route and followed by thermal treatment were investigated. A polymer embedded silver nanoparticulate film thermally treated at 200 degrees C showed maximum absorbance at approximately 412 nm. The peak position of the surface plasmon band was slightly different but still consistent with theoretical prediction derived by the Mie theory. An isolated nanopariculate film thermally treated at 300 degrees C showed anomalous absorption. Its maximum absorption band was shifted to green regime of 506.9 nm and the bandwidth at half-maximum absorbance of the surface plasmon band was greatly broadened. The plasmon band and its bandwidth were much deviated compared to the theoretical prediction calculated for the silver nanoparticles in the surrounding medium of air and poly(vinyl pyrrolidone) or soda-lime-silica glass. Even though there was no significant growth of silver nanoparticles during thermal treatment at 300 degrees C, the anomalous absorption was observed. The anomalous absorption was not attributed to effects of particle shape and size but to effects of pores induced by development of a great number of pores in the nanoparticulate film. The anomalous absorption greatly decreased with increase in heating temperature from 400 degrees C to 500 degrees C. The extraordinary plasmon damping of the isolated film decreased and the plasmon absorption band was re-shifted to violet regime of 416 nm because of large decrease in size of particles with dramatic change of pore morphology from circular pores with rim to small continuous pores induced by spontaneous formation of new silver nanoparticles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1209545','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1209545"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Hongcai J</p> <p></p> <p>In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storagemore » goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the accomplishments of this DOE supported research will greatly benefit the future pursuit of hydrogen storage materials. The ultimate goal to increase the gravimetric and volumetric hydrogen storage capacity to meet DOE targets for Light-Duty Vehicles is achievable.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28887983','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28887983"><span>Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yabutsuka, Takeshi; Fukushima, Keito; Hiruta, Tomoko; Takai, Shigeomi; Yao, Takeshi</p> <p>2017-12-01</p> <p>When bioinert substrates with fine-sized pores are immersed in a simulated body fluid (SBF) and the pH value or the temperature is increased, fine particles of calcium phosphate, which the authors denoted as 'precursor of apatite' (PrA), are formed in the pores. By this method, hydroxyapatite formation ability can be provided to various kinds of bioinert materials. In this study, the authors studied fabrication methods of bioactive PEEK by using the above-mentioned process. First, the fine-sized pores were formed on the surface of the PEEK substrate by H 2 SO 4 treatment. Next, to provide hydrophilic property to the PEEK, the surfaces of the PEEK were treated with O 2 plasma. Finally, PrA were formed in the pores by the above-mentioned process, which is denoted as 'Alkaline SBF' treatment, and the bioactive PEEK was obtained. By immersing in SBF with the physiological condition, hydroxyapatite formation was induced on the whole surface of the substrate within 1day. The formation of PrA directly contributed to hydroxyapatite formation ability. By applying the O 2 plasma treatment, hydroxyapatite formation was uniformly performed on the whole surface of the substrate. The H 2 SO 4 treatment contributed to a considerable enhancement of adhesive strength of the formed hydroxyapatite layer formed in SBF because of the increase of surface areas of the substrate. As a comparative study, the sandblasting method was applied as the pores formation process instead of the H 2 SO 4 treatment. Although hydroxyapatite formation was provided also in this case, however, the adhesion of the formed hydroxyapatite layer to the substrate was not sufficient even if the O 2 plasma treatment was conducted. This result indicates that the fine-sized pores should be formed on the whole surface of the substrate uniformly to achieve high adhesive strength of the hydroxyapatite layer. Therefore, it is considered that the H 2 SO 4 treatment before the O 2 plasma and the 'Alkaline SBF' treatment is an important factor to achieve high adhesive strength of hydroxyapatite layer to the PEEK substrate. This material is expected to be a candidate for next-generation implant materials with high bioactivity. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.H31L..02A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.H31L..02A"><span>Bioaccessible Porosity: A new approach to assess residual contamination after bioremediation of hydrophobic organic compounds in sub-surface microporous environments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Akbari, A.; Ghoshal, S.</p> <p>2016-12-01</p> <p>We define a new parameter, "bioaccessible porosity", the fraction of aggregate volume accessible to soil bacteria, towards a priori assessment of hydrocarbon bioremediation end points. Microbial uptake of poorly soluble hydrocarbons occurs through direct uptake or micellar solubilzation/emulsification associated with biosurfactant production, and requires close proximity of bacteria and hydrocarbon phase. In subsurface microporous environments, bioremediation rates are attenuated when residual hydrophobic contamination is entrapped in sterically restrictive environments which is not accessible to soil bacteria. This study presents new approaches for characterization of the microstructure of porous media and as well, the ability of indigenous hydrocarbon degraders to access to a range of pore sizes. Bacterial access to poorly soluble hydrocarbons in soil micro pores were simulated with bioreactors with membranes with different pore sizes containing the hydrocarbon degrading bacteria, Dietzia maris. D. maris is Gram-positive, and nonmotile that we isolated as the major hydrocarbon degrader from a fine-grained, weathered, hydrocarbon-contaminated site soil. Under nutritional stress, planktonic D. maris cells were aggregated and accessed 5 µm but not 3 µm and smaller pores. However, when hexadecane was available at the pore mouth, D. maris colonized the pore mouth, and accessed pores as small as 0.4 µm. This suggests bacterial accessibility to different pore sizes is regulated by nutritional conditions. A combination of X-ray micro-CT scanning, gas adsorption and mercury intrusion porosimetry was used to characterize the range of pore sizes of soil aggregates. In case of the studied contaminated soil, the bioaccessible porosity were determined as 25% , 27% and 29% (assuming 4, 1, 0.4 µm respectively as accessibility criteria), and about 2.7% of aggregate volume was attributed to 0.006-0.4 µm pores. The 2% aggregate volume at an assumed saturation of 10% could accommodate 1000 mg/ kg soil of oil. The remediation endpoint after extended biotreatment was at similar order of magnitude of 600 mg/kg. The approach introduced here could be used for qualitative assessment of attainable bioremediation endpoint in soils with different microstructure and hydrocarbon degrading bacterial community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JMEP...23.3389Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JMEP...23.3389Z"><span>Effect of Fe- and Si-Enriched Secondary Precipitates and Surface Roughness on Pore Formation on Aluminum Plate Surfaces During Anodizing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Yuanzhi; Wang, Shizhi; Yang, Qingda; Zhou, Feng</p> <p>2014-09-01</p> <p>Two twin roll casts (TRCs) and one hot rolled (HR) AA 1235 aluminum alloy plates with different microstructures are prepared. The plates were electrolyzed in a 1.2 wt% HCl solution with a voltage of 21 V and a current of 1.9 mA. The shape, size, and number of pores formed on the surfaces of these plates were analyzed and correlated with the microstructures of the plates. It is found that pores are easier to form on the alloy plates containing subgrains with a lower dislocation density inside the subgrains, rather than along the grain boundaries. Furthermore, Fe- and Si-enriched particles in the AA1235 aluminum alloys lead to the formation of pores on the surface during electrolyzing; the average precipitate sizes of 4, 3.5, and 2 μm in Alloy 1#, Alloy 2# and Alloy 3# result in the average pore sizes of 3.78, 2.76, and 1.9 μm on the surfaces of the three alloys, respectively; The G.P zone in the alloy also facilitates the surface pore formation. High-surface roughness enhances the possibility of entrapping more lubricants into the plate surface, which eventually blocks the formation of the pores on the surface of the aluminum plates in the following electrolyzing process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/986748-atomic-layer-deposition-nanoporous-biomaterials','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/986748-atomic-layer-deposition-nanoporous-biomaterials"><span>Atomic layer deposition of nanoporous biomaterials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Narayan, R. J.; Adiga, S. P.; Pellin, M. J.</p> <p>2010-03-01</p> <p>Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.more » Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1265857-molecular-theory-optimal-blue-energy-extraction-electrical-double-layer-expansion','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1265857-molecular-theory-optimal-blue-energy-extraction-electrical-double-layer-expansion"><span>A molecular theory for optimal blue energy extraction by electrical double layer expansion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Kong, Xian; Gallegos, Alejandro; Lu, Diannan; ...</p> <p>2015-08-19</p> <p>We proposed the electrical double layer expansion (CDLE) as a promising alternative to reverse electrodialysis (RED) and pressure retarded osmosis (PRO) processes for extracting osmotic power generated by the salinity difference between freshwater and seawater. The performance of the CDLE process is sensitive to the configuration of porous electrodes and operation parameters for ion extraction and release cycles. In our work, we use a classical density functional theory (CDFT) to examine how the electrode pore size and charging/discharging potentials influence the thermodynamic efficiency of the CDLE cycle. The existence of an optimal charging potential that maximizes the energy output formore » a given pore configuration is predicted, which varies substantially with the pore size, especially when it is smaller than 2 nm. Finally, the thermodynamic efficiency is maximized when the electrode has a pore size about twice the ion diameter.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatCo...814921Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatCo...814921Z"><span>Bio-inspired Murray materials for mass transfer and activity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Xianfeng; Shen, Guofang; Wang, Chao; Li, Yu; Dunphy, Darren; Hasan, Tawfique; Brinker, C. Jeffrey; Su, Bao-Lian</p> <p>2017-04-01</p> <p>Both plants and animals possess analogous tissues containing hierarchical networks of pores, with pore size ratios that have evolved to maximize mass transport and rates of reactions. The underlying physical principles of this optimized hierarchical design are embodied in Murray's law. However, we are yet to realize the benefit of mimicking nature's Murray networks in synthetic materials due to the challenges in fabricating vascularized structures. Here we emulate optimum natural systems following Murray's law using a bottom-up approach. Such bio-inspired materials, whose pore sizes decrease across multiple scales and finally terminate in size-invariant units like plant stems, leaf veins and vascular and respiratory systems provide hierarchical branching and precise diameter ratios for connecting multi-scale pores from macro to micro levels. Our Murray material mimics enable highly enhanced mass exchange and transfer in liquid-solid, gas-solid and electrochemical reactions and exhibit enhanced performance in photocatalysis, gas sensing and as Li-ion battery electrodes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22402269','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22402269"><span>Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Ming; Nghiem, Long D; Price, William E; Elimelech, Menachem</p> <p>2012-05-15</p> <p>We compared the rejection behaviours of three hydrophobic trace organic contaminants, bisphenol A, triclosan and diclofenac, in forward osmosis (FO) and reverse osmosis (RO). Using erythritol, xylose and glucose as inert reference organic solutes and the membrane pore transport model, the mean effective pore size of a commercial cellulose-based FO membrane was estimated to be 0.74 nm. When NaCl was used as the draw solute, at the same water permeate flux of 5.4 L/m(2) h (or 1.5 μm/s), the adsorption of all three compounds to the membrane in the FO mode was consistently lower than that in the RO mode. Rejection of bisphenol A and diclofenac were higher in the FO mode compared to that in the RO mode. Because the molecular width of triclosan was larger than the estimated mean effective membrane pore size, triclosan was completely rejected by the membrane and negligent difference between the FO and RO modes could be observed. The difference in the separation behaviour of these hydrophobic trace organics in the FO (using NaCl the draw solute) and RO modes could be explained by the phenomenon of retarded forward diffusion of solutes. The reverse salt flux of NaCl hinders the pore diffusion and subsequent adsorption of the trace organic compounds within the membrane. The retarded forward diffusion effect was not observed when MgSO(4) and glucose were used as the draw solutes. The reverse flux of both MgSO(4) and glucose was negligible and thus both adsorption and rejection of BPA in the FO mode were identical to those in the RO mode. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1373755','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1373755"><span>Grain growth and pore coarsening in dense nano-crystalline UO 2+x fuel pellets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Yao, Tiankai; Mo, Kun; Yun, Di</p> <p></p> <p>Dense nano-sized UO 2+x pellets are synthesized by spark plasma sintering with controlled stoichiometries (UO 2.03 and UO 2.11) and grain sizes (~100 nm), and subsequently isothermally annealed to study their effects on grain growth kinetics and microstructure stability. The grain growth kinetics is determined and analyzed focusing on the interaction between grain boundary migration, pore growth and coalescence. Grains grow much bigger in nano-sized UO 2.11 than UO 2.03 upon thermal annealing, consistent with the fact that hyper-stoichiometric UO 2+x is beneficial for sintering due to enhanced U ion diffusion from excessive O ion interstitials. The activation energies ofmore » the grain growth for UO 2.03 and UO 2.11 are determined as ~1.0 and 1.3~2.0 eV, respectively. As compared with the micron-sized UO 2 in which volumetric diffusion dominates the grain coarsening with an activation energy of ~3.0 eV, the enhanced grain growth kinetics in nano-sized UO 2+x suggests that grain boundary diffusion controls grain growth. Lastly, the higher activation energy of more hyper-stoichiometric nano-sized UO 2.11 may be attributed to the excessive O interstitials pinning grain boundary migration.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1373755-grain-growth-pore-coarsening-dense-nano-crystalline-uo2+x-fuel-pellets','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1373755-grain-growth-pore-coarsening-dense-nano-crystalline-uo2+x-fuel-pellets"><span>Grain growth and pore coarsening in dense nano-crystalline UO 2+x fuel pellets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Yao, Tiankai; Mo, Kun; Yun, Di; ...</p> <p>2017-03-25</p> <p>Dense nano-sized UO 2+x pellets are synthesized by spark plasma sintering with controlled stoichiometries (UO 2.03 and UO 2.11) and grain sizes (~100 nm), and subsequently isothermally annealed to study their effects on grain growth kinetics and microstructure stability. The grain growth kinetics is determined and analyzed focusing on the interaction between grain boundary migration, pore growth and coalescence. Grains grow much bigger in nano-sized UO 2.11 than UO 2.03 upon thermal annealing, consistent with the fact that hyper-stoichiometric UO 2+x is beneficial for sintering due to enhanced U ion diffusion from excessive O ion interstitials. The activation energies ofmore » the grain growth for UO 2.03 and UO 2.11 are determined as ~1.0 and 1.3~2.0 eV, respectively. As compared with the micron-sized UO 2 in which volumetric diffusion dominates the grain coarsening with an activation energy of ~3.0 eV, the enhanced grain growth kinetics in nano-sized UO 2+x suggests that grain boundary diffusion controls grain growth. Lastly, the higher activation energy of more hyper-stoichiometric nano-sized UO 2.11 may be attributed to the excessive O interstitials pinning grain boundary migration.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018FrES...12..148H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018FrES...12..148H"><span>The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hou, Haihai; Shao, Longyi; Li, Yonghong; Li, Zhen; Zhang, Wenlong; Wen, Huaijun</p> <p>2018-03-01</p> <p>The continental shales from the Middle Jurassic Shimengou Formation of the northern Qaidam Basin, northwestern China, have been investigated in recent years because of their shale gas potential. In this study, a total of twenty-two shale samples were collected from the YQ-1 borehole in the Yuqia Coalfield, northern Qaidam Basin. The total organic carbon (TOC) contents, pore structure parameters, and fractal characteristics of the samples were investigated using TOC analysis, low-temperature nitrogen adsorption experiments, and fractal analysis. The results show that the average pore size of the Shimengou shales varied from 8.149 nm to 20.635 nm with a mean value of 10.74 nm, which is considered mesopore-sized. The pores of the shales are mainly inkbottle- and slit-shaped. The sedimentary environment plays an essential role in controlling the TOC contents of the low maturity shales, with the TOC values of shales from deep to semi-deep lake facies (mean: 5.23%) being notably higher than those of the shore-shallow lake facies (mean: 0.65%). The fractal dimensions range from 2.4639 to 2.6857 with a mean of 2.6122, higher than those of marine shales, which indicates that the pore surface was rougher and the pore structure more complex in these continental shales. The fractal dimensions increase with increasing total pore volume and total specific surface area, and with decreasing average pore size. With increasing TOC contents in shales, the fractal dimensions increase first and then decrease, with the highest value occurring at 2% of TOC content, which is in accordance with the trends between the TOC and both total specific surface area and total pore volume. The pore structure complexity and pore surface roughness of these low-maturity shales would be controlled by the combined effects of both sedimentary environments and the TOC contents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1176189','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1176189"><span>Growth of nanostructures with controlled diameter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos</p> <p>2009-02-03</p> <p>Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictablymore » prepared by selecting a suitable pore size of the framework structure.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018996','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018996"><span>Limestone characterization to model damage from acidic precipitation: Effect of pore structure on mass transfer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Leith, S.D.; Reddy, M.M.; Irez, W.F.; Heymans, M.J.</p> <p>1996-01-01</p> <p>The pore structure of Salem limestone is investigated, and conclusions regarding the effect of the pore geometry on modeling moisture and contaminant transport are discussed based on thin section petrography, scanning electron microscopy, mercury intrusion porosimetry, and nitrogen adsorption analyses. These investigations are compared to and shown to compliment permeability and capillary pressure measurements for this common building stone. Salem limestone exhibits a bimodal pore size distribution in which the larger pores provide routes for convective mass transfer of contaminants into the material and the smaller pores lead to high surface area adsorption and reaction sites. Relative permeability and capillary pressure measurements of the air/water system indicate that Salem limestone exhibits high capillarity end low effective permeability to water. Based on stone characterization, aqueous diffusion and convection are believed to be the primary transport mechanisms for pollutants in this stone. The extent of contaminant accumulation in the stone depends on the mechanism of partitioning between the aqueous and solid phases. The described characterization techniques and modeling approach can be applied to many systems of interest such as acidic damage to limestone, mass transfer of contaminants in concrete and other porous building materials, and modeling pollutant transport in subsurface moisture zones.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ijege.uniroma1.it/rivista/5th-international-conference-on-debris-flow-hazards-mitigation-mechanics-prediction-and-assessment','USGSPUBS'); return false;" href="http://www.ijege.uniroma1.it/rivista/5th-international-conference-on-debris-flow-hazards-mitigation-mechanics-prediction-and-assessment"><span>A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>George, David L.; Iverson, Richard M.</p> <p>2011-01-01</p> <p>Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28009860','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28009860"><span>Pore size and concentration effect of mesoporous silica nanoparticles on the coefficient of thermal expansion and optical transparency of poly(ether sulfone) films.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vo, Nhat Tri; Patra, Astam K; Kim, Dukjoon</p> <p>2017-01-18</p> <p>Mesoporous silica nanoparticles (MSNs) with uniform size (<50 nm) yet with different pore diameters were synthesized, and used as fillers in poly(ether sulfone) (PES) films in order to decrease their coefficient of thermal expansion (CTE) without sacrificing optical transparency. Here, both CTE and optical transparency of the MSN/PES nanocomposite films gradually decreased with increasing MSN concentration. The PES films containing MSNs with larger pores showed the best performance in CTE and optical transparency. While the CTE decreased by 32.3% with increasing MSN content up to 0.5 wt%, the optical transparency decreased by only less than 6.9% because of the small and uniform particle size of less than 50 nm, which minimizes light scattering. This pore size effect is more clearly observed via an annealing process, which enables the polymer chains to slowly move and fill in the free volume in the pores of the MSN, and thus restricts the thermal motion. The effect of the silica nanoparticles was investigated not only on the thermal stability but also on the mechanical stability. We expect the MSNs synthesized in this study to be used as a promising filler to enhance the thermal and mechanical stability of the PES substrate without sacrificing its optical transparency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16470802','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16470802"><span>Organic-inorganic hybrid mesoporous silicas: functionalization, pore size, and morphology control.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Park, Sung Soo; Ha, Chang-Sik</p> <p>2006-01-01</p> <p>Topological design of mesoporous silica materials, pore architecture, pore size, and morphology are currently major issues in areas such as catalytic conversion of bulky molecules, adsorption, host-guest chemistry, etc. In this sense, we discuss the pore size-controlled mesostructure, framework functionalization, and morphology control of organic-inorganic hybrid mesoporous silicas by which we can improve the applicability of mesoporous materials. First, we explain that the sizes of hexagonal- and cubic-type pores in organic-inorganic hybrid mesoporous silicas are well controlled from 24.3 to 98.0 A by the direct micelle-control method using an organosilica precursor and surfactants with different alkyl chain lengths or triblock copolymers as templates and swelling agents incorporated in the formed micelles. Second, we describe that organic-inorganic hybrid mesoporous materials with various functional groups form various external morphologies such as rod, cauliflower, film, rope, spheroid, monolith, and fiber shapes. Third, we discuss that transition metals (Ti and Ru) and rare-earth ions (Eu(3+) and Tb(3+)) are used to modify organic-inorganic hybrid mesoporous silica materials. Such hybrid mesoporous silica materials are expected to be applied as excellent catalysts for organic reactions, photocatalysis, optical devices, etc. c) 2006 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27805598','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27805598"><span>A Facile and Eco-friendly Route to Fabricate Poly(Lactic Acid) Scaffolds with Graded Pore Size.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scaffaro, Roberto; Lopresti, Francesco; Botta, Luigi; Maio, Andrea; Sutera, Fiorenza; Mistretta, Maria Chiara; La Mantia, Francesco Paolo</p> <p>2016-10-17</p> <p>Over the recent years, functionally graded scaffolds (FGS) gaineda crucial role for manufacturing of devices for tissue engineering. The importance of this new field of biomaterials research is due to the necessity to develop implants capable of mimicking the complex functionality of the various tissues, including a continuous change from one structure or composition to another. In this latter context, one topic of main interest concerns the design of appropriate scaffolds for bone-cartilage interface tissue. In this study, three-layered scaffolds with graded pore size were achieved by melt mixing poly(lactic acid) (PLA), sodium chloride (NaCl) and polyethylene glycol (PEG). Pore size distributions were controlled by NaCl granulometry and PEG solvation. Scaffolds were characterized from a morphological and mechanical point of view. A correlation between the preparation method, the pore architecture and compressive mechanical behavior was found. The interface adhesion strength was quantitatively evaluated by using a custom-designed interfacial strength test. Furthermore, in order to imitate the human physiology, mechanical tests were also performed in phosphate buffered saline (PBS) solution at 37 °C. The method herein presented provides a high control of porosity, pore size distribution and mechanical performance, thus offering the possibility to fabricate three-layered scaffolds with tailored properties by following a simple and eco-friendly route.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29072837','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29072837"><span>Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Song, Zhuonan; Qiu, Fen; Zaia, Edmond W; Wang, Zhongying; Kunz, Martin; Guo, Jinghua; Brady, Michael; Mi, Baoxia; Urban, Jeffrey J</p> <p>2017-11-08</p> <p>A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH 2 , pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO 2 capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH 2 MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N 2 molecules (kinetic diameter, 0.364 nm) from smaller CO 2 molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO 2 separation performance by simultaneously increasing CO 2 permeability (CO 2 permeability of 45.2 barrer, 710% higher than PSF membrane) and CO 2 /N 2 selectivity (CO 2 /N 2 selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using dual-channel molecular sieving core/shell porous crystals in hybrid membranes thus provides a promising means for CO 2 capture from flue gas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33A1639L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33A1639L"><span>Spectral Induced Polarization of Low-pH Concrete. Influence of the Electrical Double Layer and Pore Size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leroy, P. G.; Gaboreau, S.; Zimmermann, E.; Hoerdt, A.; Claret, F.; Huisman, J. A.; Tournassat, C.</p> <p>2017-12-01</p> <p>Low-pH concretes are foreseen to be used in nuclear waste disposal. Understanding their reactivity upon the considered host-rock is a key point. Evolution of mineralogy, porosity, pore size distribution and connectivity can be monitored in situ using geophysical methods such as induced polarization (IP). This electrical method consists of injecting an alternating current and measuring the resulting voltage in the porous medium. Spectral IP (SIP) measurements in the 10 mHz to 10 kHz frequency range were carried out on low-pH concrete and cement paste first in equilibrium and then in contact with a CO2 enriched and diluted water. We observed a very high resistivity of the materials (> 10 kOhm m) and a strong phase shift between injected current and measured voltage (superior to 40 mrad and above 100 mrad for frequencies > 100 Hz). These observations were modelled by considering membrane polarization with ion exclusion in nanopores whose surface electrical properties were computed using a basic Stern model of the cement/water interface. Pore size distribution was deduced from SIP and was compared to the measured ones. In addition, we observed a decrease of the material resistivity due to the dissolution of cement in contact with external water. Our results show that SIP may be a valuable method to monitor the mineralogy and the petrophysical and transport properties of cements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5368973','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5368973"><span>Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: fabrication, biocompatibility analysis and photoelastic study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yang, Fei; Chen, Chen; Zhou, QianRong; Gong, YiMing; Li, RuiXue; Li, ChiChi; Klämpfl, Florian; Freund, Sebastian; Wu, XingWen; Sun, Yang; Li, Xiang; Schmidt, Michael; Ma, Duan; Yu, YouCheng</p> <p>2017-01-01</p> <p>Fabricating Ti alloy based dental implants with defined porous scaffold structure is a promising strategy for improving the osteoinduction of implants. In this study, we use Laser Beam Melting (LBM) 3D printing technique to fabricate porous Ti6Al4V dental implant prototypes with three controlled pore sizes (200, 350 and 500 μm). The mechanical stress distribution in the surrounding bone tissue is characterized by photoelastography and associated finite element simulation. For in-vitro studies, experiments on implants’ biocompatibility and osteogenic capability are conducted to evaluate the cellular response correlated to the porous structure. As the preliminary results, porous structured implants show a lower stress-shielding to the surrounding bone at the implant neck and a more densed distribution at the bottom site compared to the reference implant. From the cell proliferation tests and the immunofluorescence images, 350 and 500 μm pore sized implants demonstrate a better biocompatibility in terms of cell growth, migration and adhesion. Osteogenic genes expression of the 350 μm group is significantly increased alone with the ALP activity test. All these suggest that a pore size of 350 μm provides an optimal provides an optimal potential for improving the mechanical shielding to the surrounding bones and osteoinduction of the implant itself. PMID:28350007</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...745360Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...745360Y"><span>Laser beam melting 3D printing of Ti6Al4V based porous structured dental implants: fabrication, biocompatibility analysis and photoelastic study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Fei; Chen, Chen; Zhou, Qianrong; Gong, Yiming; Li, Ruixue; Li, Chichi; Klämpfl, Florian; Freund, Sebastian; Wu, Xingwen; Sun, Yang; Li, Xiang; Schmidt, Michael; Ma, Duan; Yu, Youcheng</p> <p>2017-03-01</p> <p>Fabricating Ti alloy based dental implants with defined porous scaffold structure is a promising strategy for improving the osteoinduction of implants. In this study, we use Laser Beam Melting (LBM) 3D printing technique to fabricate porous Ti6Al4V dental implant prototypes with three controlled pore sizes (200, 350 and 500 μm). The mechanical stress distribution in the surrounding bone tissue is characterized by photoelastography and associated finite element simulation. For in-vitro studies, experiments on implants’ biocompatibility and osteogenic capability are conducted to evaluate the cellular response correlated to the porous structure. As the preliminary results, porous structured implants show a lower stress-shielding to the surrounding bone at the implant neck and a more densed distribution at the bottom site compared to the reference implant. From the cell proliferation tests and the immunofluorescence images, 350 and 500 μm pore sized implants demonstrate a better biocompatibility in terms of cell growth, migration and adhesion. Osteogenic genes expression of the 350 μm group is significantly increased alone with the ALP activity test. All these suggest that a pore size of 350 μm provides an optimal provides an optimal potential for improving the mechanical shielding to the surrounding bones and osteoinduction of the implant itself.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018HESS...22.1713C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018HESS...22.1713C"><span>Hydraulic characterisation of iron-oxide-coated sand and gravel based on nuclear magnetic resonance relaxation mode analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Costabel, Stephan; Weidner, Christoph; Müller-Petke, Mike; Houben, Georg</p> <p>2018-03-01</p> <p>The capability of nuclear magnetic resonance (NMR) relaxometry to characterise hydraulic properties of iron-oxide-coated sand and gravel was evaluated in a laboratory study. Past studies have shown that the presence of paramagnetic iron oxides and large pores in coarse sand and gravel disturbs the otherwise linear relationship between relaxation time and pore size. Consequently, the commonly applied empirical approaches fail when deriving hydraulic quantities from NMR parameters. Recent research demonstrates that higher relaxation modes must be taken into account to relate the size of a large pore to its NMR relaxation behaviour in the presence of significant paramagnetic impurities at its pore wall. We performed NMR relaxation experiments with water-saturated natural and reworked sands and gravels, coated with natural and synthetic ferric oxides (goethite, ferrihydrite), and show that the impact of the higher relaxation modes increases significantly with increasing iron content. Since the investigated materials exhibit narrow pore size distributions, and can thus be described by a virtual bundle of capillaries with identical apparent pore radius, recently presented inversion approaches allow for estimation of a unique solution yielding the apparent capillary radius from the NMR data. We found the NMR-based apparent radii to correspond well to the effective hydraulic radii estimated from the grain size distributions of the samples for the entire range of observed iron contents. Consequently, they can be used to estimate the hydraulic conductivity using the well-known Kozeny-Carman equation without any calibration that is otherwise necessary when predicting hydraulic conductivities from NMR data. Our future research will focus on the development of relaxation time models that consider pore size distributions. Furthermore, we plan to establish a measurement system based on borehole NMR for localising iron clogging and controlling its remediation in the gravel pack of groundwater wells.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Fract..2640013W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Fract..2640013W"><span>Morphology and Fractal Characterization of Multiscale Pore Structures for Organic-Rich Lacustrine Shale Reservoirs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yang; Wu, Caifang; Zhu, Yanming; Chen, Shangbin; Liu, Shimin; Zhang, Rui</p> <p></p> <p>Lacustrine shale gas has received considerable attention and has been playing an important role in unconventional natural gas production in China. In this study, multiple techniques, including total organic carbon (TOC) analysis, X-ray diffraction (XRD) analysis, field emission scanning electron microscopy (FE-SEM), helium pycnometry and low-pressure N2 adsorption have been applied to characterize the pore structure of lacustrine shale of Upper Triassic Yanchang Formation from the Ordos Basin. The results show that organic matter (OM) pores are the most important type dominating the pore system, while interparticle (interP) pores, intraparticle (intraP) and microfractures are also usually observed between or within different minerals. The shapes of OM pores are less complex compared with the other two pore types based on the Image-Pro Plus software analysis. In addition, the specific surface area ranges from 2.76m2/g to 10.26m2/g and the pore volume varies between 0.52m3/100g and 1.31m3/100g. Two fractal dimensions D1 and D2 were calculated using Frenkel-Halsey-Hill (FHH) method, with D1 varying between 2.510 and 2.632, and D2 varying between 2.617 and 2.814. Further investigation indicates that the fractal dimensions exhibit positive correlations with TOC contents, whereas there is no definite relationship observed between fractal dimensions and clay minerals. Meanwhile, the fractal dimensions increase with the increase in specific surface area, and is negatively correlated with the pore size.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29560027','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29560027"><span>Reinforcement of the bio-gas conversion from pyrolysis of wheat straw by hot caustic pre-extraction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Lilong; Chen, Keli; He, Liang; Peng, Lincai</p> <p>2018-01-01</p> <p>Pyrolysis has attracted growing interest as a versatile means to convert biomass into valuable products. Wheat straw has been considered to be a promising biomass resource due to its low price and easy availability. However, most of the products obtained from wheat straw pyrolysis are usually of low quality. Hot soda extraction has the advantage of selective dissolution of lignin whilst retaining the carbohydrates. This can selectively convert biomass into high-quality desired products and suppress the formation of undesirable products. The aim of this study was to investigate the pyrolysis properties of wheat straw under different hot caustic pretreatment conditions. Compared with the untreated straw, a greater amount of gas was released and fewer residues were retained in the extracted wheat straw, which was caused by an increase in porosity. When the NaOH loading was 14%, the average pore size of the extracted straw increased by 12% and the cumulative pore volume increased by 157% compared with the untreated straw. The extracted straw obtained from the 14% NaOH extraction was clearly selective for pyrolysis products. On one hand, many lignin pyrolysis products disappeared, and only four main lignin-unit-pyrolysis products were retained. On the other hand, polysaccharide pyrolysis products were enriched. Both propanone and furfural have outstanding peak intensities that could account for approximately 30% of the total pyrolysis products. However, with the excessive addition of NaOH (i.e. > 22% w/w) during pretreatment, the conversion of bio-gas products decreased. Thermogravimetric and low-temperature nitrogen-adsorption analysis showed that the pore structure had been seriously destroyed, leading to the closing of the release paths of the bio-gas and thus increasing the re-polymerisation of small bio-gas molecules. After suitable extraction (14% NaOH loading extraction), a considerable amount (25%) of the soluble components dissolved out of the straw. This resulted in an increase in both pore size and volume. This condition appeared to be optimally selective for the release of value-added pyrolysis products such as furfural, ketones and lignin monomer units. However, excessive addition of alkali (22%) for extraction could change the original interior structure, resulting in a decrease in both pore size and volume. This interior structure modification limited the release of pyrolysis products, and greater carbonisation occurred.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..118a2067N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..118a2067N"><span>Laboratory characterization of shale pores</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nur Listiyowati, Lina</p> <p>2018-02-01</p> <p>To estimate the potential of shale gas reservoir, one needs to understand the characteristics of pore structures. Characterization of shale gas reservoir microstructure is still a challenge due to ultra-fine grained micro-fabric and micro level heterogeneity of these sedimentary rocks. The sample used in the analysis is a small portion of any reservoir. Thus, each measurement technique has a different result. It raises the question which methods are suitable for characterizing pore shale. The goal of this paper is to summarize some of the microstructure analysis tools of shale rock to get near-real results. The two analyzing pore structure methods are indirect measurement (MIP, He, NMR, LTNA) and direct observation (SEM, TEM, Xray CT). Shale rocks have a high heterogeneity; thus, it needs multiscale quantification techniques to understand their pore structures. To describe the complex pore system of shale, several measurement techniques are needed to characterize the surface area and pore size distribution (LTNA, MIP), shapes, size and distribution of pore (FIB-SEM, TEM, Xray CT), and total porosity (He pycnometer, NMR). The choice of techniques and methods should take into account the purpose of the analysis and also the time and budget.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2900191','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2900191"><span>Characterizing the surface charge of synthetic nanomembranes by the streaming potential method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Datta, Subhra; Conlisk, A. T.; Kanani, Dharmesh M.; Zydney, Andrew L.; Fissell, William H.; Roy, Shuvo</p> <p>2010-01-01</p> <p>The inference of the surface charge of polyethylene glycol (PEG)-coated and uncoated silicon membranes with nanoscale pore sizes from streaming potential measurements in the presence of finite electric double layer (EDL) effects is studied theoretically and experimentally. The developed theoretical model for inferring the pore wall surface charge density from streaming potential measurements is applicable to arbitrary pore cross-sectional shapes and accounts for the effect of finite salt concentration on the ionic mobilities and the thickness of the deposited layer of PEG. Theoretical interpretation of the streaming potential data collected from silicon membranes having nanoscale pore sizes, with/without pore wall surface modification with PEG, indicates that finite electric double layer (EDL) effects in the pore-confined electrolyte significantly affect the interpretation of the membrane charge and that surface modification with PEG leads to a reduction in the pore wall surface charge density. The theoretical model is also used to study the relative significance of the following uniquely nanoscale factors affecting the interpretation of streaming potential in moderate to strongly charged pores: altered net charge convection by applied pressure differentials, surface-charge effects on ionic conduction, and electroosmotic convection of charges. PMID:20462592</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1333930-origin-heterogeneity-pore-sizes-mount-simon-sandstone-eau-claire-formation-implications-multiphase-fluid-flow','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1333930-origin-heterogeneity-pore-sizes-mount-simon-sandstone-eau-claire-formation-implications-multiphase-fluid-flow"><span>Origin and heterogeneity of pore sizes in the Mount Simon Sandstone and Eau Claire Formation: Implications for multiphase fluid flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mozley, Peter S.; Heath, Jason E.; Dewers, Thomas A.; ...</p> <p>2016-01-01</p> <p>The Mount Simon Sandstone and Eau Claire Formation represent a principal reservoir - caprock system for wastewater disposal, geologic CO 2 storage, and compressed air energy storage (CAES) in the Midwestern United States. Of primary concern to site performance is heterogeneity in flow properties that could lead to non-ideal injectivity and distribution of injected fluids (e.g., poor sweep efficiency). Using core samples from the Dallas Center Structure, Iowa, we investigate pore structure that governs flow properties of major lithofacies of these formations. Methods include gas porosimetry and permeametry, mercury intrusion porosimetry, thin section petrography, and X-ray diffraction. The lithofacies exhibitmore » highly variable intra- and inter-informational distributions of pore throat and body sizes. Based on pore-throat size, samples fall into four distinct groups. Micropore-throat dominated samples are from the Eau Claire Formation, whereas the macropore-, mesopore-, and uniform-dominated samples are from the Mount Simon Sandstone. Complex paragenesis governs the high degree of pore and pore-throat size heterogeneity, due to an interplay of precipitation, non-uniform compaction, and later dissolution of cements. Furthermore, the cement dissolution event probably accounts for much of the current porosity in the unit. The unusually heterogeneous nature of the pore networks in the Mount Simon Sandstone indicates that there is a greater-than-normal opportunity for reservoir capillary trapping of non-wetting fluids — as quantified by CO 2 and air column heights — which should be taken into account when assessing the potential of the reservoir-caprock system for CO 2 storage and CAES.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..265a2031D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..265a2031D"><span>Study on extrusion process of SiC ceramic matrix</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dai, Xiao-Yuan; Shen, Fan; Ji, Jia-You; Wang, Shu-Ling; Xu, Man</p> <p>2017-11-01</p> <p>In this thesis, the extrusion process of SiC ceramic matrix has been systematically studied.The effect of different cellulose content on the flexural strength and pore size distribution of SiC matrix was discussed.Reselts show that with the increase of cellulose content, the flexural strength decreased.The pore size distribution in the sample was 1um-4um, and the 1um-2um concentration was more concentrated. It is found that the cellulose content has little effect on the pore size distribution.When the cellulose content is 7%, the flexural strength of the sample is 40.9Mpa. At this time, the mechanical properties of the sample are the strongest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..358a2054I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..358a2054I"><span>Correlation Study of PVDF Membrane Morphology with Protein Adsorption: Quantitative Analysis by FTIR/ATR Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ideris, N.; Ahmad, A. L.; Ooi, B. S.; Low, S. C.</p> <p>2018-05-01</p> <p>Microporous PVDF membranes were used as protein capture matrices in immunoassays. Because the most common labels in immunoassays were detected based on the colour change, an understanding of how protein concentration varies on different PVDF surfaces was needed. Herein, the correlation between the membrane pore size and protein adsorption was systematically investigated. Five different PVDF membrane morphologies were prepared and FTIR/ATR was employed to accurately quantify the surface protein concentration on membranes with small pore sizes. SigmaPlot® was used to find a suitable curve fit for protein adsorption and membrane pore size, with a high correlation coefficient, R2, of 0.9971.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H11G1286W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H11G1286W"><span>Pore-scale Modeling of CO2 Local Trapping in Heterogeneous Porous Media with Inter-granular Cements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, D.; Li, Y.</p> <p>2017-12-01</p> <p>Based on pore-scale modeling of CO2/brine multiphase flow in heterogeneous porous media with inter-granular cements, we numerically analyze the effects of cement-modified pore structure on CO2 local trapping. Results indicate: 1) small pore throat is the main reason for causing CO2 local trapping in front of low-porosity layers (namely dense layers) formed by inter-granular cements; 2) in the case of the same pore throat size, the smaller particle size can increase the number of flow paths for CO2 plume and equivalently enhances local permeability, which may counteract the impediment of high capillary pressure on CO2 migration to some extent and consequently disables CO2 local capillary trapping; 3) the isolated pores by inter-granular cements can lead to dramatic reduction of CO2 saturation inside the dense layers, whereas the change of connectivity of some pores due to the cements can increase CO2 accumulation in front of the dense layers by lowering the displacement area of CO2 plume.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22395941-micro-nano-ray-computed-tomography-step-forward-characterization-pore-network-leached-cement-paste','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22395941-micro-nano-ray-computed-tomography-step-forward-characterization-pore-network-leached-cement-paste"><span>Micro- and nano-X-ray computed-tomography: A step forward in the characterization of the pore network of a leached cement paste</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bossa, Nathan, E-mail: bossanathan@gmail.com; INERIS, Parc Technologique Alata, BP2, 60550 Verneuil-en-Halatte; iCEINT, CNRS, Duke Univ. International Consortium for the Environmental Implications of Nanotechnology, Aix-en-Provence</p> <p>2015-01-15</p> <p>Pore structure of leached cement pastes (w/c = 0.5) was studied for the first time from micro-scale down to the nano-scale by combining micro- and nano-X-ray computed tomography (micro- and nano-CT). This allowed assessing the 3D heterogeneity of the pore network along the cement profile (from the core to the altered layer) of almost the entire range of cement pore size, i.e. from capillary to gel pores. We successfully quantified an increase of porosity in the altered layer at both resolutions. Porosity is increasing from 1.8 to 6.1% and from 18 to 58% at the micro-(voxel = 1.81 μm) andmore » nano-scale (voxel = 63.5 nm) respectively. The combination of both CT allowed to circumvent weaknesses inherent of both investigation scales. In addition the connectivity and the channel size of the pore network were also evaluated to obtain a complete 3D pore network characterization at both scales.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2654610','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2654610"><span>Osteogenic differentiation of dura mater stem cells cultured in vitro on three-dimensional porous scaffolds of poly(ε-caprolactone) fabricated via co-extrusion and gas foaming</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Aronin, C.E. Petrie; Cooper, J.A.; Sefcik, L.S.; Tholpady, S.S.; Ogle, R.C.; Botchwey, E.A.</p> <p>2008-01-01</p> <p>A novel scaffold fabrication method utilizing both polymer blend extrusion and gas foaming techniques to control pore size distribution is presented. Seventy five per cent of all pores produced using polymer blend extrusion alone were less than 50 μm. Introducing a gas technique provided better control of pore size distribution, expanding the range from 0-50 to 0-350 μm. Varying sintering time, annealing temperature and foaming pressure also helped reduced the percentage of pore sizes below 50 μm. Scaffolds chosen for in vitro cellular studies had a pore size distribution of 0-300 μm, average pore size 66 ± 17 μm, 0.54 ± 0.02% porosity and 98% interconnectivity, measured by micro computed tomography (microCT) analysis. The ability of the scaffolds to support osteogenic differentiation and cranial defect repair was evaluated by static and dynamic (0.035 ± 0.006 m s-1 terminal velocity) cultivation with dura mater stem cells (DSCs). In vitro studies showed minimal increases in proliferation over 28 days in culture in osteogenic media. Alkaline phosphatase expression remained constant throughout the study. Moderate increases in matrix deposition, as assessed by histochemical staining and microCT analysis, occurred at later time points, days 21 and 28. Although constructs cultured dynamically showed greater mineralization than static conditions, these trends were not significant. It remains unclear whether bioreactor culture of DSCs is advantageous for bone tissue engineering applications. However, these studies show that polycaprolactone (PCL) scaffolds alone, without the addition of other co-polymers or ceramics, support long-term attachment and mineralization of DSCs throughout the entire porous scaffold. PMID:18434267</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993JChPh..98.2411K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993JChPh..98.2411K"><span>Confinement effects on dipolar relaxation by translational dynamics of liquids in porous silica glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korb, J.-P.; Xu, Shu; Jonas, J.</p> <p>1993-02-01</p> <p>A theory of dipolar relaxation by translational diffusion of a nonwetting liquid confined in model porous media is presented. We obtain expressions of the rates of spin-lattice relaxation 1/T1, spin-spin relaxation 1/T2, and spin-lattice relaxation in the rotating frame 1/T1ρ, which depend on the average pore size d. The frequency variations of these rates are intermediate between the two-dimensional and three-dimensional results. At small frequency they vary logarithmically for small d and tend progressively to a constant with increasing d. For small pore sizes we obtain quadratic confinement dependences of these rates (∝1/d2), at variance with the linear (∝1/d) relation coming from the biphasic fast exchange model usually applied for a wetting liquid in porous media. We apply such a theory to the 1H NMR relaxation of methylcyclohexane liquid in sol-gel porous silica glasses with a narrow pore-size distribution. The experiments confirm the theoretical predictions for very weak interacting solvent in porous silica glasses of pore sizes varying in the range of 18.4-87.2 Å and in the bulk. At the limit of small pores, the logarithmic frequency dependencies of 1/T1ρ and 1/T1 observed over several decades of frequency are interpreted with a model of unbounded two-dimensional diffusion in a layered geometry. The leveling off of the 1/T1ρ low-frequency dependence is interpreted in terms of the bounded two-dimensional diffusion due to the finite length L of the pores. An estimate of a finite size of L=100 Å is in excellent agreement with the experimental results of the transmission electron microscopy study of platinium-carbon replicated xerogels.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>