Science.gov

Sample records for porites species coral

  1. Genetic species delineation among branching Caribbean Porites corals

    NASA Astrophysics Data System (ADS)

    Prada, C.; DeBiasse, M. B.; Neigel, J. E.; Yednock, B.; Stake, J. L.; Forsman, Z. H.; Baums, I. B.; Hellberg, M. E.

    2014-12-01

    Coral species are difficult to discern because of their morphological plasticity, long generation times, and slow rates of mitochondrial DNA evolution. Among Caribbean representatives of the genus Porites are three named species ( P. divaricata, P. furcata, and P. porites) with branching colony morphologies whose validity as genetically isolated species has been debated. We present sequence data from the mitochondrial control region, nuclear ITS, and nine single-copy nuclear loci for the Caribbean Porites and a related eastern Pacific species. mtDNA sequences were nearly invariant among the three branching species and their crustose sister P. branneri, and ITS sequences from these four were intermingled. An information theoretic analysis provided no support for upholding the three named Caribbean branching species. Both a clustering analysis and an analysis of molecular variance showed that sequence variation from the three branching forms is partitioned more by geography than by taxonomy. Multi-locus coalescent phylogenetic analysis provided a calibrated estimate for the nuclear DNA substitution rate (0.14 % Ma-1) close to that for other corals. Because no generalities have emerged from genetic investigations of the validity of morphologically defined coral species, the use of single-copy nuclear data is likely to be important in testing problematic species designations.

  2. The potential of the coral species Porites astreoides as a paleoclimate archive for the Tropical South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Pereira, N. S.; Sial, A. N.; Frei, R.; Ullmann, C. V.; Korte, C.; Kikuchi, R. K. P.; Ferreira, V. P.; Kilbourne, K. H.

    2017-08-01

    The aragonitic skeletons of corals are unique archives of geochemical tracers that can be used as proxies for environmental conditions with high fidelity and sub-annual resolution. Such records have been extensively used for reconstruction of climatic conditions in the Pacific and Indian Oceans, Red Sea and Caribbean, but lack for the Equatorial South Atlantic. Here we present coral-based records of Sr/Ca, δ18O and δ13C and the first δ18O-SST calibration for the scleractinian coral species Porites astreoides from the Rocas Atoll, Equatorial South Atlantic. The investigated geochemical proxies for P. astreoides presented a very well-developed seasonal cyclicity in all proxies. We use the monthly means of δ18O and SST from the period of 2001-2013 to propose a calibration for a paleothermometer based on Porites, which gives T(°C) = -8.69(±0.79)* δ18O -7.05(±3.14), and yielded a SST δ18O-depended reconstruction with fidelity better than 0.5 °C for most of the record. Biases of up to 2 °C might be associated with reduced growth rate periods of the coral record. The Sr/Ca data show systematic, annual fluctuations but analyses are too imprecise to propose a Sr/Ca-SST calibration. The δ13C values are found to vary in phase with δ18O and Sr/Ca and are interpreted to be controlled by solar irradiation-modulated photosynthetic activity on the annual level. Our findings extend the global data base of coral records, contributing to further investigations using coral skeleton as environmental archives. In particular, the present study helps to better understand the climate variability of the South Atlantic tropical ocean-atmosphere system.

  3. Physiological and Biogeochemical Traits of Bleaching and Recovery in the Mounding Species of Coral Porites lobata: Implications for Resilience in Mounding Corals

    PubMed Central

    Levas, Stephen J.; Grottoli, Andréa G.; Hughes, Adam; Osburn, Christopher L.; Matsui, Yohei

    2013-01-01

    Mounding corals survive bleaching events in greater numbers than branching corals. However, no study to date has determined the underlying physiological and biogeochemical trait(s) that are responsible for mounding coral holobiont resilience to bleaching. Furthermore, the potential of dissolved organic carbon (DOC) as a source of fixed carbon to bleached corals has never been determined. Here, Porites lobata corals were experimentally bleached for 23 days and then allowed to recover for 0, 1, 5, and 11 months. At each recovery interval a suite of analyses were performed to assess their recovery (photosynthesis, respiration, chlorophyll a, energy reserves, tissue biomass, calcification, δ13C of the skeletal, δ13C, and δ15N of the animal host and endosymbiont fractions). Furthermore, at 0 months of recovery, the assimilation of photosynthetically acquired and zooplankton-feeding acquired carbon into the animal host, endosymbiont, skeleton, and coral-mediated DOC were measured via 13C-pulse-chase labeling. During the first month of recovery, energy reserves and tissue biomass in bleached corals were maintained despite reductions in chlorophyll a, photosynthesis, and the assimilation of photosynthetically fixed carbon. At the same time, P. lobata corals catabolized carbon acquired from zooplankton and seemed to take up DOC as a source of fixed carbon. All variables that were negatively affected by bleaching recovered within 5 to 11 months. Thus, bleaching resilience in the mounding coral P. lobata is driven by its ability to actively catabolize zooplankton-acquired carbon and seemingly utilize DOC as a significant fixed carbon source, facilitating the maintenance of energy reserves and tissue biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not only mounding morphologies but species like P. lobata, which have the ability to utilize heterotrophic sources of fixed carbon

  4. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: implications for resilience in mounding corals.

    PubMed

    Levas, Stephen J; Grottoli, Andréa G; Hughes, Adam; Osburn, Christopher L; Matsui, Yohei

    2013-01-01

    Mounding corals survive bleaching events in greater numbers than branching corals. However, no study to date has determined the underlying physiological and biogeochemical trait(s) that are responsible for mounding coral holobiont resilience to bleaching. Furthermore, the potential of dissolved organic carbon (DOC) as a source of fixed carbon to bleached corals has never been determined. Here, Porites lobata corals were experimentally bleached for 23 days and then allowed to recover for 0, 1, 5, and 11 months. At each recovery interval a suite of analyses were performed to assess their recovery (photosynthesis, respiration, chlorophyll a, energy reserves, tissue biomass, calcification, δ(13)C of the skeletal, δ(13)C, and δ(15)N of the animal host and endosymbiont fractions). Furthermore, at 0 months of recovery, the assimilation of photosynthetically acquired and zooplankton-feeding acquired carbon into the animal host, endosymbiont, skeleton, and coral-mediated DOC were measured via (13)C-pulse-chase labeling. During the first month of recovery, energy reserves and tissue biomass in bleached corals were maintained despite reductions in chlorophyll a, photosynthesis, and the assimilation of photosynthetically fixed carbon. At the same time, P. lobata corals catabolized carbon acquired from zooplankton and seemed to take up DOC as a source of fixed carbon. All variables that were negatively affected by bleaching recovered within 5 to 11 months. Thus, bleaching resilience in the mounding coral P. lobata is driven by its ability to actively catabolize zooplankton-acquired carbon and seemingly utilize DOC as a significant fixed carbon source, facilitating the maintenance of energy reserves and tissue biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not only mounding morphologies but species like P. lobata, which have the ability to utilize heterotrophic sources of

  5. Clues to unraveling the coral species problem: distinguishing species from geographic variation in Porites across the Pacific with molecular markers and microskeletal traits.

    PubMed

    Forsman, Zac; Wellington, Gerrard M; Fox, George E; Toonen, Robert J

    2015-01-01

    Morphological variation in the geographically widespread coral Porites lobata can make it difficult to distinguish from other massive congeneric species. This morphological variation could be attributed to geographic variability, phenotypic plasticity, or a combination of such factors. We examined genetic and microscopic morphological variability in P. lobata samples from the Galápagos, Easter Island, Tahiti, Fiji, Rarotonga, and Australia. Panamanian P. evermanni specimens were used as a previously established distinct outgroup against which to test genetic and morphological methods of discrimination. We employed a molecular analysis of variance (AMOVA) based on ribosomal internal transcribed spacer region (ITS) sequence, principal component analysis (PCA) of skeletal landmarks, and Mantel tests to compare genetic and morphological variation. Both genetic and morphometric methods clearly distinguished P. lobata and P. evermanni, while significant genetic and morphological variance was attributed to differences among geographic regions for P. lobata. Mantel tests indicate a correlation between genetic and morphological variation for P. lobata across the Pacific. Here we highlight landmark morphometric measures that correlate well with genetic differences, showing promise for resolving species of Porites, one of the most ubiquitous yet challenging to identify architects of coral reefs.

  6. Clues to unraveling the coral species problem: distinguishing species from geographic variation in Porites across the Pacific with molecular markers and microskeletal traits

    PubMed Central

    Wellington, Gerrard M.; Fox, George E.; Toonen, Robert J.

    2015-01-01

    Morphological variation in the geographically widespread coral Porites lobata can make it difficult to distinguish from other massive congeneric species. This morphological variation could be attributed to geographic variability, phenotypic plasticity, or a combination of such factors. We examined genetic and microscopic morphological variability in P. lobata samples from the Galápagos, Easter Island, Tahiti, Fiji, Rarotonga, and Australia. Panamanian P. evermanni specimens were used as a previously established distinct outgroup against which to test genetic and morphological methods of discrimination. We employed a molecular analysis of variance (AMOVA) based on ribosomal internal transcribed spacer region (ITS) sequence, principal component analysis (PCA) of skeletal landmarks, and Mantel tests to compare genetic and morphological variation. Both genetic and morphometric methods clearly distinguished P. lobata and P. evermanni, while significant genetic and morphological variance was attributed to differences among geographic regions for P. lobata. Mantel tests indicate a correlation between genetic and morphological variation for P. lobata across the Pacific. Here we highlight landmark morphometric measures that correlate well with genetic differences, showing promise for resolving species of Porites, one of the most ubiquitous yet challenging to identify architects of coral reefs. PMID:25674364

  7. Histological observations in the Hawaiian reef coral, Porites compressa, affected by Porites bleaching with tissue loss

    USGS Publications Warehouse

    Sudek, M.; Work, Thierry M.; Aeby, G.S.; Davy, S.K.

    2012-01-01

    The scleractinian finger coral Porites compressa is affected by the coral disease Porites bleaching with tissue loss (PBTL). This disease initially manifests as bleaching of the coenenchyme (tissue between polyps) while the polyps remain brown with eventual tissue loss and subsequent algal overgrowth of the bare skeleton. Histopathological investigation showed a loss of symbiont and melanin-containing granular cells which was more pronounced in the coenenchyme than the polyps. Cell counts confirmed a 65% reduction in symbiont density. Tissue loss was due to tissue fragmentation and necrosis in affected areas. In addition, a reduction in putative bacterial aggregate densities was found in diseased samples but no potential pathogens were observed.

  8. Strontium-86 Labeling Experiments Show Spatially Heterogeneous Skeletal Formation in the Scleractinian Coral Porites porites

    NASA Astrophysics Data System (ADS)

    Houlbreque, F.; Meibom, A.; Cuif, J.; Stolarski, J.; Marrocchi, Y.; Ferrier-Pages, C.; Domart-Coulon, I.; Dunbar, R.

    2008-12-01

    We present first results of a long-term effort to label calcium carbonates formed by marine organisms with stable isotopes to obtain information about the dynamics of the biomineralization processes. The skeleton of the scleractinian coral Porites porites was labeled three times with enhanced concentrations of 86Sr. The distribution of 86Sr in the skeleton can be imaged with the NanoSIMS ion microprobe with a spatial resolution of ca. 200 nm and combined with images of the skeletal ultra-structure. Importantly, the distribution of the 86Sr label in the P. porites skeleton was found to be strongly heterogeneous. This is inconsistent with the existence of a continuous Extracellular Calcifying Fluid (ECF) reservoir at the surface of the growing skeleton, which is implicit in most geochemical models for coral biomineralization. These new experimental capabilities promise a much more detailed view of skeletal growth dynamics for a wide range of marine organisms that biomineralize carbonate structures.

  9. Strontium-86 labeling experiments show spatially heterogeneous skeletal formation in the scleractinian coral Porites porites

    NASA Astrophysics Data System (ADS)

    Houlbrèque, Fanny; Meibom, Anders; Cuif, Jean-Pierre; Stolarski, Jaroslaw; Marrocchi, Yves; Ferrier-Pagès, Christine; Domart-Coulon, Isabelle; Dunbar, Robert B.

    2009-02-01

    This paper presents the results of an effort to label calcium carbonates formed by marine organisms with stable isotopes to obtain information about the biomineralization processes. The growing skeleton of the scleractinian coral Porites porites was labeled three times with enhanced abundances of 86Sr. The distribution of 86Sr in the skeleton was imaged with the NanoSIMS ion microprobe with a spatial resolution of ~200 nm and combined with images of the skeletal ultra-structure. Importantly, the distribution of the 86Sr label in the P. porites skeleton was found to be strongly heterogeneous. This constrains the physical dimensions of the hypothetical Extracellular Calcifying Fluid (ECF) reservoir at the surface of the growing skeleton, which is implicit in most geochemical models for coral biomineralization. These new experimental capabilities allow for a much more detailed view of the growth dynamics for a wide range of marine organisms that biomineralize carbonate structures.

  10. Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis.

    PubMed

    Iguchi, Akira; Ozaki, Saori; Nakamura, Takashi; Inoue, Mayuri; Tanaka, Yasuaki; Suzuki, Atsushi; Kawahata, Hodaka; Sakai, Kazuhiko

    2012-02-01

    We investigated the effect of acidified seawater on calcification and symbiotic algae (zooxanthellae density, chlorophyll content per single algal cell, fluorescence yield (Fv/Fm)) on a massive coral, Porites australiensis, a common species in the Ryukyu Archipelago of Japan. We found that acidified seawater significantly decreased the calcification and fluorescence yield, but did not affect zooxanthellae density and chlorophyll content per single algal cell. This indicates low levels of photoacclimation to acidified seawater in this species, and this is contrary to the findings of previous studies of Acropora species. A significant correlation between calcification and fluorescence yield was observed, indicating the presence of a strong relationship between calcification and algal photosynthesis. Our results indicate that endosymbiont photosynthetic dysfunction may enhance the decrease of coral calcification in future acidified ocean conditions. Calcification and fluorescence yield among colonies clearly differed, showing that the response to acidified seawater is highly variable among colonies in natural coral populations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Histological observations in the Hawaiian reef coral, Porites compressa, affected by Porites bleaching with tissue loss.

    PubMed

    Sudek, M; Work, T M; Aeby, G S; Davy, S K

    2012-10-01

    The scleractinian finger coral Porites compressa is affected by the coral disease Porites bleaching with tissue loss (PBTL). This disease initially manifests as bleaching of the coenenchyme (tissue between polyps) while the polyps remain brown with eventual tissue loss and subsequent algal overgrowth of the bare skeleton. Histopathological investigation showed a loss of symbiont and melanin-containing granular cells which was more pronounced in the coenenchyme than the polyps. Cell counts confirmed a 65% reduction in symbiont density. Tissue loss was due to tissue fragmentation and necrosis in affected areas. In addition, a reduction in putative bacterial aggregate densities was found in diseased samples but no potential pathogens were observed. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Physiological and Biogeochemical Traits of Bleaching and Recovery in the Mounding Species of Coral Porites lobata: Implications for Resilience in Mounding Corals

    DTIC Science & Technology

    2013-05-02

    biomass. With the frequency and intensity of bleaching events expected to increase over the next century, coral diversity on future reefs may favor not...coming decades [4,6,7], and are already causing mass coral reef decline worldwide [8]. Coral bleaching suscepti- bility has been directly linked to the... bleaching in mounding and branching corals is essential to projecting how coral reef assemblages will change in the future. Thus, to determine how

  13. Post-illumination stimulation of respiration rate in the coral Porites porites

    NASA Astrophysics Data System (ADS)

    Edmunds, P. J.; Davies, P. Spencer

    1988-05-01

    The respiration rate of the Caribbean reef coral Porites porites was shown to increase by a mean of 39% above the pre-illumination respiration rate when exposed for 3 h to light equivalent to that at 10 m depth on the reef. When exposed to a subsaturating irradiance of 140 μE m-2 s-1, the respiration rate increased successively in a curvilinear form to 58% greater than the preillumination respiration rate after 80 min. It is suggested that this increase may be analogous to the elevation in respiration rate observed in cnidarians and other animals after feeding on particulate food and may represent energy expenditure in growth. If this elevated respiration rate is maintained over the whole of the daytime period, the current methodologies used for determining carbon and energy budgets in symbiotic cnidarians result in an underestimation of the 24 h energy expenditure.

  14. Evidence for the non-influence of salinity variability on the Porites coral Sr/Ca palaeothermometer

    NASA Astrophysics Data System (ADS)

    Moreau, M.; Corrège, T.; Dassié, E. P.; Le Cornec, F.

    2015-03-01

    Porites coral-based sea surface temperature (SST) reconstructions are obtained from the measurement of skeleton Sr/Ca ratio. However, the influence of salinity in the incorporation of these trace elements in the Porites aragonitic skeleton is still poorly documented. Laboratory experiments indicate that in three different coral species (not including the widely used Porites genus), salinity does not influence the Sr/Ca thermometer. In this study, we test the salinity effect on Porites Sr/Ca-based SST reconstructions at monthly and interannual timescales in open-ocean environmental conditions. We use a large spatial compilation of published Porites data from the Red Sea and Pacific and Indian oceans. Additionally to those published records, we add a new eastern Pacific coral Sr/Ca record from Clipperton Atoll. Using two different salinity products (Simple Ocean Data Assimilation (SODA) SSS reanalyses version 2.2.4, Carton and Giese, 2008; and instrumental SSS from the Institut de Recherche pour le Développement, France (IRD) Delcroix et al., 2011), we find no evidence of salinity bias on the Sr/Ca SST proxy at monthly and interannual timescales. We conclude that Porites Sr/Ca is a reliable palaeothermometer that is not influenced by salinity variability.

  15. Environmental controls on growth of the massive coral Porites.

    PubMed

    Lough; Barnes

    2000-03-15

    Annual density banding provided growth characteristics for 245 similar-sized, massive colonies of Porites from similar locations on 29 reefs from across the length and breadth of the Great Barrier Reef (GBR), Australia. Values obtained were density, extension rate, and calcification rate. Tissue thickness, the depth to which skeletons were occupied by tissue at the time of collection, was also measured. Extension rate, calcification rate, and tissue thickness were significantly greater at the top of colonies than at the sides. Extension rate and calcification rate decreased from north to south along the GBR (latitudinal range of approximately 9 degrees ) and were significantly and directly related to annual average sea surface temperature (SST; range approximately 25-27 degrees C). For each 1 degrees C rise in SST, average annual calcification increased by 0.39 g cm(-2) year(-1) and average annual extension increased by 3.1 mm year(-1) (c.f. average values of 1.63 g cm(-2) year(-1) and 12.9 mm year(-1), respectively). Density was inversely correlated with extension rate and increased with distance offshore. Data for massive Porites colonies from the GBR were extended though 20 degrees of latitude and an average annual SST range of 23-29 degrees C using published data for the Hawaiian Archipelago (Grigg, R.W., 1981. Coral reef development at high latitudes in Hawaii. Proc. 4th Int. Coral Reef Symp., Manila, Vol. 1, pp. 687-693; Grigg, R.W., 1997. Paleoceanography of coral reefs in the Hawaiian-Emperor Chain - revisited. Coral Reefs 16, S33-S38) and Phuket, Thailand (Scoffin. T.P., Tudhope. A.W., Brown. B.E., Chansang. H., Cheeney. R.F., 1992. Patterns and possible environmental controls of skeletogenesis of Porites lutea, South Thailand. Coral Reefs 11, 1-11). The response of calcification rate to temperature remained linear. Variation in annual average SST accounted for 84% of the variance. For each 1 degrees C rise in SST, average annual calcification increased by

  16. Shape-shifting corals: Molecular markers show morphology is evolutionarily plastic in Porites

    PubMed Central

    Forsman, Zac H; Barshis, Daniel J; Hunter, Cynthia L; Toonen, Robert J

    2009-01-01

    Background Corals are notoriously difficult to identify at the species-level due to few diagnostic characters and variable skeletal morphology. This 'coral species problem' is an impediment to understanding the evolution and biodiversity of this important and threatened group of organisms. We examined the evolution of the nuclear ribosomal internal transcribed spacer (ITS) and mitochondrial markers (COI, putative control region) in Porites, one of the most taxonomically challenging and ecologically important genera of reef-building corals. Results Nuclear and mitochondrial markers were congruent, clearly resolving many traditionally recognized species; however, branching and mounding varieties were genetically indistinguishable within at least two clades, and specimens matching the description of 'Porites lutea' sorted into three genetically divergent groups. Corallite-level features were generally concordant with genetic groups, although hyper-variability in one group (Clade I) overlapped and obscured several others, and Synarea (previously thought to be a separate subgenus) was closely related to congeners despite its unique morphology. Scanning electron microscopy revealed subtle differences between genetic groups that may have been overlooked previously as taxonomic characters. Conclusion This study demonstrates that the coral skeleton can be remarkably evolutionarily plastic, which may explain some taxonomic difficulties, and obscure underlying patterns of endemism and diversity. PMID:19239678

  17. Transcriptome of the Caribbean stony coral Porites astreoides from three developmental stages.

    PubMed

    Mansour, Tamer A; Rosenthal, Joshua J C; Brown, C Titus; Roberson, Loretta M

    2016-08-02

    Porites astreoides is a ubiquitous species of coral on modern Caribbean reefs that is resistant to increasing temperatures, overfishing, and other anthropogenic impacts that have threatened most other coral species. We assembled and annotated a transcriptome from this coral using Illumina sequences from three different developmental stages collected over several years: free-swimming larvae, newly settled larvae, and adults (>10 cm in diameter). This resource will aid understanding of coral calcification, larval settlement, and host-symbiont interactions. A de novo transcriptome for the P. astreoides holobiont (coral plus algal symbiont) was assembled using 594 Mbp of raw Illumina sequencing data generated from five age-specific cDNA libraries. The new transcriptome consists of 867 255 transcript elements with an average length of 685 bases. The isolated P. astreoides assembly consists of 129 718 transcript elements with an average length of 811 bases, and the isolated Symbiodinium sp. assembly had 186 177 transcript elements with an average length of 1105 bases. This contribution to coral transcriptome data provides a valuable resource for researchers studying the ontogeny of gene expression patterns within both the coral and its dinoflagellate symbiont.

  18. Metagenomic analysis of the microbial community associated with the coral Porites astreoides.

    PubMed

    Wegley, Linda; Edwards, Robert; Rodriguez-Brito, Beltran; Liu, Hong; Rohwer, Forest

    2007-11-01

    The coral holobiont is a dynamic assemblage of the coral animal, zooxanthellae, endolithic algae and fungi, Bacteria,Archaea and viruses. Zooxanthellae and some Bacteria form relatively stable and species-specific associations with corals. Other associations are less specific; coral-associated Archaea differ from those in the water column, but the same archaeal species may be found on different coral species. It has been hypothesized that the coral animal can adapt to differing ecological niches by 'switching' its microbial associates. In the case of corals and zooxanthellae, this has been termed adaptive bleaching and it has important implications for carbon cycling within the coral holobiont and ultimately the survival of coral reefs. However, the roles of other components of the coral holobiont are essentially unknown. To better understand these other coral associates, a fractionation procedure was used to separate the microbes, mitochondria and viruses from the coral animal cells and zooxanthellae. The resulting metagenomic DNA was sequenced using pyrosequencing. Fungi, Bacteria and phage were the most commonly identified organisms in the metagenome. Three of the four fungal phyla were represented, including a wide diversity of fungal genes involved in carbon and nitrogen metabolism, suggesting that the endolithic community is more important than previously appreciated. In particular, the data suggested that endolithic fungi could be converting nitrate and nitrite to ammonia, which would enable fixed nitrogen to cycle within the coral holobiont. The most prominent bacterial groups were Proteobacteria (68%), Firmicutes (10%), Cyanobacteria (7%) and Actinobacteria (6%). Functionally, the bacterial community was primarily heterotrophic and included a number of pathways for the degradation of aromatic compounds, the most abundant being the homogentisate pathway. The most abundant phage family was the ssDNA Microphage and most of the eukaryotic viruses were most

  19. Highly heterogeneous bacterial communities associated with the South China Sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora.

    PubMed

    Li, Jie; Chen, Qi; Zhang, Si; Huang, Hui; Yang, Jian; Tian, Xin-Peng; Long, Li-Juan

    2013-01-01

    Coral harbor diverse and specific bacteria play significant roles in coral holobiont function. Bacteria associated with three of the common and phylogenetically divergent reef-building corals in the South China Sea, Porites lutea, Galaxea fascicularis and Acropora millepora, were investigated using 454 barcoded-pyrosequencing. Three colonies of each species were sampled, and 16S rRNA gene libraries were constructed individually. Analysis of pyrosequencing libraries showed that bacterial communities associated with the three coral species were more diverse than previous estimates based on corals from the Caribbean Sea, Indo-Pacific reefs and the Red Sea. Three candidate phyla, including BRC1, OD1 and SR1, were found for the first time in corals. Bacterial communities were separated into three groups: P. lutea and G. fascicular, A. millepora and seawater. P. lutea and G. fascicular displayed more similar bacterial communities, and bacterial communities associated with A. millepora differed from the other two coral species. The three coral species shared only 22 OTUs, which were distributed in Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Chloroflexi, Actinobacteria, Acidobacteria and an unclassified bacterial group. The composition of bacterial communities within each colony of each coral species also showed variation. The relatively small common and large specific bacterial communities in these corals implies that bacterial associations may be structured by multiple factors at different scales and that corals may associate with microbes in terms of similar function, rather than identical species.

  20. Highly Heterogeneous Bacterial Communities Associated with the South China Sea Reef Corals Porites lutea, Galaxea fascicularis and Acropora millepora

    PubMed Central

    Li, Jie; Chen, Qi; Zhang, Si; Huang, Hui; Yang, Jian; Tian, Xin-Peng; Long, Li-Juan

    2013-01-01

    Coral harbor diverse and specific bacteria play significant roles in coral holobiont function. Bacteria associated with three of the common and phylogenetically divergent reef-building corals in the South China Sea, Porites lutea, Galaxea fascicularis and Acropora millepora, were investigated using 454 barcoded-pyrosequencing. Three colonies of each species were sampled, and 16S rRNA gene libraries were constructed individually. Analysis of pyrosequencing libraries showed that bacterial communities associated with the three coral species were more diverse than previous estimates based on corals from the Caribbean Sea, Indo-Pacific reefs and the Red Sea. Three candidate phyla, including BRC1, OD1 and SR1, were found for the first time in corals. Bacterial communities were separated into three groups: P. lutea and G. fascicular, A. millepora and seawater. P. lutea and G. fascicular displayed more similar bacterial communities, and bacterial communities associated with A. millepora differed from the other two coral species. The three coral species shared only 22 OTUs, which were distributed in Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, Chloroflexi, Actinobacteria, Acidobacteria and an unclassified bacterial group. The composition of bacterial communities within each colony of each coral species also showed variation. The relatively small common and large specific bacterial communities in these corals implies that bacterial associations may be structured by multiple factors at different scales and that corals may associate with microbes in terms of similar function, rather than identical species. PMID:23940737

  1. Ecological Inferences from a deep screening of the Complex Bacterial Consortia associated with the coral, Porites astreoides.

    PubMed

    Rodriguez-Lanetty, Mauricio; Granados-Cifuentes, Camila; Barberan, Albert; Bellantuono, Anthony J; Bastidas, Carolina

    2013-08-01

    The functional role of the bacterial organisms in the reef ecosystem and their contribution to the coral well-being remain largely unclear. The first step in addressing this gap of knowledge relies on in-depth characterization of the coral microbial community and its changes in diversity across coral species, space and time. In this study, we focused on the exploration of microbial community assemblages associated with an ecologically important Caribbean scleractinian coral, Porites astreoides, using Illumina high-throughput sequencing of the V5 fragment of 16S rRNA gene. We collected data from a large set of biological replicates, allowing us to detect patterns of geographical structure and resolve co-occurrence patterns using network analyses. The taxonomic analysis of the resolved diversity showed consistent and dominant presence of two OTUs affiliated with the order Oceanospirillales, which corroborates a specific pattern of bacterial association emerging for this coral species and for many other corals within the genus Porites. We argue that this specific association might indicate a symbiotic association with the adult coral partner. Furthermore, we identified a highly diverse rare bacterial 'biosphere' (725 OTUs) also living along with the dominant bacterial symbionts, but the assemblage of this biosphere is significantly structured along the geographical scale. We further discuss that some of these rare bacterial members show significant association with other members of the community reflecting the complexity of the networked consortia within the coral holobiont. © 2013 John Wiley & Sons Ltd.

  2. Effects of intermittent flow and irradiance level on back reef Porites corals at elevated seawater temperatures

    USGS Publications Warehouse

    Smith, L.W.; Birkeland, C.

    2007-01-01

    Corals inhabiting shallow back reef habitats are often simultaneously exposed to elevated seawater temperatures and high irradiance levels, conditions known to cause coral bleaching. Water flow in many tropical back reef systems is tidally influenced, resulting in semi-diurnal or diurnal flow patterns. Controlled experiments were conducted to test effects of semi-diurnally intermittent water flow on photoinhibition and bleaching of the corals Porites lobata and P. cylindrica kept at elevated seawater temperatures and different irradiance levels. All coral colonies were collected from a shallow back reef pool on Ofu Island, American Samoa. In the high irradiance experiments, photoinhibition and bleaching were less for both species in the intermittent high-low flow treatment than in the constant low flow treatment. In the low irradiance experiments, there were no differences in photoinhibition or bleaching for either species between the flow treatments, despite continuously elevated seawater temperatures. These results suggest that intermittent flow associated with semi-diurnal tides, and low irradiances caused by turbidity or shading, may reduce photoinhibition and bleaching of back reef corals during warming events. ?? 2006 Elsevier B.V. All rights reserved.

  3. Contrasting Lesion Dynamics of White Syndrome among the scleractinian corals Porites spp

    PubMed Central

    Lozada-Misa, Paula; Kerr, Alexander; Raymundo, Laurie

    2015-01-01

    White syndrome (WS) is currently the most prevalent disease of scleractinian corals in the Indo-Pacific region, with an ability to exist in both epizootic and enzootic states. Here, we present results of an examination of WS lesion dynamics and show that potentially associated traits of host morphology (i.e., branching vs. massive), lesion size, and tissue deposition rate influence disease severity and recovery. Lesion healing rate was positively correlated with initial lesion size in both morphologies, but the rate at which lesions healed differed between morphologies. New lesions in branching Porites cylindrica appeared less frequently, were smaller and healed more quickly, but were more abundant than in closely-related massive Porites sp(p). The positive association between lesion size and healing rate was partly explained by geometry; branching limited lesion maximum size, and larger lesion margins contained more polyps producing new tissue, resulting in faster healing. However, massive colonies deposited tissue more slowly than branching colonies, resulting in slower recovery and more persistent lesions. Corallite size and density did not differ between species and did not, therefore, influence healing rate. We demonstrated multiple modes of pathogen transmission, which may be influenced by the greater potential for pathogen entrainment in branching vs. massive morphologies. We suggest that attributes such as colony morphology and species-specific growth rates require consideration as we expand our understanding of disease dynamics in colonial organisms such as coral. PMID:26120844

  4. The complete mitochondrial DNA of endemic Eastern Pacific coral (Porites panamensis).

    PubMed

    Del Río-Portilla, Miguel A; Vargas-Peralta, Carmen E; Paz-García, David A; Lafarga De La Cruz, Fabiola; Balart, Eduardo F; García-de-León, Francisco J

    2016-01-01

    The mitogenome of the endemic coral Porites panamensis (Genbank accession number KJ546638) has a total length of 18,628 bp, and the arrangement consist of 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes and 2 transfer RNA (tRNA) genes. Gene order was equal to other scleractinian coral mitogenomes.

  5. Bacterial communities associated with Porites white patch syndrome (PWPS) on three western Indian Ocean (WIO) coral reefs.

    PubMed

    Séré, Mathieu G; Tortosa, Pablo; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2013-01-01

    The scleractinian coral Porites lutea, an important reef-building coral on western Indian Ocean reefs (WIO), is affected by a newly-reported white syndrome (WS) the Porites white patch syndrome (PWPS). Histopathology and culture-independent molecular techniques were used to characterise the microbial communities associated with this emerging disease. Microscopy showed extensive tissue fragmentation generally associated with ovoid basophilic bodies resembling bacterial aggregates. Results of 16S rRNA sequence analysis revealed a high variability between bacterial communities associated with PWPS-infected and healthy tissues in P. lutea, a pattern previously reported in other coral diseases such as black band disease (BBD), white band disease (WBD) and white plague diseases (WPD). Furthermore, substantial variations in bacterial communities were observed at the different sampling locations, suggesting that there is no strong bacterial association in Porites lutea on WIO reefs. Several sequences affiliated with potential pathogens belonging to the Vibrionaceae and Rhodobacteraceae were identified, mainly in PWPS-infected coral tissues. Among them, only two ribotypes affiliated to Shimia marina (NR043300.1) and Vibrio hepatarius (NR025575.1) were consistently found in diseased tissues from the three geographically distant sampling localities. The role of these bacterial species in PWPS needs to be tested experimentally.

  6. The Shifts of Diazotrophic Communities in Spring and Summer Associated with Coral Galaxea astreata, Pavona decussata, and Porites lutea

    PubMed Central

    Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2016-01-01

    The coral holobiont often resides in oligotrophic waters; both coral cells and their symbiotic dinoflagellates possess ammonium assimilation enzymes and potentially benefit from the nitrogen fixation of coral-associated diazotrophs. However, the seasonal dynamics of coral-associated diazotrophs are not well characterized. Here, the seasonal variations of diazotrophic communities associated with three corals, Galaxea astreata, Pavona decussata, and Porites lutea, were studied using nifH gene amplicon pyrosequencing techniques. Our results revealed a great diversity of coral-associated diazotrophs. nifH sequences related to Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria were ubiquitous and dominant in all corals in two seasons. In contrast with the coral P. decussata, both G. astreata and P. lutea showed significant seasonal changes in the diazotrophic communities and nifH gene abundance. Variable diazotroph groups accounted for a range from 11 to 49% within individual coral samples. Most of the variable diazotrophic groups from P. decussata were species-specific, however, the majority of overlapping variable groups in G. astreata and P. lutea showed the same seasonal variation characteristics. Rhodopseudomonas palustris- and Gluconacetobacter diazotrophicus-affiliated sequences were relatively abundant in the summer, whereas a nifH sequence related to Halorhodospira halophila was relatively abundant in spring G. astreata and P. lutea. The seasonal variations of all diazotrophic communities were significantly correlated with the seasonal shifts of ammonium and nitrate, suggesting that diazotrophs play an important role in the nitrogen cycle of the coral holobiont. PMID:27920768

  7. High-Resolution Synchrotron Radiation Imaging of Trace Metal Elemental Concentrations in Porites Coral

    NASA Astrophysics Data System (ADS)

    Cirino, M.; Dunbar, R. B.; Tangri, N.; Mehta, A.

    2014-12-01

    We investigated the use of synchrotron radiation for elemental imaging within the skeleton of a Porites coral from American Samoa to explore the fine-scale structure of strontium to calcium (Sr/Ca) variability. The use of a synchrotron for coral paleoclimate analysis is relatively new. The method provides a high resolution, two-dimensional elemental map of a coral surface. The aragonitic skeleton of Porites sp. colonies has been widely used for paleoclimate reconstruction as the oxygen isotope ratio (δ18O) signal varies with both sea surface temperature (SST) and sea surface salinity (SSS). Sr/Ca has been used in previous studies in conjunction with δ18O to deconvolve SST from SSS, as Sr/Ca in the coral skeleton varies with SST, but not SSS. However, recent studies suggest that in some cases Sr/Ca variability in coral does not reliably reflect changes in SST. We sought to address this puzzle by investigating Sr/Ca variability in Porites corals at a very fine spatial scale while also demonstrating the suitability of the synchrotron as a coral analysis tool. We also considered Sr/Ca variability as it pertains to the coral's structural elements. The Stanford Linear Accelerator Center synchrotron station generates collimated x-rays in the energy range of 4500-45000 eV with beam diameters as small as 20 μm. Synchrotron imaging allows faster and higher-resolution Sr/Ca analysis than does inductively coupled plasma mass spectrometry (ICP-MS). It also is capable of mapping spatial distributions of many elements, which aids in the development of a multiproxy approach to paleoclimate reconstruction. Imaging and analysis of the Porites coral using synchrotron radiation revealed an intricate sub-seasonal Sr/Ca signal, possibly correlating to a sub-monthly resolution. This signal, which seems unrelated to SST, dominates the annual signal.

  8. Unrecognized coral species diversity masks differences in functional ecology

    PubMed Central

    Boulay, Jennifer N.; Hellberg, Michael E.; Cortés, Jorge; Baums, Iliana B.

    2014-01-01

    Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change. PMID:24335977

  9. Unrecognized coral species diversity masks differences in functional ecology.

    PubMed

    Boulay, Jennifer N; Hellberg, Michael E; Cortés, Jorge; Baums, Iliana B

    2014-02-07

    Porites corals are foundation species on Pacific reefs but a confused taxonomy hinders understanding of their ecosystem function and responses to climate change. Here, we show that what has been considered a single species in the eastern tropical Pacific, Porites lobata, includes a morphologically similar yet ecologically distinct species, Porites evermanni. While P. lobata reproduces mainly sexually, P. evermanni dominates in areas where triggerfish prey on bioeroding mussels living within the coral skeleton, thereby generating asexual coral fragments. These fragments proliferate in marginal habitat not colonized by P. lobata. The two Porites species also show a differential bleaching response despite hosting the same dominant symbiont subclade. Thus, hidden diversity within these reef-builders has until now obscured differences in trophic interactions, reproductive dynamics and bleaching susceptibility, indicative of differential responses when confronted with future climate change.

  10. Coral δ18O records Porites vs. Diploastrea - sampling resolution and climatic signal!

    NASA Astrophysics Data System (ADS)

    Dassie, E. P.; Linsley, B. K.; Lambdin, S.

    2013-12-01

    Narrowing uncertainties in climate prediction is an economical and social need that could partially be addressed by the development of robust paleoclimatic networks. Porites is the most widely used genus in studies using massive corals from the Pacific Ocean, however only a few Pacific Porites records span more than 100 years. A different slower growing coral genius, Diploastrea, has the potential to also generate multi-century length paleo-records. Recent Paleoclimatic studies utilizing this genus have shown promising results (Watanabe et al., 2003; Bagnato et al., 2004, 2005). However, some sampling concerns still remain. Diploastrea has large individual corallites (4-5 times larger than Porites); these corallites include a straight inner portion (columella) surrounded by a radiating portion (septa). The septa portion does not grow perpendicular to the direction of the coral growth, but instead radiates at a 45° angle from the columella. Sampling both the columnar and septal portions simultaneously might produce erroneous climatic reconstructions, reflecting a combination of corallite material precipitated several months apart. Additionally, due to Diploastrea slower growing rate, a millimeter sampling resolution might not be enough to retrieve robust climatic information. This study determined the optimal sampling resolution for Diploastrea from Fiji and verified the fidelity of this archive to reconstruct climatic variability. δ18O and δ13C measurements were made on one Diploastrea and one Porites coral colonies from a lagoon in Kandavu, Fiji. Diploastrea (FKD2) was sampled and analyzed at a 0.25mm resolution and Porites (FKD1) at a one-mm resolution; taking into consideration the growth rate of these two cores, both sampling resolution corresponds to a nearly monthly resolution. We created low-resolution sampling from the high-resolution sampling of the Diploastrea and compared it to the Porites measurements. This leads to determine the optimal sampling

  11. Characterization of Geographically Distinct Bacterial Communities Associated with Coral Mucus Produced by Acropora spp. and Porites spp.

    PubMed Central

    McKew, B. A.; Dumbrell, A. J.; Daud, S. D.; Hepburn, L.; Thorpe, E.; Mogensen, L.

    2012-01-01

    Acropora and Porites corals are important reef builders in the Indo-Pacific and Caribbean. Bacteria associated with mucus produced by Porites spp. and Acropora spp. from Caribbean (Punta Maroma, Mexico) and Indo-Pacific (Hoga and Sampela, Indonesia) reefs were determined. Analysis of pyrosequencing libraries showed that bacterial communities from Caribbean corals were significantly more diverse (H′, 3.18 to 4.25) than their Indonesian counterparts (H′, 2.54 to 3.25). Dominant taxa were Gammaproteobacteria, Alphaproteobacteria, Firmicutes, and Cyanobacteria, which varied in relative abundance between coral genera and region. Distinct coral host-specific communities were also found; for example, Clostridiales were dominant on Acropora spp. (at Hoga and the Mexican Caribbean) compared to Porites spp. and seawater. Within the Gammproteobacteria, Halomonas spp. dominated sequence libraries from Porites spp. (49%) and Acropora spp. (5.6%) from the Mexican Caribbean, compared to the corresponding Indonesian coral libraries (<2%). Interestingly, with the exception of Porites spp. from the Mexican Caribbean, there was also a ubiquity of Psychrobacter spp., which dominated Acropora and Porites libraries from Indonesia and Acropora libraries from the Caribbean. In conclusion, there was a dominance of Halomonas spp. (associated with Acropora and Porites [Mexican Caribbean]), Firmicutes (associated with Acropora [Mexican Caribbean] and with Acropora and Porites [Hoga]), and Cyanobacteria (associated with Acropora and Porites [Hoga] and Porites [Sampela]). This is also the first report describing geographically distinct Psychrobacter spp. associated with coral mucus. In addition, the predominance of Clostridiales associated with Acropora spp. provided additional evidence for coral host-specific microorganisms. PMID:22636010

  12. Coral diseases on Philippine reefs: genus Porites is a dominant host.

    PubMed

    Raymundo, Laurie J; Rosell, Kathryn B; Reboton, Clarissa T; Kaczmarsky, Longin

    2005-05-20

    While it is generally assumed that Indo-Pacific reefs are not widely affected by diseases, limited data suggest a number of diseases and syndromes that appear to differ from those currently under study in the Caribbean. This report presents the results of a baseline survey of coral diseases in 2 regions in the Philippines: the Central Visayas and the Lingayen Gulf. Mean prevalence for all diseases observed was 8.3 +/- 1.2% (mean +/- SE; n = 8 reefs), with Central Visayas reefs showing higher disease prevalence (11.6 +/- 2.8%; n = 4 reefs) than those of Lingayen Gulf (5.1 +/- 1.4%; n = 4 reefs). Five diseases and syndromes were described; 3 of these-Porites ulcerative white spot disease (PUWS) (prevalence = 8.96 +/- 2.2%), tumors (prevalence = 1.0 +/- 0.5%) and pigmentation response (prevalence = 0.5 +/- 0.2%)--occurred frequently in both regions and targeted the genus Porites. Correlation between disease prevalence and number of Porites colonies was fairly strong (r2 = 43.4), though not significant, and no correlation was seen between prevalence and either the amount or diversity of hard coral. Porites is a major reef-builder in the Indo-Pacific comprising 30% of hard coral colonies on our surveyed reefs, and is generally thought to be a hardy, long-lived genus. Diseases targeting this robust group present an as yet unquantified risk to Philippine reefs and could result in major changes in reef structure.

  13. Trace metal anomalies in bleached Porites coral at Meiji Reef, tropical South China Sea

    NASA Astrophysics Data System (ADS)

    Li, Shu; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Chen, Tianran

    2017-01-01

    Coral bleaching has generally been recognized as the main reason for tropical coral reef degradation, but there are few long-term records of coral bleaching events. In this study, trace metals including chromium (Cr), copper (Cu), molybdenum (Mo), manganese (Mn), lead (Pb), tin (Sn), titanium (Ti), vanadium (V), and yttrium (Y), were analyzed in two Porites corals collected from Meiji Reef in the tropical South China Sea (SCS) to assess differences in trace metal concentrations in bleached compared with unbleached coral growth bands. Ti, V, Cr, and Mo generally showed irregular fluctuations in both corals. Bleached layers contained high concentrations of Mn, Cu, Sn, and Pb. Unbleached layers showed moderately high concentrations of Mn and Cu only. The different distribution of trace metals in Porites may be attributable to different selectivity on the basis of vital utility or toxicity. Ti, V, Cr, and Mo are discriminated against by both coral polyps and zooxanthellae, but Mn, Cu, Sn, and Pb are accumulated by zooxanthellae and only Mn and Cu are accumulated by polyps as essential elements. The marked increase in Cu, Mn, Pb, and Sn are associated with bleaching processes, including mucus secretion, tissue retraction, and zooxanthellae expulsion and occlusion. Variation in these trace elements within the coral skeleton can be used as potential tracers of short-lived bleaching events.

  14. Chemically mediated interactions between macroalgae Dictyota spp. and multiple life-history stages of the coral Porites astreoides

    USGS Publications Warehouse

    Paul, V.J.; Kuffner, I.B.; Walters, L.J.; Ritson-Williams, R.; Beach, K.S.; Becerro, M.A.

    2011-01-01

    Competition between corals and macroalgae is often assumed to occur on reefs, especially those that have undergone shifts from coral to algal dominance; however, data examining these competitive interactions, especially during the early life-history stages of corals, are scarce. We conducted a series of field and outdoor seawater-table experiments to test the hypothesis that allelopathy (chemical inhibition) mediates interactions between 2 common brown macroalgae, Dictyota pulchella and D. pinnatifida, and the coral Porites astreoides at different life-history stages of the coral. D. pinnatifida significantly reduced larval survival and larval recruitment. The extracts of both D. pinnatifida and D. pulchella significantly reduced larval survival, and the extract of D. pulchella also negatively influenced larval recruitment. There was no measurable effect of the crude extracts from Dictyota spp. on the photophysiology of adult corals. Our results provide evidence that these Dictyota species chemically compete with P. astreoides by negatively affecting larval settlement and recruitment as well as the survival of larvae and new recruits. Macroalgae may perpetuate their dominance on degraded reefs by chemically inhibiting the process of coral recruitment. ?? 2011 Inter-Research.

  15. Chemically-mediated interactions between macroalgae Dictyota spp. and multiple life-history stages of the coral Porites astreoides

    USGS Publications Warehouse

    Paul, Valerie J.; Kuffner, Ilsa B.; Walters, Linda J.; Ritson-Williams, Raphael; Beach, Kevin S.; Becerro, Mikel A.

    2011-01-01

    Competition between corals and macroalgae is often assumed to occur on reefs, especially those that have undergone shifts from coral to algal dominance; however, data examining these competitive interactions, especially during the early life-history stages of corals, are scarce. We conducted a series of field and outdoor seawater-table experiments to test the hypothesis that allelopathy (chemical inhibition) mediates interactions between 2 common brown macroalgae, Dictyota pulchella and D. pinnatifida, and the coral Porites astreoides at different life-history stages of the coral. D. pinnatifida significantly reduced larval survival and larval recruitment. The extracts of both D. pinnatifida and D. pulchella significantly reduced larval survival, and the extract of D. pulchella also negatively influenced larval recruitment. There was no measurable effect of the crude extracts from Dictyota spp. on the photophysiology of adult corals. Our results provide evidence that these Dictyota species chemically compete with P. astreoides by negatively affecting larval settlement and recruitment as well as the survival of larvae and new recruits. Macroalgae may perpetuate their dominance on degraded reefs by chemically inhibiting the process of coral recruitment.

  16. Intracellular crystal-bearing vesicles in the epidermis of scleractinian corals, Astrangia danae (Agassiz) and Porites porites (Pallas).

    PubMed

    Hayes, R L; Goreau, N I

    1977-02-01

    Orthorhombic aragonitic crystals, embedded with a granular lipo-protein matrix and surrounded by a trilaminar membrane, are localized in the apical cytoplasm of epidermal cells of Scleractinian corals. Adult specimens of Astrangia danae (Agassiz) and settled planulae of Porites porites (Pallas) contain crystals averaging 0.7 mu by 0.1 mu by 0.3 mu within Golgi-derived vesicles. Short-term labelling with 45Ca reveals distribution of radioactivity amont a basic tissue fraction (92%) an acid tissue fraction (5%) and a skeletal fraction (3%). Identification of the primordial crystal population within membrane-bound visicles provides overwhelming evidence for the intracellular mode of calcification in Scleractinia. Moreover, it permits development of a novel concept of cellular regulation over these dynamic events. The membrane-bound vesicel is a miniature crystal fabrication station and a vehicle responsible for transportation of seed crystals and an organic matrix material to sites of discharge from the cell. The vesicle membrane becomes a probable locus of active transport and enzymatic activity as well as a physical barrier to be penetrated for release of vesicle contents into the extracellular milieu. Contact between the vesicle membrane and the plasmalemma would result in exocytosis and the onset of skeletogenesis. Principles governing crystal growth would prevail from then on. The released crystal becomes a nucleation catalyst and the organic matrix, a supply of ionic calcium for self-limiting crystallization. Crystals are produced by the organism spontaneously and continuously from shortly after larval attachment throughout the life of the polyp. Therefore, these membrane-bound vesicles signal the dynamic process by which initiation, differentiation, growth and limitation of the coral skeleton is regulated.

  17. Quantification of virus-like particles suggests viral infection in corals affected by Porites tissue loss

    NASA Astrophysics Data System (ADS)

    Lawrence, Scott A.; Davy, Joanne E.; Aeby, Greta S.; Wilson, William H.; Davy, Simon K.

    2014-09-01

    Porites tissue loss is a common disease of Porites compressa on Hawaiian reefs. Despite its prevalence, to date, the aetiological agent of the disease has not been found. The apparent lack of a microbial causative agent in the similar disease Porites bleaching with tissue loss, as well as increasing evidence of viral infections in scleractinian corals and Symbiodinium, led us to hypothesise that a virus may be responsible. Electron microscopy revealed the presence of numerous and varied virus-like particles (VLPs) in healthy and diseased P. compressa colonies. While overall virus numbers were similar in all samples, the abundance of a group of icosahedral VLPs differed significantly between healthy and diseased colonies. While not conclusive, these results suggest that viruses may play a role in this disease, and provide a basis for further studies.

  18. Community Shifts in the Surface Microbiomes of the Coral Porites astreoides with Unusual Lesions

    PubMed Central

    Meyer, Julie L.; Paul, Valerie J.; Teplitski, Max

    2014-01-01

    Apical lesions on Porites astreoides were characterized by the appearance of a thin yellow band, which was preceded by bleaching of the coral tissues and followed by a completely denuded coral skeleton, which often harbored secondary macroalgal colonizers. These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases. The lesions were observed only in warmer months and at shallow depths on the fore reef in Belize. Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies. Comparison of the microbiomes of nonsymptomatic and lesioned coral colonies sampled in July and September revealed two distinct groups, inconsistently related to the disease state of the coral, but showing some temporal signal. The loss of Endozoicomonas was characteristic of lesioned corals, which also harbored potential opportunistic pathogens such as Alternaria, Stenotrophomonas, and Achromobacter. The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa. PMID:24937478

  19. Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions.

    PubMed

    Meyer, Julie L; Paul, Valerie J; Teplitski, Max

    2014-01-01

    Apical lesions on Porites astreoides were characterized by the appearance of a thin yellow band, which was preceded by bleaching of the coral tissues and followed by a completely denuded coral skeleton, which often harbored secondary macroalgal colonizers. These characteristics have not been previously described in Porites and do not match common Caribbean coral diseases. The lesions were observed only in warmer months and at shallow depths on the fore reef in Belize. Analysis of the microbial community composition based on the V4 hypervariable region of 16S ribosomal RNA genes revealed that the surface microbiomes associated with nonsymptomatic corals were dominated by the members of the genus Endozoicomonas, consistent with other studies. Comparison of the microbiomes of nonsymptomatic and lesioned coral colonies sampled in July and September revealed two distinct groups, inconsistently related to the disease state of the coral, but showing some temporal signal. The loss of Endozoicomonas was characteristic of lesioned corals, which also harbored potential opportunistic pathogens such as Alternaria, Stenotrophomonas, and Achromobacter. The presence of lesions in P. astreoides coincided with a decrease in the relative abundance of Endozoicomonas, rather than the appearance of specific pathogenic taxa.

  20. Seasonal changes in bacterial communities associated with healthy and diseased Porites coral in southern Taiwan.

    PubMed

    Lin, Chorng-Horng; Chuang, Chih-Hsiang; Twan, Wen-Hung; Chiou, Shu-Fen; Wong, Tit-Yee; Liu, Jong-Kang; Kao, Chyuan-Yao; Kuo, Jimmy

    2016-12-01

    We compared the bacterial communities associated with healthy scleractinian coral Porites sp. with those associated with coral infected with pink spot syndrome harvested during summer and winter from waters off the coast of southern Taiwan. Members of the bacterial community associated with the coral were characterized by means of denaturing gradient gel electrophoresis (DGGE) of a short region of the 16S rRNA gene and clone library analysis. Of 5 different areas of the 16S rRNA gene, we demonstrated that the V3 hypervariable region is most suited to represent the coral-associated bacterial community. The DNA sequences of 26 distinct bands extracted from DGGE gels and 269 sequences of the 16S rRNA gene from clone libraries were determined. We found that the communities present in diseased coral were more heterogeneous than the bacterial communities of uninfected coral. In addition, bacterial communities associated with coral harvested in the summer were more diverse than those associated with coral collected in winter, regardless of the health status of the coral. Our study suggested that the compositions of coral-associated bacteria communities are complex, and the population of bacteria varies greatly between seasons and in coral of differing health status.

  1. Skeletal records of community-level bleaching in Porites corals from Palau

    NASA Astrophysics Data System (ADS)

    Barkley, Hannah C.; Cohen, Anne L.

    2016-12-01

    Tropical Pacific sea surface temperature is projected to rise an additional 2-3 °C by the end of this century, driving an increase in the frequency and intensity of coral bleaching. With significant global coral reef cover already lost due to bleaching-induced mortality, efforts are underway to identify thermally tolerant coral communities that might survive projected warming. Massive, long-lived corals accrete skeletal bands of anomalously high density in response to episodes of thermal stress. These "stress bands" are potentially valuable proxies for thermal tolerance, but to date their application to questions of community bleaching history has been limited. Ecological surveys recorded bleaching of coral communities across the Palau archipelago during the 1998 and 2010 warm events. Between 2011 and 2015, we extracted skeletal cores from living Porites colonies at 10 sites spanning barrier reef and lagoon environments and quantified the proportion of stress bands present in each population during bleaching years. Across Palau, the prevalence of stress bands tracked the severity of thermal stress, with more stress bands occurring in 1998 (degree heating weeks = 13.57 °C-week) than during the less severe 2010 event (degree heating weeks = 4.86 °C-week). Stress band prevalence also varied by reef type, as more corals on the exposed barrier reef formed stress bands than did corals from sheltered lagoon environments. Comparison of Porites stress band prevalence with bleaching survey data revealed a strong correlation between percent community bleaching and the proportion of colonies with stress bands in each year. Conversely, annual calcification rates did not decline consistently during bleaching years nor did annually resolved calcification histories always track interannual variability in temperature. Our data suggest that stress bands in massive corals contain valuable information about spatial and temporal trends in coral reef bleaching and can aid in

  2. Parrotfish predation on massive Porites on the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Bonaldo, R. M.; Bellwood, D. R.

    2011-03-01

    Parrotfish grazing scars on coral colonies were quantified across four reef zones at Lizard Island, Northern Great Barrier Reef (GBR). The abundance of parrotfish grazing scars was highest on reef flat and crest, with massive Porites spp . colonies having more parrotfish grazing scars than all other coral species combined. Massive Porites was the only coral type positively selected for grazing by parrotfishes in all four reef zones. The density of parrotfish grazing scars on massive Porites spp., and the rate of new scar formation, was highest on the reef crest and flat, reflecting the lower massive Porites cover and higher parrotfish abundance in these habitats. Overall, it appears that parrotfish predation pressure on corals could affect the abundance of preferred coral species, especially massive Porites spp , across the reef gradient. Parrotfish predation on corals may have a more important role on the GBR reefs than previously thought.

  3. Bleached Porites compressa and Montipora capitata corals catabolize δ13C-enriched lipids

    NASA Astrophysics Data System (ADS)

    Grottoli, Andréa G.; Rodrigues, Lisa J.

    2011-09-01

    Corals rely on stored energy reserves (i.e., lipids, carbohydrates, and protein) to survive bleaching events. To better understand the physiological implications of coral bleaching on lipid catabolism and/or synthesis, we measured the δ13C of coral total lipids (δ13CTL) in experimentally bleached (treatment) and non-bleached (control) Porites compressa and Montipora capitata corals immediately after bleaching and after 1.5 and 4 months of recovery on the reef. Overall δ13CTL values in treatment corals were significantly lower than in control corals because of a 1.9 and 3.4‰ decrease in δ13CTL immediately after bleaching in P. compressa and M. capitata, respectively. The decrease in δ13CTL coincided with decreases in total lipid concentration, indicating that corals catabolized δ13C-enriched lipids. Since storage lipids are primarily depleted during bleaching, we hypothesize that they are isotopically enriched relative to other lipid classes. This work further helps clarify our understanding of changes to coral metabolism and biogeochemistry when bleached and helps elucidate how lipid classes may influence recovery from bleaching and ultimately coral survival.

  4. The effect of changes in sea surface temperature on linear growth of Porites coral in Ambon Bay

    SciTech Connect

    Corvianawatie, Corry Putri, Mutiara R.; Cahyarini, Sri Y.

    2015-09-30

    Coral is one of the most important organisms in the coral reef ecosystem. There are several factors affecting coral growth, one of them is changes in sea surface temperature (SST). The purpose of this research is to understand the influence of SST variability on the annual linear growth of Porites coral taken from Ambon Bay. The annual coral linear growth was calculated and compared to the annual SST from the Extended Reconstructed Sea Surface Temperature version 3b (ERSST v3b) model. Coral growth was calculated by using Coral X-radiograph Density System (CoralXDS) software. Coral sample X-radiographs were used as input data. Chronology was developed by calculating the coral’s annual growth bands. A pair of high and low density banding patterns observed in the coral’s X-radiograph represent one year of coral growth. The results of this study shows that Porites coral extents from 2001-2009 and had an average growth rate of 1.46 cm/year. Statistical analysis shows that the annual coral linear growth declined by 0.015 cm/year while the annual SST declined by 0.013°C/year. SST and the annual linear growth of Porites coral in the Ambon Bay is insignificantly correlated with r=0.304 (n=9, p>0.05). This indicates that annual SST variability does not significantly influence the linear growth of Porites coral from Ambon Bay. It is suggested that sedimentation load, salinity, pH or other environmental factors may affect annual linear coral growth.

  5. Cellular physiological effects of the MV Kyowa violet fuel-oil spill on the hard coral, Porites lobata.

    PubMed

    Downs, Craig A; Richmond, Robert H; Mendiola, Woon Jaye; Rougée, Luc; Ostrander, Gary K

    2006-12-01

    The grounding of the Merchant Vessel (MV) Kyowa Violet on a coral reef near Yap, Federated States of Micronesia, in December 2002 resulted in the release of an estimated 55,000 to 80,000 gallons of intermediate fuel oil grade 180. The immediate impact was the widespread coating of mangroves and the intertidal zone along more than 8 km of coastline. Of greater concern, however, was the partitioning of the fuel oil in the water column, leading to chronic exposure of organisms in the ecosystem for a considerable period after the initial event. Herein, we report on our examination of one coral species, Porites lobata, nearly three months after the initial exposure. We investigated whether changes in cellular physiology were consistent with the pathological profile that results from the interaction of corals with polycyclic aromatic hydrocarbons, the principal constituent of fuel oil. Specifically, we document, to our knowledge for the first time, changes in the cellular physiological condition of an exposed coral population affected by a fuel-oil spill. We also provide evidence that the observed changes are consistent with a recent exposure to fuel oil, as evidenced by the presence of characteristic cellular lesions attributed to polycyclic aromatic hydrocarbons. Finally, our data support a model for a mechanistic relationship between the cellular pathological profile of the coral and a recent petroleum exposure, such as the MV Kyowa Violet fuel oil spill.

  6. Autotrophic and heterotrophic responses of the coral Porites lutea to large amplitude internal waves.

    PubMed

    Pacherres, Cesar O; Schmidt, Gertraud M; Richter, Claudio

    2013-12-01

    Large amplitude internal waves (LAIW) cause frequent and severe changes in the physico-chemical environment of Andaman Sea coral reefs and are a potentially important source of disturbance for corals. To explore the coral response to LAIW, prey capture disposition and photosynthesis were investigated in relation to changes in seawater temperature, pH, flow speed and food availability in LAIW simulation studies under controlled laboratory conditions, using Porites lutea as a model organism. Although food presence stimulated polyp expansion, we found an overriding effect of low temperature (19°C) causing retraction of the coral polyps into their calices, particularly when pH was altered concomitantly. Decreases in pH alone, however, caused the expansion of the polyps. The exposure history of the colonies played a crucial role in coral responses: prior field exposure to LAIW yielded lower retraction levels than in LAIW-inexperienced corals, suggesting acclimatization. Low temperature (19°C) exposure did not seem to influence the photosynthetic performance, but LAIW-experienced corals showed higher values of maximum dark-adapted quantum yield (Fv/Fm) of photosystem II than LAIW-inexperienced controls. Collectively, these data suggest that P. lutea, the dominant hermatypic coral in the Andaman Sea, can acclimatize to extreme changes in its abiotic environment by modulating its mixotrophic nutrition, through polyp expansion and potential feeding, as well as its photosynthetic efficiency.

  7. Coral growth and bioerosion of Porites lutea in response to large amplitude internal waves.

    PubMed

    Schmidt, Gertraud Maria; Richter, Claudio

    2013-01-01

    The Similan Islands (Thailand) in the Andaman Sea are exposed to large amplitude internal waves (LAIW), as evidenced by i.a. abrupt fluctuations in temperature of up to 10°C at supertidal frequencies. Although LAIW have been shown to affect coral composition and framework development in shallow waters, the role of LAIW on coral growth is so far unknown. We carried out a long-term transplant experiment with live nubbins and skeleton slabs of the dominating coral Porites lutea to assess the net growth and bioerosion in LAIW-exposed and LAIW-protected waters. Depth-related, seasonal and interannual differences in LAIW-intensities on the exposed western sides of the islands allowed us to separate the effect of LAIW from other possible factors (e.g. monsoon) affecting the corals. Coral growth and bioerosion were inversely related to LAIW intensity, and positively related to coral framework development. Accretion rates of calcareous fouling organisms on the slabs were negligible compared to bioerosion, reflecting the lack of a true carbonate framework on the exposed W faces of the Similan Islands. Our findings show that LAIW may play an important, yet so far overlooked, role in controlling coral growth in tropical waters.

  8. Clustered parrotfish feeding scars trigger partial coral mortality of massive Porites colonies on the inshore Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Welsh, J. Q.; Bonaldo, R. M.; Bellwood, D. R.

    2015-03-01

    Coral predation by parrotfishes can cause damage to coral colonies, but research into the dynamics of their feeding scars on Indo-Pacific corals is limited. We monitored feeding scars of the parrotfish Chlorurus microrhinos on massive Porites colonies at Orpheus Island (inshore Great Barrier Reef) over 4 months. Of the 30 marks monitored, 11 were single feeding scars, which all healed completely. The remaining 19 feeding marks consisted of clusters of scars. Eight began to recover, while 11 increased in size by 1,576 ± 252 % (mean ± SE). A logistic regression predicted that a single feeding scar on a Porites colony had a 97 % probability of healing; however, where more than three feeding scars were present, this dropped below 50 %. As excavating parrotfishes in the Indo-Pacific often take multiple focused bites, they may have a significant impact on the growth and mortality of massive Porites colonies at Orpheus Island.

  9. Model suggests potential for Porites coral population recovery after removal of anthropogenic disturbance (Luhuitou, Hainan, South China Sea)

    NASA Astrophysics Data System (ADS)

    Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang

    2016-09-01

    Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan’s coral reefs.

  10. Model suggests potential for Porites coral population recovery after removal of anthropogenic disturbance (Luhuitou, Hainan, South China Sea)

    PubMed Central

    Zhao, Meixia; Riegl, Bernhard; Yu, Kefu; Shi, Qi; Zhang, Qiaomin; Liu, Guohui; Yang, Hongqiang; Yan, Hongqiang

    2016-01-01

    Population models are important for resource management and can inform about potential trajectories useful for planning purposes, even with incomplete monitoring data. From size frequency data on Luhuitou fringing reef, Hainan, South China Sea, a matrix population model of massive corals (Porites lutea) was developed and trajectories over 100 years under no disturbance and random disturbances were projected. The model reflects a largely open population of Porites lutea, with low local recruitment and preponderance of imported recruitment. Under no further disturbance, the population of Porites lutea will grow and its size structure will change from predominance of small size classes to large size classes. Therewith, total Porites cover will increase. Even under random disturbances every 10 to 20 years, the Porites population could remain viable, albeit at lower space cover. The models suggest recovery at Luhuitou following the removal of chronic anthropogenic disturbance. Extending the area of coral reef reserves to protect the open coral community and the path of connectivity is advisable and imperative for the conservation of Hainan’s coral reefs. PMID:27622504

  11. Surviving coral bleaching events: porites growth anomalies on the Great Barrier Reef.

    PubMed

    Cantin, Neal E; Lough, Janice M

    2014-01-01

    Mass coral bleaching affected large parts of the Great Barrier Reef (GBR) in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (<50 cm) cores were collected from apparently healthy, surviving Porites colonies, from reefs in the central GBR (18-19°S) that have documented observations of widespread bleaching. Sites included inshore (Nelly Bay, Pandora Reef), annually affected by freshwater flood events, midshelf (Rib Reef), only occasionally affected by freshwater floods and offshore (Myrmidon Reef) locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification) were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980-2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans.

  12. Surviving Coral Bleaching Events: Porites Growth Anomalies on the Great Barrier Reef

    PubMed Central

    Cantin, Neal E.; Lough, Janice M.

    2014-01-01

    Mass coral bleaching affected large parts of the Great Barrier Reef (GBR) in 1998 and 2002. In this study, we assessed if signatures of these major thermal stress events were recorded in the growth characteristics of massive Porites colonies. In 2005 a suite of short (<50 cm) cores were collected from apparently healthy, surviving Porites colonies, from reefs in the central GBR (18–19°S) that have documented observations of widespread bleaching. Sites included inshore (Nelly Bay, Pandora Reef), annually affected by freshwater flood events, midshelf (Rib Reef), only occasionally affected by freshwater floods and offshore (Myrmidon Reef) locations primarily exposed to open ocean conditions. Annual growth characteristics (extension, density and calcification) were measured in 144 cores from 79 coral colonies and analysed over the common 24-year period, 1980–2003. Visual examination of the annual density bands revealed growth hiatuses associated with the bleaching years in the form of abrupt decreases in annual linear extension rates, high density stress bands and partial mortality. The 1998 mass-bleaching event reduced Porites calcification by 13 and 18% on the two inshore locations for 4 years, followed by recovery to baseline calcification rates in 2002. Evidence of partial mortality was apparent in 10% of the offshore colonies in 2002; however no significant effects of the bleaching events were evident in the calcification rates at the mid shelf and offshore sites. These results highlight the spatial variation of mass bleaching events and that all reef locations within the GBR were not equally stressed by the 1998 and 2002 mass bleaching events, as some models tend to suggest, which enabled recovery of calcification on the GBR within 4 years. The dynamics in annual calcification rates and recovery displayed here should be used to improve model outputs that project how coral calcification will respond to ongoing warming of the tropical oceans. PMID:24586377

  13. Influence of land development on Holocene Porites coral calcification at Nagura Bay, Ishigaki Island, Japan.

    PubMed

    Sowa, Kohki; Watanabe, Tsuyoshi; Kan, Hironobu; Yamano, Hiroya

    2014-01-01

    To evaluate the relationships between coral calcification, thermal stress, and sedimentation and eutrophication linked to human impact (hereafter referred to as "land development") by river discharge, we analyzed growth characteristics in the context of a paleoenvironment that was reconstructed from geochemical signals in modern and fossil (1.2 cal kyr BP and 3.5 cal kyr BP, respectively) massive Porites corals from Nagura Bay ("Nagura") and from modern Porites corals from the estuary of the Todoroki River, Shiraho Reef ("Todoroki"). Both sites are on Ishigaki Island, Japan, and Nagura is located approximately 12 km west of Todoroki. At Nagura, the individual corals provide time windows of 13 (modern), 10 (1.2 cal kyr BP), and 38 yr in length (3.5 cal kyr BP). Here, we present the coral annual calcification for Nagura and Todoroki, and (bi) monthly resolved records of Sr/Ca (a proxy of sea surface temperature (SST)) and Ba/Ca (a proxy of sedimentation and nutrients related to land development) for Nagura. At Nagura, the winter SST was cooler by 2.8°C in the 1.2 cal kyr BP, and the annual and winter SSTs in the 3.5 cal kyr BP were cooler by 2.6°C and 4.6°C, respectively. The annual periodicity of Ba/Ca in modern coral is linked to river discharge and is associated with land development including sugar cane cultivation. Modern coral calcification also has declined with SST warming and increasing Ba/Ca peaks in winter. However, calcification of fossil corals does not appear to have been influenced by variations in Sr/Ca and Ba/Ca. Modern coral growth characteristics at Nagura and Todoroki indicate that coral growth is both spatially and temporally influenced by river discharge and land development. At Nagura, our findings suggest that land development induces negative thermal sensitivity for calcification in winter due to sugar cane harvest, which is a specifically modern phenomenon.

  14. Influence of Land Development on Holocene Porites Coral Calcification at Nagura Bay, Ishigaki Island, Japan

    PubMed Central

    Sowa, Kohki; Watanabe, Tsuyoshi; Kan, Hironobu; Yamano, Hiroya

    2014-01-01

    To evaluate the relationships between coral calcification, thermal stress, and sedimentation and eutrophication linked to human impact (hereafter referred to as “land development”) by river discharge, we analyzed growth characteristics in the context of a paleoenvironment that was reconstructed from geochemical signals in modern and fossil (1.2 cal kyr BP and 3.5 cal kyr BP, respectively) massive Porites corals from Nagura Bay (“Nagura”) and from modern Porites corals from the estuary of the Todoroki River, Shiraho Reef (“Todoroki”). Both sites are on Ishigaki Island, Japan, and Nagura is located approximately 12 km west of Todoroki. At Nagura, the individual corals provide time windows of 13 (modern), 10 (1.2 cal kyr BP), and 38 yr in length (3.5 cal kyr BP). Here, we present the coral annual calcification for Nagura and Todoroki, and (bi) monthly resolved records of Sr/Ca (a proxy of sea surface temperature (SST)) and Ba/Ca (a proxy of sedimentation and nutrients related to land development) for Nagura. At Nagura, the winter SST was cooler by 2.8°C in the 1.2 cal kyr BP, and the annual and winter SSTs in the 3.5 cal kyr BP were cooler by 2.6°C and 4.6°C, respectively. The annual periodicity of Ba/Ca in modern coral is linked to river discharge and is associated with land development including sugar cane cultivation. Modern coral calcification also has declined with SST warming and increasing Ba/Ca peaks in winter. However, calcification of fossil corals does not appear to have been influenced by variations in Sr/Ca and Ba/Ca. Modern coral growth characteristics at Nagura and Todoroki indicate that coral growth is both spatially and temporally influenced by river discharge and land development. At Nagura, our findings suggest that land development induces negative thermal sensitivity for calcification in winter due to sugar cane harvest, which is a specifically modern phenomenon. PMID:24586393

  15. Simulation of the effects of Acanthaster planci on the population structure of massive corals in the genus Porites: evidence of population resilience?

    NASA Astrophysics Data System (ADS)

    Done, Terence J.

    1987-10-01

    Scleractinian corals in the genus Porites are slow growing, can live for centuries, and can attain great size. In these respects they differ from the majority of coral species, which grow faster and live for years to decades. The predatory starfish Acanthaster planci L. feeds on a wide range of coral species including Porites spp., and during outbreaks in its populations, causes high coral mortality and injury over much of the affected reefs. Because they are slow growing and because recent outbreaks of the starfish occurred only 15 years apart, it may be argued that the Porites populations on affected reefs will be sent into a period of prolonged decline. The present study uses a size stage model of the transition matrix type to predict effects of starfish outbreaks of various frequencies on Porites populations. A transition matrix characterizing the mortality and injury caused in different Porites size classes at John Brewer Reef during an “outbreak” year was determined from field data. Transition matrices for “non-outbreak” years were constructed on the basis of realistic growth rates and postulated survivorship and recruitment schedules. The medium term (˜100 years) effects of outbreaks were simulated by alternation of a single iteration of the outbreak matrix with many iterations of each non-outbreak matrix. By varying the interval between simulated outbreaks it was possible to define combinations of growth rate, survivorship and recruitment which were viable for various outbreak intervals. Simulations based on estimates of the initial size frequency distribution, recruitment rates and colony growth rates for the John Brewer Reef population predicted that the population would remain viable in the face of outbreaks every 15 years only if juvenile and adult survivorship were high. However, within the range of colony growth rates known to occur throughout the Great Barrier Reef and at recruitment rates of the same order as those estimated in the field

  16. A snapshot of a coral "holobiont": a transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae.

    PubMed

    Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto

    2014-01-01

    Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire "coral holobiont". We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses

  17. The cumulative impact of annual coral bleaching can turn some coral species winners into losers.

    PubMed

    Grottoli, Andréa G; Warner, Mark E; Levas, Stephen J; Aschaffenburg, Matthew D; Schoepf, Verena; McGinley, Michael; Baumann, Justin; Matsui, Yohei

    2014-12-01

    Mass coral bleaching events caused by elevated seawater temperatures result in extensive coral loss throughout the tropics, and are projected to increase in frequency and severity. If bleaching becomes an annual event later in this century, more than 90% of coral reefs worldwide may be at risk of long-term degradation. While corals can recover from single isolated bleaching and can acclimate to recurring bleaching events that are separated by multiple years, it is currently unknown if and how they will survive and possibly acclimatize to annual coral bleaching. Here, we demonstrate for the first time that annual coral bleaching can dramatically alter thermal tolerance in Caribbean corals. We found that high coral energy reserves and changes in the dominant algal endosymbiont type (Symbiodinium spp.) facilitated rapid acclimation in Porites divaricata, whereas low energy reserves and a lack of algal phenotypic plasticity significantly increased susceptibility in Porites astreoides to bleaching the following year. Phenotypic plasticity in the dominant endosymbiont type of Orbicella faveolata did not prevent repeat bleaching, but may have facilitated rapid recovery. Thus, coral holobiont response to an isolated single bleaching event is not an accurate predictor of its response to bleaching the following year. Rather, the cumulative impact of annual coral bleaching can turn some coral species 'winners' into 'losers', and can also facilitate acclimation and turn some coral species 'losers' into 'winners'. Overall, these findings indicate that cumulative impact of annual coral bleaching could result in some species becoming increasingly susceptible to bleaching and face a long-term decline, while phenotypically plastic coral species will acclimatize and persist. Thus, annual coral bleaching and recovery could contribute to the selective loss of coral diversity as well as the overall decline of coral reefs in the Caribbean. © 2014 John Wiley & Sons Ltd.

  18. Growth characteristics of the reef-building coral Porites astreoides under different environmental conditions in the Western Atlantic

    NASA Astrophysics Data System (ADS)

    Elizalde-Rendón, E. M.; Horta-Puga, G.; González-Diaz, P.; Carricart-Ganivet, J. P.

    2010-09-01

    Skeletal extension (3.67 ± 0.65 mm year-1), density (1.49 ± 0.16 g cm-3), and calcification rate (0.55 ± 0.12 g cm-2 year-1) were determined using annual growth bands of Porites astreoides skeletons collected in three different reef systems in the Western Atlantic. The corals showed a low-density annual growth band at their apex, and seasonal timing of low and high-density band formation in P. astreoides appears to be similar at the three study sites in the Western Atlantic. The range of values presented here, for the three growth variables, spans the known range of skeletal-growth variability in P. astreoides for the Western Atlantic. The relationships between the growth parameters were similar to those previously described by other authors for massive Porites species from the Indo-Pacific, suggesting that P. astreoides has the same growth strategy, primarily investing calcification resources in extension rate. It is noteworthy that the P. astreoides population growing off the northwest coast of Cuba had similar growth characteristics as populations from the Caribbean region which were different from populations in the Gulf of Mexico, which seem to be isolated and adapted for growth at higher average sea-surface temperatures.

  19. Hard coral (Porites lobata) extracts and homarine on cytochrome P450 expression in Hawaiian butterflyfishes with different feeding strategies.

    PubMed

    Maldonado, Aileen; Johnson, Amber; Gochfeld, Deborah; Slattery, Marc; Ostrander, Gary K; Bingham, Jon-Paul; Schlenk, Daniel

    2016-01-01

    Dietary specialists tend to be less susceptible to the effects of chemical defenses produced by their prey compared to generalist predators that feed upon a broader range of prey species. While many researchers have investigated the ability of insects to detoxify dietary allelochemicals, little research has been conducted in marine ecosystems. We investigated metabolic detoxification pathways in three species of butterflyfishes: the hard coral specialist feeder, Chaetodon multicinctus, and two generalist feeders, Chaetodon auriga and Chaetodon kleinii. Each species was fed tissue homogenate of the hard coral Porites lobata or the feeding deterrent compound homarine (found in the coral extract), and the expression and catalytic activity of cytochrome P450 (CYP) 3A-like and CYP2-like enzymes were examined after one-week of treatment. The P. lobata homogenate significantly induced content and catalytic activity of CYP2-like and CYP3A-like forms, by 2-3 fold and by 3-9 fold, respectively, in C. multicinctus. Homarine caused a significant decrease of CYP2-like and CYP3A-like proteins at the high dose in C. kleinii and 60-80% mortality in that species. Homarine also induced CYP3A-like content by 3-fold and catalytic activity by 2-fold in C. auriga, while causing non-monotonic increases in CYP2-like and CYP3A-like catalytic activity in C. multicinctus. Our results indicate that dietary exposure to coral homogenates and the feeding deterrent constituent within these homogenates caused species-specific modulation of detoxification enzymes consistent with the prey selection strategies of generalist and specialist butterflyfishes. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Diversity and distribution of Actinobacteria associated with reef coral Porites lutea

    PubMed Central

    Kuang, Weiqi; Li, Jie; Zhang, Si; Long, Lijuan

    2015-01-01

    Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial and temporal distribution of actinobacteria have been rarely documented. In this study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites lutea and in the surrounding seawater were examined every 3 months for 1 year on Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described families and 10 unnamed families were determined in the populations, and 12 genera were firstly detected in corals. The Actinobacteria diversity was significantly different between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by the seawater and coral samples. Redundancy and hierarchical cluster analyses were performed to analyze the correlation between the variations of actinobacteria population within the divergent compartments of P. lutea, seasonal changes, and environmental factors. The actinobacteria communities in the same coral compartment tended to cluster together. Even so, an extremely small fraction of OTUs was common in all three P. lutea compartments. Analysis of the relationship between actinobacteria assemblages and the environmental parameters showed that several genera were closely related to specific environmental factors. This study highlights that coral-associated actinobacteria populations are highly diverse, and spatially structured within P. lutea, and they are distinct from which in the ambient seawater. PMID:26539166

  1. Diversity and distribution of Actinobacteria associated with reef coral Porites lutea.

    PubMed

    Kuang, Weiqi; Li, Jie; Zhang, Si; Long, Lijuan

    2015-01-01

    Actinobacteria is a ubiquitous major group in coral holobiont. The diversity and spatial and temporal distribution of actinobacteria have been rarely documented. In this study, diversity of actinobacteria associated with mucus, tissue and skeleton of Porites lutea and in the surrounding seawater were examined every 3 months for 1 year on Luhuitou fringing reef. The population structures of the P. lutea-associated actinobacteria were analyzed using phylogenetic analysis of 16S rRNA gene clone libraries, which demonstrated highly diverse actinobacteria profiles in P. lutea. A total of 25 described families and 10 unnamed families were determined in the populations, and 12 genera were firstly detected in corals. The Actinobacteria diversity was significantly different between the P. lutea and the surrounding seawater. Only 10 OTUs were shared by the seawater and coral samples. Redundancy and hierarchical cluster analyses were performed to analyze the correlation between the variations of actinobacteria population within the divergent compartments of P. lutea, seasonal changes, and environmental factors. The actinobacteria communities in the same coral compartment tended to cluster together. Even so, an extremely small fraction of OTUs was common in all three P. lutea compartments. Analysis of the relationship between actinobacteria assemblages and the environmental parameters showed that several genera were closely related to specific environmental factors. This study highlights that coral-associated actinobacteria populations are highly diverse, and spatially structured within P. lutea, and they are distinct from which in the ambient seawater.

  2. Depth-Independent Reproduction in the Reef Coral Porites astreoides from Shallow to Mesophotic Zones

    PubMed Central

    Holstein, Daniel M.; Smith, Tyler B.; Paris, Claire B.

    2016-01-01

    Mesophotic coral ecosystems between 30–150 m may be important refugia habitat for coral reefs and associated benthic communities from climate change and coastal development. However, reduced light at mesophotic depths may present an energetic challenge to the successful reproduction of light-dependent coral organisms, and limit this refugia potential. Here, the relationship of depth and fecundity was investigated in a brooding depth-generalist scleractinian coral, Porites astreoides from 5–37 m in the U.S. Virgin Islands (USVI) using paraffin tissue histology. Despite a trend of increasing planulae production with depth, no significant differences were found in mean peak planulae density between shallow, mid-depth and mesophotic sites. Differential planulae production over depth is thus controlled by P. astreoides coral cover, which peaks at 10 m and ~35 m in the USVI. These results suggest that mesophotic ecosystems are reproductive refuge for P. astreoides in the USVI, and may behave as refugia for P. astreoides metapopulations providing that vertical larval exchanges are viable. PMID:26789408

  3. Depth-Independent Reproduction in the Reef Coral Porites astreoides from Shallow to Mesophotic Zones.

    PubMed

    Holstein, Daniel M; Smith, Tyler B; Paris, Claire B

    2016-01-01

    Mesophotic coral ecosystems between 30-150 m may be important refugia habitat for coral reefs and associated benthic communities from climate change and coastal development. However, reduced light at mesophotic depths may present an energetic challenge to the successful reproduction of light-dependent coral organisms, and limit this refugia potential. Here, the relationship of depth and fecundity was investigated in a brooding depth-generalist scleractinian coral, Porites astreoides from 5-37 m in the U.S. Virgin Islands (USVI) using paraffin tissue histology. Despite a trend of increasing planulae production with depth, no significant differences were found in mean peak planulae density between shallow, mid-depth and mesophotic sites. Differential planulae production over depth is thus controlled by P. astreoides coral cover, which peaks at 10 m and ~35 m in the USVI. These results suggest that mesophotic ecosystems are reproductive refuge for P. astreoides in the USVI, and may behave as refugia for P. astreoides metapopulations providing that vertical larval exchanges are viable.

  4. Diagenesis and geochemistry of porites corals from Papua New Guinea - Implications for paleoclimate reconstruction

    NASA Astrophysics Data System (ADS)

    McGregor, Helen V.; Gagan, Michael K.

    2003-06-01

    Coral proxy records of sea surface temperature (SST) and hydrological balance have become important tools in the field of tropical paleoclimatology. However, coral aragonite is subject to post-depositional diagenetic alteration in both the marine and vadose environments. To understand the impact of diagenesis on coral climate proxies, two mid-Holocene Porites corals from raised reefs on Muschu Island, Papua New Guinea, were analysed for Sr/Ca, δ 18O, and δ 13C along transects from 100% aragonite to 100% calcite. Thin-section analysis showed a characteristic vadose zone diagenetic sequence, beginning with leaching of primary aragonite and fine calcite overgrowths, transitional to calcite void filling and neomorphic, fabric selective replacement of the coral skeleton. Average calcite Sr/Ca and δ 18O values were lower than those for coral aragonite, decreasing from 0.0088 to 0.0021 and -5.2 to -8.1‰, respectively. The relatively low Sr/Ca of the secondary calcite reflects the Sr/Ca of dissolving phases and the large difference between aragonite and calcite Sr/Ca partition coefficients. The decrease in δ 18O of calcite relative to coral aragonite is a function of the δ 18O of precipitation. Carbon-isotope ratios in secondary calcite are variable, though generally lower relative to aragonite, ranging from -2.5 to -10.4%. The variability of δ 13C in secondary calcite reflects the amount of soil CO 2 contributing 13C-depleted carbon to the precipitating fluids. Diagenesis has a greater impact on Sr/Ca than on δ 18O; the calcite compositions reported here convert to SST anomalies of 115°C and 14°C, respectively. Based on calcite Sr/Ca compositions in this study and in the literature, the sensitivity of coral Sr/Ca-SST to vadose-zone calcite diagenesis is 1.1 to 1.5°C per percent calcite. In contrast, the rate of change in coral δ 18O-SST is relatively small (-0.2 to 0.2°C per percent calcite). We show that large shifts in δ 18O, reported for mid-Holocene and

  5. Heavy metal pollution recorded in Porites corals from Daya Bay, northern South China Sea.

    PubMed

    Chen, Tian-Ran; Yu, Ke-Fu; Li, Shu; Price, Gilbert J; Shi, Qi; Wei, Gang-Jian

    2010-01-01

    We examined metal-to-calcium ratios (Fe/Ca, Mn/Ca and Zn/Ca) in the growth bands of two Porites corals from Daya Bay, South China Sea, in order to trace long-term trends in local ambient pollution levels. Although Fe and Mn did not show any obvious increasing trends over 32 years in the period 1976-2007, peak values of Fe/Ca and Mn/Ca occurred in the mid-late 1980s, temporally-coeval with the local construction of a nuclear power station. Furthermore, both corals showed rapid increases in Zn concentrations over the past 14 years (1994-2007), most likely due to increases in domestic and industrial sewage discharge. The Daya Bay corals had higher concentrations of metals than other reported corals from both pristine and seriously polluted locations, suggesting that acute (Fe and Mn) and chronic (Zn) heavy metal contamination has occurred locally over the past approximately 32 years. 2010 Elsevier Ltd. All rights reserved.

  6. Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas

    PubMed Central

    Hadaidi, Ghaida; Röthig, Till; Yum, Lauren K.; Ziegler, Maren; Arif, Chatchanit; Roder, Cornelia; Burt, John; Voolstra, Christian R.

    2017-01-01

    Coral reefs are subject to coral bleaching manifested by the loss of endosymbiotic algae from coral host tissue. Besides algae, corals associate with bacteria. In particular, bacteria residing in the surface mucus layer are thought to mediate coral health, but their role in coral bleaching is unknown. We collected mucus from bleached and healthy Porites lobata colonies in the Persian/Arabian Gulf (PAG) and the Red Sea (RS) to investigate bacterial microbiome composition using 16S rRNA gene amplicon sequencing. We found that bacterial community structure was notably similar in bleached and healthy corals, and the most abundant bacterial taxa were identical. However, fine-scale differences in bacterial community composition between the PAG and RS were present and aligned with predicted differences in sulfur- and nitrogen-cycling processes. Based on our data, we argue that bleached corals benefit from the stable composition of mucus bacteria that resemble their healthy coral counterparts and presumably provide a conserved suite of protective functions, but monitoring of post-bleaching survival is needed to further confirm this assumption. Conversely, fine-scale site-specific differences highlight flexibility of the bacterial microbiome that may underlie adjustment to local environmental conditions and contribute to the widespread success of Porites lobata. PMID:28361923

  7. Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas.

    PubMed

    Hadaidi, Ghaida; Röthig, Till; Yum, Lauren K; Ziegler, Maren; Arif, Chatchanit; Roder, Cornelia; Burt, John; Voolstra, Christian R

    2017-03-31

    Coral reefs are subject to coral bleaching manifested by the loss of endosymbiotic algae from coral host tissue. Besides algae, corals associate with bacteria. In particular, bacteria residing in the surface mucus layer are thought to mediate coral health, but their role in coral bleaching is unknown. We collected mucus from bleached and healthy Porites lobata colonies in the Persian/Arabian Gulf (PAG) and the Red Sea (RS) to investigate bacterial microbiome composition using 16S rRNA gene amplicon sequencing. We found that bacterial community structure was notably similar in bleached and healthy corals, and the most abundant bacterial taxa were identical. However, fine-scale differences in bacterial community composition between the PAG and RS were present and aligned with predicted differences in sulfur- and nitrogen-cycling processes. Based on our data, we argue that bleached corals benefit from the stable composition of mucus bacteria that resemble their healthy coral counterparts and presumably provide a conserved suite of protective functions, but monitoring of post-bleaching survival is needed to further confirm this assumption. Conversely, fine-scale site-specific differences highlight flexibility of the bacterial microbiome that may underlie adjustment to local environmental conditions and contribute to the widespread success of Porites lobata.

  8. Induction of Larval Settlement in the Reef Coral Porites astreoides by a Cultivated Marine Roseobacter Strain.

    PubMed

    Sharp, K H; Sneed, J M; Ritchie, K B; Mcdaniel, L; Paul, V J

    2015-04-01

    Successful larval settlement and recruitment by corals is critical for the survival of coral reef ecosystems. Several closely related strains of γ-proteobacteria have been identified as cues for coral larval settlement, but the inductive properties of other bacterial taxa naturally occurring in reef ecosystems have not yet been explored. In this study, we assayed bacterial strains representing taxonomic groups consistently detected in corals for their ability to influence larval settlement in the coral Porites astreoides. We identified one α-proteobacterial strain, Roseivivax sp. 46E8, which significantly increased larval settlement in P. astreoides. Logarithmic growth phase (log phase) cell cultures of Roseivivax sp. 46E8 and filtrates (0.22μm) from log phase Roseivivax sp. 46E8 cultures significantly increased settlement, suggesting that an extracellular settlement factor is produced during active growth phase. Filtrates from log phase cultures of two other bacterial isolates, Marinobacter sp. 46E3, and Cytophaga sp. 46B6, also significantly increased settlement, but the cell cultures themselves did not. Monospecific biofilms of the three strains did not result in significant increases in larval settlement. Organic and aqueous/methanol extracts of Roseivivax sp. 46E8 cultures did not affect larval settlement. Examination of filtrates from cell cultures showed that Roseivivax sp. 46E8 spontaneously generated virus-like particles in log and stationary phase growth. Though the mechanism of settlement enhancement by Roseivivax sp. 46E8 is not yet elucidated, our findings point to a new aspect of coral-Roseobacter interactions that should be further investigated, especially in naturally occurring, complex microbial biofilms on reef surfaces.

  9. Vibrational spectroscopic characterization of growth bands in Porites coral from South China Sea

    NASA Astrophysics Data System (ADS)

    Song, Yinxian; Yu, Kefu; Ayoko, Godwin A.; Frost, Ray L.; Shi, Qi; Feng, Yuexing; Zhao, Jianxin

    2013-08-01

    A series of samples from different growth bands of Porites coral skeleton were studied using Raman, infrared reflectance methods. The Raman spectra proved that skeleton samples from different growth bands have the same mineral phase as aragonite, but a band at 133 cm-1 for the top layer shows a transition from ˜120 cm-1 for vaterite to ˜141 cm-1 for aragonite. It is inferred that the vaterite should be the precursor of aragonite of coral skeleton. The positional shift in the infrared spectra of the skeleton samples from growth bands correlate significantly to their minor elements (Li, Mg, Sr, Mn, Fe and U) contents. Mg, Sr and U especially have significant negative correlations with the positions of the antisymmetric stretching band ν3 at ˜1469 cm-1. And Li shows a high negative correlation with ν2 band (˜855 cm-1), while Sr and Mn show similar negative correlation with ν4 band (˜712 cm-1). And Mn also shows a negative correlation with ν1 band (˜1082 cm-1). A significantly negative correlation is observed for U with ν1 + ν4 band (˜1786 cm-1). However, Fe shows positive correlation with ν1, ν2, ν3, ν4 and ν1 + ν4 bands shifts, especially a significant correlation with ν1 band (˜1082 cm-1). New insights into the characteristics of coral at different growth bands of skeleton are given in present work.

  10. Trace metal content and micromorphology as proxies for bleaching in the modern coral Porites divaricata

    NASA Astrophysics Data System (ADS)

    Burr, S. A.

    2004-05-01

    Morphology and trace metal content of scleractinian corals have previously been used as proxies for past environmental conditions, but no proxy for the health of ancient corals currently exists. Skeletal material associated with bleached and non-bleached tissue from Recent Porites divaricata was analyzed with SEM and ICPAES. Differences in both morphology and trace metal content were found in samples associated with bleached and non-bleached tissue. SEM analysis showed skeletal corallites associated with unbleached tissue have well-defined septal denticles. Skeletal corallites associated with bleached tissue have weakly-defined septal denticles, many appearing rudimentary. Significanly higher trace metal/Ca ratios were found with ICPAES for Ag, As, Cd, and Co between skeletal material associated with bleached and non-bleached tissue. The presence of these differences suggests the processes of skeletogenesis and the uptake and deposition of trace metals in the scleractinian skeleton are affected by bleaching. Such indicators might be observed in the fossil record as indicators of past environmental stress and bleaching in scleractinian corals.

  11. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides

    PubMed Central

    Sharp, Koty H; Distel, Dan; Paul, Valerie J

    2012-01-01

    In this study, we examine microbial communities of early developmental stages of the coral Porites astreoides by sequence analysis of cloned 16S rRNA genes, terminal restriction fragment length polymorphism (TRFLP), and fluorescence in situ hybridization (FISH) imaging. Bacteria are associated with the ectoderm layer in newly released planula larvae, in 4-day-old planulae, and on the newly forming mesenteries surrounding developing septa in juvenile polyps after settlement. Roseobacter clade-associated (RCA) bacteria and Marinobacter sp. are consistently detected in specimens of P. astreoides spanning three early developmental stages, two locations in the Caribbean and 3 years of collection. Multi-response permutation procedures analysis on the TRFLP results do not support significant variation in the bacterial communities associated with P. astreoides larvae across collection location, collection year or developmental stage. The results are the first evidence of vertical transmission (from parent to offspring) of bacteria in corals. The results also show that at least two groups of bacterial taxa, the RCA bacteria and Marinobacter, are consistently associated with juvenile P. astreoides against a complex background of microbial associations, indicating that some components of the microbial community are long-term associates of the corals and may impact host health and survival. PMID:22113375

  12. Regional decline in growth rates of massive Porites corals in Southeast Asia.

    PubMed

    Tanzil, Jani T I; Brown, Barbara E; Dunne, Richard P; Lee, Jen N; Kaandorp, Jaap A; Todd, Peter A

    2013-10-01

    This study reports the first well-replicated analysis of continuous coral growth records from warmer water reefs (mean annual sea surface temperatures (SST) >28.5 °C) around the Thai-Malay Peninsula in Southeast Asia. Based on analyses of 70 colonies sampled from 15 reefs within six locations, region-wide declines in coral calcification rate (ca. 18.6%), linear extension rate (ca. 15.4%) and skeletal bulk density (ca. 3.9%) were observed over a 31-year period from 1980 to 2010. Decreases in calcification and linear extension rates were observed at five of the six locations and ranged from ca. 17.2-21.6% and ca. 11.4-19.6%, respectively, whereas decline in skeletal bulk density was a consequence of significant reductions at only two locations (ca. 6.9% and 10.7%). A significant link between region-wide growth rates and average annual SST was found, and Porites spp. demonstrated a high thermal threshold of ca. 29.4 °C before calcification rates declined. Responses at individual locations within the region were more variable with links between SST and calcification rates being significant at only four locations. Rates of sea temperature warming at locations in the Andaman Sea (Indian Ocean) (ca. 1.3 °C per decade) were almost twice those in the South China Sea (Pacific Ocean) (ca. 0.7 °C per decade), but this was not reflected in the magnitude of calcification declines at corresponding locations. Considering that massive Porites spp. are major reef builders around Southeast Asia, this region-wide growth decline is a cause for concern for future reef accretion rates and resilience. However, this study suggests that the future rates and patterns of change within the region are unlikely to be uniform or dependent solely on the rates of change in the thermal environment. © 2013 John Wiley & Sons Ltd.

  13. Acute and subacute toxicity of the polycyclic aromatic hydrocarbon 1-methylnaphthalene to the shallow-water coral Porites divaricata: Application of a novel exposure protocol.

    PubMed

    Renegar, D Abigail; Turner, Nicholas R; Riegl, Bernhard M; Dodge, Richard E; Knap, Anthony H; Schuler, Paul A

    2017-01-01

    Previous research evaluating hydrocarbon toxicity to corals and coral reefs has generally focused on community-level effects, and results often are not comparable between studies because of variability in hydrocarbon exposure characterization and evaluation of coral health and mortality during exposure. Toxicity of the polycyclic aromatic hydrocarbon 1-methylnaphthalene to the coral Porites divaricata was assessed in a constant exposure toxicity test utilizing a novel toxicity testing protocol uniquely applicable to shallow-water corals, which considered multiple assessment metrics and evaluated the potential for post-exposure mortality and/or recovery. Acute and subacute effects (gross morphological changes, photosynthetic efficiency, mortality, and histologic cellular changes) were evaluated during pre-exposure (4 wk), exposure (48 h), and post-exposure recovery (4 wk) periods. Coral condition scores were used to determine a 48-h median effective concentration of 7442 μg/L. Significant physical and histological changes resulted from exposure to 640 μg/L and 5427 μg/L 1-methylnaphthalene, with a 1-d to 3-d delay in photosynthetic efficiency effects (ΔF/Fm). Pigmented granular amoebocyte area was found to be a potentially useful sublethal endpoint for this species. Coral mortality was used to estimate a 48-h median lethal concentration of 12 123 μg/L. Environ Toxicol Chem 2017;36:212-219. © 2016 SETAC. © 2016 SETAC.

  14. Combining geochemical proxies in Porites coral cores from Chuuk Lagoon, Micronesia

    NASA Astrophysics Data System (ADS)

    Wagner, A. J.; Zivkovic, J.; Anderson, D.; Umling, N. E.

    2013-12-01

    Chuuk Lagoon (7°N, 152°E), part of the Federated States of Micronesia, is centrally located in the Western Pacific Warm Pool (WPWP) and provides an ideal location for studies of El Niño - Southern Oscillation (ENSO) and Warm Pool processes. The WPWP is a key aspect of the global climate, exchanging heat and carbon with the atmosphere as well as with the surrounding ocean and the underlying water masses. Recent work has indicated long-term changes in the WPWP, including freshening and warming, that have been attributed to climate change. This region also experiences large fluctuations in precipitation and temperature due to interannual oscillations in ENSO. Oxygen isotope (δ18O) data from corals provides insight into the isotopic ratio of the water in which the corals grew their aragonitic skeletons. However, the oxygen isotope ratio of seawater varies with both changes in temperature and salinity. Sr/Ca ratios vary with seawater temperature and, when combined with δ18O, can be used to interpret both temperature and salinity variations. Three coral cores from large Porites lobata coral heads were collected from Chuuk Lagoon in June 2011, and one additional core was collected in 2008. Two cores (one in 2008 and another in 2011) were collected near the main island within the lagoon where they are subject to large precipitation and temperature variability due to fluctuations in ENSO. The remaining two cores were collected at the outer edge of the atoll, just inside of the barrier reef. These cores were collected in less than 3 m of water and were constantly being flushed with water from the open ocean warm pool. Seasonal variability in temperature and salinity are expected to be very low at this site. Stable isotope (δ18O, δ13C) and trace element (Sr/Ca) analyses for the upper portion of these cores will be presented and compared to ENSO variability and observed trends in the WPWP. An adjacent lagoon coral is valuable in developing the lagoon history, while the

  15. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Cabral-Tena, Rafael A.; Sánchez, Alberto; Reyes-Bonilla, Héctor; Ruvalcaba-Díaz, Angel H.; Balart, Eduardo F.

    2016-05-01

    variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our results support the hypothesis of a sex-associated difference in skeletal δ18O and δ13C signal, and suggest that environmental conditions and coral growth parameters affect skeletal isotopic signals differently in each sex. Although these findings relate to one gonochoric brooding species, they may have some implications for the more commonly used gonochoric spawning species such as Porites lutea and Porites lobata.

  16. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides.

    PubMed

    Serrano, Xaymara M; Baums, Iliana B; Smith, Tyler B; Jones, Ross J; Shearer, Tonya L; Baker, Andrew C

    2016-02-22

    To date, most assessments of coral connectivity have emphasized long-distance horizontal dispersal of propagules from one shallow reef to another. The extent of vertical connectivity, however, remains largely understudied. Here, we used newly-developed and existing DNA microsatellite loci for the brooding coral Porites astreoides to assess patterns of horizontal and vertical connectivity in 590 colonies collected from three depth zones (≤10 m, 15-20 m and ≥25 m) at sites in Florida, Bermuda and the U.S. Virgin Islands (USVI). We also tested whether maternal transmission of algal symbionts (Symbiodinium spp.) might limit effective vertical connectivity. Overall, shallow P. astreoides exhibited high gene flow between Florida and USVI, but limited gene flow between these locations and Bermuda. In contrast, there was significant genetic differentiation by depth in Florida (Upper Keys, Lower Keys and Dry Tortugas), but not in Bermuda or USVI, despite strong patterns of depth zonation in algal symbionts at two of these locations. Together, these findings suggest that P. astreoides is effective at dispersing both horizontally and vertically despite its brooding reproductive mode and maternal transmission of algal symbionts. In addition, these findings might help explain the ecological success reported for P. astreoides in the Caribbean in recent decades.

  17. Long distance dispersal and vertical gene flow in the Caribbean brooding coral Porites astreoides

    PubMed Central

    Serrano, Xaymara M.; Baums, Iliana B.; Smith, Tyler B.; Jones, Ross J.; Shearer, Tonya L.; Baker, Andrew C.

    2016-01-01

    To date, most assessments of coral connectivity have emphasized long-distance horizontal dispersal of propagules from one shallow reef to another. The extent of vertical connectivity, however, remains largely understudied. Here, we used newly-developed and existing DNA microsatellite loci for the brooding coral Porites astreoides to assess patterns of horizontal and vertical connectivity in 590 colonies collected from three depth zones (≤10 m, 15–20 m and ≥25 m) at sites in Florida, Bermuda and the U.S. Virgin Islands (USVI). We also tested whether maternal transmission of algal symbionts (Symbiodinium spp.) might limit effective vertical connectivity. Overall, shallow P. astreoides exhibited high gene flow between Florida and USVI, but limited gene flow between these locations and Bermuda. In contrast, there was significant genetic differentiation by depth in Florida (Upper Keys, Lower Keys and Dry Tortugas), but not in Bermuda or USVI, despite strong patterns of depth zonation in algal symbionts at two of these locations. Together, these findings suggest that P. astreoides is effective at dispersing both horizontally and vertically despite its brooding reproductive mode and maternal transmission of algal symbionts. In addition, these findings might help explain the ecological success reported for P. astreoides in the Caribbean in recent decades. PMID:26899614

  18. Comprehensive characterization of skeletal tissue growth anomalies of the finger coral Porites compressa

    NASA Astrophysics Data System (ADS)

    Domart-Coulon, Isabelle J.; Traylor-Knowles, Nikki; Peters, Esther; Elbert, David; Downs, Craig A.; Price, Kathy; Stubbs, Joanne; McLaughlin, Shawn; Cox, Evelyn; Aeby, Greta; Brown, P. Randy; Ostrander, Gary K.

    2006-11-01

    The scleractinian finger coral Porites compressa has been documented to develop raised growth anomalies of unknown origin, commonly referred to as “tumors”. These skeletal tissue anomalies (STAs) are circumscribed nodule-like areas of enlarged skeleton and tissue with fewer polyps and zooxanthellae than adjacent tissue. A field survey of the STA prevalence in Oahu, Kaneohe Bay, Hawaii, was complemented by laboratory analysis to reveal biochemical, histological and skeletal differences between anomalous and reference tissue. MutY, Hsp90a1, GRP75 and metallothionein, proteins known to be up-regulated in hyperplastic tissues, were over expressed in the STAs compared to adjacent normal-appearing and reference tissues. Histological analysis was further accompanied by elemental and micro-structural analyses of skeleton. Anomalous skeleton was of similar aragonite composition to adjacent skeleton but more porous as evidenced by an increased rate of vertical extension without thickening. Polyp structure was retained throughout the lesion, but abnormal polyps were hypertrophied, with increased mass of aboral tissue lining the skeleton, and thickened areas of skeletogenic calicoblastic epithelium along the basal floor. The latter were highly metabolically active and infiltrated with chromophore cells. These observations qualify the STAs as hyperplasia and are the first report in poritid corals of chromophore infiltration processes in active calicoblastic epithelium areas.

  19. Macrobioerosion in Porites corals in subtropical northern South China Sea: a limiting factor for high-latitude reef framework development

    NASA Astrophysics Data System (ADS)

    Chen, Tianran; Li, Shu; Yu, Kefu

    2013-03-01

    Bioerosion is an important limiting factor in carbonate accretion and reef framework development; however, few studies have quantified the direct impact of macroborers on high-latitude coral communities, which are viewed as potential refuge during a period of global warming. In this study, internal macrobioerosion of Porites corals was examined at Daya Bay, subtropical northern South China Sea. The principal borers were the bivalve Lithophaga spp. and the sponges Cliona spp. and Cliothosa spp. (≥80 %), while sipunculid and polychaete worms and barnacles accounted for small amounts of bioerosion (≤20 %). Porites corals were heavily bioeroded in areas impacted by aquacultural and urban activities (10.34-27.55 %) compared with corals in relatively unpolluted areas (2.18-6.76 %). High levels of bioerosion, especially boring bivalve infestation, significantly weaken the corals and increase their susceptibility to dislodgement and fragmentation in typhoons, limiting accumulation of limestone framework. This study implies that carbonate accretion and reef development for high-latitude coral communities may be limited in future high-CO2 and eutrophication-stressed environments.

  20. Early development of zooxanthella-containing eggs of the corals Porites cylindrica and Montipora digitata: The endodermal localization of zooxanthellae.

    PubMed

    Hirose, Mamiko; Hidaka, Michio

    2006-10-01

    We studied the early development of zooxanthellae-containing eggs of the scleractinian corals Porites cylindrica and Montipora digitata to elucidate how zooxanthellae become localized to the endoderm of planulae during the course of development. In both species, zooxanthellae were distributed evenly in the oocytes and delivered almost equally to the blastomeres during cleavage. In P. cylindrica, gastrulation occurred via delamination or ingression, and blastomeres containing zooxanthellae dropped into the blastocoel during gastrulation. Thus, zooxanthellae were restricted to the endodermal cells at the gastrula or early planula stage in P. cylindrica. In M. digitata, gastrulation occurred by a combination of invagination and epiboly to form a somewhat concave gastrula. Zooxanthellae were present in both endodermal and ectodermal cells of early planulae, but they disappeared from the ectoderm as the planulae matured. In our previous study on two species of Pocillopora, we found that zooxanthellae were localized in eggs as well as in embryos, and that blastomeres containing zooxanthellae later dropped into the blastocoel to become restricted to the endoderm (Hirose et al., 2000). The timing and mechanism of zooxanthella localization and types of gastrulation differed among species belonging to the three genera. These results suggest that zooxanthella localization in the embryos reflects the timing of the determination of presumptive endoderm cells and/or specificity of zooxanthellae toward presumptive endoderm cells.

  1. Lithium content of the aragonitic skeletons of massive Porites corals: a new tool to reconstruct tropical sea surface temperatures?

    NASA Astrophysics Data System (ADS)

    Hathorne, E.; Felis, T.; Suzuki, A.; Kawahata, H.

    2009-12-01

    Knowledge of the variability of tropical sea surface temperature (SST) on seasonal and inter-annual timescales is essential to our understanding of important climatic systems like ENSO. The centimeter scale annual growth bands of the aragonitic skeletons of massive Porites corals provide a unique opportunity to extend the dataset of tropical SST beyond the brief instrumental record. The strontium content of coral aragonite, usually expressed as the Sr/Ca ratio, has proven to be a robust indicator of the seawater temperature in which the coral grew. However, concerns about variations in seawater Sr/Ca on glacial to interglacial timescales and the potential impact of early marine diagenesis make additional geochemical SST proxies desirable. Lithium is a good candidate because, like Sr and Ca, it has a long oceanic residence time but the global Li geochemical cycle has distinctive sources and sinks from that of Sr. Therefore, changes in seawater Sr/Ca resulting from eustatic sea level changes are unlikely to be accompanied by changes in seawater Li/Ca. Prompted by this and a pioneering study by Marriott and others [1] which demonstrated a negative temperature dependence for the Li/Ca of Porites aragonite of ~4 % per °C, we have conducted a calibration study of coral Li/Ca. We measured Li/Ca ratios at a bimonthly resolution in a modern Porites coral from the subtropical north western Pacific where the average annual SST range is 7 °C [2]. This large temperature range Porites coral has previously been used to successfully calibrate both Sr/Ca and U/Ca SST proxies [2] and we also find clear annual cycles in coral Li/Ca for the entire twenty year study period. The relationship between coral Li/Ca and local SST is good with Li/Ca decreasing by ~1.5 % with every °C increase of SST. This compares well with the equivalent changes in Sr/Ca (0.5%) and U/Ca (3%) and indicates coral Li/Ca could be a very useful tool for reconstructing tropical SST. [1] Marriott et al. (2004

  2. Growth rhythms recorded in stable isotopes and density bands in the reef coral Porites lobata (Cebu, Philippines)

    NASA Astrophysics Data System (ADS)

    Pätzold, J.

    1984-10-01

    Growth rhythms in the reef coral Porites lobata are revealed by X-radiography and stable carbon and oxygen isotopic analysis. High density increments were deposited during warm temperatures in summer and low density increments during winter. The seasonal temperature variations are reflected in the oxygen isotope ratios. The coral carbonate shows a constant depletion in 18O of -2.7%0 relative to calcite in equilibrium with the ambient seawater. The mean annual growth rate of the specimen studied was 1.3±0.3 cm/year.

  3. Variation in larval properties of the Atlantic brooding coral Porites astreoides between different reef sites in Bermuda

    NASA Astrophysics Data System (ADS)

    de Putron, Samantha J.; Lawson, Julia M.; White, Kascia Q. L.; Costa, Matthew T.; Geronimus, Miriam V. B.; MacCarthy, Anne

    2017-06-01

    Recent research has documented phenotypic differences among larvae released from corals with a brooding reproductive mode, both among species and within broods from a single species. We studied larvae released from the common Atlantic coral Porites astreoides in Bermuda to further evaluate phenotypic variability. Inter-site differences were investigated in larvae from conspecifics at a rim and patch reef site. Larvae were collected daily for one lunar cycle from several colonies per site each year over 5 yr. Larval volume varied with reef site of origin, with colonies from the rim reef site producing larger larvae than colonies from the patch reef site. This inter-site variation in larval size could not be explained by corallite size and may be a response to different environmental conditions at the sites. Larvae from both reef sites also varied in size depending on lunar day of release over 4 yr of study. Regardless of site of origin, smaller larvae were released earlier in the lunar cycle. Over 1 yr of study, lipid and zooxanthellae content and settlement success after 48 h covaried with larval size. However, there may be a trade-off between larger larvae and reduced fecundity. Overall, larvae released from colonies from the rim reef site were larger and had greater settlement success than those from colonies from the patch reef site. This study documents larval phenotypic variability and a distinct inter-site difference in larval ecology among conspecifics within the same geographic area, which may have implications for recruitment success, population dynamics, and resilience.

  4. Evaluating 20th century warming trends with modern Porites corals from the western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Pfeiffer, M.; Zinke, J.; Dullo, W.-C.; Cahyarini, S. Y.

    2009-04-01

    Recent studies suggest that instrumental records of sea surface temperature (SST) are unreliable prior to 1965 due to changes in the measurement procedures. Thompson et al. (2008) identified an artificial cool bias of up to 0.3˚ C in global mean SSTs between 1945 and the mid-1960s. Geochemical parameters in skeletons of massive corals can be used to infer past changes in climate on seasonal to centennial time scales. The Sr/Ca ratio of coral aragonite is a widely used tool for deriving high-resolution proxy records of past sea surface temperatures. Application of the Sr/Ca paleothermometer relies on the assumption that coral Sr/Ca varies predictably with temperature and that seawater Sr/Ca is invariant on millennial timescales due to the long residence time of Sr and Ca in the ocean. In contrast, the oxygen isotope ratios (^18O) of coral aragonite vary in response to temperature and changes in the ^18O of seawater, the latter depending on the freshwater balance. Thus, coral ^18O may be used as a record of past sea surface temperatures only at sites were ^18O seawater variations are negligible. SST in the western tropical Indian Ocean closely follows global mean temperature trends (Funk et al., 2008). Here we present a set of Porites coral Sr/Ca and/or oxygen isotope records from the tropical Indian Ocean covering the past 120-336 years (Seychelles, Chagos Archipelago). We computed a composite sea surface temperature record for the Western Indian Ocean using ^18O (Seychelles) and Sr/Ca (Chagos). This record clearly follows instrumental SST trends in the Western tropical Indian Ocean, except in the 1945-1965 interval, were instrumental SST data show a pronounced cooling not evident in the coral proxy index (the linear correlation coefficient between the coral index and instrumental SST is r=0.86 if we omit the most problematic time period from 1945 to 1960). However, the coral index follows the global land surface air temperature trend, which is free of systematic

  5. Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments.

    PubMed

    Kenkel, C D; Meyer, E; Matz, M V

    2013-08-01

    Recent evidence suggests that corals can acclimatize or adapt to local stress factors through differential regulation of their gene expression. Profiling gene expression in corals from diverse environments can elucidate the physiological processes that may be responsible for maximizing coral fitness in their natural habitat and lead to a better understanding of the coral's capacity to survive the effects of global climate change. In an accompanying paper, we show that Porites astreoides from thermally different reef habitats exhibit distinct physiological responses when exposed to 6 weeks of chronic temperature stress in a common garden experiment. Here, we describe expression profiles obtained from the same corals for a panel of 9 previously reported and 10 novel candidate stress response genes identified in a pilot RNA-Seq experiment. The strongest expression change was observed in a novel candidate gene potentially involved in calcification, SLC26, a member of the solute carrier family 26 anion exchangers, which was down-regulated by 92-fold in bleached corals relative to controls. The most notable signature of divergence between coral populations was constitutive up-regulation of metabolic genes in corals from the warmer inshore location, including the gluconeogenesis enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase and the lipid beta-oxidation enzyme acyl-CoA dehydrogenase. Our observations highlight several molecular pathways that were not previously implicated in the coral stress response and suggest that host management of energy budgets might play an adaptive role in holobiont thermotolerance.

  6. Coral hybridization or phenotypic variation? Genomic data reveal gene flow between Porites lobata and P. Compressa.

    PubMed

    Forsman, Z H; Knapp, I S S; Tisthammer, K; Eaton, D A R; Belcaid, M; Toonen, R J

    2017-03-31

    Major gaps remain in our understanding of the ecology, evolution, biodiversity, biogeography, extinction risk, and adaptive potential of reef building corals. One of the central challenges remains that there are few informative genetic markers for studying boundaries between species, and variation within species. Reduced representation sequencing approaches, such as RADseq (Restriction site Associated DNA sequencing) have great potential for resolving such relationships. However, it is necessary to identify loci in order to make inferences for endosymbiotic organisms such as corals. Here, we examined twenty-one coral holobiont ezRAD libraries from Hawai'i, focusing on P. lobata and P. compressa, two species with contrasting morphology and habitat preference that previous studies have not resolved. We used a combination of de novo assembly and reference mapping approaches to identify and compare loci: we used reference mapping to extract and compare nearly complete mitochondrial genomes, ribosomal arrays, and histone genes. We used de novo clustering and phylogenomic methods to compare the complete holobiont data set with coral and symbiont subsets that map to transcriptomic data. In addition, we used reference assemblies to examine genetic structure from SNPs (Single Nucleotide Polymorphisms). All approaches resolved outgroup taxa but failed to resolve P. lobata and P. compressa as distinct, with mito-nuclear discordance and shared mitochondrial haplotypes within the species complex. The holobiont and 'coral transcriptomic' datasets were highly concordant, revealing stronger genetic structure between sites than between coral morphospecies. These results suggest that either branching morphology is a polymorphic trait, or that these species frequently hybridize. This study provides examples of several approaches to acquire, identify, and compare loci across metagenomic samples such as the coral holobiont while providing insights into the nature of coral variability.

  7. Effects of UV radiation on the growth, photosynthetic and photoprotective components, and reproduction of the Caribbean shallow-water coral Porites furcata

    NASA Astrophysics Data System (ADS)

    Torres-Pérez, J. L.; Armstrong, R. A.

    2012-12-01

    Shallow reef corals can frequently be subjected to high doses of ultraviolet radiation [280-400 nm (UVR)] and have developed mechanisms to cope with this. Nevertheless, slight changes in this stressor may impact their physiology and ultimately their survival. Here, we present results on the effects of artificially enhanced UVR on the growth, reproduction, production of photosynthetic pigments and photoprotective compounds of the Caribbean shallow-water branching coral Porites furcata. Corals were randomly located in one of the three different treatments: normal photosynthetically active radiation (PAR) + UVR; normal PAR+ enhanced UVR; normal PAR+ depleted UVR. Growth rates were measured using the Alizarin red staining method, photosynthetic pigments as well as mycosporine-like amino acids (MAAs) were quantified through high-performance liquid chromatography, and fecundity was estimated after histological analyses. Growth and photosynthetic pigment concentration were negatively correlated with increased UVR, compared to controls exposed to normal UVR. A significant increase in MAAs was also found in colonies under enhanced UVR. Based on their respective concentrations, the primary mycosporine-glycine (λmax = 310 nm) and shinorine (λmax = 333 nm) are the main contributors to UVR absorption in this species, while the levels of the secondary MAA palythine (λmax = 320 nm) tripled toward the end of the 128 days of the experimental period. While several physical factors may influence reef coral physiology, the results suggest that slight increases in UVR can debilitate the skeletal constitution and severely reduce the fecundity of corals living in shallow waters.

  8. No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata.

    PubMed

    Baums, Iliana B; Boulay, Jennifer N; Polato, Nicholas R; Hellberg, Michael E

    2012-11-01

    The expanse of deep water between the central Pacific islands and the continental shelf of the Eastern Tropical Pacific is regarded as the world's most potent marine biogeographic barrier. During recurrent climatic fluctuations (ENSO, El Niño Southern Oscillation), however, changes in water temperature and the speed and direction of currents become favourable for trans-oceanic dispersal of larvae from central Pacific to marginal eastern Pacific reefs. Here, we investigate the population connectivity of the reef-building coral Porites lobata across the Eastern Pacific Barrier (EPB). Patterns of recent gene flow in samples (n = 1173) from the central Pacific and the Eastern Tropical Pacific (ETP) were analysed with 12 microsatellite loci. Results indicated that P. lobata from the ETP are strongly isolated from those in the central Pacific and Hawaii (F(ct) ' = 0.509; P < 0.001). However, samples from Clipperton Atoll, an oceanic island on the eastern side of the EPB, grouped with the central Pacific. Within the central Pacific, Hawaiian populations were strongly isolated from three co-occurring clusters found throughout the remainder of the central Pacific. No further substructure was evident in the ETP. Changes in oceanographic conditions during ENSO over the past several thousand years thus appear insufficient to support larval deliveries from the central Pacific to the ETP or strong postsettlement selection acts on ETP settlers from the central Pacific. Recovery of P. lobata populations in the frequently disturbed ETP thus must depend on local larval sources.

  9. Needle-like grains across growth lines in the coral skeleton of Porites lobata.

    PubMed

    Motai, Satoko; Nagai, Takaya; Sowa, Kohki; Watanabe, Tsuyoshi; Sakamoto, Naoya; Yurimoto, Hisayoshi; Kawano, Jun

    2012-12-01

    The skeletal texture and crystal morphology of the massive reef-building coral Porites lobata were observed from the nano- to micrometer scale using an analytical transmission electron microscope (ATEM). The skeletal texture consists of centers of calcification (COCs) and fiber area. Fiber areas contain bundles of needle-like aragonite crystals that are elongated along the crystallographic c-axis and are several hundred nanometers to one micrometer in width and several micrometers in length. The size distribution of aragonite crystals is relatively homogeneous in the fibers. Growth lines are observed sub-perpendicular to the direction of aragonite growth. These growth lines occur in 1-2 μm intervals and reflect a periodic contrast in the thickness of an ion-spattered sample and pass through the interior of some aragonite crystals. These observations suggest that the medium filled in the calcification space maintains a CaCO₃-supersaturated state during fiber growth and that a physical change occurs periodically during the aragonite crystals of the fiber area. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Heritable differences in fitness-related traits among populations of the mustard hill coral, Porites astreoides

    PubMed Central

    Kenkel, C D; Setta, S P; Matz, M V

    2015-01-01

    A population's potential for rapid evolutionary adaptation can be estimated from the amount of genetic variation in fitness-related traits. Inshore populations of the mustard hill coral (Porites astreoides) have been shown to be more tolerant to thermal stress than offshore populations, but it is unclear whether this difference is due to long-term physiological acclimatization or genetic adaptation. Here, we evaluated variation in growth rate and survival among 38 families of juvenile recruits of P. astreoides spawned by colonies originating from inshore and offshore locations. Recruits were reared in a common garden for 5 weeks and then subjected to two thermal treatments (28  and 31 °C) for 2.5 weeks. The most significant effects were detected during the first 5 weeks, before thermal stress was applied: 27–30% of variance in growth and 94% of variance in recruit survival was attributable to parental effects. Genotyping of eight microsatellite loci indicated that the high early mortality of some of the recruit families was not due to higher inbreeding. Post treatment, parental effects diminished such that only 10–15% of variance in growth rate was explained, which most likely reflects the dissipation of maternal effects. However, offshore-origin recruits still grew significantly less under elevated temperature compared with inshore-origin recruits. These differences observed in naive juvenile corals suggest that population-level variation in fitness in response to different thermal environments has a genetic basis and could represent raw material for natural selection in times of climate change. PMID:26081798

  11. The relationship between the ratio of strontium to calcium and sea-surface temperature in a modern Porites astreoides coral: Implications for using P. astreoides as a paleoclimate archive

    USGS Publications Warehouse

    Tess E. Busch,; Flannery, Jennifer A.; Richey, Julie N.; Stathakopoulos, Anastasios

    2015-11-13

    An inverse relationship has been demonstrated between water temperature and the ratio of strontium to calcium (Sr/Ca) in coral aragonite for a number of Pacific species of the genus Porites. This empirically determined relationship has been used to reconstruct past sea-surface temperature (SST) from modern and Holocene age coral archives. A study was conducted to investigate this relationship for Porites astreoides to determine the potential for using these corals as a paleotemperature archive in the Caribbean and western tropical Atlantic Ocean. Skeletal aragonite from a P. astreoides colony growing offshore of the southeast coast of Florida was subsampled with a mean temporal resolution of 14 samples per year and analyzed for Sr/Ca. The resulting Sr/Ca time series yielded well-defined annual cycles that correspond to annual growth bands in the coral. Sr/Ca was regressed against a monthly SST record from C-MAN buoy station FWYF1 (located at Fowey Rocks, Florida), resulting in the following Sr/Ca-SST relationship: Sr/Ca = –0.040*SST + 10.128 (R = –0.77). A 10-year time series of Sr/Ca-derived SST yields annual cycles with a 10–12 degree Celsius seasonal amplitude, consistent with available local instrumental records. We conclude that Sr/Ca in Porites astreoides from the Caribbean/Atlantic region has high potential for developing subannually resolved modern and recent Holocene SST records.

  12. Metal contents in Porites corals: Anthropogenic input of river run-off into a coral reef from an urbanized area, Okinawa.

    PubMed

    Ramos, A A; Inoue, Y; Ohde, S

    2004-02-01

    In order to monitor pollutants from urban areas to coral reefs, metal contents in Porites coral samples collected from the Hija River mouth and at nearby sites from the estuary were analyzed. The corals were cleaned by oxidative and reductive treatments to effectively eliminate detritus and organic materials. Metal-to-calcium (Me/Ca) ratios in the samples were determined by ICP-MS. Filtered samples of river water were also measured similarly for metal concentrations. The extent of anthropogenic contribution by riverine input was assessed by comparing the Me/Ca values in corals to those of Rukan-sho, an unpolluted coral reef. High riverine inputs of Mn, Cd, Zn and Ag were observed from Me/Ca values in the coral samples. Manganese in the coral samples showed strong dependence on salinity, varying inversely to the distance from terrestrial sources. Considering a lead background of 25.0 nmol/mol measured in the Rukan-sho corals, Pb/Ca in corals of the Hija River estuary that are two and three times higher may indicate lead enrichment in the river mouth. Because Pb is only moderately high in the Hija River water compared to its concentration in surface seawater, lead may have accumulated in the estuarine water and sediments, resulting in an elevated concentration of lead available for coral uptake.

  13. Development of Gene Expression Markers of Acute Heat-Light Stress in Reef-Building Corals of the Genus Porites

    PubMed Central

    Kenkel, Carly D.; Aglyamova, Galina; Alamaru, Ada; Bhagooli, Ranjeet; Capper, Roxana; Cunning, Ross; deVillers, Amanda; Haslun, Joshua A.; Hédouin, Laetitia; Keshavmurthy, Shashank; Kuehl, Kristin A.; Mahmoud, Huda; McGinty, Elizabeth S.; Montoya-Maya, Phanor H.; Palmer, Caroline V.; Pantile, Raffaella; Sánchez, Juan A.; Schils, Tom; Silverstein, Rachel N.; Squiers, Logan B.; Tang, Pei-Ciao; Goulet, Tamar L.; Matz, Mikhail V.

    2011-01-01

    Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures. We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to diagnose acute heat-light stress on coral reefs worldwide. PMID:22046408

  14. Impact of skeletal dissolution and secondary aragonite on trace element and isotopic climate proxies in Porites corals

    NASA Astrophysics Data System (ADS)

    Hendy, E. J.; Gagan, M. K.; Lough, J. M.; McCulloch, M.; Demenocal, P. B.

    2007-12-01

    Restricted zones of recent dissolution and secondary aragonite infilling were identified in a coral core collected in 1986 from a living massive Porites colony from the central Great Barrier Reef, Australia. Secondary aragonite needles, ≥20 μm long, cover skeletal surfaces deposited from 1972 to late 1974 and increase bulk density by 10%. Dissolution is observed above this zone, whereas older skeleton is pristine. We investigate the impact of both types of early marine diagenesis on skeletal geochemistry and coral paleoclimate reconstructions by comparison with similar records from eight contemporary Porites colonies collected at nearby reefs. Secondary aragonite overgrowth causes anomalies in skeletal density, Mg/Ca, Sr/Ca, U/Ca, δ18O, and δ13C. The secondary aragonite is consistently associated with a cool temperature anomaly for each of the sea surface temperature (SST) proxies (δ18O-SST -1.6°C; Sr/Ca-SST -1.7°C; Mg/Ca-SST -1.9°C; U/Ca-SST -2.8°C). Dissolution, through incongruent leaching, also causes cool SST artifacts but only for trace element ratios (Mg/Ca-SST -1.2°C; Sr/Ca-SST -1.2°C; U/Ca-SST -2.1°C). The sequence of preference with respect to dissolution of coral skeleton in seawater is Mg > Ca > Sr > U. Rigorous screening of coral material for paleoclimate reconstructions is therefore necessary to detect both dissolution and the presence of secondary minerals. The excellent agreement between apparent SST anomalies generated by different modes of diagenesis means that replication of tracers within a single coral cannot be used to validate climate-proxy interpretations. Poor replication of records between different coral colonies, however, provides a strong indication of nonclimatic artifacts such as dissolution and secondary aragonite.

  15. Effects of Coralliophila violacea on tissue loss in the scleractinian corals Porites spp. depend on host response

    USGS Publications Warehouse

    Raymundo, L.; Work, Thierry M.; Miller, R.L.; Lozada-Misa, P.L.

    2016-01-01

    We investigated interactions between the corallivorous gastropod Coralliophila violacea and its preferred hosts Porites spp. Our objectives were to experimentally determine whether tissue loss could progress in Porites during or after Coralliophila predation on corals with and without tissue loss and to histologically document snail predation. In 64% of feeding scars, tissue regenerated within 3 wk, leaving no trace of predation. However, in roughly 28% of scars, lesions progressed to subacute tissue loss resembling white syndrome. In feeding experiments, scars from snails previously fed diseased tissue developed progressive tissue loss twice as frequently as scars from snails previously fed healthy tissue. Scars from previously healthy-fed snails were 3 times as likely to heal as those from previously diseased-fed snails. Histology revealed marked differences in host responses to snails; P. cylindrica manifested a robust inflammatory response with fewer secondary colonizing organisms such as algae, sponges, and helminths, whereas P. rus showed no evident inflammation and more secondary colonization. We conclude that lesion progression associated with Coralliophila may be associated with secondary colonization of coral tissues damaged by predator-induced trauma and necrosis. Importantly, variation at the cellular level should be considered when explaining interspecific differences in host responses in corals impacted by phenomena such as predation.

  16. Assessing the accuracy of oxygen isotopes and Sr/Ca as proxies of sea surface temperature at the extreme latitudinal limits of Porites corals

    NASA Astrophysics Data System (ADS)

    Hirabayashi, S.; Yokoyama, Y.; Suzuki, A.; Kawakubo, Y.; Miyairi, Y.; Okai, T.; Nojima, S.

    2014-12-01

    Oxygen isotope and Sr/Ca ratios in harmatypic coral skeletons are widely employed as proxies of sea-surface temperature (SST) in paleoclimatology, yet they are considered to be influenced from growth rate of corals. Corals in temperate regions have lower skeletal growth rate because of relatively stressful environment, in particular lower SST than those in the tropics or subtropics. Dependency on SST proxies from those effects are required to be validated to better understand paleo-environment using temperate corals. This study reports Sr/Ca-based SST reconstructions for three temperate Porites coral colonies (USB93, USB12-01, USB12-03) collected from Kyushu, Japan, near the northern latitudinal limits of Porites. Results clearly indicated that Sr/Ca reliably reproduced SST variation, independent from growth rate variations, in contrast to δ18O-based reconstruction (Hirabayashi et al., 2013, Geochemical Journal). The inter-colony variation of skeletal Sr/Ca of two Porites corals (USB12-01, USB12-03) were observed. This is attributed to the difference in calcification processes between so called "smooth type" and "sharp type" proposed by Gagan et al. (2012) as is defined by the ratio of tissue thickness/extension rate. According to these observations, summer SST reconstruction can be achieved by a limited number of coral specimens in a temperate region with comparable accuracy to tropical and subtropical corals.

  17. Composition and biological activities of the aqueous extracts of three scleractinian corals from the Mexican Caribbean: Pseudodiploria strigosa, Porites astreoides and Siderastrea siderea.

    PubMed

    García-Arredondo, Alejandro; Rojas-Molina, Alejandra; Ibarra-Alvarado, César; Lazcano-Pérez, Fernando; Arreguín-Espinosa, Roberto; Sánchez-Rodríguez, Judith

    2016-01-01

    Scleractinian corals (stony corals) are the most abundant reef-forming cnidarians found in coral reefs throughout the world. Despite their abundance and ecological importance, information about the diversity of their toxins and their biological activities is very scarce. In this study, the chemical composition and the biological activities of the aqueous extracts of Pseudodiploria strigosa, Porites astreoides and Siderastrea siderea, three scleractinian corals from the Mexican Caribbean, have been assessed for the first time. Toxicity of the extracts was assessed in crickets; the presence of cytolysins was detected by the hemolysis assay; the vasoconstrictor activity was determined by the isolated rat aortic ring assay; the nociceptive activity was evaluated by the formalin test. The presence of phospholipases A2 (PLA2), serine proteases, and hyaluronidases was determined by enzymatic methods. Low-molecular-weight fractions were obtained by gel filtration chromatography and ultrafiltration. Extracts from the three species were toxic to crickets, induced hemolysis in human and rat erythrocytes, produced vasoconstriction on isolated rat aortic rings, and presented phospholipase A2 and serine-protease activity. Despite the fact that these corals are not considered to be harmless to humans, the extracts generated significant nociceptive responses. The matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry analysis of the low-molecular-weight fractions revealed the presence of peptides within a mass range of 3000 to 6000 Da. These fractions were toxic to crickets and two of them induced a transitory vasoconstrictor effect on isolated rat aortic rings. This study suggests that scleractinian corals produce low-molecular-weight peptides that are lethal to crickets and induce vasoconstriction.

  18. Bacterial profiling of White Plague Disease in a comparative coral species framework.

    PubMed

    Roder, Cornelia; Arif, Chatchanit; Bayer, Till; Aranda, Manuel; Daniels, Camille; Shibl, Ahmed; Chavanich, Suchana; Voolstra, Christian R

    2014-01-01

    Coral reefs are threatened throughout the world. A major factor contributing to their decline is outbreaks and propagation of coral diseases. Due to the complexity of coral-associated microbe communities, little is understood in terms of disease agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies over species, regions, or diseases are scarce. Here, we compare bacterial assemblages of samples from healthy (HH) colonies and such displaying signs of White Plague Disease (WPD) of two different coral species (Pavona duerdeni and Porites lutea) from the same reef in Koh Tao, Thailand, using 16S rRNA gene microarrays. In line with other studies, we found an increase of bacterial diversity in diseased (DD) corals, and a higher abundance of taxa from the families that include known coral pathogens (Alteromonadaceae, Rhodobacteraceae, Vibrionaceae). In our comparative framework analysis, we found differences in microbial assemblages between coral species and coral health states. Notably, patterns of bacterial community structures from HH and DD corals were maintained over species boundaries. Moreover, microbes that differentiated the two coral species did not overlap with microbes that were indicative of HH and DD corals. This suggests that while corals harbor distinct species-specific microbial assemblages, disease-specific bacterial abundance patterns exist that are maintained over coral species boundaries.

  19. Environmental versus genetic influences on growth rates of the corals Pocillopora eydouxi and Porites lobata (Anthozoa: Scleractinia)

    USGS Publications Warehouse

    Smith, L.W.; Wirshing, H.H.; Baker, A.C.; Birkeland, C.

    2008-01-01

    Reciprocal transplant experiments of the corals Pocillopora eydouxi Milne Edwards & Haime and Porites lobata Dana were carried out for an 18-month period from September 2004 to March 2006 between two back reef pools on Ofu Island, American Samoa, to test environmental versus genetic effects on skeletal growth rates. Skeletal growth of P. eydouxi showed environmental but not genetic effects, resulting in doubling of growth in Pool 300 compared with Pool 400. There were no environmental or genetic effects on skeletal growth of P. lobata. Pool 300 had more frequent and longer durations of elevated seawater temperatures than Pool 400, characteristics likely to decrease rather than increase skeletal growth. Pool 300 also had higher nutrient levels and flow velocities than Pool 400, characteristics that may increase skeletal growth. However, higher nutrient levels would be expected to increase skeletal growth in both species, but there was no difference between the pools in P. lobata growth. P. eydouxi is much more common in high-energy environments than P. lobata; thus the higher flow velocities in Pool 300 than in Pool 400 may have positively affected skeletal growth of P. eydouxi while not having a detectable effect on P. lobata. The greater skeletal growth of P. eydouxi in Pool 300 occurred despite the presence of clade D zooxanthellae in several source colonies in Pool 300, a genotype known to result in greater heat resistance but slower skeletal growth. Increased skeletal growth rates in higher water motion may provide P. eydouxi a competitive advantage in shallow, high-energy enviromnents where competition for space is intense. ?? 2008 by University of Hawai'i Press. All rights reserved.

  20. Anomalous Ba/Ca signals associated with low temperature stresses in Porites corals from Daya Bay, northern South China Sea.

    PubMed

    Chen, Tianran; Yu, Kefu; Li, Shu; Chen, Tegu; Shi, Qi

    2011-01-01

    Barium to calcium (Ba/Ca) ratio in corals has been considered as a useful geochemical proxy for upwelling, river flood and other oceanic processes. However, recent studies indicated that additional environmental or biological factors can influence the incorporation of Ba into coral skeletons. In this study, Ba/Ca ratios of two Porites corals collected from Daya Bay, northern South China Sea were analyzed. Ba/Ca signals in the two corals were 'anomalous' in comparison with Ba behaviors seen in other near-shore corals influenced by upwelling or riverine runoff. Our Ba/Ca profiles displayed similar and remarkable patterns characterized by low and randomly fluctuating background signals periodically interrupted by sharp and large synchronous peaks, clearly indicating an environmental forcing. Further analysis indicated that the Ba/Ca profiles were not correlated with previously claimed environmental factors such as precipitation, coastal upwelling, anthropogenic activities or phytoplankton blooms in other areas. The maxima of Ba/Ca appeared to occur in the period of Sr/Ca maxima, coinciding with the winter minimum temperatures, which suggests that the anomalous high Ba/Ca signals were related to winter-time low sea surface temperature. We speculated that the Ba/Ca peaks in corals of the Daya Bay were most likely the results of enrichment of Ba-rich particles in their skeletons when coral polyps retracted under the stresses of anomalous winter low temperatures. In this case, Ba/Ca ratio in relatively high-latitude corals can be a potential proxy for tracing the low temperature stress.

  1. Decadal Variations in Western Pacific Warm Pool Dynamics as Evidenced by Porites Corals from Chuuk Atoll, Federated States of Micronesia

    NASA Astrophysics Data System (ADS)

    Massoll, J. L.; Wagner, A. J.; Anderson, D. M.; Lane, C.; Kim, J. K.; Lee, S. H.

    2014-12-01

    The Western Pacific Warm Pool (WPWP) encompasses some of the warmest sea surface temperatures (SSTs) of the world oceans. This region influences seasonal and decadal variability of the Intertropical Convergence Zone (ITCZ) and climate anomalies such as the El Niño-Southern Oscillation (ENSO). Long-term changes coupled with anomalous events like El Niño can greatly influence the position of the ITCZ and subsequently alter weather patterns on a global scale. WPWP dynamics may have contributed to the slowdown in global warming during the last decade. The processes that control these variations are complex, and gaining insight into these systems on decadal to centennial timescales is necessary to improve climate modeling and future predictions for drought or floods associated with global climate change. Chuuk Atoll (7°N, 152°E), located in the Federated States of Micronesia, is positioned within the WPWP at the northern extent of the mean boreal summer position of the ITCZ, making this location optimal for studying WPWP dynamics and ocean-atmosphere linkages. Two coral cores from the species Porites lobata were collected from the outer-atoll at Fannuk Island and the inner-atoll at Lobata Reef. Using stable isotope (δ18O and δ13C) composition and Sr/Ca trace metal analysis, the sites were identified as distinct hydrologic environments. Low seasonal variability in δ18O and Sr/Ca values at the outer-atoll site indicates a hydrologically-open system that is strongly influenced by the WPWP. At the inner-atoll site, δ18O and Sr/Ca values reflect a small seasonal SST cycle. In this hydrologically-restricted basin, the δ18O record is likely responding to salinity variations influenced by local climatology, specifically anomalously high or low precipitation events associated with ENSO. The average δ18O between 2003-2011 was 0.5‰ lighter at the inner-atoll site. These values can be interpreted as warmer sea surface temperatures and/or lower sea surface salinities

  2. A Snapshot of a Coral “Holobiont”: A Transcriptome Assembly of the Scleractinian Coral, Porites, Captures a Wide Variety of Genes from Both the Host and Symbiotic Zooxanthellae

    PubMed Central

    Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto

    2014-01-01

    Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire “coral holobiont”. We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral

  3. Effect of light and brine shrimp on skeletal δ 13C in the Hawaiian coral Porites compressa: a tank experiment

    NASA Astrophysics Data System (ADS)

    Grottoli, Andréa G.

    2002-06-01

    Previous experimental fieldwork showed that coral skeletal δ13C values decreased when solar intensity was reduced, and increased in the absence of zooplankton. However, actual seasonal changes in solar irradiance levels are typically less pronounced than those used in the previous experiment and the effect of increases in the consumption of zooplankton in the coral diet on skeletal δ13C remains relatively unknown. In the present study, the effects of four different light and heterotrophy regimes on coral skeletal δ13C values were measured. Porites compressa corals were grown in outdoor flow-through tanks under 112%, 100%, 75%, and 50% light conditions at the Hawaii Institute of Marine Biology, Hawaii. In addition, corals were fed either zero, low, medium, or high concentrations of brine shrimp. Decreases in light from 100% resulted in significant decreases in δ13C that is most likely due to a corresponding decrease in photosynthesis. Increases in light to 112% also resulted in a decrease in δ13C values. This latter response may be a consequence of photoinhibition. The overall curved response in δ13C values was described by a significant quadratic function. Increases in brine shrimp concentrations resulted in increased skeletal δ13C levels. This unexpected outcome appears to be attributable to enhanced nitrogen supply associated with the brine shrimp diet which led to increased zooxanthellae concentrations, increased photosynthesis rates, and thus increased δ13C values. This result highlights the potential influence of nutrients from heterotrophically acquired carbon in maintaining the zooxanthellae-host symbiosis in balance. In addition, evidence is presented that suggests that coral skeletal growth and δ13C are decoupled. These results increase our knowledge of how light and heterotrophy affects the δ13C of coral skeletons.

  4. Coral reef degradation and metabolic performance of the scleractinian coral Porites lutea under anthropogenic impact along the NE coast of Hainan Island, South China Sea

    NASA Astrophysics Data System (ADS)

    Roder, Cornelia; Wu, Zhongjie; Richter, Claudio; Zhang, Jing

    2013-04-01

    Hainan's coast provides favorable climatic, geochemical and biogeographic conditions for the development of extensive coral reefs in China. Observations in five reefs along the NE coast of Hainan showed, however, that the overall density of mobile macrofauna is low and key functional groups such as browsing, scraping or excavating herbivore fish are missing altogether. Coral diseases, partial mortality or tissue degradation are abundant and growth of macroalgal space competitors extensive. Signs of eutrophication, siltation and destructive fishing practices are evident resulting in a strongly altered environment unfavorable for coral recruitment success and survival. Acclimation to the anthropogenically altered conditions in the massive coral Porites lutea occurs at the cost of a decreased photosynthesis: respiration ratio reducing the regenerative capacity of these key framebuilding organisms. Even though, on the organismal level, corals are able to cope with these stressful conditions, a shift is imminent on the ecosystem level from a coral reef to a macroalgae-dominated community if land-based disturbance prevails unabated.

  5. Fidelity of δ18O as a proxy for sea surface temperature: Influence of variable coral growth rates on the coral Porites lutea from Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Shimamura, Michiyo; Oba, Tadamichi; Xu, Guoqiang; Lu, Bingquan; Wang, Luejiang; Murayama, Masafumi; Toyoda, Kazuhiro; Winter, Amos

    2005-09-01

    The extremely high temporal resolution (nearly daily interval) measurement was conducted on the coral (Porites lutea) oxygen isotope compositions (δ18Oc) to examine the detailed relationship between δ18Oc and sea surface temperature (SST) and seawater oxygen isotope composition (δ18Ow) from Hainan Island, China. Although SST and sea surface salinity (SSS) or δ18Ow varied in a wide range at the studied site, the dynamic range of δ18Oc recorded in coral was much smaller than expected from SST and SSS (δ18Ow) changes. The extremely high (>30°C) and low (<22°C) SST and low (<27) SSS are not suitable for coral calcification, and coral could not record the information as their skeletal δ18O. Estimated coral extension rates (the overall rate is 15 mm/year) varied by a factor of about 18 within one year, from very slow in winter to very fast in spring. Light availability could affect the extension rate of coral skeleton through the activity of photosynthesis of symbiont algae. Such cessation and acceleration of calcification cause a serious distortion of the δ18O profile, which makes it difficult to make a correlation between δ18O and SST. Because high and low extension rates correspond to low- and high-density bands, respectively, a detailed examination of the density structure may assist the correction for distortion of the δ18O profile.

  6. Coral-based climate records from tropical South Atlantic: 2009/2010 ENSO event in C and O isotopes from Porites corals (Rocas Atoll, Brazil).

    PubMed

    Pereira, Natan S; Sial, Alcídes N; Kikuchi, Ruy K P; Ferreira, Valderez P; Ullmann, Clemens V; Frei, Robert; Cunha, Adriana M C

    2015-01-01

    Coral skeletons contain records of past environmental conditions due to their long life span and well calibrated geochemical signatures. C and O isotope records of corals are especially interesting, because they can highlight multidecadal variability of local climate conditions beyond the instrumental record, with high fidelity and sub-annual resolution. Although, in order to get an optimal geochemical signal in coral skeleton, sampling strategies must be followed. Here we report one of the first coral-based isotopic record from the Equatorial South Atlantic from two colonies of Porites astreoides from the Rocas Atoll (offshore Brazil), a new location for climate reconstruction. We present time series of isotopic variation from profiles along the corallite valley of one colony and the apex of the corallite fan of the other colony. Significant differences in the isotopic values between the two colonies are observed, yet both record the 2009/2010 El Niño event - a period of widespread coral bleaching - as anomalously negative δ18O values (up to -1 permil). δ13C is found to be measurably affected by the El Niño event in one colony, by more positive values (+0.39 ‰), and together with a bloom of endolithic algae, may indicate physiological alteration of this colony. Our findings indicate that corals from the Rocas Atoll can be used for monitoring climate oscillations in the tropical South Atlantic Ocean.

  7. Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific

    USGS Publications Warehouse

    Aeby, G.S.; Williams, G.J.; Franklin, E.C.; Haapkyla, J.; Harvell, C.D.; Neale, S.; Page, C.A.; Raymundo, L.; Vargas-Angel, B.; Willis, B.L.; Work, T.M.; Davy, S.K.

    2011-01-01

    Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.

  8. Growth Anomalies on the Coral Genera Acropora and Porites Are Strongly Associated with Host Density and Human Population Size across the Indo-Pacific

    PubMed Central

    Franklin, Erik C.; Haapkyla, Jessica; Harvell, C. Drew; Neale, Stephen; Page, Cathie A.; Raymundo, Laurie; Vargas-Ángel, Bernardo; Willis, Bette L.; Work, Thierry M.; Davy, Simon K.

    2011-01-01

    Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment. PMID:21365011

  9. Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific.

    PubMed

    Aeby, Greta S; Williams, Gareth J; Franklin, Erik C; Haapkyla, Jessica; Harvell, C Drew; Neale, Stephen; Page, Cathie A; Raymundo, Laurie; Vargas-Ángel, Bernardo; Willis, Bette L; Work, Thierry M; Davy, Simon K

    2011-02-18

    Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.

  10. Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific

    USGS Publications Warehouse

    Aeby, Greta S.; Williams, Gareth J.; Franklin, Erik C.; Haapkyla, Jessica; Harvell, C. Drew; Neale, Stephen; Page, Cathie A.; Raymundo, Laurie; Vargas-Angel, Bernardo; Willis, Bette L.; Work, Thierry M.; Davy, Simon K.

    2011-01-01

    Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.

  11. SPCZ- and ENSO-related Salinity Variations Recorded in the Skeletal Geochemistry of a Porites Coral from Espiritu Santo, Vanuatu

    NASA Astrophysics Data System (ADS)

    Kilbourne, K. H.; Quinn, T. M.; Taylor, F. W.; Delcroix, T.; Gouriou, Y.

    2003-12-01

    Variations in sea surface temperature (SST) and sea surface salinity (SSS) are important components of climate variability in the tropical ocean-atmosphere system. Instrumental SST time series are much more readily available than are instrumental SSS time series, which are exceedingly rare. SSS variations are strongly linked to seawater δ 18O variations in the tropics, thus coral-based reconstructions of seawater δ 18O offer an opportunity to reconstruct the history of SSS variations in the tropical oceans. Seawater δ 18O is obtained by combining coral skeletal δ 18O, which varies in response to changes in seawater δ 18O and SST, with coral skeletal Sr/Ca, which varies in response to SST changes. This method has great potential for reconstructing past salinity variations. We explore this potential using a monthly-resolved, 65-year record of skeletal δ 18O and Sr/Ca variations in a Porites coral from Espiritu Santo, Vanuatu (16.0° S, 166.7° E). Santo is well positioned for such a study because ENSO-related climate variability strongly influences local salinity through changes in the position of the center of South Pacific Convergence Zone (SPCZ) convection/precipitation and associated salinity front movements. Moreover, a 24-year record of SSS variations is available from this region, which permits a ground-truth assessment of the robustness of the coral-based seawater δ 18O-SSS reconstruction. Investigation into different methods of combining coral δ 18O and Sr/Ca to reconstruct SSS reveals that the coral δ 18O anomaly time series provides the best fit to the SSS time series. A post-1976/1977 freshening trend in the δ 18O anomaly time series, which has been documented in other proxy time series, increases our confidence that this time series accurately reflects changes in the hydrologic balance in the western tropical Pacific. The Vanuatu coral δ 18O anomaly time series also correlates strongly with the Southern Oscillation Index, the Niño 3.4 SST

  12. Temporal distributions of anthropogenic Al, Zn and Pb in Hong Kong Porites coral during the last two centuries.

    PubMed

    Wang, Bo-Shian; Goodkin, Nathalie F; Angeline, N; Switzer, Adam D; You, Chen-Feng; Hughen, Konrad

    2011-01-01

    A 182-year long record of trace metal concentrations of aluminum, zinc and lead was reconstructed from a massive Porites coral skeleton from southeastern Hong Kong to evaluate the impacts of anthropogenic activity on the marine environment. Zn/Ca and Pb/Ca ratios fluctuate synchronously from the early 19th century to the present, indicating that the marine environment has been anthropogenically influenced since industrialization. Additionally, land reclamation, mining, and ship building activities are recorded by elevated Al/Ca ratios from 1900 to 1950. The coral record indicates that high levels of Zn, Pb and Al occur coincidentally with local wars, and may have contributed to partial colony mortality. Pb/Ca does not correlate well with hemispheric proxy records after 1950, indicating that coastal corals may be recording local rather than hemispheric contamination. Pb/Ca levels in Hong Kong, Guangdong and Hainan corals imply a continuous supply of Pb-based contamination to southern China not reflected in hemispheric signals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. A new method for calibrating a boron isotope paleo-pH proxy using massive Porites corals

    NASA Astrophysics Data System (ADS)

    Kubota, Kaoru; Yokoyama, Yusuke; Ishikawa, Tsuyoshi; Suzuki, Atsushi

    2015-09-01

    The boron isotope ratio (δ11B) of marine biogenic carbonates can reconstruct pH and pCO2 of seawater, and potentially CO2 concentration in the atmosphere. To date, δ11B-pHSW calibration has been proposed via culturing experiments, where calcifying organisms are cultured under artificially acidified seawater. However, in scleractinian corals, reconstructed pH values using culture-based calibrations do not agree well with actual observations of seawater CO2 chemistry. Thus, another approach is needed to establish a more reliable calibration method. In this study, we established field-based calibrations for Chichijima and Tahiti, both located in subtropical gyres where surface seawater is close to CO2 equilibrium. We suggest a new approach to calibration of δ11B-pH in which the long-term δ11B variation of massive Porites corals is compared with the decreasing pH trend (i.e., ocean acidification) that has occurred since the Industrial Revolution. This calibration will offer a new avenue for studying seawater CO2 chemistry using coral δ11B in diverse settings, such as upwelling regions, coral reefs, and coastal areas.

  14. Nuclear weapons produced (236)U, (239)Pu and (240)Pu archived in a Porites Lutea coral from Enewetak Atoll.

    PubMed

    Froehlich, M B; Tims, S G; Fallon, S J; Wallner, A; Fifield, L K

    2017-05-16

    A slice from a Porites Lutea coral core collected inside the Enewetak Atoll lagoon, within 15 km of all major nuclear tests conducted at the atoll, was analysed for (236)U, (239)Pu and (240)Pu over the time interval 1952-1964 using a higher time resolution than previously reported for a parallel slice from the same core. In addition two sediment samples from the Koa and Oak craters were analysed. The strong peaks in the concentrations of (236)U and (239)Pu in the testing years are confirmed to be considerably wider than the flushing time of the lagoon. This is likely due to the growth mechanism of the coral. Following the last test in 1958 atom concentrations of both (236)U and (239)Pu decreased from their peak values by more than 95% and showed a seasonal signal thereafter. Between 1959 and 1964 the weighted average of the (240)Pu/(239)Pu atom ratio is 0.124 ± 0.008 which is similar to that in the lagoon sediments (0.129 ± 0.006) but quite distinct from the global fallout value of ∼0.18. This, and the high (239,240)Pu and (236)U concentrations in the sediments, provides clear evidence that the post-testing signal in the coral is dominated by remobilisation of the isotopes from the lagoon sediments rather than from global fallout. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of predator exclusion on recruit survivorship in an octocoral ( Briareum asbestinum) and a scleractinian coral ( Porites astreoides)

    NASA Astrophysics Data System (ADS)

    Evans, M. J.; Coffroth, M. A.; Lasker, H. R.

    2013-06-01

    Recruits of the Caribbean scleractinian coral Porites astreoides and the octocoral Briareum asbestinum were established on artificial substrata and reared on a reef in cages designed to exclude various classes of organisms known to feed on corals. Post-settlement survivorship of recruits was measured for periods of 2 weeks ( B. asbestinum) and 1 month ( P. astreoides) on East Turtle Reef in the Florida Keys during May and June 2010. Predator exclusion did not affect survivorship among P. astreoides recruits during the study. Recruits of B. asbestinum experienced lower survivorship in treatments that allowed access by fish compared with fish exclusion treatments. The results indicate that predation may be an important determinant of post-settlement mortality among B. asbestinum recruits, and fishes are the primary contributors to predation-induced mortality. B. asbestinum recruit survivorship differed by an order of magnitude between recruits in the control condition and those in the predator exclusion (0.087 and 0.372, respectively). The findings illustrate the need to consider the effects of interactions early in life on the survival, propagation, and recovery of coral populations.

  16. Effect of photosynthetic light dosage on carbon isotope composition in the coral skeleton: Long-term culture of Porites spp.

    NASA Astrophysics Data System (ADS)

    Omata, Tamano; Suzuki, Atsushi; Sato, Takanori; Minoshima, Kayo; Nomaru, Eriko; Murakami, Akio; Murayama, Shohei; Kawahata, Hodaka; Maruyama, Tadashi

    2008-06-01

    Whereas the oxygen isotope ratio of the coral skeleton is used for reconstruction of past information on seawater, the carbon isotope ratio is considered a proxy for physiological processes, principally photosynthesis and respiration. However, the fractionation of carbon isotopes in biogenic carbonate such as coral skeleton is still unclear. We conducted a long-term culture experiment of Porites spp. corals at different light dosages (light intensity, 100, 300, or 500 μmol m-2 s-1; daily light period, 10 or 12 h) at 25 ± 0.6°C to examine the contribution of photosynthetic activity to skeletal carbon isotope composition. Corals were grown in sand-filtered seawater and not fed; thus, they subsisted from photosynthesis of symbiotic algae. As the daily dose of photosynthetically active radiation increased, the rate of annual extension also increased. Mean isotope compositions shifted; the carbon isotope compositions (δ13C) became heavier and the oxygen isotope compositions (δ18O) became lighter at higher radiation dose. Skeletal δ18O decrease coincided with increasing skeletal growth rate, indicating the influence of so-called kinetic isotope effects. The observed δ13C increase should be subject to both kinetic and metabolic isotope effects, with the latter reflecting skeletal δ13C enrichment due to photosynthesis by symbiotic algae. Using a vector approach in the δ13C-δ18O plane, we discriminated between kinetic and metabolic isotope effects on δ13C. The calculated δ13C changes from metabolic isotope effects were light dose dependent. The δ13C fractionation curve related to metabolic isotope effects is very similar to the photosynthesis-irradiance curve, indicating the direct contribution of photosynthetic activity to metabolic isotope effects. In contrast, δ13C fractionation related to kinetic isotope effects gradually increased as the growth rate increased. Our experiment demonstrated that the kinetic and metabolic isotope effects in coral skeleton

  17. Factors influencing the stable carbon and oxygen isotopic composition of Porites lutea coral skeletons from Phuket, South Thailand

    NASA Astrophysics Data System (ADS)

    Allison, N.; Tudhope, A. W.; Fallick, A. E.

    1996-03-01

    We determined the δ18O and δ13C composition of the same fixed growth increment in several Porites lutea coral skeletons from Phuket, South Thailand. Skeletal growth rate and δ18O are inversely related. We explain this in terms of McConnaughey's kinetic isotopic disequilibria model. Annual trends in δ18O cannot be solely explained by observed variations in seawater temperature or salinity and may also reflect seasonal variations in calcification rate. Coral tissue chlorophyll a content and δ13C of the underlying 1 mm of skeleton are positively related, suggesting that algal modification of the dissolved inorganic carbonate pool is the main control on skeletal δ13C. However, in corals that bleached during a period of exceptionally high seawater temperatures in the summer of 1991, δ13C of the outer 1 mm of skeleton and skeletal growth rate (over 9 months up to and including the bleaching event) are inversely related. Seasonal variations in °13C may reflect variations in calcification rate, zooxanthellae photosynthesis or in seawater δ13C composition. Bleached corals had reduced calcification over the 9-month period up to and including the bleaching event and over the event they deposited carbonate enriched in13C and18O compared with unaffected corals. However, calcification during the event was limited and insufficient material was deposited to influence significantly the isotopic signature of the larger seasonal profile samples. In profile, overall decreases in δ18O and δ13C were observed, supporting evidence that positive temperature anomalies caused the bleaching event and reflecting the loss of zooxanthellae photosynthesis.

  18. Understanding cold bias: Variable response of skeletal Sr/Ca to seawater pCO2 in acclimated massive Porites corals

    PubMed Central

    Cole, Catherine; Finch, Adrian; Hintz, Christopher; Hintz, Kenneth; Allison, Nicola

    2016-01-01

    Coral skeletal Sr/Ca is a palaeothermometer commonly used to produce high resolution seasonal sea surface temperature (SST) records and to investigate the amplitude and frequency of ENSO and interdecadal climate events. The proxy relationship is typically calibrated by matching seasonal SST and skeletal Sr/Ca maxima and minima in modern corals. Applying these calibrations to fossil corals assumes that the temperature sensitivity of skeletal Sr/Ca is conserved, despite substantial changes in seawater carbonate chemistry between the modern and glacial ocean. We present Sr/Ca analyses of 3 genotypes of massive Porites spp. corals (the genus most commonly used for palaeoclimate reconstruction), cultured under seawater pCO2 reflecting modern, future (year 2100) and last glacial maximum (LGM) conditions. Skeletal Sr/Ca is indistinguishable between duplicate colonies of the same genotype cultured under the same conditions, but varies significantly in response to seawater pCO2 in two genotypes of Porites lutea, whilst Porites murrayensis is unaffected. Within P. lutea, the response is not systematic: skeletal Sr/Ca increases significantly (by 2–4%) at high seawater pCO2 relative to modern in both genotypes, and also increases significantly (by 4%) at low seawater pCO2 in one genotype. This magnitude of variation equates to errors in reconstructed SST of up to −5 °C. PMID:27241795

  19. Understanding cold bias: Variable response of skeletal Sr/Ca to seawater pCO2 in acclimated massive Porites corals

    NASA Astrophysics Data System (ADS)

    Cole, Catherine; Finch, Adrian; Hintz, Christopher; Hintz, Kenneth; Allison, Nicola

    2016-05-01

    Coral skeletal Sr/Ca is a palaeothermometer commonly used to produce high resolution seasonal sea surface temperature (SST) records and to investigate the amplitude and frequency of ENSO and interdecadal climate events. The proxy relationship is typically calibrated by matching seasonal SST and skeletal Sr/Ca maxima and minima in modern corals. Applying these calibrations to fossil corals assumes that the temperature sensitivity of skeletal Sr/Ca is conserved, despite substantial changes in seawater carbonate chemistry between the modern and glacial ocean. We present Sr/Ca analyses of 3 genotypes of massive Porites spp. corals (the genus most commonly used for palaeoclimate reconstruction), cultured under seawater pCO2 reflecting modern, future (year 2100) and last glacial maximum (LGM) conditions. Skeletal Sr/Ca is indistinguishable between duplicate colonies of the same genotype cultured under the same conditions, but varies significantly in response to seawater pCO2 in two genotypes of Porites lutea, whilst Porites murrayensis is unaffected. Within P. lutea, the response is not systematic: skeletal Sr/Ca increases significantly (by 2–4%) at high seawater pCO2 relative to modern in both genotypes, and also increases significantly (by 4%) at low seawater pCO2 in one genotype. This magnitude of variation equates to errors in reconstructed SST of up to ‑5 °C.

  20. Evidence for a host role in thermotolerance divergence between populations of the mustard hill coral (Porites astreoides) from different reef environments.

    PubMed

    Kenkel, C D; Goodbody-Gringley, G; Caillaud, D; Davies, S W; Bartels, E; Matz, M V

    2013-08-01

    Studying the mechanisms that enable coral populations to inhabit spatially varying thermal environments can help evaluate how they will respond in time to the effects of global climate change and elucidate the evolutionary forces that enable or constrain adaptation. Inshore reefs in the Florida Keys experience higher temperatures than offshore reefs for prolonged periods during the summer. We conducted a common garden experiment with heat stress as our selective agent to test for local thermal adaptation in corals from inshore and offshore reefs. We show that inshore corals are more tolerant of a 6-week temperature stress than offshore corals. Compared with inshore corals, offshore corals in the 31 °C treatment showed significantly elevated bleaching levels concomitant with a tendency towards reduced growth. In addition, dinoflagellate symbionts (Symbiodinium sp.) of offshore corals exhibited reduced photosynthetic efficiency. We did not detect differences in the frequencies of major (>5%) haplotypes comprising Symbiodinium communities hosted by inshore and offshore corals, nor did we observe frequency shifts ('shuffling') in response to thermal stress. Instead, coral host populations showed significant genetic divergence between inshore and offshore reefs, suggesting that in Porites astreoides, the coral host might play a prominent role in holobiont thermotolerance. Our results demonstrate that coral populations inhabiting reefs <10-km apart can exhibit substantial differences in their physiological response to thermal stress, which could impact their population dynamics under climate change. © 2013 John Wiley & Sons Ltd.

  1. Reconstructing skeletal fiber arrangement and growth mode in the coral Porites lutea (Cnidaria, Scleractinia): a confocal Raman microscopy study

    NASA Astrophysics Data System (ADS)

    Wall, M.; Nehrke, G.

    2012-11-01

    Confocal Raman microscopy (CRM) mapping was used to investigate the microstructural arrangement and organic matrix distribution within the skeleton of the coral Porites lutea. Relative changes in the crystallographic orientation of crystals within the fibrous fan-system could be mapped, without the need to prepare thin sections, as required if this information is obtained by polarized light microscopy. Simultaneously, incremental growth lines can be visualized without the necessity of etching and hence alteration of sample surface. Using these methods two types of growth lines could be identified: one corresponds to the well-known incremental growth layers, whereas the second type of growth lines resemble denticle finger-like structures (most likely traces of former spines or skeletal surfaces). We hypothesize that these lines represent the outer skeletal surface before another growth cycle of elongation, infilling and thickening of skeletal areas continues. We show that CRM mapping with high spatial resolution can significantly improve our understanding of the micro-structural arrangement and growth patterns in coral skeletons.

  2. Heavy metal contents in growth bands of Porites corals: record of anthropogenic and human developments from the Jordanian Gulf of Aqaba.

    PubMed

    Al-Rousan, Saber A; Al-Shloul, Rashid N; Al-Horani, Fuad A; Abu-Hilal, Ahmad H

    2007-12-01

    In order to assess pollutants and impact of environmental changes in the coastal region of the Jordanian Gulf of Aqaba, concentrations of six metals were traced through variations in 5 years growth bands sections of recent Porties coral skeleton. X-radiography showed annual growth band patterns extending back to the year 1925. Baseline metal concentrations in Porites corals were established using 35 years-long metal record from late Holocene coral (deposited in pristine environment) and coral from reef that is least exposed to pollution in the marine reserve in the Gulf of Aqaba. The skeleton samples of the collected corals were acid digested and analyzed for their Cd, Cu, Fe, Mn, Pb and Zn content using Flame Atomic Absorption Spectrophotometer (FAAS). All metal profiles (except Fe and Zn) recorded the same metal signature from recent coral (1925-2005) in which low steady baseline levels were displayed in growth bands older than 1965, similar to those obtained from fossil and unpolluted corals. Most metals showed dramatic increase (ranging from 17% to 300%) in growth band sections younger than 1965 suggesting an extensive contamination of the coastal area since the mid sixties. This date represents the beginning of a period that witnessed increasing coastal activities, constructions and urbanization. This has produced a significant reduction in coral skeletal extension rates. Results from this study strongly suggest that Porites corals have a high tendency to accumulate heavy metals in their skeletons and therefore can serve as proxy tools to monitor and record environmental pollution (bioindicators) in the Gulf of Aqaba.

  3. Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Fallon, Stewart J.; White , Jamie C.; McCulloch, Malcolm T.

    2002-01-01

    In 1989 open-cut gold mining commenced on Misima Island in Papua New Guinea (PNG). Open-cut mining by its nature causes a significant increase in sedimentation via the exposure of soils to the erosive forces of rain and runoff. This increased sedimentation affected the nearby fringing coral reef to varying degrees, ranging from coral mortality (smothering) to relatively minor short-term impacts. The sediment associated with the mining operation consists of weathered quartz feldspar, greenstone, and schist. These rocks have distinct chemical characteristics (rare earth element patterns and high abundances of manganese, zinc, and lead) and are entering the near-shore environment in considerably higher than normal concentrations. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), we analyzed eight colonies (two from high sedimentation, two transitional, two minor, and two unaffected control sites) for Y, La, Ce, Mn, Zn, and Pb. All sites show low steady background levels prior to the commencement of mining in 1988. Subsequently, all sites apart from the control show dramatic increases of Y, La, and Ce associated with the increased sedimentation as well as rapid decreases following the cessation of mining. The elements Zn and Pb exhibit a different behavior, increasing in concentration after 1989 when ore processing began and one year after initial mining operations. Elevated levels of Zn and Pb in corals has continued well after the cessation of mining, indicating ongoing transport into the reef of these metals via sulfate-rich waters. Rare earth element (REE) abundance patterns measured in two corals show significant differences compared to Coral Sea seawater. The corals display enrichments in the light and middle REEs while the heavy REEs are depleted relative to the seawater pattern. This suggests that the nearshore seawater REE pattern is dominated by island sedimentation. Trace element abundances of Misima Island corals clearly record

  4. A study of vital effects on multiple geochemical proxies recorded in a Porites coral from Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Chalk, T. B.; Foster, G. L.; Saenger, C. P.

    2013-12-01

    The kinetic and biological processes, known collectively as vital effects, have been widely-recognized to appreciably limit the accuracy of paleoclimate reconstructions from geochemical proxies applied to coral skeletons. Several lines of evidence, based on experimental and culture studies, indicate that vital effects could originate from various sources, including 1) kinetic disequilibria due to a faster rate of skeletogenesis than that of inorganic precipitation and that required for maintaining a chemical/isotope exchange equilibrium; 2) closed system processes in which the Rayleigh fractionation plays important roles; and 3) variations in the chemical composition (e.g. pH, saturation state, etc.) of the calcifying fluid that is different from that of the ambient seawater. In this work, we measured trace element concentrations, including boron(B), lithium(Li), magnesium(Mg), strontium(Sr), barium(Ba), uranium(U) and calcium(Ca), oxygen (δ18O), Mg (δ26Mg) and B (δ11B) isotope compositions of a Porites coral to understand the origin(s) of the ';vital effects' evident in each proxy. Furthermore, with this increased understanding we explore the potential to extract precise environmental variables from a combination of these proxies. Analyses were made on a tropical Porites coral that was collected from Rib Reef within Australia's Great Barrier Reef (GBR). Long term monitoring of the GBR provides valuable records of in situ sea surface temperature (SST), salinity and other variables, against which geochemical proxies can be compared. A series of powder samples were milled at ~1 mm intervals along the coral's axis of maximum growth providing ~monthly temporal resolution across a ~2-year growth period. Aliquots of the aragonite powders were cleaned and prepared using established methods for trace metal, B isotope and Mg isotope analysis [Foster, 2008; Wang et al., 2013a; Wang et al., 2013b]. Resulting B/Ca, Li/Ca, Mg/Ca, Ba/Ca, U/Ca, δ18O and δ26Mg values all

  5. Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: Does host genotype limit phenotypic plasticity?

    USGS Publications Warehouse

    Barshis, D.J.; Stillman, J.H.; Gates, R.D.; Toonen, R.J.; Smith, L.W.; Birkeland, C.

    2010-01-01

    The degree to which coral reef ecosystems will be impacted by global climate change depends on regional and local differences in corals' susceptibility and resilience to environmental stressors. Here, we present data from a reciprocal transplant experiment using the common reef building coral Porites lobata between a highly fluctuating back reef environment that reaches stressful daily extremes, and a more stable, neighbouring forereef. Protein biomarker analyses assessing physiological contributions to stress resistance showed evidence for both fixed and environmental influence on biomarker response. Fixed influences were strongest for ubiquitin-conjugated proteins with consistently higher levels found in back reef source colonies both pre and post-transplant when compared with their forereef conspecifics. Additionally, genetic comparisons of back reef and forereef populations revealed significant population structure of both the nuclear ribosomal and mitochondrial genomes of the coral host (FST = 0.146 P < 0.0001, FST = 0.335 P < 0.0001 for rDNA and mtDNA, respectively), whereas algal endosymbiont populations were genetically indistinguishable between the two sites. We propose that the genotype of the coral host may drive limitations to the physiological responses of these corals when faced with new environmental conditions. This result is important in understanding genotypic and environmental interactions in the coral algal symbiosis and how corals may respond to future environmental changes. ?? 2010 Blackwell Publishing Ltd.

  6. Short-term and latent post-settlement effects associated with elevated temperature and oxidative stress on larvae from the coral Porites astreoides

    NASA Astrophysics Data System (ADS)

    Ross, C.; Ritson-Williams, R.; Olsen, K.; Paul, V. J.

    2013-03-01

    Coral reefs across the Caribbean are undergoing unprecedented rates of decline in coral cover during the last three decades, and coral recruitment is one potential process that could aid the recovery of coral populations. To better understand the effects of climate change on coral larval ecology, the larvae of Porites astreoides were studied to determine the immediate and post-settlement effects of elevated temperature and associated oxidative stress. Larvae of Porites astreoides were exposed to 27 °C (ambient) and +3.0 °C (elevated temperature) seawater for a short duration of 24 h; then, a suite of physiological parameters were measured to determine the extent of sublethal stress. Following the +3.0 °C treatment, larvae did not show a significant difference in maximum quantum yield of PSII ( F v/ F m) or respiratory demand when compared to controls maintained at 27 °C. The addition of micromolar concentrations of hydrogen peroxide did not impact respiration or photochemical efficiency. Catalase activity in the larvae increased (>60 %) following exposure to elevated temperature when compared to the controls. Short-term larval survival and settlement and metamorphosis were not affected by increased temperature or the H2O2 treatment. However, the settled spat that were exposed to elevated temperature underwent a 99 % reduction in survival compared to 90 % reduction for the control spat when examined 24 days following the deployment of 4-day-old settled spat on settlement tiles in the field. These results show that short-term exposure to some stressors might have small impacts on coral physiology, and no effects on larval survival, settlement and metamorphosis. However, due to post-settlement mortality, these stressors can cause a significant reduction in coral recruitment.

  7. Twelve-year Geochemical Records Of The East Asian Summer And Winter Monsoons And Terrestrial Sediment Transport In A Porites Coral From Son Tra Island, Cental Vietnam

    NASA Astrophysics Data System (ADS)

    Chang, C.; Shen, C.; Chiang, H.; Chen, Y.; Lam, D.; Ngai, N.

    2006-12-01

    The climate in the South China Sea (SCS), a semi-closed ocean basin with a narrow opening in the north to the Western Pacific Ocean, is mainly constrained by the East Asian summer and winter monsoons. Due to the limited instrumental data, the quantitative evaluation of both influences on local and regional areas is still beyond the capacity of climate models. The geochemical proxy records in coral skeletons provide a potential way to retrieve the history of hydrological and climatic conditions with weekly to monthly resolution. We present geochemical proxy records in a 12-year modern Porites coral collected from Son Tra Island, central Vietnam in June, 2005. Three features are exhibited as follows. (1) The winter data of coral δ18O match well with the instrumental SST observations. This consistency indicates that the winter coral δ18O can reflect the regional hydrological conditions, which is dominated by the East Asian winter monsoon. (2) The variation of interannual summer coral δ18O values differ from that of instrumental SST record. The episodic enriched coral δ18O in summer might reflect sea surface water cooling events, triggered by enhancement of the East Asian summer monsoon (EASM) and/or local salinity increase. (3) The diachronous characteristics of seasonal and interannual trends among different elements, such as Al, Ba, Fe and Cd, shows the dynamic natural of EASM-induced seasonal upwelling and the variability of terrestrial sediment transport over the past 12 years in this area.

  8. Evaluation of Mn and Fe in coral skeletons ( Porites spp.) as proxies for sediment loading and reconstruction of 50 yrs of land use on Ishigaki Island, Japan

    NASA Astrophysics Data System (ADS)

    Inoue, Mayuri; Ishikawa, Daisaku; Miyaji, Tsuzumi; Yamazaki, Atsuko; Suzuki, Atsushi; Yamano, Hiroya; Kawahata, Hodaka; Watanabe, Tsuyoshi

    2014-06-01

    Manganese (Mn) and iron (Fe) concentrations were measured in coral skeletons ( Porites spp.) collected from the Todoroki River on Ishigaki Island, Japan, to reconstruct the history of land use in the river catchment area. We prepared (1) five bulk samples to investigate the present spatial distribution and (2) micro-samples from two long cores to study the temporal variability of sediment loading from the Todoroki River. The existing state of the elements Mn and Fe in bulk coral skeleton samples was examined by a chemical cleaning experiment. The results of the experiment suggested that Fe was not incorporated into the crystal lattice of the coral skeleton but that Mn was incorporated, as previously reported. The bulk sample data, with and without chemical cleaning, indicated that the spatial distribution of both elements in corals collected along a sampling line from the river mouth toward the reef crest was complex and most likely reflected salinity changes and the amount of suspended particulate matter. The temporal variation of Mn and Fe, in particular the variation of baseline/background levels, mainly reflected the history of land development on Ishigaki Island. In addition, Mn showed clear seasonal variability that appeared to be controlled by a combination of temperature, primary productivity, and precipitation. The results of the present study suggest that Mn may be a useful proxy for river discharge or biological activity depending on local marine conditions, if the specific behavior of Mn at the coral growth site is known.

  9. Bacterial Associates of Two Caribbean Coral Species Reveal Species-Specific Distribution and Geographic Variability

    PubMed Central

    Moss, Anthony G.; Chadwick, Nanette E.; Liles, Mark R.

    2012-01-01

    Scleractinian corals harbor microorganisms that form dynamic associations with the coral host and exhibit substantial genetic and ecological diversity. Microbial associates may provide defense against pathogens and serve as bioindicators of changing environmental conditions. Here we describe the bacterial assemblages associated with two of the most common and phylogenetically divergent reef-building corals in the Caribbean, Montastraea faveolata and Porites astreoides. Contrasting life history strategies and disease susceptibilities indicate potential differences in their microbiota and immune function that may in part drive changes in the composition of coral reef communities. The ribotype structure and diversity of coral-associated bacteria within the surface mucosal layer (SML) of healthy corals were assessed using denaturing gradient gel electrophoresis (DGGE) fingerprinting and 454 bar-coded pyrosequencing. Corals were sampled at disparate Caribbean locations representing various levels of anthropogenic impact. We demonstrate here that M. faveolata and P. astreoides harbor distinct, host-specific bacteria but that specificity varies by species and site. P. astreoides generally hosts a bacterial assemblage of low diversity that is largely dominated by one bacterial genus, Endozoicomonas, within the order Oceanospirillales. The bacterial assemblages associated with M. faveolata are significantly more diverse and exhibit higher specificity at the family level than P. astreoides assemblages. Both corals have more bacterial diversity and higher abundances of disease-related bacteria at sites closer to the mainland than at those furthest away. The most diverse bacterial taxa and highest relative abundance of disease-associated bacteria were seen for corals near St. Thomas, U.S. Virgin Islands (USVI) (2.5 km from shore), and the least diverse taxa and lowest relative abundance were seen for corals near our most pristine site in Belize (20 km from shore). We conclude

  10. Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability.

    PubMed

    Morrow, Kathleen M; Moss, Anthony G; Chadwick, Nanette E; Liles, Mark R

    2012-09-01

    Scleractinian corals harbor microorganisms that form dynamic associations with the coral host and exhibit substantial genetic and ecological diversity. Microbial associates may provide defense against pathogens and serve as bioindicators of changing environmental conditions. Here we describe the bacterial assemblages associated with two of the most common and phylogenetically divergent reef-building corals in the Caribbean, Montastraea faveolata and Porites astreoides. Contrasting life history strategies and disease susceptibilities indicate potential differences in their microbiota and immune function that may in part drive changes in the composition of coral reef communities. The ribotype structure and diversity of coral-associated bacteria within the surface mucosal layer (SML) of healthy corals were assessed using denaturing gradient gel electrophoresis (DGGE) fingerprinting and 454 bar-coded pyrosequencing. Corals were sampled at disparate Caribbean locations representing various levels of anthropogenic impact. We demonstrate here that M. faveolata and P. astreoides harbor distinct, host-specific bacteria but that specificity varies by species and site. P. astreoides generally hosts a bacterial assemblage of low diversity that is largely dominated by one bacterial genus, Endozoicomonas, within the order Oceanospirillales. The bacterial assemblages associated with M. faveolata are significantly more diverse and exhibit higher specificity at the family level than P. astreoides assemblages. Both corals have more bacterial diversity and higher abundances of disease-related bacteria at sites closer to the mainland than at those furthest away. The most diverse bacterial taxa and highest relative abundance of disease-associated bacteria were seen for corals near St. Thomas, U.S. Virgin Islands (USVI) (2.5 km from shore), and the least diverse taxa and lowest relative abundance were seen for corals near our most pristine site in Belize (20 km from shore). We conclude

  11. Processes for the "vital effect" of Porites corals as revealed by microanalysis of oxygen, carbon and boron isotopic compositions

    NASA Astrophysics Data System (ADS)

    Rollion-Bard, C.; Chaussidon, M.; France-Lanord, C.

    2003-04-01

    Since the discovery by Knutson et al. (1972) of annual banding in massive corals, they have intensively been used to provide paleoclimate reconstructions. The oxygen isotopic composition (18O) of coral aragonite skeletons is a function of sea surface temperature (SST) and salinity (SSS) through the 18O of the seawater in which the carbonate precipitates and pH of the calcifying fluid. Carbon cycle in hermatypic corals is relatively complex because of the interaction between symbiotic algae (zooxanthellae) and coral (Goreau, 19777). Coral 13C seems to be under influence of the ratio between algae photosynthesis and algae and coral respiration (Swart, 1983). The carbonate deposited by some foraminifera and scleractinian corals is depleted 13C and 18O relative to isotope equilibrium with ambient seawater. This deviation of the biogenic carbonate - water fractionation from the inorganic fractionation is called the "vital effect" (Urey et al., 1951). Different explanations for the vital effect are proposed: (1) McConnaughey (1989) attributes the coral disequilibria to kinetic effects. (2) Spero et al. (1997) and Zeebe (1999) consider that the carbonate depletion in 18O is due to [CO32-] or pH variations. The carbon isotopic disequilibrium would be due, in this case, to 13C depleted metabolic DIC incorporation coming from the respiration. The micrometer scale analysis by ion microprobe of B, C and O isotopic compositions can allow to better understand responsible process(es) of the vital effect and the existence of a great diversity in 18O - SST calibrations for differents colonies of the same species. These analyses show that 11B and 18O of coral skeleton have a great variability at micrometer scale (10 and 12 , respectively), whereas 13C have no so important variations and that all the values are in the range of 13C measured by "classical" method (acid digestion and mass spectrometry). Thus the in

  12. Health status of corals surrounding Kish Island, Persian Gulf.

    PubMed

    Alidoost Salimi, Mahsa; Mostafavi, Pargol Ghavam; Fatemi, Seyyed Mohammad; Aeby, Greta S

    2017-03-30

    Corals in the Persian Gulf exist in a harsh environment with extreme temperature and salinity fluctuations. Understanding the health of these hardy corals may prove useful for predicting the survival of other marine organisms facing the impacts of global climate change. In this study, the health state of corals was surveyed along belt transects at 4 sites on the east side of Kish Island, Iran. Corals had a patchy distribution, low colony densities and species diversity, and were dominated by Acropora, Porites, and Dipsastrea. We found chronic sedimentation on corals, a high prevalence of old partial mortality, abundant bioeroders, and overgrowth of corals by sponges and bryozoans. These are all signs indicating suboptimal environmental conditions for coral reefs. Four types of tissue loss lesions consistent with disease were found: Porites multi-focal chronic tissue loss, Porites peeling tissue loss, Porites focal chronic tissue loss, and Dipsastrea focal sub-acute tissue loss. Overall disease prevalence was 3.6% and there were significant differences in prevalence among the 3 most abundant coral genera. Acropora was numerically dominant within transects yet showed no signs of disease, whereas Porites had a 14% disease prevalence, indicating differential susceptibility to disease among genera. Other coral lesions included pigmentation response in Porites associated with algae invasion or boring organisms, sponge overgrowth, and mucus sheathing in Dipsastrea. The Persian Gulf region is understudied, and this represents one of the first quantitative surveys of coral health and disease on these reefs.

  13. Sex-associated variations in coral skeletal oxygen and carbon isotopic composition of Porites panamensis in the southern Gulf of California

    NASA Astrophysics Data System (ADS)

    Cabral-Tena, R. A.; Sánchez, A.; Reyes-Bonilla, H.; Ruvalcaba-Díaz, A. H.; Balart, E. F.

    2015-11-01

    Coral δ18O variations are used as a proxy for changes in near sea surface temperature and seawater isotope composition. Skeletal δ13C of coral is frequently used as a proxy for solar radiation because most of its variability is controlled by an interrelationship between three processes: photosynthesis, respiration, and feeding. Coral growth rate is known to influence the δ18O and δ13C isotope record to a lesser extent. Recent published data show differences in growth parameters between female and male coral; thus, skeletal δ18O and δ13C are hypothesized to be different in each sex. To assess this difference, this study describes changes in the skeletal δ18O and δ13C record of four female and six male Porites panamensis coral collected in Bahía de La Paz, whose growth bands spanned 12 years. The isotopic data were compared to SST, precipitation, PAR, chlorophyll a, and skeletal growth parameters. Porites panamensis is a known gonochoric brooder whose growth parameters are different in females and males. Splitting the data by sexes explained 81 and 93 % of the differences of δ18O, and of δ13C, respectively, in the isotope record between colonies. Both isotope records were different between sexes. δ18O was higher in female colonies than in male colonies, with a 0.31 ‰ difference; δ13C was lower in female colonies, with a 0.28 ‰ difference. A difference in the skeletal δ18O implies an error in SST estimates of ≈ 1.0 °C to ≈ 2.6 °C. The δ18O records showed a seasonal pattern that corresponded to SST, with low correlation coefficients (-0.45, -0.32), and gentle slopes (0.09 ‰ °C-1, 0.10 ‰ °C-1) of the δ18O-SST relation. Seasonal variation in coral δ18O represents only 52.37 and 35.66 % of the SST cycle; 29.72 and 38.53 % can be attributed to δ18O variability in seawater. δ13C data did not correlate with any of the environmental variables; therefore, variations in skeletal δ13C appear to be driven mainly by metabolic effects. Our

  14. Quantification of total and particulate dimethylsulfoniopropionate (DMSP) in five Bermudian coral species across a depth gradient

    NASA Astrophysics Data System (ADS)

    Yost, D. M.; Jones, R.; Rowe, C. L.; Mitchelmore, Carys Louise

    2012-06-01

    The symbiotic dinoflagellate microalgae of corals ( Symbiodinium spp.) contain high concentrations of dimethylsulfoniopropionate (DMSP), a multifunctional metabolite commonly found in many species of marine algae and dinoflagellates. A photoprotective antioxidant function for DMSP and its breakdown products has often been inferred in algae, but its role(s) in the coral-algal symbiosis remains elusive. To examine potential correlations between environmental and physiological parameters and DMSP, total DMSP (DMSPt, from the host coral and zooxanthellae), particulate DMSP (DMSPp, from the zooxanthellae only), coral surface area, and total protein, as well as zooxanthellae density, chlorophyll concentration, cell volume and genotype (i.e., clade) were measured in five coral species from the Diploria- Montastraea- Porites species complex in Bermuda along a depth gradient of 4, 12, 18, and 24 m. DMSPt concentrations were consistently greater than DMSPp concentrations in all species suggesting the possible translocation of DMSP from symbiont to host. D. labyrinthiformis was notably different from the other corals examined, showing DMSPp and DMSPt increases (per coral surface area or tissue biomass) with increasing water depth. However, overall, there were no consistent depth-related patterns in DMSPp and DMSPt concentrations. Further research, investigating dimethylsulfide (DMS), dimethylsulfoxide, and acrylate levels and DMSP-lyase activity in correlation with other biomarker endpoints that have been shown to be depth (i.e., temperature and light) responsive are needed to substantiate the significance of these findings.

  15. NOAA Lists 20 Coral Species as Threatened

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-09-01

    Twenty coral species have been listed as threatened under the U.S. Endangered Species Act (ESA), the National Oceanic and Atmospheric Administration (NOAA) announced on 27 August. This is NOAA's largest ESA rule making. The coral species include 15 found in the Indo-Pacific region and 5 that are located in the Caribbean. They join two other Caribbean coral species that NOAA listed as threatened in 2006.

  16. First record of multi-species synchronous coral spawning from Malaysia.

    PubMed

    Chelliah, Alvin; Amar, Halimi Bin; Hyde, Julian; Yewdall, Katie; Steinberg, Peter D; Guest, James R

    2015-01-01

    Knowledge about the timing and synchrony of coral spawning has important implications for both the ecology and management of coral reef ecosystems. Data on the timing of spawning and extent of synchrony, however, are still lacking for many coral reefs, particularly from equatorial regions and from locations within the coral triangle. Here we present the first documentation of a multi-species coral spawning event from reefs around Pulau Tioman, Peninsular Malaysia, a popular diving and tourist destination located on the edge of the coral triangle. At least 8 coral species from 3 genera (Acropora, Montipora and Porites) participated in multi-species spawning over five nights in April 2014, between two nights before and two nights after the full moon. In addition, two Acropora species were witnessed spawning one night prior to the full moon in October 2014. While two of the Acropora species that reproduced in April (A. millepora and A. nasuta) exhibited highly synchronous spawning (100% of sampled colonies), two other common species (A. hyacinthus and A. digitifera) did not contain visible eggs in the majority of colonies sampled (i.e., <15% of colonies) in either April or October, suggesting that these species spawn at other times of the year. To the best of our knowledge, this is the first detailed documented observation of multi-species coral spawning from reefs in Malaysia. These data provide further support for the contention that this phenomenon is a feature of all speciose coral assemblages, including equatorial reefs. More research is needed, however, to determine the seasonal cycles and extent of spawning synchrony on these reefs and elsewhere in Malaysia.

  17. Investigating coral hyperspectral properties across coral species and coral state using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; Smith, Dustin K.; Smith, Shane W.; Strychar, Kevin B.; McLauchlan, Lifford

    2013-09-01

    Coral reefs are one of the most diverse and threatened ecosystems in the world. Corals worldwide are at risk, and in many instances, dying due to factors that affect their environment resulting in deteriorating environmental conditions. Because corals respond quickly to the quality of the environment that surrounds them, corals have been identified as bioindicators of water quality and marine environmental health. The hyperspectral imaging system is proposed as a noninvasive tool to monitor different species of corals as well as coral state over time. This in turn can be used as a quick and non-invasive method to monitor environmental health that can later be extended to climate conditions. In this project, a laboratory-based hyperspectral imaging system is used to collect spectral and spatial information of corals. In the work presented here, MATLAB and ENVI software tools are used to view and process spatial information and coral spectral signatures to identify differences among the coral data. The results support the hypothesis that hyperspectral properties of corals vary among different coral species, and coral state over time, and hyperspectral imaging can be a used as a tool to document changes in coral species and state.

  18. The effects of ultraviolet radiation on growth and bleaching in three species of Hawaiian coral

    SciTech Connect

    Goodman, G.D. )

    1990-01-09

    Long term exposure to ultraviolet radiation is harmful to many organisms, including hermatypic corals, which obtain much of their nutrition from photosynthetic zooxanthellae. Therefore, increased UV radiation from atmospheric ozone depletion could inhibit growth of such corals. Moreover, coral bleaching, which has been attributed to loss of pigment and/or expulsion of zooxanthellae, may be a specific response to UV light. Does UV-A reduce skeletal growth or influence population density and pigment content of zooxanthellae In addition, do zooxanthellae migrate to shaded areas of the colony to avoid ultraviolet light Using alizarin red stain and suitable filters, I compared the stain and suitable filters, I compared the effects of UV-A (320-400nm) and full-spectrum UV (280-400nm) on the skeletal growth of two Hawaiian corals, Montipora verrucosa, Pocillopora damicornis, in situ. In the perforate corals, M. Verrucosa and Porites compressa, I measured concentration of zooxanthellae and their chlorophyll content to quantify bleaching in response to UV light. Reduction in skeletal growth by the two corals in response to different ranges of UV light appears to be species specific. Bleaching by UV appears to be characterized by an initial loss of pigment followed by the expulsion and migration of the zooxanthellae to shaded areas of the colony. Differences in tolerance and adaptation to decreasing ozone levels and increasing UV light should confer a competitive advantage on various species and morphologies of reef-building corals.

  19. Holocene key coral species in the Northwest Pacific: indicators of reef formation and reef ecosystem responses to global climate change and anthropogenic stresses in the near future

    NASA Astrophysics Data System (ADS)

    Hongo, Chuki

    2012-03-01

    The geological record of key coral species that contribute to reef formation and maintenance of reef ecosystems is important for understanding the ecosystem response to global-scale climate change and anthropogenic stresses in the near future. Future responses can be predicted from accumulated data on Holocene reef species identified in drillcore and from data on raised reef terraces. The present study analyzes a dataset based on 27 drillcores, raised reef terraces, and 134 radiocarbon and U-Th ages from reefs of the Northwest Pacific, with the aim of examining the role of key coral species in reef growth and maintenance for reef ecosystem during Holocene sea-level change. The results indicate a latitudinal change in key coral species: arborescent Acropora (Acropora intermedia and Acropora muricata) was the dominant reef builder at reef crests in the tropics, whereas Porites (Porites australiensis, Porites lutea, and Porites lobata) was the dominant contributor to reef growth in the subtropics between 10,000 and 7000 cal. years BP (when the rate of sea-level rise was 10 m/ka). Acropora digitifera, Acropora hyacinthus, Acropora robusta/A. abrotanoides, Isopora palifera, Favia stelligera, and Goniastrea retiformis from the corymbose and tabular Acropora facies were the main key coral species at reef crests between 7000 and 5000 cal. years BP (when the rate of sea-level rise was 5 m/ka) and during the following period of stable sea-level. Massive Porites (P. australiensis, P. lutea, and P. lobata) contributed to reef growth in shallow lagoons during the period of stable sea level. Key coral species from the corymbose and tabular Acropora facies have the potential to build reefs and maintain ecosystems in the near future under a global sea-level rise of 2-6 m/ka, as do key coral species from the arborescent Acropora facies and massive Porites facies, which show vigorous growth and are tolerant to relatively deep-water, low-energy environments. However, these species

  20. Indirect effects of a key ecosystem engineer alter survival and growth of foundation coral species.

    PubMed

    White, Jada-Simone S; O'Donnell, James L

    2010-12-01

    Stegastes nigricans, a "farmerfish" that cultivates algal turf and defends territories from grazers and other intruders, can affect coral indirectly due to increased competition with farmed algal turf and/or reduced predation resulting from territorial aggression directed at corallivores. To investigate the indirect effects of this key ecosystem engineer on coral mortality and growth, we transplanted caged and exposed fragments of four coral species to patch reefs in French Polynesia on which we manipulated the presence of S. nigricans and turf, and to reefs naturally devoid of S. nigricans. Reef access was two to four times higher for herbivorous fishes, and two times higher for corallivorous fishes, when S. nigricans was removed, indicating that reef access is reduced for two important guilds of fishes when S. nigricans is present. Stegastes' territoriality indirectly benefited delicate acroporids (Montipora floweri and Acropora striata), yielding a twofold to fivefold reduction in skeletal loss due to lower predation frequencies in the presence of S. nigricans. Three corals, A. striata, M. floweri, and especially Porites australiensis, suffered mortality due to overgrowth significantly more frequently in the presence of farmed turf, but Pocillopora verrucosa did not. Algal abundance predicted the frequency of overgrowth for only A. striata and P. australiensis. M. floweri were more likely to be overgrown when exposed (uncaged) in the presence of S. nigricans, suggesting an interaction modification, in this case that initial predation increased susceptibility to competition with turf. In this community, the presence of S. nigricans may increase algal overgrowth of massive Porites by facilitating its turf competitors and simultaneously reduce predation of branching corals through territorial exclusion of corallivores. These indirect interactions may underlie previously documented community transitions from disturbance-resistant massive coral to recovering

  1. High-resolution Sr/Ca ratios in a Porites lutea coral from Lakshadweep Archipelago, southeast Arabian Sea: An example from a region experiencing steady rise in the reef temperature

    NASA Astrophysics Data System (ADS)

    Sagar, Netramani; Hetzinger, Steffen; Pfeiffer, Miriam; Masood Ahmad, Syed; Dullo, Wolf-Christian; Garbe-Schönberg, Dieter

    2016-01-01

    Here we present the first record of Sr/Ca variability in a massive Porites lutea coral from the Lakshadweep Archipelago, Arabian Sea. The annual mean sea surface temperature (SST) in this region and the surrounding areas has increased steadily in the recent past. During some major El Niño events, SSTs are even higher, imposing additional thermal-stress on corals, episodically leading to coral bleaching. We infer from the coral-Sr/Ca record (1981-2008) that during some of these events high and persistent SSTs lead to a dampening of the temperature signal in coral-Sr/Ca, impairing the coral's ability to record full scale warming. Thus, coral-Sr/Ca may provide a history of past El Niño Southern-Oscillation (ENSO) induced thermal-stress episodes, which are a recurrent feature also seen in cross-spectral analysis between coral-Sr/Ca and the Nino3.4 index. Despite the impact of episodical thermal-stress during major El Niño events, our coral proxy faithfully records the seasonal monsoon-induced summer cooling on the order of ˜2.3°C. Calibration of coral-Sr/Ca with instrumental grid-SST data shows significant correlation to regional SST and monsoon variability. Hence, massive Porites corals of this region are highly valuable archives for reconstructing long-term changes in SST, strongly influenced by monsoon variability on seasonal scales. More importantly, our data show that this site with increasing SST is an ideal location for testing the future effects of the projected anthropogenic SST increase on coral reefs that are already under thermal-stress worldwide.

  2. Upwelling, species, and depth effects on coral skeletal cadmium-to-calcium ratios (Cd/Ca)

    NASA Astrophysics Data System (ADS)

    Matthews, Kathryn A.; Grottoli, Andréa G.; McDonough, William F.; Palardy, James E.

    2008-09-01

    Skeletal cadmium-to-calcium (Cd/Ca) ratios in hermatypic stony corals have been used to reconstruct changes in upwelling over time, yet there has not been a systematic evaluation of this tracer's natural variability within and among coral species, between depths and across environmental conditions. Here, coral skeletal Cd/Ca ratios were measured in multiple colonies of Pavona clavus, Pavona gigantea and Porites lobata reared at two depths (1 and 7 m) during both upwelling and nonupwelling intervals in the Gulf of Panama (Pacific). Overall, skeletal Cd/Ca ratios were significantly higher during upwelling than during nonupwelling, in shallow than in deep corals, and in both species of Pavona than in P. lobata. P. lobata skeletal Cd/Ca ratios were uniformly low compared to those in the other species, with no significant differences between upwelling and nonupwelling values. Among colonies of the same species, skeletal Cd/Ca ratios were always higher in all shallow P. gigantea colonies during upwelling compared to nonupwelling, though the magnitude of the increase varied among colonies. For P. lobata, P. clavus and deep P. gigantea, changes in skeletal Cd/Ca ratios were not consistent among all colonies, with some colonies having lower ratios during upwelling than during nonupwelling. No statistically significant relationships were found between skeletal Cd/Ca ratios and maximum linear skeletal extension, δ 13C or δ 18O, suggesting that at seasonal resolution the Cd/Ca signal was decoupled from growth rate, coral metabolism, and ocean temperature and salinity, respectively. These results led to the following conclusions, (1) coral skeletal Cd/Ca ratios are independent of skeletal extension, coral metabolism and ambient temperature/salinity, (2) shallow P. gigantea is the most reliable species for paleoupwelling reconstruction and (3) the average Cd/Ca record of several colonies, rather than of a single coral, is needed to reliably reconstruct paleoupwelling events.

  3. Stress response of two coral species in the Kavaratti atoll of the Lakshadweep Archipelago, India

    NASA Astrophysics Data System (ADS)

    Harithsa, Shashank; Raghukumar, Chandralata; Dalal, S. G.

    2005-11-01

    Frequent occurrences of coral bleaching and the ensuing damage to coral reefs have generated interest in documenting stress responses that precede bleaching. The objective of this study was to assess and compare physiological changes in healthy, semi-bleached and totally bleached colonies of two coral species, Porites lutea and Acropora formosa, during a natural bleaching event in the Lakshadweep Archipelago in the Arabian Sea to determine the traits that will be useful in the diagnosis of coral health. In April 2002, three “health conditions” were observed as “appearing healthy,” “semi-bleached” and “bleached” specimens for two dominant and co-occurring coral species in these islands. Changes in the pigment composition, zooxanthellae density (ZD), mitotic index (MI) of zooxanthellae, RNA/DNA ratios and protein profile in the two coral species showing different levels of bleaching in the field were compared to address the hypothesis of no difference in health condition between species and bleaching status. The loss in chlorophyll (chl) a, chl c and ZD in the transitional stage of semi-bleaching in the branched coral A. formosa was 80, 75 and 80%, respectively. The losses were much less in the massive coral P. lutea, being 20, 50 and 25%, respectively. The decrease in zooxanthellar density and chl a was accompanied by an increased MI of zooxanthellae and RNA/DNA ratios in both the species. There was an increase in accumulation of lipofuscin granules in partially bleached P. lutea tissue, which is an indication of cellular senescence. Multivariate statistical analyses showed that colonies of P. lutea ranked in different health conditions differed significantly in chl a, chl c, ZD, RNA/DNA ratios, and protein concentrations, whereas in A. formosa chl a, chl c, chl a/ c, phaeopigments and MI contributed to the variance between health conditions.

  4. Interseasonal and interspecies diversities of Symbiodinium density and effective photochemical efficiency in five dominant reef coral species from Luhuitou fringing reef, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Xu, Lijia; Yu, Kefu; Li, Shu; Liu, Guohui; Tao, Shichen; Shi, Qi; Chen, Tianran; Zhang, Huiling

    2017-06-01

    Although it is well established that different coral species have different susceptibilities to thermal stress, the reasons behind this variation are still unclear. In this study, 384 samples across five dominant coral species were collected seasonally between September 2013 and August 2014 at Luhuitou fringing reef in Sanya, Hainan Island, northern South China Sea, and their algal symbiont density and effective photochemical efficiency ( Φ PSII) were measured. The results indicated that both the Symbiodinium density and Φ PSII of corals were subject to significant interspecies and seasonal variations. Stress-tolerant coral species, including massive Porites lutea and plating Pavona decussata, had higher symbiont densities but lower Φ PSII compared to the vulnerable branching species of Acropora over the course of all four seasons. Seasonally, coral symbiont densities were the lowest during winter, while during the same period, Φ PSII of corals was at the highest point. Further analysis suggested that dissolved inorganic nutrients and upwelling in the reef area were probably responsible for the observed seasonal variations in symbiont density. The fact that Porites lutea has the lowest Φ PSII during all four seasons is likely related to their symbionts' lower capacity to provide required photosynthates for calcification. These results suggest that a coral's thermal tolerance is primarily and positively dependent on its symbiont density and is less related to its effective photochemical efficiency.

  5. Skeletal isotope records of growth perturbations in Porites corals during the 1997-1998 mass bleaching event

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Gagan, M.; Fabricius, K.; Isdale, P.; Yukino, I.; Kawahata, H.

    2003-04-01

    Severe coral bleaching occurred throughout the tropics in 1997/98. We report skeletal UV fluorescence, oxygen isotope, and carbon isotope evidence for perturbations in coral skeletal growth due to bleaching at Ishigaki Island, Japan, and Pandora Reef, Great Barrier Reef. Bleached corals showed abrupt reductions in skeletal extension rate immediately after summer temperature maxima, indicating that bleaching inhibits coral calcification. A colony growing at the low tide line in Ishigaki exhibited clear blue UV fluorescent bands associated with recurrent growth interruptions. Based on the length of time-gaps observed in the annual isotopic cycle, the typical time required for a coral to recover from bleaching is estimated to be about 5--6 months. The effect of bleaching on the oxygen isotope ratio -- temperature relationship was negligible. However, the Ishigaki corals showed lower carbon isotope ratios during bleaching indicating depressed coral metabolism associated with a reduction in calcification. In contrast, skeletal carbon isotope ratios in the Pandora Reef corals exhibited little change in response to bleaching. This is because the records for Pandora Reef were derived from the shaded sides of coral colonies, where algal photosynthesis was particularly slow prior to bleaching, thus subduing the carbon isotope response to bleaching. Taken together, the isotopic and UV fluorescence signals can be used to reconstruct past bleaching events.

  6. SYMBIODINIUM ISOLATES FROM STONY CORAL: ISOLATION, GROWTH CHARACTERISTICS AND EFFECTS OF UV IRRADIATION

    EPA Science Inventory

    Symbiodinium spp. Isolates from Stony Coral: Isolation, Growth Characteristics and Effects of UV Irradiation (Abstract). J. Phycol. 37(3):42-43.

    Symbiodinium species were isolated from Montipora capitata, Acropora palmata and two field samples of Porites porites. Cultures ...

  7. SYMBIODINIUM ISOLATES FROM STONY CORAL: ISOLATION, GROWTH CHARACTERISTICS AND EFFECTS OF UV IRRADIATION

    EPA Science Inventory

    Symbiodinium spp. Isolates from Stony Coral: Isolation, Growth Characteristics and Effects of UV Irradiation (Abstract). J. Phycol. 37(3):42-43.

    Symbiodinium species were isolated from Montipora capitata, Acropora palmata and two field samples of Porites porites. Cultures ...

  8. Competitive strategies of soft corals (Coelenterata: Octocorallia): Allelopathic effects on selected scleractinian corals

    NASA Astrophysics Data System (ADS)

    Sammarco, P. W.; Coll, J. C.; La Barre, S.; Willis, B.

    1983-09-01

    A striking retardation of grwoth was observed in the scleractinian coral Pavona cactus (Coelenterata: Scleractinia) growing in the vicinity of the soft coral Sinularia flexibilis (Coelenterata: Alcyonacea). More extensive field observations of naturally occurring interactions between soft corals and scleractinian corals suggested that members of the former group can be the more effective competitors for space on hard substrate. To test this hypothesis, colonies of three soft corals, Lobophytum pauciflorum, Sinularia pavida, and Xenia sp. aff. danae, were relocated next to stands of two hard corals, Pavona cactus and Porites andrewsi (=Porites cylindrica), and compared with undisturbed control areas. In areas where soft corals and scleractinian corals were in direct contact, significantly high levels of local mortality in the latter occurred in three of the six interaction pairs. One soft coral, L. pauciflorum, also caused extensive and significant mortality in Porites andrewsi in a non-contact situation. The scleractinian corals had no effect on the soft corals considered here. These results indicate that soft corals can effectively compete for space against hard corals. Furthermore, it is inferred that toxic exudates from the soft coral might be responsible for causing localized mortality in hard corals, since extensive mortality occurred in certain cases in the absence of contact. Competitive abilities of soft corals in interactions with hard corals varied in a species-specific manner. Susceptibility of hard corals to competitive mechanisms utilized by soft corals, particularly allelopathic ones, likewise varied species-specifically. It is commonly believed that the adaptive value of toxic compounds in soft corals stems from their effectiveness as a chemical defence mechanism in predator-prey interactions. This study has demonstrated their further role as allelopathic agents in interspecific competitive interactions.

  9. δ 11B, Sr, Mg and B in a modern Porites coral: the relationship between calcification site pH and skeletal chemistry

    NASA Astrophysics Data System (ADS)

    Allison, Nicola; Finch, Adrian A.; EIMF

    2010-03-01

    Sr/Ca, B/Ca, Mg/Ca and δ 11B were determined at high spatial resolution across ˜1 year of a modern Hawaiian Porites lobata coral by secondary ion mass spectrometry (SIMS). We observe significant variations in B/Ca, Mg/Ca, Sr/Ca and δ 11B over short skeletal distances (nominally equivalent to periods of <20 days). This heterogeneity probably reflects variations in the composition of the extracellular calcifying fluid (ECF) from which the skeleton precipitates. Calcification site pH (total scale) was estimated from skeletal δ 11B and ranged from 8.3 to 8.8 (± ˜0.1) with a mean of ˜8.6. Sr/Ca and B/Ca heterogeneity is not simply correlated with calcification site pH, as might be expected if Ca-ATPase activity increases the pH and decreases the Sr/Ca and B(OH) 4-/CO 32- ratios of the ECF. We produced a simple model of the ECF composition and the skeleton deposited from it, over a range of calcium transport and carbonate scenarios, which can account for these observed geochemical variations. The relationship between the pH and Sr/Ca of the ECF is dependent on the concentration of DIC at the calcification site. At higher DIC concentrations the ECF has a high capacity to buffer the [H +] changes induced by Ca-ATPase pumping. Conversely, at low DIC concentrations, this buffering capacity is reduced and ECF pH changes more rapidly in response to Ca-ATPase pumping. The absence of a simple correlation between ECF pH and skeletal Sr/Ca implies that calcification occurred under a range of DIC concentrations, reflecting variations in the respiration and photosynthesis of the coral and symbiotic zooxanthellate in the overlying coral tissues. Our observations have important implications for the use of coral skeletons as indicators of palaeo-ocean pH.

  10. Characterization of various stages of calcitization in Porites sp corals from uplifted reefs — Case studies from New Caledonia, Vanuatu, and Futuna (South-West Pacific)

    NASA Astrophysics Data System (ADS)

    Rabier, Cécile; Anguy, Yannick; Cabioch, Guy; Genthon, Pierre

    2008-11-01

    This study focuses on the processes of calcitization under meteoric conditions based on observations and analyses of a series of subaerial fossil corals of the genus Porites collected from emerged Holocene and Pleistocene reefs in the Pacific Ocean. We can establish two types of low-magnesian calcite (LMC) precipitates according to their textural characteristics after their transformation from the initial aragonitic skeleton to the calcitized corals. In the first variety (LMC1), the calcite contains remnants of the original exoskeleton structure ( in situ insoluble organic tissues, pieces of aragonite needles) while in the second variety (LMC2) — filling the primary inter-skeletal macro-pores — such relicts are not present. Such textural segregation is faithfully reflected in the elemental data on some parts of calcitized corals. LMC1 is characterized by Mg 2+, Sr 2+, and Mn 2+ compositions inherited from the aragonite precursor, indicating a formation in a semi-closed intra-skeleton diagenetic environment in disequilibrium with the meteoric bulk aquifer water. LMC2 has a chemistry indicative of equilibrium with ambient bulk meteoric water. These chemical characteristics can be likened to a two-fold mechanism: a fine-scale process — neomorphism — typified by the concomitant dissolution of intra-fabric aragonite and re-precipitation of the LMC1 resulting from the 'biogenic' skeleton and marine waters, followed by the cementation of the inter-fabric macro-voids by an allochthonous subaerial and meteoric LMC2. In the other parts of calcitized corals, LMC1 and LMC2 have similar trace element contents in Mg 2+ and Sr 2+. The chemical data are consistent with formation by partial skeletal dissolution followed eventually by cementation of primary voids (LMC2) and secondary voids (LMC1) by calcite in equilibrium with meteoric bulk aquifer water. These two mechanisms of the calcitization of skeletal aragonite mainly differ in the space and time length-scales of the

  11. Testing the genetic predictions of a biogeographical model in a dominant endemic Eastern Pacific coral (Porites panamensis) using a genetic seascape approach

    PubMed Central

    Saavedra-Sotelo, Nancy C; Calderon-Aguilera, Luis E; Reyes-Bonilla, Héctor; Paz-García, David A; López-Pérez, Ramón A; Cupul-Magaña, Amilcar; Cruz-Barraza, José A; Rocha-Olivares, Axayácatl

    2013-01-01

    The coral fauna of the Eastern Tropical Pacific (ETP) is depauperate and peripheral; hence, it has drawn attention to the factors allowing its survival. Here, we use a genetic seascape approach and ecological niche modeling to unravel the environmental factors correlating with the genetic variation of Porites panamensis, a hermatypic coral endemic to the ETP. Specifically, we test if levels of diversity and connectivity are higher among abundant than among depauperate populations, as expected by a geographically relaxed version of the Abundant Center Hypothesis (rel-ACH). Unlike the original ACH, referring to a geographical center of distribution of maximal abundance, the rel-ACH refers only to a center of maximum abundance, irrespective of its geographic position. The patterns of relative abundance of P. panamensis in the Mexican Pacific revealed that northern populations from Baja California represent its center of abundance; and southern depauperate populations along the continental margin are peripheral relative to it. Genetic patterns of diversity and structure of nuclear DNA sequences (ribosomal DNA and a single copy open reading frame) and five alloenzymatic loci partially agreed with rel-ACH predictions. We found higher diversity levels in peninsular populations and significant differentiation between peninsular and continental colonies. In addition, continental populations showed higher levels of differentiation and lower connectivity than peninsular populations in the absence of isolation by distance in each region. Some discrepancies with model expectations may relate to the influence of significant habitat discontinuities in the face of limited dispersal potential. Environmental data analyses and niche modeling allowed us to identify temperature, water clarity, and substrate availability as the main factors correlating with patterns of abundance, genetic diversity, and structure, which may hold the key to the survival of P. panamensis in the face of

  12. Evaluating the Influence of Solar Radiation, Coral Extension Rate and Anthropogenic CO2 on Skeletal δ13C in a Network of Fiji and Tonga Porites Corals

    NASA Astrophysics Data System (ADS)

    Dassie, E. P.; Lemley, G. M.; Linsley, B. K.; Howe, S. S.

    2011-12-01

    While stable oxygen isotope signatures in coral reefs have proven to be reliable recorders of temperature and salinity, it is difficult to interpret their skeletal 13C/12C signatures. Various studies have suggested that coral skeletal δ13C is primarily controlled by complex physiological mechanisms. However, it has also been proposed that δ13C variations in coral skeletons are related to more apparent factors such as solar radiation, skeletal extension rate, and the anthropogenic addition of 13C-depleted CO2 into the atmosphere and surface ocean ("Suess Effect"). We will present time-series variations of δ13C in six coral cores from Fiji and Tonga (South Pacific Ocean). On seasonal timescales, increases in solar radiation are correlated to increases in skeletal δ13C and visa-versa. Annually averaged data shows a correlation between increased coral δ13C and reduced coral extension rate, while a decrease in δ13C is associated with an increased extension rate. In the most recent portion of four of the coral δ13C records (from around 1900 to the core top), the value progressively decreases - a trend that is not present in either the skeletal extension rate or solar radiation data. We conclude that this decreasing δ13C trend is a consequence of the Suess Effect, as reported in other coral δ13C records. However, two of the six corals do not show this decreasing trend, which may be a result of their residence in especially shallow water (sub-tidal environments). The onset of the Suess effect in the four corals may help constrain the timing of the uptake of anthropogenic carbon by the western South Pacific Ocean. Although all factors controlling δ13C variation in corals are not completely understood, this study works towards an understanding of their relative contribution to δ13C variation.

  13. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: new improvements and application to a modern Porites coral.

    PubMed

    Thil, François; Blamart, Dominique; Assailly, Caroline; Lazareth, Claire E; Leblanc, Thierry; Butsher, John; Douville, Eric

    2016-02-15

    Laser Ablation coupled to Multi-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICPMS) is a powerful tool for the high-precision measurement of the isotopic ratios of many elements in geological samples, with the isotope ratio ((11) B/(10) B) of boron being used as an indicator of the pH of oceanic waters. Most geological samples or standards are polished and ablation occurs on flat surfaces. However, the shape and the irregularities of marine biocarbonates (e.g., corals, foraminifera) can make precise isotopic measurements of boron difficult. Even after polishing, the porosity properties and the presence of holes or micro-fractures affect the signal and the isotopic ratio when ablating the material, especially in raster mode. The effect of porosity and of the crater itself on the (11) B signal and the isotopic ratio acquired by LA-MC-ICPMS in both raster and spot mode was studied. Characterization of the craters was then performed with an optical profilometer to determine their shapes and depths. Surface state effects were examined by analyzing the isotopic fractionation of boron in silicate (NIST-SRM 612 and 610 standards) and in carbonate (corals). Surface irregularities led to a considerable loss of signal when the crater depth exceeded 20 µm. The stability and precision were degraded when ablation occurred in a deep cavity. The effect of laser focusing and of blank correction was also highlighted and our observations indicate that the accuracy of the boron isotopic ratio does not depend on the shape of the surface. After validation of the analytical protocol for boron isotopes, a raster application on a Porites coral, which grew for 18 months in an aquarium after field sampling, was carried out. This original LA-MC-ICPMS study revealed a well-marked boron isotope ratio temporal variability, probably related to growth rate and density changes, irrespective of the pH of the surrounding seawater. Copyright © 2015 John Wiley & Sons, Ltd. Copyright

  14. The effect of species and colony size on the bleaching response of reef-building corals in the Florida Keys during the 2005 mass bleaching event

    NASA Astrophysics Data System (ADS)

    Brandt, M. E.

    2009-12-01

    Understanding the variation in coral bleaching response is necessary for making accurate predictions of population changes and the future state of reefs in a climate of increasing thermal stress events. Individual coral colonies, belonging to inshore patch reef communities of the Florida Keys, were followed through the 2005 mass bleaching event. Overall, coral bleaching patterns followed an index of accumulated thermal stress more closely than in situ temperature measurements. Eight coral species ( Colpophyllia natans, Diploria strigosa, Montastraea cavernosa, M. faveolata, Porites astreoides, P. porites, Siderastrea siderea, and Stephanocoenia intersepta), representing >90% of the coral colonies studied, experienced intense levels of bleaching, but responses varied. Bleaching differed significantly among species: Colpophyllia natans and Diploria strigosa were most susceptible to thermal stress, while Stephanocoenia intersepta was the most tolerant. For colonies of C. natans, M. faveolata, and S. siderea, larger colonies experienced more extensive bleaching than smaller colonies. The inshore patch reef communities of the Florida Keys have historically been dominated by large colonies of Montastraea sp. and Colpophyllia natans. These results provide evidence that colony-level differences can affect bleaching susceptibility in this habitat and suggest that the impact of future thermal stress events may be biased toward larger colonies of dominant reef-building species. Predicted increases in the frequency of mass bleaching and subsequent mortality may therefore result in significant structural shifts of these ecologically important communities.

  15. Species-specific responses of corals to bleaching events on anthropogenically turbid reefs on Okinawa Island, Japan, over a 15-year period (1995-2009).

    PubMed

    Hongo, Chuki; Yamano, Hiroya

    2013-01-01

    Coral bleaching, triggered by elevated sea-surface temperatures (SSTs) has caused a decline in coral cover and changes in the abundances of corals on reefs worldwide. Coral decline can be exacerbated by the effects of local stressors like turbidity, yet some reefs with a natural history of turbidity can support healthy and resilient coral communities. However, little is known about responses of coral communities to bleaching events on anthropogenically turbid reefs as a result of recent (post World War II) terrestrial runoff. Analysis of region-scale coral cover and species abundance at 17-20 sites on the turbid reefs of Okinawa Island (total of 79 species, 30 genera, and 13 families) from 1995 to 2009 indicates that coral cover decreased drastically, from 24.4% to 7.5% (1.1%/year), subsequent to bleaching events in 1998 and 2001. This dramatic decrease in coral cover corresponded to the demise of Acropora species (e.g., A. digitifera) by 2009, when Acropora had mostly disappeared from turbid reefs on Okinawa Island. In contrast, Merulinidae species (e.g., Dipsastraea pallida/speciosa/favus) and Porites species (e.g., P. lutea/australiensis), which are characterized by tolerance to thermal stress, survived on turbid reefs of Okinawa Island throughout the period. Our results suggest that high turbidity, influenced by recent terrestrial runoff, could have caused a reduction in resilience of Acropora species to severe thermal stress events, because the corals could not have adapted to a relatively recent decline in water quality. The coral reef ecosystems of Okinawa Island will be severely impoverished if Acropora species fail to recover.

  16. Species-Specific Responses of Corals to Bleaching Events on Anthropogenically Turbid Reefs on Okinawa Island, Japan, over a 15-year Period (1995–2009)

    PubMed Central

    Hongo, Chuki; Yamano, Hiroya

    2013-01-01

    Coral bleaching, triggered by elevated sea-surface temperatures (SSTs) has caused a decline in coral cover and changes in the abundances of corals on reefs worldwide. Coral decline can be exacerbated by the effects of local stressors like turbidity, yet some reefs with a natural history of turbidity can support healthy and resilient coral communities. However, little is known about responses of coral communities to bleaching events on anthropogenically turbid reefs as a result of recent (post World War II) terrestrial runoff. Analysis of region-scale coral cover and species abundance at 17–20 sites on the turbid reefs of Okinawa Island (total of 79 species, 30 genera, and 13 families) from 1995 to 2009 indicates that coral cover decreased drastically, from 24.4% to 7.5% (1.1%/year), subsequent to bleaching events in 1998 and 2001. This dramatic decrease in coral cover corresponded to the demise of Acropora species (e.g., A. digitifera) by 2009, when Acropora had mostly disappeared from turbid reefs on Okinawa Island. In contrast, Merulinidae species (e.g., Dipsastraea pallida/speciosa/favus) and Porites species (e.g., P. lutea/australiensis), which are characterized by tolerance to thermal stress, survived on turbid reefs of Okinawa Island throughout the period. Our results suggest that high turbidity, influenced by recent terrestrial runoff, could have caused a reduction in resilience of Acropora species to severe thermal stress events, because the corals could not have adapted to a relatively recent decline in water quality. The coral reef ecosystems of Okinawa Island will be severely impoverished if Acropora species fail to recover. PMID:23565291

  17. Differential larval settlement responses of Porites astreoides and Acropora palmata in the presence of the green alga Halimeda opuntia

    NASA Astrophysics Data System (ADS)

    Olsen, K.; Sneed, J. M.; Paul, V. J.

    2016-06-01

    Settlement is critical to maintaining coral cover on reefs, yet interspecific responses of coral planulae to common benthic macroalgae are not well characterized. Larval survival and settlement of two Caribbean reef-building corals, the broadcast-spawner Acropora palmata and the planulae-brooder Porites astreoides, were quantified following exposure to plastic algae controls and the green macroalga Halimeda opuntia. Survival and settlement rates were not significantly affected by the presence of H. opuntia in either species. However, ~10 % of P. astreoides larvae settled on the surface of the macroalga, whereas larvae of A. palmata did not. It is unlikely that corals that settle on macroalgae will survive post-settlement; therefore, H. opuntia may reduce the number of P. astreoides and other non-discriminatory larvae that survive to adulthood. Our results suggest that the presence of macroalgae on impacted reefs can have unexpected repercussions for coral recruitment and highlight discrepancies in settlement specificity between corals with distinct life history strategies.

  18. Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions

    NASA Astrophysics Data System (ADS)

    Bahr, Keisha D.; Jokiel, Paul L.; Rodgers, Ku'ulei S.

    2016-06-01

    Coral reef ecosystems are presently undergoing decline due to anthropogenic climate change. The chief detrimental factors are increased temperature and increased pCO2. The purpose of this study was to evaluate the effect of these two stressors operating independently and in unison on the biological response of common Hawaiian reef corals. Manipulative experiments were performed using five species ( Porites compressa, Pocillopora damicornis, Fungia scutaria, Montipora capitata, and Leptastrea purpurea) in a continuous-flow mesocosm system under natural sunlight conditions. Corals were grown together as a community under treatments of high temperature (2 °C above normal maximum summer temperature), high pCO2 (twice present-day conditions), and with both factors acting in unison. Control corals were grown under present-day pCO2 and at normal summer temperatures. Leptastrea purpurea proved to be an extremely hardy coral. No change in calcification or mortality occurred under treatments of high temperature, high pCO2, or combined high temperature-high pCO2. The remaining four species showed reduced calcification in the high-temperature treatment. Two species ( L. purpurea and M. capitata) showed no response to increased pCO2. Also, high pCO2 ameliorated the negative effect of high temperature on the calcification rates of P. damicornis. Mortality was driven primarily by high temperature, with a negative synergistic effect in P. compressa only in the high-pCO2-high-temperature treatment. Results support the observation that biological response to temperature and pCO2 elevation is highly species-specific, so generalizations based on response of a single species might not apply to a diverse and complex coral reef community.

  19. Coral overgrowth by an encrusting red alga ( Ramicrusta sp.): a threat to Caribbean reefs?

    NASA Astrophysics Data System (ADS)

    Eckrich, Caren E.; Engel, M. Sabine

    2013-03-01

    An encrusting red alga ( Ramicrusta sp., Peyssonneliaceae) present in Lac Bay, Bonaire, overgrows and kills corals and other sessile organisms. Living coral tissue comprises 7.2 % of the benthic composition of the shallow reef, while Ramicrusta sp. covers 18.7 % of the substratum. Of 1374 coral colonies surveyed, 45.8 % were partially overgrown by Ramicrusta sp., with P. porites, P. astreoides and M. complanata being the most susceptible to overgrowth. Mean Ramicrusta sp. maximum overgrowth rates ± SD were 0.08 ± 0.05 mm d-1, 0.07 ± 0.03 mm d-1 and 0.06 ± 0.02 mm d-1 for M. complanata, P. porites and P. astreoides, respectively. None of the 71 coral recruits surveyed were growing on Ramicrusta sp. Ramicrusta sp. is an immediate threat to corals, reduces the area of suitable substratum for coral settlement and may have the ability to influence coral species composition.

  20. Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites)

    NASA Astrophysics Data System (ADS)

    Douville, E.; Paterne, M.; Cabioch, G.; Louvat, P.; Gaillardet, J.; Juillet-Leclerc, A.; Ayliffe, L.

    2010-08-01

    The "δ11B-pH" technique was applied to modern and ancient corals Porites from the sub-equatorial Pacific areas (Tahiti and Marquesas) spanning a time interval from 0 to 20.720 calendar years to determine the amplitude of pH changes between the Last Glacial Period and the Holocene. Boron isotopes were measured by Multi-Collector - Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) with an external reproducibility of 0.25‰, allowing a precision of about ±0.03 pH-units for pH values between 8 and 8.3. The boron concentration [B] and isotopic composition of modern samples indicate that the temperature strongly controls the partition coefficient KD for different aragonite species. Modern coral δ11B values and the reconstructed sea surface pH values for different Pacific areas match the measured pH expressed on the seawater scale and confirm the calculation parameters that were previously determined by laboratory calibration exercises. Most ancient sea surface pH reconstructions near Marquesas are higher than modern values. These values range between 8.19 and 8.27 for the Holocene and reached 8.30 at the end of the last glacial period (20.7 kyr BP). At the end of the Younger Dryas (11.50±0.1 kyr BP), the central sub-equatorial Pacific experienced a dramatic drop of up to 0.2 pH-units from the average pH of 8.2 before and after this short event. Using the marine carbonate algorithms, we recalculated the aqueous pCO2 to be 440±25 ppmV at around 11.5 kyr BP for corals at Marquesas and ~500 ppmV near Tahiti where it was assumed that pCO2 in the atmosphere was 250 ppmV. Throughout the Holocene, the difference in pCO2 between the ocean and the atmosphere at Marquesas (ΔpCO2) indicates that the surface waters behave as a moderate CO2 sink or source (-53 to 20 ppmV) during El Niño-like conditions. By contrast, during the last glacial/interglacial transition, this area was a marked source of CO2 (21 to 92 ppmV) for the atmosphere, highlighting predominant La Ni

  1. Bacterial acquisition in juveniles of several broadcast spawning coral species.

    PubMed

    Sharp, Koty H; Ritchie, Kim B; Schupp, Peter J; Ritson-Williams, Raphael; Paul, Valerie J

    2010-05-28

    Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH) using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

  2. Bacterial Acquisition in Juveniles of Several Broadcast Spawning Coral Species

    PubMed Central

    Sharp, Koty H.; Ritchie, Kim B.; Schupp, Peter J.; Ritson-Williams, Raphael; Paul, Valerie J.

    2010-01-01

    Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH) using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals. PMID:20526374

  3. Effects of fish predation and seaweed competition on the survival and growth of corals.

    PubMed

    Miller, Margaret W; Hay, Mark E

    1998-01-01

    On Caribbean coral reefs, high rates of grazing by herbivorous fishes are thought to benefit corals because fishes consume competing seaweeds. We conducted field experiments in the Florida Keys, USA, to examine the effects of grazing fishes on coral/seaweed competition. Initially, fragments of Porites divaracata from an inshore habitat were transplanted into full-cage, half-cage, and no-cage treatments on a fore-reef. Within 48 h, 56% of the unprotected corals in half-cage and no-cage treatments (62 of 111) were completely consumed. Stoplight parrotfish (Sparisoma viride) were the major coral predators, with redband parrotfish (S. aurofrenatum) also commonly attacking this coral. Next, we transplanted fragments of P. porites collected from the fore-reef habitat where our caging experiments were being conducted into the three cage treatments, half in the presence of transplanted seaweeds, and half onto initially clean substrates. The corals were allowed to grow in these conditions, with concurrent development of competing seaweeds, for 14 weeks. Although seaweed cover and biomass were both significantly greater in the full-cage treatment, coral growth did not differ significantly between cage treatments even though corals placed with pre-planted seaweeds grew significantly less than corals placed on initially clean substrate. This surprising result occurred because parrotfishes not only grazed algae from accessible treatments, but also fed directly on our coral transplants. Parrotfish feeding scars were significantly more abundant on P. porites from the half and no-cage treatments than on corals in the full cages. On this Florida reef, direct fish predation on some coral species (P. divaracata) can exclude them from fore-reef areas, as has previously been shown for certain seaweeds and sponges. For other corals that live on the fore-reef (P. porites), the benefits of fishes removing seaweeds can be counterbalanced by the detrimental effects of fishes directly

  4. Lesion recovery of two scleractinian corals under low pH conditions: Implications for restoration efforts.

    PubMed

    Hall, Emily R; DeGroot, Breanna C; Fine, Maoz

    2015-11-15

    Some coral restoration efforts are involving cultivation of coral microfragments in land-based pools under controlled conditions until they reach viable size for outplanting. However, gaps in knowledge with these efforts include effects of changing pH on regeneration rates of tissue lesions and other physiological responses on different size fragments. To address this, two fragment sizes of Porites porites and Porites astreoides were artificially inflicted with lesions and incubated in two pH treatments to follow effects on recovery and physiological performance. Recovery was significantly reduced at reduced pH for P. porites in both fragment sizes; while recovery of P. astreoides was reduced only in the larger fragments. Different responses were also seen for Symbiodinium density and total protein with pH and fragment size. Effects on lesion recovery rate from pH and fragment size were species specific and may be related to morphology and/or energetic constrains.

  5. Heterotrophic plasticity and resilience in bleached corals.

    PubMed

    Grottoli, Andréa G; Rodrigues, Lisa J; Palardy, James E

    2006-04-27

    Mass coral bleaching events caused by elevated seawater temperatures have resulted in extensive coral mortality throughout the tropics over the past few decades. With continued global warming, bleaching events are predicted to increase in frequency and severity, causing up to 60% coral mortality globally within the next few decades. Although some corals are able to recover and to survive bleaching, the mechanisms underlying such resilience are poorly understood. Here we show that the coral host has a significant role in recovery and resilience. Bleached and recovering Montipora capitata (branching) corals met more than 100% of their daily metabolic energy requirements by markedly increasing their feeding rates and CHAR (per cent contribution of heterotrophically acquired carbon to daily animal respiration), whereas Porites compressa (branching) and Porites lobata (mounding) corals did not. These findings suggest that coral species with high-CHAR capability during bleaching and recovery, irrespective of morphology, will be more resilient to bleaching events over the long term, could become the dominant coral species on reefs, and may help to safeguard affected reefs from potential local and global extinction.

  6. Large-amplitude internal waves sustain coral health during thermal stress

    NASA Astrophysics Data System (ADS)

    Schmidt, Gertraud M.; Wall, Marlene; Taylor, Marc; Jantzen, Carin; Richter, Claudio

    2016-09-01

    Ocean warming is a major threat for coral reefs causing widespread coral bleaching and mortality. Potential refugia are thus crucial for coral survival. Exposure to large-amplitude internal waves (LAIW) mitigated heat stress and ensured coral survival and recovery during and after an extreme heat anomaly. The physiological status of two common corals, Porites lutea and Pocillopora meandrina, was monitored in host and symbiont traits, in response to LAIW-exposure throughout the unprecedented 2010 heat anomaly in the Andaman Sea. LAIW-exposed corals of both species survived and recovered, while LAIW-sheltered corals suffered partial and total mortality in P. lutea and P. meandrina, respectively. LAIW are ubiquitous in the tropics and potentially generate coral refuge areas. As thermal stress to corals is expected to increase in a warming ocean, the mechanisms linking coral bleaching to ocean dynamics will be crucial to predict coral survival on a warming planet.

  7. Effects of mechanical fracturing and experimental trampling on Hawaiian corals.

    PubMed

    Rodgers, Ku'ulei; Cox, Evelyn; Newtson, Craig

    2003-03-01

    In situ trampling occurred under experimental conditions to quantify the differences in the responses to anthropogenic trampling in four dominant species of Hawaiian corals, Porites compressa, Porites lobata, Montipora capitata, and Pocillopora meandrina. Trampling was simulated daily for a period of nine days at which time further breakage was minimal. Forty treatment colonies produced 559 fragments. Trampling was followed by an 11-month recovery period. Coral colony and fragment mortality was low. All four species were highly tolerant of inflicted damage, suggesting that some species of corals can withstand limited pulse events that allow time for recovery. Growth rates following trampling were significantly lower in the treatment groups for three of the four species. This study demonstrated that very few trampling events can produce significant changes in growth even after a long recovery period. Survivorship of fragments is clearly size- and species-dependent in M. capitata and P. compressa. Smaller fragments (<5 cm) had higher mortality than larger fragments (>5 cm). High breakage rates for M. capitata and P. compressa are consistent with the near shore, low-energy regions they inhabit-the same environment frequented by skin divers and waders. Mechanical tests were conducted to determine tensile and compressive strengths. Pocillopora meandrina exhibited the strongest skeletal strength, followed in decreasing order by Porites lobata, Porites compressa, and Montipora capitata. The skeletal strength obtained from the experiments correlate with the wave energy present in the environments in the regions they inhabit, suggesting that structural strength of corals is an adaptive response to hydraulic stress.

  8. Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (Porites)

    NASA Astrophysics Data System (ADS)

    Douville, E.; Paterne, M.; Cabioch, G.; Louvat, P.; Gaillardet, J.; Juillet-Leclerc, A.; Ayliffe, L.

    2010-03-01

    The "δ11B-pH" technique was applied to modern and ancient Porites from the sub-equatorial Pacific areas (Tahiti and Marquesas) spanning a time interval from 0 to 20 720 calendar years to determine the amplitude of pH changes between the Last Glacial Period and the Holocene. Boron isotopes were measured by Multi-Collector-Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) with an external reproducibility of 0.25‰, allowing a precision of ±0.025 pH-units. The boron concentration [B] and isotopic composition of modern samples indicate that the temperature strongly controls the partition coefficient KD for different aragonite species. Modern coral δ11B values and the reconstructed sea surface pH values for different Pacific areas match the measured pH expressed on the Sea Water Scale and confirm the calculation parameters that were previously determined by laboratory calibration exercises. Most ancient sea surface pH reconstructions near Marquesas are higher than modern values. These values range between 8.20 and 8.26 for the Holocene and reached 8.31 at the end of the last glacial period (20.7 kyr BP). At the end of the Younger Dryas (11.50±0.1 kyr BP), the central sub-equatorial Pacific experienced a dramatic drop of up to 0.2 pH-units from the average pH of 8.2 before and after this short event. Using the CO2SYS program, we recalculated the aqueous pCO2 to be 400±24 ppmV at around 11.5 kyr BP for corals at Marquesas and ~500 ppmV near Tahiti where it was assumed that pCO2 in the atmosphere was 250 ppmV. Throughout the Holocene, the difference in pCO2 between the ocean and the atmosphere at Marquesas (ΔpCO2) indicates that the surface waters behave as a moderate CO2 sink (-67 to -11 ppmV) during El Niño-like conditions. In contrast, during the last glacial/interglacial transition, this area was a moderate source of CO2 (-9 to 56 ppmV) for the atmosphere, highlighting predominant La Niña-like conditions. Such conditions were particularly pronounced at

  9. Does seaweed-coral competition make seaweeds more palatable?

    NASA Astrophysics Data System (ADS)

    Longo, G. O.; Hay, M. E.

    2015-03-01

    Seaweed-coral interactions are increasingly common on modern coral reefs, but the dynamics, processes, and mechanisms affecting these interactions are inadequately understood. We investigated the frequency and effect of seaweed-coral contacts for common seaweeds and corals in Belize. Effects on corals were evaluated by measuring the frequency and extent of bleaching when contacted by various seaweeds, and effects on a common seaweed were evaluated by assessing whether contact with coral made the seaweed more palatable to the sea urchin Diadema antillarum. Coral-seaweed contacts were particularly frequent between Agaricia corals and the seaweed Halimeda opuntia, with this interaction being associated with coral bleaching in 95 % of contacts. Pooling across all coral species, H. opuntia was the seaweed most commonly contacting corals and most frequently associated with localized bleaching at the point of contact. Articulated coralline algae, Halimeda tuna and Lobophora variegata also frequently contacted corals and were commonly associated with bleaching. The common corals Agaricia and Porites bleached with similar frequency when contacted by H. opuntia (95 and 90 %, respectively), but Agaricia experienced more damage than Porites when contacted by articulated coralline algae or H. tuna. When spatially paired individuals of H. opuntia that had been in contact with Agaricia and not in contact with any coral were collected from the reefs and offered to D. antillarum, urchins consumed about 150 % more of thalli that had been competing with Agaricia. Contact and non-contact thalli did not differ in nutritional traits (ash-free-dry-mass, C or N concentrations), suggesting that Halimeda chemical defenses may have been compromised by coral-algal contact. If competition with corals commonly enhances seaweed palatability, then the dynamics and nuances of small-scale seaweed-coral-herbivore interactions at coral edges are deserving of greater attention in that such

  10. Summer spawning of Porites lutea from north-western Australia

    NASA Astrophysics Data System (ADS)

    Stoddart, C. W.; Stoddart, J. A.; Blakeway, D. R.

    2012-09-01

    Most coral species off Australia's west coast spawn in the austral autumn (March-April), with a few species also spawning in the southern spring or early summer (November-December). This is the reverse timing to spawning recorded off Australia's east coast. Porites lutea, a gonochoric broadcast spawner that is common on Australia's west coast, is shown here to spawn in the months of November or December, as it does on Australia's east coast. Spawning occurred between 2 and 5 nights after full moon, with the majority of spawning activity on night 3. Gametes developed over three to four months with rapid development in the last two weeks before spawning. Zooxanthellae were typically observed in mature oocytes, only a week before spawning so their presence may provide a useful indicator of imminent spawning.

  11. Effects of herbivores, nutrient enrichment, and their interactions on macroalgal proliferation and coral growth

    NASA Astrophysics Data System (ADS)

    Sotka, E. E.; Hay, M. E.

    2009-09-01

    We conducted a 20-week manipulative field experiment on shallow forereefs of the Florida Keys to assess the separate and interactive effects of herbivory and nutrient enrichment on the development of macroalgal communities and the fitness of the corals Porites porites and Siderastrea siderea. Excluding large herbivorous fishes produced macrophyte blooms both with and without nutrient enrichment. In contrast, there were no direct effects of nutrient enrichment. There were, however, small, but significant, interactive effects of herbivory and enrichment on macroalgal cover. Following nutrient enrichment, total macroalgae and the common seaweeds Dictyota spp. were suppressed in the presence, but not in the absence, of large herbivorous fishes—suggesting that fishes were selectively feeding on nutrient-enriched macrophytes. Access by large herbivores prevented algal overgrowth of corals, but these large fishes also directly grazed both corals. Excluding fishes did not alter survivorship of either coral species, but did decrease parrotfish grazing scars on both corals and increased the net growth of P. porites. Nutrient additions had no direct effects on the survivorship of corals, but there was a trend ( P = 0.097) for nutrients to stimulate the growth of P. porites. The preponderance of experiments available to date indicates that loss of key herbivores is a major factor driving macroalgal blooms on coral reefs; anthropogenic nutrient pollution generally plays a more minor role.

  12. Internal bioerosion in dead and live hard corals in intertidal zone of Hormuz Island (Persian Gulf).

    PubMed

    Jafari, Mohammad Ali; Seyfabadi, Jafar; Shokri, Mohammad Reza

    2016-04-30

    Internal macrobioeroders and their erosion rate in three live and dead coral genera (Favia, Platygyra and Porites) from the intertidal zone of the Hormuz Island were studied by collecting five live and five dead colonies from each genus, from which 4 mm cross-sections were cut and photographed. Photos were analyzed using the Coral Point Count with Excel extensions. Totally, 9 taxa were identified: four bivalve species, one sponge, three polychaetes, and one barnacle. Bioerosion rate did not significantly differ among the three live corals, but among the dead ones only Porites was significantly more eroded than Favia. Sponge had the highest role in the erosion of the dead Platygyra, while barnacles were the most effective eroding organism in the live Platygyra. Polychaetes, followed by bivalves, were the most destructive bioeroders on the dead and live Porites. Further, none of the bioeroding organisms had selectively chosen either the dead or live Favia.

  13. Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea.

    PubMed

    Zhao, M X; Yu, K F; Shi, Q; Chen, T R; Zhang, H L; Chen, T G

    2013-09-01

    During the months of May and June in the year 2007, a survey was conducted regarding coral reef communities in the remote atolls (Zhubi Reef and Meiji Reef) of Nansha Islands, southern South China Sea. The goals of the survey were to: (1) for the first time, compile a scleractinian coral check-list; (2) estimate the total richness, coral cover, and growth forms of the community; and (3) describe preliminary patterns of community structure according to geomorphological units. Findings of this survey revealed a total of 120 species of scleractinia belonging to 40 genera, while the average coral cover was 21 %, ranging from less than 10 % to higher than 50 %. Branching and massive corals were also found to be the most important growth forms of the whole coral community, while Acropora, Montipora, and Porites were the three dominant genera in the overall region, with their contributions to total coral cover measuring 21, 22, and 23 %, respectively. Overall, coral communities of the Nansha Islands were in a relative healthy condition with high species diversity and coral cover. Spatial pattern of coral communities existed among various geomorphological units. Mean coral cover was highest in the patch reef within the lagoon, followed by the fore reef slope, reef flat, and lagoon slope. The greatest contributors to total coral cover were branching Acropora (45 %) in the lagoon slope, branching Montipora (44 %) in the reef flat, and massive Porites (51 %) in the patch reef. Coral cover in the fore reef revealed a greater range of genera than in other habitats. The leeward fore reef slope had higher coral cover (> 50 %) when compared with the windward slope (< 10 %). The coral communities of the inner reef flat were characterized by higher coral cover (27 %) and dominant branching Montipora corals, while lower coral cover (4 %) was dominated by Psammocora with massive growth forms on the outer reef flat. Destructive fishing and coral bleaching were two major threats to

  14. Phosphorus in coral skeleton: Evidence and species-specific global calibrations for a novel seawater phosphate proxy

    NASA Astrophysics Data System (ADS)

    Lavigne, M.; Anagnostou, E.; Cobb, K. M.; Field, M. P.; Grottoli, A. G.; Lazar, B.; Matthews, K. A.; Wellington, G. M.; Sherrell, R. M.

    2008-12-01

    A proxy for surface water nutrient concentrations recorded in coral skeleton would provide novel records of sub-seasonal to centennial scale variations in nutrient dynamics and primary production in the past. Such records of tropical euphotic zone nutrient supply and uptake could link climate oscillations to low latitude carbon fixation more directly than existing paleo-SST/upwelling proxies alone. A new coral proxy for seawater phosphate, P/Ca, would complement records from established but quantitatively uncertain surface water upwelling proxies such as coralline Cd/Ca and Ba/Ca. Using solution phase HR-ICP-MS methods, we have constructed mean global "calibrations" for P/Ca in three species of surface-dwelling corals: Pavona gigantea, Porites lutea, and Montastrea faveolata. We show that for all three species, average skeletal P/Ca in colonies growing in distinct nutrient regimes show a good linear positive correlation with average local surface phosphate concentrations, relatively similar slopes (Δ P/Ca coral/ Δ P/Ca seawater = ~1-2), but different y-intercepts (~0-50 P/Ca coral (μmol/mol)) for each species calibration. Further, a 4-year record along the growth axis of a Pavona gigantea coral growing under seasonally varying nutrient levels in the upwelling regime of the Gulf of Panamá shows repeated annual cycles of P/Ca (~75 -230 μmol/mol), with maxima occurring during cool upwelling periods, tracking the ~3 fold seasonal variations of surface water phosphate (LaVigne et al., 2008). Based on chemical cleaning experiments and inorganic phosphorus measurements in the aragonite, we hypothesize that this P/Ca signal reflects a combination of inorganic and organic intracrystalline phases, incorporated in proportion to ambient seawater phosphate. We plan to further test the validity of this new proxy in several coral species by comparing skeletal P/Ca to time series seawater phosphate records in the Gulf of Panamá and the Florida Keys.

  15. Spatial patterns of parrotfish corallivory in the Caribbean: the importance of coral taxa, density and size.

    PubMed

    Roff, George; Ledlie, Mary H; Ortiz, Juan C; Mumby, Peter J

    2011-01-01

    The past few decades have seen an increase in the frequency and intensity of disturbance on coral reefs, resulting in shifts in size and composition of coral populations. These changes have lead to a renewed focus on processes that influence demographic rates in corals, such as corallivory. While previous research indicates selective corallivory among coral taxa, the importance of coral size and the density of coral colonies in influencing corallivory are unknown. We surveyed the size, taxonomy and number of bites by parrotfish per colony of corals and the abundance of three main corallivorous parrotfish (Sparisoma viride, Sparisoma aurofrenatum, Scarus vetula) at multiple spatial scales (reefs within islands: 1-100 km, and between islands: >100 km) within the Bahamas Archipelago. We used a linear mixed model to determine the influence of coral taxa, colony size, colony density, and parrotfish abundance on the intensity of corallivory (bites per m(2) of coral tissue). While the effect of colony density was significant in determining the intensity of corallivory, we found no significant influence of colony size or parrotfish abundance (density, biomass or community structure). Parrotfish bites were most frequently observed on the dominant species of reef building corals (Montastraea annularis, Montastraea faveolata and Porites astreoides), yet our results indicate that when the confounding effects of colony density and size were removed, selective corallivory existed only for the less dominant Porites porites. As changes in disturbance regimes result in the decline of dominant frame-work building corals such as Montastraea spp., the projected success of P. porites on Caribbean reefs through high reproductive output, resistance to disease and rapid growth rates may be attenuated through selective corallivory by parrotfish.

  16. Spatial Patterns of Parrotfish Corallivory in the Caribbean: The Importance of Coral Taxa, Density and Size

    PubMed Central

    Roff, George; Ledlie, Mary H.; Ortiz, Juan C.; Mumby, Peter J.

    2011-01-01

    The past few decades have seen an increase in the frequency and intensity of disturbance on coral reefs, resulting in shifts in size and composition of coral populations. These changes have lead to a renewed focus on processes that influence demographic rates in corals, such as corallivory. While previous research indicates selective corallivory among coral taxa, the importance of coral size and the density of coral colonies in influencing corallivory are unknown. We surveyed the size, taxonomy and number of bites by parrotfish per colony of corals and the abundance of three main corallivorous parrotfish (Sparisoma viride, Sparisoma aurofrenatum, Scarus vetula) at multiple spatial scales (reefs within islands: 1–100 km, and between islands: >100 km) within the Bahamas Archipelago. We used a linear mixed model to determine the influence of coral taxa, colony size, colony density, and parrotfish abundance on the intensity of corallivory (bites per m2 of coral tissue). While the effect of colony density was significant in determining the intensity of corallivory, we found no significant influence of colony size or parrotfish abundance (density, biomass or community structure). Parrotfish bites were most frequently observed on the dominant species of reef building corals (Montastraea annularis, Montastraea faveolata and Porites astreoides), yet our results indicate that when the confounding effects of colony density and size were removed, selective corallivory existed only for the less dominant Porites porites. As changes in disturbance regimes result in the decline of dominant frame-work building corals such as Montastraea spp., the projected success of P. porites on Caribbean reefs through high reproductive output, resistance to disease and rapid growth rates may be attenuated through selective corallivory by parrotfish. PMID:22216184

  17. Resilience of corals to hurricanes: a simulation model

    NASA Astrophysics Data System (ADS)

    Andres, N. G.; Rodenhouse, N. L.

    1993-11-01

    This study tested how the frequency and intensity of hurricanes, and the size and growth rate of coral colonies influence the resilience of coral populations to disturbance by severe storms. A simulation modelling approach was used to examine the resilience of four coral species with differing life history characteristics: Agaricia agaricites, A. lamarcki, Helioseris cucullata, and Porites astreoides. Resilience, defined as the rate of area (coral cover) gain, was greater for three of the species when storms were less frequent or more intense. Resilience for all species increased with colony growth rates and with increasing proportion of small and medium-sized colonies. We conclude that (1) coral populations composed of intermediate-size, fast-growing colonies the most resilient following one or more storm disturbances, and (2) that resilience of anthropogenically stressed corals depends, in part, on population size structure.

  18. Identification and prevalence of coral diseases on three Western Indian Ocean coral reefs.

    PubMed

    Séré, Mathieu G; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2015-06-03

    Coral diseases have caused a substantial decline in the biodiversity and abundance of reef-building corals. To date, more than 30 distinct diseases of scleractinian corals have been reported, which cause progressive tissue loss and/or affect coral growth, reproductive capacity, recruitment, species diversity and the abundance of reef-associated organisms. While coral disease research has increased over the last 4 decades, very little is known about coral diseases in the Western Indian Ocean. Surveys conducted at multiple sites in Reunion, South Africa and Mayotte between August 2010 and June 2012 revealed the presence of 6 main coral diseases: black band disease (BBD), white syndrome (WS), pink line syndrome (PLS), growth anomalies (GA), skeleton eroding band (SEB) and Porites white patch syndrome (PWPS). Overall, disease prevalence was higher in Reunion (7.5 ± 2.2%; mean ± SE) compared to South Africa (3.9 ± 0.8%) and Mayotte (2.7 ± 0.3%). Across locations, Acropora and Porites were the genera most susceptible to disease. Spatial variability was detected in both Reunion and South Africa, with BBD and WS more prevalent on shallow than deep reefs. There was also evidence of seasonality in 2 diseases: the prevalence of BBD and WS was higher in summer than winter. This was the first study to investigate the ecology of coral diseases, providing both qualitative and quantitative data, on Western Indian Ocean reefs, and surveys should be expanded to confirm these patterns.

  19. Mapping Prevalence and Incidence of Coral Disease in reef-building corals at two Natural Reserves of the Southwest Puerto Rico

    NASA Astrophysics Data System (ADS)

    Sanchez Viruet, I.; Irizarry-Soto, E.; Ruiz-Valentín, I.

    2016-02-01

    Coral diseases seems to be the main cause of coral reef decline in the Caribbean. Before the bleaching event of 2005, coral reefs in Puerto Rico were dominated by the reef-building taxa: Orbicella annularis, Porites astreoides, Montastrea cavernosa, Agaricia agaracites and Colpophyllia natans. After the event, live-coral cover significantly declined and more than 90% of the scleractinian corals in the U.S. Virgin Islands and Puerto Rico showed signals of thermal stressors. The prevalence of coral diseases in five reef-building coral (Orbicella annularis, Orbicella franksi, Orbicella faveolata, Porites porites and Pseudiploria strigosa) species was assessed by tagging, photographing, and mapping all diseased and healthy colonies within 10 permanent 40m2 band transects at each inshore and mid-shelf reefs of Belvedere and Punta Guaniquilla Natural Reserves using a random stratified sampling method. Maximum and perpendicular diameter was used to assess coral size using Coral Point Count with Excel Extension. Corals were classified into three size class populations (class I: 0-50cm, class II: 50-100cm and class III: >100 cm). Data was used to develop a GIS-based map containing coral species, size and disease presence. Preliminary results of the inshore area showed a higher disease prevalence in Belvedere natural reserve and for P. strigosa (17.1%) and O. annularis (9.3%). Frequency distribution analysis showed a dominance of O. faveolata at Punta Guaniquilla and Belvedere (127 and 88 individuals respectively). Size class I dominates the distribution of each species within the natural reserves with a higher disease prevalence. Future work include continue prevalence surveys of the outer reef shelf on both natural reserves, monitoring and GIS-based mapping of incidence and resilience through time. This study will help in the assessment of the status of the coral reef of the southwest insular platform.

  20. Molecular delineation of species in the coral holobiont.

    PubMed

    Stat, Michael; Baker, Andrew C; Bourne, David G; Correa, Adrienne M S; Forsman, Zac; Huggett, Megan J; Pochon, Xavier; Skillings, Derek; Toonen, Robert J; van Oppen, Madeleine J H; Gates, Ruth D

    2012-01-01

    The coral holobiont is a complex assemblage of organisms spanning a diverse taxonomic range including a cnidarian host, as well as various dinoflagellate, prokaryotic and acellular symbionts. With the accumulating information on the molecular diversity of these groups, binomial species classification and a reassessment of species boundaries for the partners in the coral holobiont is a logical extension of this work and will help enhance the capacity for comparative research among studies. To aid in this endeavour, we review the current literature on species diversity for the three best studied partners of the coral holobiont (coral, Symbiodinium, prokaryotes) and provide suggestions for future work on systematics within these taxa. We advocate for an integrative approach to the delineation of species using both molecular genetics in combination with phenetic characters. We also suggest that an a priori set of criteria be developed for each taxonomic group as no one species concept or accompanying set of guidelines is appropriate for delineating all members of the coral holobiont. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Sibling species in Montastraea annularis, coral bleaching, and the coral climate record

    SciTech Connect

    Knowlton, N.; Weil, E.; Weigt, L.A.; Guzman, H.M. )

    1992-01-17

    Measures of growth and skeletal isotopic ratios in the Caribbean coral Montastraea annularis are fundamental to many studies of paleoceanography, environmental degradation, and global climate change. This taxon is shown to consist of at least three sibling species in shallow water. The two most commonly studied of these show highly significant differences in growth rate and oxygen isotopic ratios, parameters routinely used to estimate past climatic conditions; unusual coloration in the third may have confused research on coral bleaching. Interpretation or comparison of past and current studies can be jeopardized by ignoring these species boundaries.

  2. Sibling Species in Montastraea annularis, Coral Bleaching, and the Coral Climate Record.

    PubMed

    Knowlton, N; Weil, E; Weigt, L A; Guzmán, H M

    1992-01-17

    Measures of growth and skeletal isotopic ratios in the Caribbean coral Montastraea annularis are fundamental to many studies of paleoceanography, environmental degradation, and global climate change. This taxon is shown to consist of at least three sibling species in shallow waters. The two most commonly studied of these show highly significant differences in growth rate and oxygen isotopic ratios, parameters routinely used to estimate past climatic conditions; unusual coloration in the third may have confused research on coral bleaching. Interpretation or comparison of past and current studies can be jeopardized by ignoring these species boundaries.

  3. detrimentally affects tissue regeneration of Red Sea corals

    NASA Astrophysics Data System (ADS)

    Horwitz, Rael; Fine, Maoz

    2014-09-01

    Ocean acidification (OA) from rising atmospheric carbon dioxide (CO2) is threatening the future of coral reef ecosystems. Mounting experimental evidence suggests that OA negatively impacts fundamental life functions of scleractinian corals, including growth and sexual reproduction. Although regeneration is regarded as a chief life function in scleractinian corals and essential to maintain the colony's integrity, the effect of OA on regeneration processes has not yet been investigated. To evaluate the effects of OA on regeneration, the common Indo-Pacific corals Porites sp., Favia favus, Acropora eurystoma, and Stylophora pistillata were inflicted with lesions (314-350 mm2, depending on species) and incubated in different pCO2: (1) ambient seawater (400 µatm, pH 8.1), (2) intermediate (1,800 µatm, pH 7.6), and (3) high (4,000 µatm, pH 7.3) for extended periods of time (60-120 d). While all coral species after 60 d had significantly higher tissue regeneration in ambient conditions as compared to the intermediate and high treatments, reduction in regeneration rate was more pronounced in the slow-growing massive Porites sp. and F. favus than the relatively fast-growing, branching S. pistillata and A. eurystoma. This coincided with reduced tissue biomass of Porites sp., F. favus, and A. eurystoma in higher pCO2, but not in S. pistillata. Porites sp., F. favus, and S. pistillata also experienced a decrease in Symbiodinium density in higher pCO2, while in A. eurystoma there was no change. We hypothesize that a lowered regenerative capacity under elevated pCO2 may be related to resource trade-offs, energy cost of acid/base regulation, and/or decrease in total energy budget. This is the first study to demonstrate that elevated pCO2 could have a compounding influence on coral regeneration following injury, potentially affecting the capacity of reef corals to recover following physical disturbance.

  4. Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

    USGS Publications Warehouse

    Garrison, V.H.; Ward, G.

    2012-01-01

    In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands) in 1999 and was followed for 12 years. The primary objectives were to (1) identify a source of coral colonies for transplantation that would not result in damage to reefs, (2) test the feasibility of transplanting storm-generated coral fragments, and (3) develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community. The ultimate goal was to enhance abundance of threatened reef-building species on local reefs. Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae)] and another fast-growing species [Porites porites (Poritidae)] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs. Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate. Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place. Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only. Location was a factor in survival only for A. palmata reference colonies and after year 10. Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are understood and mitigated or

  5. A novel method for the transport and analysis of genetic material from polyps and zooxanthellae of scleractinian corals.

    PubMed

    Crabbe, M James C

    2003-08-29

    We have developed a new simple method for transport, storage, and analysis of genetic material from the corals Agaricia agaricites, Dendrogyra cylindrica, Eusmilia ancora, Meandrina meandrites, Montastrea annularis, Porites astreoides, Porites furcata, Porites porites, and Siderastrea siderea at room temperature. All species yielded sufficient DNA from a single FTA card (19 microg-43 ng) for subsequent PCR amplification of both coral and zooxanthellar DNA. The D1 and D2 variable region of the large subunit rRNA gene (LSUrDNA) was amplified from the DNA of P. furcata and S. siderea by PCR. Electrophoresis yielded two major DNA bands: an 800-base pair (bp) DNA, which represented the coral ribosomal RNA (rRNA) gene, and a 600-bp DNA, which represented the zooxanthellar srRNA gene. Extraction of DNA from the bands yielded between 290 microg total DNA (S. siderea coral DNA) and 9 microg total DNA (P. furcata zooxanthellar DNA). The ability to transport and store genetic material from scleractinian corals without resort to laboratory facilities in the field allows for the molecular study of a far wider range and variety of coral sites than have been studied to date.

  6. Microbial aggregates within tissues infect a diversity of corals throughout the Indo-Pacific

    USGS Publications Warehouse

    Work, Thierry M.; Aeby, Greta S.

    2014-01-01

    Coral reefs are highly diverse ecosystems where symbioses play a pivotal role. Corals contain cell-associated microbial aggregates (CAMA), yet little is known about how widespread they are among coral species or the nature of the symbiotic relationship. Using histology, we found CAMA within 24 species of corals from 6 genera from Hawaii, American Samoa, Palmyra, Johnston Atoll, Guam, and Australia. Prevalence (%) of infection varied among coral genera: Acropora, Porites, and Pocillopora were commonly infected whereas Montipora were not. Acropora from the Western Pacific were significantly more likely to be infected with CAMA than those from the Central Pacific, whereas the reverse was true for Porites. Compared with apparently healthy colonies, tissues from diseased colonies were significantly more likely to have both surface and basal body walls infected. The close association of CAMA with host cells in numerous species of apparently healthy corals and lack of associated cell pathology reveals an intimate agent-host association. Furthermore, CAMA are Gram negative and in some corals may be related to chlamydia or rickettsia. We propose that CAMA in adult corals are facultative secondary symbionts that could play an important ecological role in some dominant coral genera in the Indo-Pacific. CAMA are important in the life histories of other animals, and more work is needed to understand their role in the distribution, evolution, physiology, and immunology of reef corals.

  7. Skeletal extension and calcification of reef-building corals in the central Indian Ocean.

    PubMed

    Morgan, K M; Kench, P S

    2012-10-01

    Skeletal extension, density and calcification rate of 12 scleractinian coral species comprising 7 morphological groups were examined on the reef crest of Vabbinfaru platform, Maldives. Growth rates of coral specimens were measured over the period of February 2010-March 2011 using alizarin staining and direct measurements. Skeletal extension rate was highly variable between coral species. Colony morphology was a major control on the skeletal extension and calcification of coral specimens. Growth rates of Acropora and Porites corals were comparable to existing data recorded for Caribbean and Indo-Pacific reef provinces. Skeletal density was less variable between species and was typically consistent among morphological groups. Findings represent the first estimates of coral growth in the central Indian Ocean region and add to the limited growth studies available that have examined a broad range of coral growth morphologies in other reef-building regions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. 77 FR 30261 - Petition To List 83 Species of Coral as Threatened or Endangered Under the Endangered Species Act...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... National Oceanic and Atmospheric Administration RIN 0648-XT12 Petition To List 83 Species of Coral as... 82 coral species in response to a petition from the Center for Biological Diversity (CBD) to list 83... rulemaking process and are unique to NMFS's response to the petition to list 83 coral species. Thus, the...

  9. Aggregation and cnidae development as early defensive strategies in Favia fragum and Porites astreoides

    NASA Astrophysics Data System (ADS)

    Rivera, H. E.; Goodbody-Gringley, G.

    2014-12-01

    To survive, corals possess a variety of active and passive defenses. This study examined the effectiveness of aggregation and cnidae development as defensive strategies in enhancing post-settlement survival and growth of two brooding corals, Favia fragum and Porites astreoides, in Bermuda. Growth and survival of solitary and aggregated spat were monitored over seven weeks; cnidae were extracted from surviving spat. F. fragum aggregated spat had higher mortality, slower growth, and more cnidae than solitary spat. On the other hand, aggregation proved beneficial for P. astreoides spat, which had significantly lower mortality, faster growth, and fewer cnidae. Aggregated and solitary F. fragum spat displayed negative correlations between cnidae density and growth, suggesting a trade-off between defense and growth; however, P. astreoides spat did not demonstrate such a trade-off. These differing responses suggest that early patterns of survivorship and defensive strategies are highly species specific and complex.

  10. Seasonally resolved sea surface temperature variability over the past 435 years in the northwestern Pacific recorded in Porites coral in Kikai Island, Southern Japan

    NASA Astrophysics Data System (ADS)

    Kawakubo, Y.; Yokoyama, Y.; Suzuki, A.; Alibert, C.; Kinsley, L.; Eggins, S. M.

    2011-12-01

    The Little Ice Age (LIA) is the most recent climate anomaly. According to the hemispheric scale surface temperature reconstructions based on the proxy records in various places, LIA is characterized by the cooling period between 1400 and 1850. However, since these proxy records mainly depend on the terrestrial records in mid to high latitude in the northern hemisphere and the marine records are limited, there is still no consensus concerning its spatial pattern, timing and cause. In June 2009, we obtained a 435-year-long modern core from a coral reef in Kikai Island, Japan. The island is located on the eastern boundary of the East China Sea in the northwestern Pacific. This modern coral core can date back to the LIA. Thus, to better understand the LIA, we reconstructed seasonally resolved sea surface temperature (SST) over the past 435 years in the northwestern Pacific, where it is a lack of records during LIA, based on Sr/Ca ratio in coral skeleton in Kikai Island. We analyzed the skeletal elements using laser ablation inductively coupled plasma mass spectorometry (LA-ICP-MS). This is a very powerful tool to handle long-term records since it requires a relatively brief experimental time compared with the analysis using isotope dilution or thermal ionazation ICP-MS. Our SST reconstruction in Kikai Island during LIA showed cooler period before 1700 and a bit warmer period between 1700 and 1850 compared with the average after the LIA. Based on these results, we discuss the paleoceanographic conditions in the northwestern Pacific during the LIA.

  11. Temporal variations of heavy metals in coral Porites lutea from Guangdong Province, China: Influences from industrial pollution, climate and economic factors

    USGS Publications Warehouse

    Peng, Z.; Liu, J.; Zhou, C.; Nie, B.; Chen, T.

    2006-01-01

    The correlation coefficients among the metals and climatic and economic factors indicate that the metals Ni, Zn, and Cd behave similarly. Copper and Mn are positively correlated, and cobalt is negatively correlated with Cr, Ni, Zn, and Cd. Lead is not correlated with any other metals but is correlated with sea surface water temperature, air temperature, GDP and industrial-agricultural production in Dianbai County. Lead in corals is related to the enhanced pollution level of ocean waters as a result of increased industrial activities.

  12. The functional gene composition and metabolic potential of coral-associated microbial communities

    PubMed Central

    Zhang, Yanying; Ling, Juan; Yang, Qingsong; Wen, Chongqing; Yan, Qingyun; Sun, Hongyan; Van Nostrand, Joy D.; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2015-01-01

    The phylogenetic diversity of coral-associated microbes has been extensively examined, but some contention remains regarding whether coral-associated microbial communities are species-specific or site-specific. It is suggested that corals may associate with microbes in terms of function, although little is known about the differences in coral-associated microbial functional gene composition and metabolic potential among coral species. Here, 16S rRNA Illumina sequencing and functional gene array (GeoChip 5.0) were used to assess coral-associated microbial communities. Our results indicate that both host species and environmental variables significantly correlate with shifts in the microbial community structure and functional potential. Functional genes related to key biogeochemical cycles including carbon, nitrogen, sulfur and phosphorus cycling, metal homeostasis, organic remediation, antibiotic resistance and secondary metabolism were shown to significantly vary between and among the four study corals (Galaxea astreata, Porites lutea, Porites andrewsi and Pavona decussata). Genes specific for anammox were also detected for the first time in the coral holobiont and positively correlated with ammonium. This study reveals that variability in the functional potential of coral-associated microbial communities is largely driven by changes in environmental factors and further demonstrates the importance of linking environmental parameters with genomic data in complex environmental systems. PMID:26536917

  13. Spatial refugia mediate juvenile coral survival during coral-predator interactions

    NASA Astrophysics Data System (ADS)

    Gallagher, Clare; Doropoulos, Christopher

    2017-03-01

    Coral recruitment and juvenile growth are essential processes for coral population maintenance and recovery. A growing body of research has evaluated the influence of reef microstructure on coral settlement and post-settlement survival, showing that physical refugia enhance recruitment. These studies have evaluated coral recruit morality from competition with macroalgae and indirect predation by grazing organisms, but the impact of direct predation by corallivorous piscine species on juvenile corals and how this interacts with reef microstructure is relatively unknown. This study examined whether refugia provided by micro-crevices enhance juvenile coral survival from corallivory. Juvenile corals from two different functional groups, the slow-growing massive Porites lobata and fast-growing branching Pocillopora damicornis, with average nubbin sizes of 1.4 cm × 0.3 cm and 0.5 cm × 1.0 cm (diameter × height), respectively, were attached to experimental tiles using small (1.44 cm3) and large (8.0 cm3) crevice sizes and were monitored for 29 d on a forereef in Palau. Full crevices (four sided) enhanced coral survival compared to exposed microhabitats in both coral taxa, but crevice size did not alter survival rates. Corallivores targeted recruits within crevices regardless of crevice size; dominant predators included small triggerfish (Balistidae), butterflyfish ( Chaetodon), and wrasse ( Cheilinus). Overall, Pocillopora suffered much higher rates of mortality than Porites. All Pocillopora were consumed by day 8 of the experiment, but mortality was significantly delayed in full crevices compared to exposed and partial crevice (three sided) microhabitats. In contrast, Por. lobata located in all microhabitats survived the entire experiment up to 29 d, with high survival in full (>90%) and partial crevices (70%), but only 28% survival in exposed microhabitats. These findings show the importance of crevices as spatial refugia from predators for juvenile corals and

  14. Competitive interactions between corals and turf algae depend on coral colony form.

    PubMed

    Swierts, Thomas; Vermeij, Mark Ja

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral-turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship.

  15. Soft coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) species diversity and chemotypes.

    PubMed

    Aratake, Satoe; Tomura, Tomohiko; Saitoh, Seikoh; Yokokura, Ryouma; Kawanishi, Yuichi; Shinjo, Ryuichi; Reimer, James Davis; Tanaka, Junichi; Maekawa, Hideaki

    2012-01-01

    Research on the soft coral genus Sarcophyton extends over a wide range of fields, including marine natural products and the isolation of a number of cembranoid diterpenes. However, it is still unknown how soft corals produce this diverse array of metabolites, and the relationship between soft coral diversity and cembranoid diterpene production is not clear. In order to understand this relationship, we examined Sarcophyton specimens from Okinawa, Japan, by utilizing three methods: morphological examination of sclerites, chemotype identification, and phylogenetic examination of both Sarcophyton (utilizing mitochondrial protein-coding genes MutS homolog: msh1) and their endosymbiotic Symbiodinium spp. (utilizing nuclear internal transcribed spacer of ribosomal DNA: ITS- rDNA). Chemotypes, molecular phylogenetic clades, and sclerites of Sarcophyton trocheliophorum specimens formed a clear and distinct group, but the relationships between chemotypes, molecular phylogenetic clade types and sclerites of the most common species, Sarcophyton glaucum, was not clear. S. glaucum was divided into four clades. A characteristic chemotype was observed within one phylogenetic clade of S. glaucum. Identities of symbiotic algae Symbiodinium spp. had no apparent relation to chemotypes of Sarcophyton spp. This study demonstrates that the complex results observed for S. glaucum are due to the incomplete and complex taxonomy of this species group. Our novel method of identification should help contribute to classification and taxonomic reassessment of this diverse soft coral genus.

  16. Soft Coral Sarcophyton (Cnidaria: Anthozoa: Octocorallia) Species Diversity and Chemotypes

    PubMed Central

    Aratake, Satoe; Tomura, Tomohiko; Saitoh, Seikoh; Yokokura, Ryouma; Kawanishi, Yuichi; Shinjo, Ryuichi; Reimer, James Davis; Tanaka, Junichi; Maekawa, Hideaki

    2012-01-01

    Research on the soft coral genus Sarcophyton extends over a wide range of fields, including marine natural products and the isolation of a number of cembranoid diterpenes. However, it is still unknown how soft corals produce this diverse array of metabolites, and the relationship between soft coral diversity and cembranoid diterpene production is not clear. In order to understand this relationship, we examined Sarcophyton specimens from Okinawa, Japan, by utilizing three methods: morphological examination of sclerites, chemotype identification, and phylogenetic examination of both Sarcophyton (utilizing mitochondrial protein-coding genes MutS homolog: msh1) and their endosymbiotic Symbiodinium spp. (utilizing nuclear internal transcribed spacer of ribosomal DNA: ITS- rDNA). Chemotypes, molecular phylogenetic clades, and sclerites of Sarcophyton trocheliophorum specimens formed a clear and distinct group, but the relationships between chemotypes, molecular phylogenetic clade types and sclerites of the most common species, Sarcophyton glaucum, was not clear. S. glaucum was divided into four clades. A characteristic chemotype was observed within one phylogenetic clade of S. glaucum. Identities of symbiotic algae Symbiodinium spp. had no apparent relation to chemotypes of Sarcophyton spp. This study demonstrates that the complex results observed for S. glaucum are due to the incomplete and complex taxonomy of this species group. Our novel method of identification should help contribute to classification and taxonomic reassessment of this diverse soft coral genus. PMID:22272344

  17. Using Traits to Assess Nontransitivity of Interactions among Coral Species.

    PubMed

    Precoda, Kristin; Allen, Andrew P; Grant, Liesl; Madin, Joshua S

    2017-09-01

    Simulations and experiments have shown that species coexistence can be maintained via nontransitive competition, of which a simple case is the rock-paper-scissors game. Reef-building corals exemplify high biodiversity competing for a few limiting resources via several mechanisms. Thus, corals represent fertile ground for exploring competition and nontransitivity. This article aimed to test hypotheses about the effects of species-level traits on competitive outcomes, specifically, that more upright growth, larger corallites, smaller ranges, and difference in commonness co-occur with competitive superiority. Further aims were to test whether closely related species show less predictable competitive outcomes and greater nontransitivity and to examine the level of nontransitivity among a large number of species. These goals were addressed by fitting a mixed-effects model to outcomes of 2,322 interspecific interactions. Among species-level traits, corallite width had the greatest impact on outcome, followed by geographical range size, growth form, and the typical commonness of conspecifics in assemblages. These fixed effects had smaller estimated impacts than a random effect associated with species pair, suggesting a primary role for idiosyncratic species-pair or other factors. Closely related species had more variable, less predictable interaction outcomes. Nearly a quarter of three-way species relations were nontransitive. The observed degree of competitive nontransitivity and extent of idiosyncratic species-pair effects together provide an empirical baseline for further investigations of mechanisms of species coexistence.

  18. Physiological and ecological performance differs in four coral taxa at a volcanic carbon dioxide seep.

    PubMed

    Strahl, J; Stolz, I; Uthicke, S; Vogel, N; Noonan, S H C; Fabricius, K E

    2015-06-01

    Around volcanic carbon dioxide (CO2) seeps in Papua New Guinea, partial pressures of CO2 (pCO2) approximate those as predicted for the end of this century, and coral communities have low diversity and low structural complexity. To assess the mechanisms for such community shifts in response to ocean acidification, we examined the physiological performance of two hard corals that occur with increased or unaltered abundance at a seep site (mean pHTotal=7.8, pCO2=862 μatm) compared to a control site (mean pHTotal=8.1, pCO2=323 μatm), namely massive Porites spp. and Pocillopora damicornis, and two species with reduced abundance, Acropora millepora and Seriatopora hystrix. Oxygen fluxes, calcification, and skeletal densities were analyzed in corals originating from the seep and control site. Net photosynthesis rates increased considerably in Porites spp. and A. millepora and slightly in P. damicornis at increased pCO2, but remained unaltered in S. hystrix. Dark respiration rates remained constant in all corals investigated from both sites. Rates of light calcification declined in S. hystrix at high pCO2, but were unaffected by pCO2 in the other three coral taxa. Dark and net calcification rates remained unchanged in massive Porites and P. damicornis, but were drastically reduced at high pCO2 in A. millepora and S. hystrix. However, skeletal densities were similar at both seep and control sites in all coral taxa investigated. Our data suggest that the pCO2-tolerant corals were characterized by an increased ability to acclimatize to ocean acidification, e.g. by maintaining net calcification. Thus, robust corals, such as Porites spp. and P. damicornis, are more likely to persist for longer in a future high pCO2 world than those unable to acclimatize.

  19. Species and size diversity in protective services offered by coral guard-crabs.

    PubMed

    McKeon, C Seabird; Moore, Jenna M

    2014-01-01

    Coral guard-crabs in the genus Trapezia are well-documented defenders of their pocilloporid coral hosts against coral predators such as the Crown-of-Thorns seastar (Acanthaster planci complex). The objectives of this study were to examine the protective services of six species of Trapezia against corallivory, and the extent of functional diversity among these Trapezia species. Studies conducted in Mo'orea, French Polynesia showed the Trapezia-coral mutualism protected the host corals from multiple predators through functional diversity in the assemblage of crab symbionts. Species differed in their defensive efficacy, but species within similar size classes shared similar abilities. Smaller-size Trapezia species, which were previously thought to be ineffective guards, play important defensive roles against small corallivores. We also measured the benefits of this mutualism to corals in the midst of an Acanthaster outbreak that reduced the live coral cover on the fore reef to less than 4%. The mutualism may positively affect the reef coral demography and potential for recovery during adverse predation events through shelter of multiple species of small corals near the host coral. Our results show that while functional diversity is supported within the genus, some Trapezia species may be functionally equivalent within the same size class, decreasing the threat of gaps in coral protection caused by absence or replacement of any single Trapezia species.

  20. Increased light intensity induces heat shock protein Hsp60 in coral species.

    PubMed

    Chow, Ari M; Ferrier-Pagès, Christine; Khalouei, Sam; Reynaud, Stéphanie; Brown, Ian R

    2009-09-01

    The effect of increased light intensity and heat stress on heat shock protein Hsp60 was examined in two coral species using a branched coral and a laminar coral, selected for their different resistance to environmental perturbation. Transient Hsp60 induction was observed in the laminar coral following either light or thermal stress. Sustained induction was observed when these stresses were combined. The branched coral exhibited comparatively weak transient Hsp60 induction after heat stress and no detectable induction following light stress, consistent with its susceptibility to bleaching in native environments compared to the laminar coral. Our observations also demonstrate that increased light intensity and heat stress exhibited a greater negative impact on the photosynthetic capacity of environmentally sensitive branched coral than the more resistant laminar coral. This supports a correlation between stress induction of Hsp60 and (a) ability to counter perturbation of photosynthetic capacity by light and heat stress and (b) resistance to environmentally induced coral bleaching.

  1. Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs?

    NASA Astrophysics Data System (ADS)

    Mumby, Peter J.

    2009-09-01

    With coral cover in decline on many Caribbean reefs, any process of coral mortality is of potential concern. While sparisomid parrotfishes are major grazers of Caribbean reefs and help control algal blooms, the fact that they also undertake corallivory has prompted some to question the rationale for their conservation. Here the weight of evidence for beneficial effects of parrotfishes, in terms of reducing algal cover and facilitating demographic processes in corals, and the deleterious effects of parrotfishes in terms of causing coral mortality and chronic stress, are reviewed. While elevated parrotfish density will likely increase the predation rate upon juvenile corals, the net effect appears to be positive in enhancing coral recruitment through removal of macroalgal competitors. Parrotfish corallivory can cause modest partial colony mortality in the most intensively grazed species of Montastraea but the generation and healing of bite scars appear to be in near equilibrium, even when coral cover is low. Whole colony mortality in adult corals can lead to complete exclusion of some delicate, lagoonal species of Porites from forereef environments but is only reported for one reef species ( Porites astreoides), for one habitat (backreef), and with uncertain incidence (though likely <<10%). No deleterious effects of predation on coral growth or fecundity have been reported, though recovery of zooxanthellae after bleaching events may be retarded. The balance of evidence to date finds strong support for the herbivory role of parrotfishes in facilitating coral recruitment, growth, and fecundity. In contrast, no net deleterious effects of corallivory have been reported for reef corals. Corallivory is unlikely to constrain overall coral cover but contraints upon dwindling populations of the Montastraea annularis species complex are feasible and the role of parrotfishes as a vector of coral disease requires evaluation. However, any assertion that conservation practices

  2. Competitive interactions between corals and turf algae depend on coral colony form

    PubMed Central

    Vermeij, Mark JA

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral–turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship. PMID:27190707

  3. Mine waste disposal leads to lower coral cover, reduced species richness and a predominance of simple coral growth forms on a fringing coral reef in Papua New Guinea.

    PubMed

    Haywood, M D E; Dennis, D; Thomson, D P; Pillans, R D

    2016-04-01

    A large gold mine has been operating at the Lihir Island Group, Papua New Guinea since 1997. The mine disposes of waste rock in nearshore waters, impacting nearby coral communities. During 2010, 2012 we conducted photographic surveys at 73 sites within 40 km of the mine to document impacts of mining operations on the hard coral communities. Coral communities close to the mine (∼2 km to the north and south of the mine) were depaurperate, but surprisingly, coral cover and community composition beyond this range appeared to be relatively similar, suggesting that the mine impacts were limited spatially. In particular, we found mining operations have resulted in a significant decrease in coral cover (4.4% 1.48 km from the disposal site c.f. 66.9% 10.36 km from the disposal site), decreased species richness and a predominance of less complex growth forms within ∼2 km to the north and south of the mine waste disposal site. In contrast to the two 'snapshot' surveys of corals performed in 2010 and 2012, long term data (1999-2012) based on visual estimates of coral cover suggested that impacts on coral communities may have been more extensive than this. With global pressures on the world's coral reefs increasing, it is vital that local, direct anthropogenic pressures are reduced, in order to help offset the impacts of climate change, disease and predation.

  4. Predicting coral species richness: the effect of input variables, diversity and scale.

    PubMed

    Richards, Zoe T; Hobbs, Jean-Paul A

    2014-01-01

    Coral reefs are facing a biodiversity crisis due to increasing human impacts, consequently, one third of reef-building corals have an elevated risk of extinction. Logistic challenges prevent broad-scale species-level monitoring of hard corals; hence it has become critical that effective proxy indicators of species richness are established. This study tests how accurately three potential proxy indicators (generic richness on belt transects, generic richness on point-intercept transects and percent live hard coral cover on point-intercept transects) predict coral species richness at three different locations and two analytical scales. Generic richness (measured on a belt transect) was found to be the most effective predictor variable, with significant positive linear relationships across locations and scales. Percent live hard coral cover consistently performed poorly as an indicator of coral species richness. This study advances the practical framework for optimizing coral reef monitoring programs and empirically demonstrates that generic richness offers an effective way to predict coral species richness with a moderate level of precision. While the accuracy of species richness estimates will decrease in communities dominated by species-rich genera (e.g. Acropora), generic richness provides a useful measure of phylogenetic diversity and incorporating this metric into monitoring programs will increase the likelihood that changes in coral species diversity can be detected.

  5. Bacterial communities and species-specific associations with the mucus of Brazilian coral species

    PubMed Central

    Carlos, Camila; Torres, Tatiana T.; Ottoboni, Laura M. M.

    2013-01-01

    We investigated the existence of species-specific associations between Brazilian coral species and bacteria. Pyrosequencing of the V3 region of the 16S rDNA was used to analyze the taxonomic composition of bacterial communities associated with the mucus of four coral species (Madracis decactis, Mussismilia hispida, Palythoa caribaeorum, and Tubastraea coccinea) in two seasons (winter and summer), which were compared with the surrounding water and sediment. The microbial communities found in samples of mucus, water, and sediment differed according to the composition and relative frequency of OTUs. The coral mucus community seemed to be more stable and resistant to seasonal variations, compared to the water and sediment communities. There was no influence of geographic location on the composition of the communities. The sediment community was extremely diverse and might act as a "seed bank" for the entire environment. Species-specific OTUs were found in P. caribaeorum, T. coccinea, and M. hispida. PMID:23567936

  6. Implications of coral harvest and transplantation on reefs in northwestern Dominica.

    PubMed

    Bruckner, Andrew W; Borneman, Eric H

    2010-10-01

    In June, 2002, the government of Dominica requested assistance in evaluating the coral culture and transplantation activities being undertaken by Oceanographic Institute of Dominica (OID), a coral farm culturing both western Atlantic and Indo-Pacific corals for restoration and commercial sales. We assessed the culture facilities of OID, the condition of reefs, potential impacts of coral collection and benefits of coral transplantation. Coral reefs (9 reefs, 3-20 m depth) were characterized by 35 species of scleractinian corals and a live coral cover of 8-35%. Early colonizing, brooders such as Porites astreoides (14.8% of all corals), P. porites (14.8%), Meandrina meandrites (14.7%) and Agaricia agaricites (9.1%) were the most abundant corals, but colonies were mostly small (mean = 25 cm diameter). Montastraea annularis (complex) was the other dominant taxa (20.8% of all corals) and colonies were larger (mean = 70 cm). Corals (pooled species) were missing an average of 20% of their tissue, with a mean of 1.4% recent mortality. Coral diseases affected 6.4% of all colonies, with the highest prevalence at Cabrits West (11.0%), Douglas Bay (12.2%) and Coconut Outer reef (20.7%). White plague and yellow band disease were causing the greatest loss of tissue, especially among M. annularis (complex), with localized impacts from corallivores, overgrowth by macroalgae, storm damage and sedimentation. While the reefs appeared to be undergoing substantial decline, restoration efforts by OlD were unlikely to promote recovery. No Pacific species were identified at OID restoration sites, yet species chosen for transplantation with highest survival included short-lived brooders (Agaricia and Porites) that were abundant in restoration sites, as well as non-reef builders (Palythoa and Erythropodium) that monopolize substrates and overgrow corals. The species of highest value for restoration (massive broadcast spawners) showed low survivorship and unrestored populations of these

  7. Does Water Quality Affect Size-frequency Distribution and Population Abundance of Porites astreoides?

    NASA Astrophysics Data System (ADS)

    Rivera-Irizarry, F.; Mercado-Molina, A. E.; Sabat, A. M.

    2016-02-01

    Unplanned coastal development represents a major threat to coral reef health. High sediment loads due to run-off increase water turbidity thereby reducing the amount of light available for Symbiodinium spp. a single cell algae living within the coral tissues, that provides up to 90% of coral energetic requirements. Thus, it could be expected that under poor water quality (PWQ) coral energetic budget would be compromised limiting significantly vital life processes such as growth and reproduction. Hence, the aim of this study is to determine whether (1) size-frequency and (2) population abundance of the scleractinian coral Porites astreoides differ along a water quality gradient. We selected this species because it can be found inhabiting coral reefs with poor and good water quality (GWQ). To assess the population dynamics, three sites with GWQ and three with PWQ where selected in the Puerto Rican archipelago. We hypothesize that colonies in PWQ are energetically limited; therefore, colonies should be smaller and population abundance lower in comparison to sites with GWQ. However, preliminary results based on two GWQ sites and two with PWQ suggest that there is a significant difference in size-distribution frequency between all sites regardless of water quality. In fact, similarities are observed between sites with contrasting water quality suggesting that size-frequency distribution in P. astreoides varies spatially. Nevertheless, population abundance differed significantly only between two contrasting water quality sites. Our data suggest that population structure of P. astreoides is likely site-specific and other factors (e.g. grazer abundance, energy allocation, fecundity) may be influencing size-frequency and population abundance in this specie.

  8. Species-diverse coral communities on an artificial substrate at a tuna farm in Amami, Japan.

    PubMed

    Hata, Hiroki; Hirabayashi, Isao; Hamaoka, Hideki; Mukai, Yoshio; Omori, Koji; Fukami, Hironobu

    2013-04-01

    Tuna-farming is expanding worldwide, necessitating the monitoring/managing of its effects on the natural environment. In Japan, tuna-farming is conducted on coral reefs that have been damaged by mass-bleaching events and crown-of-thorns starfish (COTS) outbreaks. This study focused on the coral community on an artificial substrate of tuna-farm to reveal the possible effects of tuna-farming on the natural environment. Corals flourished on ropes suspended in the farm in the Amami Islands, southern Japan. These were moored 3 m below the sea-surface in 50-m-deep water. The coral community on the rope was analyzed and compared with those on natural substrata on two adjacent COTS-damaged reefs and with that in a protected reef. Corals were monitored throughout a year. Sixty coral species grew on the ropes, that corresponds to 27.3% of the 220 species known from Amami. The coral community was unique, dominated by massive faviid corals. On the ropes, the water temperature rarely exceeded 30.0 °C and no corals on the rope were severely bleached or covered by sedimentation during the observations. The tuna-farm infrastructure provided corals with a suitable habitat, and species-rich coral communities were established. These coral communities are an important node connecting tuna-farms and the natural environment.

  9. A Chemical Approach to Mitigate Coral Bleaching

    NASA Astrophysics Data System (ADS)

    Marty-Rivera, M.; Yudowski, G.

    2016-02-01

    Changes in sea surface temperature and irradiance can induce bleaching and increase mortality in corals. Coral bleaching occurs when symbiotic algae living inside the coral is degraded or expelled, reducing the availability of energetic resources. Oxidative stress has been suggested as a possible molecular mechanism triggering bleaching. We hypothesized that reduction of reactive oxygen species (ROS) during stress could mitigate or prevent coral bleaching. We utilized the coral Porites Astreoides as our model to test the effects of two natural antioxidants, catechin and Resveratrol, on thermally induced bleaching. Coral fragments were exposed to four treatments: high temperature (32°C), high temperature plus antioxidants (1μM), ambient temperature (25°C), or ambient temperature (25°C) plus antioxidant for four days. A total of 8 corals were used per treatment. We measured several photobiological parameters, such as maximum quantum yield and light curves to assess the viability of symbiodinium spp. after thermal stress in the presence of antioxidants. Preliminary experiments on a model species, the sea anemone Aiptasia pallida and corals, showed that exposure to antioxidants reduced intracellular levels of ROS. Additionally, antioxidant-treated anemones showed higher photosynthetic efficiency (67%) than those exposed to high-temperature alone.

  10. Among-species variation in the energy budgets of reef-building corals: scaling from coral polyps to communities.

    PubMed

    Hoogenboom, Mia; Rottier, Cécile; Sikorski, Severine; Ferrier-Pagès, Christine

    2015-12-01

    The symbiosis between corals and dinoflagellates promotes the rapid growth of corals in shallow tropical oceans, and the high overall productivity of coral reefs. The aim of this study was to quantify and understand variation in carbon acquisition and allocation among coral species. We measured multiple physiological traits (including symbiont density, calcification, photosynthesis and tissue composition) for the same coral fragments to facilitate direct comparisons between species (Stylophora pistillata, Pocillopora damicornis, Galaxea fascicularis, Turbinaria reniformis and Acropora sp.). Tissue protein content was highly sensitive to the availability of particulate food, increasing in fed colonies of all species. Despite among-species variation in physiology, and consistent effects of feeding on some traits, overall energy allocation to tissue compared with skeleton growth did not depend on food availability. Extrapolating from our results, estimated whole-assemblage carbon uptake varied >20-fold across different coral assemblages, but this variation was largely driven by differences in the tissue surface area of different colony morphologies, rather than by differences in surface-area-specific physiological rates. Our results caution against drawing conclusions about reef productivity based solely on physiological rates measured per unit tissue surface area. Understanding the causes and consequences of among-species variation in physiological energetics provides insight into the mechanisms that underlie the fluxes of organic matter within reefs, and between reefs and the open ocean.

  11. Trace metal (Cd, Cu, Fe, Mn, Ni and Zn) accumulation in Scleractinian corals: a record for Sabah, Borneo.

    PubMed

    Mokhtar, Mazlin Bin; Praveena, Sarva Mangala; Aris, Ahmad Zaharin; Yong, Ow Cher; Lim, Ai Phing

    2012-11-01

    This study was designed as the first to assess the trace metal (Cd, Cu, Fe, Mn, Ni and Zn) in coral skeleton in relation to metal availabilities and sampling locations in Sabah. The study also aims to determine the differential abilities of Scleractinian coral species as a bioindicator of environmental conditions. Skeletons of Scleractinian coral (Hydnophora microconos, Favia speciosa and Porites lobata) showed concentrations of Fe, Mn and Ni relatively higher than Cd and Zn in the skeletons. Statistical analyses outputs showed significant relationships between trace metal concentrations in coral species and those in seawater and sediment. The highest bioaccumulation factors among three Scleractinian coral species investigated was for Zn followed by Mn, Ni, Fe, Cd and Cu can provide a sign about pollution levels. However, metal tolerance, coral structure and morphology as well as multispecies monitoring are factors that need to be a focus in future studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Hawai'i Coral Disease database (HICORDIS): species-specific coral health data from across the Hawaiian archipelago.

    PubMed

    Caldwell, Jamie M; Burns, John H R; Couch, Courtney; Ross, Megan; Runyon, Christina; Takabayashi, Misaki; Vargas-Ángel, Bernardo; Walsh, William; Walton, Maya; White, Darla; Williams, Gareth; Heron, Scott F

    2016-09-01

    The Hawai'i Coral Disease database (HICORDIS) houses data on colony-level coral health condition observed across the Hawaiian archipelago, providing information to conduct future analyses on coral reef health in an era of changing environmental conditions. Colonies were identified to the lowest taxonomic classification possible (species or genera), measured and assessed for visual signs of health condition. Data were recorded for 286,071 coral colonies surveyed on 1819 transects at 660 sites between 2005 and 2015. The database contains observations for 60 species from 22 genera with 21 different health conditions. The goals of the HICORDIS database are to: i) provide open access, quality controlled and validated coral health data assembled from disparate surveys conducted across Hawai'i; ii) facilitate appropriate crediting of data; and iii) encourage future analyses of coral reef health. In this article, we describe and provide data from the HICORDIS database. The data presented in this paper were used in the research article "Satellite SST-based Coral Disease Outbreak Predictions for the Hawaiian Archipelago" (Caldwell et al., 2016) [1].

  13. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress.

    PubMed

    Liang, Jiayuan; Yu, Kefu; Wang, Yinghui; Huang, Xueyong; Huang, Wen; Qin, Zhenjun; Pan, Ziliang; Yao, Qiucui; Wang, Wenhuan; Wu, Zhengchao

    2017-01-01

    It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef) in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on). In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress.

  14. Ingestion of Microplastics and Their Impact on Calcification in Reef-Building Corals

    NASA Astrophysics Data System (ADS)

    Zink, C. P.; Smith, R. T.

    2016-02-01

    Since the early 1970's, researchers began identifying plastics and other sources of litter as harmful to ecosystems. In recent years, there's been a growing concern about microscopic plastic debris (microplastics) and its impact on marine organisms. Likewise, microplastics are currently and continuously being documented from environmental samples on a global scale. The ecosystems most likely affected by their presence are shallow marine habitats, such as near-shore coral reefs. One concern is that microplastics may be ingested by reef-building corals and negatively impact their physiology. In this study, two species of Caribbean reef-building corals, Orbicella faveolata and Porites porites were investigated for rates of ingesting microplastics. Coral samples were incubated with 100μm micro-beads manufactured with a fluorescent label to aid in recovery and quantification from the coral tissue. Following the consumption of plastic, we measured instantaneous rates of calcification as a proxy for physiological performance compared to controls. Our results indicate that corals ingest microplastic particles and maintain them internally for at least 24 hours. Our initial findings suggest that the ingestion of ≥ 3 microplastic particles cm-2 may negatively impact rates of coral calcification. In light of these preliminary findings, further investigations should examine the long-term effect of environmentally relevant concentrations of microplastics on reef corals and its potential detriment to reef building capacity.

  15. Controlling factors of Ca isotope fractionation in scleractinian corals evaluated by temperature, pH and light controlled culture experiments

    NASA Astrophysics Data System (ADS)

    Inoue, Mayuri; Gussone, Nikolaus; Koga, Yasuko; Iwase, Akihiro; Suzuki, Atsushi; Sakai, Kazuhiko; Kawahata, Hodaka

    2015-10-01

    In this study, the 44Ca/40Ca ratios of Porites australiensis grown under three different culture experiments composed of temperature, pH and light controlled culture experiments are measured. The temperature dependent isotope fractionation of 0.02‰/°C deduced from this study is similar to inorganic aragonite, but the degree of isotope fractionation is about +0.4‰ offset in corals. These observations agree with earlier results on different coral species, suggesting Ca isotope fractionation during Ca transmembrane transport in corals. While in cultured corals a significant temperature dependence of δ44Ca is observed, the relationships between calcium isotope fractionation and pH as well as light intensity are negligible. Therefore variation of δ44Ca in Porites corals is mainly controlled by temperature. A combination of δ44Ca and Sr/Ca of corals in temperature controlled experiments cannot be explained by Rayleigh type fractionation directly from a fluid, which is seawater-like in terms of δ44Ca and Sr/Ca. Through coral-specific biomineralization processes, overall mean δ44Ca of scleractinian corals including previous studies are different from biogenic aragonites secreted by sclerosponges and pteropods, but are comparable with those of bivalves as well as calcitic coccolithophores and foraminifers. These findings are important for better understanding biomineralization in corals and in order to constrain the Ca isotopic composition of oceanic Ca sinks in response to climate changes and associated with shifts of calcite and aragonite seas.

  16. Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea

    PubMed Central

    Maor-Landaw, Keren

    2016-01-01

    It is well-established that there is a hierarchy of susceptibilities amongst coral genera during heat-stress. However, molecular mechanisms governing these differences are still poorly understood. Here we explored if specific corals possessing different morphologies and different susceptibilities to heat stress may manifest varied gene expression patterns. We examined expression patterns of seven genes in the branching corals Stylophora pistillata and Acropora eurystoma and additionally in the massive robust coral, Porites sp. The tested genes are representatives of key cellular processes occurring during heat-stress in Cnidaria: oxidative stress, ER stress, energy metabolism, DNA repair and apoptosis. Varied response to the heat-stress, in terms of visual coral paling, algal maximum quantum yield and host gene expression was evident in the different growth forms. The two branching corals exhibited similar overall responses that differed from that of the massive coral. A. eurystoma that is considered as a susceptible species did not bleach in our experiment, but tissue sloughing was evident at 34 °C. Interestingly, in this species redox regulation genes were up-regulated at the very onset of the thermal challenge. In S. pistillata, bleaching was evident at 34 °C and most of the stress markers were already up-regulated at 32 °C, either remaining highly expressed or decreasing when temperatures reached 34 °C. The massive Porites species displayed severe bleaching at 32 °C but stress marker genes were only significantly elevated at 34 °C. We postulate that by expelling the algal symbionts from Porites tissues, oxidation damages are reduced and stress genes are activated only at a progressed stage. The differential gene expression responses exhibited here can be correlated with the literature well-documented hierarchy of susceptibilities amongst coral morphologies and genera in Eilat’s coral reef. PMID:27069783

  17. Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea.

    PubMed

    Maor-Landaw, Keren; Levy, Oren

    2016-01-01

    It is well-established that there is a hierarchy of susceptibilities amongst coral genera during heat-stress. However, molecular mechanisms governing these differences are still poorly understood. Here we explored if specific corals possessing different morphologies and different susceptibilities to heat stress may manifest varied gene expression patterns. We examined expression patterns of seven genes in the branching corals Stylophora pistillata and Acropora eurystoma and additionally in the massive robust coral, Porites sp. The tested genes are representatives of key cellular processes occurring during heat-stress in Cnidaria: oxidative stress, ER stress, energy metabolism, DNA repair and apoptosis. Varied response to the heat-stress, in terms of visual coral paling, algal maximum quantum yield and host gene expression was evident in the different growth forms. The two branching corals exhibited similar overall responses that differed from that of the massive coral. A. eurystoma that is considered as a susceptible species did not bleach in our experiment, but tissue sloughing was evident at 34 °C. Interestingly, in this species redox regulation genes were up-regulated at the very onset of the thermal challenge. In S. pistillata, bleaching was evident at 34 °C and most of the stress markers were already up-regulated at 32 °C, either remaining highly expressed or decreasing when temperatures reached 34 °C. The massive Porites species displayed severe bleaching at 32 °C but stress marker genes were only significantly elevated at 34 °C. We postulate that by expelling the algal symbionts from Porites tissues, oxidation damages are reduced and stress genes are activated only at a progressed stage. The differential gene expression responses exhibited here can be correlated with the literature well-documented hierarchy of susceptibilities amongst coral morphologies and genera in Eilat's coral reef.

  18. Use of scleractinian corals to indicate marine pollution in the northern Gulf of Aqaba, Jordan.

    PubMed

    Barakat, S A; Al-Rousan, S; Al-Trabeen, M S

    2015-02-01

    The actual and fatal concentrations of selected heavy metals, including cadmium, cobalt, copper, lead, nickel, and zinc in corals from the Gulf of Aqaba were determined. Several living coral samples of different species (e.g., Porites) were collected from shallow depths (of about 5 m) at a number of sites along the Jordanian Gulf of Aqaba coast. The coral samples were collected using either a pneumatic diamond drill corer (for Porites) or a hammer and chisel (for other branched species). Some of the corals that had been collected were analyzed for heavy metals using atomic absorption spectrometry, and other samples were used in incubation experiments. The heavy metal concentrations were determined separately in the coral skeleton and the tissue layer. Heavy metal concentrations have not previously been determined in corals from the Gulf of Aqaba. We conclude that corals are suitable for use as proxy tools for assessing environmental pollution (i.e., they are bioindicators) in the Gulf of Aqaba and the Red Sea. Therefore, this study provides useful information on the degree of heavy metal contamination in the study area.

  19. Vibrio sp. causing Porites ulcerative white spot disease.

    PubMed

    Arboleda, Mark D M; Reichardt, Wolfgang T

    2010-06-11

    The causative agent of the Indo-Pacific coral disease, Porites ulcerative white spot syndrome (PUWS), that affects Porites spp. and a few other coral genera has so far remained unidentified. Inoculation of thiosulphate citrate bile sucrose (TCBS) agar with tissue material from Porites cylindrica infected with white spot produced colonies of approximately 3 mm diameter consisting of Gram-negative, motile, non-sucrose-fermenting, slightly curved rods with a minimum NaCl requirement of 0.3%. Three of these putative Vibrio sp. isolates were used for infection trials that included different stages of cell growth. Four modes of inoculation and 3 stages of bacterial cell growth were considered for testing Koch's postulates. Stationary phase cells proved more consistently infectious than did exponentially growing or starved cells using a 1-step immersion technique at cell concentrations of 10(4) cells ml(-1). A 1-step immersion technique proved more reliable in producing signs of white spot than did other techniques, such as injection, smearing and 2-step immersion of the inoculum. At inoculum densities >10(4) cells ml(-1) further signs of disease, such as tissue degradation and bleaching, also became evident. At elevated temperatures (>29 degrees C) bleaching remained absent for at least 2 mo from non-inoculated corals serving as controls, but was observed in artificially infected coral fragments. Of the 9 seawater aquaria containing healthy specimens of P. cylindrica, 6 showed signs of white spot 15 d after infection with an isolate tentatively identified as Vibrio sp. Based on 99% similarity of its 16S rRNA gene sequence and selected phenotypical features, this isolate revealed a close relationship to V. natriegens and V. parahaemolyticus.

  20. Inhibition of coral recruitment by macroalgae and cyanobacteria

    USGS Publications Warehouse

    Kuffner, I.B.; Walters, L.J.; Becerro, M.A.; Paul, V.J.; Ritson-Williams, R.; Beach, K.S.

    2006-01-01

    Coral recruitment is a key process in the maintenance and recovery of coral reef ecosystems. While intense competition between coral and algae is often assumed on reefs that have undergone phase shifts from coral to algal dominance, data examining the competitive interactions involved, particularly during the larval and immediate post-settlement stage, are scarce. Using a series of field and outdoor seawater table experiments, we tested the hypothesis that common species of macroalgae and cyanobacteria inhibit coral recruitment. We examined the effects of Lyngbya spp., Dictyota spp., Lobophora variegata (J. V. Lamouroux) Womersley, and Chondrophycus poiteaui (J. V. Lamouroux) Nam (formerly Laurencia poiteaui) on the recruitment success of Porites astreoides larvae. All species but C. poiteaui caused either recruitment inhibition or avoidance behavior in P. astreoides larvae, while L. confervoides and D. menstrualis significantly increased mortality rates of P. astreoides recruits. We also tested the effect of some of these macrophytes on larvae of the gorgonian octocoral Briareum asbestinum. Exposure to Lyngbya majuscula reduced survival and recruitment in the octocoral larvae. Our results provide evidence that algae and cyanobacteria use tactics beyond space occupation to inhibit coral recruitment. On reefs experiencing phase shifts or temporary algal blooms, the restocking of adult coral populations may be slowed due to recruitment inhibition, thereby perpetuating reduced coral cover and limiting coral community recovery. ?? Inter-Research 2006.

  1. Coral reproduction in Western Australia

    PubMed Central

    Speed, Conrad W.; Babcock, Russ

    2016-01-01

    the full moon. The timing of the full moon determined whether spawning was split over two months, which was common on tropical reefs. There were few data available for non-Acropora corals, which may have different patterns of reproduction. For example, the massive Porites seemed to spawn through spring to autumn on Kimberley Oceanic reefs and during summer in the Pilbara region, where other common corals (e.g. Turbinaria & Pavona) also displayed different patterns of reproduction to the Acropora. The brooding corals (Isopora & Seriatopora) on Kimberley Oceanic reefs appeared to planulate during many months, possibly with peaks from spring to autumn; a similar pattern is likely on other WA reefs. Gaps in knowledge were also due to the difficulty in identifying species and issues with methodology. We briefly discuss some of these issues and suggest an approach to quantifying variation in reproductive output throughout a year. PMID:27231651

  2. Coral reproduction in Western Australia.

    PubMed

    Gilmour, James; Speed, Conrad W; Babcock, Russ

    2016-01-01

    full moon. The timing of the full moon determined whether spawning was split over two months, which was common on tropical reefs. There were few data available for non-Acropora corals, which may have different patterns of reproduction. For example, the massive Porites seemed to spawn through spring to autumn on Kimberley Oceanic reefs and during summer in the Pilbara region, where other common corals (e.g. Turbinaria & Pavona) also displayed different patterns of reproduction to the Acropora. The brooding corals (Isopora & Seriatopora) on Kimberley Oceanic reefs appeared to planulate during many months, possibly with peaks from spring to autumn; a similar pattern is likely on other WA reefs. Gaps in knowledge were also due to the difficulty in identifying species and issues with methodology. We briefly discuss some of these issues and suggest an approach to quantifying variation in reproductive output throughout a year.

  3. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs

    PubMed Central

    Velásquez, Johanna; Sánchez, Juan A.

    2015-01-01

    Background What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Methods Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Results Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. Discussion There was strong octocoral

  4. Octocoral Species Assembly and Coexistence in Caribbean Coral Reefs.

    PubMed

    Velásquez, Johanna; Sánchez, Juan A

    2015-01-01

    What are the determinant factors of community assemblies in the most diverse ecosystem in the ocean? Coral reefs can be divided in continental (i.e., reefs that develop on the continental shelf, including siliciclastic reefs) and oceanic (i.e., far off the continental shelf, usually on volcanic substratum); whether or not these habitat differences impose community-wide ecological divergence or species exclusion/coexistence with evolutionary consequences, is unknown. Studying Caribbean octocorals as model system, we determined the phylogenetic community structure in a coral reef community, making emphasis on species coexistence evidenced on trait evolution and environmental feedbacks. Forty-nine species represented in five families constituted the species pool from which a phylogenetic tree was reconstructed using mtDNA. We included data from 11 localities in the Western Caribbean (Colombia) including most reef types. To test diversity-environment and phenotype-environment relationships, phylogenetic community structure and trait evolution we carried out comparative analyses implementing ecological and evolutionary approaches. Phylogenetic inferences suggest clustering of oceanic reefs (e.g., atolls) contrasting with phylogenetic overdispersion of continental reefs (e.g., reefs banks). Additionally, atolls and barrier reefs had the highest species diversity (Shannon index) whereas phylogenetic diversity was higher in reef banks. The discriminant component analysis supported this differentiation between oceanic and continental reefs, where continental octocoral species tend to have greater calyx apertures, thicker branches, prominent calyces and azooxanthellate species. This analysis also indicated a clear separation between the slope and the remaining habitats, caused by the presence or absence of Symbiodinium. K statistic analysis showed that this trait is conserved as well as the branch shape. There was strong octocoral community structure with opposite diversity

  5. Differential survival of coral transplants on various substrates under elevated water temperatures.

    PubMed

    Yap, Helen T

    2004-08-01

    Closely related scleractinian coral species that exhibited similar survival patterns under relatively normal field conditions responded very differently to the occurrence of an environmental disturbance. The two species studied were Porites cylindrica and Porites rus which occur in the same reef zones in shallow reef flats. Transplants of both species were evenly distributed and attached to three different types of substrate: live coral colonies of P. cylindrica, dead coral colonies (also of P. cylindrica), and epoxy coated metal grids that were raised above the sandy substrate. With the onset of above-normal water temperatures due to the El Niño episode of 1998, P. cylindrica transplants immediately showed signs of bleaching stress and tissue necrosis, followed by algal overgrowth and mortality soon afterwards. In contrast, transplants of P. rus bleached more slowly and suffered less mortality, with a few actually showing signs of recovery at the end of the experimental period which covered a total of 14 weeks. These differences in responses could be attributed to properties of the symbiotic zooxanthellae, of the host coral tissue itself, or both. Over-all, survival was good on the metal grids (average of 35%), and on the live coral (average of 22%). It was poor on the dead coral (average of 6%). The metal grids as well as live coral tissue apparently provided a favorable substrate for the attached coral fragments, even for those of a different species. Under the conditions of this particular study, attachment of live coral fragments on already dead colonies for the purpose of increasing live coral cover on the reef did not yield favorable results. This is an area that requires further investigation.

  6. The Delineation of Coral Bleaching Thresholds and Future Reef Health, Little Cayman Cayman Islands

    NASA Astrophysics Data System (ADS)

    Manfrino, C.; Van Hooidonk, R. J.; Manzello, D.; Hendee, J.

    2011-12-01

    The global rise in sea temperature through anthropogenic climate change is affecting coral reef ecosystems through a phenomenon known as coral bleaching; a common reaction to thermally induced physiological stress in reef-building corals that often leads to coral mortality. We describe aspects of the most prevalent episode of coral bleaching ever recorded at Little Cayman, Cayman Islands, during the fall of 2009. Scleractinian coral species exhibiting susceptibility to thermal stress and bleaching in Little Cayman were, in order, Siderastrea siderea, Montastraea annularis, and Montastraea faveolata, while Diplora strigosa and Agaricia spp. were less so, yet still showed considerable bleaching prevalence and severity. In contrast, the least susceptible were Porites porites, Porites astreoides, and Montastraea cavernosa. These observations and other reported observations of coral bleaching, together with 29 years (1982 - 2010) of satellite-derived sea surface temperatures, were used in a Degree Heating Weeks (DHW) and Peirce Skill Score (PSS) analysis to calculate a bleaching threshold above which bleaching was expected to occur. A threshold of 4.2 DHW had the highest skill, with a PSS of 0.70. This threshold and susceptibility ranking are used in combination with SST data from global, coupled ocean-atmosphere general circulation models (GCM) from the fourth IPCC assessment to forecast future reef health on Little Cayman. While these GCMs possess skill in reproducing many aspects of climate, they vary in their ability to correctly capture such parameters as the tropical ocean seasonal cycle and El Niño Southern Oscillation (ENSO) variability. These model weaknesses likely reduce the skill of coral bleaching predictions. To overcome this, a multi-model ensemble of GCMs are corrected for their mean, annual cycle and ENSO variability prior to calculating future thermal stress. Preliminary results show that from 2045 on Little Cayman is likely to see more than two

  7. Coral reef recovery in the Galápagos Islands: the northernmost islands (Darwin and Wenman)

    NASA Astrophysics Data System (ADS)

    Glynn, Peter W.; Riegl, Bernhard; Purkis, Samuel; Kerr, Jeremy M.; Smith, Tyler B.

    2015-06-01

    The remote northernmost Galápagos Islands, Darwin and Wenman, exhibited well-developed coral communities in 1975, which were severely degraded during the 1982-1983 El Niño warming event. Mapping of the coral reef at Darwin, herein Wellington Reef, shows it presently to be the largest known structural reef in the Galápagos. It consists of numerous 1- to 3-m-high Porites framework towers or stacks and overlies a carbonate (coral/calcareous sediments) basement. Pre-disturbance Wellington Reef was constructed chiefly by Porites lobata and Pocillopora elegans, and Wenman coral cover was dominated by Pavona clavus and Porites lobata. Subsequent surveys in 2012 have demonstrated robust recovery in spite of ENSO thermal shock events, involving both high and low stressful temperatures that have caused tissue bleaching and mortality. No losses of coral species have been observed. Radiocarbon dating of 1- to 3-m-high poritid framework stacks, from their peaks to bases, revealed modern ages of up to 690 yr. Incremental stack growth rates ranged from 0.15-0.39 to 1.04-2.40 cm yr-1. The former are equivalent to framework accretion rates of 1.5-3.9 m Kyr-1, the latter to coral skeletal growth rates of 1.0-2.4 cm yr-1. Coral recovery in the central and southern Galápagos has been nonexistent to low compared with the northern islands, due chiefly to much higher population densities and destructive grazing pressure of the echinoid Eucidaris galapagensis. Thus, coral reef resistance to ENSO perturbations and recovery potential in the Galápagos are influenced by echinoid bioerosion that varies significantly among islands.

  8. Coral disease dynamics in the central Philippines.

    PubMed

    Kaczmarsky, Longin T

    2006-03-23

    Limited quantitative research has been conducted on coral disease in the Philippines and baseline data are much needed. Field surveys for prevalence and distribution patterns were conducted from November 2002 to August 2003. Sites included the islands of Negros, Cebu, Siquijor, Panglao, Olango, Sumilon, Bantayan, Pescador, Balicassag and Palawan. In 154 belt transects, 10 026 Porites colonies were examined at 28 sites covering 3080 m2. Two syndromes, Porites ulcerative white spot (PUWS) and coral tumors, occurred at high prevalence. Tumors as high as 39.1% occurred among massive Porites, and PUWS was as high as 53.7% among massive and branching Porites. In 8 mo, 116 tagged colonies showed slow progression and low mortality. Along a 41 km human impact gradient centered on Dumaguete City (Negros), 15 sites were examined. Correlation analyses linked higher disease prevalence to anthropogenic influence (Spearman's rank correlation coefficient [r(s)] = -0.54, p = 0.04 for tumors and r(s) = -0.69, p = 0.005 for PUWS). In most sites disease prevalence was lower than in the sites near Dumaguete. High PUWS prevalence near uninhabited Sumilon Island appeared to be linked to the highly diseased reefs near Dumaguete City due to transmission of disease along a cross-shelf front formed between the Tañon Strait and Bohol Sea. Other observations included 12 potential new host species for PUWS (4 new genera and 1 octocorallia) and 5 likely new hosts for black band disease (BBD) in the Philippines, and a relatively high prevalence (7.8%) of BBD in 1 site in western Palawan.

  9. Gross and microscopic lesions in corals from Micronesia

    USGS Publications Warehouse

    Work, Thierry M.; Aeby, Greta S.; Hughen, Konrad A.

    2015-01-01

    The authors documented gross and microscopic morphology of lesions in corals on 7 islands spanning western, southern, and eastern Micronesia, sampling 76 colonies comprising 30 species of corals among 18 genera, with Acropora, Porites, and Montipora dominating. Tissue loss comprised the majority of gross lesions sampled (41%), followed by discoloration (30%) and growth anomaly (29%). Of 31 cases of tissue loss, most lesions were subacute (48%), followed by acute and chronic (26% each). Of 23 samples with discoloration, most were dark discoloration (40%), with bleaching and other discoloration each constituting 30%. Of 22 growth anomalies, umbonate growth anomalies composed half, with exophytic, nodular, and rugose growth anomalies composing the remainder. On histopathology, for 9 cases of dark discoloration, fungal infections predominated (77%); for 7 bleached corals, depletion of zooxanthellae from the gastrodermis made up a majority of microscopic diagnoses (57%); and for growth anomalies other than umbonate, hyperplasia of the basal body wall was the most common microscopic finding (63%). For the remainder of the gross lesions, no single microscopic finding constituted >50% of the total. Host response varied with the agent present on histology. Fragmentation of tissues was most often associated with algae (60%), whereas necrosis dominated (53%) for fungi. Two newly documented potentially symbiotic tissue-associated metazoans were seen in Porites and Montipora. Findings of multiple potential etiologies for a given gross lesion highlight the importance of incorporating histopathology in coral disease surveys. This study also expands the range of corals infected with cell-associated microbial aggregates.

  10. Gross and Microscopic Lesions in Corals from Micronesia.

    PubMed

    Work, T M; Aeby, G S; Hughen, K A

    2016-01-01

    The authors documented gross and microscopic morphology of lesions in corals on 7 islands spanning western, southern, and eastern Micronesia, sampling 76 colonies comprising 30 species of corals among 18 genera, with Acropora, Porites, and Montipora dominating. Tissue loss comprised the majority of gross lesions sampled (41%), followed by discoloration (30%) and growth anomaly (29%). Of 31 cases of tissue loss, most lesions were subacute (48%), followed by acute and chronic (26% each). Of 23 samples with discoloration, most were dark discoloration (40%), with bleaching and other discoloration each constituting 30%. Of 22 growth anomalies, umbonate growth anomalies composed half, with exophytic, nodular, and rugose growth anomalies composing the remainder. On histopathology, for 9 cases of dark discoloration, fungal infections predominated (77%); for 7 bleached corals, depletion of zooxanthellae from the gastrodermis made up a majority of microscopic diagnoses (57%); and for growth anomalies other than umbonate, hyperplasia of the basal body wall was the most common microscopic finding (63%). For the remainder of the gross lesions, no single microscopic finding constituted >50% of the total. Host response varied with the agent present on histology. Fragmentation of tissues was most often associated with algae (60%), whereas necrosis dominated (53%) for fungi. Two newly documented potentially symbiotic tissue-associated metazoans were seen in Porites and Montipora. Findings of multiple potential etiologies for a given gross lesion highlight the importance of incorporating histopathology in coral disease surveys. This study also expands the range of corals infected with cell-associated microbial aggregates.

  11. Miocene reef corals: A review

    SciTech Connect

    Frost, S.H.

    1988-01-01

    Tectonic blockage in the Middle East of westward-flowing Tethys surface circulation during the latest Oligocene led to creation in the earliest Miocene of endemic Mediterranean, Western Atlantic-Caribbean, and Indo-Pacific realms. A great reduction in reef coral diversity from 60-80 Oligocene species to 25-35 early Miocene species occurred in the Western Atlantic-Caribbean and Mediterranean areas accompanied by a decrease in reef growth. A slower and less drastic change apparently occurred in the Indo-Pacific area. Early Miocene reef corals of the Western Atlantic-Caribbean comprise a transition between the cosmopolitan Oligocene fauna and its endemic mid-Miocene to modern counterpart. Although early Miocene reefs were dominated by a Porites-Montastrea assemblage, eastward flow of Pacific circulation brought with it ''exotic'' corals such as Coscinaraea and Pseudocolumnastrea. Also, many cosmopolitan genera persisted from the Oligocene. During the middle to late Miocene, most of the species still living on Holocene reefs evolved. As the Mediterranean basin became more restricted, there was a slow decline in reef corals from 20 - 25 species in the Aquitainian to less than five species in the Messinian. Eustatic lowstand led to the extinction of reef-building corals in the late Messinian. In the Indo-Pacific, Neogene evolution of reef corals was conservative. Excluding the Acroporidae and Seriatoporidae, most Holocene framework species had evolved by the middle Miocene. Interplay between regional tectonics and eustatic sea level changes led to extensive development of middle to late Miocene pinnacle reefs over the southwestern Pacific.

  12. The Coral Trait Database, a curated database of trait information for coral species from the global oceans.

    PubMed

    Madin, Joshua S; Anderson, Kristen D; Andreasen, Magnus Heide; Bridge, Tom C L; Cairns, Stephen D; Connolly, Sean R; Darling, Emily S; Diaz, Marcela; Falster, Daniel S; Franklin, Erik C; Gates, Ruth D; Hoogenboom, Mia O; Huang, Danwei; Keith, Sally A; Kosnik, Matthew A; Kuo, Chao-Yang; Lough, Janice M; Lovelock, Catherine E; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M; Pochon, Xavier; Pratchett, Morgan S; Putnam, Hollie M; Roberts, T Edward; Stat, Michael; Wallace, Carden C; Widman, Elizabeth; Baird, Andrew H

    2016-03-29

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism's function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.

  13. The Coral Trait Database, a curated database of trait information for coral species from the global oceans

    NASA Astrophysics Data System (ADS)

    Madin, Joshua S.; Anderson, Kristen D.; Andreasen, Magnus Heide; Bridge, Tom C. L.; Cairns, Stephen D.; Connolly, Sean R.; Darling, Emily S.; Diaz, Marcela; Falster, Daniel S.; Franklin, Erik C.; Gates, Ruth D.; Hoogenboom, Mia O.; Huang, Danwei; Keith, Sally A.; Kosnik, Matthew A.; Kuo, Chao-Yang; Lough, Janice M.; Lovelock, Catherine E.; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M.; Pochon, Xavier; Pratchett, Morgan S.; Putnam, Hollie M.; Roberts, T. Edward; Stat, Michael; Wallace, Carden C.; Widman, Elizabeth; Baird, Andrew H.

    2016-03-01

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.

  14. The Coral Trait Database, a curated database of trait information for coral species from the global oceans

    PubMed Central

    Madin, Joshua S.; Anderson, Kristen D.; Andreasen, Magnus Heide; Bridge, Tom C.L.; Cairns, Stephen D.; Connolly, Sean R.; Darling, Emily S.; Diaz, Marcela; Falster, Daniel S.; Franklin, Erik C.; Gates, Ruth D.; Hoogenboom, Mia O.; Huang, Danwei; Keith, Sally A.; Kosnik, Matthew A.; Kuo, Chao-Yang; Lough, Janice M.; Lovelock, Catherine E.; Luiz, Osmar; Martinelli, Julieta; Mizerek, Toni; Pandolfi, John M.; Pochon, Xavier; Pratchett, Morgan S.; Putnam, Hollie M.; Roberts, T. Edward; Stat, Michael; Wallace, Carden C.; Widman, Elizabeth; Baird, Andrew H.

    2016-01-01

    Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research. PMID:27023900

  15. Reactive oxygen species (ROS) and dimethylated sulphur compounds in coral explants under acute thermal stress.

    PubMed

    Gardner, Stephanie G; Raina, Jean-Baptiste; Ralph, Peter J; Petrou, Katherina

    2017-03-08

    Coral bleaching is intensifying with global climate change. While the causes for these catastrophic events are well understood, the cellular mechanism that triggers bleaching is not well established. Our understanding of coral bleaching processes is hindered by the lack of robust methods for studying interactions between host and symbiont at the single-cell level. Here we exposed coral explants to acute thermal stress and measured oxidative stress, more specifically, reactive oxygen species (ROS), in individual symbiont cells. Furthermore, we measured concentrations of dimethylsulphoniopropionate (DMSP) and dimethylsulphoxide (DMSO) to elucidate the role of these compounds in coral antioxidant function. This work demonstrates the application of coral explants for investigating coral physiology and biochemistry under thermal stress and delivers a new approach to study host-symbiont interactions at the microscale, allowing us to directly link intracellular ROS with DMSP and DMSO dynamics.

  16. Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French Polynesia.

    PubMed

    Pratchett, Morgan S; McCowan, Dominique; Maynard, Jeffrey A; Heron, Scott F

    2013-01-01

    Climate-induced coral bleaching poses a major threat to coral reef ecosystems, mostly because of the sensitivities of key habitat-forming corals to increasing temperature. However, susceptibility to bleaching varies greatly among coral genera and there are likely to be major changes in the relative abundance of different corals, even if the wholesale loss of corals does not occur for several decades. Here we document variation in bleaching susceptibility among key genera of reef-building corals in Moorea, French Polynesia, and compare bleaching incidence during mass-bleaching events documented in 1991, 1994, 2002 and 2007. This study compared the proportion of colonies that bleached for four major genera of reef-building corals (Acropora, Montipora, Pocillopora and Porites), during each of four well-documented bleaching events from 1991 to 2007. Acropora and Montipora consistently bleached in far greater proportions (up to 98%) than Pocillopora and Porites. However, there was an apparent and sustained decline in the proportion of colonies that bleached during successive bleaching events, especially for Acropora and Montipora. In 2007, only 77% of Acropora colonies bleached compared with 98% in 1991. Temporal variation in the proportion of coral colonies bleached may be attributable to differences in environmental conditions among years. Alternately, the sustained declines in bleaching incidence among highly susceptible corals may be indicative of acclimation or adaptation. Coral genera that are highly susceptible to coral bleaching, and especially Acropora and Montipora, exhibit temporal declines in their susceptibility to thermal anomalies at Moorea, French Polynesia. One possible explanation for these findings is that gradual removal of highly susceptible genotypes (through selective mortality of individuals, populations, and/or species) is producing a coral assemblage that is more resistant to sustained and ongoing ocean warming.

  17. Changes in Bleaching Susceptibility among Corals Subject to Ocean Warming and Recurrent Bleaching in Moorea, French Polynesia

    PubMed Central

    Pratchett, Morgan S.; McCowan, Dominique; Maynard, Jeffrey A.; Heron, Scott F.

    2013-01-01

    Background Climate-induced coral bleaching poses a major threat to coral reef ecosystems, mostly because of the sensitivities of key habitat-forming corals to increasing temperature. However, susceptibility to bleaching varies greatly among coral genera and there are likely to be major changes in the relative abundance of different corals, even if the wholesale loss of corals does not occur for several decades. Here we document variation in bleaching susceptibility among key genera of reef-building corals in Moorea, French Polynesia, and compare bleaching incidence during mass-bleaching events documented in 1991, 1994, 2002 and 2007. Methodology/Principal Findings This study compared the proportion of colonies that bleached for four major genera of reef-building corals (Acropora, Montipora, Pocillopora and Porites), during each of four well-documented bleaching events from 1991 to 2007. Acropora and Montipora consistently bleached in far greater proportions (up to 98%) than Pocillopora and Porites. However, there was an apparent and sustained decline in the proportion of colonies that bleached during successive bleaching events, especially for Acropora and Montipora. In 2007, only 77% of Acropora colonies bleached compared with 98% in 1991. Temporal variation in the proportion of coral colonies bleached may be attributable to differences in environmental conditions among years. Alternately, the sustained declines in bleaching incidence among highly susceptible corals may be indicative of acclimation or adaptation. Conclusions/Significance Coral genera that are highly susceptible to coral bleaching, and especially Acropora and Montipora, exhibit temporal declines in their susceptibility to thermal anomalies at Moorea, French Polynesia. One possible explanation for these findings is that gradual removal of highly susceptible genotypes (through selective mortality of individuals, populations, and/or species) is producing a coral assemblage that is more resistant to

  18. Phosphorus in Hermatypic Coral Skeleton: Incorporation Mechanisms and a Potential Seawater Phosphate Proxy

    NASA Astrophysics Data System (ADS)

    Lavigne, M. G.; Sherrell, R. M.; Linsley, B. K.; Desenfant, F.

    2006-12-01

    and with lower PO4 in Caribbean vs. Subtropical South Pacific surface waters (ignoring species differences). We are initiating studies on cultured Porites corals grown under varying phosphate concentrations to calibrate skeletal P/Ca against dissolved [PO4] and to further explore the chemical form of incorporated phosphorus. This continuing effort will help reveal both the specific phosphorus incorporation mechanisms and the future utility of coralline P/Ca as a seawater PO4 proxy. 1 Montagna P., McCulloch M. T., Taviani M., Mazzoli C., and Vendrell B. (2006) Phosphorus in cold-water corals as a proxy for seawater nutrient chemistry. Science 312, 1788-1790.

  19. Biological review of 82 species of coral petitioned to be included in the Endangered Species Act

    USGS Publications Warehouse

    Brainard, Russell E.; Birkeland, Charles; Eakin, C. Mark; McElhany, Paul; Miller, Margaret W.; Patterson, Matt; Piniak, G.A.

    2011-01-01

    The BRT considered two major factors in conducting this review. The first factor was the interaction of natural phenomena and anthropogenic stressors that could potentially contribute to coral extinction. After extensive review of available scientific information, the BRT considers ocean warming, disease, and ocean acidification to be the most influential threats in posing extinction risks to the 82 candidate coral species between now and the year 2100. Threats of local origin but having widespread impact, such as sedimentation, nutrient enrichment, and fishing, were considered of medium importance in determining extinction risks. It is acknowledged that many other threats (e.g., physical damage from storms or ship groundings, invasive species or predator outbreaks, collection and trade) also negatively affect corals, often acutely and dramatically, but generally at relatively small local scales. These local threats were considered to be of limited scope and not deemed to contribute appreciably to the risk of species extinction, except in those special cases where species have restricted geographic or habitat ranges or species have already undergone precipitous population declines such that these local threats further contribute to depensatory processes that can magnify extinction risks (e.g., feedback-loops whereby individual survival decreases with smaller population size). The BRT acknowledges that local and global threats operate on different time scales and, though there is high confidence in the general progression of some key global threats, such as ocean warming and ocean acidification, there is much less certainty in the timing and spatial patterns of these threats. There is also substantial uncertainty in the abilities of the 82 candidate coral species to tolerate or adapt to each of the threats examined, as well as uncertainty in the dynamics of multiple simultaneous stresses. The BRT specifically identified increasing human population levels and the

  20. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals.

    PubMed

    Putnam, Hollie M; Stat, Michael; Pochon, Xavier; Gates, Ruth D

    2012-11-07

    Flexibility in biological systems is seen as an important driver of macro-ecosystem function and stability. Spatially constrained endosymbiotic settings, however, are less studied, although environmental thresholds of symbiotic corals are linked to the function of their endosymbiotic dinoflagellate communities. Symbiotic flexibility is a hypothesized mechanism that corals may exploit to adapt to climate change. This study explores the flexibility of the coral-Symbiodinium symbiosis through quantification of Symbiodinium ITS2 sequence assemblages in a range of coral species and genera. Sequence assemblages are expressed as an index of flexibility incorporating phylogenetic divergence and relative abundance of Symbiodinium sequences recovered from the host. This comparative analysis reveals profound differences in the flexibility of corals for Symbiodinium, thereby classifying corals as generalists or specifists. Generalists such as Acropora and Pocillopora exhibit high intra- and inter-species flexibility in their Symbiodinium assemblages and are some of the most environmentally sensitive corals. Conversely, specifists such as massive Porites colonies exhibit low flexibility, harbour taxonomically narrow Symbiodinium assemblages, and are environmentally resistant corals. Collectively, these findings challenge the paradigm that symbiotic flexibility enhances holobiont resilience. This underscores the need for a deeper examination of the extent and duration of the functional benefits associated with endosymbiotic diversity and flexibility under environmental stress.

  1. Disease dynamics of Porites bleaching with tissue loss: prevalence, virulence, transmission, and environmental drivers.

    PubMed

    Sudek, M; Williams, G J; Runyon, C; Aeby, G S; Davy, S K

    2015-02-10

    The prevalence, number of species affected, and geographical extent of coral diseases have been increasing worldwide. We present ecological data on the coral disease Porites bleaching with tissue loss (PBTL) from Kaneohe Bay, Oahu (Hawaii, USA), affecting P. compressa. This disease is prevalent throughout the year, although it shows spatio-temporal variability with peak prevalence during the warmer summer months. Temporal variability in disease prevalence showed a strong positive relationship with elevated water temperature. Spatially, PBTL prevalence peaked in clearer waters (lower turbidity) with higher water flow and higher densities of parrotfish, together explaining approximately 26% of the spatial variability in PBTL prevalence. However, the relatively poor performance of the spatial model suggests that other, unmeasured factors may be more important in driving spatial prevalence. PBTL was not transmissible through direct contact or the water column in controlled aquaria experiments, suggesting that this disease may not be caused by a pathogen, is not highly infectious, or perhaps requires a vector for transmission. In general, PBTL results in partial tissue mortality of affected colonies; on average, one-third of the tissue is lost. This disease can affect the same colonies repeatedly, suggesting a potential for progressive damage which could cause increased tissue loss over time. P. compressa is the main framework-building species in Kaneohe Bay; PBTL therefore has the potential to negatively impact the structure of the reefs at this location.

  2. Effects of Hydrogen Peroxide on Coral Photosynthesis and Calcification

    NASA Astrophysics Data System (ADS)

    Higuchi, T.; Fujimura, H.; Arakaki, T.; Oomori, T.

    2007-12-01

    The widely-observed decline of coral reefs is considered to be caused by changes in the environment by natural and anthropogenic activities. As one important factor, the run-off of various matters from human activities to the coastal seawater poses stresses to the corals by degrading the quality of the seawater. In Okinawa, Japan, red- soil running off from the developed land has been a major environmental issue since 1980s. Hydrogen peroxide (HOOH), a strong active oxygen species, is one of the photochemically formed chemicals in the red-soil-polluted seawater. Recent photochemical studies of seawater showed that HOOH photo-formation was faster in the red- soil-polluted seawater than clean seawater. We studied the effects of HOOH on corals by studying the changes in coral carbon metabolisms such as photosynthesis and calcification, which are indicators of the physiological state of a coral colony. The corals were exposed to various concentrations of HOOH (0, 0.3, 3 μM). Two massive coral species of Porites sp. and Goniastrea aspera and one branch coral of Galaxea facicularis were used for the exposure experiments. The control experiments showed that when no HOOH was added, metabolisms of each coral colony were relatively stable. On the other hand, when HOOH was added to the seawater, we observed obvious changes in the coral metabolisms in all the coral species. When 0.3 μM HOOH was added, photosynthesis decreased by 14% and calcification decreased by 17% within 3 days, compared with the control. When 3 μM HOOH was added, photosynthesis decreased by 21% and calcification decreased by 41% within 3 days, compared with the control. Our study showed that higher concentrations of HOOH posed more stress to the coral colonies.

  3. Intraspecific variations in responses to ocean acidification in two branching coral species.

    PubMed

    Sekizawa, Ayami; Uechi, Hikaru; Iguchi, Akira; Nakamura, Takashi; Kumagai, Naoki H; Suzuki, Atsushi; Sakai, Kazuhiko; Nojiri, Yukihiro

    2017-09-15

    Ocean acidification is widely recognised to have a negative impact on marine calcifying organisms by reducing calcifications, but controversy remains over whether such organisms could cope with ocean acidification within a range of phenotypic plasticity and/or adapt to future acidifying ocean. We performed a laboratory rearing experiment using clonal fragments of the common branching corals Montipora digitata and Porites cylindrica under control and acidified seawater (lower pH) conditions (approximately 400 and 900μatm pCO2, respectively) and evaluated the intraspecific variations in their responses to ocean acidification. Intra- and interspecific variations in calcification and photosynthetic efficiency were evident according to both pCO2 conditions and colony, indicating that responses to acidification may be individually variable at the colony level. Our results suggest that some corals may cope with ocean acidification within their present genotypic composition by adaptation through phenotypic plasticity, while others may be placed under selective pressures resulting in population alteration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synergistic effects of habitat preference and gregarious behaviour on habitat use in coral reef cardinalfish

    NASA Astrophysics Data System (ADS)

    Gardiner, N. M.; Jones, G. P.

    2010-12-01

    Spatial distributions of coral reef fish species are potentially determined by habitat preferences and behavioural interactions. However, the relative importance of these factors and whether or not behavioural interactions reinforce or disrupt habitat associations are poorly understood. This paper explores the degree to which habitat and social preferences explain the association that three common coral reef cardinalfish species ( Zoramia leptacanthus, Archamia zosterophora and Cheilodipterus quinquelineatus; family Apogonidae) have with coral substrata at Lizard Island, Great Barrier Reef. At diurnal resting sites, species were strongly associated with branching corals, with 80-90% of each species inhabiting one branching coral species, Porites cylindrica. Species were also highly gregarious, forming large con-specific and hetero-specific aggregations in coral heads, potentially reinforcing habitat associations. Three-way choice experiments were conducted to test fishes habitat preferences for living coral over dead substrata, for particular coral species, and the influence of gregarious behaviour on these habitat choices. The strength of habitat preferences differed among species, with Z. leptacanthus preferring live coral and P. cylindrica, A. zosterophora preferring P. cylindrica, whether live or dead and C. quinquelineatus exhibiting no preferences. All species were attracted to conspecifics, and for C. quinquelineatus and A. zosterophora, conspecific attraction resulted in stronger preferences for live corals. Gregarious behaviour also increased C. quinquelineatus associations with P. cylindrica. The relative strength of social attraction versus habitat preferences was investigated by comparing fish habitat preferences in the presence and/or absence of conspecifics. The presence of conspecifics on non-preferred rubble habitat reduced each species association with live coral. This study’s results indicate that in the field, habitat preferences and

  5. Live coral cover may provide resilience to damage from the vermetid gastropod Dendropoma maximum by preventing larval settlement

    NASA Astrophysics Data System (ADS)

    Phillips, N. E.; Shima, J. S.; Osenberg, C. W.

    2014-12-01

    Dendropoma maximum is a vermetid gastropod (a sessile tube-forming snail) commonly associated with living corals throughout shallow-water reefs of the Indo-Pacific. Recent work suggests that, once established, this species can adversely affect growth and survival of corals. Here, we test the hypotheses that disturbances to live coral substrates (e.g., creation of bare patches) facilitate successful larval settlement and subsequent population growth of D. maximum, and conversely, that live coral inhibits D. maximum settlement. In the shallow lagoon of Moorea, French Polynesia, we selected patch reefs where D. maximum was either present or absent (to evaluate potential effects of resident adult conspecifics on recruitment) and established focal quadrats on each reef. In each quadrat, we either experimentally removed 50 % of live coral cover or left the quadrat with 100 % live coral cover. In addition, we deployed units of bare substrate (coral rubble) to each reef. We conducted a census of deployed substrates and quadrats after 6 months and found that D. maximum settled irrespective of resident vermetid populations, and only onto nonliving surfaces (i.e., cleared patches in quadrats, coral rubble, and marine epoxy). In laboratory experiments, we exposed larvae of D. maximum to live coral and found species-specific effects on survival of D. maximum larvae. Porites lobata and Pocillopora sp. killed larvae of D. maximum, Porites rus caused weaker mortality, and Millepora sp. had no effect on larval survival. Collectively, these results suggest that D. maximum requires disturbances that create bare patches to successfully settle onto reefs, and that a high cover of living corals contributes resilience to reefs by limiting settlement opportunities of a species known to reduce coral growth and survival.

  6. Annual coral bleaching and the long-term recovery capacity of coral

    PubMed Central

    Schoepf, Verena; Grottoli, Andréa G.; Levas, Stephen J.; Aschaffenburg, Matthew D.; Baumann, Justin H.; Matsui, Yohei; Warner, Mark E.

    2015-01-01

    Mass bleaching events are predicted to occur annually later this century. Nevertheless, it remains unknown whether corals will be able to recover between annual bleaching events. Using a combined tank and field experiment, we simulated annual bleaching by exposing three Caribbean coral species (Porites divaricata, Porites astreoides and Orbicella faveolata) to elevated temperatures for 2.5 weeks in 2 consecutive years. The impact of annual bleaching stress on chlorophyll a, energy reserves, calcification, and tissue C and N isotopes was assessed immediately after the second bleaching and after both short- and long-term recovery on the reef (1.5 and 11 months, respectively). While P. divaricata and O. faveolata were able to recover from repeat bleaching within 1 year, P. astreoides experienced cumulative damage that prevented full recovery within this time frame, suggesting that repeat bleaching had diminished its recovery capacity. Specifically, P. astreoides was not able to recover protein and carbohydrate concentrations. As energy reserves promote bleaching resistance, failure to recover from annual bleaching within 1 year will likely result in the future demise of heat-sensitive coral species. PMID:26582020

  7. Annual coral bleaching and the long-term recovery capacity of coral.

    PubMed

    Schoepf, Verena; Grottoli, Andréa G; Levas, Stephen J; Aschaffenburg, Matthew D; Baumann, Justin H; Matsui, Yohei; Warner, Mark E

    2015-11-22

    Mass bleaching events are predicted to occur annually later this century. Nevertheless, it remains unknown whether corals will be able to recover between annual bleaching events. Using a combined tank and field experiment, we simulated annual bleaching by exposing three Caribbean coral species (Porites divaricata, Porites astreoides and Orbicella faveolata) to elevated temperatures for 2.5 weeks in 2 consecutive years. The impact of annual bleaching stress on chlorophyll a, energy reserves, calcification, and tissue C and N isotopes was assessed immediately after the second bleaching and after both short- and long-term recovery on the reef (1.5 and 11 months, respectively). While P. divaricata and O. faveolata were able to recover from repeat bleaching within 1 year, P. astreoides experienced cumulative damage that prevented full recovery within this time frame, suggesting that repeat bleaching had diminished its recovery capacity. Specifically, P. astreoides was not able to recover protein and carbohydrate concentrations. As energy reserves promote bleaching resistance, failure to recover from annual bleaching within 1 year will likely result in the future demise of heat-sensitive coral species. © 2015 The Author(s).

  8. Dissepiments, density bands and signatures of thermal stress in Porites skeletons

    NASA Astrophysics Data System (ADS)

    DeCarlo, Thomas M.; Cohen, Anne L.

    2017-09-01

    The skeletons of many reef-building corals are accreted with rhythmic structural patterns that serve as valuable sclerochronometers. Annual high- and low-density band couplets, visible in X-radiographs or computed tomography scans, are used to construct age models for paleoclimate reconstructions and to track variability in coral growth over time. In some corals, discrete, anomalously high-density bands, called "stress bands," preserve information about coral bleaching. However, the mechanisms underlying the formation of coral skeletal density banding remain unclear. Dissepiments—thin, horizontal sheets of calcium carbonate accreted by the coral to support the living polyp—play a key role in the upward growth of the colony. Here, we first conducted a vital staining experiment to test whether dissepiments were accreted with lunar periodicity in Porites coral skeleton, as previously hypothesized. Over 6, 15, and 21 months, dissepiments consistently formed in a 1:1 ratio to the number of full moons elapsed over each study period. We measured dissepiment spacing to reconstruct multiple years of monthly skeletal extension rates in two Porites colonies from Palmyra Atoll and in another from Palau that bleached in 1998 under anomalously high sea temperatures. Spacing between successive dissepiments exhibited strong seasonality in corals containing annual density bands, with narrow (wide) spacing associated with high (low) density, respectively. A high-density "stress band" accreted during the 1998 bleaching event was associated with anomalously low dissepiment spacing and missed dissepiments, implying that thermal stress disrupts skeletal extension. Further, uranium/calcium ratios increased within stress bands, indicating a reduction in the carbonate ion concentration of the coral's calcifying fluid under stress. Our study verifies the lunar periodicity of dissepiments, provides a mechanistic basis for the formation of annual density bands in Porites, and reveals the

  9. Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef.

    PubMed

    Littman, Raechel A; Willis, Bette L; Pfeffer, Christian; Bourne, David G

    2009-05-01

    Patterns in the diversity of bacterial communities associated with three species of Acropora (Acropora millepora, Acropora tenuis and Acropora valida) were compared at two locations (Magnetic Island and Orpheus Island) on the Great Barrier Reef to better understand the nature and specificity of coral-microbial symbioses. Three culture-independent techniques demonstrated consistent bacterial communities among replicate samples of each coral species, confirming that corals associate with specific microbiota. Profiles were also conserved among all three species of Acropora within each location, suggesting that closely related corals of the same genus harbor similar bacterial types. Bacterial community profiles of A. millepora at Orpheus Island were consistent in samples collected throughout the year, indicating a stable community despite temporal changes. However, DGGE and T-RFLP profiles differed on corals from different reefs. Nonmetric multidimensional scaling of T-RFLP profiles showed that samples grouped according to location rather than coral species. Although similar sequences were retrieved from clone libraries of corals at both Magnetic and Orpheus Island, differences in the relative dominant bacterial ribotypes within the libraries drive bacterial community structure at different geographical locations. These results indicate certain bacterial groups associated specifically with corals, but the dominant bacterial genera differ between geographically-spaced corals.

  10. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci

    PubMed Central

    Pratchett, Morgan S.; Kerr, Alexander M.; Rivera-Posada, Jairo A.

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species. PMID:27327627

  11. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    PubMed

    Caballes, Ciemon Frank; Pratchett, Morgan S; Kerr, Alexander M; Rivera-Posada, Jairo A

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.

  12. Recognizing diversity in coral symbiotic dinoflagellate communities.

    PubMed

    Apprill, Amy M; Gates, Ruth D

    2007-03-01

    A detailed understanding of how diversity in endosymbiotic dinoflagellate communities maps onto the physiological range of coral hosts is critical to predicting how coral reef ecosystems will respond to climate change. Species-level taxonomy of the dinoflagellate genus Symbiodinium has been predominantly examined using the internal transcribed spacer (ITS) region of the nuclear ribosomal array (rDNA ITS2) and downstream screening for dominant types using denaturing gradient gel electrophoresis (DGGE). Here, ITS2 diversity in the communities of Symbiodinium harboured by two Hawaiian coral species was explored using direct sequencing of clone libraries. We resolved sixfold to eightfold greater diversity per coral species than previously reported, the majority of which corresponds to a novel and distinct phylogenetic lineage. We evaluated how these sequences migrate in DGGE and demonstrate that this method does not effectively resolve this diversity. We conclude that the Porites spp. examined here harbour diverse assemblages of novel Symbiodinium types and that cloning and sequencing is an effective methodological approach for resolving the complexity of endosymbiotic dinoflagellate communities harboured by reef corals.

  13. Regional-scale dominance of non-framework building corals on Caribbean reefs affects carbonate production and future reef growth.

    PubMed

    Perry, Chris T; Steneck, Robert S; Murphy, Gary N; Kench, Paul S; Edinger, Evan N; Smithers, Scott G; Mumby, Peter J

    2015-03-01

    Coral cover on Caribbean reefs has declined rapidly since the early 1980's. Diseases have been a major driver, decimating communities of framework building Acropora and Orbicella coral species, and reportedly leading to the emergence of novel coral assemblages often dominated by domed and plating species of the genera Agaricia, Porites and Siderastrea. These corals were not historically important Caribbean framework builders, and typically have much smaller stature and lower calcification rates, fuelling concerns over reef carbonate production and growth potential. Using data from 75 reefs from across the Caribbean we quantify: (i) the magnitude of non-framework building coral dominance throughout the region and (ii) the contribution of these corals to contemporary carbonate production. Our data show that live coral cover averages 18.2% across our sites and coral carbonate production 4.1 kg CaCO3  m(-2)  yr(-1) . However, non-framework building coral species dominate and are major carbonate producers at a high proportion of sites; they are more abundant than Acropora and Orbicella at 73% of sites; contribute an average 68% of the carbonate produced; and produce more than half the carbonate at 79% of sites. Coral cover and carbonate production rate are strongly correlated but, as relative abundance of non-framework building corals increases, average carbonate production rates decline. Consequently, the use of coral cover as a predictor of carbonate budget status, without species level production rate data, needs to be treated with caution. Our findings provide compelling evidence for the Caribbean-wide dominance of non-framework building coral taxa, and that these species are now major regional carbonate producers. However, because these species typically have lower calcification rates, continued transitions to states dominated by non-framework building coral species will further reduce carbonate production rates below 'predecline' levels, resulting in shifts

  14. The reef coral Goniastrea aspera: a `winner' becomes a `loser' during a severe bleaching event in Thailand

    NASA Astrophysics Data System (ADS)

    Brown, B. E.; Dunne, R. P.; Phongsuwan, N.; Patchim, L.; Hawkridge, J. M.

    2014-06-01

    The reef coral Goniastrea aspera is regarded as one of the most environmentally tolerant species on Indo-Pacific reefs. Its demise, following a severe bleaching event in the Andaman Sea in the north-eastern Indian Ocean in 2010, was surprising in view of the rapid recovery of co-existing species such as Porites lutea. Demographic studies of G. aspera at this site showed the population was mainly composed of large individuals, which recruited in the early 1990s. These results, and size-specific mortality observed in G. aspera, post-bleaching, suggest that factors, related to size and age, may have contributed to the coral's marked decline.

  15. Species-area relationships in coral communities: evaluating mechanisms for a commonly observed pattern

    NASA Astrophysics Data System (ADS)

    Huntington, B. E.; Lirman, D.

    2012-12-01

    Landscape-scale attributes of patch size, spatial isolation, and topographic complexity are known to influence diversity and abundance in terrestrial and marine systems, but remain collectively untested for reef-building corals. To investigate the relationship between the coral assemblage and seascape variation in reef habitats, we took advantage of the distinct boundaries, spatial configurations, and topographic complexities among artificial reef patches to overcome the difficulties of manipulating natural reefs. Reef size (m2) was found to be the foremost predictor of coral richness in accordance with species-area relationship predictions. Larger reefs were also found to support significantly higher colony densities, enabling us to reject the null hypothesis of random placement (a sampling artifact) in favor of target area predictions that suggest greater rates of immigration on larger reefs. Unlike the pattern previously documented for reef fishes, topographic complexity was not a significant predictor of any coral assemblage response variable, despite the range of complexity values sampled. Lastly, coral colony density was best explained by both increasing reef size and decreasing reef spatial isolation, a pattern found exclusively among brooding species with shorter larval dispersal distances. We conclude that seascape attributes of reef size and spatial configuration within the seascape can influence the species richness and abundance of the coral community at relatively small spatial scales (<1 km). Specifically, we demonstrate how patterns in the coral communities that have naturally established on these manipulated reefs agree with the target area and island biogeography mechanisms to drive species-area relationships in reef-building corals. Based on the patterns documented in artificial reefs, habitat degradation that results in smaller, more isolated natural reefs may compromise coral diversity.

  16. Status of coral reef species at Chabahar Bay, Sistan and Baluchistan, Iran.

    PubMed

    Teymour, Rad A; Sanjani, M S

    2010-04-15

    This study was carried out in the coral growing zone at Chabahar Bay where it located at 25 degrees 17' N and 60 degrees 36'E. It is called horseshoe Bay, because of its semicircle shape. Some destroyer factors have been affected on the health of coral reefs in Chabahar Bay. Port constructions, dredging operations, spearfishing, anchorages and scuba diving activities were distinguished as the most important problems of coral reef in Chabahar Bay. This study was conducted in order to access Semi-Qualitative Indexes of corals in different areas of Chabahar Bay. Five stations were chosen in east and north part of the Bay, where the most construction activities happened. Rectangular Transect and CoralWatch Racket were used to determine the status of the corals. During study, two classes of Hexacoralia and Octocoralia with 15 families were recorded. Twenty one species of hard coral and 10 species of soft coral were recorded. Hexacoralia was recorded the higher number of family with 10 families and 21 species and Octocoralia was recorded the lower with 5 families and 10 species. Hard corals were dominant. The ranges of qualitative indexes showed, of five stations, three of them (stations 2, 4, 5) showed Good Development and two stations (stations 1, 3) showed Fair Development. For the Condition Index, two stations showed Good Condition (stations 1, 5) and two stations showed Fair Condition (stations 2, 3). Only station 4 showed Poor Condition. The ranges of the Succession Index Showed, four stations (stations 1, 2, 3, 4) were in Very poor Succession and one station (stations 5) showed Poor Succession.

  17. Patterns of coral ecological immunology: variation in the responses of Caribbean corals to elevated temperature and a pathogen elicitor.

    PubMed

    Palmer, Caroline V; McGinty, Elizabeth S; Cummings, David J; Smith, Stephanie M; Bartels, Erich; Mydlarz, Laura D

    2011-12-15

    Disease epizootics are increasing with climatic shifts, yet within each system only a subset of species are identified as the most vulnerable. Understanding ecological immunology patterns as well as environmental influences on immune defenses will provide insight into the persistence of a functional system through adverse conditions. Amongst the most threatened ecosystems are coral reefs, with coral disease epizootics and thermal stress jeopardizing their survival. Immune defenses were investigated within three Caribbean corals, Montastraea faveolata, Stephanocoenia intersepta and Porites astreoides, which represent a range of disease and bleaching susceptibilities. Levels of several immune parameters were measured in response to elevated water temperature and the presence of a commercial pathogen-associated molecular pattern (PAMP) - lipopolysaccharide (LPS) - as an elicitor of the innate immune response. Immune parameters included prophenoloxidase (PPO) activity, melanin concentration, bactericidal activity, the antioxidants peroxidase and catalase, and fluorescent protein (FP) concentration. LPS induced an immune response in all three corals, although each species responded differently to the experimental treatments. For example, M. faveolata, a disease-susceptible species, experienced significant decreases in bactericidal activity and melanin concentration after exposure to LPS and elevated temperature alone. Porites astreoides, a disease-resistant species, showed increased levels of enzymatic antioxidants upon exposure to LPS independently and increased PPO activity in response to the combination of LPS and elevated water temperature. This study demonstrates the ability of reef-building corals to induce immune responses in the presence of PAMPs, indicating activation of PAMP receptors and the transduction of appropriate signals leading to immune effector responses. Furthermore, these data address the emerging field of ecological immunology by highlighting

  18. The effects of habitat on coral bleaching responses in Kenya.

    PubMed

    Grimsditch, Gabriel; Mwaura, Jelvas M; Kilonzo, Joseph; Amiyo, Nassir

    2010-06-01

    This study examines the bleaching responses of scleractinian corals at four sites in Kenya (Kanamai, Vipingo, Mombasa and Nyali) representing two distinct lagoon habitats (relatively shallow and relatively deep). Bleaching incidence was monitored for the whole coral community, while zooxanthellae densities and chlorophyll levels were monitored for target species (Pocillopora damicornis, Porites lutea, and Porites cylindrica) during a non-bleaching year (2006) and a year of mild-bleaching (2007). Differences in bleaching responses between habitats were observed, with shallower sites Kanamai and Vipingo exhibiting lower bleaching incidence than deeper sites Nyali and Mombasa. These shallower lagoons display more fluctuating thermal and light environments than the deeper sites, suggesting that corals in the shallower lagoons have acclimatized and/or adapted to the fluctuating environmental conditions they endure on a daily basis and have become more resistant to bleaching stress. In deeper sites that did exhibit higher bleaching (Mombasa and Nyali), it was found that coral recovery occurred more quickly in the protected area than in the non-protected area.

  19. Reef Fishes in Biodiversity Hotspots Are at Greatest Risk from Loss of Coral Species

    PubMed Central

    Holbrook, Sally J.; Schmitt, Russell J.; Messmer, Vanessa; Brooks, Andrew J.; Srinivasan, Maya; Munday, Philip L.; Jones, Geoffrey P.

    2015-01-01

    Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia). Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity) in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems. PMID:25970588

  20. Reef fishes in biodiversity hotspots are at greatest risk from loss of coral species.

    PubMed

    Holbrook, Sally J; Schmitt, Russell J; Messmer, Vanessa; Brooks, Andrew J; Srinivasan, Maya; Munday, Philip L; Jones, Geoffrey P

    2015-01-01

    Coral reef ecosystems are under a variety of threats from global change and anthropogenic disturbances that are reducing the number and type of coral species on reefs. Coral reefs support upwards of one third of all marine species of fish, so the loss of coral habitat may have substantial consequences to local fish diversity. We posit that the effects of habitat degradation will be most severe in coral regions with highest biodiversity of fishes due to greater specialization by fishes for particular coral habitats. Our novel approach to this important but untested hypothesis was to conduct the same field experiment at three geographic locations across the Indo-Pacific biodiversity gradient (Papua New Guinea; Great Barrier Reef, Australia; French Polynesia). Specifically, we experimentally explored whether the response of local fish communities to identical changes in diversity of habitat-providing corals was independent of the size of the regional species pool of fishes. We found that the proportional reduction (sensitivity) in fish biodiversity to loss of coral diversity was greater for regions with larger background species pools, reflecting variation in the degree of habitat specialization of fishes across the Indo-Pacific diversity gradient. This result implies that habitat-associated fish in diversity hotspots are at greater risk of local extinction to a given loss of habitat diversity compared to regions with lower species richness. This mechanism, related to the positive relationship between habitat specialization and regional biodiversity, and the elevated extinction risk this poses for biodiversity hotspots, may apply to species in other types of ecosystems.

  1. Cd/Ca, Ba/Ca and Pb/Ca Records of Porites Coral from Lanyu Islet, Northwestern Pacific: Contribution of Natural and Anthropogenic Sources to Seawater Trace Metal Variability

    NASA Astrophysics Data System (ADS)

    Yu, T.; You, C.; Wang, B.

    2008-12-01

    Coralline Cd, Ba, and Pb can reflect sensitively of marine environmental variability (i.e., upwelling, river flood and anthropogenic activity). To assess impacts of erosion input and anthropogenic pollution on seawater chemistry along the Kuroshio pathway, Southwestern Taiwan, Cd, Ba and Pb in coralline skeleton were examined in a Porites core (1966-1996). Monthly Cd/Ca and Pb/Ca results show large enhanced ratios during spring and winter, which can be referred to wind-blown dust during monsoon activity. On the other hand, Ba/Ca ratios reflect riverine discharge peak intensity during spring and autumn. It is clear in the long- term trend that low Cd, Ba and Pb appeared in 1966-1979, high Pb in 1979-1988, and high Cd and Ba in 1988-1994. In particular, Ba/Ca baseline increases gradually since 1985, which is corresponding to a period of heavy local reconstruction in Lanyu islet.

  2. Latitudinal species diversity gradient of mushroom corals off eastern Australia: a baseline from the 1970s

    NASA Astrophysics Data System (ADS)

    Hoeksema, Bert W.

    2015-11-01

    Based on a study of mushroom coral species of eastern Australia, a decrease in species richness can be discerned from north to south. Eastern Australia, including the Great Barrier Reef (GBR), is one of only few coral reef areas suitable for studies on large-scale latitudinal biodiversity patterns. Such patterns may help to recognize biogeographic boundaries and factors regulating biodiversity. Owing to the eastern Australian long coastline, such studies are a logistic challenge unless reliable distribution data are already available, as in museum collections. A large coral collection predominantly sampled from this area in the 1970s is present in the Museum of Tropical Queensland (MTQ). The scleractinian family Fungiidae (mushroom corals), representing about 10% of Indo-Pacific reef coral species, was selected as proxy. It was represented by 1289 specimens belonging to 34 species with latitudinal ranges between 09°09‧S and 31°28‧S. The fauna of the northernmost reefs in the Gulf of Papua and the Torres Strait, and north of the Great Barrier Reef Marine Park (GBRMP), was represented by a maximum of 30 fungiids. From here a southward decline in species number was observed, down to Lord Howe Island with only one species. Together with previous records, the mushroom coral fauna of eastern Australia consists of 37 species, which is more diverse than hitherto known and similar to numbers found in the Coral Triangle. Future field surveys in the GBR should specifically target rarely known species, which are mainly small and found at depths >25 m. In the light of global climate change, they may also show whether previously recorded species are still present and whether their latitudinal ranges have shifted, using the 1970s records as a baseline.

  3. The effect of temperature stress on coral- Symbiodinium associations containing distinct symbiont types

    NASA Astrophysics Data System (ADS)

    Fisher, P. L.; Malme, M. K.; Dove, S.

    2012-06-01

    Several studies have demonstrated that the temperature tolerance of scleractinian reef-building corals is controlled, in part, by hosting physiologically distinct symbiotic algae. We investigated the thermal tolerance of coral-algal associations within seven common species of reef-building corals hosting distinct Symbiodinium sub-clades collected from Heron Island during experimentally induced bleaching conditions. During experimental heating, photosynthetic fitness was assessed by the dark-adapted yield of PSII ( F v/ F m), and excitation pressure across PSII ( Q m) of each coral-algal association using pulse amplitude modulation fluorometry. The onset of bleaching was determined by the measurement of Symbiodinium cell density. Using the ribosomal internal transcribed spacer 2 (ITS-2) region, we showed that Symbiodinium type-coral host associations were temporally and spatially conserved in a high proportion of the colonies sampled within each species. Generally, the species Acropora millepora, Platygyra daedalea, Acropora aspera and Acropora formosa contained Symbiodinium ITS-2 type C3, whereas the species Montipora digitata, Porites cylindrica and Porites lutea contained Symbiodinium type C15. Bleaching susceptibility showed some association with Symbiodinium type, but further research is required to confirm this. Corals hosting C3 Symbiodinium displayed higher reductions in F v/ F m during heating compared to their C15 counterparts, irrespective of host species. However, a corresponding reduction in Symbiodinium density was not observed. Nonetheless, A. aspera and A. formosa showed significant reductions in Symbiodinium density relative to controls. This correlated with large increases in Q m and decreases in F v/ F m in heated explants. Our results suggest a range of bleaching susceptibilities for the coral species investigated, with A. aspera and A. formosa showing the greatest susceptibility to bleaching and M. digitata showing the lowest bleaching

  4. Bleaching response of coral species in the context of assemblage response

    NASA Astrophysics Data System (ADS)

    Swain, Timothy D.; DuBois, Emily; Goldberg, Scott J.; Backman, Vadim; Marcelino, Luisa A.

    2017-06-01

    Caribbean coral reefs are declining due to a mosaic of local and global stresses, including climate change-induced thermal stress. Species and assemblage responses differ due to factors that are not easily identifiable or quantifiable. We calculated a novel species-specific metric of coral bleaching response, taxon- α and - β, which relates the response of a species to that of its assemblages for 16 species over 18 assemblages. By contextualizing species responses within the response of their assemblages, the effects of environmental factors are removed and intrinsic differences among taxa are revealed. Most corals experience either a saturation response, overly sensitive to weak stress ( α > 0) but under-responsive compared to assemblage bleaching ( β < 1), or a threshold response, insensitive to weak stress ( α < 0) but over-responsive compared to assemblage bleaching ( β > 1). This metric may help reveal key factors of bleaching susceptibility and identify species as targets for conservation.

  5. Short and long term toxicity of crude oil and oil dispersants to two representative coral species.

    PubMed

    Shafir, Shai; Van Rijn, Jaap; Rinkevich, Baruch

    2007-08-01

    Oil dispersants, the tool of choice for treating oil spills in tropical marine environments, is potentially harmful to marine life, including reef corals. In a previous study, we found that dispersed oil and oil dispersants are harmful to soft and hard coral species at early life stages. In this broader study, we employed a "nubbin assay" on more than 10 000 coral fragments to evaluate the short- and long-term impacts of dispersed oil fractions (DOFs) from six commercial dispersants, the dispersants and water-soluble-fractions (WSFs) of Egyptian crude oil, on two Indo Pacific branching coral species, Stylophora pistillata and Pocillopora damicornis. Survivorship and growth of nubbins were recorded for up to 50 days following a single, short (24 h) exposure to toxicants in various concentrations. Manufacturer-recommended dispersant concentrations proved to be highly toxic and resulted in mortality for all nubbins. The dispersed oil and the dispersants were significantly more toxic than crude oil WSFs. As corals are particularly susceptible to oil detergents and dispersed oil, the results of these assays rules out the use of any oil dispersant in coral reefs and in their vicinity. The ecotoxicological impacts of the various dispersants on the corals could be rated on a scale from the least to the most harmful agent, as follows: Slickgone > Petrotech > Inipol = Biorieco > Emulgal > Dispolen.

  6. Short-term coral bleaching is not recorded by skeletal boron isotopes.

    PubMed

    Schoepf, Verena; McCulloch, Malcolm T; Warner, Mark E; Levas, Stephen J; Matsui, Yohei; Aschaffenburg, Matthew D; Grottoli, Andréa G

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  7. Short-Term Coral Bleaching Is Not Recorded by Skeletal Boron Isotopes

    PubMed Central

    Schoepf, Verena; McCulloch, Malcolm T.; Warner, Mark E.; Levas, Stephen J.; Matsui, Yohei; Aschaffenburg, Matthew D.; Grottoli, Andréa G.

    2014-01-01

    Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of

  8. Macroalgal Extracts Induce Bacterial Assemblage Shifts and Sublethal Tissue Stress in Caribbean Corals

    PubMed Central

    Morrow, Kathleen M.; Ritson-Williams, Raphael; Ross, Cliff; Liles, Mark R.; Paul, Valerie J.

    2012-01-01

    Benthic macroalgae can be abundant on present-day coral reefs, especially where rates of herbivory are low and/or dissolved nutrients are high. This study investigated the impact of macroalgal extracts on both coral-associated bacterial assemblages and sublethal stress response of corals. Crude extracts and live algal thalli from common Caribbean macroalgae were applied onto the surface of Montastraea faveolata and Porites astreoides corals on reefs in both Florida and Belize. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene amplicons was used to examine changes in the surface mucus layer (SML) bacteria in both coral species. Some of the extracts and live algae induced detectable shifts in coral-associated bacterial assemblages. However, one aqueous extract caused the bacterial assemblages to shift to an entirely new state (Lobophora variegata), whereas other organic extracts had little to no impact (e.g. Dictyota sp.). Macroalgal extracts more frequently induced sublethal stress responses in M. faveolata than in P. astreoides corals, suggesting that cellular integrity can be negatively impacted in selected corals when comparing co-occurring species. As modern reefs experience phase-shifts to a higher abundance of macroalgae with potent chemical defenses, these macroalgae are likely impacting the composition of microbial assemblages associated with corals and affecting overall reef health in unpredicted and unprecedented ways. PMID:23028648

  9. Variation in oxygen isotope ratio of dissolved orthophosphate induced by uptake process in natural coral holobionts

    NASA Astrophysics Data System (ADS)

    Ferrera, Charissa M.; Miyajima, Toshihiro; Watanabe, Atsushi; Umezawa, Yu; Morimoto, Naoko; San Diego-McGlone, Maria Lourdes; Nadaoka, Kazuo

    2016-06-01

    A model incubation experiment using natural zooxanthellate corals was conducted to evaluate the influence of phosphate uptake by coral holobionts on oxygen isotope ratio of dissolved PO4 3- (δ18Op). Live coral samples of Acropora digitifera, Porites cylindrica, and Heliopora coerulea were collected from coral reefs around Ishigaki Island (Okinawa, Japan) and Bolinao (northern Luzon, Philippines) and incubated for 3-5 d after acclimatization under natural light conditions with elevated concentrations of PO4 3-. Phosphate uptake by corals behaved linearly with incubation time, with uptake rate depending on temperature. δ18Op usually increased with time toward the equilibrium value with respect to oxygen isotope exchange with ambient seawater, but sometimes became higher than equilibrium value at the end of incubation. The magnitude of the isotope effect associated with uptake depended on coral species; the greatest effect was in A. digitifera and the smallest in H. coerulea. However, it varied even within samples of a single coral species, which suggests multiple uptake processes with different isotope effects operating simultaneously with varying relative contributions in the coral holobionts used. In natural environments where concentrations of PO4 3- are much lower than those used during incubation, PO4 3- is presumably turned over much faster and the δ18Op easily altered by corals and other major primary producers. This should be taken into consideration when using δ18Op as an indicator of external PO4 3- sources in coastal ecosystems.

  10. Evaluating life-history strategies of reef corals from species traits.

    PubMed

    Darling, Emily S; Alvarez-Filip, Lorenzo; Oliver, Thomas A; McClanahan, Timothy R; Côté, Isabelle M; Bellwood, David

    2012-12-01

    Classifying the biological traits of organisms can test conceptual frameworks of life-history strategies and allow for predictions of how different species may respond to environmental disturbances. We apply a trait-based classification approach to a complex and threatened group of species, scleractinian corals. Using hierarchical clustering and random forests analyses, we identify up to four life-history strategies that appear globally consistent across 143 species of reef corals: competitive, weedy, stress-tolerant and generalist taxa, which are primarily separated by colony morphology, growth rate and reproductive mode. Documented shifts towards stress-tolerant, generalist and weedy species in coral reef communities are consistent with the expected responses of these life-history strategies. Our quantitative trait-based approach to classifying life-history strategies is objective, applicable to any taxa and a powerful tool that can be used to evaluate theories of community ecology and predict the impact of environmental and anthropogenic stressors on species assemblages.

  11. Temporal comparison and predictors of fish species abundance and richness on undisturbed coral reef patches.

    PubMed

    Wagner, Elena L E S; Roche, Dominique G; Binning, Sandra A; Wismer, Sharon; Bshary, Redouan

    2015-01-01

    Large disturbances can cause rapid degradation of coral reef communities, but what baseline changes in species assemblages occur on undisturbed reefs through time? We surveyed live coral cover, reef fish abundance and fish species richness in 1997 and again in 2007 on 47 fringing patch reefs of varying size and depth at Mersa Bareika, Ras Mohammed National Park, Egypt. No major human or natural disturbance event occurred between these two survey periods in this remote protected area. In the absence of large disturbances, we found that live coral cover, reef fish abundance and fish species richness did not differ in 1997 compared to 2007. Fish abundance and species richness on patches was largely related to the presence of shelters (caves and/or holes), live coral cover and patch size (volume). The presence of the ectoparasite-eating cleaner wrasse, Labroides dimidiatus, was also positively related to fish species richness. Our results underscore the importance of physical reef characteristics, such as patch size and shelter availability, in addition to biotic characteristics, such as live coral cover and cleaner wrasse abundance, in supporting reef fish species richness and abundance through time in a relatively undisturbed and understudied region.

  12. Allelochemicals Produced by Brown Macroalgae of the Lobophora Genus Are Active against Coral Larvae and Associated Bacteria, Supporting Pathogenic Shifts to Vibrio Dominance.

    PubMed

    Morrow, Kathleen M; Bromhall, Katrina; Motti, Cherie A; Munn, Colin B; Bourne, David G

    2017-01-01

    Pervasive environmental stressors on coral reefs are attributed with shifting the competitive balance in favor of alternative dominants, such as macroalgae. Previous studies have demonstrated that macroalgae compete with corals via a number of mechanisms, including the production of potent primary and secondary metabolites that can influence coral-associated microbial communities. The present study investigates the effects of the Pacific brown macroalga Lobophora sp. (due to the shifting nature of the Lobophora species complex, it will be referred to here as Lobophora sp.) on coral bacterial isolates, coral larvae, and the microbiome associated with the coral Porites cylindrica. Crude aqueous and organic macroalgal extracts were found to inhibit the growth of coral-associated bacteria. Extracts and fractions were also shown to inhibit coral larval settlement and cause mortality at concentrations lower (<0.3 mg · ml(-1)) than calculated natural concentrations (4.4 mg · ml(-1)). Microbial communities associated with coral tissues exposed to aqueous (e.g., hydrophilic) crude extracts demonstrated a significant shift to Vibrio dominance and a loss of sequences related to the putative coral bacterial symbiont, Endozoicomonas sp., based on 16S rRNA amplicon sequencing. This study contributes to growing evidence that macroalgal allelochemicals, dissolved organic material, and native macroalgal microbial assemblages all play a role in shifting the microbial equilibrium of the coral holobiont away from a beneficial state, contributing to a decline in coral fitness and a shift in ecosystem structure.

  13. Low symbiont diversity as a potential adaptive strategy in a marginal non-reefal environment: a case study of corals in Hong Kong

    NASA Astrophysics Data System (ADS)

    Ng, Tsz Yan; Ang, Put

    2016-09-01

    Symbiosis with genetically diverse Symbiodinium has been shown to affect host coral physiological responses to environmental stresses. Hong Kong, located in a subtropical region, is a marginal environment for coral growth largely due to its wide annual temperature fluctuation with low mean winter sea water temperature (~16 °C) and variable salinity conditions. The symbiont diversity in Hong Kong corals is therefore worth investigating to enrich our understanding on symbioses in marginal and fluctuating environments. Examination of 56 scleractinian coral species and five soft coral species using denaturing gel gradient electrophoresis of the internal transcribed spacer region 2 found only five distinct subclades of Symbiodinium with C1 the dominant type occurring in all but one scleractinian coral and all soft coral species investigated. C15 and C21 Symbiodinium were found in Porites spp. and Montipora peltiformis, respectively, both of which are vertical transmitters. D8-12 was found in Oulastrea crispata, a stress-tolerant species, and D1 in a single sample of Goniastrea aspera. No spatial differences in Symbiodinium composition were found among different regions of Hong Kong. Seasonal monitoring of tagged Platygyra acuta and Porites spp. colonies also revealed no changes in their symbiont types despite wide ranges of in situ temperature fluctuation. Hong Kong scleractinian corals hosted a remarkably low symbiont diversity compared with corals in the surrounding regions. The predominance of a single subclade, C1 Symbiodinium, suggests that this subclade is best acclimatized to local fluctuating conditions and/or low winter temperature. Forming symbiosis with the best acclimatized symbiont, instead of with a diverse group of symbionts with different physiological performances, either sequentially or simultaneously, may be a strategy used by Hong Kong corals to cope with stressful conditions.

  14. Ecological variables, including physiognomic-structural attributes, and classification of Indonesian coral reefs

    NASA Astrophysics Data System (ADS)

    Bak, R. P. M.; Povel, G. D. E.

    Communities are distinguished by biological and physical features, such as size and shape of organisms and dead substrata, which are characteristic expressions of the organizing forces in the community. We measured 87 of such features in 39 transects on seaward-facing reef slopes in the eastern Indonesian archipelago, but did not identify coral species. We aimed to identify the basic variables that are indispensable to classify coral reef communities. This would give ecological information on variation in reef communities and show exactly which data must be recorded in the field. Principal Component Analysis (PCA) of the data matrix showed the following variables to be important in the ordination of transects along the axes: coral colony shape, loose fragments, bare bottom, coral tissue wounds, rubble, sediment/rubble, crustose coralline algae, excavating sponge, miscellaneous organisms, coral overgrowth, interaction coral/non-coral, Acanthaster, maximum size coral colonies, tabular Acropora, massive Porites, fungiids, angle slope, and crevices. We used the transect data to define four groups of environmental conditions: 'sheltered', 'exposed' (to water movement), 'biologically disturbed' and 'physically disturbed'. Discriminant Analysis was employed to classify additional transects. It appeared that a minimum of 9 variables has to be measured in the field (rubble, thick branching corals, fungiids, sediment/rubble, two largest-colonies diameters, massive Porites, angle slope, Acanthaster) to assign transects to one of those groups (P < 0.10). With just 14 variables the classification of transects was 100% correct. Two additional groups of environmental conditions are recognizable with, respectively, prominence of competitive interactions and Acanthaster predation. There were too few transect data to characterize these groups satisfactorily for Discriminant Analysis.

  15. The ploys of sex: relationships among the mode of reproduction, body size and habitats of coral-reef brittlestars

    NASA Astrophysics Data System (ADS)

    Hendler, Gordon; Littman, Barbara S.

    1986-08-01

    Observations were made of 33 species of brittlestars (3980 specimens) from specific substrata collected in four zones on the Belize Barrier Reef, Caribbean Sea. The body size of most species of brittlestars with planktonic larvae differs significantly among different substrata. Generally, individuals from the calcareous alga Halimeda opuntia are smallest, those found in corals ( Porites porites, Madracis mirabilis, and Agaricia tenuifolia) are larger, and those from coral rubble are the largest. This suggests that brittlestars with planktonic larvae move to new microhabitats as they grow. In contrast, most brooding and fissiparous species are relatively small and their size-distributions are similar among all substrata. Halimeda harbours denser concentrations of brittlestars and more small and juvenile individuals than the other substrata. Juveniles of the brooding and fissiparous species are most common in Halimeda on the Back Reef whereas juveniles developing from planktonic larvae are most common in Halimeda patches in deeper water. Fissiparity and brooding may be means for individuals (genomes) of small, apomictic species to reach large size (and correspondingly high fecundities) in patchy microhabitats that select for small body sizes. Small brittlestar species and juveniles are most numerous in the microhabitats called refuge-substrata, such as Halimeda, which may repel predators and reduce environmental stress. Whether young brittlestars are concentrated in refuge-substrata through settlement behavior, migration, or differential survival remains unknown. Experiments revealed that coral polyps kill small brittlestars, perhaps accounting for the rarity of small and juvenile brittlestars in coral substrata.

  16. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification

    PubMed Central

    Crook, Elizabeth D.; Cohen, Anne L.; Rebolledo-Vieyra, Mario; Hernandez, Laura; Paytan, Adina

    2013-01-01

    As the surface ocean equilibrates with rising atmospheric CO2, the pH of surface seawater is decreasing with potentially negative impacts on coral calcification. A critical question is whether corals will be able to adapt or acclimate to these changes in seawater chemistry. We use high precision CT scanning of skeletal cores of Porites astreoides, an important Caribbean reef-building coral, to show that calcification rates decrease significantly along a natural gradient in pH and aragonite saturation (Ωarag). This decrease is accompanied by an increase in skeletal erosion and predation by boring organisms. The degree of sensitivity to reduced Ωarag measured on our field corals is consistent with that exhibited by the same species in laboratory CO2 manipulation experiments. We conclude that the Porites corals at our field site were not able to acclimatize enough to prevent the impacts of local ocean acidification on their skeletal growth and development, despite spending their entire lifespan in low pH, low Ωarag seawater. PMID:23776217

  17. Reduced calcification and lack of acclimatization by coral colonies growing in areas of persistent natural acidification.

    PubMed

    Crook, Elizabeth D; Cohen, Anne L; Rebolledo-Vieyra, Mario; Hernandez, Laura; Paytan, Adina

    2013-07-02

    As the surface ocean equilibrates with rising atmospheric CO2, the pH of surface seawater is decreasing with potentially negative impacts on coral calcification. A critical question is whether corals will be able to adapt or acclimate to these changes in seawater chemistry. We use high precision CT scanning of skeletal cores of Porites astreoides, an important Caribbean reef-building coral, to show that calcification rates decrease significantly along a natural gradient in pH and aragonite saturation (Ωarag). This decrease is accompanied by an increase in skeletal erosion and predation by boring organisms. The degree of sensitivity to reduced Ωarag measured on our field corals is consistent with that exhibited by the same species in laboratory CO2 manipulation experiments. We conclude that the Porites corals at our field site were not able to acclimatize enough to prevent the impacts of local ocean acidification on their skeletal growth and development, despite spending their entire lifespan in low pH, low Ωarag seawater.

  18. [Coral reefs of Bocas del Toro, Panamá: IV. Distribution, structure and conservation state of continental reefs of Peninsula Valiente].

    PubMed

    Guzmán, H M; Guevara, C A

    2001-03-01

    This is the fourth and last contribution describing the individual structure, distribution and conservation status of coral reefs in the Province of Bocas del Toro. Here we describe 14 new reefs along 129 km of coast from Peninsula Valiente to Río Calovébora. Average live coral coverage for this region was 17.1% (+/- 3.6%), mainly in the western region of the peninsula (Bahia Bluefield and Ensenada Tobobe). Coral cover increases with depth (> 5 m) for most species at several reefs and the corals Porites furcata and Acropora palmata dominated shallow waters. Acropora palmata was found abundant in 43% of the studied reefs and toward the regions of the Ensenada Tobobe and Punta Valiente. Coral recruitment rates were similar in distribution to those reefs with greater coral coverage, with average densities of 4 recruit/m2 (maximum 9 recruits/m2) and mainly Agaricia spp., Porites astreoides and Siderastrea siderea. The greater diversity of corals and sponges was recorded toward the western side of the peninsula, with a total of 55 coral species in the study area, including two new records for Bocas del Toro (59 species in total), Dichocoenia stellaris and Madracis luciphila and increasing the diversity of corals of Panama to 65 species. We found 24 species of octocorals and Gorgonia mariae, Muriceopsis sulphurea and Muricea laxaoosens, are informed for the first time to the area, increasing in 10% the diversity for Bocas del Toro (32 in total). We recorded 48 sponges, including five new species for the area and representing an increase of 9% in the total number (58). Large populations of Acropora palmata were found in the Ensenada Tobobe, what justifies once again the need for modifying the existing protected area, so that this new region is incorporated within the conservation plans.

  19. Coral distribution patterns in Miocene Reefs of Anguilla, Leeward Islands, West Indies

    SciTech Connect

    Foster, A.B.; Johnson, K.G.

    1988-01-01

    Anguilla, a 27 by 5 km island at 18/sup 0/13'N, 63/sup 0/05'W, parallels the northwest edge of the Anguilla bank (St. Martin plateau) in the outer lesser Angilles volcanic arc, which was active from the Eocene to Oligocene. Except for scattered exposures of tuff or basalt, the island is composed predominantly of reefal limestones and marls of the 70-m thick, middle Miocene Anguilla Formation, deposited on a shallow inner shelf platform extending from volcanoes near St. Martin. The reef framework consists of branched and platy corals interspersed with calcareous sand lenses. Although the limestones have been uplifted and subjected to minor faulting, little evidence supports extensive transport across a slope. Coral distribution patterns have been quantified across the reefal units by point-counting species occurrences at 0.16-m intervals within 1-m/sup 2/ quadrants placed haphazardly across vertical exposures. Eight coral species (of possibly 18 total) were recorded. Cluster analysis delineated four facies: (1) a low-diversity facies dominated by branched Porites, (2) an intermediate diversity facies dominated by branched Porites, (3) a high-diversity facies dominated by massive Montastraea, Siderastrea, and Porites, and (4) an intermediate diversity facies dominated by platy Porites. These facies consists of lenses, no more than 100 m long and 2 m high, arranged in no apparent regular sequence. Thus, they do not represent zones across a depth gradient. Comparisons with living Caribbean reefs suggests that the Anguilla Miocene reefs were similar to small, modern, backreef fringing and patch reefs near the San Blas Islands of Panama, reefs whose variable composition and patchy distribution depend largely on sedimentation and current patterns.

  20. Multi-locus sequence data reveal a new species of coral reef goby (Teleostei: Gobiidae: Eviota), and evidence of Pliocene vicariance across the Coral Triangle.

    PubMed

    Tornabene, L; Valdez, S; Erdmann, M V; Pezold, F L

    2016-05-01

    Here, multi-locus sequence data are coupled with observations of live colouration to recognize a new species, Eviota punyit from the Coral Triangle, Indian Ocean and Red Sea. Relaxed molecular clock divergence time estimation indicates a Pliocene origin for the new species, and the current distribution of the new species and its sister species Eviota sebreei supports a scenario of vicariance across the Indo-Pacific Barrier, followed by subsequent range expansion and overlap in the Coral Triangle. These results are consistent with the 'centre of overlap' hypothesis, which states that the increased diversity in the Coral Triangle is due in part to the overlapping ranges of Indian Ocean and Pacific Ocean faunas. These findings are discussed in the context of other geminate pairs of coral reef fishes separated by the Indo-Pacific Barrier.

  1. Variability in the Effects of Macroalgae on the Survival and Growth of Corals: The Consumer Connection

    PubMed Central

    Bulleri, Fabio; Couraudon-Réale, Marine; Lison de Loma, Thierry; Claudet, Joachim

    2013-01-01

    Shifts in dominance from corals to macroalgae are occurring in many coral reefs worldwide. Macroalgal canopies, while competing for space with coral colonies, may also form a barrier to herbivorous and corallivorous fish, offering protection to corals. Thus, corals could either suffer from enhanced competition with canopy-forming and understorey macroalgae or benefit from predator exclusion. Here, we tested the hypothesis that the effects of the brown, canopy-forming macroalga, Turbinaria ornata, on the survival and growth of corals can vary according to its cover, to the presence or absence of herbivorous and corallivorous fish and to the morphological types of corals. Over a period of 66 days, two coral species differing in growth form, Acropora pulchra and Porites rus, were exposed to three different covers of T. ornata (absent versus medium versus high), in the presence or absence of fish. Irrespective of the cover of T. ornata, fish exclusion reduced mortality rates of A. pulchra. Following fish exclusion, a high cover of T. ornata depressed the growth of this branched coral, whilst it had no effect when fish species were present. P. rus suffered no damage from corallivorous fish, but its growth was decreased by high covers of T. ornata, irrespective of the presence or absence of fish. These results show that negative effects of T. ornata on some coral species are subordinate to those of fish predation and are, therefore, likely to manifest only on reefs severely depleted of predators. In contrast, space dominance by T. ornata may decrease the growth of other coral species regardless of predation intensity. In general, this study shows that susceptibility to predation may determine the severity of the effects of canopy-forming macroalgae on coral growth. PMID:24260290

  2. Application of 1H-NMR Metabolomic Profiling for Reef-Building Corals

    PubMed Central

    Sogin, Emilia M.; Anderson, Paul; Williams, Philip; Chen, Chii-Shiarng; Gates, Ruth D.

    2014-01-01

    In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change. PMID:25354140

  3. Optimal choice of species and size class for transplanting coral community.

    PubMed

    Muko, Soyoka; Iwasa, Yoh

    2011-03-21

    Transplantation of sessile organisms living in a planned destruction site to a safe site is an important means of restoration to mitigate biodiversity loss following anthropogenic developments. In particular, corals, which play fundamental roles in the coral reef ecosystem and contribute to biodiversity, are good candidates for transplantation. In this study, we investigate the optimal choice of species and size class to be used for coral transplantation. We first studied a case in which the objective function to evaluate the success of transplantation is the maximum total coverage. The optimal strategy is to choose the species and size class with higher net coverage gain per unit handling effort. It is often recommended to transplant only one or a few species and neglect others, even if the original community consists of many species. This may achieve high coverage in the restored coral community but cause loss of species diversity. To overcome this problem, we next study a case in which the objective of the transplantation operation is to maximize the "prosperity index", defined as the product of total coverage and species diversity. In this case, the optimal strategy depends on the species property, population size, and the limitation of total cost allowed for transplantation, but it tends to recommend more species to be transplanted than what is recommended by the coverage maximization criterion. We conclude that maximization of the prosperity index is a better criterion for transplantation than simple coverage maximization. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Comparing Environmental Influences on Coral Bleaching Across and within Species using Clustered Binomial Regression

    EPA Science Inventory

    Differential susceptibility among reef-building coral species can lead to community shifts and loss of diversity as a result of temperature-induced mass bleaching events. However, the influence of the local environment on species-specific bleaching susceptibilities has not been ...

  5. Comparing Environmental Influences on Coral Bleaching Across and within Species using Clustered Binomial Regression

    EPA Science Inventory

    Differential susceptibility among reef-building coral species can lead to community shifts and loss of diversity as a result of temperature-induced mass bleaching events. However, the influence of the local environment on species-specific bleaching susceptibilities has not been ...

  6. Coral reef recovery status in south Andaman Islands after the bleaching event 2010

    NASA Astrophysics Data System (ADS)

    Marimuthu, N.; Jerald Wilson, J.; Vinithkumar, N. V.; Kirubagaran, R.

    2013-03-01

    The Andaman and Nicobar Islands are one of the Union Territories of India, located in the eastern part of the Bay of Bengal. In 2010 summer, the increment in sea surface water temperature (up to 34°C) resulted in the bleaching of about 74% to 77% of corals in the South Andaman. During this event, coral species such as Acropora cerealis, A. humilis, Montipora sp., Favia pallida, Diploastrea sp., Goniopora sp. Fungia concinna, Gardineroseries sp., Porites sp., Favites abdita and Lobophyllia robusta were severely affected. This study is to assess the recovery status of the reef ecosystem by estimating the percentage of Live Coral cover, Bleached coral cover, Dead coral with algae, Rubble, Sandy flat, Algal assemblage and other associated organisms. The sedimentation rate (mg cm-2 d-1) and coral coverage (%) were assessed during this study period. The average sedimentation rate was ranged between 0.27 and 0.89 mg cm-2 d-1. The observed post bleaching recovery of coral cover was 21.1% at Port Blair Bay and 13.29% at Havelock Island. The mortality rate of coral cover due to this bleaching was estimated as 2.05% at Port Blair Bay and 9.82% at Havelock Island. Once the sea water temperature resumed back to the normal condition, most of the corals were found recovered.

  7. Considering Species Tolerance to Climate Change in Conservation Management at Little Cayman's Coral Reefs

    NASA Astrophysics Data System (ADS)

    Camp, E.; Manfrino, C.; Smith, D.; Suggett, D.

    2013-05-01

    There is growing evidence demonstrating that climate change, notably increased frequency and intensity of thermal anomalies combined with ocean acidification, will negatively impact the future growth and viability of many reef systems, including those in the Caribbean. One key question that remains unanswered is whether or not there are management options aimed at protecting coral species from these threats. Little Cayman (Cayman Islands) provides a rare opportunity to investigate global climate stressors without the confounding impact of local anthropogenic stressors. Our research has focused on two climate change issues: Firstly, we have identified species-specific coral bleaching susceptibility (and the influence of regulation upon this susceptibility) to thermal anomalies. Species level of vulnerability to thermal anomalies can decrease when grown under variable temperature. Environmental variability may be key in influencing the susceptibility of corals to stress. The second part of our research has therefore addressed the variability in inorganic carbon chemistry that naturally occurs where certain reef building corals exist. We have identified how the inorganic carbon chemistry varies naturally among habitats and thus how corals within these habitats are potentially adapted to future acidification. Spatial, diurnal, lunar and seasonal variability have been identified as important factors with pCO2 values of up to 700-800 μatm and pH values as low as 7.801 for lagoon habitats, showing that some species are already being exposed to typical pCO2 and pH levels expected for the oceans in ~50 years' time. Using an eco-physiological approach, we are exploring how some reef-building corals are able to acclimate to more variable chemistry compared to others and whether this natural capacity installs increased tolerance to future acidification. These eco-physiological studies provide important information that can be utilized in a management framework. The aim of

  8. Deep reefs are not universal refuges: Reseeding potential varies among coral species.

    PubMed

    Bongaerts, Pim; Riginos, Cynthia; Brunner, Ramona; Englebert, Norbert; Smith, Struan R; Hoegh-Guldberg, Ove

    2017-02-01

    Deep coral reefs (that is, mesophotic coral ecosystems) can act as refuges against major disturbances affecting shallow reefs. It has been proposed that, through the provision of coral propagules, such deep refuges may aid in shallow reef recovery; however, this "reseeding" hypothesis remains largely untested. We conducted a genome-wide assessment of two scleractinian coral species with contrasting reproductive modes, to assess the potential for connectivity between mesophotic (40 m) and shallow (12 m) depths on an isolated reef system in the Western Atlantic (Bermuda). To overcome the pervasive issue of endosymbiont contamination associated with de novo sequencing of corals, we used a novel subtraction reference approach. We have demonstrated that strong depth-associated selection has led to genome-wide divergence in the brooding species Agaricia fragilis (with divergence by depth exceeding divergence by location). Despite introgression from shallow into deep populations, a lack of first-generation migrants indicates that effective connectivity over ecological time scales is extremely limited for this species and thus precludes reseeding of shallow reefs from deep refuges. In contrast, no genetic structuring between depths (or locations) was observed for the broadcasting species Stephanocoenia intersepta, indicating substantial potential for vertical connectivity. Our findings demonstrate that vertical connectivity within the same reef system can differ greatly between species and that the reseeding potential of deep reefs in Bermuda may apply to only a small number of scleractinian species. Overall, we argue that the "deep reef refuge hypothesis" holds for individual coral species during episodic disturbances but should not be assumed as a broader ecosystem-wide phenomenon.

  9. Deep reefs are not universal refuges: Reseeding potential varies among coral species

    PubMed Central

    Bongaerts, Pim; Riginos, Cynthia; Brunner, Ramona; Englebert, Norbert; Smith, Struan R.; Hoegh-Guldberg, Ove

    2017-01-01

    Deep coral reefs (that is, mesophotic coral ecosystems) can act as refuges against major disturbances affecting shallow reefs. It has been proposed that, through the provision of coral propagules, such deep refuges may aid in shallow reef recovery; however, this “reseeding” hypothesis remains largely untested. We conducted a genome-wide assessment of two scleractinian coral species with contrasting reproductive modes, to assess the potential for connectivity between mesophotic (40 m) and shallow (12 m) depths on an isolated reef system in the Western Atlantic (Bermuda). To overcome the pervasive issue of endosymbiont contamination associated with de novo sequencing of corals, we used a novel subtraction reference approach. We have demonstrated that strong depth-associated selection has led to genome-wide divergence in the brooding species Agaricia fragilis (with divergence by depth exceeding divergence by location). Despite introgression from shallow into deep populations, a lack of first-generation migrants indicates that effective connectivity over ecological time scales is extremely limited for this species and thus precludes reseeding of shallow reefs from deep refuges. In contrast, no genetic structuring between depths (or locations) was observed for the broadcasting species Stephanocoenia intersepta, indicating substantial potential for vertical connectivity. Our findings demonstrate that vertical connectivity within the same reef system can differ greatly between species and that the reseeding potential of deep reefs in Bermuda may apply to only a small number of scleractinian species. Overall, we argue that the “deep reef refuge hypothesis” holds for individual coral species during episodic disturbances but should not be assumed as a broader ecosystem-wide phenomenon. PMID:28246645

  10. Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species.

    PubMed

    Arrigoni, Roberto; Berumen, Michael L; Chen, Chaolun Allen; Terraneo, Tullia I; Baird, Andrew H; Payri, Claude; Benzoni, Francesca

    2016-12-01

    Scleractinian corals are affected by environment-induced phenotypic plasticity and intraspecific morphological variation caused by genotype. In an effort to identify new strategies for resolving this taxonomic issue, we applied a molecular approach for species evaluation to two closely related genera, Echinophyllia and Oxypora, for which few molecular data are available. A robust multi-locus phylogeny using DNA sequence data across four loci of both mitochondrial (COI, ATP6-NAD4) and nuclear (histone H3, ITS region) origin from 109 coral colonies was coupled with three independent putative species delimitation methods based on barcoding threshold (ABGD) and coalescence theory (PTP, GMYC). Observed overall congruence across multiple genetic analyses distinguished two traditional species (E. echinoporoides and O. convoluta), a species complex composed of E. aspera, E. orpheensis, E. tarae, and O. glabra, whereas O. lacera and E. echinata were indistinguishable with the sequenced loci. The combination of molecular species delimitation approaches and skeletal character observations allowed the description of two new reef coral species, E. bulbosa sp. n. from the Red Sea and E. gallii sp. n. from the Maldives and Mayotte. This work demonstrated the efficiency of multi-locus phylogenetic analyses and recently developed molecular species delimitation approaches as valuable tools to disentangle taxonomic issues caused by morphological ambiguities and to re-assess the diversity of scleractinian corals.

  11. Coral habitat in the Aleutian Islands of Alaska: depth distribution, fine-scale species associations, and fisheries interactions

    NASA Astrophysics Data System (ADS)

    Stone, R. P.

    2006-05-01

    The first in situ exploration of Aleutian Island coral habitat was completed in 2002 to determine the distribution of corals, to examine fine-scale associations between targeted fish species and corals, and to investigate the interaction between the areas’ diverse fisheries and coral habitat. Corals, mostly gorgonians and hydrocorals, were present on all 25 seafloor transects and at depths between 27 and 363 m, but were most abundant between 100 and 200 m depth. Mean coral abundance (1.23 colonies m-2) far exceeded that reported for other high-latitude ecosystems and high-density coral gardens (3.85 colonies m-2) were observed at seven locations. Slope and offshore pinnacle habitats characterized by exposed bedrock, boulders, and cobbles generally supported the highest abundances of coral and fish. Overall, 85% of the economically important fish species observed on transects were associated with corals and other emergent epifauna. Disturbance to the seafloor from bottom-contact fishing gear was evident on 88% of the transects, and approximately 39% of the total area of the seafloor observed had been disturbed. Since cold-water corals appear to be a ubiquitous feature of seafloor habitats in the Aleutian Islands, fisheries managers face clear challenges integrating coral conservation into an ecosystem approach to fisheries management.

  12. Large predatory coral trout species unlikely to meet increasing energetic demands in a warming ocean.

    PubMed

    Johansen, J L; Pratchett, M S; Messmer, V; Coker, D J; Tobin, A J; Hoey, A S

    2015-09-08

    Increased ocean temperature due to climate change is raising metabolic demands and energy requirements of marine ectotherms. If productivity of marine systems and fisheries are to persist, individual species must compensate for this demand through increasing energy acquisition or decreasing energy expenditure. Here we reveal that the most important coral reef fishery species in the Indo-west Pacific, the large predatory coral trout Plectropomus leopardus (Serranidae), can behaviourally adjust food intake to maintain body-condition under elevated temperatures, and acclimate over time to consume larger meals. However, these increased energetic demands are unlikely to be met by adequate production at lower trophic levels, as smaller prey species are often the first to decline in response to climate-induced loss of live coral and structural complexity. Consequently, ubiquitous increases in energy consumption due to climate change will increase top-down competition for a dwindling biomass of prey, potentially distorting entire food webs and associated fisheries.

  13. Evolutionary novelty is concentrated at the edge of coral species distributions.

    PubMed

    Budd, Ann F; Pandolfi, John M

    2010-06-18

    Conservation priorities are calculated on the basis of species richness, endemism, and threats. However, areas ranked highly for these factors may not represent regions of maximal evolutionary potential. The relationship between geography and evolutionary innovation was analyzed in a dominant complex of Caribbean reef corals, in which morphological and genetic data concur on species differences. Based on geometric morphometrics of Pleistocene corals and genetically characterized modern colonies, we found that morphological disparity varies from the center to the edge of the Caribbean, and we show that lineages are static at well-connected central locations but split or fuse in edge zones where gene flow is limited. Thus, conservation efforts in corals should focus not only on the centers of diversity but also on peripheral areas of species ranges and population connectivity.

  14. Large predatory coral trout species unlikely to meet increasing energetic demands in a warming ocean

    PubMed Central

    Johansen, J.L.; Pratchett, M.S.; Messmer, V.; Coker, D.J.; Tobin, A.J.; Hoey, A.S.

    2015-01-01

    Increased ocean temperature due to climate change is raising metabolic demands and energy requirements of marine ectotherms. If productivity of marine systems and fisheries are to persist, individual species must compensate for this demand through increasing energy acquisition or decreasing energy expenditure. Here we reveal that the most important coral reef fishery species in the Indo-west Pacific, the large predatory coral trout Plectropomus leopardus (Serranidae), can behaviourally adjust food intake to maintain body-condition under elevated temperatures, and acclimate over time to consume larger meals. However, these increased energetic demands are unlikely to be met by adequate production at lower trophic levels, as smaller prey species are often the first to decline in response to climate-induced loss of live coral and structural complexity. Consequently, ubiquitous increases in energy consumption due to climate change will increase top-down competition for a dwindling biomass of prey, potentially distorting entire food webs and associated fisheries. PMID:26345733

  15. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience.

    PubMed

    Bonaldo, Roberta M; Hay, Mark E

    2014-01-01

    Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs) and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70-80% lower, macroalgal cover 4-9 fold higher, macroalgal-coral contacts 5-15 fold more frequent and 23-67 fold more extensive (measured as % of colony margin contacted by macroalgae), and coral cover 51-68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa) against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals.

  16. Seaweed-Coral Interactions: Variance in Seaweed Allelopathy, Coral Susceptibility, and Potential Effects on Coral Resilience

    PubMed Central

    Bonaldo, Roberta M.; Hay, Mark E.

    2014-01-01

    Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs) and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70–80% lower, macroalgal cover 4–9 fold higher, macroalgal-coral contacts 5–15 fold more frequent and 23–67 fold more extensive (measured as % of colony margin contacted by macroalgae), and coral cover 51–68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa) against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals. PMID:24465707

  17. Mesophotic depths as refuge areas for fishery-targeted species on coral reefs

    NASA Astrophysics Data System (ADS)

    Lindfield, Steven J.; Harvey, Euan S.; Halford, Andrew R.; McIlwain, Jennifer L.

    2016-03-01

    Coral reefs are subjected to unprecedented levels of disturbance with population growth and climate change combining to reduce standing coral cover and stocks of reef fishes. Most of the damage is concentrated in shallow waters (<30 m deep) where humans can comfortably operate and where physical disturbances are most disruptive to marine organisms. Yet coral reefs can extend to depths exceeding 100 m, potentially offering refuge from the threats facing shallower reefs. We deployed baited remote underwater stereo-video systems (stereo-BRUVs) at depths of 10-90 m around the southern Mariana Islands to investigate whether fish species targeted by fishing in the shallows may be accruing benefits from being at depth. We show that biomass, abundance and species richness of fishery-targeted species increased from shallow reef areas to a depth of 60 m, whereas at greater depths, a lack of live coral habitat corresponded to lower numbers of fish. The majority of targeted species were found to have distributions that ranged from shallow depths (10 m) to depths of at least 70 m, emphasising that habitat, not depth, is the limiting factor in their vertical distribution. While the gradient of abundance and biomass versus depth was steepest for predatory species, the first species usually targeted by fishing, we also found that fishery-targeted herbivores prevailed in similar biomass and species richness to 60 m. Compared to shallow marine protected areas, there was clearly greater biomass of fishery-targeted species accrued in mesophotic depths. Particularly some species typically harvested by depth-limited fishing methods (e.g., spearfishing), such as the endangered humphead wrasse Cheilinus undulatus, were found in greater abundance on deeper reefs. We conclude that mesophotic depths provide essential fish habitat and refuge for fishery-targeted species, representing crucial zones for fishery management and research into the resilience of disturbed coral reef ecosystems.

  18. Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories.

    PubMed

    Fabricius, K E; Mieog, J C; Colin, P L; Idip, D; van Oppen, M J H

    2004-08-01

    The potential of corals to associate with more temperature-tolerant strains of algae (zooxanthellae, Symbiodinium) can have important implications for the future of coral reefs in an era of global climate change. In this study, the genetic identity and diversity of zooxanthellae was investigated at three reefs with contrasting histories of bleaching mortality, water temperature and shading, in the Republic of Palau (Micronesia). Single-stranded conformation polymorphism and sequence analysis of the ribosomal DNA internal transcribed spacer (ITS)1 region was used for genotyping. A chronically warm but partly shaded coral reef in a marine lake that is hydrographically well connected to the surrounding waters harboured only two single-stranded conformation polymorphism profiles (i.e. zooxanthella communities). It consisted only of Symbiodinium D in all 13 nonporitid species and two Porites species investigated, with the remaining five Porites harbouring C*. Despite the high temperature in this lake (> 0.5 degrees above ambient), this reef did not suffer coral mortality during the (1998) bleaching event, however, no bleaching-sensitive coral families and genera occur in the coral community. This setting contrasts strongly with two other reefs with generally lower temperatures, in which 10 and 12 zooxanthella communities with moderate to low proportions of clade D zooxanthellae were found. The data indicate that whole coral assemblages, when growing in elevated seawater temperatures and at reduced irradiance, can be composed of colonies associated with the more thermo-tolerant clade D zooxanthellae. Future increases in seawater temperature might, therefore, result in an increasing prevalence of Symbiodinium phylotype D in scleractinian corals, possibly associated with a loss of diversity in both zooxanthellae and corals.

  19. Gradients in coral reef communities exposed to muddy river discharge in Pohnpei, Micronesia

    NASA Astrophysics Data System (ADS)

    Golbuu, Yimnang; Fabricius, Katharina; Victor, Steven; Richmond, Robert H.

    2008-01-01

    This study analyzed how coral communities change along a gradient of increasing exposure to a mud-discharging river in the Enipein Catchment, Pohnpei, Micronesia. Using video transects, we quantified benthic communities at five sites along a gradient moving away from the river mouth towards the barrier reef. The most river-impacted site was characterized by a high accumulation of mud, low coral cover and low coral diversity. Although coral cover leveled off at ˜400 m from the river mouth to values found at the outer-most sites, coral diversity continued to increase with increasing distance, suggesting that the most distant site was still impacted by the river discharges. Fungiidae, Pavona, Acropora, Pachyseris and Porites rus all significantly increased in cover with distance from the river, while Turbinaria decreased. The combined presence and abundance of these six species groups, together with coral species richness, may help to indicate the effects of terrestrial runoff in similar runoff-exposed settings around Micronesia, whereas coral cover is not a sensitive indicator for river impact. Coral reefs are important resources for the people of Pohnpei. To prevent further degradation of this important resource, an integrated watershed approach is needed to control terrestrial activities.

  20. Species richness on coral reefs and the pursuit of convergent global estimates.

    PubMed

    Fisher, Rebecca; O'Leary, Rebecca A; Low-Choy, Samantha; Mengersen, Kerrie; Knowlton, Nancy; Brainard, Russell E; Caley, M Julian

    2015-02-16

    Global species richness, whether estimated by taxon, habitat, or ecosystem, is a key biodiversity metric. Yet, despite the global importance of biodiversity and increasing threats to it (e.g., we are no better able to estimate global species richness now than we were six decades ago. Estimates of global species richness remain highly uncertain and are often logically inconsistent. They are also difficult to validate because estimation of global species richness requires extrapolation beyond the number of species known. Given that somewhere between 3% and >96% of species on Earth may remain undiscovered, depending on the methods used and the taxa considered, such extrapolations, especially from small percentages of known species, are likely to be highly uncertain. An alternative approach is to estimate all species, the known and unknown, directly. Using expert taxonomic knowledge of the species already described and named, those already discovered but not yet described and named, and those still awaiting discovery, we estimate there to be 830,000 (95% credible limits: 550,000-1,330,000) multi-cellular species on coral reefs worldwide, excluding fungi. Uncertainty surrounding this estimate and its components were often strongly skewed toward larger values, indicating that many more species on coral reefs is more plausible than many fewer. The uncertainties revealed here should guide future research toward achieving convergence in global species richness estimates for coral reefs and other ecosystems via adaptive learning protocols whereby such estimates can be tested and improved, and their uncertainties reduced, as new knowledge is acquired.

  1. Spatial and Species Variations in Bacterial Communities Associated with Corals from the Red Sea as Revealed by Pyrosequencing

    PubMed Central

    Lee, On On; Yang, Jiangke; Bougouffa, Salim; Wang, Yong; Batang, Zenon; Tian, Renmao; Al-Suwailem, Abdulaziz

    2012-01-01

    Microbial associations with corals are common and are most likely symbiotic, although their diversity and relationships with environmental factors and host species remain unclear. In this study, we adopted a 16S rRNA gene tag-pyrosequencing technique to investigate the bacterial communities associated with three stony Scleractinea and two soft Octocorallia corals from three locations in the Red Sea. Our results revealed highly diverse bacterial communities in the Red Sea corals, with more than 600 ribotypes detected and up to 1,000 species estimated from a single coral species. Altogether, 21 bacterial phyla were recovered from the corals, of which Gammaproteobacteria was the most dominant group, and Chloroflexi, Chlamydiae, and the candidate phylum WS3 were reported in corals for the first time. The associated bacterial communities varied greatly with location, where environmental conditions differed significantly. Corals from disturbed areas appeared to share more similar bacterial communities, but larger variations in community structures were observed between different coral species from pristine waters. Ordination methods identified salinity and depth as the most influential parameters affecting the abundance of Vibrio, Pseudoalteromonas, Serratia, Stenotrophomonas, Pseudomonas, and Achromobacter in the corals. On the other hand, bacteria such as Chloracidobacterium and Endozoicomonas were more sensitive to the coral species, suggesting that the host species type may be influential in the associated bacterial community, as well. The combined influences of the coral host and environmental factors on the associated microbial communities are discussed. This study represents the first comparative study using tag-pyrosequencing technology to investigate the bacterial communities in Red Sea corals. PMID:22865078

  2. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease

    PubMed Central

    Cárdenas, Anny; Rodriguez-R, Luis M; Pizarro, Valeria; Cadavid, Luis F; Arévalo-Ferro, Catalina

    2012-01-01

    Coral reefs are deteriorating at an alarming rate mainly as a consequence of the emergence of coral diseases. The white plague disease (WPD) is the most prevalent coral disease in the southwestern Caribbean, affecting dozens of coral species. However, the identification of a single causal agent has proved problematic. This suggests more complex etiological scenarios involving alterations in the dynamic interaction between environmental factors, the coral immune system and the symbiotic microbial communities. Here we compare the microbiome of healthy and WPD-affected corals from the two reef-building species Diploria strigosa and Siderastrea siderea collected at the Tayrona National Park in the Caribbean of Colombia. Microbiomes were analyzed by combining culture-dependent methods and pyrosequencing of 16S ribosomal DNA (rDNA) V5-V6 hypervariable regions. A total of 20 410 classifiable 16S rDNA sequences reads were obtained including all samples. No significant differences in operational taxonomic unit diversity were found between healthy and affected tissues; however, a significant increase of Alphaproteobacteria and a concomitant decrease in the Beta- and Gammaproteobacteria was observed in WPD-affected corals of both species. Significant shifts were also observed in the orders Rhizobiales, Caulobacteriales, Burkholderiales, Rhodobacterales, Aleteromonadales and Xanthomonadales, although they were not consistent between the two coral species. These shifts in the microbiome structure of WPD-affected corals suggest a loss of community-mediated growth control mechanisms on bacterial populations specific for each holobiont system. PMID:21955993

  3. Host shift and speciation in a coral-feeding nudibranch

    PubMed Central

    Faucci, Anuschka; Toonen, Robert J; Hadfield, Michael G

    2006-01-01

    While the role of host preference in ecological speciation has been investigated extensively in terrestrial systems, very little is known in marine environments. Host preference combined with mate choice on the preferred host can lead to population subdivision and adaptation leading to host shifts. We use a phylogenetic approach based on two mitochondrial genetic markers to disentangle the taxonomic status and to investigate the role of host specificity in the speciation of the nudibranch genus Phestilla (Gastropoda, Opisthobranchia) from Guam, Palau and Hawaii. Species of the genus Phestilla complete their life cycle almost entirely on their specific host coral (species of Porites, Goniopora and Tubastrea). They reproduce on their host coral and their planktonic larvae require a host-specific chemical cue to metamorphose and settle onto their host. The phylogenetic trees of the combined cytochrome oxidase I and ribosomal 16S gene sequences clarify the relationship among species of Phestilla identifying most of the nominal species as monophyletic clades. We found a possible case of host shift from Porites to Goniopora and Tubastrea in sympatric Phestilla spp. This represents one of the first documented cases of host shift as a mechanism underlying speciation in a marine invertebrate. Furthermore, we found highly divergent clades within Phestilla sp. 1 and Phestilla minor (8.1–11.1%), suggesting cryptic speciation. The presence of a strong phylogenetic signal for the coral host confirms that the tight link between species of Phestilla and their host coral probably played an important role in speciation within this genus. PMID:17134995

  4. Stable and sporadic symbiotic communities of coral and algal holobionts

    PubMed Central

    Hester, Eric R; Barott, Katie L; Nulton, Jim; Vermeij, Mark JA; Rohwer, Forest L

    2016-01-01

    Coral and algal holobionts are assemblages of macroorganisms and microorganisms, including viruses, Bacteria, Archaea, protists and fungi. Despite a decade of research, it remains unclear whether these associations are spatial–temporally stable or species-specific. We hypothesized that conflicting interpretations of the data arise from high noise associated with sporadic microbial symbionts overwhelming signatures of stable holobiont members. To test this hypothesis, the bacterial communities associated with three coral species (Acropora rosaria, Acropora hyacinthus and Porites lutea) and two algal guilds (crustose coralline algae and turf algae) from 131 samples were analyzed using a novel statistical approach termed the Abundance-Ubiquity (AU) test. The AU test determines whether a given bacterial species would be present given additional sampling effort (that is, stable) versus those species that are sporadically associated with a sample. Using the AU test, we show that coral and algal holobionts have a high-diversity group of stable symbionts. Stable symbionts are not exclusive to one species of coral or algae. No single bacterial species was ubiquitously associated with one host, showing that there is not strict heredity of the microbiome. In addition to the stable symbionts, there was a low-diversity community of sporadic symbionts whose abundance varied widely across individual holobionts of the same species. Identification of these two symbiont communities supports the holobiont model and calls into question the hologenome theory of evolution. PMID:26555246

  5. Comparison of fatty acid compositions of azooxanthellate Dendronephthya and zooxanthellate soft coral species.

    PubMed

    Imbs, Andrey B; Latyshev, Nikolay A; Zhukova, Natalia V; Dautova, Tatyana N

    2007-11-01

    Ten zooxanthellae-free Dendronephthya species , twelve zooxanthellate soft coral species of the genera Sarcophyton, Lobophytum, Cladiella, Lytophyton, Cespitularia, and Clavularia, and the hermatypic coral Caulastrea tumida were examined for the first time to elucidate the fatty acid (FA) composition of total lipids. In Dendronephthya species, the main FAs were 20:4n-6, 24:5n-6, 16:0, 18:0, 7-Me-16:1n-10, and 24:6n-3 which amounted on the average to 26.0, 12.7, 12.1, 6.0, 4.8, and 4.0% of the total FA contents, respectively. For zooxanthellate soft corals, the main FAs were 16:0 (25.7%), 20:4n-6 (18.2%), 24:5n-6 (6.2%), and 18:4n-3 (5.6%), as well as 16:2n-7, which amounted up to 11.8% in Sarcophyton aff. crassum. Corals with zooxanthellae had low contents of 24:6n-3. The significant difference (p<0.01) between azooxanthellate and zooxanthellate soft corals was indicated only for 12 of 46 FAs determined. The principal components analysis confirmed that 7-Me-16:1n-10, 17:0, 18:4n-3, 18:1n-7, 20:4n-6, 22:5n-6, 24:5n-6, and 24:6n-3 are useful for chemotaxonomy of Dendronephthya. The azooxanthellate soft corals studied were distinguished by the absence of significant depth-dependent and species-specific variations of FA composition, low content of 16:2n-7, an increased proportion of bacterial FAs, predominance of n-6 FAs connected with active preying, and a high ability for biosynthesis of tetracosapolyenoic FAs.

  6. Exploring Mesophotic Depths Off North Philippine Sea: Coral Reefs on the Benham Bank Seamount

    NASA Astrophysics Data System (ADS)

    Nacorda, H. M. E.; Dizon, R. M.; Meñez, L. A. B.; Nañola, C. L., Jr.; Hernandez, H. B.; Quimpo, F. A. T. R.; De Jesus, D. O.; Nacorda, J. O. O.; Tingson, K. N.; Roa-Chio, P. B. L.; Pardo, K. C. E.; Licuanan, W. R. Y.; Aliño, P. M.

    2016-02-01

    We conducted observational surveys of coral reef biodiversity at <60 m on the summit of the Benham Bank Seamount off North Philippine Sea. The reefs were found with excellent cover (75 to 100%) of mostly tiered, thick, rigid and foliose plate-forming Porites rus. Over 60 species of bony and cartilaginous fish were recorded; their estimated biomass ranged from 17 to 102 mt km-2. Four species of the green algae Halimeda dominated the reef-associated macroalgae, some of which were epiphytic. The prominent coral-attached sponges had arborescent growth form but irregular forms also occurred. The coarse biogenic surface sediments harbored mostly aerobic macroinfauna. These results comprise the first account of the biodiversity of an offshore mesophotic coral reef seamount. Although its diversity appears less than the shallower fringing reefs of the Philippines' Pacific Seaboard, the dynamic environment remains important to fisheries.

  7. Localized bleaching in Hawaii causes tissue loss and a reduction in the number of gametes in Porites compressa

    NASA Astrophysics Data System (ADS)

    Sudek, M.; Aeby, G. S.; Davy, S. K.

    2012-06-01

    Localized bleaching (a discrete white area on the coral) was observed in one of the main framework-building corals in Hawaii, Porites compressa. This study aimed to determine the degree of virulence of the lesion. We investigated the whole-colony effects by following disease progression through time and examining the effect of localized bleaching on coral fecundity. After two months, 35 of 42 (83.3%) individually tagged colonies affected by localized bleaching showed tissue loss and partial colony mortality. Histological slides of healthy P. compressa and samples from colonies showing signs of localized bleaching were compared showing that affected colonies had a significant reduction (almost 50%) in gamete development, egg numbers, and egg size in the affected tissue. The observed localized bleaching results in both partial colony mortality and a reduced number of gametes and was termed Porites Bleaching with Tissue Loss (PBTL).

  8. Long-term impacts of coral bleaching events on the world's warmest reefs.

    PubMed

    Burt, John; Al-Harthi, Suaad; Al-Cibahy, Ashraf

    2011-10-01

    The southern Arabian Gulf houses some of the most thermally tolerant corals on earth, but severe bleaching in the late 1990s caused widespread mortality. More than a decade later, corals still dominated benthos (mean: 40 ± 3% cover on 10 sites spanning > 350 km; range: 11.0-65.6%), but coral communities varied spatially. Sites to the west generally had low species richness and coral cover (mean: 3.2 species per transect, 31% cover), with Porites dominated communities (88% of coral) that are distinct from more diverse and higher cover eastern sites (mean: 10.3 species per transect, 62% cover). These patterns reflect both the more extreme bleaching to the west in the late 1990s as well as the higher faviid dominated recruitment to the east in subsequent years. There has been limited recovery of the formerly dominant Acropora, which now represents <1% of the benthos, likely as a result of recruitment failure. Results indicate that severe bleaching can have substantial long-term impacts on coral communities, even in areas with corals tolerant to environmental extremes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Coral disease dynamics at a subtropical location, Solitary Islands Marine Park, eastern Australia

    NASA Astrophysics Data System (ADS)

    Dalton, Steven J.; Smith, Stephen D. A.

    2006-03-01

    Recent observations suggest that a spreading disease is increasingly contributing to hard coral mortality in the Solitary Islands Marine Park, NSW, Australia. This study determined coral disease prevalence and rate-of-spread through individual affected colonies and investigated the effect this epizootic had on coral populations at sites adjacent to South West Solitary Island. Quantitative data were collected between 2002 and 2004 using photographic and video methods, and visual census along radial arc belt transects. Disease similar to the reported white syndrome and white plague was apparent, spreading through hard coral species from the genera Turbinaria, Acropora, Goniastrea, Pocillopora, Stylophora and Porites. Coral disease prevalence varied between survey dates with mean prevalence increasing from 8.55% during March 2003 to 13.58% in June and declining to 7.75% in September and 6.21% during March 2004. There was a significant difference in mean prevalence between the affected species (p<0.001) and an overall difference between survey dates (p=0.001). Additionally, the rate-of-spread of coral disease through coral colonies determined using repeated, seasonal, still photographs followed similar patterns, with disease progression differing between affected species (p=0.004), and between survey dates (p<0.001). Analysis of the video-transects indicated significant difference in disease prevalence over larger spatial scales (100s of m). However, disease frequency did not vary significantly between 2002 and 2003.

  10. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages.

    PubMed

    Waheed, Zarinah; van Mil, Harald G J; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.

  11. Coral Reefs at the Northernmost Tip of Borneo: An Assessment of Scleractinian Species Richness Patterns and Benthic Reef Assemblages

    PubMed Central

    Waheed, Zarinah; van Mil, Harald G. J.; Syed Hussein, Muhammad Ali; Jumin, Robecca; Golam Ahad, Bobita; Hoeksema, Bert W.

    2015-01-01

    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park. PMID:26719987

  12. Modeling vertical coral connectivity and mesophotic refugia

    NASA Astrophysics Data System (ADS)

    Holstein, Daniel M.; Paris, Claire B.; Vaz, Ana C.; Smith, Tyler B.

    2016-03-01

    Whether mesophotic reefs will behave as refugia for corals threatened by global climate change and coastal development depends on vertical exchange of larvae between diverse habitats. Here we use a biophysical model of larval dispersal to estimate vertical connectivity of a broadcasting ( Orbicella faveolata) and a brooding ( Porites astreoides) species of coral in the US Virgin Islands. Modeling predicts subsidy to shallow areas by mesophotic larvae of both species based on local hydrology, adult reproductive characteristics, larval traits, and a wide range of scenarios developed to test depth-sensitive factors, such as fertilization rates and post-settlement survivorship. In extreme model scenarios of reduced fertilization and post-settlement survivorship of mesophotic larvae, 1-10 % local mesophotic subsidy to shallow recruitment is predicted for both species, which are demographically significant. Although direct vertical connectivity is higher for the broadcaster, the brooder demonstrates higher local multigenerational vertical connectivity, which suggests that local P. astreoides populations are more resilient than those of O. faveolata, and corroborates field studies. As shallow habitat degrades, mesophotic-shallow subsidy is predicted to increase for both species. This study is the first of its kind to simulate larval dispersal and settlement between habitats of different depths, and these findings have local, regional, and global implications for predicting and managing coral reef persistence in a changing climate.

  13. Intercolony variability of skeletal oxygen and carbon isotope ratios of corals: temperature-controlled tank experiment and field observation

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Omata, T.; Kawahata, H.

    2005-12-01

    We conducted tank experiments in which we grew Porites spp. colonies in thermostated seawater at five temperature settings under moderate light intensity. A skeletal isotope microprofiling technique applied along the major growth axis of each colony revealed that the oxygen isotope ratios of newly deposited skeleton in most colonies remained almost constant during tank incubation. However, the oxygen isotope ratios displayed a surprisingly large intercolony variability (~1‰ at each temperature setting) although the mean slope obtained for the temperature - skeletal oxygen isotope ratio relationship was close to previous results. The variations in the oxygen isotope ratios were apparently caused by kinetic isotope effects related to variations in the skeletal growth rate rather than by species-specific variability or genetic differences within species. Carbon isotope ratios showed significantly inverse correlation with linear growth rates, suggesting a kinetic isotope control at low growth rates. We also examined oxygen and carbon isotope ratios of Porites corals collected from coral reefs of southern Ryukyu Islands, Japan. In shallow faster-growing corals, oxygen and carbon isotope ratios showed out-of-phase annual fluctuations. In contrast, in deep slower growing corals (mean annual linear extension < 4.8 mm yr1), oxygen and carbon isotope fluctuations were in phase, which has been identified as a pattern influenced by kinetic isotope effects. The slower growing corals were strongly influenced, and the faster growing corals weakly influenced, by kinetic isotope effects over metabolic isotope effects. Growth-rate-related kinetic isotope effects found in both the cultured corals and the deep slower-growing corals may be, at least partly, attributed to low light condition.

  14. Coral-Associated Bacterial Diversity Is Conserved across Two Deep-Sea Anthothela Species

    PubMed Central

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C.; Clostio, Rachel W.; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4–V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont. PMID:27092120

  15. Coral-Associated Bacterial Diversity Is Conserved across Two Deep-Sea Anthothela Species.

    PubMed

    Lawler, Stephanie N; Kellogg, Christina A; France, Scott C; Clostio, Rachel W; Brooke, Sandra D; Ross, Steve W

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

  16. Coral-associated bacterial diversity is conserved across two deep-sea Anthothela species

    USGS Publications Warehouse

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C; Clostio, Rachel W; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

  17. Non-bleached colonies of massive Porites may attract fishes for selective grazing during mass bleaching events

    PubMed Central

    Ohno, Yoshikazu; Iguchi, Akira; Nakamura, Takashi

    2017-01-01

    In this study we investigated the variation in grazing scar densities between bleached and non-bleached colonies of massive Porites species in Sekisei Lagoon (Okinawa, southwestern Japan) during a mass bleaching event in 2016. The grazing scar densities and bleaching susceptibility varied among neighboring colonies of massive Porites spp. However, non-bleached colonies had significantly more surface scars than bleached colonies. One explanation for these variations is that corallivorous fishes may selectively graze on non-bleached, thermally tolerant colonies. This is the first report of a relationship between grazing scars and the bleaching status of massive Porites spp. colonies during a mass bleaching event. PMID:28674649

  18. Influence of Species Specificity and Other Factors on Bacteria Associated with the Coral Stylophora pistillata in Taiwan ▿

    PubMed Central

    Hong, Mei-Jhu; Yu, Yi-Ting; Chen, Chaolun A.; Chiang, Pei-Wen; Tang, Sen-Lin

    2009-01-01

    Species of bacteria associated with Stylophora pistillata were determined by analyses of 16S ribosomal genes. Coral samples were taken from two distinct sites at Kenting, in the far south of Taiwan; three coral colonies at each site were tagged and sampled in the winter and summer of 2007. Six hundred 16S rRNA gene clones were selected and sequenced for diversity analysis and community comparison. LIBSHUFF and nonparametric multiple dimensional scaling analyses showed variations in the composition of the coral-associated bacteria in the different samples, suggesting that seasonal and geographic factors and variations in individual coral colonies were all vital drivers of the structure of the S. pistillata-associated bacterial community. To examine the association between species specificity and environmental impacts on the structure of the coral-associated bacterial community, we conducted an integrated, comparative analysis of 44 coral-associated bacterial data sets, including the present study's data. The clustering analysis suggests that the influence of spatial and temporal factors on the coral-associated bacteria population structure is considerable; nonetheless, the effect of species specificity is still detectable in some coral species, especially those from the Caribbean Sea. PMID:19854921

  19. Ten years after the crime: Lasting effects of damage from a cruise ship anchor on a coral reef in St. John, U.S. Virgin Islands

    USGS Publications Warehouse

    Rogers, C.S.; Garrison, V.H.

    2001-01-01

    In October 1988, a cruise ship dropped its anchor on a coral reef in Virgin Islands National Park, St. John, creating a distinct scar roughly 128 m long and 3 m wide from a depth of 22 m to a depth of 6 m. The anchor pulverized coral colonies and smashed part of the reef framework. In April 1991, nine permanent quadrats (1 m2) were established inside the scar over a depth range of 9 m to 12.5 m. At that time, average coral cover inside the scar was less than 1%. These quadrats were surveyed again in 1992, 1993, 1994, 1995 and 1998. Recruits of 19 coral species have been observed, with Agaricia agaricites and Porites spp. the most abundant. Quadrats surveyed outside the scar in June 1994 over the same depth range had a higher percent coral cover (mean = 7.4%, SD = 4.5) and greater average size (maximum length) of coral colonies than in quadrats inside the damaged area. Although coral recruits settle into the scar in high densities, live coral cover has not increased significantly in the last 10 yrs, reflecting poor survival and growth of newly settled corals. The relatively planar aspect of the scar may increase the vulnerability of the recruits to abrasion and mortality from shifting sediments. Ten years after the anchor damage occurred, live coral cover in the still-visible scar (mean = 2.6%, SD = 2.7) remains well below the cover found in the adjacent, undamaged reef.

  20. A new genus and species of golden coral (Anthozoa, Octocorallia, Chrysogorgiidae) from the Northwest Atlantic.

    PubMed

    Cairns, Stephen D; Cordeiro, Ralf T S

    2017-01-01

    A new genus and species of unbranched golden coral, Flagelligorgia gracilis, is described based on several specimens collected off the southeastern coast of the United States. The genus is provisionally included in the family Chrysogorgiidae, pending molecular confirmation. Flagelligorgia morphologically resembles other unbranched chrysogorgiids, such as Distichogorgia, Chalcogorgia, Helicogorgia and Radicipes, to which it is compared. The type species is illustrated and its distribution mapped.

  1. a Preliminary Characterisation of SYMBIODINIUM Diversity in Some Common Corals from Singapore

    NASA Astrophysics Data System (ADS)

    Isa Tanzil, Jani Thuaibah; Ng, Abigayle Pek Kaye; Tey, Yi Qing; Tan, Beverly Hsin Yi; Yun, Eric Yao; Huang, Danwei

    The symbiosis between corals and Symbiodinium dinoflagellates is considered a major driver of the distribution and health of reefs worldwide. This study investigated the genetic identities and diversity of Symbiodinium in seven coral species (Porites lutea, Porites lobata, Acropora millepora, Merulina ampliata, Diploastrea heliopora, Pachyseris speciosa, Pocillopora acuta) from three shallow reefs around Singapore (Kusu Island, Pulau Tekukor, Pulau Satumu). Analyses of 31 colonies using denaturing gradient gel electrophoresis of the nuclear internal transcribed spacer region indicated the dominance of C and D Symbiodinium clades. The latter clade was the predominant symbiont in Pachyseris speciosa collected from Pulau Tekukor but those sampled from Pulau Satumu hosted C27, providing evidence for variable symbiosis in this species. The prevalence of the D clade - noted for their stress tolerance (e.g. to elevated temperatures and sedimentation) - in three of seven coral species examined could underlie the importance of this particular symbiotic relationship for the persistence of Singapore’s impacted reefs. Further characterisation of Symbiodinium communities may provide insights into corals’ response to stress and their bleaching patterns in the future.

  2. EFFECTS OF ENVIRONMENTAL PARAMETERS ON THE GROWTH CHARACTERISTICS OF SYMBIODINIUM SPP. ISOLATED FROM CORALS

    EPA Science Inventory

    Symbiodinium spp. were isolated from Porites porites (JR02F2 and RD03), Montipora capitata (JR12A7), Madracis mirabolis (RD02), Montastrea faveolata (RD04), Pocillopora damicornis (JR13E1), and an unknown coral (RD01). Growth rates and the distribution between motile gymnodinoid ...

  3. Reef-coral refugia in a rapidly changing ocean.

    PubMed

    Cacciapaglia, Chris; van Woesik, Robert

    2015-06-01

    This study sought to identify climate-change thermal-stress refugia for reef corals in the Indian and Pacific Oceans. A species distribution modeling approach was used to identify refugia for 12 coral species that differed considerably in their local response to thermal stress. We hypothesized that the local response of coral species to thermal stress might be similarly reflected as a regional response to climate change. We assessed the contemporary geographic range of each species and determined their temperature and irradiance preferences using a k-fold algorithm to randomly select training and evaluation sites. That information was applied to downscaled outputs of global climate models to predict where each species is likely to exist by the year 2100. Our model was run with and without a 1°C capacity to adapt to the rising ocean temperature. The results show a positive exponential relationship between the current area of habitat that coral species occupy and the predicted area of habitat that they will occupy by 2100. There was considerable decoupling between scales of response, however, and with further ocean warming some 'winners' at local scales will likely become 'losers' at regional scales. We predicted that nine of the 12 species examined will lose 24-50% of their current habitat. Most reductions are predicted to occur between the latitudes 5-15°, in both hemispheres. Yet when we modeled a 1°C capacity to adapt, two ubiquitous species, Acropora hyacinthus and Acropora digitifera, were predicted to retain much of their current habitat. By contrast, the thermally tolerant Porites lobata is expected to increase its current distribution by 14%, particularly southward along the east and west coasts of Australia. Five areas were identified as Indian Ocean refugia, and seven areas were identified as Pacific Ocean refugia for reef corals under climate change. All 12 of these reef-coral refugia deserve high-conservation status.

  4. Coral Pigments: Quantification Using HPLC and Detection by Remote Sensing

    NASA Technical Reports Server (NTRS)

    Cottone, Mary C.

    1995-01-01

    Widespread coral bleaching (loss of pigments of symbiotic dinoflagellates), and the corresponding decline in coral reef health worldwide, mandates the monitoring of coral pigmentation. Samples of the corals Porites compressa and P. lobata were collected from a healthy reef at Puako, Hawaii, and chlorophyll (chl) a, peridinin, and Beta-carotene (Beta-car) were quantified using reverse-phase high performance liquid chromatography (HPLC). Detailed procedures are presented for the extraction of the coral pigments in 90% acetone, and the separation, identification, and quantification of the major zooxanthellar pigments using spectrophotometry and a modification of the HPLC system described by Mantoura and Llewellyn (1983). Beta-apo-8-carotenal was found to be inadequate as in internal standard, due to coelution with chl b and/or chl a allomer in the sample extracts. Improvements are suggested, which may result in better resolution of the major pigments and greater accuracy in quantification. Average concentrations of peridinin, chl a, and Beta-car in corals on the reef were 5.01, 8.59, and 0.29, micro-grams/cm(exp 2), respectively. Average concentrations of peridinin and Beta-car did not differ significantly between the two coral species sampled; however, the mean chl a concentration in P. compressa specimens (7.81 ,micro-grams/cm(exp 2) was significantly lower than that in P. lobata specimens (9.96 11g/cm2). Chl a concentrations determined spectrophotometrically were significantly higher than those generated through HPLC, suggesting that spectrophotometry overestimates chl a concentrations. The average ratio of chl a-to-peridinin concentrations was 1.90, with a large (53%) coefficient of variation and a significant difference between the two species sampled. Additional data are needed before conclusions can be drawn regarding average pigment concentrations in healthy corals and the consistency of the chl a/peridinin ratio. The HPLC pigment concentration values

  5. Spatial Variation in Background Mortality among Dominant Coral Taxa on Australia's Great Barrier Reef

    PubMed Central

    Pisapia, Chiara; Pratchett, Morgan S.

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries) and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries), in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91%) and Montipora encrusting (85%) and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned <10-m apart). Similarly, severity of background partial mortality was surprisingly high (between 5% and 21%) but varied greatly among colonies within the same site and habitat. This study suggests that intraspecific variation in partial mortality between adjacent colonies may be more important than variation between colonies in different latitudinal sectors or reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances. PMID:24959921

  6. Spatial variation in background mortality among dominant coral taxa on Australia's Great Barrier Reef.

    PubMed

    Pisapia, Chiara; Pratchett, Morgan S

    2014-01-01

    Even in the absence of major disturbances (e.g., cyclones, bleaching), corals are consistently subject to high levels of background mortality, which undermines individual fitness and resilience of coral colonies. Partial mortality may impact coral response to climate change by reducing colony ability to recover between major acute stressors. This study quantified proportion of injured versus uninjured colonies (the prevalence of injuries) and instantaneous measures of areal extent of injuries across individual colonies (the severity of injuries), in four common coral species along the Great Barrier Reef in Australia: massive Porites, encrusting Montipora, Acropora hyacinthus and Pocillopora damicornis. A total of 2,276 adult colonies were surveyed three latitudinal sectors, nine reefs and 27 sites along 1000 km2 on the Great Barrier Reef. The prevalence of injuries was very high, especially for Porites spp (91%) and Montipora encrusting (85%) and varied significantly, but most lay at small spatial scales (e.g., among colonies positioned <10-m apart). Similarly, severity of background partial mortality was surprisingly high (between 5% and 21%) but varied greatly among colonies within the same site and habitat. This study suggests that intraspecific variation in partial mortality between adjacent colonies may be more important than variation between colonies in different latitudinal sectors or reefs. Differences in the prevalence and severity of background partial mortality have significant ramifications for coral capacity to cope with increasing acute disturbances, such as climate-induced coral bleaching. These data are important for understanding coral responses to increasing stressors, and in particular for predicting their capacity to recover between subsequent disturbances.

  7. The effect of selected trace metals on the fertilization success of several scleractinian coral species

    NASA Astrophysics Data System (ADS)

    Reichelt-Brushett, A. J.; Harrison, P. L.

    2005-12-01

    This study provides new information on the effects of various concentrations of the trace metals copper, lead, zinc, cadmium, and nickel on fertilization success of gametes from the scleractinian reef corals Goniastrea aspera, Goniastrea retiformis, Acropora tenuis, and Acropora longicyathus. The EC50 values (the concentration that reduces the fertilization rate by 50% relative to the control fertilization) for copper effects on fertilization success of these coral species range from 15 to 40 µg/L, which is similar to responses of other marine invertebrates. The EC50 values for lead were 1450 1800 µg/L for the Acropora species, and >2400 µg/L for G. aspera gametes, which indicates that lead was much less toxic than copper. Fertilization responses to zinc and nickel were variable and a significant reduction in fertilization success for A. tenuis gametes was found only at very high cadmium concentrations. The data from this study and other recent research clearly demonstrate that some trace metals impair the fertilization success of gametes from faviid and acroporiid reef corals. Trace metal inputs into reef waters should be limited and controlled to avoid potential interference with sexual reproductive processes of reef corals.

  8. Asymmetric competition prevents the outbreak of an opportunistic species after coral reef degradation.

    PubMed

    González-Rivero, Manuel; Bozec, Yves-Marie; Chollett, Iliana; Ferrari, Renata; Schönberg, Christine H L; Mumby, Peter J

    2016-05-01

    Disturbance releases space and allows the growth of opportunistic species, excluded by the old stands, with a potential to alter community dynamics. In coral reefs, abundances of fast-growing, and disturbance-tolerant sponges are expected to increase and dominate as space becomes available following acute coral mortality events. Yet, an increase in abundance of these opportunistic species has been reported in only a few studies, suggesting certain mechanisms may be acting to regulate sponge populations. To gain insights into mechanisms of population control, we simulated the dynamics of the common reef-excavating sponge Cliona tenuis in the Caribbean using an individual-based model. An orthogonal hypothesis testing approach was used, where four candidate mechanisms-algal competition, stock-recruitment limitation, whole and partial mortality-were incorporated sequentially into the model and the results were tested against independent field observations taken over a decade in Belize, Central America. We found that releasing space after coral mortality can promote C. tenuis outbreaks, but such outbreaks can be curtailed by macroalgal competition. The asymmetrical competitive superiority of macroalgae, given by their capacity to pre-empt space and outcompete with the sponge in a size-dependant fashion, supports their capacity to steal the opportunity from other opportunists. While multiple system stages can be expected in coral reefs following intense perturbation macroalgae may prevent the growth of other space-occupiers, such as bioeroding sponges, under low grazing pressure.

  9. Predators reduce abundance and species richness of coral reef fish recruits via non-selective predation

    NASA Astrophysics Data System (ADS)

    Heinlein, J. M.; Stier, A. C.; Steele, M. A.

    2010-06-01

    Predators have important effects on coral reef fish populations, but their effects on community structure have only recently been investigated and are not yet well understood. Here, the effect of predation on the diversity and abundance of young coral reef fishes was experimentally examined in Moorea, French Polynesia. Effects of predators were quantified by monitoring recruitment of fishes onto standardized patch reefs in predator-exclosure cages or uncaged reefs. At the end of the 54-day experiment, recruits were 74% less abundant on reefs exposed to predators than on caged ones, and species richness was 42% lower on reefs exposed to predators. Effects of predators varied somewhat among families, however, rarefaction analysis indicated that predators foraged non-selectively among species. These results indicate that predation can alter diversity of reef fish communities by indiscriminately reducing the abundance of fishes soon after settlement, thereby reducing the number of species present on reefs.

  10. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species

    NASA Astrophysics Data System (ADS)

    Negri, A. P.; Marshall, P. A.; Heyward, A. J.

    2007-12-01

    Coral reefs are expected to be severely impacted by rising seawater temperatures associated with climate change. The fertilization and early embryogenesis of four reef-building coral species representing three Indo-Pacific families were examined in a series of laboratory experiments where temperatures were increased up to 5-6°C at ambient. High levels of fertilization and normal embryogenesis were observed for Favites abdita, Favites chinensis and Mycedium elephantotus at temperatures to 32°C (+5°C) and embryos developed normally until the 5th cell cleavage. Acropora millepora was the only species to be affected by higher temperatures, exhibiting significantly reduced fertilization and a higher frequency of embryonic abnormalities at 32°C (+4°C), and fertilization ceased altogether at 34°C (+6°C). Early cell cleavage rates increased with temperature up to 32°C for all species.

  11. Spatial predictability of juvenile fish species richness and abundance in a coral reef environment

    NASA Astrophysics Data System (ADS)

    Mellin, C.; Andréfouët, S.; Ponton, D.

    2007-12-01

    Juvenile reef fish communities represent an essential component of coral reef ecosystems in the current focus of fish population dynamics and coral reef resilience. Juvenile fish survival depends on habitat characteristics and is, following settlement, the first determinant of the number of individuals within adult populations. The goal of this study was to provide methods for mapping juvenile fish species richness and abundance into spatial domains suitable for micro and meso-scale analysis and management decisions. Generalized Linear Models predicting juvenile fish species richness and abundance were developed according to spatial and temporal environmental variables measured from 10 m up to 10 km in the southwest lagoon of New Caledonia. The statistical model was further spatially generalized using a 1.5-m resolution, independently created, remotely sensed, habitat map. This procedure revealed that : (1) spatial factors at 10 to 100-m scale explained up to 71% of variability in juvenile species richness, (2) a small improvement (75%) was gained when a combination of environmental variables at different spatial and temporal scales was used and (3) the coupling of remotely sensed data, geographical information system tools and point-based ecological data showed that the highest species richness and abundance were predicted along a narrow margin overlapping the coral reef flat and adjacent seagrass beds. Spatially explicit models of species distribution may be relevant for the management of reef communities when strong relationships exist between faunistic and environmental variables and when models are built at appropriate scales.

  12. The incorporation of rare earth elements in modern coral

    NASA Astrophysics Data System (ADS)

    Sholkovitz, Edward; Shen, Glen T.

    1995-07-01

    We report measurements of rare earth elements (REEs) which show that these trace elements are being incorporated in modern coral in proportion to their seawater concentrations. Four Bermuda North Rock coral species, Diploria strigosa, Diploria labyrinthiformis, Montastrea annularis, and Porites astreoides and two Tarawa atoll samples of the species Hydnophora microconos were analyzed by TI-IDMS following cleaning techniques to isolate the lattice-bound REEs. Based on the replicate analyses of the same piece of Diploria strigosa, excellent reproducibility was achieved. The REE/Ca ratios (0.1-3 nmol/mol) of the Bermuda and Tarawa corals are similar to those of Cd/Ca, the trace metal with the lowest seawater concentration used in coral studies. With the exception of Ce, the distribution coefficients (e.g., DNd = [Nd coral/Nd seawater] × [Ca seawater/Ca coral]) between Bermuda coral lattice and Sargasso seawater have fairly flat patterns across the REE series. The values of D range from 1 to 3, like those reported for other trace elements in corals. This suggests, but does not prove, that REEs are incorporated in the aragonite lattice of these corals. The shale-normalized REE patterns of the Tarawa corals also have seawater-like distributions; however, no local seawater data are available to calculate values of D. Two Bermuda species (D. labyrinthiformis and P. astreoides) have values of D for Ce that are high with respect to the D values of La and Nd, implying that there is preferential uptake of Ce into the lattice. This may be related to the fact that Ce is the only REE with an active redox chemistry in seawater. There is considerable interest in using the chemical and isotopic composition of coral as indicators of climatic variations. The combination of REE/Ca ratios and neodymium isotopic composition of coral has the potential to help understand important natural processes. A primary application could be directed toward a tracer for river water discharge in

  13. Cyphastreakausti sp. n. (Cnidaria, Anthozoa, Scleractinia), a new species of reef coral from the Red Sea.

    PubMed

    Bouwmeester, Jessica; Benzoni, Francesca; Baird, Andrew H; Berumen, Michael L

    2015-01-01

    A new scleractinian coral species, Cyphastreakausti sp. n., is described from 13 specimens from the Red Sea. It is characterised by the presence of eight primary septa, unlike the other species of the genus, which have six, ten or 12 primary septa. The new species has morphological affinities with Cyphastreamicrophthalma, from which it can be distinguished by the lower number of septa (on average eight instead of ten), and smaller calices and corallites. This species was observed in the northern and central Red Sea and appears to be absent from the southern Red Sea.

  14. Monitoring of heavy metal partitioning in reef corals of Lakshadweep Archipelago, Indian Ocean.

    PubMed

    Anu, G; Kumar, N C; Jayalakshmi, K J; Nair, S M

    2007-05-01

    This paper focuses on the partitioning of trace metals in five selected coral species from Lakshadweep Archipelago, which remains as one of the least studied areas in the Indian Ocean. Based on the morphological features, selected coral species are classified as massive (Porites andrewsi), ramose or branching (Lobophyllia corymbosa, Acropora formosa and Psammocora contigua) and foliaceous (Montipora digitata). Relating trace metal concentrations with morphological features in skeleton, highest concentrations of all the trace metals (except Zn) were reported for the ramose type corals. In tissue, all the metals (essential as well as non essential) showed highest concentrations within the branching type corals. Irrespective of their growth characteristics/pattern, all species except P. contigua displayed higher concentrations of Pb, Ni, Mn and Cd within their skeleton compared to tissue which may exemplify a regulatory mechanism to avoid the build up of the concentrations of these metals in their bio-part, strikingly toxic metals like Cd and Pb. The concentrations of trace metals in the skeleton and tissues of these coral species were subjected to 3 way ANOVA based on non standardized original data and the results showed significant differences between metals and between species leading to high skeleton/ tissue - species interaction as well as skeleton/tissue - metal interaction. The significant values of student's t calculated are depicted in the form of Trellis diagrams.

  15. Incorporating climate and ocean change into extinction risk assessments for 82 coral species.

    PubMed

    Brainard, Russell E; Weijerman, Mariska; Eakin, C Mark; McElhany, Paul; Miller, Margaret W; Patterson, Matt; Piniak, Gregory A; Dunlap, Matthew J; Birkeland, Charles

    2013-12-01

    Many marine invertebrate species facing potential extinction have uncertain taxonomies and poorly known demographic and ecological traits. Uncertainties are compounded when potential extinction drivers are climate and ocean changes whose effects on even widespread and abundant species are only partially understood. The U.S. Endangered Species Act mandates conservation management decisions founded on the extinction risk to species based on the best available science at the time of consideration-requiring prompt action rather than awaiting better information. We developed an expert-opinion threat-based approach that entails a structured voting system to assess extinction risk from climate and ocean changes and other threats to 82 coral species for which population status and threat response information was limited. Such methods are urgently needed because constrained budgets and manpower will continue to hinder the availability of desired data for many potentially vulnerable marine species. Significant species-specific information gaps and uncertainties precluded quantitative assessments of habitat loss or population declines and necessitated increased reliance on demographic characteristics and threat vulnerabilities at genus or family levels. Adapting some methods (e.g., a structured voting system) used during other assessments and developing some new approaches (e.g., integrated assessment of threats and demographic characteristics), we rated the importance of threats contributing to coral extinction risk and assessed those threats against population status and trend information to evaluate each species' extinction risk over the 21st century. This qualitative assessment resulted in a ranking with an uncertainty range for each species according to their estimated likelihood of extinction. We offer guidance on approaches for future biological extinction risk assessments, especially in cases of data-limited species likely to be affected by global-scale threats

  16. Population biology of coral trout species in eastern Torres Strait: Implications for fishery management

    NASA Astrophysics Data System (ADS)

    Williams, Ashley J.; Currey, Leanne M.; Begg, Gavin A.; Murchie, Cameron D.; Ballagh, Aaron C.

    2008-09-01

    Coral trout ( Plectropomus spp.) are the main target species for commercial fishers in the eastern Torres Strait Reef Line Fishery (ETS RLF). The four species of coral trout known to occur in Torres Strait: Plectropomus leopardus, Plectropomus maculatus, Plectropomus areolatus and Plectropomus laevis are currently managed as a single species in Torres Strait, as there is no species-specific biological information available for the region which could be used to assess whether species differ in their response to fishing pressure. The aim of our study was to determine whether it is appropriate (biologically) to manage coral trout in the ETS RLF as a single species group or whether different management arrangements are required for some species. We used catch data and biological data from samples collected by commercial fishers to examine the distribution within Torres Strait and estimate a range of biological parameters for P. leopardus, P. maculatus and P. areolatus. Insufficient P. laevis samples were collected to reliably examine this species. Results indicated that the population biology, particularly the reproductive biology, of P. areolatus was substantially different to both P. leopardus and P. maculatus. Although it is difficult to predict the response to fishing, P. areolatus may be more vulnerable to fishing than P. leopardus and P. maculatus, due to the larger size at sex change observed for this species and the very low proportion of males protected by the current minimum size limit. Therefore, while the common management arrangements for P. leopardus and P. maculatus appear to be adequate for these species, separate management arrangements are needed for the sustainable harvest of P. areolatus populations in the ETS. Specifically, we recommend the introduction of a maximum size limit for P. areolatus, in addition to the current minimum size limit, which may allow a proportion of males some protection from fishing.

  17. Empirical assessment of coral Sr/Ca and Mg/Ca ratios as climate proxies using colonies grown at different temperatures

    NASA Astrophysics Data System (ADS)

    Inoue, Mayuri; Suzuki, Atsushi; Nohara, Masato; Hibino, Kohei; Kawahata, Hodaka

    2007-06-01

    Coral strontium/calcium (Sr/Ca) and magnesium/calcium (Mg/Ca) ratios might be useful for reconstructing past sea surface temperature (SST) in tropical oceans where instrumental data are limited. However, the link between coral skeletal trace elements and SST is disputed, and biological factors such as skeletal growth rate may also affect trace elements in a coral. We studied the relationships between growth rate and SST and Sr/Ca and Mg/Ca ratios using corals (Porites spp.) cultured in thermostated tanks. Sr/Ca was controlled primarily by SST, while Mg/Ca mainly reflected the growth rate with negligible contribution from species on both the variations. These relationships are consistent with modeled results of cation partitioning during aragonite crystal formation.

  18. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    NASA Astrophysics Data System (ADS)

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-12-01

    The reactive oxygen species superoxide (O2.-) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ~120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.

  19. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event

    PubMed Central

    Diaz, Julia M.; Hansel, Colleen M.; Apprill, Amy; Brighi, Caterina; Zhang, Tong; Weber, Laura; McNally, Sean; Xun, Liping

    2016-01-01

    The reactive oxygen species superoxide (O2·−) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ∼120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology. PMID:27924868

  20. The assessment of the age of scleractinian coral species (Anthozoa: Scleractinia) based on the temperature ranges of their habitat

    NASA Astrophysics Data System (ADS)

    Os'kina, N. S.; Keller, N. B.; Nikolaev, S. D.

    2010-12-01

    Until now, the age of deep-water scleractinians was determined based only on rare finds of these corals in terrestrial sequences, which constitute <10% of their known diversity. Inasmuch as most of the non-zooxanthellate coral species dwell in the ocean beyond the shelf zone (up to the abyssal depths) and their fossil remains are missing from terrestrial sections, we propose a new approach to the assessment of their age based on paleoecological features: the seawater temperatures in the geological past and the habitat temperature ranges established for 53 coral species. The study confirmed our previous assumption concerning the very young age of the deep-water fauna.

  1. Reef-building corals thrive within hot-acidified and deoxygenated waters.

    PubMed

    Camp, Emma F; Nitschke, Matthew R; Rodolfo-Metalpa, Riccardo; Houlbreque, Fanny; Gardner, Stephanie G; Smith, David J; Zampighi, Marco; Suggett, David J

    2017-05-26

    Coral reefs are deteriorating under climate change as oceans continue to warm and acidify and thermal anomalies grow in frequency and intensity. In vitro experiments are widely used to forecast reef-building coral health into the future, but often fail to account for the complex ecological and biogeochemical interactions that govern reefs. Consequently, observations from coral communities under naturally occurring extremes have become central for improved predictions of future reef form and function. Here, we present a semi-enclosed lagoon system in New Caledonia characterised by diel fluctuations of hot-deoxygenated water coupled with tidally driven persistently low pH, relative to neighbouring reefs. Coral communities within the lagoon system exhibited high richness (number of species = 20) and cover (24-35% across lagoon sites). Calcification rates for key species (Acropora formosa, Acropora pulchra, Coelastrea aspera and Porites lutea) for populations from the lagoon were equivalent to, or reduced by ca. 30-40% compared to those from the reef. Enhanced coral respiration, alongside high particulate organic content of the lagoon sediment, suggests acclimatisation to this trio of temperature, oxygen and pH changes through heterotrophic plasticity. This semi-enclosed lagoon therefore provides a novel system to understand coral acclimatisation to complex climatic scenarios and may serve as a reservoir of coral populations already resistant to extreme environmental conditions.

  2. Effects of disturbance on coral communities: bleaching in Moorea, French Polynesia

    NASA Astrophysics Data System (ADS)

    Gleason, M. G.

    1993-11-01

    This study examines patterns of susceptibility and short-term recovery of corals from bleaching. A mass coral bleaching event began in March, 1991 on reefs in Moorea, French Polynesia and affected corals on the shallow barrier reef and to >20 m depth on the outer forereef slope. There were significant differences in the effect of the bleaching among common coral genera, with Acropora, Montastrea, Montipora, and Pocillopora more affected than Porites, Pavona, leptastrea or Millepora. Individual colonies of the common species of Acropora and Pocillopora were marked and their fate assessed on a subsequent survey in August, 1991 to determine rates of recovery and mortality. Ninety-six percent of Acropora spp. showed some degree of bleaching compared to 76% of Pocillopora spp. From March to August mortality of bleached colonies of Pocillopora was 17%, 38% recovered completely, and many suffered some partial mortality of the tissue. In contrast, 63% of the Acropora spp. died, and about 10% recovered completely. Generally, those colonies with less than 50% of the colony area affected by the bleaching recovered at a higher rate than did those with more severe bleaching. Changes in community composition four months after the event began included a significant decrease only in crustose algae and an increase in cover of filamentous algae, much of which occupied plate-like and branching corals that had died in the bleaching event. Total coral cover and cover of susceptible coral genera had declined, but not significantly, after the event.

  3. Species-specific trends in the reproductive output of corals across environmental gradients and bleaching histories.

    PubMed

    Howells, Emily J; Ketchum, Remi N; Bauman, Andrew G; Mustafa, Yasmine; Watkins, Kristina D; Burt, John A

    2016-04-30

    Coral populations in the Persian Gulf have a reputation for being some of the toughest in the world yet little is known about the energetic constraints of living under temperature and salinity extremes. Energy allocation for sexual reproduction in Gulf corals was evaluated relative to conspecifics living under milder environmental conditions in the Oman Sea. Fecundity was depressed at Gulf sites in two Indo-Pacific merulinid species (Cyphastrea microphthalma and Platygyra daedalea) but not in a regionally endemic acroporid (Acropora downingi). Gulf populations of each species experienced high temperature bleaching at the onset of gametogenesis in the study but fecundity was only negatively impacted in P. daedalea and A. downingi. Large population sizes of C. microphthalma and P. daedalea in the Gulf are expected to buffer reductions on colony-level fecundity. However, depleted population sizes of A. downingi at some Gulf sites equate to low reef-wide fecundity and likely impede outcrossing success.

  4. Expansion of an invasive coral species over Abrolhos Bank, Southwestern Atlantic.

    PubMed

    Costa, Thiago J F; Pinheiro, Hudson T; Teixeira, João Batista; Mazzei, Eric F; Bueno, Leonardo; Hora, Mike S C; Joyeux, Jean-Christophe; Carvalho-Filho, Alfredo; Amado-Filho, Gilberto; Sampaio, Claudio L S; Rocha, Luiz A

    2014-08-15

    Invasive coral species of the genus Tubastraea have been increasingly recorded in Southwestern Atlantic waters since the 1980s. Their invasion and infestation are mainly related to port and oil exploration activities. For the first time the presence of Tubastraea tagusensis colonies is reported in Espírito Santo State, colonizing a port shore area, and incrusting oil/gas platform structures situated in the southern Abrolhos Bank, which is part of the most important coral reef system of the South Atlantic Ocean. Tubastraea colonies exhibit fast growth and high recruitment rates, and colonized 40% of the analyzed structures in just four years. The projection of port and oil/gas industry growth for the Espírito Santo State (more than 300%) highlights an alert to the dispersal of this alien species to natural areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Genotypic diversity and distribution of Ostreobium quekettii within scleractinian corals

    NASA Astrophysics Data System (ADS)

    Gutner-Hoch, Eldad; Fine, Maoz

    2011-09-01

    The green filamentous endolithic alga Ostreobium quekettii resides inside skeletons of scleractinian corals in close proximity with their tissue and plays a role in the viability of the coral and its associates. This study examined the distribution and diversity of O. quekettii within scleractinian corals from the Red Sea (Eilat, Gulf of Aqaba), using a molecular phylogenetic marker. The massive coral species Porites lutea and Goniastrea perisi were sampled from a depth range of 6-55 m, and ribulose 1,5-bisphosphate carboxylase large subunit gene ( rbcL) DNA sequence of the alga was amplified and analyzed for diversity and distribution of ecological patterns. This work reveals that O. quekettii has at least seven different clades distributed along a depth gradient in the examined scleractinian corals. Among the seven identified clades, four were found only in P. lutea, while the other two clades are found in both P. lutea and G. perisi. Goniastrea perisi colonies at depth of 30 m had a distinct O. quekettii clade that was absent in P. lutea. It is obvious from this study that the green endolithic alga O. quekettii is not a single genotype as previously considered but a complex of genotypes and that this differentiation is of ecological significance.

  6. Topography and spatial arrangement of reef-building corals on the fringing reefs of North Jamaica may influence their response to disturbance from bleaching.

    PubMed

    Crabbe, M J C

    2010-04-01

    Knowledge of factors that are important in reef resilience helps us understand how reefs react following major environmental disturbances such as hurricanes and bleaching. Here we test factors that might have influenced Jamaican reef resilience to, and subsequent recovery from, the 2005 bleaching event, and which might help inform management policy for reefs in the future: reef rugosity and contact of corals with macroalgae. In addition, we test in the field, on Dairy Bull reef, whether aggregated Porites astreoides colonies exhibit enhanced growth when exposed to superior competition from Acopora palmata, as has been found by experiment with the Indo-Pacific corals Porites lobata and the superior competitor Porites rus [Idjadi, J.A., Karlson, R.H., 2007. Spatial arrangement of competitors influences coexistence of reef-building corals. Ecology 88, 2449-2454]. There were significant linear relationships between rugosity and the increase in smallest size classes for Sidastrea siderea, Colpophyllia natans, P. astreoides and Agaricia species, and between rugosity and cover of the branching coral Acropora cervicornis. Linear extension rates of A. cervicornis and radial growth rates of P. astreoides were significantly lower (p<0.025; F>6) when in contact with macroalgae. Aggregated colonies of P. astreoides in contact with one another, one of which was in contact with the faster growing competitor A. palmata showed significantly greater growth rates than with just two aggregated P. astreoides colonies alone. These findings suggest that three dimensional topography and complexity is important for reef resilience and viability in the face of environmental stressors such as bleaching. Our findings also support the idea that aggregated spatial arrangements of corals can influence the outcome of interspecific competition and promote species coexistence, important in times of reef recovery after disturbance. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Abundance and composition of juvenile corals reveals divergent trajectories for coral assemblages across the United Arab Emirates.

    PubMed

    Pratchett, Morgan S; Baird, Andrew H; Bauman, Andrew G; Burt, John A

    2017-01-30

    Marked shifts in the composition of coral assemblages are occurring at many locations, but it is unknown whether these are permanent shifts reinforced by patterns of population replenishment. This study examined the composition of juvenile coral assemblages across the United Arab Emirates (UAE). Densities of juvenile corals varied significantly among locations, but were highest where coral cover was highest. Juvenile coral assemblages within the Persian Gulf were dominated by Porites, while no Acropora were recorded. We expect therefore, continued declines in Acropora abundance, while observed dominance of Porites is likely to persist. In the Oman Sea, Pocillopora was the dominant juvenile coral, with Acropora and Stylophora also recorded. This study shows that taxonomic differences in replenishment are reinforcing temporal shifts in coral composition within the southern Persian Gulf, but not in the Oman Sea. Differences in environmental conditions and disturbance regimes likely explain the divergent responses between regions.

  8. Spatial variation in abundance, size and orientation of juvenile corals related to the biomass of parrotfishes on the Great Barrier Reef, Australia.

    PubMed

    Trapon, Melanie L; Pratchett, Morgan S; Hoey, Andrew S

    2013-01-01

    For species with complex life histories such as scleractinian corals, processes occurring early in life can greatly influence the number of individuals entering the adult population. A plethora of studies have examined settlement patterns of coral larvae, mostly on artificial substrata, and the composition of adult corals across multiple spatial and temporal scales. However, relatively few studies have examined the spatial distribution of small (≤50 mm diameter) sexually immature corals on natural reef substrata. We, therefore, quantified the variation in the abundance, composition and size of juvenile corals (≤50 mm diameter) among 27 sites, nine reefs, and three latitudes spanning over 1000 km on Australia's Great Barrier Reef. Overall, 2801 juveniles were recorded with a mean density of 6.9 (±0.3 SE) ind.m(-2), with Acropora, Pocillopora, and Porites accounting for 84.1% of all juvenile corals surveyed. Size-class structure, orientation on the substrate and taxonomic composition of juvenile corals varied significantly among latitudinal sectors. The abundance of juvenile corals varied both within (6-13 ind.m(-2)) and among reefs (2.8-11.1 ind.m(-2)) but was fairly similar among latitudes (6.1-8.2 ind.m(-2)), despite marked latitudinal variation in larval supply and settlement rates previously found at this scale. Furthermore, the density of juvenile corals was negatively correlated with the biomass of scraping and excavating parrotfishes across all sites, revealing a potentially important role of parrotfishes in determining distribution patterns of juvenile corals on the Great Barrier Reef. While numerous studies have advocated the importance of parrotfishes for clearing space on the substrate to facilitate coral settlement, our results suggest that at high biomass they may have a detrimental effect on juvenile coral assemblages. There is, however, a clear need to directly quantify rates of mortality and growth of juvenile corals to understand the relative

  9. Favia Corals: a New Paleoclimate Archive

    NASA Astrophysics Data System (ADS)

    Miller, S. J.; Cobb, K. M.; Grothe, P. R.; Chen, T.; Sayani, H. R.; Lynch-Stieglitz, J.; Townsend, K. J.; Edwards, R. L.; Cheng, H.; Lu, Y.; Deocampo, D.

    2015-12-01

    Projections of future climate change contain large uncertainties stemming from our inability to confirm long-term trends in climate models with short instrumental records. Fossil corals are an important archive of past climate changes in the tropical oceans as oxygen isotopic ratios (δ18O) in their skeletons reflect ambient ocean temperature and salinity during the time they grew. In particular, El Niño/Southern Oscillation (ENSO) is a natural phenomenon with a complex array of sensitivities to climate change, rendering any future projections of its variability highly uncertain. The long-term behavior of ENSO and lower-frequency Pacific climate variability is recorded by annually banded fossil corals, providing insight into both natural and anthropogenic climate changes in this under-sampled region (Hughen et al. 1999; Tudhope et al. 2001; Cobb et al. 2003; Cobb et al. 2013). To date, most coral-based reconstructions have utilized cores from the genus Porites, owing its regular, concentric growth bands and fast growth-rates that allow for the generation of up to 20 samples per year of coral growth. However, this genus is neither evenly distributed across the tropics nor continuously available within the fossil record, so there is a pressing need to expand the types of corals available for reconstruction. Here, we test Favia species from Kiritimati Island (2°N, 157°W) as a paleoclimate recorder by comparing different δ18O timeseries from within a single coral as well as across multiple corals with instrumental sea-surface temperature (SST). We find significant and consistent differences between coral δ18O profiles sampled along thecal versus septa walls, and show that δ18O in the thecal wall is more reproducible, and more coherent with SST. Slow growth rates (8-10mm/yr), and small inter-colony δ18O offsets suggest that Favia may be an untapped climate archive that is capable of providing robust constraints on natural climate variability in the tropical

  10. Coral Diseases Following Massive Bleaching in 2005 Cause 60 Percent Decline in Coral Cover and Mortality of the Threatened Species, Acropora Palmata, on Reefs in the U.S. Virgin Islands

    USGS Publications Warehouse

    Rogers, Caroline S.

    2008-01-01

    Record-high seawater temperatures and calm seas in the summer of 2005 led to the most severe coral bleaching (greater than 90 percent bleached coral cover) ever observed in the U.S. Virgin Islands (USVI) (figs. 1 and 2). All but a few coral species bleached, including the threatened species, Acropora palmata. Bleaching was seen from the surface to depths over 20 meters.

  11. A Compartmental Comparison of Major Lipid Species in a Coral-Symbiodinium Endosymbiosis: Evidence that the Coral Host Regulates Lipogenesis of Its Cytosolic Lipid Bodies.

    PubMed

    Chen, Hung-Kai; Song, Shin-Ni; Wang, Li-Hsueh; Mayfield, Anderson B; Chen, Yi-Jyun; Chen, Wan-Nan U; Chen, Chii-Shiarng

    2015-01-01

    The lipid body (LB) formation in the host coral gastrodermal cell cytoplasm is a hallmark of the coral-Symbiodinium endosymbiosis, and such lipid-based entities are not found in endosymbiont-free cnidarian cells. Therefore, the elucidation of lipogenesis regulation in LBs and how it is related to the lipid metabolism of the host and endosymbiont could provide direct insight to understand the symbiosis mechanism. Herein, the lipid composition of host cells of the stony coral Euphyllia glabrescens, as well as that of their cytoplasmic LBs and in hospite Symbiodinium populations, was examined by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS), and six major lipid species were identified: wax esters, sterol esters, triacylglycerols, cholesterols, free fatty acids, and phospholipids. Their concentrations differed significantly between host coral cells, LBs, and Symbiodinium, suggesting compartmental regulation. WE were only present in the host coral and were particularly highly concentrated in LBs. Amongst the four species of WE, the monoene R = C18:1/R = C16 was found to be LB-specific and was not present in the host gastrodermal cell cytoplasm. Furthermore, the acyl pool profiles of the individual LB lipid species were more similar, but not equal to, those of the host gastrodermal cells in which they were located, indicating partially autonomous lipid metabolism in these LBs. Nevertheless, given the overall similarity in the host gastrodermal cell and LB lipid profiles, these data suggest that a significant portion of the LB lipids may be of host coral origin. Finally, lipid profiles of the in hospite Symbiodinium populations were significantly distinct from those of the cultured Symbiodinium, potentially suggesting a host regulation effect that may be fundamental to lipid metabolism in endosymbiotic associations involving clade C Symbiodinium.

  12. A Compartmental Comparison of Major Lipid Species in a Coral-Symbiodinium Endosymbiosis: Evidence that the Coral Host Regulates Lipogenesis of Its Cytosolic Lipid Bodies

    PubMed Central

    Chen, Hung-Kai; Song, Shin-Ni; Wang, Li-Hsueh; Mayfield, Anderson B.; Chen, Yi-Jyun; Chen, Wan-Nan U.; Chen, Chii-Shiarng

    2015-01-01

    The lipid body (LB) formation in the host coral gastrodermal cell cytoplasm is a hallmark of the coral-Symbiodinium endosymbiosis, and such lipid-based entities are not found in endosymbiont-free cnidarian cells. Therefore, the elucidation of lipogenesis regulation in LBs and how it is related to the lipid metabolism of the host and endosymbiont could provide direct insight to understand the symbiosis mechanism. Herein, the lipid composition of host cells of the stony coral Euphyllia glabrescens, as well as that of their cytoplasmic LBs and in hospite Symbiodinium populations, was examined by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS), and six major lipid species were identified: wax esters, sterol esters, triacylglycerols, cholesterols, free fatty acids, and phospholipids. Their concentrations differed significantly between host coral cells, LBs, and Symbiodinium, suggesting compartmental regulation. WE were only present in the host coral and were particularly highly concentrated in LBs. Amongst the four species of WE, the monoene R = C18:1/R = C16 was found to be LB-specific and was not present in the host gastrodermal cell cytoplasm. Furthermore, the acyl pool profiles of the individual LB lipid species were more similar, but not equal to, those of the host gastrodermal cells in which they were located, indicating partially autonomous lipid metabolism in these LBs. Nevertheless, given the overall similarity in the host gastrodermal cell and LB lipid profiles, these data suggest that a significant portion of the LB lipids may be of host coral origin. Finally, lipid profiles of the in hospite Symbiodinium populations were significantly distinct from those of the cultured Symbiodinium, potentially suggesting a host regulation effect that may be fundamental to lipid metabolism in endosymbiotic associations involving clade C Symbiodinium. PMID:26218797

  13. The Acid Test: Calcium Signaling in the Skeletogenic Layer of Reef-Building Coral

    NASA Astrophysics Data System (ADS)

    Florn, A. M.

    2016-02-01

    Since the Industrial Revolution, carbon dioxide (CO2) emissions have increased more than 40%. This increased atmospheric CO2 drives ocean acidification and has potentially serious consequences for all marine life, especially calcifying organisms. The specific goal of this study was to examine calcium homeostasis and signaling dynamics within the skeletogenic tissue layers (calicodermal cells) of two coral species (Pavona maldivensis and Porites rus) at three pH treatments corresponding to present-future ocean acidification levels. Confocal microscopy techniques were used to analyze in vivo calcium dynamics of the calicodermal cells in Pavona maldivensis and Porites rus. The results show biological variation between the two reef-building coral species and their response to ocean acidification. Pavona maldivensis showed a significant difference (p < 0.01) in the ionomycin-induced calcium response among the pH treatments, but not among the microcolonies. Porites rus did not show a significant difference (p < 0.01) in the ionomycin-induced calcium response among the pH treatments or the microcolonies. Upon comparing the calcium response curves, the ionomycin-induced calcium response exhibited by Pavona maldivensis is phenomenologically similar to a calcium response that is commonly found in vertebrates. This well-studied phenomenon in vertebrate biology is known as store-operated calcium entry (SOCE) and is closely associated with the endoplasmic reticulum (ER) and mitochondria-associated endoplasmic reticulum (MAM) calcium stores. This study provides insight into the preliminary steps needed to understand in vivo calcium signaling in the calicodermis of reef-building coral and the associated consequences of ocean acidification.

  14. Flexible associations between Pocillopora corals and Symbiodinium limit utility of symbiosis ecology in defining species

    NASA Astrophysics Data System (ADS)

    Cunning, R.; Glynn, P. W.; Baker, A. C.

    2013-09-01

    Corals in the genus Pocillopora are the primary framework builders of eastern tropical Pacific (ETP) reefs. These corals typically associate with algal symbionts (genus Symbiodinium) in clade C and/or D, with clade D associations having greater thermal tolerance and resistance to bleaching. Recently, cryptic "species" delineations within both Pocillopora and Symbiodinium have been suggested, with host-symbiont specificity used as a supporting taxonomic character in both genera. In particular, it has been suggested that three lineages of Pocillopora (types 1-3) exist in the ETP, of which type 1 is the exclusive host of heat-tolerant Symbiodinium D1. This host specificity has been used to support the species name " Symbiodinium glynni" for this symbiont. To validate these host-symbiont relationships and their taxonomic utility, we identified Pocillopora types and their associated Symbiodinium at three sites in the ETP. We found greater flexibility in host-symbiont combinations than previously reported, with both Pocillopora types 1 and 3 able to host and be dominated by Symbiodinium in clade C or D. The prevalence of certain combinations did vary among sites, showing that a gradient of specificity exists which may be mediated by evolutionary relationships and environmental disturbance history. However, these results limit the utility of apparent host-symbiont specificity (which may have been a result of undersampling) in defining species boundaries in either corals or Symbiodinium. They also suggest that a greater diversity of corals may benefit from the thermal tolerance of clade D symbionts, affirming the need to conserve Pocillopora across its entire geographic and environmental range.

  15. High Resolution Coral Cd Measurements Using LA-ICP-MS and ID-ICP-MS: Calibration and Interpretation

    NASA Astrophysics Data System (ADS)

    Matthews, K. A.; Grottoli, A. G.; McDonough, W. F.; Palardy, J. E.

    2007-12-01

    Cadmium in coral skeleton ([Cd]coral) tracks oceanic upwelling. This study assessed the Cd signal in three species of coral ( Porites lobata, Pavona gigantea, Pavona clavus) from a seasonally upwelling region (Gulf of Panamá, Pacific Ocean) using high-resolution laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Single LA tracks in all species yielded variable results, however the average of multiple paths mirrored changes in in situ seawater Cd ([Cd]sw). In addition, averaged P. clavus data from LA-ICP-MS was correlated to isotope dilution-ICP-MS data, albeit with lower concentrations using the latter method. Although the seawater and coral time series trends were similar, maximum [Cd]coral preceded [Cd]sw by approximately 1 month. When applying this 1-month offset, [Cd]coral was well correlated to [Cd]sw, providing the first direct calibration for this upwelling proxy (distribution coefficient = 1.3-1.7). A three year record of cyclic [Cd]coral demonstrated the ability of LA-ICP-MS to rapidly generate long records for paleoupwelling reconstruction. Further improvements in measurement precision would make this technique comparable to existing ID-ICP-MS methods, but with higher sample throughput and temporal resolution.

  16. Short-term ecological consequences of a major oil spill on Panamanian subtidal reef corals

    NASA Astrophysics Data System (ADS)

    Guzmán, Héctor M.; Jackson, Jeremy B. C.; Weil, Ernesto

    1991-07-01

    A major oil spill (8,000,000 liters; 50,000 barrels) occurred in Bahía Las Minas on the Caribbean coast of Panama in April 1986, and oil slicks from the refinery landfill and mangroves were still common there after 21/2 years. We studied short-term effects of the spill on common shallow subtidal reef corals, at the individual, population, and community levels. Numbers of corals, total coral cover, and species diversity based on cover decreased significantly with increased amounts of oiling. Cover of the large branching coral Acropora palmata decreased most. Frequency and size of recent injuries on massive corals increased with level of oiling, particularly for Siderastrea siderea. Growth of three massive species ( Porites astreoides, Diploria strigosa, and Montastrea annularis, but not S. siderea) was less at oiled reefs in the year of the spill than during the 9 previous years. Subtidal coral reefs, particularly those along protected coasts, may suffer extensive damage from chronic exposure after major oil spills.

  17. Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea

    NASA Astrophysics Data System (ADS)

    Bouwmeester, J.; Baird, A. H.; Chen, C. J.; Guest, J. R.; Vicentuan, K. C.; Berumen, M. L.

    2015-03-01

    Early work on coral reproduction in the far northern Red Sea suggested that the spawning times of ecologically abundant species did not overlap, unlike on the Great Barrier Reef where many species spawn with high synchrony. In contrast, recent work in the northern and central Red Sea indicates a high degree of synchrony in the reproductive condition of Acropora species: over 90 % of species sampled in April/May contain mature gametes. However, it has yet to be determined when most Acropora release their gametes. In addition, there is a lack of data for other ecologically important scleractinian species such as merulinids and poritids. Here, we document the date and time of spawning for 51 species in the central Red Sea over three consecutive years, and the month of spawning for an additional 17 species inferred from the presence of mature gametes. Spawning occurs on nights around the full moon, the spawning season lasts at least 4 months from April until July, and observations are consistent with the few other records from the Red Sea. The number of Acropora species spawning was highest in April with 13 species spawning two nights before the full moon in 2011, 13 species spawning on the night of the full moon in 2012, and eight species spawning four nights after the full moon in 2013. The total number of species spawning was high in April, May, and June and involved 15-19 species per month in 2012. Only four species spawned in July 2012. Few regions worldwide have been similarly sampled and include the Philippines, Okinawa in Japan, and Palau, where spawning patterns are very similar to those in the central Red Sea and where corals spawn on nights around the full moon over a period of 3-4 months. In particular, in all four locations, Acropora are among the first species to spawn. Our results add to a growing body of evidence indicating that multi-species spawning synchrony is a feature of all speciose coral assemblages.

  18. Tracking Transmission of Apicomplexan Symbionts in Diverse Caribbean Corals

    PubMed Central

    Kirk, Nathan L.; Ritson-Williams, Raphael; Coffroth, Mary Alice; Miller, Margaret W.; Fogarty, Nicole D.; Santos, Scott R.

    2013-01-01

    Symbionts in each generation are transmitted to new host individuals either vertically (parent to offspring), horizontally (from exogenous sources), or a combination of both. Scleractinian corals make an excellent study system for understanding patterns of symbiont transmission since they harbor diverse symbionts and possess distinct reproductive modes of either internal brooding or external broadcast spawning that generally correlate with vertical or horizontal transmission, respectively. Here, we focused on the under-recognized, but apparently widespread, coral-associated apicomplexans (Protista: Alveolata) to determine if symbiont transmission depends on host reproductive mode. Specifically, a PCR-based assay was utilized towards identifying whether planula larvae and reproductive adults from brooding and broadcast spawning scleractinian coral species in Florida and Belize harbored apicomplexan DNA. Nearly all (85.5%; n = 85/89) examined planulae of five brooding species (Porites astreoides, Agaricia tenuifolia, Agaricia agaricites, Favia fragum, Mycetophyllia ferox) and adults of P. astreoides were positive for apicomplexan DNA. In contrast, no (n = 0/10) apicomplexan DNA was detected from planulae of four broadcast spawning species (Acropora cervicornis, Acropora palmata, Pseudodiploria strigosa, and Orbicella faveolata) and rarely in gametes (8.9%; n = 5/56) of these species sampled from the same geographical range as the brooding species. In contrast, tissue samples from nearly all (92.0%; n = 81/88) adults of the broadcast spawning species A. cervicornis, A. palmata and O. faveolata harbored apicomplexan DNA, including colonies whose gametes and planulae tested negative for these symbionts. Taken together, these data suggest apicomplexans are transmitted vertically in these brooding scleractinian coral species while the broadcast spawning scleractinian species examined here acquire these symbionts horizontally. Notably, these transmission patterns are

  19. Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium).

    PubMed

    Hagedorn, M; Carter, V L; Leong, J C; Kleinhans, F W

    2010-04-01

    Coral throughout the world are under threat. To save coral via cryopreservation methods, the Symbiodinium algae that live within many coral cells must also be considered. Coral juvenile must often take up these important cells from their surrounding water and when adult coral bleach, they lose their endosymbiotic algae and will die if they are not regained. The focus of this paper was to understand some of the cryo-physiology of the endosymbiotic algae, Symbiodinium, living within three species of Hawaiian coral, Fungia scutaria, Porites compressa and Pocillopora damicornis in Kaneohe Bay, Hawaii. Although cryopreservation of algae is common, the successful cryopreservation of these important coral endosymbionts is not common, and these species are often maintained in live serial cultures within stock centers worldwide. Freshly-extracted Symbiodinium were exposed to cryobiologically appropriate physiological stresses and their viability assessed with a Pulse Amplitude Fluorometer. Stresses included sensitivity to chilling temperatures, osmotic stress, and toxic effects of various concentrations and types of cryoprotectants (i.e., dimethyl sulfoxide, propylene glycol, glycerol and methanol). To determine the water and cryoprotectant permeabilities of Symbiodinium, uptake of radio-labeled glycerol and heavy water (D(2)O) were measured. The three different Symbiodinium subtypes studied demonstrated remarkable similarities in their morphology, sensitivity to cryoprotectants and permeability characteristics; however, they differed greatly in their sensitivity to hypo- and hyposmotic challenges and sensitivity to chilling, suggesting that standard slow freezing cryopreservation may not work well for all Symbiodinium. An appendix describes our H(2)O:D(2)O water exchange experiments and compares the diffusionally determined permeability with the two parameter model osmotic permeability. Published by Elsevier Inc.

  20. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?

    NASA Astrophysics Data System (ADS)

    Levas, Stephen; Grottoli, Andréa G.; Schoepf, Verena; Aschaffenburg, Matthew; Baumann, Justin; Bauer, James E.; Warner, Mark E.

    2016-06-01

    Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral— Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11-36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling.

  1. Local effects induced by venoms from five species of genus Micrurus sp. (coral snakes).

    PubMed

    Barros, A C; Fernandes, D P; Ferreira, L C; Dos Santos, M C

    1994-04-01

    Venoms from five species of Micrurus (coral snakes) from Brazil (Amazonas State) were tested for the following effects: edematogenic, myotoxic, coagulant, hemorrhagic and phospholipase A2 (PLA2) detection. None of the venoms tested presented coagulant activity. The presence of PLA2 was detected by ELISA in the venoms of M. spixii, M. averyi and M. lemniscatus. The myotoxicity was estimated by the increase in the serum creatine kinase level and by histological analysis. All venoms, except that from M. surinamensis, induced intense edematogenic and myotoxic effects. The venom of M. averyi showed hemorrhagic activity which was confirmed by histopathological analysis. This is the first evidence of such an effect by coral snake venom.

  2. Concordance between genetic and species diversity in coral reef fishes across the Pacific Ocean biodiversity gradient.

    PubMed

    Messmer, Vanessa; Jones, Geoffrey P; Munday, Philip L; Planes, Serge

    2012-12-01

    The relationship between genetic diversity and species diversity provides insights into biogeography and historic patterns of evolution and is critical for developing contemporary strategies for biodiversity conservation. Although concordant large-scale clines in genetic and species diversity have been described for terrestrial organisms, whether these parameters co-vary in marine species remains largely unknown. We examined patterns of genetic diversity for 11 coral reef fish species sampled at three locations across the Pacific Ocean species diversity gradient (Australia: ∼1600 species; New Caledonia: ∼1400 species; French Polynesia: ∼800 species). Combined genetic diversity for all 11 species paralleled the decline in species diversity from West to East, with French Polynesia exhibiting lowest total haplotype and nucleotide diversities. Haplotype diversity consistently declined toward French Polynesia in all and nucleotide diversity in the majority of species. The French Polynesian population of most species also exhibited significant genetic differentiation from populations in the West Pacific. A number of factors may have contributed to the general positive correlation between genetic and species diversity, including location and time of species origin, vicariance events, reduced gene flow with increasing isolation, and decreasing habitat area from West to East. However, isolation and habitat area, resulting in reduced population size, are likely to be the most influential.

  3. Fine-Scale Skeletal Banding Can Distinguish Symbiotic from Asymbiotic Species among Modern and Fossil Scleractinian Corals

    PubMed Central

    Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V.; Stolarski, Jarosław

    2016-01-01

    Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators—none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil

  4. Fine-Scale Skeletal Banding Can Distinguish Symbiotic from Asymbiotic Species among Modern and Fossil Scleractinian Corals.

    PubMed

    Frankowiak, Katarzyna; Kret, Sławomir; Mazur, Maciej; Meibom, Anders; Kitahara, Marcelo V; Stolarski, Jarosław

    2016-01-01

    Understanding the evolution of scleractinian corals on geological timescales is key to predict how modern reef ecosystems will react to changing environmental conditions in the future. Important to such efforts has been the development of several skeleton-based criteria to distinguish between the two major ecological groups of scleractinians: zooxanthellates, which live in symbiosis with dinoflagellate algae, and azooxanthellates, which lack endosymbiotic dinoflagellates. Existing criteria are based on overall skeletal morphology and bio/geo-chemical indicators-none of them being particularly robust. Here we explore another skeletal feature, namely fine-scale growth banding, which differs between these two groups of corals. Using various ultra-structural imaging techniques (e.g., TEM, SEM, and NanoSIMS) we have characterized skeletal growth increments, composed of doublets of optically light and dark bands, in a broad selection of extant symbiotic and asymbiotic corals. Skeletons of zooxanthellate corals are characterized by regular growth banding, whereas in skeletons of azooxanthellate corals the growth banding is irregular. Importantly, the regularity of growth bands can be easily quantified with a coefficient of variation obtained by measuring bandwidths on SEM images of polished and etched skeletal surfaces of septa and/or walls. We find that this coefficient of variation (lower values indicate higher regularity) ranges from ~40 to ~90% in azooxanthellate corals and from ~5 to ~15% in symbiotic species. With more than 90% (28 out of 31) of the studied corals conforming to this microstructural criterion, it represents an easy and robust method to discriminate between zooxanthellate and azooxanthellate corals. This microstructural criterion has been applied to the exceptionally preserved skeleton of the Triassic (Norian, ca. 215 Ma) scleractinian Volzeia sp., which contains the first example of regular, fine-scale banding of thickening deposits in a fossil coral

  5. Fishing down the largest coral reef fish species.

    PubMed

    Fenner, Douglas

    2014-07-15

    Studies on remote, uninhabited, near-pristine reefs have revealed surprisingly large populations of large reef fish. Locations such as the northwestern Hawaiian Islands, northern Marianas Islands, Line Islands, U.S. remote Pacific Islands, Cocos-Keeling Atoll and Chagos archipelago have much higher reef fish biomass than islands and reefs near people. Much of the high biomass of most remote reef fish communities lies in the largest species, such as sharks, bumphead parrots, giant trevally, and humphead wrasse. Some, such as sharks and giant trevally, are apex predators, but others such as bumphead parrots and humphead wrasse, are not. At many locations, decreases in large reef fish species have been attributed to fishing. Fishing is well known to remove the largest fish first, and a quantitative measure of vulnerability to fishing indicates that large reef fish species are much more vulnerable to fishing than small fish. The removal of large reef fish by fishing parallels the extinction of terrestrial megafauna by early humans. However large reef fish have great value for various ecological roles and for reef tourism.

  6. Character release following extinction in a Caribbean reef coral species complex.

    PubMed

    Pandolfi, John M; Lovelock, Catherine E; Budd, Ann F

    2002-03-01

    The Pleistocene extinction of the widespread organ-pipe Montastraea coral had measurable morphological and ecological effects on surviving lineages of the Montastraea "annularis" species complex. Extinction of the organ-pipe Montastraea occurred after more than 500,000 years of dominance in the shallow-water reef habitat of Barbados. Extinction resulted in a morphological shift of the columnar Montastraea lineage from thick to thin columns in modern reef environments. Pleistocene colonies of the columnar morphotype sympatric with organ-pipe Montastraea showed greater column widths than those in allopatry. We subjected our data to a number of criteria for interpreting the morphological shift as character release following lifting of competitive pressure after extinction. The morphological differences do not appear to be due either to chance or to physical properties of the marine environment. Differential local extinction and recolonization of four members of the species complex did not occur on Barbados, so that the species coexisted and appear to have coevolved between more than 600,000 and 82,000 years ago. The morphological shift is related to coral growth form and growth rate, and thus reflects the acquisition of a primary resource in corals--light. Character release occurred at the same oceanic Caribbean island (Barbados) where environments have fluctuated with similar variance throughout the period of coexistence. Not only has competition among living members of the Montastraea "annularis" species complex been convincingly demonstrated, but trends in relative abundance among fossil members of the species complex strongly suggest that a competitive hierarchy was operating during their Pleistocene coexistence on Barbados. We also observed an ecological analogue to character release on another Caribbean island. Curaçao. The distribution and abundance of living columnar M. annularis s.s. and massive M. faveolata from the leeward reef crest in Curaçao is greater

  7. Sponge erosion under acidification and warming scenarios: differential impacts on living and dead coral.

    PubMed

    Stubler, Amber D; Furman, Bradley T; Peterson, Bradley J

    2015-11-01

    Ocean acidification will disproportionately impact the growth of calcifying organisms in coral reef ecosystems. Simultaneously, sponge bioerosion rates have been shown to increase as seawater pH decreases. We conducted a 20-week experiment that included a 4-week acclimation period with a high number of replicate tanks and a fully orthogonal design with two levels of temperature (ambient and +1 °C), three levels of pH (8.1, 7.8, and 7.6), and two levels of boring sponge (Cliona varians, present and absent) to account for differences in sponge attachment and carbonate change for both living and dead coral substrate (Porites furcata). Net coral calcification, net dissolution/bioerosion, coral and sponge survival, sponge attachment, and sponge symbiont health were evaluated. Additionally, we used the empirical data from the experiment to develop a stochastic simulation of carbonate change for small coral clusters (i.e., simulated reefs). Our findings suggest differential impacts of temperature, pH and sponge presence for living and dead corals. Net coral calcification (mg CaCO3  cm(-2)  day(-1) ) was significantly reduced in treatments with increased temperature (+1 °C) and when sponges were present; acidification had no significant effect on coral calcification. Net dissolution of dead coral was primarily driven by pH, regardless of sponge presence or seawater temperature. A reevaluation of the current paradigm of coral carbonate change under future acidification and warming scenarios should include ecologically relevant timescales, species interactions, and community organization to more accurately predict ecosystem-level response to future conditions.

  8. Species delimitation in the coral genus Goniopora (Scleractinia, Poritidae) from the Saudi Arabian Red Sea.

    PubMed

    Terraneo, Tullia I; Benzoni, Francesca; Arrigoni, Roberto; Berumen, Michael L

    2016-09-01

    Variable skeletal morphology, genotype induced plasticity, and homoplasy of skeletal structures have presented major challenges for scleractinian coral taxonomy and systematics since the 18th century. Although the recent integration of genetic and micromorphological data is helping to clarify the taxonomic confusion within the order, phylogenetic relationships and species delimitation within most coral genera are still far from settled. In the present study, the species boundaries in the scleractinian coral genus Goniopora were investigated using 199 colonies from the Saudi Arabian Red Sea and sequencing of four molecular markers: the mitochondrial intergenic spacer between CytB and NAD2, the nuclear ribosomal ITS region, and two single-copy nuclear genes (ATPsβ and CalM). DNA sequence data were analyzed using a variety of methods and exploratory species-delimitation tools. The results were broadly congruent in identifying five distinct molecular lineages within the sequenced Goniopora samples: G. somaliensis/G. savignyi, G. djiboutiensis/G. lobata, G. stokesi, G. albiconus/G. tenuidens, and G. minor/G. gracilis. Although the traditional macromorphological characters used to identify these nine morphospecies were not able to discriminate the obtained molecular clades, informative micromorphological and microstructural features (such as the micro-ornamentation and the arrangement of the columella) were recovered among the five lineages. Moreover, unique in vivo morphologies were associated with the genetic-delimited lineages, further supporting the molecular findings. This study represents the first attempt to identify species boundaries within Goniopora using a combined morpho-molecular approach. The obtained data establish a basis for future taxonomic revision of the genus, which should include colonies across its entire geographical distribution in the Indo-Pacific.

  9. Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea.

    PubMed

    Tkachenko, Konstantin S; Soong, Keryea

    2017-06-01

    Dongsha Atoll (also known as the Pratas Islands), the northernmost atoll in the South China Sea, experiences two contrasting physical phenomena: repetitive anomalies of the sea surface temperature exceeding the coral bleaching threshold and regular effects of the world's strongest internal waves resulting in the rhythmic upwelling of cold deep waters at the outer reef slopes of the atoll. This unique combination may result in significant differences in coral species composition and structure between the lagoon and forereef. Surveys conducted in August-September 2016 at 12 study sites in the 2-15 m depth range at Dongsha Atoll revealed a clear spatial separation between 'thermally-susceptible' stony coral genera, including Acropora, Pocillopora and Montipora, which mainly inhabited the forereef, and 'thermally-resistant' genera, including massive Porites, foliaceous Echinopora, Pavona and Turbinaria, which mainly resided in the lagoon. The mean coral cover and species richness on the forereef were respectively 1.8 and 1.4 times higher than those in the lagoon (61.3% and 98 species on the forereef vs. 34.2% and 69 species in the lagoon). Coral mortality rates, expressed as the ratio of dead to live stony corals, showed the same pattern (0.4 in the lagoon vs. 0.009 on the forereef). Furthermore, in a laboratory experiment, 'thermally-susceptible' taxa from the lagoon, (e.g. Pocillopora verrucosa and P. damicornis), exhibited higher resistance to bleaching than did their counterparts from the forereef. The present findings indicate that Dongsha Atoll is a potential thermal refuge for reef-building corals in the northern South China Sea and reveal the development of resilience and resistance to bleaching in coral communities of the lagoon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Point Count Transect Method for Estimates of Biodiversity on Coral Reefs: Improving the Sampling of Rare Species.

    PubMed

    Roberts, T Edward; Bridge, Thomas C; Caley, M Julian; Baird, Andrew H

    2016-01-01

    Understanding patterns in species richness and diversity over environmental gradients (such as altitude and depth) is an enduring component of ecology. As most biological communities feature few common and many rare species, quantifying the presence and abundance of rare species is a crucial requirement for analysis of these patterns. Coral reefs present specific challenges for data collection, with limitations on time and site accessibility making efficiency crucial. Many commonly used methods, such as line intercept transects (LIT), are poorly suited to questions requiring the detection of rare events or species. Here, an alternative method for surveying reef-building corals is presented; the point count transect (PCT). The PCT consists of a count of coral colonies at a series of sample stations, located at regular intervals along a transect. In contrast the LIT records the proportion of each species occurring under a transect tape of a given length. The same site was surveyed using PCT and LIT to compare species richness estimates between the methods. The total number of species increased faster per individual sampled and unit of time invested using PCT. Furthermore, 41 of the 44 additional species recorded by the PCT occurred ≤ 3 times, demonstrating the increased capacity of PCT to detect rare species. PCT provides a more accurate estimate of local-scale species richness than the LIT, and is an efficient alternative method for surveying reef corals to address questions associated with alpha-diversity, and rare or incidental events.

  11. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals

    USGS Publications Warehouse

    Piniak, G.A.

    2007-01-01

    This study used non-invasive pulse-amplitude modulated (PAM) fluorometry to measure the maximum fluorescence yield (Fv/Fm) of two Hawaiian scleractinian coral species exposed to short-term sedimentation stress. Beach sand or harbor mud was applied to coral fragments in a flow-through aquarium system for 0-45 h, and changes in Fv/Fm were measured as a function of sediment type and length of exposure. Corals were monitored for up to 90 h to document recovery after sediment removal. Sediment deposition significantly decreased Fv/Fm in both species and was a function of sediment type and time. Corals that received sediment for 30 h or more had the greatest reduction in yield and exhibited little recovery over the course of the experiment. Harbor mud caused a greater reduction in Porites lobata yield than beach sand, whereas both sediment types had equally deleterious effects on Montipora capitata. Colony morphology and sediment type were important factors in determining yield reduction-P. lobata minimized damage from coarse sand grains by passive sediment rejection or accumulation in depressions in the skeleton, and fluorescence yield decreased most in corals exposed to sticky harbor mud or in colonies with flattened morphologies. Species-specific differences could not be tested due to differences in colony morphology and surface area. ?? 2007.

  12. Effects of two sediment types on the fluorescence yield of two Hawaiian scleractinian corals.

    PubMed

    Piniak, Gregory A

    2007-10-01

    This study used non-invasive pulse-amplitude modulated (PAM) fluorometry to measure the maximum fluorescence yield (F(v)/F(m)) of two Hawaiian scleractinian coral species exposed to short-term sedimentation stress. Beach sand or harbor mud was applied to coral fragments in a flow-through aquarium system for 0-45 h, and changes in F(v)/F(m) were measured as a function of sediment type and length of exposure. Corals were monitored for up to 90 h to document recovery after sediment removal. Sediment deposition significantly decreased F(v)/F(m) in both species and was a function of sediment type and time. Corals that received sediment for 30 h or more had the greatest reduction in yield and exhibited little recovery over the course of the experiment. Harbor mud caused a greater reduction in Porites lobata yield than beach sand, whereas both sediment types had equally deleterious effects on Montipora capitata. Colony morphology and sediment type were important factors in determining yield reduction--P. lobata minimized damage from coarse sand grains by passive sediment rejection or accumulation in depressions in the skeleton, and fluorescence yield decreased most in corals exposed to sticky harbor mud or in colonies with flattened morphologies. Species-specific differences could not be tested due to differences in colony morphology and surface area.

  13. The differentiation of common species in a coral-reef fish assemblage for recreational scuba diving.

    PubMed

    Chen, Tsen-Chien; Ho, Cheng-Tze; Jan, Rong-Quen

    2016-01-01

    Recreational scuba diving is a popular activity of the coral reef tourism industry. In practice, local diving centers recommend interesting sites to help visiting divers make their plans. Fish are among the major attractions, but they need to be listed with care because the temporal occurrence of a fish species is difficult to predict. To address this issue, we propose methods to categorize each fish species based on its long-term occurrence and likelihood of being seen. We assume that there are K categories of occurrence of a fish assemblage and propose two methods [an arithmetic-mean method (AM) and a geometric-mean method (GM)] to define the range of species in each category. Experiments based on long term datasets collected at three underwater stations (each having 51-53 surveys and totals of 262-284 fish species) on coral reefs in southern Taiwan showed that when K = 4 (rare, occasional, frequent and common categories), 11-14 species were concurrently assigned to the common category by AM for data sets based on surveys 10, 15, 20, 25, 30, 35, 40, 45, or 51-53 in contrast to the 18-26 species assigned as common by GM. If a similarity index of 0.7 (compared to the total pool of fish species) was the minimum threshold for diver satisfaction, then 20-25 surveys provide sufficient data for listing the common species at a given dive spot. Common fish species, are the most temporally stable, and thus are more appropriate for attracting divers. These can be effectively differentiated by either AM or GM with at least 25 surveys. We suggest regular updating of each fish's category through periodic surveys to assure the accuracy of information at a particular dive spot.

  14. First Identification of Palytoxin-Like Molecules in the Atlantic Coral Species Palythoa canariensis.

    PubMed

    Fraga, María; Vilariño, Natalia; Louzao, M Carmen; Molina, Lucía; López, Yanira; Poli, Mark; Botana, Luis M

    2017-07-18

    Palytoxin (PLTX) is a complex marine toxin produced by Zoanthids (Palyhtoa), dinoflagellates (Ostreopsis), and cyanobacteria (Trichodesmium). Contact with PLTX-like compounds present in aerosols or marine organisms has been associated with adverse effects on humans. The worldwide distribution of producer species and seafood contaminated with PLTX-like molecules illustrates the global threat to human health. The identification of species capable of palytoxin production is critical for human safety. We studied the presence of PLTX analogues in Palythoa canariensis, a coral species collected in the Atlantic Ocean never described as a PLTX-producer before. Two methodologies were used for the detection of these toxins: a microsphere-based immunoassay that offered an estimation of the content of PLTX-like molecules in a Palythoa canariensis extract and an ultrahigh-pressure liquid chromatography coupled to an ion trap with a time-of-flight mass spectrometer (UPLC-IT-TOF-MS) that allowed the characterization of the toxin profile. The results demonstrated the presence of PLTX, hydroxy-PLTX and, at least, two additional compounds with PLTX-like profile in the Palythoa canariensis sample. The PLTX content was estimated in 0.27 mg/g of lyophilized coral using UPLC-IT-TOF-MS. Therefore, this work demonstrates that Palythoa canariensis produces a mixture of PLTX-like molecules. This is of special relevance to safeguard human health considering Palythoa species are commonly used for decoration by aquarium hobbyists.

  15. Light availability determines susceptibility of reef building corals to ocean acidification

    NASA Astrophysics Data System (ADS)

    Suggett, D. J.; Dong, L. F.; Lawson, T.; Lawrenz, E.; Torres, L.; Smith, D. J.

    2013-06-01

    Elevated seawater pCO2, and in turn ocean acidification (OA), is now widely acknowledged to reduce calcification and growth of reef building corals. As with other environmental factors (e.g., temperature and nutrients), light availability fundamentally regulates calcification and is predicted to change for future reef environments alongside elevated pCO2 via altered physical processes (e.g., sea level rise and turbidity); however, any potential role of light in regulating the OA-induced reduction of calcification is still unknown. We employed a multifactorial growth experiment to determine how light intensity and pCO2 together modify calcification for model coral species from two key genera, Acropora horrida and Porites cylindrica, occupying similar ecological niches but with different physiologies. We show that elevated pCO2 (OA)-induced losses of calcification in the light ( G L) but not darkness ( G D) were greatest under low-light growth conditions, in particular for A. horrida. High-light growth conditions therefore dampened the impact of OA upon G L but not G D. Gross photosynthesis ( P G) responded in a reciprocal manner to G L suggesting OA-relieved pCO2 limitation of P G under high-light growth conditions to effectively enhance G L. A multivariate analysis of past OA experiments was used to evaluate whether our test species responses were more widely applicable across their respective genera. Indeed, the light intensity for growth was identified as a significant factor influencing the OA-induced decline of calcification for species of Acropora but not Porites. Whereas low-light conditions can provide a refuge for hard corals from thermal and light stress, our study suggests that lower light availability will potentially increase the susceptibility of key coral species to OA.

  16. Leucothoe eltoni sp. n., a new species of commensal leucothoid amphipod from coral reefs in Raja Ampat, Indonesia (Crustacea, Amphipoda).

    PubMed

    Thomas, James Darwin

    2015-01-01

    A new species of leucothoid amphipod, Leucothoe eltoni sp. n., is described from coral reefs in Raja Ampat, Indonesia where it inhabits the branchial chambers of solitary tunicates. With an inflated first gnathopod superficially resembling the genus Paraleucothoe, this new species has a two-articulate maxilla 1 palp characteristic of the genus Leucothoe. While described from coral reef environments in tropical Indonesia and the Philippines, it is an established invasive species in the Hawaiian Islands. The most likely mode of introduction was a US Navy dry dock transported to Pearl Harbor in 1992 from Subic Bay, Philippines.

  17. Leucothoe eltoni sp. n., a new species of commensal leucothoid amphipod from coral reefs in Raja Ampat, Indonesia (Crustacea, Amphipoda)

    PubMed Central

    Thomas, James Darwin

    2015-01-01

    Abstract A new species of leucothoid amphipod, Leucothoe eltoni sp. n., is described from coral reefs in Raja Ampat, Indonesia where it inhabits the branchial chambers of solitary tunicates. With an inflated first gnathopod superficially resembling the genus Paraleucothoe, this new species has a two-articulate maxilla 1 palp characteristic of the genus Leucothoe. While described from coral reef environments in tropical Indonesia and the Philippines, it is an established invasive species in the Hawaiian Islands. The most likely mode of introduction was a US Navy dry dock transported to Pearl Harbor in 1992 from Subic Bay, Philippines. PMID:26448700

  18. Linking sewage pollution and water quality to spatial patterns of Porites lobata growth anomalies in Puako, Hawaii.

    PubMed

    Yoshioka, Reyn M; Kim, Catherine J S; Tracy, Allison M; Most, Rebecca; Harvell, C Drew

    2016-03-15

    Sewage pollution threatens the health of coastal populations and ecosystems, including coral reefs. We investigated spatial patterns of sewage pollution in Puako, Hawaii using enterococci concentrations and δ(15)N Ulva fasciata macroalgal bioassays to assess relationships with the coral disease Porites lobata growth anomalies (PGAs). PGA severity and enterococci concentrations were high, spatially variable, and positively related. Bioassay algal δ(15)N showed low sewage pollution at the reef edge while high values of resident algae indicated sewage pollution nearshore. Neither δ(15)N metric predicted PGA measures, though bioassay δ(15)N was negatively related to coral cover. Furthermore, PGA prevalence was much higher than previously recorded in Hawaii and the greater Indo-Pacific, highlighting Puako as an area of concern. Although further work is needed to resolve the relationship between sewage pollution and coral cover and disease, these results implicate sewage pollution as a contributor to diminished reef health.

  19. Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes

    PubMed Central

    Pittman, Simon J.; Brown, Kerry A.

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5–300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided ‘outstanding’ model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided ‘outstanding’ model predictions for two of five species, with the remaining three models considered ‘excellent’ (AUC = 0.8–0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support

  20. Multi-scale approach for predicting fish species distributions across coral reef seascapes.

    PubMed

    Pittman, Simon J; Brown, Kerry A

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation

  1. Coral choreography

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Viewers clicking onto the Waikiki Aquarium's “Coral Research Cam” any time during daylight hours in Hawaii can catch the latest action of three species of living corals (Acropora sp., Acropora elseyi,and Montipora digitata) and the yellow tang and blue tang fish swimming amongst them in an outdoor aquarium.Waikiki Aquarium Director Bruce Carlson says the camera is part of a new exhibit, “Corals Are Alive!,” which encourages people to view living corals close-up at the aquarium or via the Internet, in order to gain a better appreciation of the corals. “Hopefully through education and awareness, people will be more interested and willing to help with conservation efforts to preserve coral reefs,” says Carlson.

  2. Coral reef habitats as surrogates of species, ecological functions, and ecosystem services.

    PubMed

    Mumby, Peter J; Broad, Kenneth; Brumbaugh, Daniel R; Dahlgren, Craig P; Harborne, Alastair R; Hastings, Alan; Holmes, Katherine E; Kappel, Carrie V; Micheli, Fiorenza; Sanchirico, James N

    2008-08-01

    Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one-quarter to one-third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea-dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity-based approach to reserve design. In contrast, the representation

  3. Sexual systems in scleractinian corals: an unusual pattern in the reef-building species Diploastrea heliopora

    NASA Astrophysics Data System (ADS)

    Guest, J. R.; Baird, A. H.; Goh, B. P. L.; Chou, L. M.

    2012-09-01

    The sexual system in corals refers to the spatial and temporal pattern of sexual function within an individual coral polyp, colony or population. Although information on sexual systems now exists for over 400 scleractinian species, data are still lacking for some important reef-building taxa. The vast majority of scleractinians are either simultaneous hermaphrodites or gonochoric with other sexual systems rarely occurring. Diploastrea heliopora is one of the most ubiquitous and easily recognised reef-building species in the Indo-West Pacific; however, surprisingly little is known about its reproductive biology. The aim of the present study was to examine the reproductive biology of D. heliopora colonies on chronically impacted, equatorial reefs south of Singapore. Here we show that in Singapore, D. heliopora is a broadcast spawner with predominantly gonochoric polyps. Colonies, however, contained male, female and a low proportion of cosexual polyps during the 14-month sampling period. The most plausible explanation for this is that polyps switch sexes with oogenic and spermatogenic cycles occasionally overlapping. This leads to colony level alternation of sex function within and between breeding seasons. While this sexual system is atypical for scleractinians, it supports molecular evidence that D. heliopora is phylogenetically distinct from species formerly in the family Faviidae.

  4. The corallivorous flatworm Amakusaplana acroporae: an invasive species threat to coral reefs?

    NASA Astrophysics Data System (ADS)

    Hume, Benjamin C. C.; D'Angelo, Cecilia; Cunnington, Anna; Smith, Edward G.; Wiedenmann, Jörg

    2014-03-01

    Fatal infestations of land-based Acropora cultures with so-called Acropora- eating flatworms (AEFWs) are a global phenomenon. We evaluate the hypothesis that AEFWs represent a risk to coral reefs by studying the biology and the invasive potential of an AEFW strain from the UK. Molecular analyses identified this strain as Amakusaplana acroporae, a new species described from two US aquaria and one natural location in Australia. Our molecular data together with life history strategies described here suggest that this species accounts for most reported cases of AEFW infestations. We show that local parasitic activity impairs the light-acclimation capacity of the whole host colony. A. acroporae acquires excellent camouflage by harbouring photosynthetically competent, host-derived zooxanthellae and pigments of the green-fluorescent protein family. It shows a preference for Acropora valida but accepts a broad host range. Parasite survival in isolation (5-7 d) potentially allows for an invasion when introduced as non-native species in coral reefs.

  5. [Effect of herbivorous and corallivorous fishes on the survival of transplanted corals in the Colombian Caribbean].

    PubMed

    Chasqui-Velasco, Luis; Alvarado Ch, Elvira; Acero, Arturo; Zapata, Fernando A

    2007-01-01

    To examine the effects of herbivorous and corallivorous fishes on the survival of transplanted colonies of Montastraea annularis, Diploria labyrinthiformis and Porites astreoides, both transplanted and native colonies were full-cage enclosed and compared to open (uncaged) colonies, while caging effects were assessed with a partial-cage (roof treatment). To evaluate if transplant stress increased the corals availability to fish predation, comparisons of fish foraging intensity among transplanted versus native colonies were made. To determine the density of herbivorous and corallivorous fishes on the transplants area visual censuses were made. The transient herbivorous fishes (Scaridae and Acanthuridae) were the most abundant fishes, and the corallivorous fishes (mainly Chaetodontidae) were the scarcest. A negative effect of territorial herbivorous fishes on M annularis transplants survival was observed, mainly early on the study. Fish foraging intensity was similar on transplanted and native colonies, but differed among coral species, being lowest on D. labyrinthiformis. Fast macroalgal growth inside full-cages due to reduced fish grazing was observed. This caused partial bleaching and partial mortality in some colonies, mainly of P. astreoides. No significant difference in healthy tissue percentages among full-cage and uncaged colonies on M. annularis and D. labyrinthiformis was found, while in P. astreoides there were evilent differences. The results indicate a damselfish negative effect on transplants survival early on the study, which can change depending on the fish and coral species involved. Results also indicate a fish grazing positive effect, caused by the reduction of coral-algae competition pressure, mainly on P. astreoides. Parrotfishes seem to affect corals survival both negatively through direct biting, and positively by controlling algal growth. Overall, coral transplant success was almost unaffected by fish foraging activity although several

  6. Tissue mortality by Caribbean ciliate infection and white band disease in three reef-building coral species

    PubMed Central

    Bastidas, Carolina; Croquer, Aldo

    2016-01-01

    Caribbean ciliate infection (CCI) and white band disease (WBD) are diseases that affect a multitude of coral hosts and are associated with rapid rates of tissue losses, thus contributing to declining coral cover in Caribbean reefs. In this study we compared tissue mortality rates associated to CCI in three species of corals with different growth forms: Orbicella faveolata (massive-boulder), O. annularis (massive-columnar) and Acropora cervicornis (branching). We also compared mortality rates in colonies of A. cervicornis bearing WBD and CCI. The study was conducted at two locations in Los Roques Archipelago National Park between April 2012 and March 2013. In A. cervicornis, the rate of tissue loss was similar between WBD (0.8 ± 1 mm/day, mean ± SD) and CCI (0.7 ± 0.9 mm/day). However, mortality rate by CCI in A. cervicornis was faster than in the massive species O. faveolata (0.5 ± 0.6 mm/day) and O. annularis (0.3 ± 0.3 mm/day). Tissue regeneration was at least fifteen times slower than the mortality rates for both diseases regardless of coral species. This is the first study providing coral tissue mortality and regeneration rates associated to CCI in colonies with massive morphologies, and it highlights the risks of further cover losses of the three most important reef-building species in the Caribbean. PMID:27547525

  7. Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Gori, Andrea; Grover, Renaud; Orejas, Covadonga; Sikorski, Séverine; Ferrier-Pagès, Christine

    2014-01-01

    Dissolved organic matter, which contains many compounds such as lipids, sugars and amino acids, is an important source of carbon and nitrogen for several symbiotic and asymbiotic tropical coral species. However, there is still no information on its possible uptake by cold-water coral species. In this study, we demonstrated that dissolved organic matter, in the form of dissolved free amino acids (DFAA), is actively absorbed by four cold-water coral species from the Mediterranean Sea. Although the uptake rates observed with 3 μM DFAA concentration were one order of magnitude lower than those observed in tropical species, they corresponded to 12-50% of the daily excreted-nitrogen, and 16-89% of the daily respired-carbon of the cold-water corals. Consequently, DFAA, even at in situ concentrations lower than those tested in this study, can supply a significant amount of carbon and nitrogen to the corals, especially during periods when particulate food is scarce.

  8. Tissue mortality by Caribbean ciliate infection and white band disease in three reef-building coral species.

    PubMed

    Verde, Alejandra; Bastidas, Carolina; Croquer, Aldo

    2016-01-01

    Caribbean ciliate infection (CCI) and white band disease (WBD) are diseases that affect a multitude of coral hosts and are associated with rapid rates of tissue losses, thus contributing to declining coral cover in Caribbean reefs. In this study we compared tissue mortality rates associated to CCI in three species of corals with different growth forms: Orbicella faveolata (massive-boulder), O. annularis (massive-columnar) and Acropora cervicornis (branching). We also compared mortality rates in colonies of A. cervicornis bearing WBD and CCI. The study was conducted at two locations in Los Roques Archipelago National Park between April 2012 and March 2013. In A. cervicornis, the rate of tissue loss was similar between WBD (0.8 ± 1 mm/day, mean ± SD) and CCI (0.7 ± 0.9 mm/day). However, mortality rate by CCI in A. cervicornis was faster than in the massive species O. faveolata (0.5 ± 0.6 mm/day) and O. annularis (0.3 ± 0.3 mm/day). Tissue regeneration was at least fifteen times slower than the mortality rates for both diseases regardless of coral species. This is the first study providing coral tissue mortality and regeneration rates associated to CCI in colonies with massive morphologies, and it highlights the risks of further cover losses of the three most important reef-building species in the Caribbean.

  9. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals

    PubMed Central

    Sneed, Jennifer M.; Sharp, Koty H.; Ritchie, Kimberly B.; Paul, Valerie J.

    2014-01-01

    Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species. PMID:24850918

  10. Gross and microscopic pathology of hard and soft corals in New Caledonia.

    PubMed

    Work, Thierry M; Aeby, Greta S; Lasne, Gregory; Tribollet, Aline

    2014-07-01

    We surveyed the reefs of Grande Terre, New Caledonia, for coral diseases in 2010 and 2013. Lesions encountered in hard and soft corals were systematically described at the gross and microscopic level. We sampled paired and normal tissues from 101 and 65 colonies in 2010 and 2013, respectively, comprising 51 species of corals from 27 genera. Tissue loss was the most common gross lesion sampled (40%) followed by discoloration (28%), growth anomalies (13%), bleaching (10%), and flatworm infestation (1%). When grouped by gross lesions, the diversity of microscopic lesions as measured by Shannon-Wiener index was highest for tissue loss, followed by discoloration, bleaching, and growth anomaly. Our findings document an extension of the range of certain diseases such as Porites trematodiasis and endolithic hypermycosis (dark spots) to the Western Pacific as well as the presence of a putative cnidarian endosymbiont. We also expand the range of species infected by cell-associated microbial aggregates, and confirm the trend that these aggregates predominate in dominant genera of corals in the Indo-Pacific. This study highlights the importance of including histopathology as an integral component of baseline coral disease surveys, because a given gross lesion might be associated with multiple potential causative agents.

  11. Gross and microscopic pathology of hard and soft corals in New Caledonia

    USGS Publications Warehouse

    Work, Thierry M.; Aeby, Greta S.; Lasne, Gregory; Tribollet, Aline

    2014-01-01

    We surveyed the reefs of Grande Terre, New Caledonia, for coral diseases in 2010 and 2013. Lesions encountered in hard and soft corals were systematically described at the gross and microscopic level. We sampled paired and normal tissues from 101 and 65 colonies in 2010 and 2013, respectively, comprising 51 species of corals from 27 genera. Tissue loss was the most common gross lesion sampled (40%) followed by discoloration (28%), growth anomalies (13%), bleaching (10%), and flatworm infestation (1%). When grouped by gross lesions, the diversity of microscopic lesions as measured by Shannon–Wiener index was highest for tissue loss, followed by discoloration, bleaching, and growth anomaly. Our findings document an extension of the range of certain diseases such as Porites trematodiasis and endolithic hypermycosis (dark spots) to the Western Pacific as well as the presence of a putative cnidarian endosymbiont. We also expand the range of species infected by cell-associated microbial aggregates, and confirm the trend that these aggregates predominate in dominant genera of corals in the Indo-Pacific. This study highlights the importance of including histopathology as an integral component of baseline coral disease surveys, because a given gross lesion might be associated with multiple potential causative agents.

  12. [Community structure of zooxanthellate corals (Anthozoa: Scleractinia) in Carrizales coral reef, Pacific coast, Mexico].

    PubMed

    Reyes-Bonilla, Hector; Escobosa-González, Laura Elena; Cupul-Magaña, Amilcar L; Medina-Rosas, Pedro; Calderón-Aguilera, Luis E

    2013-06-01

    Coral reefs in the Mexican Pacific and notably those of the continental coastline of Colima state are still poorly studied. Fortunately, recent efforts have been carried out by researchers from different Mexican institutions to fill up these information gaps. The aim of this study was to determine the ecological structure of the rich and undisturbed coral building communities of Carrizales by using the point transect interception method (25m-long). For this, three survey expeditions were conducted between June and October 2005 and September 2006; and for comparison purposes, the reef was subdivided according to its position in the bay, and depth (0 to 5 m, and 6 to 10 m). Thirteen coral species were observed in the area, with Pocillopora verrucosa as the most abundant, contributing up to 32.8% of total cover, followed by Porites panamensis and Pocillopora capitata with 11% and 7%, respectively. Other species, Pocillopora damicornis, Pavona gigantea, Pocillopora eydouxi and Pocillopora inflata accounted for 1.5% to 2% of coral cover whereas the remaining five species had cover of less than 1%. Seven of the observed species represented new records for Colima state coastline: Pocillopora eydouxi, P inflata, P meandrina, Pavona duerdeni, P varians, Psammocora stellata and P contigua. This last species is a relevant record, because it has never been observed before in the Eastern Pacific. Although there was no significant difference (ANOVA, p = 0.478) neither in the abundance between the sides of the bay, nor between the depths considered, and the shallow zone observed the higher coral cover. Live coral cover was up to 61%, one of the highest ever reported for the Mexican Pacific, including the Gulf of California. The observed values of diversity (H' = 0.44 +/- 0.02), uniformity (J' = 0.76 +/- 0.02), and taxonomic distinctness index (delta* = 45.87 +/- 3.16), showed that currently this is the most important coral reef of Colima coastline. Currently, this region does not

  13. Mortality, recovery, and community shifts of scleractinian corals in Puerto Rico one decade after the 2005 regional bleaching event

    PubMed Central

    Amirrezvani, Ali

    2017-01-01

    This work analyzes the mortality, recovery, and shifts in the composition of scleractinian corals from Puerto Rico one decade after the 2005 regional coral bleaching event. Temporal and spatial patterns of coral community structure were examined using a stratified, non-random sampling approach based on five permanent transects per reef at 16 reef stations. A negative correlation between percent coral cover loss and light attenuation coefficient (Kd490) was observed, suggesting that light attenuation, as influenced by water turbidity and depth, played a major role in coral protection during the bleaching event (“sunblock effect”). Responses of coral assemblages varied after the bleaching event, including shifts of cover from massive corals (Orbicella spp.) to opportunistic (Porites astreoides) and branching corals (Madracis auretenra, P. porites) and/or turf algae; partial recovery of reef substrate cover by O. annularis complex; and no measurable changes in coral assemblages before and after the event. PMID:28761791

  14. Diversity and Distribution of Symbiodinium Associated with Seven Common Coral Species in the Chagos Archipelago, Central Indian Ocean

    PubMed Central

    Obura, David; Sheppard, Charles R. C.; Visram, Shakil; Chen, Chaolun Allen

    2012-01-01

    The Chagos Archipelago designated as a no-take marine protected area in 2010, lying about 500 km south of the Maldives in the Indian Ocean, has a high conservation priority, particularly because of its fast recovery from the ocean-wide massive coral mortality following the 1998 coral bleaching event. The aims of this study were to examine Symbiodinium diversity and distribution associated with scleractinian corals in five atolls of the Chagos Archipelago, spread over 10,000 km 2. Symbiodinium clade diversity in 262 samples of seven common coral species, Acropora muricata, Isopora palifera, Pocillopora damicornis, P. verrucosa, P. eydouxi, Seriatopora hystrix, and Stylophora pistillata were determined using PCR-SSCP of the ribosomal internal transcribed spacer 1 (ITS1), PCR-DDGE of ITS2, and phylogenetic analyses. The results indicated that Symbiodinium in clade C were the dominant symbiont group in the seven coral species. Our analysis revealed types of Symbiodinium clade C specific to coral species. Types C1 and C3 (with C3z and C3i variants) were dominant in Acroporidae and C1 and C1c were the dominant types in Pocilloporidae. We also found 2 novel ITS2 types in S. hystrix and 1 novel ITS2 type of Symbiodinium in A. muricata. Some colonies of A. muricata and I. palifera were also associated with Symbiodinium A1. These results suggest that corals in the Chagos Archipelago host different assemblages of Symbiodinium types then their conspecifics from other locations in the Indian Ocean; and that future research will show whether these patterns in Symbiodinium genotypes may be due to local adaptation to specific conditions in the Chagos. PMID:22567113

  15. The link between immunity and life history traits in scleractinian corals.

    PubMed

    Pinzón C, Jorge H; Dornberger, Lindsey; Beach-Letendre, Joshuah; Weil, Ernesto; Mydlarz, Laura D

    2014-01-01

    Immunity is an important biological trait that influences the survival of individuals and the fitness of a species. Immune defenses are costly and likely compete for energy with other life-history traits, such as reproduction and growth, affecting the overall fitness of a species. Competition among these traits in scleractinian corals could influence the dynamics and structural integrity of coral reef communities. Due to variability in biological traits within populations and across species, it is likely that coral colonies within population/species adjust their immune system to the available resources. In corals, the innate immune system is composed of various pathways. The immune system components can be assessed in the absence (constitutive levels) and/or presence of stressors/pathogens (immune response). Comparisons of the constitutive levels of three immune pathways (melanin synthesis, antioxidant and antimicrobial) of closely related species of Scleractinian corals allowed to determine the link between immunity and reproduction and colony growth. First, we explored differences in constitutive immunity among closely related coral species of the genus Meandrina with different reproductive patterns (gonochoric vs. hermaphrodite). We then compared fast-growing branching vs. slow-growing massive Porites to test co-variation between constitutive immunity and growth rates and morphology in corals. Results indicate that there seems to be a relationship between constitutive immunity and sexual pattern with gonochoric species showing significantly higher levels of immunity than hermaphrodites. Therefore, gonochoric species maybe better suited to resist infections and overcome stressors. Constitutive immunity varied in relation with growth rates and colony morphology, but each species showed contrasting trends within the studied immune pathways. Fast-growing branching species appear to invest more in relatively low cost pathways of the immune system than slow

  16. Echinophyllia tarae sp. n. (Cnidaria, Anthozoa, Scleractinia), a new reef coral species from the Gambier Islands, French Polynesia

    PubMed Central

    Benzoni, Francesca

    2013-01-01

    Abstract A new shallow water scleractinian coral species, Echinophyllia tarae sp. n., is described from the Gambier Islands, French Polynesia. It is characterized by an encrusting corallum, a few large and highly variable corallites with protruding walls, and distinctive costosepta. This coral was observed in muddy environments where several colonies showed partial mortality and re-growth. The new species has morphological affinities with both Echinophyllia echinata and with Echinomorpha nishihirai, from which it can be distinguished on the basis of the diameter and the protrusion of the largest corallite, the thickness of the septa, and the development of the size of the crown of paliform lobes. PMID:23950677

  17. Echinophyllia tarae sp. n. (Cnidaria, Anthozoa, Scleractinia), a new reef coral species from the Gambier Islands, French Polynesia.

    PubMed

    Benzoni, Francesca

    2013-01-01

    A new shallow water scleractinian coral species, Echinophyllia tarae sp. n., is described from the Gambier Islands, French Polynesia. It is characterized by an encrusting corallum, a few large and highly variable corallites with protruding walls, and distinctive costosepta. This coral was observed in muddy environments where several colonies showed partial mortality and re-growth. The new species has morphological affinities with both Echinophyllia echinata and with Echinomorpha nishihirai, from which it can be distinguished on the basis of the diameter and the protrusion of the largest corallite, the thickness of the septa, and the development of the size of the crown of paliform lobes.

  18. Assessing hidden species diversity in the coral Pocillopora damicornis from Eastern Australia

    NASA Astrophysics Data System (ADS)

    Schmidt-Roach, S.; Lundgren, P.; Miller, K. J.; Gerlach, G.; Noreen, A. M. E.; Andreakis, N.

    2013-03-01

    The incredible range of morphological plasticity present in scleractinian corals has confused the taxonomy of the group, prompting the introduction of "ecomorphs" to explain the observed correlation between local environmental conditions and phenotypic variation. Pocillopora damicornis (Linnaeus, 1758) represents one of the best known examples of eco-phenotypic variation in scleractinian corals with a variety of forms and reproductive strategies reported across its global distribution range. Here, we reconstruct genealogical relationships of P. damicornis colonies collected from thirteen locations along the East Australian coast to examine the relationship between genetic and phenotypic diversity in this species. Haplotype networks computed from two mitochondrial DNA regions (CR, ORF) indicate that the range of morphotypes observed within this taxon fall into at least five genetically distinct mitochondrial lineages. Nuclear (HSP70, ITS2) haplowebs on the other hand recover sharp genetic discontinuities among three of the morphological groups. We conclude that P. damicornis from Eastern Australia constitutes a cryptic species complex. The misinterpretation of taxonomical units within P. damicornis may well explain its perceived variation in the ecology, biology and life history across its range.

  19. A new species of monadal coral snake of the genus Micrurus (Serpentes, Elapidae) from western Amazon.

    PubMed

    Feitosa, Darlan Tavares; Da Silva, Nelson Jorge Jr; Pires, Matheus Godoy; Zaher, Hussam; Prudente, Ana Lúcia Da Costa

    2015-06-24

    We described a new species of monadal coral snake of the genus Micrurus from the region of Tabatinga and Leticia, along the boundaries of Brazil, Colombia, and Peru. The new species can be distinguished from the other congeners by the combination of the following characters: absence of a pale nuchal collar; black cephalic-cap extending from rostral to firstdorsal scale and enclosing white tipped prefrontal scales; upper half of first to four supralabials and postoculars black; tricolor body coloration, with 27-31 black rings bordered by narrower white rings and 27-31 red rings; tail coloration similar to body, with alternating black rings bordered by irregular narrow white rings, red rings of the same width as the black rings; ventral scales 205-225; subcaudal scales 39-47.

  20. Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution

    PubMed Central

    Keith, S. A.; Baird, A. H.; Hughes, T. P.; Madin, J. S.; Connolly, S. R.

    2013-01-01

    Species richness gradients are ubiquitous in nature, but the mechanisms that generate and maintain these patterns at macroecological scales remain unresolved. We use a new approach that focuses on overlapping geographical ranges of species to reveal that Indo-Pacific corals are assembled within 11 distinct faunal provinces. Province limits are characterized by co-occurrence of multiple species range boundaries. Unexpectedly, these faunal breaks are poorly predicted by contemporary environmental conditions and the present-day distribution of habitat. Instead, faunal breaks show striking concordance with geological features (tectonic plates and mantle plume tracks). The depth range over which a species occurs, its larval development rate and genus age are important determinants of the likelihood that species will straddle faunal breaks. Our findings indicate that historical processes, habitat heterogeneity and species colonization ability account for more of the present-day biogeographical patterns of corals than explanations based on the contemporary distribution of reefs or environmental conditions. PMID:23698011

  1. Linking fish species traits to environmental conditions in the Jakarta Bay-Pulau Seribu coral reef system.

    PubMed

    Cleary, Daniel F R

    2017-09-15

    Coral reefs around the globe have been subjected to a wide range of stressors. In the present study, fish species were recorded across a pronounced in-to-offshore gradient in the Jakarta Bay-Pulau Seribu reef system. In addition to this, fish species traits were obtained from FishBase. RLQ analysis revealed a significant association between fish species traits and environmental variables. Fish species associated with perturbed, inshore waters were resilient to disturbance, had higher mortality rates, higher growth rates and mainly consumed animals. In contrast, fish species associated with less perturbed, mid- and offshore waters had greater life expectancy, higher age at maturity, greater life span, greater generation time and mainly fed on plants or plants and animals. Eutrophication, pollution and physical destruction of coral substrate in inshore waters has thus selected for a low biomass and depauperate fish community characterised by fast growing and short lived species. Copyright © 2017. Published by Elsevier Ltd.

  2. Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution.

    PubMed

    Keith, S A; Baird, A H; Hughes, T P; Madin, J S; Connolly, S R

    2013-07-22

    Species richness gradients are ubiquitous in nature, but the mechanisms that generate and maintain these patterns at macroecological scales remain unresolved. We use a new approach that focuses on overlapping geographical ranges of species to reveal that Indo-Pacific corals are assembled within 11 distinct faunal provinces. Province limits are characterized by co-occurrence of multiple species range boundaries. Unexpectedly, these faunal breaks are poorly predicted by contemporary environmental conditions and the present-day distribution of habitat. Instead, faunal breaks show striking concordance with geological features (tectonic plates and mantle plume tracks). The depth range over which a species occurs, its larval development rate and genus age are important determinants of the likelihood that species will straddle faunal breaks. Our findings indicate that historical processes, habitat heterogeneity and species colonization ability account for more of the present-day biogeographical patterns of corals than explanations based on the contemporary distribution of reefs or environmental conditions.

  3. Multi-species coral Sr/Ca based sea-surface temperature reconstruction data using Orbicella faveolata and Siderastrea siderea from Dry Tortugas National Park, Florida

    USGS Publications Warehouse

    Flannery, Jennifer A.; Richey, Julie N.; Thirumalai, Kaustubh; Poore, Richard Z.; Delong, Kristine

    2016-01-01

    New sub annual and mean annual Sr/Ca records from two species of massive coral, Orbicella faveolata (coral B3) and Siderastrea siderea (coral CG2), from the Dry Tortugas National Park, FL (DRTO). Both corals have well-constrained chronologies, with coral B3 ranging from 1893-2008 and coral CG2 ranging from 1837-2012. We combine these new records with published Sr/Ca data from three additional S. siderea coral colonies (DeLong et al., 2014) to generate a 278-year-long multi-species composite Sr/Ca-SST record from DRTO. This new record from a region sensitive to the Atlantic Multidecadal Oscillation (AMO) and Atlantic Meridional Overturning Circulation (AMOC) variations provides insight into the link between the two systems. Also included are new annual linear extension rates for each species. The coral samples and derived data were collected under the National Park Service Scientific Research and Collecting permits DRTO-2008-SCI-0015 and DRT0-2012-SCI-0001; accession numbers DRTO-241 and DRTO-353. For further information regarding data collection and/or processing methods refer to Flannery, J. A., J. N. Richey, K. Thirumalai, R. Z. Poore, and K. L. DeLong, 2016, Multi-species coral Sr/Ca based sea-surface temperature reconstruction using Orbicella faveolata and Siderastrea siderea from the Florida Straits, Palaeogeography, Palaeoclimatology, Palaeoecology, ISSN 0031-0182, http://dx.doi.org/10.1016/j.palaeo.2016.10.022.

  4. Plasticity of larval pre-competency in response to temperature: observations on multiple broadcast spawning coral species

    NASA Astrophysics Data System (ADS)

    Heyward, A. J.; Negri, A. P.

    2010-09-01

    The pre-competency period of coral larvae influences dispersal, and this may be affected under projected climate change conditions. In this laboratory study, we examined the influence of sea water temperature on the duration of pre-competency of larvae of four broadcast spawning coral species. Fungia repanda, Acropora millepora, A. spathulata and Symphyllia recta larvae demonstrated large differences in cohort competency levels when cultured over a 4°C range during the first 4 days post fertilisation. Warmer temperatures reduced pre-competency periods by at least a day for all species, but there were also indications of an upper temperature threshold of less than 32°C for the development of F. repanda, A. millepora and S. recta. These data suggest a general flexibility in ontogenic response to ambient water temperatures. Sea surface temperatures (SST) that differ at spawning time by as little as 2°C, due to inter-annual or latitudinal variation, are likely to alter coral larval dispersal ranges. In some locations, notably the central Indo-Pacific, where major coral spawning activity can coincide with seasonal SST maxima, a future 2°C increase due to climate change may have serious negative effects on coral development and distribution.

  5. Negative indirect effects of neighbors on imperiled scleractinian corals

    NASA Astrophysics Data System (ADS)

    Johnston, Lyza; Miller, M. W.

    2014-12-01

    Predation pressure on an individual may be influenced by spatial associations with other organisms. In the case of rare and imperiled species, such indirect interactions may affect the persistence and recovery of local populations. This study examined the effects of coral neighborhood composition on the foraging behavior and impact of the corallivorous gastropod, Coralliophila abbreviata. We conducted a manipulative field experiment in which focal colonies of the threatened scleractinian coral Acropora cervicornis had no neighbors, conspecific neighbors, alternative prey ( Orbicella faveolata) neighbors, or non-prey ( Porites asteroides) neighbors. Individually tagged C. abbreviata were then seeded into the study area and allowed to colonize the experimental plots. Initial colonization was significantly affected by the species of neighboring corals and snail abundance after colonization was negatively correlated with focal colony growth. Snails exhibited a strong prey preference for A. cervicornis over O. faveolata and responded numerically to neighborhood quality (i.e., relative preference for neighboring corals). Thus, conspecific neighbors had the greatest predator-mediated negative effect on focal colony performance followed by O. faveolata neighbors. The results suggest that C. abbreviata mediate apparent competition between O. faveolata and A. cervicornis as both species contributed to the local abundance of their shared predator. Additionally, home range estimates for tagged C. abbreviata were calculated, compared among sexes, and found to be significantly greater for males than for females. Overall, this study sheds light on the foraging behavior of an important coral predator and highlights the potential importance