Science.gov

Sample records for porous composite materials

  1. DEVELOPMENT OF A POROUS METALLIC COMPOSITE MATERIAL

    DTIC Science & Technology

    POROUS METALS, ALUMINUM COMPOUNDS, BONDING, CLAY, COATINGS, COMPOSITE MATERIALS, COPPER, DEPOSITS, ELECTROCHEMISTRY, ELECTROPLATING, EXPANDED...PLASTICS, GLASS, GRAPHITE, METALS, NICKEL, OXIDES, PAINTS, PLASTICS, PLATING, POLYMERS, POROUS MATERIALS, SILVER, SPHERES, STYRENES, UREIDES, VACUUM APPARATUS, VAPOR PLATING.

  2. Magnetic porous composite material: Synthesis and properties

    NASA Astrophysics Data System (ADS)

    Peretyat'ko, P. I.; Kulikov, L. A.; Melikhov, I. V.; Perfil'ev, Yu. D.; Pal', A. F.; Timofeev, M. A.; Gudoshnikov, S. A.; Usov, N. A.

    2015-10-01

    A new method of obtaining magnetic porous composite materials is described, which is based on the self-propagating high-temperature synthesis (SHS) in the form of solid-phase combustion. The SHS process involves transformation of the nonmagnetic α-Fe2O3 particles (contained in the initial mixture) into magnetic Fe3O4 particles. The synthesized material comprises a porous carbonaceous matrix with immobilized Fe3O4 particles. The obtained composite has been characterized by electron microscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. The sorption capacity of the porous material has been studied.

  3. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    DOEpatents

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  4. An Overview of Recent Development in Composite Catalysts from Porous Materials for Various Reactions and Processes

    PubMed Central

    Xie, Zaiku; Liu, Zhicheng; Wang, Yangdong; Yang, Qihua; Xu, Longya; Ding, Weiping

    2010-01-01

    Catalysts are important to the chemical industry and environmental remediation due to their effective conversion of one chemical into another. Among them, composite catalysts have attracted continuous attention during the past decades. Nowadays, composite catalysts are being used more and more to meet the practical catalytic performance requirements in the chemical industry of high activity, high selectivity and good stability. In this paper, we reviewed our recent work on development of composite catalysts, mainly focusing on the composite catalysts obtained from porous materials such as zeolites, mesoporous materials, carbon nanotubes (CNT), etc. Six types of porous composite catalysts are discussed, including amorphous oxide modified zeolite composite catalysts, zeolite composites prepared by co-crystallization or overgrowth, hierarchical porous catalysts, host-guest porous composites, inorganic and organic mesoporous composite catalysts, and polymer/CNT composite catalysts. PMID:20559508

  5. Composite materials with metallic matrix and ceramic porous filler

    NASA Astrophysics Data System (ADS)

    Bakarinova, V. I.; Portnoi, V. K.

    1995-08-01

    Composite materials with a reduced density reinforced with hollow corundum particles can be of interest as damping and abrasive materials for decreasing the mass of a structure. Methods for mixing powders and their hot pressing are suggested in order to produce such composite materials without fracture of the brittle hollow particles of the filler.

  6. The Tribological Efficiency and the Mechanism of Action of Nano-Porous Composition Base Brake Lining Materials

    NASA Astrophysics Data System (ADS)

    Kutelia, E. R.; Gventsadze, D. I.; Eristavil, B. G.; Maisuradze, N. I.; Tsurtsumia, O. O.; Gventsadze, L. D.; Olofsson, U.; Wahlström, J.; Olander, L.

    2011-12-01

    Based on the comparative analysis of the experimental values determined for the tribological parameters for the three novel nano-porous composition base and two conventional brake lining materials while friction with the grey cast iron disc, it was shown the considerable high tribological efficiency of the novel nano-porous composition base lining materials in comparison with the conventional (from EU and USA market) brake lining materials. The explanation is given to the action mechanism of nano-porous composition base brake lining material and its tribological efficiency basing on the "triple phase" tribo-pair model.

  7. Porous and Microporous Honeycomb Composites as Potential Boundary-Layer Bleed Materials

    NASA Technical Reports Server (NTRS)

    Davis, D. O.; Willis, B. P.; Schoenenberger, M.

    1997-01-01

    Results of an experimental investigation are presented in which the use of porous and microporous honeycomb composite materials is evaluated as an alternate to perforated solid plates for boundary-layer bleed in supersonic aircraft inlets. The terms "porous" and "microporous," respectively, refer to bleed orifice diameters roughly equal to and much less than the displacement thickness of the approach boundary-layer. A Baseline porous solid plate, two porous honeycomb, and three microporous honeycomb configurations are evaluated. The performance of the plates is characterized by the flow coefficient and relative change in boundary-layer profile parameters across the bleed region. The tests were conducted at Mach numbers of 1.27 and 1.98. The results show the porous honeycomb is not as efficient at removing mass compared to the baseline. The microporous plates were about equal to the baseline with one plate demonstrating a significantly higher efficiency. The microporous plates produced significantly fuller boundary-layer profiles downstream of the bleed region for a given mass flow removal rate than either the baseline or the porous honeycomb plates.

  8. Porous material neutron detector

    DOEpatents

    Diawara, Yacouba [Oak Ridge, TN; Kocsis, Menyhert [Venon, FR

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  9. Porous bioactive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size <50 nm) sol-gel BGs in simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a

  10. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites.

    PubMed

    Sampath, Udeni Gunathilake T M; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J; Lin, Pai-Chen

    2016-12-07

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic-co-glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  11. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    PubMed Central

    Sampath, Udeni Gunathilake T.M.; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J.; Lin, Pai-Chen

    2016-01-01

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic-co-glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials. PMID:28774113

  12. Composite material

    DOEpatents

    Hutchens, Stacy A [Knoxville, TN; Woodward, Jonathan [Solihull, GB; Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  13. Hierarchical ZnO-Ag-C composite porous microspheres with superior electrochemical properties as anode materials for lithium ion batteries.

    PubMed

    Xie, Qingshui; Ma, Yating; Zeng, Deqian; Zhang, Xiaoqiang; Wang, Laisen; Yue, Guanghui; Peng, Dong-Liang

    2014-11-26

    Hierarchical ZnO-Ag-C composite porous microspheres are successfully synthesized by calcination of the preproduced zinc-silver citrate porous microspheres in argon. The carbon derives from the in situ carbonization of carboxylic acid groups in zinc-silver citrate during annealing treatment. The average particle size of ZnO-Ag-C composite porous microspheres is approximate 1.5 μm. When adopted as the electrode materials in lithium ion batteries, the obtained composite porous microspheres display high specific capacity, excellent cyclability, and good rate capability. A discharge capacity as high as 729 mA h g(-1) can be retained after 200 cycles at 100 mA g(-1). The excellent electrochemical properties of ZnO-Ag-C are ascribed to its unique hierarchical porous configuration as well as the modification of silver and carbon.

  14. Tailored Porous Materials

    SciTech Connect

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  15. Multi-contrast 3D X-ray imaging of porous and composite materials

    SciTech Connect

    Sarapata, Adrian; Herzen, Julia; Ruiz-Yaniz, Maite; Zanette, Irene; Rack, Alexander; Pfeiffer, Franz

    2015-04-13

    Grating-based X-ray computed tomography allows for simultaneous and nondestructive determination of the full X-ray complex index of refraction and the scattering coefficient distribution inside an object in three dimensions. Its multi-contrast capabilities combined with a high resolution of a few micrometers make it a suitable tool for assessing multiple phases inside porous and composite materials such as concrete. Here, we present quantitative results of a proof-of-principle experiment performed on a concrete sample. Thanks to the complementarity of the contrast channels, more concrete phases could be distinguished than in conventional attenuation-based imaging. The phase-contrast reconstruction shows high contrast between the hardened cement paste and the aggregates and thus allows easy 3D segmentation. Thanks to the dark-field image, micro-cracks inside the coarse aggregates are visible. We believe that these results are extremely interesting in the field of porous and composite materials studies because of unique information provided by grating interferometry in a non-destructive way.

  16. Prediction of Thermophysical and Thermomechanical Characteristics of Porous Carbon-Ceramic Composite Materials of the Heat Shield of Aerospace Craft

    NASA Astrophysics Data System (ADS)

    Reznik, S. V.; Prosuntsov, P. V.; Mikhailovskii, K. V.

    2015-05-01

    A procedure for predicting thermophysical and thermomechanical characteristics of porous carbon-ceramic composite materials of the heat shield of aerospace craft as functions of the type of reinforcement, porosity of the structure, and the characteristics of the material's components has been developed. Results of mathematical modeling of the temperature and stressed-strained states of representative volume elements for determining the characteristics of a carbon-ceramic composite material with account taken of its anisotropy have been given.

  17. AC magnetic field-assisted method to develop porous carbon nanotube/conducting polymer composites for application in thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Chuang, Chun-Yu; Yang, Shu-Chian; Chang, Su-Hua; Yang, Ta-I.

    2015-04-01

    Thermoelectric materials are very effective in converting waste heat sources into useful electricity. Researchers are continuing to develop new polymeric thermoelectric materials. The segregated-network carbon nanotube (CNT)- polymer composites are most promising. Thus, the goal of this study is to develop novel porous CNT -polymer composites with improved thermoelectric properties. The research efforts focused on modifying the surface of the CNT with magnetic nanoparticles so that heat was released when subjecting to an AC magnetic field. Subsequently, polymers covered on the surface of the CNT were crosslinked. The porous CNT -polymer composites can be obtained by removing the un-crosslinked polymers. Polydimethylsiloxane polymer was utilized to investigate the effect of porosity and electrical conductivity on the thermoelectric properties of the composites. This AC magnetic field-assisted method to develop porous carbon nanotube/polymer composites for application in thermoelectric materials is introduced for the first time. The advantage of this method is that the electrical conductivity of the composites was high since we can easily to manipulate the CNT to form a conducting path. Another advantage is that the high porosity significantly reduced the thermal conductivity of the composites. These two advantages enable us to realize the polymer composites for thermoelectric applications. We are confident that this research will open a new avenue for developing polymer thermoelectric materials.

  18. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  19. Scalable preparation of porous micron-SnO2/C composites as high performance anode material for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Shan; Lei, Ming; Wang, Zhi-Qiang; Zhao, Xing; Xu, Jun; Yang, Wei; Huang, Yun; Li, Xing

    2016-03-01

    Nano tin dioxide-carbon (SnO2/C) composites prepared by various carbon materials, such as carbon nanotubes, porous carbon, and graphene, have attracted extensive attention in wide fields. However, undesirable concerns of nanoparticles, including in higher surface area, low tap density, and self-agglomeration, greatly restricted their large-scale practical applications. In this study, novel porous micron-SnO2/C (p-SnO2/C) composites are scalable prepared by a simple hydrothermal approach using glucose as a carbon source and Pluronic F127 as a pore forming agent/soft template. The SnO2 nanoparticles were homogeneously dispersed in micron carbon spheres by assembly with F127/glucose. The continuous three-dimensional porous carbon networks have effectively provided strain relaxation for SnO2 volume expansion/shrinkage during lithium insertion/extraction. In addition, the carbon matrix could largely minimize the direct exposure of SnO2 to the electrolyte, thus ensure formation of stable solid electrolyte interface films. Moreover, the porous structure could also create efficient channels for the fast transport of lithium ions. As a consequence, the p-SnO2/C composites exhibit stable cycle performance, such as a high capacity retention of over 96% for 100 cycles at a current density of 200 mA g-1 and a long cycle life up to 800 times at a higher current density of 1000 mA g-1.

  20. Porous block nanofiber composite filters

    SciTech Connect

    Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold

    2016-08-09

    Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).

  1. Strong, Lightweight, Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi

    2007-01-01

    A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

  2. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries.

    PubMed

    Ni, Haifang; Liu, Jinkun; Fan, Li-Zhen

    2013-03-07

    This work introduces a facile strategy for the synthesis of carbon-coated LiFePO(4)-porous carbon (C-LiFePO(4)-PC) composites as a cathode material for lithium ion batteries. The LiFePO(4) particles obtained are about 200 nm in size and homogeneously dispersed in porous carbon matrix. These particles are further coated with the carbon layers pyrolyzed from sucrose. The C-LiFePO(4)-PC composites display a high initial discharge capacity of 152.3 mA h g(-1) at 0.1 C, good cycling stability, as well as excellent rate capability (112 mA h g(-1) at 5 C). The likely contributing factors to the excellent electrochemical performance of the C-LiFePO(4)-PC composites could be related to the combined effects of enhancement of conductivity by the porous carbon matrix and the carbon coating layers. It is believed that further carbon coating is a facile and effective way to improve the electrochemical performance of LiFePO(4)-PC.

  3. Porous composite materials ZrO2(MgO)-MgO for osteoimplantology

    NASA Astrophysics Data System (ADS)

    Buyakov, Ales; Litvinova, Larisa; Shupletsova, Valeria; Kulbakin, Denis; Kulkov, Sergey

    2016-08-01

    The pore structure and phase composition of ceramic composite material ZrO2(Mg)-MgO at different sintering temperatures were studied. The main mechanical characteristics of the material were determined and it was shown that they are close to the characteristics of natural bone tissues. It was shown that material structure has a positive effect on the pre-osteoblast cells proliferation. In-vitro studies of pre-osteoblast cells, cultivation on material surface showed a good cell adhesion, proliferation and differentiation of MMSC by osteogenic type.

  4. Porous composite materials ZrO{sub 2}(MgO)-MgO for osteoimplantology

    SciTech Connect

    Buyakov, Ales; Litvinova, Larisa Shupletsova, Valeria; Kulbakin, Denis; Kulkov, Sergey

    2016-08-02

    The pore structure and phase composition of ceramic composite material ZrO{sub 2}(Mg)-MgO at different sintering temperatures were studied. The main mechanical characteristics of the material were determined and it was shown that they are close to the characteristics of natural bone tissues. It was shown that material structure has a positive effect on the pre-osteoblast cells proliferation. In-vitro studies of pre-osteoblast cells, cultivation on material surface showed a good cell adhesion, proliferation and differentiation of MMSC by osteogenic type.

  5. Why engineer porous materials?

    PubMed

    Kelly, A

    2006-01-15

    A number of specific examples are briefly given for the use of pores in engineering materials: a porous ceramic to produce minimum thermal conduction; thin skeleton walls in silicon to produce photoluminescence; low dielectric constant materials. The desirable nature of the pores in fuel cell electrodes and sieves is described. Further examples are given in orthopaedics, prosthetic scaffolds and sound deadening and impact resistance materials. An attempt is made to describe the desirable pore size, whether open or closed, and the useful volume fraction. This short review does not deal with flexible foams.

  6. Metal-organic framework nanocrystals as sacrificial templates for hollow and exceptionally porous titania and composite materials.

    PubMed

    Yang, Hui; Kruger, Paul E; Telfer, Shane G

    2015-10-05

    We report a strategy that employs metal-organic framework (MOF) crystals in two roles for the fabrication of hollow nanomaterials. In the first role the MOF crystals provide a template on which a shell of material can be deposited. Etching of the MOF produces a hollow structure with a predetermined size and morphology. In combination with this strategy, the MOF crystals, including guest molecules in their pores, can provide the components of a secondary material that is deposited inside the initially formed shell. We used this approach to develop a straightforward and reproducible method for constructing well-defined, nonspherical hollow and exceptionally porous titania and titania-based composite nanomaterials. Uniform hollow nanostructures of amorphous titania, which assume the cubic or polyhedral shape of the original template, are delivered using nano- and microsized ZIF-8 and ZIF-67 crystal templates. These materials exhibit outstanding textural properties including hierarchical pore structures and BET surface areas of up to 800 m(2)/g. As a proof of principle, we further demonstrate that metal nanoparticles such as Pt nanoparticles, can be encapsulated into the TiO2 shell during the digestion process and used for subsequent heterogeneous catalysis. In addition, we show that the core components of the ZIF nanocrystals, along with their adsorbed guests, can be used as precursors for the formation of secondary materials, following their thermal decomposition, to produce hollow and porous metal sulfide/titania or metal oxide/titania composite nanostructures.

  7. Polymer composites and porous materials prepared by thermally induced phase separation and polymer-metal hybrid methods

    NASA Astrophysics Data System (ADS)

    Yoon, Joonsung

    The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and

  8. Porous Materials by Powder Metallurgy

    DTIC Science & Technology

    1998-04-30

    generally determine porosity and pore size of the resulting porous material. The beads can be microballoons, which are hollow inside, or they can be...proved jYi- --*;V--, - one QUALITY INSPECTED 0 Applicant: Everett Patent Application Serial Number: Navy Case Number: 78,529 5 Porous Materials...By Powder Metallurgy Background of Invention Field of Invention: This invention pertains to porous material fabrication by controlling pore size

  9. Novel Ag@Nitrogen-doped Porous Carbon Composite with High Electrochemical Performance as Anode Materials for Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Chen, Yuqing; Li, Jintang; Yue, Guanghui; Luo, Xuetao

    2017-07-01

    A novel Ag@nitrogen-doped porous carbon (Ag-NPC) composite was synthesized via a facile hydrothermal method and applied as an anode material in lithium-ion batteries (LIBs). Using this method, Ag nanoparticles (Ag NPs) were embedded in NPC through thermal decomposition of AgNO3 in the pores of NPC. The reversible capacity of Ag-NPC remained at 852 mAh g-1 after 200 cycles at a current density of 0.1 A g-1, showing its remarkable cycling stability. The enhancement of the electrochemical properties such as cycling performance, reversible capacity and rate performance of Ag-NPC compared to the NPC contributed to the synergistic effects between Ag NPs and NPC.

  10. Interplay of carbon-silica sources on the formation of hierarchical porous composite materials for biological applications such as lipase immobilization.

    PubMed

    Higuita, Mario; Bernal, Claudia; Mesa, Monica

    2014-10-01

    The porous inorganic materials, with hierarchical structures, find application in many processes where the chemical stability and pore connectivity are key points, such as separation, adsorption and catalysis. Here, we synthesized carbon-silica composite materials, which combine hydrolytic stability of the carbon with the surface chemical reactivity of silica in aqueous media. The polycondensation of carbonaceous and siliceous species from sucrose, Triton X-100 surfactant and tetraethylortosilicate during the hydrothermal synthesis led to the formation of hydrochar composite materials. The subsequent carbonization process of these composite hydrochars gave carbon-silica hierarchical porous materials. The study of the micellar reaction system and the characterization of the derivate materials (carbon-silica composite, carbon and silica) were carried out. The results indicate that synthesis conditions allowed the formation of a silica network interpenetrated with a carbon one, which is produced from the incorporated organic matter. The control of the acidity of the reaction medium and hydrothermal conditions modulated the reaction yield and porous characteristics of the materials. The composite nature in conjunction with the hierarchical porosity increases the interest of these materials for future biological applications, such as lipase immobilization.

  11. Optimization of a Composite Double-Walled Cylindrical Shell Lined with Porous Materials for Higher Sound Transmission Loss by using a Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Ramezani, H.; Saghafi, A.

    2014-03-01

    A study on the optimization of sound transmission loss (TL) across a double-walled cylindrical laminated composite shell whose walls sandwich a layer of porous material is investigated using a genetic algorithm. First, an exact relation is presented by considering the effective wave component in the porous layer within the framework of the classic theory for laminated composite shells. The TL of the structure is estimated in a broadband frequency. Then, an acoustic optimization is considered for the sandwich structure with respect to the constraints of geometric properties.

  12. Interface shear strength and fracture behaviour of porous glass-fibre-reinforced composite implant and bone model material.

    PubMed

    Nganga, Sara; Ylä-Soininmäki, Anne; Lassila, Lippo V J; Vallittu, Pekka K

    2011-11-01

    Glass-fibre-reinforced composites (FRCs) are under current investigation to serve as durable bone substitute materials in load-bearing orthopaedic implants and bone implants in the head and neck area. The present form of biocompatible FRCs consist of non-woven E-glass-fibre tissues impregnated with varying amounts of a non-resorbable photopolymerisable bifunctional polymer resin with equal portions of both bis-phenyl-A-glycidyl dimethacrylate (BisGMA) and triethyleneglycol dimethacrylate (TEGDMA). FRCs with a total porosity of 10-70 vol% were prepared, more than 90 vol% of which being functional (open pores), and the rest closed. The pore sizes were greater than 100 μm. In the present study, the push-out test was chosen to analyse the shear strength of the interface between mechanically interlocked gypsum and a porous FRC implant structure. Gypsum was used as a substitute material for natural bone. The simulative in vitro experiments revealed a significant rise of push-out forces to the twofold level of 1147 ± 271 N for an increase in total FRC porosity of 43%. Pins, intended to model the initial mechanical implant fixation, did not affect the measured shear strength of the gypsum-FRC interface, but led to slightly more cohesive fracture modes. Fractures always occurred inside the gypsum, it having lower compressive strength than the porous FRC structures. Therefore, the largest loads were restricted by the brittleness of the gypsum. Increases of the FRC implant porosity tended to lead to more cohesive fracture modes and higher interfacial fracture toughness. Statistical differences were confirmed using the Kruskal-Wallis test. The differences between the modelled configuration showing gypsum penetration into all open pores and the real clinical situation with gradual bone ingrowth has to be considered. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Quantitative non-destructive evaluation of porous composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1987-01-01

    Porosity in composite media using ultrasonic waves is characterized. The derivation of local approximations to the Kramers-Kronig relations are presented and it is shown that they may also be applicable to systems that could conceivably exhibit considerable dispersion such as composite laminates containing porosity.

  14. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  15. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries.

    PubMed

    Jia, Haiping; Stock, Christoph; Kloepsch, Richard; He, Xin; Badillo, Juan Pablo; Fromm, Olga; Vortmann, Britta; Winter, Martin; Placke, Tobias

    2015-01-28

    In this work, a novel, porous structured NiSi2/Si composite material with a core-shell morphology was successfully prepared using a facile ball-milling method. Furthermore, the chemical vapor deposition (CVD) method is deployed to coat the NiSi2/Si phase with a thin carbon layer to further enhance the surface electronic conductivity and to mechanically stabilize the whole composite structure. The morphology and porosity of the composite material was evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption measurements (BJH analysis). The as-prepared composite material consists of NiSi2, silicon, and carbon phases, in which the NiSi2 phase is embedded in a silicon matrix having homogeneously distributed pores, while the surface of this composite is coated with a carbon layer. The electrochemical characterization shows that the porous and core-shell structure of the composite anode material can effectively absorb and buffer the immense volume changes of silicon during the lithiation/delithiation process. The obtained NiSi2/Si/carbon composite anode material displays an outstanding electrochemical performance, which gives a stable capacity of 1272 mAh g(-1) for 200 cycles at a charge/discharge rate of 1C and a good rate capability with a reversible capacity of 740 mAh g(-1) at a rate of 5C.

  16. Metal recovery from porous materials

    DOEpatents

    Sturcken, Edward F.

    1992-01-01

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  17. Heat and Mass Transfer in the Chemical Vapor Deposition of Silicon Carbide in a Porous Carbon-Carbon Composite Material for a Heat Shield

    NASA Astrophysics Data System (ADS)

    Reznik, S. V.; Mikhailovskii, K. V.; Prosuntsov, P. V.

    2017-03-01

    Physical and mathematical simulations of the chemical vapor deposition of silicon carbide in a porous carbon-carbon composite material in a chemical vapor deposition reactor for formation of a matrix of a carbon-ceramic composite material for a heat shield of an aerospace aircraft have been performed. Results of parametric calculations of the heat and mass transfer at the macro- and microlevels in representative elements of the microstructure of carbon-carbon composite materials different in residual porosity at different temperatures in the reaction zone of the reactor are presented. Features of compaction of the pore space of a carbon-carbon composite material by a silicon-carbide matrix depending on the technological parameters of the reaction medium were analyzed.

  18. Quantitative non-destructive evaluation of porous composite materials based on ultrasonic wave propagation

    NASA Technical Reports Server (NTRS)

    Miller, James G.

    1988-01-01

    Two complementary ultrasonic techniques for characterizing porosity in fiber-reinforced composite laminates are evaluated. Five uniaxial graphite-fiber/epoxy-matrix composites having a range of 1 to 8 percent volume fraction of solid glass inclusions to model porosity were investigated. In one technique, signal loss was measured in transmission mode and slope of attenuation, obtained from the first order coefficient of a two-parameter polynomial fit about the center frequency of the useful bandwidth, was used as the ultrasonic parameter to characterize the porosity. The results of these transmission mode measurements displayed a good correlation between the volume fraction of porosity and the slope of attenuation. Integrated polar backscatter was used as a second ultrasonic parameter for the characterization of the porosity in these samples. A single transducer insonified the samples and measured the resulting backscatter at a polar angle of 30 deg with respect to the normal of the sample surface with the azimuthal angles centered at 0 deg with respect to the fiber orientation (i.e., along the fibers). Integrated polar backscatter also displayed good correlation with the volume fraction of porosity.

  19. Metal-organic framework derived porous CuO/Cu2O composite hollow octahedrons as high performance anode materials for sodium ion batteries.

    PubMed

    Zhang, Xiaojie; Qin, Wei; Li, Dongsheng; Yan, Dong; Hu, Bingwen; Sun, Zhuo; Pan, Likun

    2015-11-25

    Porous CuO/Cu2O composite hollow octahedrons were synthesized simply by annealing Cu-based metal-organic framework templates. When evaluated as anode materials for sodium ion batteries, they exhibit a high maximum reversible capacity of 415 mA h g(-1) after 50 cycles at 50 mA g(-1) with excellent cycling stability and good rate capability.

  20. Constitutive model for porous materials

    SciTech Connect

    Weston, A.M.; Lee, E.L.

    1982-01-01

    A simple pressure versus porosity compaction model is developed to calculate the response of granular porous bed materials to shock impact. The model provides a scheme for calculating compaction behavior when relatively limited material data are available. While the model was developed to study porous explosives and propellants, it has been applied to a much wider range of materials. The early development of porous material models, such as that of Hermann, required empirical dynamic compaction data. Erkman and Edwards successfully applied the early theory to unreacted porous high explosives using a Gruneisen equation of state without yield behavior and without trapped gas in the pores. Butcher included viscoelastic rate dependance in pore collapse. The theoretical treatment of Carroll and Holt is centered on the collapse of a circular pore and includes radial inertia terms and a complex set of stress, strain and strain rate constitutive parameters. Unfortunately data required for these parameters are generally not available. The model described here is also centered on the collapse of a circular pore, but utilizes a simpler elastic-plastic static equilibrium pore collapse mechanism without strain rate dependence, or radial inertia terms. It does include trapped gas inside the pore, a solid material flow stress that creates both a yield point and a variation in solid material pressure with radius. The solid is described by a Mie-Gruneisen type EOS. Comparisons show that this model will accurately estimate major mechanical features which have been observed in compaction experiments.

  1. Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material

    NASA Astrophysics Data System (ADS)

    Zheng, Chao; Zhou, Xufeng; Cao, Hailiang; Wang, Guohua; Liu, Zhaoping

    2014-07-01

    A simple method has been developed to prepare graphene/activated carbon (AC) nanosheet composite as high-performance electrode material for supercapacitor. Glucose solution containing dispersed graphite oxide (GO) sheets is hydrothermally carbonized to form a brown char-like intermediate product, and finally converts to porous nanosheet composite by two-step chemical activation using KOH. In this composite, a layer of porous AC coats on graphene to from wrinkled nanosheet structure, with length of several micrometers and thickness of tens of nanometer. The composite has a relatively high packing density of ∼0.3 g cm-3 and large specific surface area of 2106 m2 g-1, as well as containing plenty of mesopores. It exhibits specific capacitance up to 210 F g-1 in aqueous electrolyte and 103 F g-1 in organic electrolyte, respectively, and the specific capacitance decreases by only 5.3% after 5000 cycles. These results indicate that the porous graphene/AC nanosheet composite prepared by hydrothermal carbonization and chemical activation can be applied for high performance supercapacitors.

  2. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  3. Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries.

    PubMed

    Bhuvaneswari, Subramani; Pratheeksha, Parakandy Muzhikara; Anandan, Srinivasan; Rangappa, Dinesh; Gopalan, Raghavan; Rao, Tata Narasinga

    2014-03-21

    Here, we report facile fabrication of Fe3O4-reduced graphene oxide (Fe3O4-RGO) composite by a novel approach, i.e., microwave assisted combustion synthesis of porous Fe3O4 particles followed by decoration of Fe3O4 by RGO. The characterization studies of Fe3O4-RGO composite demonstrate formation of face centered cubic hexagonal crystalline Fe3O4, and homogeneous grafting of Fe3O4 particles by RGO. The nitrogen adsorption-desorption isotherm shows presence of a porous structure with a surface area and a pore volume of 81.67 m(2) g(-1), and 0.106 cm(3) g(-1) respectively. Raman spectroscopic studies of Fe3O4-RGO composite confirm the existence of graphitic carbon. Electrochemical studies reveal that the composite exhibits high reversible Li-ion storage capacity with enhanced cycle life and high coulombic efficiency. The Fe3O4-RGO composite showed a reversible capacity ∼612, 543, and ∼446 mA h g(-1) at current rates of 1 C, 3 C and 5 C, respectively, with a coulombic efficiency of 98% after 50 cycles, which is higher than graphite, and Fe3O4-carbon composite. The cyclic voltammetry experiment reveals the irreversible and reversible Li-ion storage in Fe3O4-RGO composite during the starting and subsequent cycles. The results emphasize the importance of our strategy which exhibited promising electrochemical performance in terms of high capacity retention and good cycling stability. The synergistic properties, (i) improved ionic diffusion by porous Fe3O4 particles with a high surface area and pore volume, and (ii) increased electronic conductivity by RGO grafting attributed to the excellent electrochemical performance of Fe3O4, which make this material attractive to use as anode materials for lithium ion storage.

  4. Composite Materials

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Langley Research Center researchers invented an advanced polymer, a chemical compound formed by uniting many small molecules to create a complex molecule with different chemical properties. The material is a thermoplastic polyimide that resists solvents. Other polymers of this generic type are soluble in solvents, thus cannot be used where solvents are present. High Technology Services (HTS), Inc. licensed technology and is engaged in development and manufacture of high performance plastics, resins and composite materials. Techimer Materials Division is using technology for composite matrix resins that offer heat resistance and protection from radiation, electrical and chemical degradation. Applications of new polymer include molding resins, adhesives and matrix resins for fiber reinforced composites.

  5. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Yang, Zhao; Su, Danyang; Yang, Jinping; Wang, Jing

    2017-09-01

    3d transition-metal oxides, especially Fe3O4, as anode materials for the lithium-ion batteries have been attracting intensive attentions in recent years due to their high energy capacity and low toxicity. A new Fe3O4/C composite with hollow spheres in porous three-dimensional (3D) nanostructure, which was synthesized by a facile solvothermal method using FeCl3·6H2O and porous spongy carbon as raw materials. The specific surface area and microstructures of composite were characterized by nitrogen adsorption-desorption isotherm method, FE-SEM and HR-TEM. A homogeneous distribution of hollow Fe3O4 spheres (diameter ranges from 120 nm to 150 nm) in the spongy carbon (pore size > 200 nm) conductive 3D-network significantly reduced the lithium-ion diffusion length and increased the electrochemical reaction area, and further more enhanced the lithium ion battery performance, such as discharge capacity and cycle life. As an anode material for the lithium-ion battery, the title composite exhibit excellent electrochemical properties. The Fe3O4/C composite electrode achieved a relatively high reversible specific capacity of 1450.1 mA h g-1 in the first cycle at 100 mA g-1, and excellent rate capability (69% retention at 1000 mA g-1) with good cycle stability (only 10% loss after 100 cycles).

  6. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1992-10-13

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  7. Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites.

    PubMed

    Kumar, Mrinal Nishant; Gialleli, Angelika-Ioanna; Masson, Jean Bernard; Kandylis, Panagiotis; Bekatorou, Argyro; Koutinas, Athanasios A; Kanellaki, Maria

    2014-08-01

    Porous delignified cellulose (or tubular cellulose, abbr. TC) from Indian Mango (Mangifera indica) and Sal (Shorea robusta) wood and Rice husk, and TC/Ca-alginate/polylactic acid composites, were used as Lactobacillus bulgaricus immobilisation carriers leading to improvements in lactic acid fermentation of cheese whey and synthetic lactose media, compared to free cells. Specifically, shorter fermentation rates, higher lactic acid yields (g/g sugar utilised) and productivities (g/Ld), and higher amounts of volatile by-products were achieved, while no significant differences were observed on the performance of the different immobilised biocatalysts. The proposed biocatalysts are of food grade purity, cheap and easy to prepare, and they are attractive for bioprocess development based on immobilised cells. Such composite biocatalysts may be used for the co-immobilisation of different microorganisms or enzymes (in separate layers of the biocatalyst), to efficiently conduct different types of fermentations in the same bioreactor, avoiding inhibition problems of chemical or biological (competition) nature.

  8. Development of highly porous carbon and ceramic materials

    NASA Astrophysics Data System (ADS)

    Aoki, Yasuyuki

    The objectives of this thesis were to develop new methods for manufacturing highly porous and low-density carbon and ceramic materials by simple methods using low-cost precursors, which can exhibit high corrosion resistance and high-temperature performance with advantageous porous microstructure. Various types of porous carbon materials were manufactured using different techniques. These materials included porous carbons fabricated by paper making technology, foamed resin based carbons, resin powder based porous carbons and carbon bonded carbon fibre composites. Then, these different forms of porous carbon preforms were converted into lightweight and low-density ceramics by two main fabrication routes. In the first route, porous carbon-ceramic composites were manufactured by infiltration of a mixture of silica sol-gels and a resin carbon source into porous carbon preforms. The silica was subsequently converted into SiC or Si3N4 by carbothermal reduction or nitridation, respectively. Furthermore, boron oxide glass was impregnated in addition to SiC. However, the porous carbon-ceramic composites from this fabrication method exhibited poor high-temperature performance due to low oxidation resistance.In the second route, porous carbon preforms were directly converted into porous SiC materials by a reaction bonding technique with silicon vapour infiltration. The ceramics produced by this route were proved to have high potentiality as lightweight and low-density materials at elevated temperatures and corrosive atmospheres, with modified mechanical properties. Structural and morphological characterizations of the porous materials were carried out using optical and electron microscopy, diffraction and spectroscopic techniques. Mechanical properties were also measured including flexural, tensile and compressive strength, and elastic modulus at room and elevated temperatures, and the results of mechanical properties were analyzed in relation to density/porosity values

  9. Studies of acoustical properties of bulk porous flexible materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1984-01-01

    Acoustic prediction and measurement of bulk porous materials with flexible frames is investigated. The acoustic properties of Kevlar 29 are examined. Various acoustic tests are employed to determine impedance, sound wave propagation, and wave pressure equations for the highly porous fiber composites. The derivation of design equations and future research goals are included.

  10. HfO2/porous anodic alumina composite films for multifunctional data storage media materials under electric field control

    NASA Astrophysics Data System (ADS)

    Qi, Li-Qian; Pan, Di-Ya; Li, Jun-Qing; Liu, Li-Hu; Sun, Hui-Yuan

    2017-03-01

    New materials for achieving direct electric field control of ferromagnetism and resistance behavior are highly desirable in the development of multifunctional data storage devices. In this paper, HfO2 nanoporous films have been fabricated on porous anodic alumina (PAA) substrates by DC-reactive magnetron sputtering. Electrically induced resistive switching (RS) and modulated room temperature ferromagnetism are simultaneously found in a Ag/HfO2/PAA/Al (Ag/HP/Al) heterostructure. The switching mechanism between low resistance state and high resistance state is generally attributed to the formation/rupture of conductive filaments which may consist of oxygen vacancies. The combination of the electric field control of magnetization change and RS makes HP films possible for the multifunctional data storage media materials.

  11. HfO2/porous anodic alumina composite films for multifunctional data storage media materials under electric field control.

    PubMed

    Qi, Li-Qian; Pan, Di-Ya; Li, Jun-Qing; Liu, Li-Hu; Sun, Hui-Yuan

    2017-03-17

    New materials for achieving direct electric field control of ferromagnetism and resistance behavior are highly desirable in the development of multifunctional data storage devices. In this paper, HfO2 nanoporous films have been fabricated on porous anodic alumina (PAA) substrates by DC-reactive magnetron sputtering. Electrically induced resistive switching (RS) and modulated room temperature ferromagnetism are simultaneously found in a Ag/HfO2/PAA/Al (Ag/HP/Al) heterostructure. The switching mechanism between low resistance state and high resistance state is generally attributed to the formation/rupture of conductive filaments which may consist of oxygen vacancies. The combination of the electric field control of magnetization change and RS makes HP films possible for the multifunctional data storage media materials.

  12. Diffusion in porous crystalline materials.

    PubMed

    Krishna, Rajamani

    2012-04-21

    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso- and micro-porous structures. In meso-porous materials, with pore sizes 2 nm < d(p) < 50 nm, there is a central core region where the influence of interactions of the molecules with the pore wall is either small or negligible; meso-pore diffusion is governed by a combination of molecule-molecule and molecule-pore wall interactions. Within micro-pores, with d(p) < 2 nm, the guest molecules are always under the influence of the force field exerted with the wall and we have to reckon with the motion of adsorbed molecules, and there is no "bulk" fluid region. The characteristics and physical significance of the self-, Maxwell-Stefan, and Fick diffusivities are explained with the aid of data obtained either from experiments or molecular dynamics simulations, for a wide variety of structures with different pore sizes and topology. The influence of adsorption thermodynamics, molecular clustering, and segregation on both magnitudes and concentration dependences of the diffusivities is highlighted. In mixture diffusion, correlations in molecular hops have the effect of slowing-down the more mobile species. The need for proper modeling of correlation effects using the Maxwell-Stefan formulation is stressed with the aid of examples of membrane separations and catalytic reactors.

  13. Dye-impregnated polymer-filled porous glass: a new composite material for solid state dye lasers and laser beam control optical elements (Abstract Only)

    NASA Astrophysics Data System (ADS)

    Koldunov, M. F.; Manenkov, Alexander A.; Sitnikov, N. M.; Dolotov, S. M.

    1994-07-01

    Polymer-filled microporous glass (PFMG) composite materials have been recently proposed as a proper host for dyes to create solid-state dye lasers and laser beam control elements (Q-switchers, etc.) [1,2]. In this paper we report investigation of some laser-related properties of Polymethilmethacrylate (PMAA) - filled porous glass doped with Rhodamine 6G perchiorate (active lasing dye) and 1055 dye (passive bleachable dye): laser induced damage threshold, lasmg efficiency, bleaching efficiency, and microhardness have been measured. All these characteristics have been found to be rather high indicating that PFMG composite materials are perspective hosts for dye impregnation and fabrication highly effective solid-state dye lasers and other laser related elements (Q-switchers, mode-lockers, modeselectors, spatial filters).

  14. Anatase TiO2@C composites with porous structure as an advanced anode material for Na ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Xiaodong; Zhang, Zhian; Du, Ke; Lai, Yanqing; Fang, Jing; Li, Jie

    2016-10-01

    In this paper, we propose a facile strategy to synthesize the porous structure TiO2@C composites through a two-step method, in which the precursor of MIL-125(Ti) was firstly prepared by solvent thermal method and then calcined under inert atmosphere. When employed as anodes for Na ion batteries, TiO2@C composites can exhibit a superior cyclability with a reversible sodium storage capacity of 148 mAh g-1 at the current density 0.5 A g-1 after 500 cycles and an excellent rate performance with a capacity of 88.9 mAh g-1 even the current reached to 2.5 A g-1 due to the dispersion of anatase TiO2 throughout amorphous carbon matrix and the synergistic effect between the anatase TiO2 nanocrystals and carbon matrix, which can availably enhance the electric conductivity and alleviate the volumetric variation of TiO2 during the insertion/extraction process of Na+.

  15. Peculiarities of formation of phase composition, porous structure, and catalytic properties of tungsten oxide-based macroporous materials fabricated by sol–gel synthesis

    SciTech Connect

    Papynov, Evgeniy Konstantinovich; Mayorov, Vitaliy Yurevich; Palamarchuk, Marina Sergeevna; Avramenko, Valentin Aleksandrovich

    2014-02-15

    The method of template sol–gel synthesis of tungsten oxide-based macroporous materials using ‘core–shell’ latex particles as colloid templates is described. The chemical composition and structural characteristics of the synthesized macroporous oxide systems have been investigated. The peculiarities of formation of material phase composition and macroporous structure under different template thermal destruction conditions have been revealed. An optimal method of a targeted synthesis of the crystalline tungsten(VI) oxide having a defect-free macroporous structure (average pore size 160 nm) and efficient catalytic properties under organic liquid phase oxidation conditions has been suggested. The prospects of the fabricated material application as catalysts of hydrothermal oxidation of radionuclide organic complexes at radioactive waste decontamination have been demonstrated. - Highlights: • Macroporous tungsten oxides were fabricated via sol–gel process. • The correlation between synthesis conditions and composition was determined. • Influence of synthesis conditions on porous structure has been explained. • The effects of template thermodestruction have been set up. • High potential of such materials for catalysis applications has been shown.

  16. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, David K.; Burrows, Richard W.

    1993-01-01

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  17. Microwave impregnation of porous materials with thermal energy storage materials

    DOEpatents

    Benson, D.K.; Burrows, R.W.

    1993-04-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  18. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect

    Benson, D.K.; Burrows, R.W.

    1992-12-31

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent to the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  19. Microwave impregnation of porous materials with thermal energy storage materials

    SciTech Connect

    Benson, D.K.; Burrows, R.W.

    1991-03-13

    A method for impregnating a porous, non-metallic construction material with a solid phase-change material is described. The phase-change material in finely divided form is spread onto the surface of the porous material, after which the porous material is exposed to microwave energy for a time sufficient to melt the phase-change material. The melted material is spontaneously absorbed into the pores of the porous material. A sealing chemical may also be included with the phase-change material (or applied subsequent tc the phase-change material) to seal the surface of the porous material. Fire retardant chemicals may also be included with the phase-change materials. The treated construction materials are better able to absorb thermal energy and exhibit increased heat storage capacity.

  20. Porous silicon in drug delivery devices and materials.

    PubMed

    Anglin, Emily J; Cheng, Lingyun; Freeman, William R; Sailor, Michael J

    2008-08-17

    Porous Si exhibits a number of properties that make it an attractive material for controlled drug delivery applications: The electrochemical synthesis allows construction of tailored pore sizes and volumes that are controllable from the scale of microns to nanometers; a number of convenient chemistries exist for the modification of porous Si surfaces that can be used to control the amount, identity, and in vivo release rate of drug payloads and the resorption rate of the porous host matrix; the material can be used as a template for organic and biopolymers, to prepare composites with a designed nanostructure; and finally, the optical properties of photonic structures prepared from this material provide a self-reporting feature that can be monitored in vivo. This paper reviews the preparation, chemistry, and properties of electrochemically prepared porous Si or SiO2 hosts relevant to drug delivery applications.

  1. Porous light-emitting compositions

    SciTech Connect

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Bauer, Eve; Mueller, Alexander H

    2012-04-17

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  2. Carbon-Confined SnO2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material.

    PubMed

    Dirican, Mahmut; Lu, Yao; Ge, Yeqian; Yildiz, Ozkan; Zhang, Xiangwu

    2015-08-26

    Sodium resources are inexpensive and abundant, and hence, sodium-ion batteries are promising alternative to lithium-ion batteries. However, lower energy density and poor cycling stability of current sodium-ion batteries prevent their practical implementation for future smart power grid and stationary storage applications. Tin oxides (SnO2) can be potentially used as a high-capacity anode material for future sodium-ion batteries, and they have the advantages of high sodium storage capacity, high abundance, and low toxicity. However, SnO2-based anodes still cannot be used in practical sodium-ion batteries because they experience large volume changes during repetitive charge and discharge cycles. Such large volume changes lead to severe pulverization of the active material and loss of electrical contact between the SnO2 and carbon conductor, which in turn result in rapid capacity loss during cycling. Here, we introduce a new amorphous carbon-coated SnO2-electrodeposited porous carbon nanofiber (PCNF@SnO2@C) composite that not only has high sodium storage capability, but also maintains its structural integrity while ongoing repetitive cycles. Electrochemical results revealed that this SnO2-containing nanofiber composite anode had excellent electrochemical performance including high-capacity (374 mAh g(-1)), good capacity retention (82.7%), and large Coulombic efficiency (98.9% after 100th cycle).

  3. Adhesion of liquids to porous materials and fibers

    NASA Astrophysics Data System (ADS)

    Trofimov, Artem

    This research is centered on the analysis of adhesion properties of porous materials and fibers of elliptical shapes. Composites are a unique class of materials having properties, which could not be achieved by either of the constituent materials alone. Composites with porous filler are put into service in buildings, roads, bridges, etc. Fiber-reinforced composites are actively involved in flight vehicles, automobiles, boats, and dozens of other products. In the first part of this study we developed a procedure for evaluation of adhesion of liquids to porous solids, where water, hexadecane and asphalt binder and different rocks were studied to illustrate the methodology. An experimental protocol to evaluate the work of adhesion, a characteristic thermodynamic parameter of the liquid/porous solid pair, was discussed and a mathematical model describing the kinetics of liquid penetration into inhomogeneous porous material was developed and used for interpretation of the experiments. The second part is devoted to the analysis of interactions of liquids with circular and elliptical wires. The behavior of menisci embracing the fiber in the capillary rise experiment was investigated. In particular, we study the profiles of the contact line around cylinders, contact angle, and the work of adhesion of a set of different liquids. Compared to the circular wires, elliptical wires produced taller menisci, hence the wetted area increases. It is expected that the kinetics of resin impregnation into a preforms made of elliptical fibers will significantly change.

  4. Composite Materials

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Composites are lighter and stronger than metals. Aramid fibers like Kevlar and Nomex were developed by DuPont Corporation and can be combined in a honeycomb structure which can give an airplane a light, tough structure. Composites can be molded into many aerodynamic shapes eliminating rivets and fasteners. Langley Research Center has tested composites for both aerospace and non-aerospace applications. They are also used in boat hulls, military shelters, etc.

  5. Numerical investigation of active porous composites with enhanced acoustic absorption

    NASA Astrophysics Data System (ADS)

    Zieliński, Tomasz G.

    2011-10-01

    The paper presents numerical analysis - involving an advanced multiphysics modeling - of the concept of active porous composite sound absorbers. Such absorbers should be made up of a layer or layers of poroelastic material (porous foams) with embedded elastic inclusions having active (piezoelectric) elements. The purpose of such active composite material is to significantly absorb the energy of acoustic waves in a wide frequency range, particularly, at lower frequencies. At the same time the total thickness of composite should be very moderate. The active parts of composites are used to adapt the absorbing properties of porous layers to different noise conditions by affecting the so-called solid-borne wave - originating mainly from the vibrations of elastic skeleton of porous medium - to counteract the fluid-borne wave - resulting mainly from the vibrations of air in the pores; both waves are strongly coupled, especially, at lower frequencies. In fact, since the traction between the air and the solid frame of porous medium is the main absorption mechanism, the elastic skeleton is actively vibrated in order to adapt and improve the dissipative interaction of the skeleton and air in the pores. Passive and active performance of such absorbers is analyzed to test the feasibility of this approach.

  6. Methane storage in advanced porous materials.

    PubMed

    Makal, Trevor A; Li, Jian-Rong; Lu, Weigang; Zhou, Hong-Cai

    2012-12-07

    The need for alternative fuels is greater now than ever before. With considerable sources available and low pollution factor, methane is a natural choice as petroleum replacement in cars and other mobile applications. However, efficient storage methods are still lacking to implement the application of methane in the automotive industry. Advanced porous materials, metal-organic frameworks and porous organic polymers, have received considerable attention in sorptive storage applications owing to their exceptionally high surface areas and chemically-tunable structures. In this critical review we provide an overview of the current status of the application of these two types of advanced porous materials in the storage of methane. Examples of materials exhibiting high methane storage capacities are analyzed and methods for increasing the applicability of these advanced porous materials in methane storage technologies described.

  7. Hierarchically porous materials: synthesis strategies and structure design.

    PubMed

    Yang, Xiao-Yu; Chen, Li-Hua; Li, Yu; Rooke, Joanna Claire; Sanchez, Clément; Su, Bao-Lian

    2017-01-23

    Owing to their immense potential in energy conversion and storage, catalysis, photocatalysis, adsorption, separation and life science applications, significant interest has been devoted to the design and synthesis of hierarchically porous materials. The hierarchy of materials on porosity, structural, morphological, and component levels is key for high performance in all kinds of applications. Synthesis and applications of hierarchically structured porous materials have become a rapidly evolving field of current interest. A large series of synthesis methods have been developed. This review addresses recent advances made in studies of this topic. After identifying the advantages and problems of natural hierarchically porous materials, synthetic hierarchically porous materials are presented. The synthesis strategies used to prepare hierarchically porous materials are first introduced and the features of synthesis and the resulting structures are presented using a series of examples. These involve templating methods (surfactant templating, nanocasting, macroporous polymer templating, colloidal crystal templating and bioinspired process, i.e. biotemplating), conventional techniques (supercritical fluids, emulsion, freeze-drying, breath figures, selective leaching, phase separation, zeolitization process, and replication) and basic methods (sol-gel controlling and post-treatment), as well as self-formation phenomenon of porous hierarchy. A series of detailed examples are given to show methods for the synthesis of hierarchically porous structures with various chemical compositions (dual porosities: micro-micropores, micro-mesopores, micro-macropores, meso-mesopores, meso-macropores, multiple porosities: micro-meso-macropores and meso-meso-macropores). We hope that this review will be helpful for those entering the field and also for those in the field who want quick access to helpful reference information about the synthesis of new hierarchically porous materials and

  8. Conducting polyheterocycle composites based on porous hosts

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Ruckenstein, E.

    1992-02-01

    Conducting composites based on porous substrates (cotton fiber, non-woven polypropylene mat and porous crosslinked polystyrene) have been prepared by a two step imbibition technique. First, the substrate was imbibed with a solution of monomer (pyrrole or bithiophene) in acetonitrile, followed by partial drying. Subsequently, the substrate was again imbibed, this time with an oxidant dissolved in a suitable solvent. The polymerization of the monomer inside the host in the presence of the oxidant and the doping of the polymer with the oxidant leads to the conducting composite. The highly hydrophobic and porous crosslinked polystyrene, prepared by the concentrated emulsion polymerization method, is the most efficient. The solvent employed for the oxidant plays a major role. A FeCl3-methanol system and porous crosslinked polystyrene lead to conductivities of polythiophene and polypyrrole based composites of 3.63 and 0.65 S/cm, respectively. Copper perchlorate and iron perchlorate are also suitable oxidants. The environmental and thermal stabilities of polypyrrole based composites are lower than those of polythiophene based composites. The thermal stability of polypyrrole based composites can be enhanced by including a small amount of an organic antioxidant, such as amides or substituted phenols, in the composite.

  9. Investigation of a porous NiSi2/Si composite anode material used for lithium-ion batteries by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhou, Dong; Jia, Haiping; Rana, Jatinkumar; Placke, Tobias; Klöpsch, Richard; Schumacher, Gerhard; Winter, Martin; Banhart, John

    2016-08-01

    Local structural changes in a porous NiSi2/Si composite anode material are investigated by X-ray absorption spectroscopy. It is observed that the NiSi2 phase shows a strong metal-metal bond character and no clear changes can be observed in XANES during lithiation and de-lithiation. The variation of the number of nearest neighbors of the Ni atom for the 1st coordinate Ni-Si shell and σ2 in the 1st cycle, both determined by refinement, demonstrates that NiSi2 can partially react with lithium during discharge and charge. A partially reversible non-stoichiometric compound NiSi2-y is formed during cell operation, the crystal structure of which is the same as that of the NiSi2 phase. It can be concluded that NiSi2 in the composite not only accommodates the pronounced volume changes caused by the lithium uptake into silicon, but also contributes to the reversible capacity of the cell.

  10. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    SciTech Connect

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  11. Porous materials produced from incineration ash using thermal plasma technology.

    PubMed

    Yang, Sheng-Fu; Chiu, Wen-Tung; Wang, To-Mai; Chen, Ching-Ting; Tzeng, Chin-Ching

    2014-06-01

    This study presents a novel thermal plasma melting technique for neutralizing and recycling municipal solid waste incinerator (MSWI) ash residues. MSWI ash residues were converted into water-quenched vitrified slag using plasma vitrification, which is environmentally benign. Slag is adopted as a raw material in producing porous materials for architectural and decorative applications, eliminating the problem of its disposal. Porous materials are produced using water-quenched vitrified slag with Portland cement and foaming agent. The true density, bulk density, porosity and water absorption ratio of the foamed specimens are studied here by varying the size of the slag particles, the water-to-solid ratio, and the ratio of the weights of the core materials, including the water-quenched vitrified slag and cement. The thermal conductivity and flexural strength of porous panels are also determined. The experimental results show the bulk density and the porosity of the porous materials are 0.9-1.2 g cm(-3) and 50-60%, respectively, and the pore structure has a closed form. The thermal conductivity of the porous material is 0.1946 W m(-1) K(-1). Therefore, the slag composite materials are lightweight and thermal insulators having considerable potential for building applications.

  12. Ultrasonic Nondestructive Characterization of Porous Materials

    NASA Astrophysics Data System (ADS)

    Yang, Ningli

    2011-12-01

    Wave propagation in porous media is studied in a wide range of technological applications. In the manufacturing industry, determining porosity of materials in the manufacturing process is required for strict quality control. In the oil industry, acoustic signals and seismic surveys are used broadly to determine the physical properties of the reservoir rock which is a porous media filled with oil or gas. In porous noise control materials, a precise prediction of sound absorption with frequency and evaluation of tortuosity are necessary. Ultrasonic nondestructive methods are a very important tool for characterization of porous materials. The dissertation deals with two types of porous media: materials with relatively low and closed porosity and materials with comparatively high and open porosity. Numerical modeling, Finite Element simulations and experimental characterization are all discussed in this dissertation. First, ultrasonic scattering is used to determine the porosity in porous media with closed pores. In order get a relationship between the porosity in porous materials and ultrasonic scattering independently and to increase the sensitivity to obtain scattering information, ultrasonic imaging methods are applied and acoustic waves are focused by an acoustic lens. To verify the technique, engineered porous acrylic plates with varying porosity are measured by ultrasonic scanning and ultrasonic array sensors. Secondly, a laser based ultrasonic technique is explored for predicting the mechanical integrity and durability of cementitious materials. The technique used involves the measurement of the phase velocity of fast and slow longitudinal waves in water saturated cement paste. The slow wave velocity is related to the specimen's tortuosity. The fast wave speed is dependent on the elastic properties of porous solid. Experimental results detailing the generation and detection of fast and slow wave waves in freshly prepared and aged water-saturated cement samples

  13. Tissue engineering scaffold material of porous nanohydroxyapatite/polyamide 66.

    PubMed

    Xu, Qian; Lu, Hongyan; Zhang, Jingchao; Lu, Guoyu; Deng, Zhennan; Mo, Anchun

    2010-05-13

    The aim of the study was to investigate a porous nanohydroxyapatite/polyamide 66 (n-HA/PA66) scaffold material that was implanted into muscle and tibiae of 16 New Zealand white rabbits to evaluate the biocompatibility and osteogenesis and osteoinductivity of the materials in vivo. The samples were harvested at 2, 4, 12 and 26 weeks respectively, and subjected to histological analysis. At 2 weeks, the experiment showed that osteogenesis was detected in porous n-HA/PA66 composite and the density of new bone formation was similar to the surrounding host bone at 12 weeks. The study indicated that three-dimensional pore structures could facilitate cell adhesion, differentiation and proliferation, and help with fibrovascular and nerve colonization. In conclusion, porous n-HA/PA66 scaffold material could be a good candidate as a bone substitute material used in clinics due to its excellent histocompatibility, osteoconductivity and osteoinductivity.

  14. Modeling of nanostructured porous thermoelastic composites with surface effects

    NASA Astrophysics Data System (ADS)

    Nasedkin, A. V.; Nasedkina, A. A.; Kornievsky, A. S.

    2017-01-01

    The paper presents an integrated approach for determination of effective properties of anisotropic porous thermoelastic materials with a nanoscale stochastic porosity structure. This approach includes the effective moduli method for composite me-chanics, the simulation of representative volumes and the finite element method. In order to take into account nanoscale sizes of pores, the Gurtin-Murdoch model of surface stresses and the highly conducting interface model are used at the borders between material and pores. The general methodology for determination of effective properties of porous composites is demonstrated for a two-phase composite with special conditions for stresses and heat flux discontinuities at the phase interfaces. The mathematical statements of boundary value problems and the resulting formulas to determine the complete set of effective constants of the two-phase composites with arbitrary anisotropy and with surface properties are described; the generalized statements are formulated and the finite element approximations are given. It is shown that the homogenization procedures for porous composites with surface effects can be considered as special cases of the corresponding procedures for the two-phase composites with interphase stresses and heat fluxes if the moduli of nanoinclusions are negligibly small. These approaches have been implemented in the finite element package ANSYS for a model of porous material with cubic crystal system for various values of surface moduli, porosity and number of pores. It has been noted that the magnitude of the area of the interphase boundaries has influence on the effective moduli of the porous materials with nanosized structure.

  15. Porous multi-component material for the capture and separation of species of interest

    DOEpatents

    Addleman, Raymond S.; Chouyyok, Wilaiwan; Li, Xiaohong S.; Cinson, Anthony D.; Gerasimenko, Aleksandr A

    2016-06-21

    A method and porous multi-component material for the capture, separation or chemical reaction of a species of interest is disclosed. The porous multi-component material includes a substrate and a composite thin film. The composite thin film is formed by combining a porous polymer with a nanostructured material. The nanostructured material may include a surface chemistry for the capture of chemicals or particles. The composite thin film is coupled to the support or device surface. The method and material provides a simple, fast, and chemically and physically benign way to integrate nanostructured materials into devices while preserving their chemical activity.

  16. Porous polymeric materials for hydrogen storage

    DOEpatents

    Yu, Luping; Liu, Di-Jia; Yuan, Shengwen; Yang, Junbing

    2013-04-02

    A porous polymer, poly-9,9'-spirobifluorene and its derivatives for storage of H.sub.2 are prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  17. Enhanced electrochemical performance of porous activated carbon by forming composite with graphene as high-performance supercapacitor electrode material

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Hang; Yang, Jia-Ying; Wu, Xiong-Wei; Chen, Xiao-Qing; Yu, Jin-Gang; Wu, Yu-Ping

    2017-02-01

    In this work, a novel activated carbon containing graphene composite was developed using a fast, simple, and green ultrasonic-assisted method. Graphene is more likely a framework which provides support for activated carbon (AC) particles to form hierarchical microstructure of carbon composite. Scanning electron microscope (SEM), transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) surface area measurement, thermogravimetric analysis (TGA), Raman spectra analysis, XRD, and XPS were used to analyze the morphology and surface structure of the composite. The electrochemical properties of the supercapacitor electrode based on the as-prepared carbon composite were investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), charge/discharge, and cycling performance measurements. It exhibited better electrochemical performance including higher specific capacitance (284 F g-1 at a current density of 0.5 A g-1), better rate behavior (70.7% retention), and more stable cycling performance (no capacitance fading even after 2000 cycles). It is easier for us to find that the composite produced by our method was superior to pristine AC in terms of electrochemical performance due to the unique conductive network between graphene and AC.

  18. Engineering porous materials for fuel cell applications.

    PubMed

    Brandon, N P; Brett, D J

    2006-01-15

    Porous materials play an important role in fuel cell engineering. For example, they are used to support delicate electrolyte membranes, where mechanical integrity and effective diffusivity to fuel gases is critical; they are used as gas diffusion layers, where electronic conductivity and permeability to both gas and water is critical; and they are used to construct fuel cell electrodes, where an optimum combination of ionic conductivity, electronic conductivity, porosity and catalyst distribution is critical. The paper will discuss these characteristics, and introduce the materials and processing methods used to engineer porous materials within two of the leading fuel cell variants, the solid oxide fuel cell and the polymer electrolyte membrane fuel cell.

  19. Porous networks of CdSe nanocrystal chains from ultrafine Cd(OH)2 nanowires and their composite materials.

    PubMed

    Ko, Sungwook; Kim, Jeong Won; Moon, Geon Dae; Shim, Hee-Sang; Kim, Won Bae; Jeong, Unyong

    2010-03-16

    Long ultrathin Cd(OH)(2) nanowires have been selectively grown on silica colloids in a basic aqueous condition. The Cd(OH)(2) nanowires could be detached from the surface of the silica colloids by simply applying ultrasonication and then transformed into isolated CdSe nanocrystal chains. When the transformation into CdSe was conducted without detaching the Cd(OH)(2) nanowires, nanoporous CdSe shells composed of wire-like nanocrystal chains were produced. The good solubility of the Cd(OH)(2) nanowires in both hydrophilic and hydrophobic solvents facilitated the formation of composites with quantum dots, magnetic particles, organic molecules, and polymers. Embedding premade quantum dots possessed broad light absorption range and enhanced photoluminescence. Large amount of superparamagnetic particles endowed a fast magnetic response in addition to the fluorescence. Composites of organic/nanocrystal chains were readily fabricated by employing the electrostatic attraction between the positively charged Cd(OH)(2) nanowires and negatively charged polymers or small molecules.

  20. Tuneable porous carbonaceous materials from renewable resources.

    PubMed

    White, Robin J; Budarin, Vitaly; Luque, Rafael; Clark, James H; Macquarrie, Duncan J

    2009-12-01

    Porous carbon materials are ubiquitous with a wide range of technologically important applications, including separation science, heterogeneous catalyst supports, water purification filters, stationary phase materials, as well as the developing future areas of energy generation and storage applications. Hard template routes to ordered mesoporous carbons are well established, but whilst offering different mesoscopic textural phases, the surface of the material is difficult to chemically post-modify and processing is energy, resource and step intensive. The production of carbon materials from biomass (i.e. sugars or polysaccharides) is a relatively new but rapidly expanding research area. In this tutorial review, we compare and contrast recently reported routes to the preparation of porous carbon materials derived from renewable resources, with examples of our previously reported mesoporous polysaccharide-derived "Starbon" carbonaceous material technology.

  1. Porous silicon confers bioactivity to polycaprolactone composites in vitro.

    PubMed

    Henstock, J R; Ruktanonchai, U R; Canham, L T; Anderson, S I

    2014-04-01

    Silicon is an essential element for healthy bone development and supplementation with its bioavailable form (silicic acid) leads to enhancement of osteogenesis both in vivo and in vitro. Porous silicon (pSi) is a novel material with emerging applications in opto-electronics and drug delivery which dissolves to yield silicic acid as the sole degradation product, allowing the specific importance of soluble silicates for biomaterials to be investigated in isolation without the elution of other ionic species. Using polycaprolactone as a bioresorbable carrier for porous silicon microparticles, we found that composites containing pSi yielded more than twice the amount of bioavailable silicic acid than composites containing the same mass of 45S5 Bioglass. When incubated in a simulated body fluid, the addition of pSi to polycaprolactone significantly increased the deposition of calcium phosphate. Interestingly, the apatites formed had a Ca:P ratio directly proportional to the silicic acid concentration, indicating that silicon-substituted hydroxyapatites were being spontaneously formed as a first order reaction. Primary human osteoblasts cultured on the surface of the composite exhibited peak alkaline phosphatase activity at day 14, with a proportional relationship between pSi content and both osteoblast proliferation and collagen production over 4 weeks. Culturing the composite with J744A.1 murine macrophages demonstrated that porous silicon does not elicit an immune response and may even inhibit it. Porous silicon may therefore be an important next generation biomaterial with unique properties for applications in orthopaedic tissue engineering.

  2. New porous polycaprolactone-silica composites for bone regeneration.

    PubMed

    Plazas Bonilla, Clara E; Trujillo, Sara; Demirdögen, Bermali; Perilla, Jairo E; Murat Elcin, Y; Gómez Ribelles, José L

    2014-07-01

    Polycaprolactone porous membranes were obtained by freeze extraction of dioxane from polycaprolactone-dioxane solid solutions. Porosities as high as 90% with interconnected structures were obtained by this technique. A silica phase was synthesized inside the pores of the polymer membrane by sol-gel reaction using tetraethylorthosilicate (TEOS) as a silica precursor and catalyzed in acidic and basic conditions. Two different morphologies of the inorganic phase were obtained depending on the type of catalyst. In acid catalyzed sol-gel reaction, a homogeneous layer of silica was deposited on the pores, and discrete microspheres were synthesized on the pore walls when a basic catalyst was used. The morphology of the inorganic phase influenced the mechanical and thermal behavior, as well as the hydrophilic character of the composites. Bioactivity of the porous materials was tested in vitro by measuring the deposition of hydroxyapatite on the surfaces of the porous composite membranes. Polycaprolactone/silica composites revealed a superior bioactivity performance compared with that of the pure polymer; evidenced by the characteristic cauliflower structures on the material surface, increase in weight and Ca/P ratio of the hydroxyapatite layer. Also, the acid catalyzed composites presented better bioactivity than the base catalyzed composites, evidencing the importance in the morphology of the silica phase. Copyright © 2014. Published by Elsevier B.V.

  3. Porous Silicon—A Versatile Host Material

    PubMed Central

    Granitzer, Petra; Rumpf, Klemens

    2010-01-01

    This work reviews the use of porous silicon (PS) as a nanomaterial which is extensively investigated and utilized for various applications, e.g., in the fields of optics, sensor technology and biomedicine. Furthermore the combination of PS with one or more materials which are also nanostructured due to their deposition within the porous matrix is discussed. Such nanocompounds offer a broad avenue of new and interesting properties depending on the kind of involved materials as well as on their morphology. The filling of the pores performed by electroless or electrochemical deposition is described, whereas different morphologies, reaching from micro- to macro pores are utilized as host material which can be self-organized or fabricated by prestructuring. For metal-deposition within the porous structures, both ferromagnetic and non-magnetic metals are used. Emphasis will be put on self-arranged mesoporous silicon, offering a quasi-regular pore arrangement, employed as template for filling with ferromagnetic metals. By varying the deposition parameters the precipitation of the metal structures within the pores can be tuned in geometry and spatial distribution leading to samples with desired magnetic properties. The correlation between morphology and magnetic behaviour of such semiconducting/magnetic systems will be determined. Porous silicon and its combination with a variety of filling materials leads to nanocomposites with specific physical properties caused by the nanometric size and give rise to a multiplicity of potential applications in spintronics, magnetic and magneto-optic devices, nutritional food additives as well as drug delivery.

  4. Gas sensing using porous materials for automotive applications.

    PubMed

    Wales, Dominic J; Grand, Julien; Ting, Valeska P; Burke, Richard D; Edler, Karen J; Bowen, Chris R; Mintova, Svetlana; Burrows, Andrew D

    2015-07-07

    Improvements in the efficiency of combustion within a vehicle can lead to reductions in the emission of harmful pollutants and increased fuel efficiency. Gas sensors have a role to play in this process, since they can provide real time feedback to vehicular fuel and emissions management systems as well as reducing the discrepancy between emissions observed in factory tests and 'real world' scenarios. In this review we survey the current state-of-the-art in using porous materials for sensing the gases relevant to automotive emissions. Two broad classes of porous material - zeolites and metal-organic frameworks (MOFs) - are introduced, and their potential for gas sensing is discussed. The adsorptive, spectroscopic and electronic techniques for sensing gases using porous materials are summarised. Examples of the use of zeolites and MOFs in the sensing of water vapour, oxygen, NOx, carbon monoxide and carbon dioxide, hydrocarbons and volatile organic compounds, ammonia, hydrogen sulfide, sulfur dioxide and hydrogen are then detailed. Both types of porous material (zeolites and MOFs) reveal great promise for the fabrication of sensors for exhaust gases and vapours due to high selectivity and sensitivity. The size and shape selectivity of the zeolite and MOF materials are controlled by variation of pore dimensions, chemical composition (hydrophilicity/hydrophobicity), crystal size and orientation, thus enabling detection and differentiation between different gases and vapours.

  5. Porous polymeric materials for hydrogen storage

    DOEpatents

    Yu, Luping [Hoffman Estates, IL; Liu, Di-Jia [Naperville, IL; Yuan, Shengwen [Chicago, IL; Yang, Junbing [Westmont, IL

    2011-12-13

    Porous polymers, tribenzohexazatriphenylene, poly-9,9'-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H.sub.2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO.sub.2/steam oxidation and supercritical water treatment.

  6. Superhydrophobicity on nanostructured porous hydrophilic material

    NASA Astrophysics Data System (ADS)

    Jiang, Hong-Ren; Chan, Deng-Chi

    2016-04-01

    By applying laser oxidation, ablation, and plasma treatment to modify a surface of polydimethylsiloxane, we show that creating hydrophobic sites on an originally superhydrophilic nanostructured porous surface greatly changes the wetting properties of the surface. The modified surface may even become superhydrophobic while the ratio of added hydrophobic site to the surface is relatively low. The relation between the contact angles and the effect of hydrophobic sites is further tested in blade scraping method and a similar result is also obtained. This method to achieve superhydrophobicity on the hydrophilic nanostructured porous material may open possibilities for achieving superhydrophobicity and enable functional superhydrophobic surfaces with heterogeneous components.

  7. Nanophase and Composite Optical Materials

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This talk will focus on accomplishments, current developments, and future directions of our work on composite optical materials for microgravity science and space exploration. This research spans the order parameter from quasi-fractal structures such as sol-gels and other aggregated or porous media, to statistically random cluster media such as metal colloids, to highly ordered materials such as layered media and photonic bandgap materials. The common focus is on flexible materials that can be used to produce composite or artificial materials with superior optical properties that could not be achieved with homogeneous materials. Applications of this work to NASA exploration goals such as terraforming, biosensors, solar sails, solar cells, and vehicle health monitoring, will be discussed.

  8. Nanophase and Composite Optical Materials

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This talk will focus on accomplishments, current developments, and future directions of our work on composite optical materials for microgravity science and space exploration. This research spans the order parameter from quasi-fractal structures such as sol-gels and other aggregated or porous media, to statistically random cluster media such as metal colloids, to highly ordered materials such as layered media and photonic bandgap materials. The common focus is on flexible materials that can be used to produce composite or artificial materials with superior optical properties that could not be achieved with homogeneous materials. Applications of this work to NASA exploration goals such as terraforming, biosensors, solar sails, solar cells, and vehicle health monitoring, will be discussed.

  9. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  10. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  11. Filter casting nanoscale porous materials

    DOEpatents

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Jushua David

    2013-12-10

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing monolith.

  12. Filter casting nanoscale porous materials

    DOEpatents

    Hayes, Joel Ryan; Nyce, Gregory Walker; Kuntz, Joshua David

    2012-07-24

    A method of producing nanoporous material includes the steps of providing a liquid, providing nanoparticles, producing a slurry of the liquid and the nanoparticles, removing the liquid from the slurry, and producing a monolith.

  13. Porous graphene materials for advanced electrochemical energy storage and conversion devices.

    PubMed

    Han, Sheng; Wu, Dongqing; Li, Shuang; Zhang, Fan; Feng, Xinliang

    2014-02-12

    Combining the advantages from both porous materials and graphene, porous graphene materials have attracted vast interests due to their large surface areas, unique porous structures, diversified compositions and excellent electronic conductivity. These unordinary features enable porous graphene materials to serve as key components in high-performance electrochemical energy storage and conversion devices such as lithium ion batteries, supercapacitors, and fuel cells. This progress report summarizes the typical fabrication methods for porous graphene materials with micro-, meso-, and macro-porous structures. The structure-property relationships of these materials and their application in advanced electrochemical devices are also discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Filling Porous Microspheres With Magnetic Material

    NASA Technical Reports Server (NTRS)

    Chang, Manchium; Colvin, Michael S.

    1990-01-01

    New process produces magnetic microspheres with controllable sizes, compositions, and properties for use in medical diagnostic tests, biological research, and chemical processes. Paramagnetic microspheres also made with process. Porous plastic microspheres prepared by polymerization of monomer in diluent by cross-linking agent. When diluent removed, it leaves tiny pores throughout polymerized spheres. Size and distribution of pores determined by amount and type of diluent and cross-linking agent.

  15. Gravitational Effects on Combustion Synthesis of Advanced Porous Materials

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Thorne, K.

    2000-01-01

    Combustion Synthesis (self-Propagating high-temperature synthesis-(SHS)) of porous Ti-TiB(x), composite materials has been studied with respect to the sensitivity to the SHS reaction parameters of stoichiometry, green density, gasifying agents, ambient pressure, diluents and gravity. The main objective of this research program is to engineer the required porosity and mechanical properties into the composite materials to meet the requirements of a consumer, such as for the application of bone replacement materials. Gravity serves to restrict the gas expansion and the liquid movement during SHS reaction. As a result, gravitational forces affect the microstructure and properties of the SHS products. Reacting these SHS systems in low gravity in the KC-135 aircraft has extended the ability to form porous products. This paper will emphasize the effects of gravity (low g, 1g and 2g) on the SHS reaction process, and the microstructure and properties of the porous composite. Some of biomedical results are also discussed.

  16. Activation of porous MOF materials

    DOEpatents

    Hupp, Joseph T; Farha, Omar K

    2013-04-23

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritical fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  17. Activation of porous MOF materials

    DOEpatents

    Hupp, Joseph T; Farha, Omar K

    2014-04-01

    A method for the treatment of solvent-containing MOF material to increase its internal surface area involves introducing a liquid into the MOF in which liquid the solvent is miscible, subjecting the MOF to supercritical conditions for a time to form supercritical fluid, and releasing the supercritical conditions to remove the supercritcal fluid from the MOF. Prior to introducing the liquid into the MOF, occluded reaction solvent, such as DEF or DMF, in the MOF can be exchanged for the miscible solvent.

  18. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  19. Roughening of porous SiCOH materials in fluorocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Bailly, F.; David, T.; Chevolleau, T.; Darnon, M.; Posseme, N.; Bouyssou, R.; Ducote, J.; Joubert, O.; Cardinaud, C.

    2010-07-01

    Porous SiCOH materials integration for integrated circuits faces serious challenges such as roughening during the etch process. In this study, atomic force microscopy is used to investigate the kinetics of SiCOH materials roughening when they are etched in fluorocarbon plasmas. We show that the root mean square roughness and the correlation length linearly increase with the etched depth, after an initiation period. We propose that: (1) during the first few seconds of the etch process, the surface of porous SiCOH materials gets denser. (2) Cracks are formed, leading to the formation of deep and narrow pits. (3) Plasma radicals diffuse through those pits and the pore network and modify the porous material at the bottom of the pits. (4) The difference in material density and composition between the surface and the bottom of the pits leads to a difference in etch rate and an amplification of the roughness. In addition to this intrinsic roughening mechanism, the presence of a metallic mask (titanium nitride) can lead to an extrinsic roughening mechanism, such as micromasking caused by metallic particles originating form the titanium nitride mask.

  20. Disorder-induced stiffness degradation of highly disordered porous materials

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Monfared, Siavash; Radjaï, Farhang; Pellenq, Roland; Ulm, Franz-Josef

    2017-09-01

    The effective mechanical behavior of multiphase solid materials is generally modeled by means of homogenization techniques that account for phase volume fractions and elastic moduli without considering the spatial distribution of the different phases. By means of extensive numerical simulations of randomly generated porous materials using the lattice element method, the role of local textural properties on the effective elastic properties of disordered porous materials is investigated and compared with different continuum micromechanics-based models. It is found that the pronounced disorder-induced stiffness degradation originates from stress concentrations around pore clusters in highly disordered porous materials. We identify a single disorder parameter, φsa, which combines a measure of the spatial disorder of pores (the clustering index, sa) with the pore volume fraction (the porosity, φ) to scale the disorder-induced stiffness degradation. Thus, we conclude that the classical continuum micromechanics models with one spherical pore phase, due to their underlying homogeneity assumption fall short of addressing the clustering effect, unless additional texture information is introduced, e.g. in form of the shift of the percolation threshold with disorder, or other functional relations between volume fractions and spatial disorder; as illustrated herein for a differential scheme model representative of a two-phase (solid-pore) composite model material.

  1. Templated Electrodeposition of Highly Porous Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Yang, Han-Chang; Lim, Stephanie; Liu, Jiabin; Wu, Qian; Cheng, X. M.

    2011-03-01

    The fabrication of nanoporous materials has been of great interest for applications such as biosensors, photonic materials and energy storage. Compared to many other methods, the templated electrodeposition method is low cost, fast, and compatible with large-scale production. In this work, we developed a templated electrochemical deposition technique for fabricating highly ordered and highly porous nanostructured materials. The fabrication involves the following steps: self-assembly of monodispersed polystyrene spheres, electrochemical deposition of the desired materials, and sphere removal by a dissolution process. Deposition of Au and Ni layered metallic nanoporous structures were studied using different electrolytes at appropriate potentials. The pore size of the materials was tuned by using different sizes of template polystyrene spheres ranging from 50nm to 1000nm. Scanning electron microscopy images confirmed the highly ordered 3-dimensional hexagonal closed pack (hcp) structures in the samples. The templated electrochemical deposition technique provides a promising alternative approach to preparing highly porous anode materials for battery applications. Work supported by Bryn Mawr K/G fund for faculty research.

  2. Porous material for protection from electromagnetic radiation

    SciTech Connect

    Kazmina, Olga E-mail: bdushkina89@mail.ru; Dushkina, Maria E-mail: bdushkina89@mail.ru; Suslyaev, Valentin; Semukhin, Boris

    2014-11-14

    It is shown that the porous glass crystalline material obtained by a low temperature technology can be used not only for thermal insulation, but also for lining of rooms as protective screens decreasing harmful effect of electromagnetic radiation as well as to establish acoustic chambers and rooms with a low level of electromagnetic background. The material interacts with electromagnetic radiation by the most effective way in a high frequency field (above 100 GHz). At the frequency of 260 GHz the value of the transmission coefficient decreases approximately in a factor times in comparison with foam glass.

  3. Dynamic behavior of particulate/porous energetic materials

    NASA Astrophysics Data System (ADS)

    Nesterenko, Vitali F.; Chiu, Po-Hsun; Braithwaite, C. H.; Collins, Adam; Williamson, David Martin; Olney, Karl L.; Benson, David; McKenzie, Francesca

    2012-03-01

    Dynamic behavior of particulate/porous energetic materials in a broad range of dynamic conditions (low velocity impact and explosively driven expansion of rings) is discussed. Samples of these materials were fabricated using Cold Isostatic Pressing and Hot Isostatic Pressing with and without vacuum encapsulation. The current interest in these materials is due to the combination of their high strength and output of energy under critical conditions of mechanical deformation. They may exhibit high compressive and tensile strength with the ability to undergo bulk distributed fracture resulting in small size reactive fragments. The mechanical properties of these materials and the fragment sizes produced by fracturing are highly sensitive to mesostructure. For example, the dynamic strength of Al-W composites with fine W particles is significantly larger than the strength of composites with coarse W particles at the same porosity. The morphology of W inclusions had a strong effect on the dynamic strength and fracture pattern. Experimental results are compared with numerical data.

  4. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  5. Composite material dosimeters

    DOEpatents

    Miller, Steven D.

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  6. A hexangular ring-core NiCo2O4 porous nanosheet/NiO nanoparticle composite as an advanced anode material for LIBs and catalyst for CO oxidation applications.

    PubMed

    He, Yanyan; Xu, Liqiang; Zhai, Yanjun; Li, Aihua; Chen, Xiaoxia

    2015-10-11

    A porous hexangular ring-core NiCo2O4 nanosheet/NiO nanoparticle composite has been synthesized using a hydrothermal method followed by an annealing process in air. The as-obtained composite as an anode material exhibits a high initial discharge capacity of 1920.6 mA h g(-1) at a current density of 100 mA g(-1) and the capacity is retained at 1567.3 mA h g(-1) after 50 cycles. When it is utilized as a catalyst for CO oxidation, complete CO conversion is achieved at 115 °C and a catalytic life test demonstrates the good stability of the composite.

  7. High Temperature Tolerant Ceramic Composites Having Porous Interphases

    DOEpatents

    Kriven, Waltraud M.; Lee, Sang-Jin

    2005-05-03

    In general, this invention relates to a ceramic composite exhibiting enhanced toughness and decreased brittleness, and to a process of preparing the ceramic composite. The ceramic composite comprises a first matrix that includes a first ceramic material, preferably selected from the group including alumina (Al2O3), mullite (3Al2O3.2SiO2), yttrium aluminate garnet (YAG), yttria stabilized zirconia (YSZ), celsian (BaAl2Si2O8) and nickel aluminate (NiAl2O4). The ceramic composite also includes a porous interphase region that includes a substantially non-sinterable material. The non-sinterable material can be selected to include, for example, alumina platelets. The platelets lie in random 3-D orientation and provide a debonding mechanism, which is independent of temperature in chemically compatible matrices. The non-sinterable material induces constrained sintering of a ceramic powder resulting in permanent porosity in the interphase region. For high temperature properties, addition of a sinterable ceramic powder to the non-sinterable material provides sufficiently weak debonding interphases. The ceramic composite can be provided in a variety of forms including a laminate, a fibrous monolith, and a fiber-reinforced ceramic matrix. In the laminated systems, intimate mixing of strong versus tough microstructures were tailored by alternating various matrix-to-interphase thickness ratios to provide the bimodal laminate.

  8. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

  9. Structural parameter effect of porous material on sound absorption performance of double-resonance material

    NASA Astrophysics Data System (ADS)

    Fan, C.; Tian, Y.; Wang, Z. Q.; Nie, J. K.; Wang, G. K.; Liu, X. S.

    2017-06-01

    In view of the noise feature and service environment of urban power substations, this paper explores the idea of compound impedance, fills some porous sound-absorption material in the first resonance cavity of the double-resonance sound-absorption material, and designs a new-type of composite acoustic board. We conduct some acoustic characterizations according to the standard test of impedance tube, and research on the influence of assembly order, the thickness and area density of the filling material, and back cavity on material sound-absorption performance. The results show that the new-type of acoustic board consisting of aluminum fibrous material as inner structure, micro-porous board as outer structure, and polyester-filled space between them, has good sound-absorption performance for low frequency and full frequency noise. When the thickness, area density of filling material and thickness of back cavity increase, the sound absorption coefficient curve peak will move toward low frequency.

  10. Mechanical properties of a porous mullite material

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.

    1991-01-01

    Modulus of rupture specimens were used to determine crack growth parameters of a porous mullite material. Strength testing was performed in ambient and moist environments. The power law crack growth rate parameters n and 1n B in 50 percent relative humidity were found to be 44.98 and 0.94, respectively. The inert strength, fracture toughness, and elastic modulus were also determined and found to be 19 MPa, 055 MPa(m) exp 1/2, and 11.6 GPa, respectively.

  11. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

  12. Tough Composite Materials

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Compiler); Johnson, N. J. (Compiler); Teichman, L. A. (Compiler)

    1984-01-01

    Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

  13. Acoustical properties of highly porous fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1979-01-01

    Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.

  14. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  15. Porous silicon as a neural electrode material.

    PubMed

    Persson, Jörgen; Danielsen, Nils; Wallman, Lars

    2007-01-01

    The electrical properties of the solid state/fluid (Ringer solution) interface for phosphorous- and boron-doped porous silicon are reported and the benefits of using porous silicon as neural recording electrodes are discussed. The impedance, reactance and resistance for doped porous and planar silicon, in Ringer solution, were compared to gold electrodes. Planar silicon displayed approximately a three times higher reactance than porous electrodes. The phosphorous-doped porous electrodes displayed a similar reactance compared to the gold electrodes.

  16. Porous Organic Materials: Strategic Design and Structure-Function Correlation.

    PubMed

    Das, Saikat; Heasman, Patrick; Ben, Teng; Qiu, Shilun

    2017-02-08

    Porous organic materials have garnered colossal interest with the scientific fraternity due to their excellent gas sorption performances, catalytic abilities, energy storage capacities, and other intriguing applications. This review encompasses the recent significant breakthroughs and the conventional functions and practices in the field of porous organic materials to find useful applications and imparts a comprehensive understanding of the strategic evolution of the design and synthetic approaches of porous organic materials with tunable characteristics. We present an exhaustive analysis of the design strategies with special emphasis on the topologies of crystalline and amorphous porous organic materials. In addition to elucidating the structure-function correlation and state-of-the-art applications of porous organic materials, we address the challenges and restrictions that prevent us from realizing porous organic materials with tailored structures and properties for useful applications.

  17. Multifunctional materials and composites

    DOEpatents

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  18. Wire Cloth as Porous Material for Transpiration-cooled Walls

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Kinsler, Martin R; Cochran, Reeves B

    1951-01-01

    The permeability characteristics and tensile strength of a porous material developed from stainless-steel corduroy wire cloth for use in transpiration-cooled walls where the primary stresses are in one direction were investigated. The results of this investigation are presented and compared with similar results obtained with porous sintered metal compacts. A much wider range of permeabilities is obtainable with the wire cloth than with the porous metal compacts considered and the ultimate tensile strength in the direction of the primary stresses for porous materials produced from three mesh sizes of wire cloth are from two to three times the ultimate tensile strengths of the porous metal compacts.

  19. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  20. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  1. Advanced Porous Coating for Low-Density Ceramic Insulation Materials

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Churchward, Rex; Katvala, Victor; Stewart, David; Balter, Aliza

    1988-01-01

    The need for improved coatings on low-density reusable surface insulation (RSI) materials used on the space shuttle has stimulated research into developing tougher coatings. The processing of a new porous composite "coating" for RST called toughened unipiece fibrous insulation Is discussed. Characteristics including performance in a simulated high-speed atmospheric entry, morphological structure before and after this exposure, resistance to Impact, and thermal response to a typical heat pulse are described. It is shown that this coating has improved impact resistance while maintaining optical and thermal properties comparable to the previously available reaction-cured glass coating.

  2. Advanced Porous Coating for Low-Density Ceramic Insulation Materials

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Churchward, Rex; Katvala, Victor; Stewart, David; Balter, Aliza

    1988-01-01

    The need for improved coatings on low-density reusable surface insulation (RSI) materials used on the space shuttle has stimulated research into developing tougher coatings. The processing of a new porous composite "coating" for RST called toughened unipiece fibrous insulation Is discussed. Characteristics including performance in a simulated high-speed atmospheric entry, morphological structure before and after this exposure, resistance to Impact, and thermal response to a typical heat pulse are described. It is shown that this coating has improved impact resistance while maintaining optical and thermal properties comparable to the previously available reaction-cured glass coating.

  3. Molecular Rotors Built in Porous Materials.

    PubMed

    Comotti, Angiolina; Bracco, Silvia; Sozzani, Piero

    2016-09-20

    Molecules and materials can show dynamic structures in which the dominant mechanism is rotary motion. The single mobile elements are defined as "molecular rotors" and exhibit special properties (compared with their static counterparts), being able in perspective to greatly modulate the dielectric response and form the basis for molecular motors that are designed with the idea of making molecules perform a useful mechanical function. The construction of ordered rotary elements into a solid is a necessary feature for such design, because it enables the alignment of rotors and the fine-tuning of their steric and dipolar interactions. Crystal surfaces or bulk crystals are the most suitable to adapt rotors in 2D or 3D arrangements and engineer juxtaposition of the rotors in an ordered way. Nevertheless, it is only in recent times that materials showing porosity and remarkably low density have undergone tremendous development. The characteristics of large free volume combine well with the virtually unhindered motion of the molecular rotors built into their structure. Indeed, the molecular rotors are used as struts in porous covalent and supramolecular architectures, spanning both hybrid and fully organic materials. The modularity of the approach renders possible a variety of rotor geometrical arrangements in both robust frameworks stable up to 850 K and self-assembled molecular materials. A nanosecond (fast dynamics) motional regime can be achieved at temperatures lower than 240 K, enabling rotor arrays operating in the solid state even at low temperatures. Furthermore, in nanoporous materials, molecular rotors can interact with the diffusing chemical species, be they liquids, vapors, or gases. Through this chemical intervention, rotor speed can be modulated at will, enabling a new generation of rotor-containing materials sensitive to guests. In principle, an applied electric field can be the stimulus for chemical release from porous materials. The effort needed to

  4. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  5. Determination of connectivity in porous materials.

    PubMed

    Caccianotti, L; Lucchelli, E; Ramello, S; Spanò, G

    2012-12-01

    A method of practical use was set up to determine the connectivity in a porous material, modelling the physical system as a lattice, whose coordination number is assumed to be an index of connectivity itself. This task was approached through the theory of percolation and input data were provided by two different experimental techniques, that is, adsorption/desorption of nitrogen and mercury porosimetry. The overall procedure is based on the calculation of probability f(P) of occupation of the porous channels and of probability F(P) of percolation. In the framework of the above--mentioned lattice model, the average coordination number Z is calculated through the best fitting of a universal curve to the values found for F(P) and f(P), adopting as fitting parameter the ratio L between the characteristic linear dimension of the whole lattice and the characteristic linear dimension of each of its cells. The procedure described was implemented through a numerical code and applied to three commercial alumina. A simple empirical relationship was found between Z and the percolation threshold, showing an excellent coefficient of statistical correlation. The three products proved different in connectivity, allowing subtle distinctions from each other, despite their hysteresis cycles in the adsorption/desorption process appeared quite similar from a qualitative standpoint.

  6. Acoustics of multiscale sorptive porous materials

    NASA Astrophysics Data System (ADS)

    Venegas, R.; Boutin, C.; Umnova, O.

    2017-08-01

    This paper investigates sound propagation in multiscale rigid-frame porous materials that support mass transfer processes, such as sorption and different types of diffusion, in addition to the usual visco-thermo-inertial interactions. The two-scale asymptotic method of homogenization for periodic media is successively used to derive the macroscopic equations describing sound propagation through the material. This allowed us to conclude that the macroscopic mass balance is significantly modified by sorption, inter-scale (micro- to/from nanopore scales) mass diffusion, and inter-scale (pore to/from micro- and nanopore scales) pressure diffusion. This modification is accounted for by the dynamic compressibility of the effective saturating fluid that presents atypical properties that lead to slower speed of sound and higher sound attenuation, particularly at low frequencies. In contrast, it is shown that the physical processes occurring at the micro-nano-scale do not affect the macroscopic fluid flow through the material. The developed theory is exemplified by introducing an analytical model for multiscale sorptive granular materials, which is experimentally validated by comparing its predictions with acoustic measurements on granular activated carbons. Furthermore, we provide empirical evidence supporting an alternative method for measuring sorption and mass diffusion properties of multiscale sorptive materials using sound waves.

  7. Large Deformations of a Soft Porous Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2016-04-01

    Compressing a porous material will decrease the volume of the pore space, driving fluid out. Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with Terzaghi's effective stress and linear elasticity in a linearized kinematic framework. Linear poroelasticity is a good model for very small deformations, but it becomes increasingly inappropriate for moderate to large deformations, which are common in the context of phenomena such as swelling and damage, and for soft materials such as gels and tissues. The well-known theory of large-deformation poroelasticity combines Darcy's law with Terzaghi's effective stress and nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in biomechanics to model large elastic deformations in soft tissues and in geomechanics to model large elastoplastic deformations in soils. Here, we first provide an overview and discussion of this theory with an emphasis on the physics of poromechanical coupling. We present the large-deformation theory in an Eulerian framework to minimize the mathematical complexity, and we show how this nonlinear theory simplifies to linear poroelasticity under the assumption of small strain. We then compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of two uniaxial model problems: fluid outflow driven by an applied mechanical load (the consolidation problem) and compression driven by a steady fluid throughflow. We explore the steady and dynamical errors associated with the linear model in both situations, as well as the impact of introducing a deformation-dependent permeability. We show that the error in linear poroelasticity is due primarily to kinematic

  8. Sputtering from a Porous Material by Penetrating Ions

    NASA Technical Reports Server (NTRS)

    Rodriguez-Nieva, J. F.; Bringa, E. M.; Cassidy, T. A.; Johnson, R. E.; Caro, A.; Fama, M.; Loeffler, M.; Baragiola, R. A.; Farkas, D.

    2012-01-01

    Porous materials are ubiquitous in the universe and weathering of porous surfaces plays an important role in the evolution of planetary and interstellar materials. Sputtering of porous solids in particular can influence atmosphere formation, surface reflectivity, and the production of the ambient gas around materials in space, Several previous studies and models have shown a large reduction in the sputtering of a porous solid compared to the sputtering of the non-porous solid. Using molecular dynamics simulations we study the sputtering of a nanoporous solid with 55% of the solid density. We calculate the electronic sputtering induced by a fast, penetrating ion, using a thermal spike representation of the deposited energy. We find that sputtering for this porous solid is, surprisingly, the same as that for a full-density solid, even though the sticking coefficient is high.

  9. Sputtering from a Porous Material by Penetrating Ions

    NASA Technical Reports Server (NTRS)

    Rodriguez-Nieva, J. F.; Bringa, E. M.; Cassidy, T. A.; Johnson, R. E.; Caro, A.; Fama, M.; Loeffler, M.; Baragiola, R. A.; Farkas, D.

    2012-01-01

    Porous materials are ubiquitous in the universe and weathering of porous surfaces plays an important role in the evolution of planetary and interstellar materials. Sputtering of porous solids in particular can influence atmosphere formation, surface reflectivity, and the production of the ambient gas around materials in space, Several previous studies and models have shown a large reduction in the sputtering of a porous solid compared to the sputtering of the non-porous solid. Using molecular dynamics simulations we study the sputtering of a nanoporous solid with 55% of the solid density. We calculate the electronic sputtering induced by a fast, penetrating ion, using a thermal spike representation of the deposited energy. We find that sputtering for this porous solid is, surprisingly, the same as that for a full-density solid, even though the sticking coefficient is high.

  10. SPUTTERING FROM A POROUS MATERIAL BY PENETRATING IONS

    SciTech Connect

    Rodriguez-Nieva, J. F.; Bringa, E. M.; Cassidy, T. A.; Caro, A.; Loeffler, M. J.; Farkas, D.

    2011-12-10

    Porous materials are ubiquitous in the universe and weathering of porous surfaces plays an important role in the evolution of planetary and interstellar materials. Sputtering of porous solids in particular can influence atmosphere formation, surface reflectivity, and the production of the ambient gas around materials in space. Several previous studies and models have shown a large reduction in the sputtering of a porous solid compared to the sputtering of the non-porous solid. Using molecular dynamics simulations we study the sputtering of a nanoporous solid with 55% of the solid density. We calculate the electronic sputtering induced by a fast, penetrating ion, using a thermal spike representation of the deposited energy. We find that sputtering for this porous solid is, surprisingly, the same as that for a full-density solid, even though the sticking coefficient is high.

  11. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  12. Electrically conductive composite material

    DOEpatents

    Clough, Roger L.; Sylwester, Alan P.

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  13. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  14. Electrically conductive composite material

    SciTech Connect

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  15. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  16. Composite Structural Materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1984-01-01

    The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

  17. Hydrophobic Porous Material Adsorbs Small Organic Molecules

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Hickey, Gregory S.

    1994-01-01

    Composite molecular-sieve material has pore structure designed specifically for preferential adsorption of organic molecules for sizes ranging from 3 to 6 angstrom. Design based on principle that contaminant molecules become strongly bound to surface of adsorbent when size of contaminant molecules is nearly same as that of pores in adsorbent. Material used to remove small organic contaminant molecules from vacuum systems or from enclosed gaseous environments like closed-loop life-support systems.

  18. Imparting amphiphobicity on single-crystalline porous materials.

    PubMed

    Sun, Qi; He, Hongming; Gao, Wen-Yang; Aguila, Briana; Wojtas, Lukasz; Dai, Zhifeng; Li, Jixue; Chen, Yu-Sheng; Xiao, Feng-Shou; Ma, Shengqian

    2016-10-31

    The sophisticated control of surface wettability for target-specific applications has attracted widespread interest for use in a plethora of applications. Despite the recent advances in modification of non-porous materials, surface wettability control of porous materials, particularly single crystalline, remains undeveloped. Here we contribute a general method to impart amphiphobicity on single-crystalline porous materials as demonstrated by chemically coating the exterior of metal-organic framework (MOF) crystals with an amphiphobic surface. As amphiphobic porous materials, the resultant MOF crystals exhibit both superhydrophobicity and oleophobicity in addition to retaining high crystallinity and intact porosity. The chemical shielding effect resulting from the amphiphobicity of the MOFs is illustrated by their performances in water/organic vapour adsorption, as well as long-term ultrastability under highly humidified CO2 environments and exceptional chemical stability in acid/base aqueous solutions. Our work thereby pioneers a perspective to protect crystalline porous materials under various chemical environments for numerous applications.

  19. Imparting amphiphobicity on single-crystalline porous materials

    NASA Astrophysics Data System (ADS)

    Sun, Qi; He, Hongming; Gao, Wen-Yang; Aguila, Briana; Wojtas, Lukasz; Dai, Zhifeng; Li, Jixue; Chen, Yu-Sheng; Xiao, Feng-Shou; Ma, Shengqian

    2016-10-01

    The sophisticated control of surface wettability for target-specific applications has attracted widespread interest for use in a plethora of applications. Despite the recent advances in modification of non-porous materials, surface wettability control of porous materials, particularly single crystalline, remains undeveloped. Here we contribute a general method to impart amphiphobicity on single-crystalline porous materials as demonstrated by chemically coating the exterior of metal-organic framework (MOF) crystals with an amphiphobic surface. As amphiphobic porous materials, the resultant MOF crystals exhibit both superhydrophobicity and oleophobicity in addition to retaining high crystallinity and intact porosity. The chemical shielding effect resulting from the amphiphobicity of the MOFs is illustrated by their performances in water/organic vapour adsorption, as well as long-term ultrastability under highly humidified CO2 environments and exceptional chemical stability in acid/base aqueous solutions. Our work thereby pioneers a perspective to protect crystalline porous materials under various chemical environments for numerous applications.

  20. Thermal conductivity and electrical resistivity of porous materials

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1972-01-01

    Process for determining thermal conductivity and electrical resistivity of porous materials is described. Characteristics of materials are identified and used in development of mathematical models. Limitations of method are examined.

  1. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

  2. The AMWCNTs supported porous nanocarbon composites for high-performance supercapacitor

    SciTech Connect

    Fu, Yu; Sun, Li; Tian, Chungui; Lin, Haibo

    2013-11-15

    Graphical abstract: The AMWCNTs supported porous nanocarbon composites were prepared by a easy method. The composites had shown good performances for electrochemical energy storage with high specific capacitance and good stability. - Highlights: • The AMWCNTs supported porous nanocarbon composites were prepared. • The composites have good conductivity and large BET specific surface areas. • The composites had shown high specific capacitance, and good stability. - Abstract: The porous nanocarbons supported by acid-treated multiwall carbon nanotubes (PC@ACNTs) were prepared by the combination of the hydrothermal polymerization of glucose on ACNTs, carbonization under N{sub 2} protection and final activation with ZnCl{sub 2}. The materials were characterized by transmission electron microscopy, X-ray powder diffraction and Raman spectra. The results indicated that the ACNTs distributed uniformly into the framework of the porous carbon. The composites showed the high BET specific surface area up to 1712 m{sup 2} g{sup −1} and good conductivity. The electrochemical measurements indicated that the composites processed good performances for electrochemical energy storage (210 F g{sup −1} at 0.5 A g{sup −1}), and high stability (>99.9%), much higher than the corresponding ACNTs, porous carbons and the samples prepared by using raw MWCNTs as source. The good performance of PC@ACNTs composites was relative with the synergy of good conductivity of ACNTs and large specific surface areas of PC.

  3. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2001-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  4. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  5. Porous silicon as a substrate material for potentiometric biosensors

    NASA Astrophysics Data System (ADS)

    Thust, Marion; Schöning, M. J.; Frohnhoff, S.; Arens-Fischer, R.; Kordos, P.; Lüth, H.

    1996-01-01

    For the first time porous silicon has been investigated for the purpose of application as a substrate material for potentiometric biosensors operating in aqueous solutions. Porous silicon was prepared from differently doped silicon substrates by a standard anodic etching process. After oxidation, penicillinase, an enzyme sensitive to penicillin, was bound to the porous structure by physical adsorption. To characterize the electrochemical properties of the so build up penicillin biosensor, capacitance - voltage (C - V) measurements were performed on these field-effect structures.

  6. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  7. Carbon-covered Fe3O4 hollow cubic hierarchical porous composite as the anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Shouhui; Zhou, Rihui; Chen, Yaqin; Fu, Yuanyuan; Li, Ping; Song, Yonghai; Wang, Li

    2017-04-01

    In this work, Prussian blue nanocrystals, a kind of cubic metal-organic frameworks, was firstly covered by a uniform layer of resorcinol-formaldehyde (RF) resin, and then followed with heat treatment at different pyrolysis temperatures. The effects of pyrolysis temperature on the morphologies, phase, pore size, and electrochemical performance of the pyrolysis products were studied in this work. The composite generated at 600 ∘C, FexC600, was a hollow cubic composite of Fe3O4 covered by a thin RF-derived carbon layer. The carbon layer on FexC600 was a robust and conductive protective layer, which can accommodate Fe3O4 NPs and withstand the huge volume change of Fe3O4 during the process of discharge and charge. When used as anodes for lithium-ion batteries, FexC600 showed excellent electrochemical performance. It delivered a discharge capacity of 1126 mAh g-1 with a coulombic efficiency of 98.8% at the current density of 100 mA g-1 after 100 times discharge/charge cycling. It even delivered a capacity of 492 mAh g-1 at the current density of 500 mA g-1. This cubic hollow composite would be a promising alternative anode material for lithium-ion batteries.

  8. Preparation of bioactive porous HA/PCL composite scaffolds

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Guo, L. Y.; Yang, X. B.; Weng, J.

    2008-12-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  9. DDT modeling and shock compression experiments of porous or damaged energetic materials

    SciTech Connect

    Baer, M.R.; Anderson, M.U.; Graham, R.A.

    1994-05-01

    In this presentation, we present modeling of DDT in porous energetic materials and experimental studies of a time-resolved, shock compression of highly porous inert and reactive materials. This combined theoretical and experimental studies explore the nature of the microscale processes of consolidation, deformation and reaction which are key features of the shock response of porous or damaged energetic materials. The theoretical modeling is based on the theory of mixtures in which multiphase mixtures are treated in complete nonequilibrium allowing for internal boundary effects associated mass/momentum and energy exchange between phases, relative flow, rate-dependent compaction behavior, multistage chemistry and interphase boundary effects. Numerous studies of low-velocity impacts using a high resolution adaptive finite element method are presented which replicate experimental observations. The incorporation of this model into multi-material hydrocode analysis will be discussed to address the effects of confinement and its influence on accelerated combustion behavior. The experimental studies will focus on the use of PVDF piezoelectric polymer stress-rate gauge to precisely measure the input and propagating shock stress response of porous materials. In addition to single constituent porous materials, such as granular HMX, we have resolved shock waves in porous composite intermetallic powders that confirm a dispersive wave nature which is highly morphologically and material dependent. This document consists of viewgraphs from the poster session.

  10. Permeability of porous materials for liquid and gases

    NASA Astrophysics Data System (ADS)

    Krainov, V. P.; Smirnov, B. M.; Tereshonok, D. V.

    2014-11-01

    It is shown that propagation of liquids and gases through a porous material has a different character, namely, the viscosity characterizes this process for liquids, whereas for gases it is determined by collisions of the gas molecules with the skeleton of the porous material. The analog of the Kozeny-Carman formula in liquids for the Darcy coefficient or the permeability coefficient is represented for gases. The transition between these limiting cases results from the relation between the mean free path of an individual molecule in a liquid or gas λ and the mean free path of this molecule with respect to its scattering on the skeleton of a porous material.

  11. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D [Oak Ridge, TN; Ripley, Edward B [Knoxville, TN; Ludtka, Gerard M [Oak Ridge, TN

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  12. Deformation Timescales of Porous Volcanic Materials

    NASA Astrophysics Data System (ADS)

    Quane, S.; Friedlander, B.; Robert, G.; Lynn, H.

    2007-12-01

    We describe results from 20 high-temperature, constant strain rate and constant load deformation experiments on natural pyroclastic materials. Experiments were run unconfined and under variable H2O confining pressures at temperatures between 650 and 900 C. Starting materials comprised 4.3 cm diameter, 6 cm length cores of sintered Rattlesnake Tuff rhyolite ash with starting porosities of 70 percent. Experimental displacement was controlled to achieve total strain values between 10 and 90 percent. In thin section, the deformed experimental end products exhibit striking similarities to all facies of natural welded pyroclastic rocks including variably flattened pumice fiamme and systematically deformed bubble wall shards. To quantify the amount of strain accumulation, we placed three manually rounded 1 cm diameter pumice lapilli at different heights in each experimental product. Axial ratios (x-axis dimension/y-axis dimension) of the deformed lapilli (fiamme) show a systematic increase with increased deformation. To further quantify strain, we measured flattening ratios of originally spherical bubble wall shards. These analyses are compared to similar measurements on natural samples to evaluate current methods of quantifying deformation in welded pyroclastic facies. Stress-strain and strain-time experimental results indicate that the glassy, porous aggregates have a strain- dependent rheology; the effective viscosity of the mixture increases non-linearly with decreasing porosity. Temperature, rather than stress is the dominant factor controlling the rheology of these materials. Results also indicate that the presence of moderate H2O pressure allows for viscous deformation (e.g., welding) to occur at significantly lower temperatures than in anhydrous conditions. Results from these experiments are used to develop a constitutive relationship in which the effective viscosity of the experimental cores is predicted using melt viscosity, sample porosity and an empirically

  13. METHOD OF IMPREGNATING A POROUS MATERIAL

    DOEpatents

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  14. Fabrication of porous materials (metal, metal oxide and semiconductor) through an aerosol-assisted route

    NASA Astrophysics Data System (ADS)

    Sohn, Hiesang

    Porous materials have gained attraction owing to their vast applications in catalysts, sensors, energy storage devices, bio-devices and other areas. To date, various porous materials were synthesized through soft and hard templating approaches. However, a general synthesis method for porous non-oxide materials, metal alloys and semiconductors with tunable structure, composition and morphology has not been developed yet. To address this challenge, this thesis presents an aerosol method towards the synthesis of such materials and their applications for catalysis, hydrogen storage, Li-batteries and photo-catalysis. The first part of this thesis presents the synthesis of porous metals, metal oxides, and semiconductors with controlled pore structure, crystalline structure and morphology. In these synthesis processes, metal salts and organic ligands were employed as precursors to create porous metal-carbon frameworks. During the aerosol process, primary metal clusters and nanoparticles were formed, which were coagulated/ aggregated forming the porous particles. Various porous particles, such as those of metals (e.g., Ni, Pt, Co, Fe, and Ni xPt(1-x)), metal oxides (e.g., Fe3O4 and SnO2) and semiconductors (e.g., CdS, CuInS2, CuInS 2x-ZnS(1-x), and CuInS2x-TiO2(1-x)) were synthesized. The morphology, porous structure and crystalline structure of the particles were regulated through both templating and non-templating methods. The second part of this thesis explores the applications of these materials, including propylene hydrogenation and H2 uptake capacity of porous Ni, NiPt alloys and Ni-Pt composites, Li-storage of Fe3O4 and SnO2, photodegradation of CuInS2-based semiconductors. The effects of morphology, compositions, and porous structure on the device performance were systematically investigated. Overall, this dissertation work unveiled a simple synthesis approach for porous particles of metals, metal alloys, metal oxides, and semiconductors with controlled

  15. Modified Composite Materials Workshop

    NASA Technical Reports Server (NTRS)

    Dicus, D. L. (Compiler)

    1978-01-01

    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

  16. Calcium phosphate porous composites and ceramics prospective as bone implants

    NASA Astrophysics Data System (ADS)

    Rabadjieva, D.; Tepavitcharova, S.; Gergulova, R.; Sezanova, K.; Ilieva, R.; Gabrashanska, M.; Alexandrov, M.

    2013-12-01

    Two types of calcium phosphate materials prospective as bone implants were prepared in the shape of granules and their biochemical behavior was tested by in vivo studies: (i) composite materials consisting of gelatin and bi-phase ion modified calcium phosphate Mg,Zn-(HA + β-TCP); and (ii) ceramics of ion modified calcium phosphate Mg,Zn-(HA + β-TCP). The starting fine powders were prepared by the method of biomimetic precipitation of the precursors followed by hightemperature treatment. Then granules were prepared by dispersion in liquid paraffin of a thick suspension containing 20% of gelatin gel and thus prepared calcium phosphate powders (1:1 ratios). The composite granules were obtained by subsequent hardening in a glutaraldehyde solution, while the highly porous ceramic granules - by further sintering at 1100°C. The in vivo behavior of both types of granules was tested in experimental rat models. Bone defects were created in rat tibia and were filled with the implants. Biochemical studies were performed. Three months after operation both bio-materials displayed analogous behavior.

  17. Evaluation and Optimization of Porous and Hierarchically Porous Materials for Applications in Energy Storage and Conversion

    NASA Astrophysics Data System (ADS)

    Petkovich, Nicholas Daniel

    Materials with nm- and mum-scale pores are important in the design of efficient, safe, and versatile energy conversion and storage systems. In the research detailed in this thesis, the synthesis and testing of porous materials for lithium-ion battery anodes and for thermochemical fuel production are explored. The preparation, modification, and performance of various carbon and transition metal oxide composite materials for lithium-ion battery electrodes are discussed in the first part of this work. Of particular interest are TiO 2/carbon composites that possess a three-dimensionally ordered macroporous (3DOM) structure, and, in some instances, additional mesoporosity. By changing the chelating agent used to stabilize the precursor for TiO2, crystallites of TiO2 can either be localized on the surface of the 3DOM structure or buried within the carbon matrix. This positioning has important ramifications for the electrochemical properties of the materials. In addition, the content of carbon in the composite materials can be altered. For carbon-rich composites, improved Li+ insertion/extraction capacities are attained by changing the voltage window used for cycling. Carbon can also be removed altogether, allowing for the formation 3DOM TiO¬2 with good electrochemical properties Conversion of the 3DOM TiO2 to sodium titanate is demonstrated via the ambient pressure treatment of the 3DOM material in sodium hydroxide. Subsequent ion-exchange with H+ results in the formation of hydrogen titanate materials with extremely high surface areas. A remnant of the 3DOM structure remains in these materials. Cerium oxide, praseodymium oxide and perovskite oxide-based catalysts for the thermochemical conversion of solar energy and abundant feedstocks (H2O and CO2) into useable fuels (H2 and CO) are investigated in the second part of this work. All of these materials possess a 3DOM structure and have moderate surface areas intended to improve reaction kinetics. Mixed oxides containing

  18. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

  19. Elastic properties of a porous titanium-bone tissue composite.

    PubMed

    Rubshtein, A P; Makarova, E B; Rinkevich, A B; Medvedeva, D S; Yakovenkova, L I; Vladimirov, A B

    2015-01-01

    The porous titanium implants were introduced into the condyles of tibias and femurs of sheep. New bone tissue fills the pore, and the porous titanium-new bone tissue composite is formed. The duration of composite formation was 4, 8, 24 and 52 weeks. The formed composites were extracted from the bone and subjected to a compression test. The Young's modulus was calculated using the measured stress-strain curve. The time dependence of the Young's modulus of the composite was obtained. After 4 weeks the new bone tissue that filled the pores does not affect the elastic properties of implants. After 24 and 52 weeks the Young's modulus increases by 21-34% and 62-136%, respectively. The numerical calculations of the elasticity of porous titanium-new bone tissue composite were conducted using a simple polydisperse model that is based on the consideration of heterogeneous structure as a continuous medium with spherical inclusions of different sizes. The kinetics of the change in the elasticity of the new bone tissue is presented via the intermediate characteristics, namely the relative ultimate tensile strength or proportion of mature bone tissue in the bone tissue. The calculated and experimentally measured values of the Young's modulus of the composite are in good agreement after 8 weeks of composite formation. The properties of the porous titanium-new bone tissue composites can only be predicted when data on the properties of new bone tissue are available after 8 weeks of contact between the implant and the native bone.

  20. Novel hybrid multifunctional magnetoelectric porous composite films

    NASA Astrophysics Data System (ADS)

    Martins, P.; Gonçalves, R.; Lopes, A. C.; Venkata Ramana, E.; Mendiratta, S. K.; Lanceros-Mendez, S.

    2015-12-01

    Novel multifunctional porous films have been developed by the integration of magnetic CoFe2O4 (CFO) nanoparticles into poly(vinylidene fluoride)-Trifuoroethylene (P(VDF-TrFE)), taking advantage of the synergies of the magnetostrictive filler and the piezoelectric polymer. The porous films show a piezoelectric response with an effective d33 coefficient of -22 pC/N-1, a maximum magnetization of 12 emu g-1 and a maximum magnetoelectric coefficient of 9 mV cm-1 Oe-1. In this way, a multifunctional membrane has been developed suitable for advanced applications ranging from biomedical to water treatment.

  1. Dynamic behavior of particulate/porous energetic materials

    NASA Astrophysics Data System (ADS)

    Nesterenko, Vitali

    2011-06-01

    Dynamic behavior of particulate/porous energetic materials in a broad range of impact conditions and types of deformation (shock, shear) will be discussed. Samples of these materials were fabricated using Cold Isostatic Pressing, sintering and Hot Isostatic Pressing with and without vacuum encapsulation. The current interest in these materials is due to the combination of their high strength with energy efficiency under critical conditions of mechanical deformation. They may exhibit high compressive and tensile strength with the ability to bulk distributed fracture resulting in a small size reactive fragments and possible reaction on later stages. The results of dynamic deformation and fragmentation of these materials in conditions of low velocity (10 m/s), high energy impact, under localized deformation in single and multiple shear bands generated using explosively driven Thick Walled Cylinder method will be discussed. The mechanical properties of these materials are highly sensitive to mesostructure. For example, a dynamic strength of Al-W composites with fine W particles is significantly larger than the strength of composite with the coarse W particles at the same porosity. Morphology of W inclusions had a strong effect on dynamic strength. Samples with W wires arranged in axial direction with the same volume content of components had a highest dynamic strength. Porosity in these materials can provide a strain hardening mechanism effect due to in situ densification which was observed experimentally for cold isostatically pressed Al and Al-coarse W powders. Experimental results will be compared with available numerical data. The support for this project provided by ONR MURI N00014-07-1-0740 (Program Officer Dr. Clifford Bedford).

  2. Predicting Pressure Drop In Porous Materials

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1990-01-01

    Theory developed to predict drop in pressure based on drag of individual fibers. Simple correlation method for data also developed. Helps in predicting flow characteristics of many strain-isolation pad (SIP) glow geometries in Shuttle Orbiter tile system. Also helps in predicting venting characteristics of tile assemblies during ascent and leakage of hot gas under tiles during descent. Useful in study of mechanics of flows through fibrous and porous media, and procedures applicable to purged fiberglass insulation, dialysis filters, and other fibrous and porous media.

  3. Predicting Pressure Drop In Porous Materials

    NASA Technical Reports Server (NTRS)

    Lawing, Pierce L.

    1990-01-01

    Theory developed to predict drop in pressure based on drag of individual fibers. Simple correlation method for data also developed. Helps in predicting flow characteristics of many strain-isolation pad (SIP) glow geometries in Shuttle Orbiter tile system. Also helps in predicting venting characteristics of tile assemblies during ascent and leakage of hot gas under tiles during descent. Useful in study of mechanics of flows through fibrous and porous media, and procedures applicable to purged fiberglass insulation, dialysis filters, and other fibrous and porous media.

  4. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine.

    PubMed

    Sun, Ming-Hui; Huang, Shao-Zhuan; Chen, Li-Hua; Li, Yu; Yang, Xiao-Yu; Yuan, Zhong-Yong; Su, Bao-Lian

    2016-06-13

    Over the last decade, significant effort has been devoted to the applications of hierarchically structured porous materials owing to their outstanding properties such as high surface area, excellent accessibility to active sites, and enhanced mass transport and diffusion. The hierarchy of porosity, structural, morphological and component levels in these materials is key for their high performance in all kinds of applications. The introduction of hierarchical porosity into materials has led to a significant improvement in the performance of materials. Herein, recent progress in the applications of hierarchically structured porous materials from energy conversion and storage, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine is reviewed. Their potential future applications are also highlighted. We particularly dwell on the relationship between hierarchically porous structures and properties, with examples of each type of hierarchically structured porous material according to its chemical composition and physical characteristics. The present review aims to open up a new avenue to guide the readers to quickly obtain in-depth knowledge of applications of hierarchically porous materials and to have a good idea about selecting and designing suitable hierarchically porous materials for a specific application. In addition to focusing on the applications of hierarchically porous materials, this comprehensive review could stimulate researchers to synthesize new advanced hierarchically porous solids.

  5. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  6. Composite ion exchange materials

    SciTech Connect

    Amarasinghe, S.; Zook, L.; Leddy, J.

    1994-12-31

    Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

  7. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2016-03-01

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  8. Method of tissue repair using a composite material

    DOEpatents

    Hutchens, Stacy A; Woodward, Jonathan; Evans, Barbara R; O'Neill, Hugh M

    2014-03-18

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  9. TESTING ANTIMICROBIAL EFFICACY ON POROUS MATERIALS

    EPA Science Inventory

    The efficacy of antimicrobial treatments to eliminate or control biological growth in the indoor environment can easily be tested on nonporous surfaces. However, the testing of antimicrobial efficacy on porous surfaces, such as those found in the indoor environment [i.e., gypsum ...

  10. TESTING ANTIMICROBIAL EFFICACY ON POROUS MATERIALS

    EPA Science Inventory

    The efficacy of antimicrobial treatments to eliminate or control biological growth in the indoor environment can easily be tested on nonporous surfaces. However, the testing of antimicrobial efficacy on porous surfaces, such as those found in the indoor environment [i.e., gypsum ...

  11. Porous Materials from Thermally Activated Kaolinite: Preparation, Characterization and Application

    PubMed Central

    Luo, Jun; Jiang, Tao; Li, Guanghui; Peng, Zhiwei; Rao, Mingjun; Zhang, Yuanbo

    2017-01-01

    In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also investigated. The results show that the specific surface area (SSA) of porous alumina/silica increases with silica/alumina dissolution, but without marked change of the BJH pore size. Furthermore, change in pore volume is more dependent on activation temperature. The porous alumina and silica obtained from alkali leaching of kaolinite activated at 1150 °C for 15 min and acid leaching of kaolinite activated at 850 °C for 15 min are mesoporous, with SSAs, BJH pore sizes and pore volumes of 55.8 m2/g and 280.3 m2/g, 6.06 nm and 3.06 nm, 0.1455 mL/g and 0.1945 mL/g, respectively. According to the adsorption tests, porous alumina has superior adsorption capacities for Cu2+, Pb2+ and Cd2+ compared with porous silica and activated carbon. The maximum capacities of porous alumina for Cu2+, Pb2+ and Cd2+ are 134 mg/g, 183 mg/g and 195 mg/g, respectively, at 30 °C. PMID:28773002

  12. Porous Materials from Thermally Activated Kaolinite: Preparation, Characterization and Application.

    PubMed

    Luo, Jun; Jiang, Tao; Li, Guanghui; Peng, Zhiwei; Rao, Mingjun; Zhang, Yuanbo

    2017-06-12

    In the present study, porous alumina/silica materials were prepared by selective leaching of silicon/aluminum constituents from thermal-activated kaolinite in inorganic acid or alkali liquor. The correlations between the characteristics of the prepared porous materials and the dissolution properties of activated kaolinite were also investigated. The results show that the specific surface area (SSA) of porous alumina/silica increases with silica/alumina dissolution, but without marked change of the BJH pore size. Furthermore, change in pore volume is more dependent on activation temperature. The porous alumina and silica obtained from alkali leaching of kaolinite activated at 1150 °C for 15 min and acid leaching of kaolinite activated at 850 °C for 15 min are mesoporous, with SSAs, BJH pore sizes and pore volumes of 55.8 m²/g and 280.3 m²/g, 6.06 nm and 3.06 nm, 0.1455 mL/g and 0.1945 mL/g, respectively. According to the adsorption tests, porous alumina has superior adsorption capacities for Cu(2+), Pb(2+) and Cd(2+) compared with porous silica and activated carbon. The maximum capacities of porous alumina for Cu(2+), Pb(2+) and Cd(2+) are 134 mg/g, 183 mg/g and 195 mg/g, respectively, at 30 °C.

  13. Migration Mechanism for Atomic Hydrogen in Porous Carbon Materials

    SciTech Connect

    Narayanan, B.; Zhao, Y. F.; Ciobanu, C. V.

    2012-05-14

    To explain the fast kinetics of H in porous carbon, we propose that the migration relies on H hopping from a carbon nanotube (CNT) to another. Using density functional theory, we have found that the barrier for H hopping becomes smaller than that for diffusion along a tube for certain CNT separations, decreasting to less than 0.5 eV for separations of -3.1 {angstrom}. Such significant reduction occurs irrespective of radius, chirality, registry, and orientation of the two CNTs: the diffusion is thus facilitated by the porous nature of the material itself. The mechanism proposed is applicable for any porous carbon-based nanomaterials.

  14. Thermal conductivity and electrical resistivity of porous material

    NASA Technical Reports Server (NTRS)

    Koh, J. C. Y.; Fortini, A.

    1971-01-01

    Thermal conductivity and electrical resistivity of porous materials, including 304L stainless steel Rigimesh, 304L stainless steel sintered spherical powders, and OFHC sintered spherical powders at different porosities and temperatures are reported and correlated. It was found that the thermal conductivity and electrical resistivity can be related to the solid material properties and the porosity of the porous matrix regardless of the matrix structure. It was also found that the Wiedermann-Franz-Lorenz relationship is valid for the porous materials under consideration. For high conductivity materials, the Lorenz constant and the lattice component of conductivity depend on the material and are independent of the porosity. For low conductivity, the lattice component depends on the porosity as well.

  15. Modelling and Microstructural Characterization of Sintered Metallic Porous Materials.

    PubMed

    Depczynski, Wojciech; Kazala, Robert; Ludwinek, Krzysztof; Jedynak, Katarzyna

    2016-07-12

    This paper presents selected characteristics of the metallic porous materials produced by the sintering of metal powders. The authors focus on materials produced from the iron powder (Fe) of ASC 100.29 and Distaloy SE. ASC 100.29 is formed by atomization and has a characteristic morphology. It consists of spherical particles of different sizes forming agglomerates. Distaloy SE is also based on the sponge-iron. The porous material is prepared using the patented method of sintering the mixture of iron powder ASC 100.29, Fe(III) oxide, Distaloy SE and Fe(III) oxide in the reducing atmosphere of dissociated ammonia. As a result, the materials with open pores of micrometer sizes are obtained. The pores are formed between iron particles bonded by diffusion bridges. The modelling of porous materials containing diffusion bridges that allows for three-dimensional (3D) imaging is presented.

  16. Modelling and Microstructural Characterization of Sintered Metallic Porous Materials

    PubMed Central

    Depczynski, Wojciech; Kazala, Robert; Ludwinek, Krzysztof; Jedynak, Katarzyna

    2016-01-01

    This paper presents selected characteristics of the metallic porous materials produced by the sintering of metal powders. The authors focus on materials produced from the iron powder (Fe) of ASC 100.29 and Distaloy SE. ASC 100.29 is formed by atomization and has a characteristic morphology. It consists of spherical particles of different sizes forming agglomerates. Distaloy SE is also based on the sponge-iron. The porous material is prepared using the patented method of sintering the mixture of iron powder ASC 100.29, Fe(III) oxide, Distaloy SE and Fe(III) oxide in the reducing atmosphere of dissociated ammonia. As a result, the materials with open pores of micrometer sizes are obtained. The pores are formed between iron particles bonded by diffusion bridges. The modelling of porous materials containing diffusion bridges that allows for three-dimensional (3D) imaging is presented. PMID:28773690

  17. European Composite Honeycomb Material

    NASA Astrophysics Data System (ADS)

    Tschepe, Christoph; Sauerbrey, Martin; Klebor, Maximillian; Henriksen, Torben

    2014-06-01

    A European CFRP honeycomb material for high demanding structure applications like antenna reflectors and optical benches was developed in the frame of an ESA GSTP project.The composite honeycomb was designed according to requirements defined by the European space industry. A developed manufacturing technique based on prepreg moulding enables the production of homogeneous CFRP honeycomb blocks. All characteristic material properties, including compression, tension and shear strength and CTE, were determined in a comprehensive verification test campaign. Competitiveness to comparable products was further verified by a representative breadboard.

  18. Process for fabricating composite material having high thermal conductivity

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  19. Highly stable porous silicon-carbon composites as label-free optical biosensors.

    PubMed

    Tsang, Chun Kwan; Kelly, Timothy L; Sailor, Michael J; Li, Yang Yang

    2012-12-21

    A stable, label-free optical biosensor based on a porous silicon-carbon (pSi-C) composite is demonstrated. The material is prepared by electrochemical anodization of crystalline Si in an HF-containing electrolyte to generate a porous Si template, followed by infiltration of poly(furfuryl) alcohol (PFA) and subsequent carbonization to generate the pSi-C composite as an optically smooth thin film. The pSi-C sensor is significantly more stable toward aqueous buffer solutions (pH 7.4 or 12) compared to thermally oxidized (in air, 800 °C), hydrosilylated (with undecylenic acid), or hydrocarbonized (with acetylene, 700 °C) porous Si samples prepared and tested under similar conditions. Aqueous stability of the pSi-C sensor is comparable to related optical biosensors based on porous TiO(2) or porous Al(2)O(3). Label-free optical interferometric biosensing with the pSi-C composite is demonstrated by detection of rabbit IgG on a protein-A-modified chip and confirmed with control experiments using chicken IgG (which shows no affinity for protein A). The pSi-C sensor binds significantly more of the protein A capture probe than porous TiO(2) or porous Al(2)O(3), and the sensitivity of the protein-A-modified pSi-C sensor to rabbit IgG is found to be ~2× greater than label-free optical biosensors constructed from these other two materials.

  20. Advances in monoliths and related porous materials for microfluidics

    PubMed Central

    Knob, Radim; Sahore, Vishal; Woolley, Adam T.

    2016-01-01

    In recent years, the use of monolithic porous polymers has seen significant growth. These materials present a highly useful support for various analytical and biochemical applications. Since their introduction, various approaches have been introduced to produce monoliths in a broad range of materials. Simple preparation has enabled their easy implementation in microchannels, extending the range of applications where microfluidics can be successfully utilized. This review summarizes progress regarding monoliths and related porous materials in the field of microfluidics between 2010 and 2015. Recent developments in monolith preparation, solid-phase extraction, separations, and catalysis are critically discussed. Finally, a brief overview of the use of these porous materials for analysis of subcellular and larger structures is given. PMID:27190564

  1. Imparting amphiphobicity on single-crystalline porous materials

    PubMed Central

    Sun, Qi; He, Hongming; Gao, Wen-Yang; Aguila, Briana; Wojtas, Lukasz; Dai, Zhifeng; Li, Jixue; Chen, Yu-Sheng; Xiao, Feng-Shou; Ma, Shengqian

    2016-01-01

    The sophisticated control of surface wettability for target-specific applications has attracted widespread interest for use in a plethora of applications. Despite the recent advances in modification of non-porous materials, surface wettability control of porous materials, particularly single crystalline, remains undeveloped. Here we contribute a general method to impart amphiphobicity on single-crystalline porous materials as demonstrated by chemically coating the exterior of metal-organic framework (MOF) crystals with an amphiphobic surface. As amphiphobic porous materials, the resultant MOF crystals exhibit both superhydrophobicity and oleophobicity in addition to retaining high crystallinity and intact porosity. The chemical shielding effect resulting from the amphiphobicity of the MOFs is illustrated by their performances in water/organic vapour adsorption, as well as long-term ultrastability under highly humidified CO2 environments and exceptional chemical stability in acid/base aqueous solutions. Our work thereby pioneers a perspective to protect crystalline porous materials under various chemical environments for numerous applications. PMID:27796363

  2. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  3. Highly Porous and Compositionally Intermediate Ordinary Chondrite LAP 031047

    NASA Astrophysics Data System (ADS)

    Wittmann, A.; Kring, D. A.; Friedrich, J. M.; Troiano, J.; Macke, R. J.; Britt, D. T.; Swindle, T. D.; Weirich, J. R.; Rumble, D.

    2010-03-01

    LAP 031047 is a highly porous ordinary chondrite with a very young Ar-Ar age, and oxygen isotopic, and bulk and silicate mineral composition intermediate between H- and L-chondrites: Shock-lithified debris of a distinct ordinary chondrite asteroid?

  4. Composite separators and redox flow batteries based on porous separators

    DOEpatents

    Li, Bin; Wei, Xiaoliang; Luo, Qingtao; Nie, Zimin; Wang, Wei; Sprenkle, Vincent L.

    2016-01-12

    Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.

  5. Application of porous materials for laminar flow control

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1978-01-01

    Fairly smooth porous materials were elected for study Doweave; Fibermetal; Dynapore; and perforated titanium sheet. Factors examined include: surface smoothness; suction characteristics; porosity; surface impact resistance; and strain compatibility. A laminar flow control suction glove arrangement was identified with material combinations compatible with thermal expansion and structural strain.

  6. Modeling of porous elastic viscoplastic material with tensile failure

    SciTech Connect

    Glenn, L A; Rubin, M; Vorobiev, O

    1998-11-01

    This work describes simple but comprehensive constitutive equations that model a number of physical phenomena exhibited by dry porous geological materials and metals. Moreover, formulas have been developed for robust numerical integration of the evolution equations at the element level that can be easily implemented into standard computer programs for dynamic response of materials.

  7. Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials Research

    DTIC Science & Technology

    2008-11-04

    nano-sized high surface area ceramic powders in geopolymers and geopolymeric composites. On the other hand, the Thinky ARE-250 mixer was purchased to...DATES COVERED (From - To) 6/15/07 - 6/14/08 4. TITLE AND SUBTITLE Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials... Geopolymers are a new class of ceramic materials which are best understood as rigid inorganic, aluminosilicate, hydrated gels, charge-balanced by cations

  8. New approach for porous materials obtaining using centrifugal casting

    NASA Astrophysics Data System (ADS)

    Bălţătescu, O.; Axinte, M.; Barbu, G.; Manole, V.

    2015-11-01

    It has been presented different methods for obtaining porous materials, (mainly used for metallic foams) and highlighting a new technology developed in the Faculty of Materials science and engineering, of Iasi. Our technology for obtaining porous materials is called centrifugal casting for porous materials. This technology is included in the method number 8: co-pressing of a metal powder with a leachable powder being in the same time a newer approach in the porous materials field. This technology is currently in the developmental phase. Since now we made experiments on the metallic materials, aluminum alloys. The technology is briefly described in this paper. The obtained parts were used for making samples in order to characterize the properties of the materials. The cellular structure of metallic foams requires special precautions that must be taken in characterization and testing. In this paper we have characterized the samples structurally by its cell topology (open cells, closed cells), relative density, cell size and cell shape and anisotropy. Also it was used scanning electron microscopy (SEM) which is straightforward; the only necessary precaution is that relating to surface preparation.

  9. Characterization and comparison of pore landscapes in crystalline porous materials.

    PubMed

    Pinheiro, Marielle; Martin, Richard L; Rycroft, Chris H; Jones, Andrew; Iglesia, Enrique; Haranczyk, Maciej

    2013-07-01

    Crystalline porous materials have many applications, including catalysis and separations. Identifying suitable materials for a given application can be achieved by screening material databases. Such a screening requires automated high-throughput analysis tools that characterize and represent pore landscapes with descriptors, which can be compared using similarity measures in order to select, group and classify materials. Here, we discuss algorithms for the calculation of two types of pore landscape descriptors: pore size distributions and stochastic rays. These descriptors provide histogram representations that encode the geometrical properties of pore landscapes. Their calculation involves the Voronoi decomposition as a technique to map and characterize accessible void space inside porous materials. Moreover, we demonstrate pore landscape comparisons for materials from the International Zeolite Association (IZA) database of zeolite frameworks, and illustrate how the choice of pore descriptor and similarity measure affects the perspective of material similarity exhibiting a particular emphasis and sensitivity to certain aspects of structures. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Methods for removing contaminant matter from a porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2010-11-16

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  11. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    NASA Astrophysics Data System (ADS)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  12. Photoluminescence structure, and composition of laterally anodized porous Si

    NASA Technical Reports Server (NTRS)

    Jung, K. H.; Shih, S.; Kwong, D. L.; George, T.; Lin, T. L.; Liu, H. Y.; Zavada, J.

    1992-01-01

    We have studied the photoluminescence (PL), structure, and composition of laterally anodized porous Si. Broad PL peaks were observed centered between about 620-720 nm with strong intensities measured from 500 to 860 nm. Macroscopic variations in PL intensities and peak positions are explained in terms of the structure and anodization process. Structural studies suggest that the PL appears to originate from a multilayered porous Si structure in which the top two layers are amorphous. X-ray diffraction spectra also suggest the presence of a significant amorphous phase. In addition to high concentrations of B and N, we have measured extremely high concentrations much greater than 10 exp 20 cu cm of H, C, O, and F. Our results indicate that laterally anodized porous Si does not fit the crystalline Si quantum wire model prevalent in the literature suggesting that some other structure is responsible for the observed luminescence.

  13. Thermal Elasticity Stresses Study in Composite System 'Porous Silicon - Liquid'

    NASA Astrophysics Data System (ADS)

    Isaiev, M.; Voitenko, K.; Doroshchuk, V.; Andrusenko, D.; Kuzmich, A.; Skryshevskii, A.; Lysenko, V.; Burbelo, R.

    In this report the study of the elasticity stresses arising in the composite system "porous silicon -etching solution" will be discussed. For this purpose, the modified etching cell with piezoelectric transducer was adopted It was shown that the thermally induced pressures of the liquid confined inside of pores influenced dramatically on the time-domain shape of voltage signal detected on electrodes of the piezoelectric transducer. Therefore, the significant role of these pressures on the formation of general elastic stresses in the system was stated. The dependence of their magnitude and time delay on the thickness of porous silicon layer was found. Thus, the obtained experimental results could be a background for the new technique for the porous silicon in-situ study.

  14. Photoluminescence structure, and composition of laterally anodized porous Si

    NASA Technical Reports Server (NTRS)

    Jung, K. H.; Shih, S.; Kwong, D. L.; George, T.; Lin, T. L.; Liu, H. Y.; Zavada, J.

    1992-01-01

    We have studied the photoluminescence (PL), structure, and composition of laterally anodized porous Si. Broad PL peaks were observed centered between about 620-720 nm with strong intensities measured from 500 to 860 nm. Macroscopic variations in PL intensities and peak positions are explained in terms of the structure and anodization process. Structural studies suggest that the PL appears to originate from a multilayered porous Si structure in which the top two layers are amorphous. X-ray diffraction spectra also suggest the presence of a significant amorphous phase. In addition to high concentrations of B and N, we have measured extremely high concentrations much greater than 10 exp 20 cu cm of H, C, O, and F. Our results indicate that laterally anodized porous Si does not fit the crystalline Si quantum wire model prevalent in the literature suggesting that some other structure is responsible for the observed luminescence.

  15. Flow in porous metallic materials: a magnetic resonance imaging study.

    PubMed

    Xu, Shoujun; Harel, Elad; Michalak, David J; Crawford, Charles W; Budker, Dmitry; Pines, Alexander

    2008-11-01

    To visualize flow dynamics of analytes inside porous metallic materials with laser-detected magnetic resonance imaging (MRI). We examine the flow of nuclear-polarized water in a porous stainless steel cylinder. Laser-detected MRI utilizes a sensitive optical atomic magnetometer as the detector. Imaging was performed in a remote-detection mode: the encoding was conducted in the Earth's magnetic field, and detection is conducted downstream of the encoding location. Conventional MRI (7T) was also performed for comparison. Laser-detected MRI clearly showed MR images of water flowing through the sample, whereas conventional MRI provided no image. We demonstrated the viability of laser-detected MRI at low-field for studying porous metallic materials, extending MRI techniques to a new group of systems that is normally not accessible to conventional MRI. Copyright (c) 2008 Wiley-Liss, Inc.

  16. Bacteria transport through porous material: Final technical report

    SciTech Connect

    Yen, T.F.

    1989-02-13

    The injection and penetration of bacteria into a reservoir is the most problematic and crucial of the steps in microbial enhanced recovery (MEOR). In the last phase of our work valuable information on bacterial transport in porous media was obtained. A great deal of progress was made to determine chemical bonding characteristics between adsorbed bacteria and the rock surfaces. In order to further enhance our knowledge of the effects of surface tensions on bacteria transport through porous media, a new approach was taken to illustrate the effect of liquid surface tension on bacterial transport through a sandpack column. Work in surface charge characterization of reservoir rock as a composite oxide system was also accomplished. In the last section of this report a mathematical model to simulate the simultaneous diffusion and growth of bacteria cells in a nutrient-enriched porous media is proposed.

  17. Ironless transducer for measuring the mechanical properties of porous materials

    NASA Astrophysics Data System (ADS)

    Doutres, Olivier; Dauchez, Nicolas; Genevaux, Jean-Michel; Lemarquand, Guy; Mezil, Sylvain

    2010-05-01

    This paper presents a measurement setup for determining the mechanical properties of porous materials at low and medium frequencies by extending toward higher frequencies the quasistatic method based on a compression test. Indeed, classical quasistatic methods generally neglect the inertia effect of the porous sample and the coupling between the surrounding fluid and the frame; they are restricted to low frequency range (<100 Hz) or specific sample shape. In the present method, the porous sample is placed in a cavity to avoid a lateral airflow. Then a specific electrodynamic ironless transducer is used to compress the sample. This highly linear transducer is used as actuator and sensor; the mechanical impedance of the porous sample is deduced from the measurement of the electrical impedance of the transducer. The loss factor and the Young's modulus of the porous material are estimated by inverse method based on the Biot's model. Experimental results obtained with a polymer foam show the validity of the method in comparison with quasistatic method. The frequency limit has been extended from 100 Hz to 500 Hz. The sensitivity of each input parameter is estimated in order to point out the limitations of the method.

  18. The Uniaxial Tensile Response of Porous and Microcracked Ceramic Materials

    SciTech Connect

    Pandey, Amit; Shyam, Amit; Watkins, Thomas R; Lara-Curzio, Edgar; Lara-Curzio, Edgar; Stafford, Randall; Hemker, Kevin J

    2014-01-01

    The uniaxial tensile stress-strain behavior of three porous ceramic materials was determined at ambient conditions. Test specimens in the form of thin beams were obtained from the walls of diesel particulate filter honeycombs and tested using a microtesting system. A digital image correlation technique was used to obtain full-field 2D in-plane surface displacement maps during tensile loading, and in turn, the 2D strains obtained from displacement fields were used to determine the Secant modulus, Young s modulus and initial Poisson s ratio of the three porous ceramic materials. Successive unloading-reloading experiments were performed at different levels of stress to decouple the linear elastic, anelastic and inelastic response in these materials. It was found that the stress-strain response of these materials was non-linear and that the degree of nonlinearity is related to the initial microcrack density and evolution of damage in the material.

  19. Computational modeling of composite material fires.

    SciTech Connect

    Brown, Alexander L.; Erickson, Kenneth L.; Hubbard, Joshua Allen; Dodd, Amanda B.

    2010-10-01

    Composite materials behave differently from conventional fuel sources and have the potential to smolder and burn for extended time periods. As the amount of composite materials on modern aircraft continues to increase, understanding the response of composites in fire environments becomes increasingly important. An effort is ongoing to enhance the capability to simulate composite material response in fires including the decomposition of the composite and the interaction with a fire. To adequately model composite material in a fire, two physical model development tasks are necessary; first, the decomposition model for the composite material and second, the interaction with a fire. A porous media approach for the decomposition model including a time dependent formulation with the effects of heat, mass, species, and momentum transfer of the porous solid and gas phase is being implemented in an engineering code, ARIA. ARIA is a Sandia National Laboratories multiphysics code including a range of capabilities such as incompressible Navier-Stokes equations, energy transport equations, species transport equations, non-Newtonian fluid rheology, linear elastic solid mechanics, and electro-statics. To simulate the fire, FUEGO, also a Sandia National Laboratories code, is coupled to ARIA. FUEGO represents the turbulent, buoyantly driven incompressible flow, heat transfer, mass transfer, and combustion. FUEGO and ARIA are uniquely able to solve this problem because they were designed using a common architecture (SIERRA) that enhances multiphysics coupling and both codes are capable of massively parallel calculations, enhancing performance. The decomposition reaction model is developed from small scale experimental data including thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) in both nitrogen and air for a range of heating rates and from available data in the literature. The response of the composite material subject to a radiant heat flux boundary

  20. Processing composite materials

    NASA Technical Reports Server (NTRS)

    Baucom, R. M.

    1982-01-01

    The fabrication of several composite structural articles including DC-10 upper aft rudders, L-1011 vertical fins and composite biomedical appliances are discussed. Innovative composite processing methods are included.

  1. Methyl alcohol used as penetrant inspection medium for porous materials

    NASA Technical Reports Server (NTRS)

    Hendron, J. A.

    1971-01-01

    Porous material thoroughly wetted with alcohol shows persistent wet line or area at locations of cracks or porosity. Inspection is qualitative and repeatable, but is used quantitatively with select samples to grade density variations in graphite blocks. Photography is employed to achieve permanent record of results.

  2. Computational Representation of Constitutive Relations for Porous Material

    DTIC Science & Technology

    1974-05-01

    between P and 6 oi, which is available in WONDY IV as: \\ c v / a - I + (ay - I) I „ _ D | (56) where P . rv are the pressure and distension at the...Porous Materials," Journal Applied Physics, Vol. 40, No. 6, p. 2490, May 1969. 6. R. J. Lawrence and D. S. Mason, " WONDY IV—A Computer Program for One

  3. Dodecahedron-Shaped Porous Vanadium Oxide and Carbon Composite for High-Rate Lithium Ion Batteries.

    PubMed

    Zhang, Yifang; Pan, Anqiang; Wang, Yaping; Wei, Weifeng; Su, Yanhui; Hu, Jimei; Cao, Guozhong; Liang, Shuquan

    2016-07-13

    Carbon-based nanocomposites have been extensively studied in energy storage and conversion systems because of their superior electrochemical performance. However, the majority of metal oxides are grown on the surface of carbonaceous material. Herein, we report a different strategy of constructing V2O5 within the metal organic framework derived carbonaceous dodecahedrons. Vanadium precursor is absorbed into the porous dodecahedron-shaped carbon framework first and then in situ converted into V2O5 within the carbonaceous framework in the annealing process in air. As cathode materials for lithium ion batteries, the porous V2O5@C composites exhibit enhanced electrochemical performance, due to the synergistic effect of V2O5 and carbon composite.

  4. Silica decorated on porous activated carbon nanofiber composites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Kim, So Yeun; Kim, Bo-Hye

    2016-10-01

    A hybrid of silica decorated on porous activated carbon nanofibers (ACNFs) is fabricated in the form of a web via electrospinning and an activation process as an electrode material for electrochemical capacitors in an organic electrolyte. The introduction of PhSiH3 (PS) into the polyacrylonitrile (PAN) solution induces a porous ACNF structure containing silica nanoparticles (NPs) via the spontaneous sol-gel process of PS by steam in the subsequent physical activation process. These inorganic-organic hybrid composites of porous ACNF containing silica NPs show superior specific capacitance and energy density in electrochemical tests, along with good rate capability and excellent cycle life in an organic electrolyte, which is attributed to the combination of ACNF's high surface area and silica's hydrophilicity. The electrochemical performance decreases with increasing PS concentration, and this trend is consistent with the specific surface area results, which reveal the rapid formation of a double layer.

  5. Characterizing He II flow through porous materials using counterflow data

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1991-01-01

    An empirical extension of the two-fluid model is used to characterize He II flow through porous materials. It is shown that four empirical parameters are necessary to describe the pressure and temperature differences induced by He II flow through a porous sample. The three parameters required to determine pressure differences are measured in counterflow and found to compare favorably with those for isothermal flow. The fourth parameter, the Gorter-Mellink constant, differs substantially from smooth tube values. It is concluded that parameter values determined from counterflow can be used to predict pressure and temperature differences in a variety of flows to an accuracy of about +/- 20 percent.

  6. Characterizing He II flow through porous materials using counterflow data

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1991-01-01

    An empirical extension of the two-fluid model is used to characterize He II flow through porous materials. It is shown that four empirical parameters are necessary to describe the pressure and temperature differences induced by He II flow through a porous sample. The three parameters required to determine pressure differences are measured in counterflow and found to compare favorably with those for isothermal flow. The fourth parameter, the Gorter-Mellink constant, differs substantially from smooth tube values. It is concluded that parameter values determined from counterflow can be used to predict pressure and temperature differences in a variety of flows to an accuracy of about +/- 20 percent.

  7. Digital material laboratory: Considerations on high-porous volcanic rock

    NASA Astrophysics Data System (ADS)

    Saenger, Erik H.; Stöckhert, Ferdinand; Duda, Mandy; Fischer, Laura; Osorno, Maria; Steeb, Holger

    2017-04-01

    Digital material methodology combines modern microscopic imaging with advanced numerical simulations of the physical properties of materials. One goal is to complement physical laboratory investigations for a deeper understanding of relevant physical processes. Large-scale numerical modeling of elastic wave propagation directly from the microstructure of the porous material is integral to this technology. The parallelized finite-difference-based Stokes solver is suitable for the calculation of effective hydraulic parameters for low and high porous materials. Reticulite is formed in very high Hawaiian fire fountaining events. Hawaiian fire fountaining eruptions produce columns or fountains of lava, which can last for a few hours to days. Reticulite was originally thought to have formed from further expanded hot scoria foam. However, some researchers believe reticulite forms from magma that formed vesicles instantly, which expanded rapidly and uniformly to produce the polyhedral vesicle walls. These walls then ruptured and cooled rapidly. The (open) honeycomb network of bubbles is held together by glassy threads and forms a structure with a porosity higher than 80%. The fragile rock sample is difficult to characterize with classical experimental methods and we show how to determine porosity, effective elastic properties and Darcy permeability by using digital material methodology. A technical challenge will be to image with the CT technique the thin skin between the glassy threads visible on the microscopy image. A numerical challenge will be determination of effective material properties and viscous fluid effects on wave propagation in such a high porous material.

  8. Extraction of Perchlorate Using Porous Organosilicate Materials

    PubMed Central

    Johnson, Brandy J.; Leska, Iwona A.; Melde, Brian J.; Siefert, Ronald L.; Malanoski, Anthony P.; Moore, Martin H.; Taft, Jenna R.; Deschamps, Jeffrey R.

    2013-01-01

    Sorbent materials were developed utilizing two morphological structures, comprising either hexagonally packed pores (HX) or a disordered pore arrangement (CF). The sorbents were functionalized with combinations of two types of alkylammonium groups. When capture of perchlorate by the sorbents was compared, widely varying performance was noted as a result of differing morphology and/or functional group loading. A material providing improved selectivity for perchlorate over perrhenate was synthesized with a CF material using N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride. Materials were applied in batch and column formats. Binding isotherms followed the behavior expected for a system in which univalent ligands of varying affinity compete for immobilized sites. Performance of the sorbents was also compared to that of commercial Purolite materials. PMID:28809217

  9. Autoignition of combustible fluids in porous insulation materials

    SciTech Connect

    McIntosh, A.C.; Bains, M.; Crocombe, W.; Griffiths, J.F. )

    1994-12-01

    The leakage of combustible fluids into the lagging of pipework in the process engineering industry can be very hazardous because of the increased residence time for oxidation as the liquid resides in the porous medium and also the substantially modified heat and mass transfer rates when compared with ignition at hot surfaces. The exothermic reaction can lead to ignition or at least severe self-heating with the consequent damage of pipework, etc. Experiments have been performed to simulate this hazard. The thermal behavior of a number of combustible liquids placed in porous material has been monitored and evidence is presented in this work that self-heating can indeed take place. It has been found that autoignition occurs at an important watershed oven temperature that is related to the volatility of the combustible fluid. A mathematical model for the autoignition of combustible liquid in an inert porous material is presented. The simple model takes a spatially uniform approach to both the energy equation and the liquid equation for the fluid and predicts a watershed temperature such that for a given concentration of fluid in the porous material, the thermal behavior of the system alters abruptly. For all practical purposes, thermal runaway is predicted beyond this watershed condition even though the classical Semenov theory simply predicts an eventual decay to a stable steady state, with no strict criticality prediction. The watershed temperature is shown to depend on volatility and reactivity.

  10. Nanoarchitectured Design of Porous Materials and Nanocomposites from Metal-Organic Frameworks.

    PubMed

    Kaneti, Yusuf Valentino; Tang, Jing; Salunkhe, Rahul R; Jiang, Xuchuan; Yu, Aibing; Wu, Kevin C-W; Yamauchi, Yusuke

    2017-03-01

    The emergence of metal-organic frameworks (MOFs) as a new class of crystalline porous materials is attracting considerable attention in many fields such as catalysis, energy storage and conversion, sensors, and environmental remediation due to their controllable composition, structure and pore size. MOFs are versatile precursors for the preparation of various forms of nanomaterials as well as new multifunctional nanocomposites/hybrids, which exhibit superior functional properties compared to the individual components assembling the composites. This review provides an overview of recent developments achieved in the fabrication of porous MOF-derived nanostructures including carbons, metal oxides, metal chalcogenides (metal sulfides and selenides), metal carbides, metal phosphides and their composites. Finally, the challenges and future trends and prospects associated with the development of MOF-derived nanomaterials are also examined. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Porous low dielectric constant materials for microelectronics.

    PubMed

    Baklanov, Mikhail R; Maex, Karen

    2006-01-15

    Materials with a low dielectric constant are required as interlayer dielectrics for the on-chip interconnection of ultra-large-scale integration devices to provide high speed, low dynamic power dissipation and low cross-talk noise. The selection of chemical compounds with low polarizability and the introduction of porosity result in a reduced dielectric constant. Integration of such materials into microelectronic circuits, however, poses a number of challenges, as the materials must meet strict requirements in terms of properties and reliability. These issues are the subject of the present paper.

  12. Porous AlMg-SiC Composites Structure Modeling By Means of Fractal Analysis

    NASA Astrophysics Data System (ADS)

    Rusu, O.; Rusu, I.

    2017-06-01

    This work is a continuation of the authors research in the field of ultralight metallic composite materials, based on AlMg10 alloy and SiC particles and obtained by salt dissolution method. We used for the fractal analysis the fractal geometry modeling by means of fractal dimension types of composites obtained from performed experiments. We achieved the following fractal dimensions for the samples: 1.37 (for 5% SiC sample), 1.41 (for 10% SiC sample) and 1.45 (for 15% SiC sample). Fractal analysis indicated that all the obtained samples have cells with a statistically regular form. We conclude that this kind of composite materials can be included in ultralights porous metal composite materials, with a tendency to a metal foam structure.

  13. Composite material and method for production of improved composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1996-01-01

    A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.

  14. Composite Materials for Structural Design.

    DTIC Science & Technology

    1981-02-01

    Conditioning of Cross-Ply Graphite/Epoxy Laminates." In Advances in Composite Materials (Proceedings of 3rd International Con- ference on Composite Materials...Chairman of Advisory Committee: Dr. W. L. Bradley An epoxy resin commonly used in advanced composite materials for aerospace application was tested...34, Vought Corp. Advanced Technology Center Final Report, Aug. 1978. Contract No. N00019-77-C-0369 with the Department of the Navy. 2. Williams, M.L., et al

  15. Instrumentation for Nano-porous, Nano-particulate Geopolymeric Materials Research

    DTIC Science & Technology

    2008-11-04

    surface area ceramic powders in geopolymers and geopolymeric composites. On the other hand, the Thinky ARE-250 mixer was purchased to assist with...3. DATES COVERED (From - To) 6/15/07 – 6/14/08 4. TITLE AND SUBTITLE Instrumentation for Nano-porous, Nano-particulate Geopolymeric ...STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT -- Geopolymers are a new class of ceramic materials which are best understood as rigid

  16. Nano-porous thermally sintered nano silica as novel fillers for dental composites.

    PubMed

    Atai, Mohammad; Pahlavan, Ayoub; Moin, Niloofar

    2012-02-01

    The study evaluates properties of an experimental dental composite consisting of a porous thermally sintered nano-silica as filler. The properties are compared with those of an experimental composite containing micro fillers and a commercially available nano-composite, Filtek Supreme(®) Translucent. Different models are used to predict the elastic modulus and strength of the composites. Nano-silica with primary particles of 12 nm was thermally sintered to form nanoporous filer particles. The experimental composites were prepared by incorporating 70 wt.% of the fillers into a mixture of Bis-GMA and TEGDMA as matrix phase. Having added photoinitiator system the composites were inserted into the test molds and light-cured. The microfiller containing composites were also prepared using micron size glass fillers. Degree of conversion (DC%) of the composites was measured using FTIR spectroscopy. Diametral tensile strength (DTS), flexural strength, flexural modulus and fracture toughness were measured. SEM was utilized to study the cross section of the fractured specimens. The surface topography of the specimens was investigated using atomic force microscopy (AFM). The specific surface area of the sintered nano silica was measured using BET method. The data were analyzed and compared by ANOVA and Tukey HSD tests (significance level=0.05). The results showed improvements in flexural modulus and fracture toughness of the composites containing sintered filler. AFM revealed a lower surface roughness for sintered silica containing composites. No significant difference was observed between DTS, DC%, and flexural strength of the sintered nanofiller composite and the Filtek Supreme(®). The results also showed that the modulus of the composite with sintered filler was higher than the model prediction. The thermally sintered nano-porous silica fillers significantly enhanced the mechanical properties of dental composites introducing a new approach to develop materials with

  17. Novel polymeric nanocomposites and porous materials prepared using organogels

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Chi; Tseng, Shen-Chen

    2009-11-01

    We propose a new method for preparing polymeric nanocomposites and porous materials using self-assembled templates formed by 1,3:2,4-dibenzylidene sorbitol (DBS) organogels. DBS is capable of self-assembling into a 3D nanofibrillar network at relatively low concentrations in some organic solvents to produce organogels. In this study, we induced the formation of such physical cross-linked networks in styrene. Subsequently, we polymerized the styrene in the presence of chemical cross-linkers, divinyl benzene (DVB), with different amounts of DBS using thermal-initiated polymerization. The resulting materials were transparent, homogeneous polystyrene (PS) nanocomposites with both physical and chemical cross-links. The porous polymeric materials were obtained by solvent extraction of the DBS nanofibrils from the PS. Brunauer-Emmett-Teller (BET) measurements show that the amounts of DBS and DVB influenced the specific surface area after the removal of the DBS fibrils.

  18. Vibro-acoustics of porous materials - waveguide modelling approach

    NASA Astrophysics Data System (ADS)

    Darula, R.; Sorokin, S.

    2016-09-01

    The porous material is considered as a compound multi-layered waveguide (i.e. a fluid layer surrounded with elastic layers) with traction free boundary conditions. The attenuation of the vibro-acoustic waves in such a material is assessed. This approach is compared with a conventional Biot's model and a qualitative agreement in phase velocities as well as damping estimates is found. The waveguide model predicts four waves, out of which two are attenuated when the viscous fluid is considered (while the elastic layer being ideally lossless). One of these waves is found to be significantly controlled by the fluid viscosity, while for the other the effect of viscosity was observed for very small frequencies. The Biot's model predicts only one of these attenuated waves, where the latter one is not predicted. Thus the proposed waveguide approach provide additional information about the wave propagation in porous materials.

  19. Porous silicon based anode material formed using metal reduction

    DOEpatents

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  20. Erosion-resistant composite material

    DOEpatents

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  1. Infiltrating sulfur into a highly porous carbon sphere as cathode material for lithium–sulfur batteries

    SciTech Connect

    Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Hyo-Jun; Kim, Ki-Won; Cho, Kwon-Koo; Ahn, Jou-Hyeon

    2014-10-15

    Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{sup 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.

  2. Zeolitic materials with hierarchical porous structures.

    PubMed

    Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

    2011-06-17

    During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented.

  3. Oxygen-rich hierarchical porous carbon made from pomelo peel fiber as electrode material for supercapacitor

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Wenlong; Xiao, Dan; Wang, Xinhui

    2017-09-01

    Oxygen-rich hierarchical porous carbon has been fabricated using pomelo peel fiber as a carbon source via an improved KOH activation method. The morphology and chemical composition of the obtained carbon materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), electron microscopy (EM), Raman spectra and elemental analysis. The unique porous structure with abundant oxygen functional groups is favorable to capacitive behavior, and the as-prepared carbon material exhibits high specific capacitance of 222.6 F g-1 at 0.5 A g-1 in 6 M KOH and superior stability over 5000 cycles. This work not only describes a simple way to prepare high-performance carbon material from the discarded pomelo peel, but also provides a strategy for its disposal issue and contributes to the environmental improvement.

  4. Porous Carbon Supports: Recent Advances with Various Morphologies and Compositions

    SciTech Connect

    Zhang, Pengfei; Zhu, Huiyuan; Dai, Sheng

    2015-08-31

    The importance of porous carbon as the support material is well recognized in the catalysis community, and it would be even more attractive if several characteristics are considered, such as the stability in acidic and basic media or the ease of noble metal recovery through complete burn off. Because it is still difficult to obtain constant properties even from batch to batch, activated carbons are not popular in industrial catalysis now.

  5. Porous Carbon Supports: Recent Advances with Various Morphologies and Compositions

    DOE PAGES

    Zhang, Pengfei; Zhu, Huiyuan; Dai, Sheng

    2015-08-31

    The importance of porous carbon as the support material is well recognized in the catalysis community, and it would be even more attractive if several characteristics are considered, such as the stability in acidic and basic media or the ease of noble metal recovery through complete burn off. Because it is still difficult to obtain constant properties even from batch to batch, activated carbons are not popular in industrial catalysis now.

  6. Preparation and application of highly porous aerogel-based bioactive materials in dentistry

    NASA Astrophysics Data System (ADS)

    Kuttor, Andrea; Szalóki, Melinda; Rente, Tünde; Kerényi, Farkas; Bakó, József; Fábián, István; Lázár, István; Jenei, Attila; Hegedüs, Csaba

    2014-03-01

    In this study, the possibility of preparation and application of highly porous silica aerogel-based bioactive materials are presented. The aerogel was combined with hydroxyapatite and β-tricalcium phosphate as bioactive and osteoinductive agents. The porosity of aerogels was in the mesoporous region with a maximum pore diameter of 7.4 and 12.7 nm for the composite materials. The newly developed bioactive materials were characterized by scanning electron microscopy. The in vitro biological effect of these modified surfaces was also tested on SAOS-2 osteogenic sarcoma cells by confocal laser scanning microscopy.

  7. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.

  8. Combustion Synthesis of Advanced Porous Materials in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Johnson, D. P.

    1999-01-01

    Combustion synthesis, otherwise known as self-propagating high temperature synthesis (SHS), can be used to produce engineered advanced porous material implants which offer the possibility for bone ingrowth as well as a permanent structure framework for the long-term replacement of bone defects. The primary advantage of SHS is based on its rapid kinetics and favorable energetics. The structure and properties of materials produced by SHS are strongly dependent on the combustion reaction conditions. Combustion reaction conditions such as reaction stoichiometry, particle size, green density, the presence and use of diluents or inert reactants, and pre-heating of the reactants, will affect the exothermicity of the reaction. A number of conditions must be satisfied in order to obtain high porosity materials: an optimal amount of liquid, gas and solid phases must be present in the combustion front. Therefore, a balance among these phases at the combustion front must be created by the SHS reaction to successfully engineer a bone replacement material system. Microgravity testing has extended the ability to form porous products. The convective heat transfer mechanisms which operate in normal gravity, 1 g, constrain the combustion synthesis reactions. Gravity also acts to limit the porosity which may be formed as the force of gravity serves to restrict the gas expansion and the liquid movement during reaction. Infiltration of the porous product with other phases can modify both the extent of porosity and the mechanical properties.

  9. Combustion Synthesis of Advanced Porous Materials in Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Johnson, D. P.

    1999-01-01

    Combustion synthesis, otherwise known as self-propagating high temperature synthesis (SHS), can be used to produce engineered advanced porous material implants which offer the possibility for bone ingrowth as well as a permanent structure framework for the long-term replacement of bone defects. The primary advantage of SHS is based on its rapid kinetics and favorable energetics. The structure and properties of materials produced by SHS are strongly dependent on the combustion reaction conditions. Combustion reaction conditions such as reaction stoichiometry, particle size, green density, the presence and use of diluents or inert reactants, and pre-heating of the reactants, will affect the exothermicity of the reaction. A number of conditions must be satisfied in order to obtain high porosity materials: an optimal amount of liquid, gas and solid phases must be present in the combustion front. Therefore, a balance among these phases at the combustion front must be created by the SHS reaction to successfully engineer a bone replacement material system. Microgravity testing has extended the ability to form porous products. The convective heat transfer mechanisms which operate in normal gravity, 1 g, constrain the combustion synthesis reactions. Gravity also acts to limit the porosity which may be formed as the force of gravity serves to restrict the gas expansion and the liquid movement during reaction. Infiltration of the porous product with other phases can modify both the extent of porosity and the mechanical properties.

  10. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1988-01-01

    A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.

  11. Preparation, characterization and cytocompatibility of porous ACP/PLLA composites.

    PubMed

    Gao, Yanbo; Weng, Wenjian; Cheng, Kui; Du, Piyi; Shen, Ge; Han, Gaorong; Guan, Binggang; Yan, Weiqi

    2006-10-01

    The purpose of this work was to incorporate amorphous calcium phosphate (ACP) into porous poly(L-lactic acid) (PLLA), because ACP is capable of fast phase transformation and morphological change in body fluid, such, a desired pore wall surface within bone tissue engineering scaffolds can be created. A highly porous ACP/PLLA composite was prepared by a thermally induced phase separation technique. The results showed that the composite had an interconnected pore structure with 100 mum macropores and 10 mum micropores, and 91% porosity; 40 nm primary particles of ACP were agglomerated to 3 mum aggregates, and the aggregates were homogeneously distributed in pore walls; These aggregates showed to be in situ transformed into bone-like apatite after 1 h soaking in phosphate buffered saline solution. Human osteoblast-like cell culture showed that the ACP/PLLA composite had better cell adhesion and alkaline phosphotase activity than pure PLLA. This study demonstrates that the ACP/PLLA composite can enhance cytocompatibility and could act as a promising scaffold for bone tissue engineering.

  12. Strain intermittency due to avalanches in ferroelastic and porous materials.

    PubMed

    Soprunyuk, V; Puchberger, S; Tröster, A; Vives, E; Salje, E K H; Schranz, W

    2017-06-07

    The avalanche statistics in porous materials and ferroelastic domain wall systems has been studied for slowly increasing compressive uniaxial stress with stress rates between 0.2 and 17 kPa s(-1). Velocity peaks [Formula: see text] are calculated from the measured strain drops and used to determine the corresponding Energy distributions [Formula: see text]. Power law distributions [Formula: see text] have been obtained over 4-6 decades. For most of the porous materials and domain wall systems an exponent [Formula: see text] was obtained in good agreement with mean-field theory of the interface pinning transition. For charcoal, shale and calcareous schist we found significant deviations of the exponents from mean-field values in agreement with recent acoustic emission experiments.

  13. Strain intermittency due to avalanches in ferroelastic and porous materials

    NASA Astrophysics Data System (ADS)

    Soprunyuk, V.; Puchberger, S.; Tröster, A.; Vives, E.; Salje, E. K. H.; Schranz, W.

    2017-06-01

    The avalanche statistics in porous materials and ferroelastic domain wall systems has been studied for slowly increasing compressive uniaxial stress with stress rates between 0.2 and 17 kPa s-1. Velocity peaks {{v}m}=\\text{d}h/\\text{d}t are calculated from the measured strain drops and used to determine the corresponding Energy distributions N≤ft(E\\equiv vm2\\right) . Power law distributions N≤ft(vm2\\right)\\propto ≤ft(vm2\\right){{}-\\varepsilon} have been obtained over 4-6 decades. For most of the porous materials and domain wall systems an exponent \\varepsilon =1.5+/- 0.1 was obtained in good agreement with mean-field theory of the interface pinning transition. For charcoal, shale and calcareous schist we found significant deviations of the exponents from mean-field values in agreement with recent acoustic emission experiments.

  14. Composite materials: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, analysis and fabrication techniques for boron-aluminum composite-structure technology is presented and a new method of joining different laminated composites without mechanical fasteners is proposed. Also discussed is a low-cost procedure for rigidifying expanded honeycomb tubing and piping simulations. A brief note on patent information is added.

  15. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOEpatents

    Isenberg, Arnold O.

    1992-01-01

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO.sub.3, YCrO.sub.3 or LaMnO.sub.3 particles (32), on a portion of a porous ceramic substrate (30), (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure (34) between the doped particles (32), (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles (32) as a contact.

  16. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.

    PubMed

    Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo

    2015-12-01

    Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.

  17. Drying of porous materials in a medium with variable potentials

    SciTech Connect

    Liu, J.Y. )

    1991-08-01

    This paper presents an application of the Luikov system of heat and mass transfer equations in dimensionless form to predict the temperature and moisture distributions in a slab of capillary-porous material during drying. The heat and mass potentials of the external medium in the boundary conditions are assumed to vary linearly with time. The method of solution is illustrated by considering the drying of a slab of lumber. Numerical results based on the estimated thermophysical properties of spruce are presented.

  18. Oxidation resistant porous material for transpiration cooled vanes

    NASA Technical Reports Server (NTRS)

    Madsen, P.; Rusnak, R. M.

    1972-01-01

    Porous metal sheet with controlled permeability was made by space winding and diffusion bonding fine wire. Two iron-chromium-aluminum alloys and three-chromium alloys were used: GE 1541 (Fe-Cr-Al-Y), H 875 (Fe-Cr-Al-Si), TD Ni Cr, DH 245 (Ni-Cr-Al-Si) and DH 242 (Ni-Cr-Si-Cb). GE 1541 and H 875 were shown in initial tests to have greater oxidation resistance than the other candidate alloys and were therefore tested more extensively. These two materials were cyclic furnace oxidation tested in air at 1800 and 2000 F for accumulated exposure times of 4, 16, 64, 100, 200, 300, 400, 500, and and 600 hours. Oxidation weight gain, permeability change and mechanical properties were determined after exposure. Metallographic examination was performed to determine effects of exposure on the porous metal and electron beam weld joints of porous sheet to IN 100 strut material. Hundred hour stress rupture life and tensile tests were performed at 1800 F. Both alloys had excellent oxidation resistance and retention of mechanical properties and appear suitable for use as transpiration cooling materials in high temperature gas turbine engines.

  19. Strain-Detecting Composite Materials

    NASA Technical Reports Server (NTRS)

    Wallace, Terryl A. (Inventor); Smith, Stephen W. (Inventor); Piascik, Robert S. (Inventor); Horne, Michael R. (Inventor); Messick, Peter L. (Inventor); Alexa, Joel A. (Inventor); Glaessgen, Edward H. (Inventor); Hailer, Benjamin T. (Inventor)

    2016-01-01

    A composite material includes a structural material and a shape-memory alloy embedded in the structural material. The shape-memory alloy changes crystallographic phase from austenite to martensite in response to a predefined critical macroscopic average strain of the composite material. In a second embodiment, the composite material includes a plurality of particles of a ferromagnetic shape-memory alloy embedded in the structural material. The ferromagnetic shape-memory alloy changes crystallographic phase from austenite to martensite and changes magnetic phase in response to the predefined critical macroscopic average strain of the composite material. A method of forming a composite material for sensing the predefined critical macroscopic average strain includes providing the shape-memory alloy having an austenite crystallographic phase, changing a size and shape of the shape-memory alloy to thereby form a plurality of particles, and combining the structural material and the particles at a temperature of from about 100-700.degree. C. to form the composite material.

  20. Experimental studies of porous composites destruction under electron beam high power impact

    NASA Astrophysics Data System (ADS)

    Demidov, B. A.; Efremov, V. P.; Kalinin, Yu G.; Kazakov, E. D.; Kurilo, A. A.; Strizhakov, M. G.

    2016-11-01

    Studies of constructional material behavior under pulse power densities are very important both for fundamental researches and different applications. Modeling of shock wave generation in porous composites is complicated task because of complex structure of such materials. It is necessary to have rather detailed experimental database for verification of these models. In this paper, we present experiments that were carried out on high current electron accelerator “Calamary”. We investigated the surface plasma expansion and mechanical kick pulse dependence from different energy fluxes. Also irradiated targets were investigated by electron microscope.

  1. Modeling of shape memory alloys and application to porous materials

    NASA Astrophysics Data System (ADS)

    Panico, Michele

    In the last two decades the number of innovative applications for advanced materials has been rapidly increasing. Shape memory alloys (SMAs) are an exciting class of these materials which exhibit large reversible stresses and strains due to a thermoelastic phase transformation. SMAs have been employed in the biomedical field for producing cardiovascular stents, shape memory foams have been successfully tested as bone implant material, and SMAs are being used as deployable switches in aerospace applications. The behavior of shape memory alloys is intrinsically complex due to the coupling of phase transformation with thermomechanical loading, so it is critical for constitutive models to correctly simulate their response over a wide range of stress and temperature. In the first part of this dissertation, we propose a macroscopic phenomenological model for SMAs that is based on the classical framework of thermodynamics of irreversible processes and accounts for the effect of multiaxial stress states and non-proportional loading histories. The model is able to account for the evolution of both self-accommodated and oriented martensite. Moreover, reorientation of the product phase according to loading direction is specifically accounted for. Computational tests demonstrate the ability of the model to simulate the main aspects of the shape memory response in a one-dimensional setting and some of the features that have been experimentally found in the case of multi-axial non-proportional loading histories. In the second part of this dissertation, this constitutive model has been used to study the mesoscopic behavior of porous shape memory alloys with particular attention to the mechanical response under cyclic loading conditions. In order to perform numerical simulations, the model was implemented into the commercial finite element code ABAQUS. Due to stress concentrations in a porous microstructure, the constitutive law was enhanced to account for the development of

  2. An electrochemical-sensor system for real-time flow measurements in porous materials.

    PubMed

    Bathany, Cédric; Han, Ja-Ryoung; Abi-Samra, Kameel; Takayama, Shuichi; Cho, Yoon-Kyoung

    2015-08-15

    Flow monitoring in porous materials is critical for the engineering of paper-based microfluidic bioassays. Here, we present an electrochemical-sensor system that monitors the liquid flow in porous materials without affecting the real flow in paper-strip samples. The developed microfluidic sensor records an amperometric signal created by the solution movement mediated by paper wicking. This approach allows the in situ monitoring of the different hydrodynamic conditions of a specific paper geometry or composition. In addition, the method proposed in this work was employed to characterise the fluid flow of different nitrocellulose paper strips after oxygen-plasma treatment or dextran coating. The dextran fluid-flow modifiers were further used on the paper strip-based assays as means of signal enhancement. The proposed electrochemical-sensing method offers a valuable alternative to existing optical-based monitoring techniques for flow measurement in paper-based microfluidic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  4. Potential of hybrid functionalized meso-porous materials for the separation and immobilization of radionuclides

    SciTech Connect

    Luca, V.

    2013-07-01

    Functionalized meso-porous materials are a class of hybrid organic-inorganic material in which a meso-porous metal oxide framework is functionalized with multifunctional organic molecules. These molecules may contain one or more anchor groups that form strong bonds to the pore surfaces of the metal oxide framework and free functional groups that can impart and or modify the functionality of the material such as for binding metal ions in solution. Such materials have been extensively studied over the past decade and are of particular interest in absorption applications because of the tremendous versatility in choosing the composition and architecture of the metal oxide framework and the nature of the functional organic molecule as well as the efficient mass transfer that can occur through a well-designed hierarchically porous network. A sorbent for nuclear applications would have to be highly selective for particular radio nuclides, it would need to be hydrolytically and radiolytically stable, and it would have to possess reasonable capacity and fast kinetics. The sorbent would also have to be available in a form suitable for use in a column. Finally, it would also be desirable if once saturated with radio nuclides, the sorbent could be recycled or converted directly into a ceramic or glass waste form suitable for direct repository disposal or even converted directly into a material that could be used as a transmutation target. Such a cradle-to- grave strategy could have many benefits in so far as process efficiency and the generation of secondary wastes are concerned.This paper will provide an overview of work done on all of the above mentioned aspects of the development of functionalized meso-porous adsorbent materials for the selective separation of lanthanides and actinides and discuss the prospects for future implementation of a cradle-to-grave strategy with such materials. (author)

  5. Method of preparing thin porous sheets of ceramic material

    DOEpatents

    Swarr, T.E.; Nickols, R.C.; Krasij, M.

    1984-05-23

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  6. Method of preparing thin porous sheets of ceramic material

    DOEpatents

    Swarr, Thomas E.; Nickols, Richard C.; Krasij, Myron

    1987-03-24

    A method of forming thin porous sheets of ceramic material for use as electrodes or other components in a molten carbonate fuel cell is disclosed. The method involves spray drying a slurry of fine ceramic particles in liquid carrier to produce generally spherical agglomerates of high porosity and a rough surface texture. The ceramic particles may include the electrode catalyst and the agglomerates can be calcined to improve mechanical strength. After slurrying with suitable volatile material and binder tape casting is used to form sheets that are sufficiently strong for further processing and handling in the assembly of a high temperature fuel cell.

  7. Method for preparation of thermally and mechanically stable metal/porous substrate composite membranes

    DOEpatents

    Damle, Ashok S.

    2004-07-13

    A method is provided for the preparation of metal/porous substrate composite membranes by flowing a solution of metal to be plated over a first surface of a porous substrate and concurrently applying a pressure of gas on a second surface of the porous substrate, such that the porous substrate separates the solution of metal from the gas, and the use of the resulting membrane for the production of highly purified hydrogen gas.

  8. Fundamental problems in porous materials: Experiments & computer simulation

    NASA Astrophysics Data System (ADS)

    Xu, Zhanping

    Porous materials have attracted massive scientific and technological interest because of their extremely high surface-to-volume ratio, molecular tunability in construction, and surface-based applications. Through my PhD work, porous materials were engineered to meet the design in selective binding, self-healing, and energy damping. For example, crystalline MOFs with pore size spanning from a few angstroms to a couple of nanometers were chemically engineered to show 120 times more efficiency in binding of large molecules. In addition, we found building blocks released from those crystals can be further patched back through a healing process at ambient and low temperatures down to -56 °C. When building blocks are replaced with graphenes, ultra-flyweight aerogels with pore size larger than 100 nm were made to delay shock waves. More stable rigid porous metal with larger pores (~um) was also fabricated, and its performance and survivability are under investigation. Aside from experimental studies, we also successfully applied numerical simulations to study the mutual interaction between the nonplanar liquid-solid interface and colloidal particles during the freezing of the colloidal suspensions. Colloidal particles can be either rejected or engulfed by the evolving interface depending on the freezing speed and strength of interface-particle interaction. Our interactive simulation was achieved by programming both simulation module and visualization module on high performance GPU devices.

  9. Supercritical Nitrogen Processing for the Purification of Reactive Porous Materials

    PubMed Central

    Stadie, Nicholas P.; Callini, Elsa; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas

    2015-01-01

    Supercritical fluid extraction and drying methods are well established in numerous applications for the synthesis and processing of porous materials. Herein, nitrogen is presented as a novel supercritical drying fluid for specialized applications such as in the processing of reactive porous materials, where carbon dioxide and other fluids are not appropriate due to their higher chemical reactivity. Nitrogen exhibits similar physical properties in the near-critical region of its phase diagram as compared to carbon dioxide: a widely tunable density up to ~1 g ml-1, modest critical pressure (3.4 MPa), and small molecular diameter of ~3.6 Å. The key to achieving a high solvation power of nitrogen is to apply a processing temperature in the range of 80-150 K, where the density of nitrogen is an order of magnitude higher than at similar pressures near ambient temperature. The detailed solvation properties of nitrogen, and especially its selectivity, across a wide range of common target species of extraction still require further investigation. Herein we describe a protocol for the supercritical nitrogen processing of porous magnesium borohydride. PMID:26066492

  10. Supercritical nitrogen processing for the purification of reactive porous materials.

    PubMed

    Stadie, Nicholas P; Callini, Elsa; Mauron, Philippe; Borgschulte, Andreas; Züttel, Andreas

    2015-05-15

    Supercritical fluid extraction and drying methods are well established in numerous applications for the synthesis and processing of porous materials. Herein, nitrogen is presented as a novel supercritical drying fluid for specialized applications such as in the processing of reactive porous materials, where carbon dioxide and other fluids are not appropriate due to their higher chemical reactivity. Nitrogen exhibits similar physical properties in the near-critical region of its phase diagram as compared to carbon dioxide: a widely tunable density up to ~1 g ml(-1), modest critical pressure (3.4 MPa), and small molecular diameter of ~3.6 Å. The key to achieving a high solvation power of nitrogen is to apply a processing temperature in the range of 80-150 K, where the density of nitrogen is an order of magnitude higher than at similar pressures near ambient temperature. The detailed solvation properties of nitrogen, and especially its selectivity, across a wide range of common target species of extraction still require further investigation. Herein we describe a protocol for the supercritical nitrogen processing of porous magnesium borohydride.

  11. Thermal and Electric Cloaking Effect in Concentric Composite Made of Homogeneous Bulk and Porous Semiconductors

    NASA Astrophysics Data System (ADS)

    Tarkhanyan, Roland H.; Niarchos, Dimitris G.

    2015-12-01

    A new material platform is presented to manipulate heat and charge transportation in steady-state conditions. More precisely, we investigate the conceptual realization of a concentric composite made of the same isotropic and homogeneous semiconductor material with layers of different porosity, and show the possibility of a simultaneous cloaking performance in such a device for both heat flux and electric current without disturbing external fields. The background medium in the composite is a porous material with a periodical 3D cubic lattice of spherical hollow pores while the cylindrical shell is made from the same bulk material with zero porosity. A sound analytical expression is found for the volume fraction of the pores at which bi-functional cloaking effect can be realized. To validate our theoretical results, we also demonstrate the temperature and heat flux profiles as well as the voltage and current profiles in numerical simulations for a composite consisting of bulk (cylindrical shell) and porous (background) n-type silicon layers.

  12. Facile Synthesis of Porous Nickel/Carbon Composite Microspheres with Enhanced Electromagnetic Wave Absorption by Magnetic and Dielectric Losses.

    PubMed

    Qiu, Song; Lyu, Hailong; Liu, Jiurong; Liu, Yuzhen; Wu, Nannan; Liu, Wei

    2016-08-10

    Porous nickel/carbon (Ni/C) composite microspheres with diameters of ca. 1.2-1.5 μm were fabricated by a solvothermal method combined with carbon reduction. The pore size of the synthesized Ni/C composite microspheres ranged from several nanometers to 50 nm. The porous Ni/C composite microspheres exhibited a saturation magnetization (MS) of 53.5 emu g(-1) and a coercivity (HC) of 51.4 Oe. When tested as an electromagnetic (EM) wave absorption material, the epoxy resin composites containing 60% and 75% porous Ni/C microspheres provided high-performance EM wave absorption at thicknesses of 3.0-11.0 and 1.6-7.0 mm in the corresponding frequency ranges of 2.0-12 and 2.0-18 GHz, respectively. The superior EM wave absorption performances of porous Ni/C composite microspheres were derived from the synergy effects generated by the magnetic loss of nickel, the dielectric loss of carbon, and the porous structure.

  13. Preparation and cupric ion release behavior of Cu/LDPE porous composites with tunable pore morphology for intrauterine devices.

    PubMed

    Xiao, Lian; Xia, Xianping; Xie, Changsheng; Ge, Man; Xiao, Cheng; Cai, Shuizhou

    2013-07-01

    Copper/low-density polyethylene (Cu/LDPE) porous composites are novel materials for copper-containing intrauterine devices (Cu-IUDs). Here we report a method, i.e., by changing the mass ratio of two kinds of porogens that have different melting points through the combined techniques of injection molding and particulate leaching, to prepare the Cu/LDPE porous composites with tunable pore morphology. After these Cu/LDPE porous composites with different pore morphologies were obtained, the influences of pore morphologies on their cupric ion release behaviors were studied. The results show that the pore morphology has great influence on the cupric ion release behavior of Cu/LDPE porous composites. This phenomenon is caused by the different influences of different pore morphologies on the effective porosity and the surface hydrophilicity. And those results can be applied to guide the fabrication of Cu/LDPE porous composite Cu-IUDs with minimal weight at an appropriate cupric ion release rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Ceramic porous material and method of making same

    DOEpatents

    Liu, J.; Kim, A.Y.; Virden, J.W.

    1997-07-08

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors. 21 figs.

  15. Ceramic porous material and method of making same

    DOEpatents

    Liu, Jun; Kim, Anthony Y.; Virden, Jud W.

    1997-01-01

    The invention is a mesoporous ceramic membrane having substantially uniform pore size. Additionally, the invention includes aqueous and non-aqueous processing routes to making the mesoporous ceramic membranes. According to one aspect of the present invention, inserting a substrate into a reaction chamber at pressure results in reaction products collecting on the substrate and forming a membrane thereon. According to another aspect of the present invention, a second aqueous solution that is sufficiently immiscible in the aqueous solution provides an interface between the two solutions whereon the mesoporous membrane is formed. According to a further aspect of the present invention, a porous substrate is placed at the interface between the two solutions permitting formation of a membrane on the surface or within the pores of the porous substrate. According to yet another aspect of the present invention, mesoporous ceramic materials are formed using a non-aqueous solvent and water-sensitive precursors.

  16. Dissolved CO2 Increases Breakthrough Porosity in Natural Porous Materials.

    PubMed

    Yang, Y; Bruns, S; Stipp, S L S; Sørensen, H O

    2017-07-18

    When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is caused by the reactive infiltration instability and is important in geologic carbon storage where the dissolution of CO2 in flowing water increases fluid acidity. Using numerical simulations with high resolution digital models of North Sea chalk, we show that the breakthrough porosity is an important indicator of dissolution pattern. Dissolution patterns reflect the balance between the demand and supply of cumulative surface. The demand is determined by the reactive fluid composition while the supply relies on the flow field and the rock's microstructure. We tested three model scenarios and found that aqueous CO2 dissolves porous media homogeneously, leading to large breakthrough porosity. In contrast, solutions without CO2 develop elongated convective channels known as wormholes, with low breakthrough porosity. These different patterns are explained by the different apparent solubility of calcite in free drift systems. Our results indicate that CO2 increases the reactive subvolume of porous media and reduces the amount of solid residual before reactive fluid can be fully channelized. Consequently, dissolved CO2 may enhance contaminant mobilization near injection wellbores, undermine the mechanical sustainability of formation rocks and increase the likelihood of buoyance driven leakage through carbonate rich caprocks.

  17. In situ Formation of Porous Space Maintainers in a Composite Tissue Defect

    PubMed Central

    Spicer, Patrick P.; Kretlow, James D.; Henslee, Allan M.; Shi, Meng; Young, Simon; Demian, Nagi; Jansen, John A.; Wong, Mark E.; Mikos, Antonios G.; Kasper, F. Kurtis

    2012-01-01

    Reconstruction of composite defects involving bone and soft tissue presents a significant clinical challenge. In the craniofacial complex, reconstruction of the soft and hard tissues is critical for both functional and aesthetic outcomes. Constructs for space maintenance provide a template for soft tissue regeneration, priming the wound bed for a definitive repair of the bone tissue with greater success. However, materials used clinically for space maintenance are subject to poor soft tissue integration, which can result in wound dehiscence. Porous materials in space maintenance applications have been previously shown to support soft tissue integration and to allow for drug release from the implant to further prepare the wound bed for definitive repair. This study evaluated solid and low porosity (16.9 ± 4.1%) polymethylmethacrylate space maintainers fabricated intraoperatively and implanted in a composite rabbit mandibular defect model for 12 weeks. The data analyses showed no difference in the solid and porous groups both histologically, evaluating the inflammatory response at the interface and within the pores of the implants, and grossly, observing the healing of soft tissue defect over the implant. These results demonstrate the potential of porous polymethylmethacrylate implants formed in situ for space maintenance in the craniofacial complex, which may have implications in the potential delivery of therapeutic drugs to prime the wound site for a definitive bone repair. PMID:22241726

  18. In situ formation of porous space maintainers in a composite tissue defect.

    PubMed

    Spicer, Patrick P; Kretlow, James D; Henslee, Allan M; Shi, Meng; Young, Simon; Demian, Nagi; Jansen, John A; Wong, Mark E; Mikos, Antonios G; Kasper, F Kurtis

    2012-04-01

    Reconstruction of composite defects involving bone and soft tissue presents a significant clinical challenge. In the craniofacial complex, reconstruction of the soft and hard tissues is critical for both functional and aesthetic outcomes. Constructs for space maintenance provide a template for soft tissue regeneration, priming the wound bed for a definitive repair of the bone tissue with greater success. However, materials used clinically for space maintenance are subject to poor soft tissue integration, which can result in wound dehiscence. Porous materials in space maintenance applications have been previously shown to support soft tissue integration and to allow for drug release from the implant to further prepare the wound bed for definitive repair. This study evaluated solid and low porosity (16.9% ± 4.1%) polymethylmethacrylate space maintainers fabricated intraoperatively and implanted in a composite rabbit mandibular defect model for 12 weeks. The data analyses showed no difference in the solid and porous groups both histologically, evaluating the inflammatory response at the interface and within the pores of the implants, and grossly, observing the healing of the soft tissue defect over the implant. These results demonstrate the potential of porous polymethylmethacrylate implants formed in situ for space maintenance in the craniofacial complex, which may have implications in the potential delivery of therapeutic drugs to prime the wound site for a definitive bone repair. Copyright © 2012 Wiley Periodicals, Inc.

  19. Porous materials for thermal management under extreme conditions.

    PubMed

    Clyne, T W; Golosnoy, I O; Tan, J C; Markaki, A E

    2006-01-15

    A brief analysis is presented of how heat transfer takes place in porous materials of various types. The emphasis is on materials able to withstand extremes of temperature, gas pressure, irradiation, etc. i.e. metals and ceramics, rather than polymers. A primary aim is commonly to maximize either the thermal resistance (i.e. provide insulation) or the rate of thermal equilibration between the material and a fluid passing through it (i.e. to facilitate heat exchange). The main structural characteristics concern porosity (void content), anisotropy, pore connectivity and scale. The effect of scale is complex, since the permeability decreases as the structure is refined, but the interfacial area for fluid-solid heat exchange is, thereby, raised. The durability of the pore structure may also be an issue, with a possible disadvantage of finer scale structures being poor microstructural stability under service conditions. Finally, good mechanical properties may be required, since the development of thermal gradients, high fluid fluxes, etc. can generate substantial levels of stress. There are, thus, some complex interplays between service conditions, pore architecture/scale, fluid permeation characteristics, convective heat flow, thermal conduction and radiative heat transfer. Such interplays are illustrated with reference to three examples: (i) a thermal barrier coating in a gas turbine engine; (ii) a Space Shuttle tile; and (iii) a Stirling engine heat exchanger. Highly porous, permeable materials are often made by bonding fibres together into a network structure and much of the analysis presented here is oriented towards such materials.

  20. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1979-08-01

    block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS; MICROCAPSULES ; SOFT FILLERS; ELASTuMER COMPOSITES 20,_ ABSTRACT ’Continue on reverse side...approaches were pursued toward making such microcapsules . One approach involves coaxial extrusion of a catalyzed elastomer precursor and core liquid into a...fabrication of maxillofacial prostheses. The projected composite systems are elastomeric-shelled, liquid-filled microcapsules . Two experimental approaches were

  1. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  2. Nondestructive Characterization of Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1993-01-01

    Increasingly, composite materials are applied to fracture-critical structures of aircraft and spacecraft...Ultrasonics offer the most capable inspection technology and recently developed techniques appear to improve this technology significantly... Recent progress in ultrasonic NDE of composites will be reviewed.

  3. Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane

    PubMed Central

    Umegaki, Tetsuo; Xu, Qiang; Kojima, Yoshiyuki

    2015-01-01

    Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane. PMID:28793453

  4. Characterizing He 2 flow through porous materials using counterflow data

    NASA Technical Reports Server (NTRS)

    Vansciver, Steven W.; Maddocks, J. R.

    1991-01-01

    Proposed space applications, such as the cooling of infrared and x ray telescopes, have generated substantial interest in the behavior of He(2) flowing in porous materials. For design purposes, classical porous media correlations and room temperature data are often used to obtain order of magnitude estimates of expected pressure drops, while the attendant temperature differences are either ignored or estimated using smooth tube correlations. A more accurate alternative to this procedure is suggested by an empirical extension of the two fluid models. It is shown that four empirical parameters are necessary to describe the pressure and temperature differences induced by He(2) flow through a porous sample. The three parameters required to determine pressure differences are measured in counterflow and found to compare favorably with those for isothermal flow. The fourth parameter, the Gorter-Mellink constant, differs substantially from smooth tube values. It is concluded that parameter values determined from counterflow can be used to predict pressure and temperature differences in a variety of flows to an accuracy of about + or - 20 percent.

  5. Characterizing He II flow through porous materials using counterflow data

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R., Jr.; Vansciver, Steven W.

    1990-01-01

    Proposed space applications, such as the cooling of infrared and x ray telescopes, have generated substantial interest in the behavior of He II flowing in porous materials. For design purposes, classical porous media correlations and room temperature data are often used to obtain order of magnitude estimates of expected pressure drops, while the attendant temperature differences are either ignored or estimated using smooth tube correlations. A more accurate alternative to this procedure is suggested by an empirical extension of the two fluid model. It is shown that four empirical parameters are necessary to describe the pressure and temperature differences induced by He II flow through a porous sample. The three parameters required to determine pressure differences are measured in counterflow and found to compare favorably with those for isothermal flow. The fourth parameter, the Gorter-Mellink constant, differs substantially from smooth tube values. It is concluded that parameter values determined from counterflow can be used to predict pressure and temperature differences in a variety of flows to an accuracy of about + or - 20 pct.

  6. Avalanches in compressed porous SiO(2)-based materials.

    PubMed

    Nataf, Guillaume F; Castillo-Villa, Pedro O; Baró, Jordi; Illa, Xavier; Vives, Eduard; Planes, Antoni; Salje, Ekhard K H

    2014-08-01

    The failure dynamics in SiO(2)-based porous materials under compression, namely the synthetic glass Gelsil and three natural sandstones, has been studied for slowly increasing compressive uniaxial stress with rates between 0.2 and 2.8 kPa/s. The measured collapsed dynamics is similar to Vycor, which is another synthetic porous SiO(2) glass similar to Gelsil but with a different porous mesostructure. Compression occurs by jerks of strain release and a major collapse at the failure point. The acoustic emission and shrinking of the samples during jerks are measured and analyzed. The energy of acoustic emission events, its duration, and waiting times between events show that the failure process follows avalanche criticality with power law statistics over ca. 4 decades with a power law exponent ɛ≃ 1.4 for the energy distribution. This exponent is consistent with the mean-field value for the collapse of granular media. Besides the absence of length, energy, and time scales, we demonstrate the existence of aftershock correlations during the failure process.

  7. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  8. Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high-performance anodes of lithium ion batteries.

    PubMed

    Zhang, Zailei; Wang, Yanhong; Ren, Wenfeng; Tan, Qiangqiang; Chen, Yunfa; Li, Hong; Zhong, Ziyi; Su, Fabing

    2014-05-12

    Despite the promising application of porous Si-based anodes in future Li ion batteries, the large-scale synthesis of these materials is still a great challenge. A scalable synthesis of porous Si materials is presented by the Rochow reaction, which is commonly used to produce organosilane monomers for synthesizing organosilane products in chemical industry. Commercial Si microparticles reacted with gas CH3 Cl over various Cu-based catalyst particles to substantially create macropores within the unreacted Si accompanying with carbon deposition to generate porous Si/C composites. Taking advantage of the interconnected porous structure and conductive carbon-coated layer after simple post treatment, these composites as anodes exhibit high reversible capacity and long cycle life. It is expected that by integrating the organosilane synthesis process and controlling reaction conditions, the manufacture of porous Si-based anodes on an industrial scale is highly possible. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biotechnology and Composite Materials

    DTIC Science & Technology

    1993-04-01

    applied in the form of an incompressible material to help resist compressive loads. An aplication has already been patented by Chaplin et al. [8] where...the amino acid residues glycine, alanine and serine respectively. Spider web silks are normally crystalline and highly elastic. The fibers are three to...polymers such as silk or spider web fibroin is labor intensive and may result in products that are difficult to isolate, purify and process into a

  10. Composite materials for thermal energy storage

    DOEpatents

    Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.

    1986-01-01

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  11. Characterization of porous construction materials using electromagnetic radar wave

    NASA Astrophysics Data System (ADS)

    Lai, Wallace Wai Lok

    This thesis reports the effort of characterizing three porous construction materials (i.e. concrete, asphalt and soils) and the establishment and formulation of novel unified constitutive models by utilizing electromagnetic (EM) radar wave. An important outcome of this research is that the studied materials were assigned successfully into their rightful positions corresponding to the different regimes governed by three EM wave properties and two engineering/geological properties of the materials. The former refers to the real part of complex dielectric permittivity (epsilon'), energy attenuation and peak-frequency drift. The latter refers to porosity and permeability determined with forward models or conventional testing techniques. In soil and asphalt, the material characterization was achieved by a novel inhouse developed method called Cyclic Moisture Variation Technique (CMVT). The technique is termed cyclic because the porous materials were subjected to change from partially saturated states to fully saturated state (i.e. permeation), and vice versa (i.e. de-watering). With CMVT, water was used as an enhancer or a tracer to differentiate the studied materials which are otherwise difficult when they are dry. Soils and asphalt with different textures were characterized by different curve families exhibited in the relationship between epsilon' and degrees of water saturation (SW). In particular, these curve families were divided into three regions: slow-climbing region in very low SW, fast-climbing region in intermediate SW and another slow-climbing region at high S W. When data obtained from the permeation and de-watering cycles was compared, dielectric hysteresis was observed, but rarely reported in the field of ground penetrating radar (GPR). Different curing histories affect both porosity and pore size distribution within mature concrete. By injecting pressurized water into concrete specimens, different concrete curing histories was back-tracked through the

  12. Synergistic Carbon Dioxide Capture and Conversion in Porous Materials.

    PubMed

    Zhang, Yugen; Lim, Diane S W

    2015-08-24

    Global climate change and excessive CO2 emissions have caused widespread public concern in recent years. Tremendous efforts have been made towards CO2 capture and conversion. This has led to the development of numerous porous materials as CO2 capture sorbents. Concurrently, the conversion of CO2 into value-added products by chemical methods has also been well-documented recently. However, realizing the attractive prospect of direct, in situ chemical conversion of captured CO2 into other chemicals remains a challenge.

  13. Acoustic structure and propagation in highly porous, layered, fibrous materials

    NASA Astrophysics Data System (ADS)

    Lambert, R. F.; Tesar, J. S.

    1984-06-01

    The acoustic structure and propagation of sound in highly porous, layered, fine fiber materials is examined. Of particular interest is the utilization of the Kozeny number for determining the static flow resistance and the static structure factor based on flow permeability measurements. In this formulation the Kozeny number is a numerical constant independent of volume porosity at high porosities. The other essential parameters are then evaluated employing techniques developed earlier for open cell foams. The attenuation and progressive phase characteristics in bulk samples are measured and compared with predicted values. The agreements on the whole are very satisfactory.

  14. Acoustic structure and propagation in highly porous, layered, fibrous materials

    NASA Astrophysics Data System (ADS)

    Lambert, R. F.; Tesar, J. S.

    1984-10-01

    The acoustic structure and propagation of sound in highly porous, layered, fine fiber materials is examined. Of particular interest is the utilization of the Kozeny number for determining the static flow resistance and the static structure factor based on flow permeability measurements. In this formulation the Kozeny number is a numerical constant independent of volume porosity at high porosities. The other essential parameters are then evaluated employing techniques developed earlier for open cell foams. The attenuation and progressive phase characteristics in bulk samples are measured and compared with predicted values. The agreements on the whole are very satisfactory.

  15. Multilayer Electroactive Polymer Composite Material

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  16. In vivo bone regeneration using a novel porous bioactive composite

    NASA Astrophysics Data System (ADS)

    Xie, En; Hu, Yunyu; Chen, Xiaofeng; Bai, Xuedong; Li, Dan; Ren, Li; Zhang, Ziru

    2008-11-01

    Many commercial bone graft substitutes (BGS) and experimental bone tissue engineering scaffolds have been developed for bone repair and regeneration. This study reports the in vivo bone regeneration using a newly developed porous bioactive and resorbable composite that is composed of bioactive glass (BG), collagen (COL), hyaluronic acid (HYA) and phosphatidylserine (PS), BG-COL-HYA-PS. The composite was prepared by a combination of sol-gel and freeze-drying methods. A rabbit radius defect model was used to evaluate bone regeneration at time points of 2, 4 and 8 weeks. Techniques including radiography, histology, and micro-CT were applied to characterize the new bone formation. 8 weeks results showed that (1) nearly complete bone regeneration was achieved for the BG-COL-HYA-PS composite that was combined with a bovine bone morphogenetic protein (BMP); (2) partial bone regeneration was achieved for the BG-COL-HYA-PS composites alone; and (3) control remained empty. This study demonstrated that the novel BG-COL-HYA-PS, with or without the grafting of BMP incorporation, is a promising BGS or a tissue engineering scaffold for non-load bearing orthopaedic applications.

  17. Static Corrosion Test of Porous Iron Material with Polymer Coating

    NASA Astrophysics Data System (ADS)

    Markušová-Bučková, Lucia; Oriňaková, Renáta; Oriňak, Andrej; Gorejová, Radka; Kupková, Miriam; Hrubovčáková, Monika; Baláž, Matej; Kováľ, Karol

    2016-12-01

    At present biodegradable implants received increased attention due to their use in various fields of medicine. This work is dedicated to testing of biodegradable materials which could be used as bone implants. The samples were prepared from the carbonyl iron powder by replication method and surface polymer film was produced through sol-gel process. Corrosion testing was carried out under static conditions during 12 weeks in Hank's solution. The quantity of corrosion products increased with prolonging time of static test as it can be concluded from the results of EDX analysis. The degradation of open cell materials with polyethylene glycol coating layer was faster compared to uncoated Fe sample. Also the mass losses were higher for samples with PEG coating. The polymer coating brought about the desired increase in degradation rate of porous iron material.

  18. Basalt fiber reinforced porous aggregates-geopolymer based cellular material

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Xu, Jin-Yu; Li, Weimin

    2015-09-01

    Basalt fiber reinforced porous aggregates-geopolymer based cellular material (BFRPGCM) was prepared. The stress-strain curve has been worked out. The ideal energy-absorbing efficiency has been analyzed and the application prospect has been explored. The results show the following: fiber reinforced cellular material has successively sized pore structures; the stress-strain curve has two stages: elastic stage and yielding plateau stage; the greatest value of the ideal energy-absorbing efficiency of BFRPGCM is 89.11%, which suggests BFRPGCM has excellent energy-absorbing property. Thus, it can be seen that BFRPGCM is easy and simple to make, has high plasticity, low density and excellent energy-absorbing features. So, BFRPGCM is a promising energy-absorbing material used especially in civil defense engineering.

  19. The usable capacity of porous materials for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Schlichtenmayer, Maurice; Hirscher, Michael

    2016-04-01

    A large number of different porous materials has been investigated for their hydrogen uptake over a wide pressure range and at different temperature. From the absolute adsorption isotherms, the enthalpy of adsorption is evaluated for a wide range of surface coverage. The usable capacity, defined as the amount of hydrogen released between a maximum tank pressure and a minimum back pressure for a fuel cell, is analyzed for isothermal operation. The usable capacity as a function of temperature shows a maximum which defines the optimum operating temperature. This optimum operating temperature is higher for materials possessing a higher enthalpy of adsorption. However, the fraction of the hydrogen stored overall that can be released at the optimum operating temperature is higher for materials with a lower enthalpy of adsorption than for the ones with higher enthalpy.

  20. Chitosan/kaolin composite porous microspheres with high hemostatic efficacy.

    PubMed

    Sun, Xun; Tang, Zonghao; Pan, Meng; Wang, Zhengchao; Yang, Hongqin; Liu, Haiqing

    2017-12-01

    The hemostatic performance of chitosan was greatly improved by blending it with kaolin to fabricate porous composite microspheres (CSMS-K) through inverse emulsion method combining with thermally induced phase separation. The CSMS-K had high amount of interior and surface pores. The synergetic hemostatic competence of chitosan and kaolin components made the hemostatic efficacy of CSMS-K superior to chitosan porous microspheres (CSMS). The hemostatic time of CSMS-K3 in the rat tail amputation and liver laceration models was down to respective 120 and 99s from 183 and 134s of CSMS, and the blood loss of CSMS-K3 was respectively 65% and 36% of that of CSMS in the rat tail amputation and liver laceration models. The whole blood clotting kinetics proved that CSMS-K3 formed larger blood clots than CSMS and Celox within a same time period. Our results suggested that the CSMS-K is a potential quick pro-coagulant agent for traumatic hemorrhaging control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. A dynamic experimental study on the evaporative cooling performance of porous building materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Lei; Meng, Qinglin; Feng, Yanshan; Chen, Yuanrui

    2017-08-01

    Conventional outdoor dynamic and indoor steady-state experiments have certain limitations in regard to investigating the evaporative cooling performance of porous building materials. The present study investigated the evaporative cooling performance of a porous building material using a special wind tunnel apparatus. First, the composition and control principles of the wind tunnel environment control system were elucidated. Then, the meteorological environment on a typical summer day in Guangzhou was reproduced in the wind tunnel and the evaporation process and thermal parameters of specimens composed of a porous building material were continuously measured. Finally, the experimental results were analysed to evaluate the accuracy of the wind tunnel environment control system, the heat budget of the external surface of the specimens and the total thermal resistance of the specimens and its uncertainty. The analysis results indicated that the normalized root-mean-square error between the measured value of each environmental parameter in the wind tunnel test section and the corresponding value input into the environment control system was <4%, indicating that the wind tunnel apparatus had relatively high accuracy in reproducing outdoor meteorological environments. In addition, the wet specimen could cumulatively consume approximately 80% of the shortwave radiation heat during the day, thereby reducing the temperature of the external surface and the heat flow on the internal surface of the specimen. Compared to the dry specimen, the total thermal resistance of the wet specimen was approximately doubled, indicating that the evaporation process of the porous building material could significantly improve the thermal insulation performance of the specimen.

  2. A dynamic experimental study on the evaporative cooling performance of porous building materials

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Zhang, Lei; Meng, Qinglin; Feng, Yanshan; Chen, Yuanrui

    2017-03-01

    Conventional outdoor dynamic and indoor steady-state experiments have certain limitations in regard to investigating the evaporative cooling performance of porous building materials. The present study investigated the evaporative cooling performance of a porous building material using a special wind tunnel apparatus. First, the composition and control principles of the wind tunnel environment control system were elucidated. Then, the meteorological environment on a typical summer day in Guangzhou was reproduced in the wind tunnel and the evaporation process and thermal parameters of specimens composed of a porous building material were continuously measured. Finally, the experimental results were analysed to evaluate the accuracy of the wind tunnel environment control system, the heat budget of the external surface of the specimens and the total thermal resistance of the specimens and its uncertainty. The analysis results indicated that the normalized root-mean-square error between the measured value of each environmental parameter in the wind tunnel test section and the corresponding value input into the environment control system was <4%, indicating that the wind tunnel apparatus had relatively high accuracy in reproducing outdoor meteorological environments. In addition, the wet specimen could cumulatively consume approximately 80% of the shortwave radiation heat during the day, thereby reducing the temperature of the external surface and the heat flow on the internal surface of the specimen. Compared to the dry specimen, the total thermal resistance of the wet specimen was approximately doubled, indicating that the evaporation process of the porous building material could significantly improve the thermal insulation performance of the specimen.

  3. Composite material impregnation unit

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.

    1993-01-01

    This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.

  4. Modeling Non-Linear Material Properties in Composite Materials

    DTIC Science & Technology

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  5. Composite materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.

    1990-01-01

    The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.

  6. Composite materials for thermal energy storage

    DOEpatents

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  7. Advances in design and modeling of porous materials

    NASA Astrophysics Data System (ADS)

    Ayral, André; Calas-Etienne, Sylvie; Coasne, Benoit; Deratani, André; Evstratov, Alexis; Galarneau, Anne; Grande, Daniel; Hureau, Matthieu; Jobic, Hervé; Morlay, Catherine; Parmentier, Julien; Prelot, Bénédicte; Rossignol, Sylvie; Simon-Masseron, Angélique; Thibault-Starzyk, Frédéric

    2015-07-01

    This special issue of the European Physical Journal Special Topics is dedicated to selected papers from the symposium "High surface area porous and granular materials" organized in the frame of the conference "Matériaux 2014", held on November 24-28, 2014 in Montpellier, France. Porous materials and granular materials gather a wide variety of heterogeneous, isotropic or anisotropic media made of inorganic, organic or hybrid solid skeletons, with open or closed porosity, and pore sizes ranging from the centimeter scale to the sub-nanometer scale. Their technological and industrial applications cover numerous areas from building and civil engineering to microelectronics, including also metallurgy, chemistry, health, waste water and gas effluent treatment. Many emerging processes related to environmental protection and sustainable development also rely on this class of materials. Their functional properties are related to specific transfer mechanisms (matter, heat, radiation, electrical charge), to pore surface chemistry (exchange, adsorption, heterogeneous catalysis) and to retention inside confined volumes (storage, separation, exchange, controlled release). The development of innovative synthesis, shaping, characterization and modeling approaches enables the design of advanced materials with enhanced functional performance. The papers collected in this special issue offer a good overview of the state-of-the-art and science of these complex media. We would like to thank all the speakers and participants for their contribution to the success of the symposium. We also express our gratitude to the organization committee of "Matériaux 2014". We finally thank the reviewers and the staff of the European Physical Journal Special Topics who made the publication of this special issue possible.

  8. Modelling dynamic compaction of porous materials with the overstress approach

    NASA Astrophysics Data System (ADS)

    Partom, Y.

    2014-05-01

    To model compaction of a porous material we need 1) an equation of state of the porous material in terms of the equation of state of its matrix, and 2) a compaction law. For an equation of state it is common to use Herrmann's suggestion, as in his Pα model. For a compaction law it is common to use a quasi-static compaction relation obtained from 1) a meso-scale model (as in Carroll and Holt's spherical shell model), or from 2) quasi-static tests. Here we are interested in dynamic compaction, like in a planar impact test. In dynamic compaction the state may change too fast for the state point to follow the quasi-static compaction curve. We therefore get an overstress situation. The state point moves out of the quasi-static compaction boundary, and only with time collapses back towards it at a certain rate. In this way the dynamic compaction event becomes rate dependent. In the paper we first write down the rate equations for dynamic compaction according to the overstress approach. We then implement these equations in a hydro-code and run some examples. We show how the overstress rate parameter can be calibrated from tests.

  9. Porous materials with high negative Poisson’s ratios—a mechanism based material design

    NASA Astrophysics Data System (ADS)

    Kim, Kwangwon; Ju, Jaehyung; Kim, Doo-Man

    2013-08-01

    In an effort to tailor functional materials with customized anisotropic properties—stiffness and yield strain, we propose porous materials consisting of flexible mesostructures designed from the deformation of a re-entrant auxetic honeycomb and compliant mechanisms. Using an analogy between compliant mechanisms and a cellular material’s deformation, we can tailor the in-plane properties of mesostructures; low stiffness and high strain in one direction and high stiffness and low strain in the other direction. An analytical model is developed to obtain the effective moduli and yield strains of the porous materials by combining the kinematics of a rigid link mechanism and deformation of flexure hinges. A numerical technique is implemented with the analytical model for the nonlinear constitutive relations of the mesostructures and their strain-dependent Poisson’s ratios. A finite element analysis (FEA) is used to validate the analytical and numerical models. The designed moduli and yield strain of porous materials with an aluminum alloy are 2 GPa and 0.28% in one direction and 0.2 MPa and 28% in the other direction. These porous materials with mesostructures have high negative Poisson’s ratios, {\

  10. Fiber composite materials technology development

    SciTech Connect

    Chiao, T.T.

    1980-10-23

    The FY1980 technical accomplishments from the Lawrence Livermore National laboratory (LLNL) for the Fiber Composite Materials Technology Development Task fo the MEST project are summarized. The task is divided into three areas: Engineering data base for flywheel design (Washington University will report this part separately), new materials evaluation, and time-dependent behavior of Kevlar composite strands. An epoxy matrix was formulated which can be used in composites for 120/sup 0/C service with good processing and mechanical properties. Preliminary results on the time-dependent properties of the Kevlar 49/epoxy strands indicate: Fatigue loading, as compared to sustained loading, drastically reduces the lifetime of a Kevlar composie; the more the number of on-off load cycles, the less the lifetime; and dynamic fatigue of the Kevlar composite can not be predicted by current damage theories such as Miner's Rule.

  11. Preparation of porous TiO{sub 2}/silica composites without any surfactants

    SciTech Connect

    Ren Suxia; Zhao Xu; Zhao Lina; Yuan Meirong; Yu Yang; Guo Yupeng Wang Zichen

    2009-02-15

    TiO{sub 2}-SiO{sub 2} composites, with high specific surface area (up to 308 m{sup 2}/g), large pore volume, and narrow distribution with average pore sizes of 3.2 nm, have been synthesized from wollastonite and titanium sulfate in the absence of any surfactants. Calcium sulfate, a microsolubility salt, plays an important role in the formation of pores in this porous TiO{sub 2}/silica composite. The microstructure and chemical composition of composite were characterized by X-ray diffractometry (XRD), transmission electron microscopy (TEM) equipped with energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectrometer (XPS) and N{sub 2} adsorption and desorption analysis. The as-prepared porous titanium dioxide-silicon dioxide composites with high specific surface area and well-crystallized anatase contents were used as an efficient photocatalyst. - Graphical abstract: TiO{sub 2}-SiO{sub 2} composites have been synthesized from wollastonite and titanium sulfate in the absence of any surfactants. In acid Ti(SO{sub 4}){sub 2} solution, Ca and Si ions in chain-like wollastonite could dissolve into the bulk solution and slightly soluble CaSO{sub 4} crystal phase and silicic acid formed. The concentration of the titanium species in the reaction solution is expected to increase with the hydrolysis process, nucleation starts. After the start of the nucleation, a very small amount of TiO{sub 2}, silicate and CaSO{sub 4} particle deposited together and formed composites. Some cavities formed during the washing step through the dissolution of CaSO{sub 4} crystal phase. The bulk of the material is then transformed from wollastonite into TiO{sub 2}/silica composites.

  12. A Porous Ceramic Interphase for SiC/Si(sub 3)N(sub 4) Composites

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.

    1995-01-01

    A suitable interphase material for non-oxide ceramic-matrix composites must be resistant to oxidation. This means it must exhibit a slow rate of oxidation, and its oxidation product must be such as to ensure that the system survives oxidation when it does occur. Because the current benchmark interphase materials, carbon and boron nitride, lack these qualities, a porous fiber coating was developed to satisfy both the mechanical and oxidative requirements of an interphase for the SiC/SiC and SiC/Si2N4 composites that are of interest to NASA. This report presents the interphase microstructure achieved and the resulting characteristics of fiber push-out from a matrix of reaction-bonded silicon nitride (RBSN), both as-fabricated and after substantial annealing and oxidation treatments.

  13. CO2 Separation and Capture Properties of Porous Carbonaceous Materials from Leather Residues

    PubMed Central

    Bermúdez, José M.; Dominguez, Pablo Haro; Arenillas, Ana; Cot, Jaume; Weber, Jens; Luque, Rafael

    2013-01-01

    Carbonaceous porous materials derived from leather skin residues have been found to have excellent CO2 adsorption properties, with interestingly high gas selectivities for CO2 (α > 200 at a gas composition of 15% CO2/85% N2, 273K, 1 bar) and capacities (>2 mmol·g−1 at 273 K). Both CO2 isotherms and the high heat of adsorption pointed to the presence of strong binding sites for CO2 which may be correlated with both: N content in the leather residues and ultrasmall pore sizes. PMID:28788352

  14. Fracture problems in composite materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1972-01-01

    A series of fracture problems in composite materials are identified, their methods of solution are briefly discussed, and some sample results are presented. The main problem of interest is the determination of the stress state in the neighborhood of localized imperfections such as cracks and inclusions which may exist in the composite. Particular emphasis is placed on the evaluation of quantities such as the stress intensity factors, the power of the stress singularity, and the strain energy release rate, which may be used directly or indirectly in connection with an appropriate fracture criterion for the prediction of fracture initiation and propagation load levels. The topics discussed include a crack in layered composites, a crack terminating at and going through a bi-material interface, a penny-shaped crack in a filament-reinforced elastic matrix, and inclusion problems in bonded materials.

  15. Fatigue Damage in Composite Materials

    NASA Astrophysics Data System (ADS)

    Revuelta, D.; Miravete, A.

    2002-02-01

    The phenomenon of fatigue is critical for designing structures including elements made of composite materials. The accurate prediction of the life and fatigue resistance of laminated composites is one of the subjects of inquiry in materials science. The ability of predicting the life of laminates is important for designing, operation, and safety analysis of a composite structure under specific conditions. To predict reliably the life of structures, it is necessary to know the mechanisms of cyclic deformation and damage. It is also necessary to develop a qualitative theory of fatigue failure that should be based on the concepts of solids mechanics. Developing such a theory requires to evaluate the microscopic parameters and the macroscopic variables of the material at the level of a laminate and the structure and to determine exactly the load modes acting on the system.

  16. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1982-11-01

    1(AXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES *ASTRAC7 lCofIflU Ir F*vsda Side It neceOaeen anud...composite systems are elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical...sealed, capsules achieved. The diamine bath has been E] improved and an automatic system has been developed for producing the microcapsules . The one

  17. Characterization of porous carbon fibers and related materials

    SciTech Connect

    Fuller, E.L. Jr.

    1996-07-15

    This program was geared to support the Fossil Energy Material Sciences Program with respect to several areas of interest in efficient production and utilization of energy. Carbon molecular sieves have great potential for economically purifying gases; i.e. removal of carbon dioxide from natural gas without having to resort to cryogenic techniques. Microporous carbons can be tailored to serve as adsorbents for natural gas in on-board storage in automotive applications, avoiding high pressures and heavy storage tanks. This program is a laboratory study to evaluate production methodologies and activation processes to produce porous carbons for specific applications. The Carbon Materials Technology Group of Oak Ridge National Laboratory (ORNL) is engaged in developmental programs to produce activated carbon fibers (ACF) for applications in fixed beds and/or flowing reactors engineering applications.

  18. System level permeability modeling of porous hydrogen storage materials.

    SciTech Connect

    Kanouff, Michael P.; Dedrick, Daniel E.; Voskuilen, Tyler

    2010-01-01

    A permeability model for hydrogen transport in a porous material is successfully applied to both laboratory-scale and vehicle-scale sodium alanate hydrogen storage systems. The use of a Knudsen number dependent relationship for permeability of the material in conjunction with a constant area fraction channeling model is shown to accurately predict hydrogen flow through the reactors. Generally applicable model parameters were obtained by numerically fitting experimental measurements from reactors of different sizes and aspect ratios. The degree of channeling was experimentally determined from the measurements and found to be 2.08% of total cross-sectional area. Use of this constant area channeling model and the Knudsen dependent Young & Todd permeability model allows for accurate prediction of the hydrogen uptake performance of full-scale sodium alanate and similar metal hydride systems.

  19. Fabrication of porous materials from blast furnace slag and glass materials by the hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Takeshi; Tanaka, Toshihiro

    Since a large amount of blast furnace (BF) slag is generated, its new recycling processes for the production of valuable materials have been required. Development of reusing method for waste glasses is also strongly demanded. The authors have tried to fabricate porous materials from those two materials by using the hydrothermal treatment. In the present work, hydrothermal hot pressing technique was conducted at 250-350°C. From BF slag, a heat-insulating material was obtained, possessing the low thermal conductivity of 0.25 W / m K. SiO2-Na2O-B2O3 glass was converted into glass containing water which exhibits the foaming as low as 200°C and becomes porous glass material.

  20. Europium (III) Organic Complexes in Porous Boron Nitride Microfibers: Efficient Hybrid Luminescent Material

    PubMed Central

    Lin, Jing; Feng, Congcong; He, Xin; Wang, Weijia; Fang, Yi; Liu, Zhenya; Li, Jie; Tang, Chengchun; Huang, Yang

    2016-01-01

    We report the design and synthesis of a novel kind of organic-inorganic hybrid material via the incorporation of europium (III) β-diketonate complexes (Eu(TTA)3, TTA = 2-thenoyltrifluoroacetone) into one-dimensional (1D) porous boron nitride (BN) microfibers. The developed Eu(TTA)3@BN hybrid composites with typical 1D fibrous morphology exhibit bright visible red-light emission on UV illumination. The confinement of Eu(TTA)3 within pores of BN microfibers not only decreases the aggregation-caused quenching in solid Eu(TTA)3, but also improves their thermal stabilities. Moreover, The strong interactions between Eu(TTA)3 and porous BN matrix result in an interesting energy transfer process from BN host to TTA ligand and TTA ligand to Eu3+ ions, leading to the remarkable increase of red emission. The synthetic approach should be a very promising strategy which can be easily expanded to other hybrid luminescent materials based on porous BN. PMID:27687246

  1. Attachment of composite porous supra-particles to air-water and oil-water interfaces: theory and experiment.

    PubMed

    Paunov, Vesselin N; Al-Shehri, Hamza; Horozov, Tommy S

    2016-09-29

    We developed and tested a theoretical model for the attachment of fluid-infused porous supra-particles to a fluid-liquid interface. We considered the wetting behaviour of agglomerated clusters of particles, typical of powdered materials dispersed in a liquid, as well as of the adsorption of liquid-infused colloidosomes at the liquid-fluid interface. The free energy of attachment of a composite spherical porous supra-particle made from much smaller aggregated spherical particles to the oil-water interface was calculated. Two cases were considered: (i) a water-filled porous supra-particle adsorbed at the oil-water interface from the water phase, and, (ii) an oil-filled porous supra-particle adsorbed at the oil-water interface from the oil-phase. We derived equations relating the three-phase contact angle of the smaller "building block" particles and the contact angle of the liquid-infused porous supra-particles. The theory predicts that the porous supra-particle contact angle attached at the liquid interface strongly depends on the type of fluid infused in the particle pores and the fluid phase from which it approaches the liquid interface. We tested the theory by using millimetre-sized porous supra-particles fabricated by evaporation of droplets of polystyrene latex suspension on a pre-heated super-hydrophobic surface, followed by thermal annealing at the glass transition temperature. Such porous particles were initially infused with water or oil and approached to the oil-water interface from the infusing phase. The experiment showed that when attaching at the hexadecane-water interface, the porous supra-particles behaved as hydrophilic when they were pre-filled with water and hydrophobic when they were pre-filled with hexadecane. The results agree with the theoretically predicted contact angles for the porous composite supra-particles based on the values of the contact angles of their building block latex particles measured with the Gel Trapping Technique. The

  2. Lightweight, Thermally Conductive Composite Material

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Loftin, Timothy A.

    1990-01-01

    Aluminum reinforced with carbon fibers superior to copper in some respects. Lightweight composite material has high thermal conductivity. Consists of aluminum matrix containing graphite fibers, all oriented in same direction. Available as sheets, tubes, and bars. Thermal conductivity of composite along fibers rises above that of pure copper over substantial range of temperatures. Graphite/aluminum composite useful in variety of heat-transfer applications in which reduction of weight critical. Used to conduct heat in high-density, high-speed integrated-circuit packages for computers and in base plates for electronic equipment. Also used to carry heat away from leading edges of wings in high-speed airplanes.

  3. Effect of Moisture Content on Thermal Properties of Porous Building Materials

    NASA Astrophysics Data System (ADS)

    Kočí, Václav; Vejmelková, Eva; Čáchová, Monika; Koňáková, Dana; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2017-02-01

    The thermal conductivity and specific heat capacity of characteristic types of porous building materials are determined in the whole range of moisture content from dry to fully water-saturated state. A transient pulse technique is used in the experiments, in order to avoid the influence of moisture transport on measured data. The investigated specimens include cement composites, ceramics, plasters, and thermal insulation boards. The effect of moisture-induced changes in thermal conductivity and specific heat capacity on the energy performance of selected building envelopes containing the studied materials is then analyzed using computational modeling of coupled heat and moisture transport. The results show an increased moisture content as a substantial negative factor affecting both thermal properties of materials and energy balance of envelopes, which underlines the necessity to use moisture-dependent thermal parameters of building materials in energy-related calculations.

  4. Impact response of composite materials

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Srinivasan, K.

    1991-01-01

    Composite materials composed of carbon fibers and resin matrices offer great promise in reducing the weight of aerospace structures. However they remain extremely vulnerable to out of plane impact loads, which lead to severe losses in strength and stiffness. The results of an experimental program, undertaken to investigate the low velocity impact damage tolerance of composite materials is presented. The objectives were to identify key neat resin/composite properties that lead to enhancement of composite impact damage tolerance and to find a small scale test that predicts compression after impact properties of panels. Five materials were selected for evaluation. These systems represented different classes of material behavior such as brittle epoxy, modified epoxies, and amorphous and semicrystalling thermoplastics. The influence of fiber properties on the impact performance was also studied in one material, i.e., in polyether ether ketone (PEEK). Several 24 and 48 ply quasi-isotropic and 24 ply orthotropic laminates were examined using an instrumented drop weight impactor. Correlations with post impact compression behavior were made.

  5. Solid state NMR of porous materials : zeolites and related materials.

    PubMed

    Koller, Hubert; Weiss, Mark

    2012-01-01

    Solid state NMR spectroscopy applied to the science of crystalline micro- and mesoporous silica materials over the past 10 years is reviewed. A survey is provided of framework structure and connectivity analyses from chemical shift effects of various elements in zeolites including heteroatom substitutions, framework defects and pentacoordinated silicon for zeolites containing fluoride ions. New developments in the field of NMR crystallography are included. Spatial host-guest ordering and confinement effects of zeolite-sorbate complexes are outlined, with special emphasis on NMR applications utilizing the heteronuclear dipolar interaction. The characterization of zeolite acid sites and in situ NMR on catalytic conversions is also included. Finally, the motion of extra-framework cations is investigated in two tutorial cases of sodium hopping in sodalite and cancrinite.

  6. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1985-01-01

    Research related to growth of an imbedded through-width delamination (ITWD) in a compression loaded composite structural element is presented. Composites with widely different interlaminar fracture resistance were examined, viz., graphite/epoxy (CYCOM 982) and graphite/PEEK (APC-2). The initial part of the program consisted of characterizing the material in tension, compression and shear mainly to obtain consistent material properties for analysis, but also as a check of the processing method developed for the thermoplastic APC-2 material. The characterization of the delamination growth in the ITWD specimen, which for the unidirectional case is essentially a mixed Mode 1 and 2 geometry, requires verified mixed-mode growth criteria for the two materials involved. For this purpose the main emphasis during this part of the investigation was on Mode 1 and 2 fracture specimens, namely the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens.

  7. Cellular porous anodic alumina grown in neutral organic electrolyte. 1. Structure, composition, and properties of the films

    SciTech Connect

    Liu, Y.; Alwitt, R.S.; Shimizu, K.

    2000-04-01

    Anodic alumina films with cellular porous structure grow in neutral organic electrolytes with low water content and containing ethylene glycol and a large dicarboxylic acid. An Al carboxylate precipitates in the pore and is extruded from the coating. The porous structure develops even though the current efficiency for film formation is near 95%. The coating matrix contains substantial organic material, 15 wt % by thermal analysis. It is an oxide/organic composite with higher field strength and lower dielectric constant than pure anodic alumina.

  8. Dielectric composite materials and method for preparing

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2003-07-29

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  9. Method for preparing dielectric composite materials

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.

    2004-11-23

    The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.

  10. Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures.

    PubMed

    Jiang, Lili; Fan, Zhuangjun

    2014-02-21

    In order to make full utilization of the high intrinsic surface area of graphene, recently, porous graphene materials including graphene nanomesh, crumpled graphene and graphene foam, have attracted tremendous attention and research interest, owing to their exceptional porous structure (high surface area, and high pore volume) in combination with the inherent properties of graphene, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Interestingly, porous graphene materials and their derivatives have been explored in a wide range of applications in the fields of electronic and photonic devices, energy storage, gas separation/storage, oil absorption and sensors. This article reviews recent progress in the synthesis, characterization, properties, and applications of porous graphene materials. We aim to highlight the importance of designing different porous structures of graphene to meet future challenges, and the trend on future design of porous graphene materials is analyzed.

  11. Mechanical and thermal properties of composite material system reinforced with micro glass balloons

    NASA Astrophysics Data System (ADS)

    Ozawa, Y.; Watanabe, M.; Kikuchi, T.; Ishiwatari, H.

    2010-06-01

    The mechanical and thermal properties of polymer composites reinforced with micro glass balloons are investigated in temperature conditions. The matrix resin of the composite is epoxy resin and its dispersion is micro glassy spherical shells of Sirasu Balloon. The composite system developed is a kind of micro porous materials with lightweight. From the experimental data of bending and tension tests, mechanical behaviours of the composites were clarified, and the effects of material properties and configurations on the mechanical properties of composites were discussed from the viewpoint of micromechanical study. A homogenization theory with multi-scale analytical method has been applied in order to evaluate the composite material system in temperature conditions. Numerical calculations were performed by using a model of micro porous materials and setting properties of each material at the temperature. Analytical results for the mechanical behaviour made a good agreement with experimental result of the composites in temperature conditions.

  12. Hypercrosslinked porous polymer materials: design, synthesis, and applications.

    PubMed

    Tan, Liangxiao; Tan, Bien

    2017-02-22

    Hypercrosslinked polymers (HCPs) are a series of permanent microporous polymer materials initially reported by Davankov, and have received an increasing level of research interest. In recent years, HCPs have experienced rapid growth due to their remarkable advantages such as diverse synthetic methods, easy functionalization, high surface area, low cost reagents and mild operating conditions. Judicious selection of monomers, appropriate length crosslinkers and optimized reaction conditions yielded a well-developed polymer framework with an adjusted porous topology. Post fabrication of the as developed network facilitates the incorporation of various chemical functionalities that may lead to interesting properties and enhance the selection toward a specific application. To date, numerous HCPs have been prepared by post-crosslinking polystyrene-based precursors, one-step self-polycondensation or external crosslinking strategies. The advent of these methodologies has prompted researchers to construct well-defined porous polymer networks with customized micromorphology and functionalities. In this review, we describe not only the basic synthetic principles and strategies of HCPs, but also the advancements in the structural and morphological study as well as the frontiers of potential applications in energy and environmental fields such as gas storage, carbon capture, removal of pollutants, molecular separation, catalysis, drug delivery, sensing etc.

  13. Thick-film humidity sensor based on porous ? material

    NASA Astrophysics Data System (ADS)

    Qu, Wenmin; Meyer, Jörg-Uwe

    1997-06-01

    A new compact, robust, yet fast and highly sensitive ceramic humidity sensor based on the semiconducting metal oxide 0957-0233/8/6/002/img2 has been developed using thick-film technology. The sensor element possesses a novel `sandwich' configuration with a 0957-0233/8/6/002/img3 porous 0957-0233/8/6/002/img2 ceramic layer sandwiched by two 0957-0233/8/6/002/img5 polarity-reversed interdigitated metal films. Instead of traditional glass frits, LiCl powders were used as adhesion promoters. The sintered ceramic layer exhibits a porous structure. The degree of the porosity is controlled by the amount of LiCl added and by the firing conditions for the ceramic. The surfaces of ceramic grains behave like electrolytes and easily adsorb water vapour through the pores. The novel electrode arrangement combines the advantages of humidity sensors in the form of a parallel capacitor with those in the form of an interdigital capacitor. The influence of temperature on the sensor characteristics has been compensated for by integrating a thick-film NTC resistor. The results of studies on the material processing, the fabrication and the characterization of this novel thick-film humidity sensor are described.

  14. Conductive porous scaffolds as potential neural interface materials.

    SciTech Connect

    Hedberg-Dirk, Elizabeth L.; Cicotte, Kirsten N.; Buerger, Stephen P.; Reece, Gregory; Dirk, Shawn M.; Lin, Patrick P.

    2011-11-01

    Our overall intent is to develop improved prosthetic devices with the use of nerve interfaces through which transected nerves may grow, such that small groups of nerve fibers come into close contact with electrode sites, each of which is connected to electronics external to the interface. These interfaces must be physically structured to allow nerve fibers to grow through them, either by being porous or by including specific channels for the axons. They must be mechanically compatible with nerves such that they promote growth and do not harm the nervous system, and biocompatible to promote nerve fiber growth and to allow close integration with biological tissue. They must exhibit selective and structured conductivity to allow the connection of electrode sites with external circuitry, and electrical properties must be tuned to enable the transmission of neural signals. Finally, the interfaces must be capable of being physically connected to external circuitry, e.g. through attached wires. We have utilized electrospinning as a tool to create conductive, porous networks of non-woven biocompatible fibers in order to meet the materials requirements for the neural interface. The biocompatible fibers were based on the known biocompatible material poly(dimethyl siloxane) (PDMS) as well as a newer biomaterial developed in our laboratories, poly(butylene fumarate) (PBF). Both of the polymers cannot be electrospun using conventional electrospinning techniques due to their low glass transition temperatures, so in situ crosslinking methodologies were developed to facilitate micro- and nano-fiber formation during electrospinning. The conductivity of the electrospun fiber mats was controlled by controlling the loading with multi-walled carbon nanotubes (MWNTs). Fabrication, electrical and materials characterization will be discussed along with initial in vivo experimental results.

  15. Approach to failure in porous granular materials under compression

    NASA Astrophysics Data System (ADS)

    Kun, Ferenc; Varga, Imre; Lennartz-Sassinek, Sabine; Main, Ian G.

    2013-12-01

    We investigate the approach to catastrophic failure in a model porous granular material undergoing uniaxial compression. A discrete element computational model is used to simulate both the microstructure of the material and the complex dynamics and feedbacks involved in local fracturing and the production of crackling noise. Under strain-controlled loading, microcracks initially nucleate in an uncorrelated way all over the sample. As loading proceeds the damage localizes into a narrow damage band inclined at 30∘-45∘ to the load direction. Inside the damage band the material is crushed into a poorly sorted mixture of mainly fine powder hosting some larger fragments. The mass probability density distribution of particles in the damage zone is a power law of exponent 2.1, similar to a value of 1.87 inferred from observations of the length distribution of wear products (gouge) in natural and laboratory faults. Dynamic bursts of radiated energy, analogous to acoustic emissions observed in laboratory experiments on porous sedimentary rocks, are identified as correlated trails or cascades of local ruptures that emerge from the stress redistribution process. As the system approaches macroscopic failure consecutive bursts become progressively more correlated. Their size distribution is also a power law, with an equivalent Gutenberg-Richter b value of 1.22 averaged over the whole test, ranging from 3 to 0.5 at the time of failure, all similar to those observed in laboratory tests on granular sandstone samples. The formation of the damage band itself is marked by a decrease in the average distance between consecutive bursts and an emergent power-law correlation integral of event locations with a correlation dimension of 2.55, also similar to those observed in the laboratory (between 2.75 and 2.25).

  16. Novel hierarchically porous carbon materials obtained from natural biopolymer as host matrixes for lithium-sulfur battery applications.

    PubMed

    Zhang, Bin; Xiao, Min; Wang, Shuanjin; Han, Dongmei; Song, Shuqin; Chen, Guohua; Meng, Yuezhong

    2014-08-13

    Novel hierarchically porous carbon materials with very high surface areas, large pore volumes and high electron conductivities were prepared from silk cocoon by carbonization with KOH activation. The prepared novel porous carbon-encapsulated sulfur composites were fabricated by a simple melting process and used as cathodes for lithium sulfur batteries. Because of the large surface area and hierarchically porous structure of the carbon material, soluble polysulfide intermediates can be trapped within the cathode and the volume expansion can be alleviated effectively. Moreover, the electron transport properties of the carbon materials can provide an electron conductive network and promote the utilization rate of sulfur in cathode. The prepared carbon-sulfur composite exhibited a high specific capacity and excellent cycle stability. The results show a high initial discharge capacity of 1443 mAh g(-1) and retain 804 mAh g(-1) after 80 discharge/charge cycles at a rate of 0.5 C. A Coulombic efficiency retained up to 92% after 80 cycles. The prepared hierarchically porous carbon materials were proven to be an effective host matrix for sulfur encapsulation to improve the sulfur utilization rate and restrain the dissolution of polysulfides into lithium-sulfur battery electrolytes.

  17. Composite Materials: An Educational Need.

    ERIC Educational Resources Information Center

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  18. Aluminum-Lead Composite Materials

    NASA Astrophysics Data System (ADS)

    Kovtunov, A. I.; Khokhlov, Yu. Yu.; Myamin, S. V.

    2017-05-01

    A process of fabrication of aluminum-lead sliding bearings is suggested on the basis of impregnation of foam aluminum with lead or lead-base alloys. The results of tests of physical, mechanical and operating properties of the composite materials are presented.

  19. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1981-08-01

    necessary and Identify byv block number) MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : SOFT FILLERS; ELASTOMER COMPOSITES 2,. ABSTRACT...used as fillers in the fabrication of maxillofacial prostheses. The projected systems are elastomeric-shelled, liquid-filled microcapsules . Improvements...elastomeric-shelled, liquid-filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules

  20. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1983-02-01

    the most promise for producing elastomeric-shelled microcapsules containing an inert liquid. While much of the diverse field of microencapsulation is...Processes and Applications, Chicago, 28 August 1973. 11. Gutchko, M. H., Microcapsules and Microencapsulation Techniques. Noyes Data Corporation, Park Ridge...necesaryv and identify by block number) * MAXILLOFACIAL PROSTHESES; PROSTHETIC MATERIALS: MICROCAPSULES : * SOFT FILLERS; ELASTOMER COMPOSITES 2L

  1. Composite Materials: An Educational Need.

    ERIC Educational Resources Information Center

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  2. Biofiber composites - environmentally compatible materials

    SciTech Connect

    Narayan, R.; Krishnan, M.

    1995-12-01

    A number of thermoplastics have been evaluated as potential materials for composite and blend formulations with natural polymers such as cellulosics, lignocellulose, and starches. The use of biofibers, derived from annually renewable resources, as reinforcing fibers provides positive environmental benefits.An important aspect that affects the processing and ultimate performance is the interfacial adhesion between the biofibers and the plastic.

  3. Joining of polymer composite materials

    SciTech Connect

    Magness, F.H.

    1990-11-01

    Under ideal conditions load bearing structures would be designed without joints, thus eliminating a source of added weight, complexity and weakness. In reality the need for accessibility, repair, and inspectability, added to the size limitations imposed by the manufacturing process and transportation/assembly requirements mean that some minimum number of joints will be required in most structures. The designer generally has two methods for joining fiber composite materials, adhesive bonding and mechanical fastening. As the use of thermoplastic materials increases, a third joining technique -- welding -- will become more common. It is the purpose of this document to provide a review of the available sources pertinent to the design of joints in fiber composites. The primary emphasis is given to adhesive bonding and mechanical fastening with information coming from documentary sources as old as 1961 and as recent as 1989. A third, shorter section on composite welding is included in order to provide a relatively comprehensive treatment of the subject.

  4. Impact cratering and ejection of material on porous asteroids

    NASA Astrophysics Data System (ADS)

    Housen, K.; Sweet, W.

    2014-07-01

    increased lithostatic overburden stresses at large scales. When the target material has significant porosity, much of the crater volume forms by permanent compaction of void spaces. This compaction volume depends only on the crushing strength of the material, independent of size scale. The crater volume cannot be less than the volume created by compaction. Therefore, at large size scales, the cratering efficiency for porous materials levels out to a constant value rather than decreasing as in the usual gravity-dominated cratering. The transition to this asymptote represents the onset of compaction-dominated cratering. The presence of a compaction regime of cratering is important because, as our experiments and scaling arguments have shown, the mass of material that is emplaced in a crater's ejecta blanket drops sharply upon transition into the compaction regime. This causes craters to form without ejecting material outside the crater, resulting in an absence of ejecta blankets on porous asteroids, less erosion of existing pre-existing craters, and reduced gardening of the regolith by impacts. Our experiments now allow us to determine the conditions under which this compaction-dominated cratering and suppression of ejecta occur. In the presentation, these experiments will be summarized, we will show how they are consistent with observations of a lack of ejecta around large craters on Mathilde and Hyperion [2--4], and will discuss the mechanics of cratering on porous bodies. by the NASA Planetary Geology and Geophysics program.

  5. Mechanical properties of composite materials

    NASA Technical Reports Server (NTRS)

    Thornton, H. Richard; Cornwell, L. R.

    1993-01-01

    A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).

  6. Catalytically Active Bimetallic Nanoparticles Supported on Porous Carbon Capsules Derived From Metal-Organic Framework Composites.

    PubMed

    Yang, Hui; Bradley, Siobhan J; Chan, Andrew; Waterhouse, Geoffrey I N; Nann, Thomas; Kruger, Paul E; Telfer, Shane G

    2016-09-14

    We report a new methodology for producing monometallic or bimetallic nanoparticles confined within hollow nitrogen-doped porous carbon capsules. The capsules are derived from metal-organic framework (MOF) crystals that are coated with a shell of a secondary material comprising either a metal-tannic acid coordination polymer or a resorcinol-formaldehyde polymer. Platinum nanoparticles are optionally sandwiched between the MOF core and the shell. Pyrolysis of the MOF-shell composites produces hollow capsules of porous nitrogen-doped carbon that bear either monometallic (Pt, Co, and Ni) or alloyed (PtCo and PtNi) metal nanoparticles. The Co and Ni components of the bimetallic nanoparticles are derived from the shell surrounding the MOF crystals. The hollow capsules prevent sintering and detachment of the nanoparticles, and their porous walls allow for efficient mass transport. Alloyed PtCo nanoparticles embedded in the capsule walls are highly active, selective, and recyclable catalysts for the hydrogenation of nitroarenes to anilines.

  7. Large deformation ionic polymer-metal composites actuators based on porous Nafion membranes

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Li, Dichen; Wang, Yanjie; Luo, Meng; Chen, Hualing

    2016-04-01

    With advantages of low driving voltage, good flexibility and high electromechanical efficiency, ionic polymer-metal composites (IPMCs), which are one of the most attractive smart materials, have been research hotspot in actuators, sensors and artificial muscles. However, a serious drawback of little deformation of thick IPMC actuator limits its application. In this paper, we fabricated thick porous Nafion membranes by freeze-drying process. A series of Thermogravimetric analyses (TGA), Field emission scanning electron microscopy (FE-SEM) and Water uptake (WUP) tests were performed to examine the validity of the freeze-drying process and the pore size and the porosity. Then, the porous IPMCs were fabricated with the freeze-drying processed Nafion membranes by the solution casting and reducing plating. Finally, the IPMC actuators with the dimensions of 25× 5× 1 in millimeters were achieved and tested. The terminal deformation of the porous IPMC actuator increased by 739.7%, compared with the ordinary IPMC actuator with the same dimensions under the driving voltage of 2VDC.

  8. Calcification capacity of porous pHEMA-TiO₂ composite hydrogels.

    PubMed

    Li, Chao; Zheng, Yu-Feng; Lou, Xia

    2009-11-01

    Many investigations have been attempted to promote calcification of synthetic polymers for applications as orthopaedic and dental implants. In this study, novel titanium dioxide (TiO(2)) reinforced porous poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels were synthesized. Calcification capacity of the composite polymers was examined using light microscopy, scanning electron microscopy and Fourier transform infrared spectroscopy after incubation of the materials in a simulated body fluid up to 53 days. Mechanical strength, porosity and in vitro cytotoxicity were also investigated. Calcification capacity of porous pHEMA was significantly enhanced by the addition of TiO(2) particulates. Infiltration of calcium phosphate, up to 1000 mum, was observed. The diffusion capacity of calcium ions was affected by the porosity and the interconnectivity of pores in the hydrogel polymers which were influenced by the presence of TiO(2) and the monomer concentration. Cell viability tests indicated that porous hydrogels containing 7.5% TiO(2) were not toxic to 3T3 fibroblast cells. These results demonstrate that incorporating TiO(2) nanoparticulates can promote enhanced formation of calcium phosphate whilst maintaining the porosity and interconnectivity of the hydrogel polymers and would be very useful for the development of orthopaedic tissue engineering scaffolds.

  9. Silicon dioxide hollow microspheres with porous composite structure: synthesis and characterization.

    PubMed

    Yan, Xiuli; Lei, Zhongli

    2011-10-15

    In this paper, a strategy for hollow porous silica microspheres with ideally flower structure is presented. SiO(2)/PAM hybrid composite microspheres with porous were synthesized by the reaction that the porous polyacrylamide (PAM) micro-gels immersed in tetraethoxysilane (TEOS) anhydrous alcohol solution and water in a moist atmosphere, with ammonium hydroxide as a catalyst. The SiO(2) hollow microspheres with porous were obtained after calcination of the composite microspheres at 550 °C for 4 h. The morphology, composition, and crystalline structure of the microspheres were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FI-IR), and X-ray diffraction (XRD), N(2) absorption analysis, respectively. The results indicated that the obtained hollow porous SiO(2) microspheres were a perfect flower structure. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Controlling shockwave dynamics using architecture in periodic porous materials

    NASA Astrophysics Data System (ADS)

    Branch, Brittany; Ionita, Axinte; Clements, Bradford E.; Montgomery, David S.; Jensen, Brian J.; Patterson, Brian; Schmalzer, Andrew; Mueller, Alexander; Dattelbaum, Dana M.

    2017-04-01

    Additive manufacturing (AM) is an attractive approach for the design and fabrication of structures capable of achieving controlled mechanical response of the underlying deformation mechanisms. While there are numerous examples illustrating how the quasi-static mechanical responses of polymer foams have been tailored by additive manufacturing, there is limited understanding of the response of these materials under shockwave compression. Dynamic compression experiments coupled with time-resolved X-ray imaging were performed to obtain insights into the in situ evolution of shockwave coupling to porous, periodic polymer foams. We further demonstrate shock wave modulation or "spatially graded-flow" in shock-driven experiments via the spatial control of layer symmetries afforded by additive manufacturing techniques at the micron scale.

  11. The pressure drop in a porous material layer during combustion

    SciTech Connect

    Kondrikov, B.N.

    1995-07-01

    During the combustion of a porous material layer, a manometer, which is attached to the cold end of the charge, records at the bottom of the layer a pressure reduction, which was discovered more than 20 years ago but which remains essentially unexplained up to the present. It is experimentally shown that this effect is similar to the pressure change in the cavities when a light gas (helium, hydrogen) diffuses from (or to) them under isothermal conditions and that it increases during the combustion mainly due to the accompanying Stefan type flow, and probably also as a result of the thermal diffusion. A pressure drop in the cavities is evidently made possible also by the pressure reduction in the flame which follows from the Hugoniot adiabatic theory.

  12. A hierarchical Zn2Mo3O8 nanodots-porous carbon composite as a superior anode for lithium-ion batteries.

    PubMed

    Zhu, Yanping; Zhong, Yijun; Chen, Gao; Deng, Xiang; Cai, Rui; Li, Li; Shao, Zongping

    2016-08-04

    A hierarchical Zn2Mo3O8 nanodots-porous carbon composite has been successfully synthesized via the ingenious combination of ion exchange and molten salt strategies, and the composite exhibits remarkable performance as an anode material for lithium-ion batteries.

  13. Metal-organic frameworks as functional, porous materials

    NASA Astrophysics Data System (ADS)

    Rood, Jeffrey A.

    The research presented in this thesis investigates the use of metal carboxylates as permanently porous materials called metal-organic frameworks (MOFs). The project has focused on three broad areas of study, each which strives to develop a further understanding of this class of materials. The first topic is concerned with the synthesis and structural characterization of MOFs. Our group and others have found that the reaction of metal salts with carboxylic acids in polar solvents at elevated temperatures often leads the formation of crystalline MOF materials that can be examined by single crystal X-ray diffraction. Specifically, Chapter 2 reports on some of the first examples of magnesium MOFs, constructed from formate or aryldicarboxylate ligands. The magnesium formate MOF, [Mg3(O2CH) 6] was found to be a permanently porous 3-D material capable of selective uptake and exchange of small molecules. Once the synthesis and structures of some of these materials was known, their physical properties were studied. The magnesium formate MOF, [Mg 3(O2CH)6], was found to be permanently porous and able to reversibly adsorb both N2 and H2 gas. Furthermore, the material was also capable of taking up a variety of organic molecules to form new inclusion compounds that were characterized by XRD studies. Size exclusion was shown for cyclohexane and larger molecules. Chapters 3, 5, and 6 attempt to build off of the synthetic findings reported in Chapter 2. Specifically, the ability of these materials to take up guest molecules is expanded by the attempted synthesis of porous, homochiral MOFs using enantiopure carboxylic acids in the synthesis. It was found that under the appropriate synthetic conditions, both L-tartaric acid and (+)-camphoric acid were robust linkers for the formation of homochiral MOFs. Of the compounds synthesized, the most interesting were the set of compounds, [Zn2(Cam) 2(bipy)⊃3DMF] and [Zn2(Cam)2(apyr)⊃2DMF]. These compounds formed isoreticular cubic

  14. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients.

    PubMed

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P; Ritchie, Robert O

    2015-12-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required.

  15. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients

    PubMed Central

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P.; Ritchie, Robert O.

    2015-01-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062

  16. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    SciTech Connect

    Lin, YuPo J; Henry, Michael P; Snyder, Seth W

    2011-07-12

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  17. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    SciTech Connect

    Lin, YuPo J; Henry, Michael P; Snyder, Seth W

    2008-11-18

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  18. Energy absorption of composite materials

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1983-01-01

    Results of a study on the energy absorption characteristics of selected composite material systems are presented and the results compared with aluminum. Composite compression tube specimens were fabricated with both tape and woven fabric prepreg using graphite/epoxy (Gr/E), Kevlar (TM)/epoxy (K/E) and glass/epoxy (Gl/E). Chamfering and notching one end of the composite tube specimen reduced the peak load at initial failure without altering the sustained crushing load, and prevented catastrophic failure. Static compression and vertical impact tests were performed on 128 tubes. The results varied significantly as a function of material type and ply orientation. In general, the Gr/E tubes absorbed more energy than the Gl/E or K/E tubes for the same ply orientation. The 0/ + or - 15 Gr/E tubes absorbed more energy than the aluminum tubes. Gr/E and Gl/E tubes failed in a brittle mode and had negligible post crushing integrity, whereas the K/E tubes failed in an accordian buckling mode similar to the aluminum tubes. The energy absorption and post crushing integrity of hybrid composite tubes were not significantly better than that of the single material tubes.

  19. Modelling the optical properties of composite and porous interstellar grains

    NASA Astrophysics Data System (ADS)

    Voshchinnikov, N. V.; Il'in, V. B.; Henning, Th.

    2005-01-01

    There are indications that interstellar and interplanetary dust grains have an inhomogeneous and fluffy structure. We investigate different methods to describe light scattering by such composite particles. Both a model of layered particles and discrete dipole calculations for particles with Rayleigh and non-Rayleigh inclusions are used. The calculations demonstrate that porosity is a key parameter for determining light scattering. We find that the optical properties of the layered particles depend on the number and position of layers if the number of layers is small (⪉ 15). For a larger number of layers the scattering characteristics become independent of the layer sequence. The optical properties of particles with inclusions depend on the size of inclusions provided the porosity is large. The scattering characteristics of very porous particles with inclusions of different sizes are found to be close to those of multi-layered spheres. We compare the results of these calculations with the predictions of the effective medium theories (EMT) which are often used in astronomy as a tool to calculate the optical properties of composite particles. The results of our analysis show that the internal structure of grains (layers versus inclusions) only slightly affects the optics of particles provided the porosity does not exceed 50%. It is also demonstrated that in this case the optical properties of composite grains calculated with EMT agree with the results of the exact method for layered particles. For larger porosity, the standard EMT rules (i.e., Garnett and Bruggeman rules) give reliable results for particles with Rayleigh inclusions only.

  20. Nitrogen-doped biomass/polymer composite porous carbons for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Shu, Yu; Maruyama, Jun; Iwasaki, Satoshi; Maruyama, Shohei; Shen, Yehua; Uyama, Hiroshi

    2017-10-01

    Nitrogen-doped porous monolithic carbon (NDPMC) is obtained from biomass-derived activated carbon/polyacrylonitrile composite for the first time via a template-free thermally induced phase separation (TIPS) approach followed by KOH activation. The electrochemical results indicate that NDPMC possesses ultrahigh specific capacitance of 442 F g-1 at 1 A g-1, excellent rate capability with 81% retention rate from 1 to 100 A g-1 and outstanding cycling stability with 98% capacitance retention at 20 A g-1 after 5000 cycles. Furthermore, the evaluation of NDPMC on the practical symmetrical system also exhibits desired electrochemical performances. The novel composite carbon displays remarkable capacitance properties and the feasible, low-cost synthetic route demonstrates great potential for large-scale production of high-performance electrode materials for supercapacitors.

  1. Highly explosive nanosilicon-based composite materials

    NASA Astrophysics Data System (ADS)

    Clément, D.; Diener, J.; Gross, E.; Künzner, N.; Timoshenko, V. Yu.; Kovalev, D.

    2005-06-01

    We present a highly explosive binary system based on porous silicon layers with their pores filled with solid oxidizers. The porous layers are produced by a standard electrochemical etching process and exhibit properties that are different from other energetic materials. Its production is completely compatible with the standard silicon technology and full bulk silicon wafers can be processed and therefore a large number of explosive elements can be produced simultaneously. The application-relevant parameters: the efficiency and the long-term stability of various porous silicon/oxidizer systems have been studied in details. Structural properties of porous silicon, its surface termination, the atomic ratio of silicon to oxygen and the chosen oxidizers were optimized to achieve the highest efficiency of the explosive reaction. This explosive system reveals various possible applications in different industrial fields, e.g. as a novel, very fast airbag igniter.

  2. Novel, inorganic composites using porous, alkali-activated, aluminosilicate binders

    NASA Astrophysics Data System (ADS)

    Musil, Sean

    Geopolymers are an inorganic polymeric material composed of alumina, silica, and alkali metal oxides. Geopolymers are chemical and fire resistant, can be used as refractory adhesives, and are processed at or near ambient temperature. These properties make geopolymer an attractive choice as a matrix material for elevated temperature composites. This body of research investigated numerous different reinforcement possibilities and variants of geopolymer matrix material and characterized their mechanical performance in tension, flexure and flexural creep. Reinforcements can then be chosen based on the resulting properties to tailor the geopolymer matrix composites to a specific application condition. Geopolymer matrix composites combine the ease of processing of polymer matrix composites with the high temperature capability of ceramic matrix composites. This study incorporated particulate, unidirectional fiber and woven fiber reinforcements. Sodium, potassium, and cesium based geopolymer matrices were evaluated with cesium based geopolymer showing great promise as a high temperature matrix material. It showed the best strength retention at elevated temperature, as well as a very low coefficient of thermal expansion when crystallized into pollucite. These qualities made cesium geopolymer the best choice for creep resistant applications. Cesium geopolymer binders were combined with unidirectional continuous polycrystalline mullite fibers (Nextel(TM) 720) and single crystal mullite fibers, then the matrix was crystallized to form cubic pollucite. Single crystal mullite fibers were obtained by the internal crystallization method and show excellent creep resistance up to 1400°C. High temperature flexural strength and flexural creep resistance of pollucite and polycrystalline/single-crystal fibers was evaluated at 1000-1400°C.

  3. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    SciTech Connect

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W.

    2014-09-24

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  4. Shock reactivity experiments on a porous composite propellant

    NASA Astrophysics Data System (ADS)

    Sandusky, H. W.; Bernecker, R. R.

    1996-05-01

    Porous beds of a propellant containing ammonium perchlorate and aluminum in an inert binder were subjected to two-dimensional (2-D) shocks from 95.2 mm diameter, cylindrical donors. The 50.6 mm diameter beds consisted of 3.2 mm cubes packed at a solids fraction of 59%. One bed was lightly confined by a plastic tube and the others were heavily confined by steel tubes with 17.6 mm walls. For a shock pressure in the gap (PG) of 7.53 GPa, the reactive shock velocity (U) rapidly declined for the lightly confined bed. For heavily confined beds with the same PG, U was nearly constant for each bed but less for the longer bed; when PG was reduced for the same bed length, U was lower. Furthermore, dent depth in the witness block declined as PG was reduced from >12.0 to 6.08 GPa. While steel tube fragments and witness block dent indicated a detonating event at the highest PG, it was unlikely to have been steady detonation. The data suggest that the critical diameter for steady detonation in a lightly confined bed would be considerably in excess of 50.6 mm. While previous 2-D shock loading experiments with smaller donors and beds of another composite propellant also indicated a detonating event, based on punching of the witness plate and steady values of U, it is likely that steady detonation was not achieved there in view of the present experiments.

  5. Asymmetric Dielectric Elastomer Composite Material

    NASA Technical Reports Server (NTRS)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  6. Silicon-based porous nanocomposite thin-films as an active anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mazaletskiy, L. A.; Rudy, A. S.; Metlitskaya, A. V.

    2016-08-01

    The results of experimental studies of porous silicon nanocomposite materials for future usage as an anode material of lithium-ion batteries are presented. Comparison between original and porous structures in terms of their qualitative and quantitative characteristics is given.

  7. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    NASA Astrophysics Data System (ADS)

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-01

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO 2 and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 °C for 2-6 h by changing the SiO 2/Al 2O 3, H 2O/Na 2O and Na 2O/SiO 2 molar ratios of precursors in the two-step process. The surface area and NH 4+-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m 2/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m 2/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of ˜3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously.

  8. Effects of porous materials in an insert earphone on its frequency response--experiments and simulations.

    PubMed

    Tsai, Yu-Ting; Shiah, Yui-Chuin; Huang, Jin H

    2012-11-01

    This article presents a promising approach to customize the sound-pressure response of an insert earphone by delicately tuning the acoustic impedance of porous materials in it. The effects of applying porous materials on and in various parts in the insert earphone were tested experimentally to determine the resulting sound pressure responses. An equivalent circuit model (ECM) is also presented to simulate the sound-pressure-level (SPL) response of the insert earphone. For each part of the earphone, the effect of applying porous materials was simulated using the ECM approach. For porous elements, modified formulae with correction factors are proposed to determine the acoustic impedance. Comparisons of the simulated responses with experimental data have verified the veracity of the ECM simulations. The present work has verified the feasibility of adjusting the aeration of the porous materials to customize the resulting SPL response of an earphone.

  9. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  10. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

    1998-07-21

    A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

  11. Structure and Stability of Deflagrations in Porous Energetic Materials

    SciTech Connect

    stephen B. Margolis; Forman A. Williams

    1999-03-01

    Theoretical two-phase-flow analyses have recently been developed to describe the structure and stability of multi-phase deflagrations in porous energetic materials, in both confined and unconfined geometries. The results of these studies are reviewed, with an emphasis on the fundamental differences that emerge with respect to the two types of geometries. In particular, pressure gradients are usually negligible in unconfined systems, whereas the confined problem is generally characterized by a significant gas-phase pressure difference, or overpressure, between the burned and unburned regions. The latter leads to a strong convective influence on the burning rate arising from the pressure-driven permeation of hot gases into the solid/gas region and the consequent preheating of the unburned material. It is also shown how asymptotic models that are suitable for analyzing stability may be derived based on the largeness of an overall activation-energy parameter. From an analysis of such models, it is shown that the effects of porosity and two-phase flow are generally destabilizing, suggesting that degraded propellants, which exhibit greater porosity than their pristine counterparts, may be more readily subject to combustion instability and nonsteady deflagration.

  12. Preparation of magnetic nano-composite: barium hexaferrite loaded in the ordered meso-porous silica matrix (MCM-41).

    PubMed

    Emamian, H R; Honarbakhsh-Raouf, A; Ataie, A

    2010-04-01

    In this work a magnetic nano-composite was synthesized by modified incorporation of iron-barium complex into ordered meso-porous silica (MCM-41) as a matrix. The MCM-41 was synthesized by silylation treatment which was accompanied by pH adjusting. Low angle XRD patterns of both annealed MCM-41 and resulted composite exhibited the characteristic reflection of high quality hexagonal meso-structures. TEM image of the composite material revealed that the hexagonal ordered meso-structure host material was not affected by wet impregnation and subsequent calcination in order to incorporate with barium hexaferrite. Also, TEM images accompanied by EDS analysis confirmed the formation of second phase consists of barium and iron ions inside the MCM-41 channels. The resulted composite material showed a super-paramagnetic nature at room temperature.

  13. Improved Silica Aerogel Composite Materials

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2008-01-01

    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  14. Porous silicon-cyclodextrin based polymer composites for drug delivery applications.

    PubMed

    Hernandez-Montelongo, J; Naveas, N; Degoutin, S; Tabary, N; Chai, F; Spampinato, V; Ceccone, G; Rossi, F; Torres-Costa, V; Manso-Silvan, M; Martel, B

    2014-09-22

    One of the main applications of porous silicon (PSi) in biomedicine is drug release, either as a single material or as a part of a composite. PSi composites are attractive candidates for drug delivery systems because they can display new chemical and physical characteristics, which are not exhibited by the individual constituents alone. Since cyclodextrin-based polymers have been proven efficient materials for drug delivery, in this work β-cyclodextrin-citric acid in-situ polymerization was used to functionalize two kinds of PSi (nanoporous and macroporous). The synthesized composites were characterized by microscopy techniques (SEM and AFM), physicochemical methods (ATR-FTIR, XPS, water contact angle, TGA and TBO titration) and a preliminary biological assay was performed. Both systems were tested as drug delivery platforms with two different model drugs, namely, ciprofloxacin (an antibiotic) and prednisolone (an anti-inflammatory), in two different media: pure water and PBS solution. Results show that both kinds of PSi/β-cyclodextrin-citric acid polymer composites, nano- and macro-, provide enhanced release control for drug delivery applications than non-functionalized PSi samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Heat induced damage detection in composite materials by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Radzieński, Maciej; Mieloszyk, Magdalena; Rahani, Ehsan Kabiri; Kundu, Tribikram; Ostachowicz, Wiesław

    2015-03-01

    In recent years electromagnetic Terahertz (THz) radiation or T-ray has been increasingly used for nondestructive evaluation of various materials such as polymer composites and porous foam tiles in which ultrasonic waves cannot penetrate but T-ray can. Most of these investigations have been limited to mechanical damage detection like inclusions, cracks, delaminations etc. So far only a few investigations have been reported on heat induced damage detection. Unlike mechanical damage the heat induced damage does not have a clear interface between the damaged part and the surrounding intact material from which electromagnetic waves can be reflected back. Difficulties associated with the heat induced damage detection in composite materials using T-ray are discussed in detail in this paper. T-ray measurements are compared for different levels of heat exposure of composite specimens.

  16. Attenuation of intense sinusoidal waves in air-saturated, bulk porous materials

    NASA Technical Reports Server (NTRS)

    Kuntz, Herbert L.; Blackstock, David T.

    1987-01-01

    As intense, initially sinusoidal waves propagate in fluids, shocks form and excess attenuation of the wave occurs. Data are presented indicating that shock formation is not necessary for the occurrence of excess attenuation in nonlinear, lossy media, i.e., air-saturated, porous materials. An empirical equation is used to describe the excess attenuation of intense sinusoids in porous materials. The acoustic nonlinearity of and the excess attenuation in porous materials may be predicted directly from dc flow resistivity data. An empirical relationship is used to relate an acoustic nonlinearity parameter to the fundamental frequency and relative dc nonlinearity of two structurally different materials.

  17. Short time proton dynamics in bulk ice and in porous anode solid oxide fuel cell materials

    SciTech Connect

    Basoli, Francesco; Senesi, Roberto; Kolesnikov, Alexander I; Licoccia, Silvia

    2014-01-01

    Oxygen reduction and incorporation into solid electrolytes and the reverse reaction of oxygen evolution play a cru-cial role in Solid Oxide Fuel Cell (SOFC) applications. However a detailed un derstanding of the kinetics of the cor-responding reactions, i.e. on reaction mechanisms, rate limiting steps, reaction paths, electrocatalytic role of materials, is still missing. These include a thorough characterization of the binding potentials experienced by protons in the lattice. We report results of Inelastic Neutron Scattering (INS) measurements of the vibrational state of the protons in Ni- YSZ highly porous composites (75% to 90% ), a ceramic-metal material showing a high electrical conductivity and ther mal stability, which is known to be most effectively used as anodes for solid ox ide fuel cells. The results are compared with INS and Deep Inelastic Neutron Scattering (DINS) experiments on the proton binding states in bulk ice.

  18. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials

    NASA Astrophysics Data System (ADS)

    Zhai, Quan-Guo; Bu, Xianhui; Mao, Chengyu; Zhao, Xiang; Daemen, Luke; Cheng, Yongqiang; Ramirez-Cuesta, Anibal J.; Feng, Pingyun

    2016-12-01

    Metal-organic frameworks are a class of crystalline porous materials with potential applications in catalysis, gas separation and storage, and so on. Of great importance is the development of innovative synthetic strategies to optimize porosity, composition and functionality to target specific applications. Here we show a platform for the development of metal-organic materials and control of their gas sorption properties. This platform can accommodate a large variety of organic ligands and homo- or hetero-metallic clusters, which allows for extraordinary tunability in gas sorption properties. Even without any strong binding sites, most members of this platform exhibit high gas uptake capacity. The high capacity is accomplished with an isosteric heat of adsorption as low as 20 kJ mol-1 for carbon dioxide, which could bring a distinct economic advantage because of the significantly reduced energy consumption for activation and regeneration of adsorbents.

  19. Production of nanotubes in delignified porous cellulosic materials after hydrolysis with cellulase.

    PubMed

    Koutinas, Αthanasios Α; Papafotopoulou-Patrinou, Evgenia; Gialleli, Angelika-Ioanna; Petsi, Theano; Bekatorou, Argyro; Kanellaki, Maria

    2016-08-01

    In this study, tubular cellulose (TC), a porous cellulosic material produced by delignification of sawdust, was treated with a Trichoderma reesei cellulase in order to increase the proportion of nano-tubes. The effect of enzyme concentration and treatment duration on surface characteristics was studied and the samples were analyzed with BET, SEM and XRD. Also, a composite material of gelatinized starch and TC underwent enzymatic treatment in combination with amylase (320U) and cellulase (320U) enzymes. For TC, the optimum enzyme concentration (640U) led to significant increase of TC specific surface area and pore volume along with the reduction of pore diameter. It was also shown that the enzymatic treatment did not result to a significant change of cellulose crystallinity index. The produced nano-tubular cellulose shows potential for application to drug and chemical preservative delivery systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials

    DOE PAGES

    Zhai, Quan -Guo; Bu, Xianhui; Mao, Chengyu; ...

    2016-12-07

    Metal-organic frameworks are a class of crystalline porous materials with potential applications in catalysis, gas separation and storage, and so on. Of great importance is the development of innovative synthetic strategies to optimize porosity, composition and functionality to target specific applications. Here we show a platform for the development of metal-organic materials and control of their gas sorption properties. This platform can accommodate a large variety of organic ligands and homo- or hetero-metallic clusters, which allows for extraordinary tunability in gas sorption properties. Even without any strong binding sites, most members of this platform exhibit high gas uptake capacity. Asmore » a result, the high capacity is accomplished with an isosteric heat of adsorption as low as 20 kJ mol–1 for carbon dioxide, which could bring a distinct economic advantage because of the significantly reduced energy consumption for activation and regeneration of adsorbents.« less

  1. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials

    PubMed Central

    Zhai, Quan-Guo; Bu, Xianhui; Mao, Chengyu; Zhao, Xiang; Daemen, Luke; Cheng, Yongqiang; Ramirez-Cuesta, Anibal J.; Feng, Pingyun

    2016-01-01

    Metal-organic frameworks are a class of crystalline porous materials with potential applications in catalysis, gas separation and storage, and so on. Of great importance is the development of innovative synthetic strategies to optimize porosity, composition and functionality to target specific applications. Here we show a platform for the development of metal-organic materials and control of their gas sorption properties. This platform can accommodate a large variety of organic ligands and homo- or hetero-metallic clusters, which allows for extraordinary tunability in gas sorption properties. Even without any strong binding sites, most members of this platform exhibit high gas uptake capacity. The high capacity is accomplished with an isosteric heat of adsorption as low as 20 kJ mol−1 for carbon dioxide, which could bring a distinct economic advantage because of the significantly reduced energy consumption for activation and regeneration of adsorbents. PMID:27924818

  2. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials

    SciTech Connect

    Zhai, Quan -Guo; Bu, Xianhui; Mao, Chengyu; Zhao, Xiang; Daemen, Luke; Cheng, Yongqiang; Ramirez-Cuesta, Anibal J.; Feng, Pingyun

    2016-12-07

    Metal-organic frameworks are a class of crystalline porous materials with potential applications in catalysis, gas separation and storage, and so on. Of great importance is the development of innovative synthetic strategies to optimize porosity, composition and functionality to target specific applications. Here we show a platform for the development of metal-organic materials and control of their gas sorption properties. This platform can accommodate a large variety of organic ligands and homo- or hetero-metallic clusters, which allows for extraordinary tunability in gas sorption properties. Even without any strong binding sites, most members of this platform exhibit high gas uptake capacity. As a result, the high capacity is accomplished with an isosteric heat of adsorption as low as 20 kJ mol–1 for carbon dioxide, which could bring a distinct economic advantage because of the significantly reduced energy consumption for activation and regeneration of adsorbents.

  3. Finite Element Study on Performance of Piezoelectric Bimorph Cantilevers Using Porous/Ceramic 0-3 Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kiran, Raj; Kumar, Anuruddh; Chauhan, Vishal S.; Kumar, Rajeev; Vaish, Rahul

    2017-09-01

    Finite element analysis of 0-3 composites made of piezoceramic particles and pores embedded in polyvinylidene difluoride (PVDF) has been carried out. The representative volume element (RVE) approach was used to calculate the effective elastic and piezoelectric properties of the periodic isotropic 0-3 piezoelectric composites. It was observed that the elastic and piezoelectric properties increased with the volume fraction of {K}_{0.475} {Na}_{0.475} {Li}_{0.05} ( {{Nb}_{0.92} {Ta}_{0.05} {Sb}_{0.03} } ){O}3 (KNLNTS) particles but decreased for the porous composites. These effective properties were further used to analyze the potential use of such bimorph cantilever beams in sensing and energy harvesting applications. Sensing voltage continuously increased for KNLNTS filled composites while for porous materials it increased up to 15% volume fraction porosity and then decreased. The same trend was also observed for the power produced by the harvester. However, the sensing voltage and power produced by harvesters made of porous composites were lower than for harvesters made of pure PVDF.

  4. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk

    SciTech Connect

    Katsuki, Hiroaki; Komarneni, Sridhar

    2009-07-15

    Na-A and/or Na-X zeolite/porous carbon composites were prepared under hydrothermal conditions by NaOH dissolution of silica first from carbonized rice husk followed by addition of NaAlO{sub 2} and in situ crystallization of zeolites i.e., using a two-step process. When a one-step process was used, both Na-A and Na-X zeolites crystallized on the surface of carbon. Na-A or Na-X zeolite crystals were prepared on the porous carbonized rice husk at 90 deg. C for 2-6 h by changing the SiO{sub 2}/Al{sub 2}O{sub 3}, H{sub 2}O/Na{sub 2}O and Na{sub 2}O/SiO{sub 2} molar ratios of precursors in the two-step process. The surface area and NH{sub 4}{sup +}-cation exchange capacity (CEC) of Na-A zeolite/porous carbon were found to be 171 m{sup 2}/g and 506 meq/100 g, respectively, while those of Na-X zeolite/porous carbon composites were 676 m{sup 2}/g and 317 meq/100 g, respectively. Na-A and Na-X zeolites are well-known microporous and hydrophilic materials while carbonized rice husk was found to be mesoporous (pores of {approx}3.9 nm) and hydrophobic. These hybrid microporous-mesoporous and hydrophilic-hydrophobic composites are expected to be useful for decontamination of metal cations as well as organic contaminants simultaneously. - Graphical Abstract: Novel Na-X zeolite/porous carbon composite.

  5. Time-Dependent Model for Fluid Flow in Porous Materials with Multiple Pore Sizes.

    PubMed

    Cummins, Brian M; Chinthapatla, Rukesh; Ligler, Frances S; Walker, Glenn M

    2017-04-18

    An understanding of fluid transport through porous materials is critical for the development of lateral flow assays and analytical devices based on paper microfluidics. Models of fluid transport within porous materials often assume a single capillary pressure and permeability value for the material, implying that the material comprises a single pore size and that the porous material is fully saturated behind the visible wetted front. As a result, current models can lead to inaccuracies when modeling transport over long distances and/or times. A new transport model is presented that incorporates a range of pore sizes to more accurately predict the capillary transport of fluid in porous materials. The model effectively predicts the time-dependent saturation of rectangular strips of Whatman filter no. 1 paper using the manufacturer's data, published pore-size distribution measurements, and the fluid's properties.

  6. Interaction of air shock waves and porous compressible materials

    NASA Astrophysics Data System (ADS)

    Gvozdeva, L. G.; Faresov, Yu. M.; Fokeyev, V. P.

    1986-05-01

    Interaction of air shock waves and porous compressible materials was studied in an experiment with two foam-plastic materials: PPU-3M-1 polyurethane (density 33 kg/cu m) and much more rigid PKhV-1 polyvinyl chloride (density 50 kg/cu m). Tests were performed in a shock tube with 0.1x0.1 m square cross-section, a single diaphragm separating its 8 m long low-pressure segment with inspection zone and 1.5 m long high-pressure segment. The instrumentation included an array of piezoelectric pressure transducers and a digital frequency meter for velocity measurements, a Tectronix 451A oscillograph, and IAB-451 shadowgraph, and a ZhFR camera with slit scanning. Air was used as compressing gas, its initial pressure being varied from 10(3) Pa to 10(5) Pa, helium and nitrogen were used as propelling gas. The impact velocity of shock waves was varied over the N(M) = 2-5 range of the Mach number. The maximum amplitude of the pressure pulse increased as the thickness of the foam layer was increased up to 80 mm and then remained constant with further increases of that thickness, at a level depending on the material and on the intitial conditions. A maximum pressure rise by a factor of approximately 10 was attained, with 1.3 x 10(3) Pa initial pressure and an impact velocity N(M) = 5. Reducing the initial pressure to below (0.1-0.3) x 10(3) Pa, with the impact velocity maintained at N(M) = 5, reduced the pressure rise to a factor below 3. The results are interpreted taking into account elasticity forces in the solid skeleton phase and gas filtration through the pores.

  7. Modulation power of porous materials and usage as ripple filter in particle therapy

    NASA Astrophysics Data System (ADS)

    Printz Ringbæk, Toke; Simeonov, Yuri; Witt, Matthias; Engenhart-Cabillic, Rita; Kraft, Gerhard; Zink, Klemens; Weber, Uli

    2017-04-01

    Porous materials with microscopic structures like foam, sponges, lung tissues and lung substitute materials have particular characteristics, which differ from those of solid materials. Ion beams passing through porous materials show much stronger energy straggling than expected for non-porous solid materials of the same thickness. This effect depends on the microscopic fine structure, the density and the thickness of the porous material. The beam-modulating effect from a porous plate enlarges the Bragg peak, yielding similar benefits in irradiation time reduction as a ripple filter. A porous plate can additionally function as a range shifter, which since a higher energy can be selected for the same penetration depth in the body reduces the scattering at the beam line and therefore improves the lateral fall-off. Bragg curve measurements of ion beams passing through different porous materials have been performed in order to determine the beam modulation effect of each. A mathematical model describing the correlation between the mean material density, the porous pore structure size and the strength of the modulation has been developed and a new material parameter called ‘modulation power’ is defined as the square of the Gaussian sigma divided by the mean water-equivalent thickness of the porous absorber. Monte Carlo simulations have been performed in order to validate the model and to investigate the Bragg peak enlargement, the scattering effects of porosity and the lateral beam width at the end of the beam range. The porosity is found to only influence the lateral scattering in a negligible way. As an example of a practical application, it is found that a 20 mm and 50 mm plate of Gammex LN300 performs similar to a 3 mm and 6 mm ripple filter, respectively, and at the same time can improve the sharpness of the lateral beam due to its multifunctionality as a ripple filter and a range shifter.

  8. Modulation power of porous materials and usage as ripple filter in particle therapy.

    PubMed

    Printz Ringbæk, Toke; Simeonov, Yuri; Witt, Matthias; Engenhart-Cabillic, Rita; Kraft, Gerhard; Zink, Klemens; Weber, Uli

    2017-04-07

    Porous materials with microscopic structures like foam, sponges, lung tissues and lung substitute materials have particular characteristics, which differ from those of solid materials. Ion beams passing through porous materials show much stronger energy straggling than expected for non-porous solid materials of the same thickness. This effect depends on the microscopic fine structure, the density and the thickness of the porous material. The beam-modulating effect from a porous plate enlarges the Bragg peak, yielding similar benefits in irradiation time reduction as a ripple filter. A porous plate can additionally function as a range shifter, which since a higher energy can be selected for the same penetration depth in the body reduces the scattering at the beam line and therefore improves the lateral fall-off. Bragg curve measurements of ion beams passing through different porous materials have been performed in order to determine the beam modulation effect of each. A mathematical model describing the correlation between the mean material density, the porous pore structure size and the strength of the modulation has been developed and a new material parameter called 'modulation power' is defined as the square of the Gaussian sigma divided by the mean water-equivalent thickness of the porous absorber. Monte Carlo simulations have been performed in order to validate the model and to investigate the Bragg peak enlargement, the scattering effects of porosity and the lateral beam width at the end of the beam range. The porosity is found to only influence the lateral scattering in a negligible way. As an example of a practical application, it is found that a 20 mm and 50 mm plate of Gammex LN300 performs similar to a 3 mm and 6 mm ripple filter, respectively, and at the same time can improve the sharpness of the lateral beam due to its multifunctionality as a ripple filter and a range shifter.

  9. FIBER-REINFORCED METALLIC COMPOSITE MATERIALS.

    DTIC Science & Technology

    COMPOSITE MATERIALS), (*FIBER METALLURGY, TITANIUM ALLOYS , NICKEL ALLOYS , REINFORCING MATERIALS, TUNGSTEN, WIRE, MOLYBDENUM ALLOYS , COBALT ALLOYS , CHROMIUM ALLOYS , ALUMINUM ALLOYS , MECHANICAL PROPERTIES, POWDER METALLURGY.

  10. Composition suitable for decontaminating a porous surface contaminated with cesium

    DOEpatents

    Kaminski, Michael D.; Finck, Martha R.; Mertz, Carol J.

    2010-06-15

    A method of decontaminating porous surfaces contaminated with water soluble radionuclides by contacting the contaminated porous surfaces with an ionic solution capable of solubilizing radionuclides present in the porous surfaces followed by contacting the solubilized radionuclides with a gel containing a radionuclide chelator to bind the radionuclides to the gel, and physically removing the gel from the porous surfaces. A dry mix is also disclosed of a cross-linked ionic polymer salt, a linear ionic polymer salt, a radionuclide chelator, and a gel formation controller present in the range of from 0% to about 40% by weight of the dry mix, wherein the ionic polymer salts are granular and the non cross-linked ionic polymer salt is present as a minor constituent.

  11. Modeling Dynamic Compaction of Porous Materials with the Overstress Approach

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-06-01

    To model compaction of a porous material (PM) we need 1) an equation of state (EOS) of the PM in terms of the EOS of its matrix, and 2) a compaction law. For the EOS it is common to use Herrmann's suggestion, as in his P α model. For a compaction law it is common to use a quasi-static compaction relation obtained from 1) a mezzo-scale model (as in Carroll and Holt's spherical shell model), or from 2) quasi-static tests. Here we are interested in dynamic compaction, like in a planar impact test. In dynamic compaction, the state may change too fast for the state point to follow the quasi-static compaction curve. We therefore get an overstress situation. The state point moves out of the quasi-static compaction boundary, and only with time collapses back towards it at a certain rate. In this way the dynamic compaction event becomes rate dependent. In the paper we first write down the rate equations for dynamic compaction according to this overstress approach. We then implement these equations in a hydro-code, and run some examples. We show how the overstress rate parameter can be calibrated from tests.

  12. Calibration of thermocouple psychrometers and moisture measurements in porous materials

    NASA Astrophysics Data System (ADS)

    Guz, Łukasz; Sobczuk, Henryk; Połednik, Bernard; Guz, Ewa

    2016-07-01

    The paper presents in situ method of peltier psychrometric sensors calibration which allow to determine water potential. Water potential can be easily recalculated into moisture content of the porous material. In order to obtain correct results of water potential, each probe should be calibrated. NaCl salt solutions with molar concentration of 0.4M, 0.7M, 1.0M and 1.4M, were used for calibration which enabled to obtain osmotic potential in range: -1791 kPa to -6487 kPa. Traditionally, the value of voltage generated on thermocouples during wet-bulb temperature depression is calculated in order to determine the calibration function for psychrometric in situ sensors. In the new method of calibration, the field under psychrometric curve along with peltier cooling current and duration was taken into consideration. During calibration, different cooling currents were applied for each salt solution, i.e. 3, 5, 8 mA respectively, as well as different cooling duration for each current (from 2 to 100 sec with 2 sec step). Afterwards, the shape of each psychrometric curve was thoroughly examined and a value of field under psychrometric curve was computed. Results of experiment indicate that there is a robust correlation between field under psychrometric curve and water potential. Calibrations formulas were designated on the basis of these features.

  13. Bioenvironmental Engineering Guide for Composite Materials

    DTIC Science & Technology

    2014-03-31

    and recovery settings based on the recommendations of the following technical reports: Assessing Worker Exposures During Composite Material Repair...materials is on the rise, as shown by the Air Force sponsored project to fly in 2009 an experimental military cargo aircraft composed of primarily composite...materials [1]. Aircraft are not the only items with composite materials. The Air Force is also planning on using fiber-reinforced composite

  14. Small-angle and surface scattering from porous and fractal materials.

    SciTech Connect

    Sinha, S. K.

    1998-09-18

    We review the basic theoretical methods used to treat small-angle scattering from porous materials, treated as general two-phase systems, and also the basic experimental techniques for carrying out such experiments. We discuss the special forms of the scattering when the materials exhibit mass or surface fractal behavior, and review the results of recent experiments on several types of porous media and also SANS experiments probing the phase behavior of binary fluid mixtures or polymer solutions confined in porous materials. Finally, we discuss the analogous technique of off-specular scattering from surfaces and interfaces which is used to study surface roughness of various kinds.

  15. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material.

    PubMed

    Han, Quan Feng; Wang, Ze Wu; Tang, Chak Yin; Chen, Ling; Tsui, Chi Pong; Law, Wing Cheung

    2017-03-28

    Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear.

  16. Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO3 composites with aligned lamellar porous structure.

    PubMed

    Liu, Beilei; Chen, Liangjian; Shao, Chunsheng; Zhang, Fuqiang; Zhou, Kechao; Cao, Jun; Zhang, Dou

    2016-04-01

    Osteoblasts growing into bone substitute is an important step of bone regeneration. This study prepared porous hydroxyapatite (HA)/BaTiO3 piezoelectric composites with porosity of 40%, 50% and 60% by ice-templating method. Effects of HA/BaTiO3 composites with different porosities, with and without polarizing treatment on adhesion, proliferation and differentiation of osteoblasts were investigated in vitro. Results revealed that cell densities of the porous groups were significantly higher than those of the dense group (p<0.05), so did the alkaline phosphate (ALP) and bone gla protein (BGP) activities. Porosity of 50% group exhibited higher ALP activity and BGP activity than those of the 40% and 60% groups. Scanning electron microscopy (SEM) observations revealed that osteoblasts adhered and stretched better on porous HA/BaTiO3 than on the dense one, especially HA/BaTiO3 with porosity of 50% and 60%. However, there was no significant difference in the cell morphology, cell densities, ALP and BGP activities between the polarized group and the non-polarized group (p>0.05). The absence of mechanical loading on the polarized samples may account for this. The results indicated that hierarchically porous HA/BaTiO3 played a favorable part in osteoblasts proliferation, differentiation and adhesion process and is a promising bone substitute material.

  17. Analysis of ignition of a porous energetic material

    SciTech Connect

    Telengator, A.M.; Williams, F.A.; Margolis, S.B.

    1998-04-01

    A theory of ignition is presented to analyze the effect of porosity on the time to ignition of a semi-infinite porous energetic solid subjected to a constant energy flux. An asymptotic perturbation analysis, based on the smallness of the gas-to-solid density ratio and the largeness of the activation energy, is utilized to describe the inert and transition stages leading to thermal runaway. As in the classical study of a nonporous solid, the transition stage consists of three spatial regions in the limit of large activation energy: a thin reactive-diffusive layer adjacent to the exposed surface of the material where chemical effects are first felt, a somewhat thicker transient-diffusive zone, and finally an inert region where the temperature field is still governed solely by conductive heat transfer. Solutions in each region are constructed at each order with respect to the density-ratio parameter and matched to one another using asymptotic matching principles. It is found that the effects of porosity provide a leading-order reduction in the time to ignition relative to that for the nonporous problem, arising from the reduced amount of solid material that must be heated and the difference in thermal conductivities of the solid and gaseous phases. A positive correction to the leading-order ignition-delay time, however, is provided by the convective flow of gas out of the solid, which stems from the effects of thermal expansion and removes energy from the system. The latter phenomenon is absent from the corresponding calculation for the nonporous problem and produces a number of modifications at the next order in the analysis arising from the relative transport effects associated with the gas flow.

  18. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation.

    PubMed

    Qi, Yuanshen; Contreras, Karla G; Jung, Hyun-Do; Kim, Hyoun-Ee; Lapovok, Rimma; Estrin, Yuri

    2016-02-01

    Compaction of powders by equal channel angular pressing (ECAP) using a novel space holder method was employed to fabricate metallic scaffolds with tuneable porosity. Porous Ti and Ti/Mg composites with 60% and 50% percolating porosity were fabricated using powder blends with two kinds of sacrificial space holders. The high compressive strength and good ductility of porous Ti and porous Ti/Mg obtained in this way are believed to be associated with the ultrafine grain structure of the pore walls. To understand this, a detailed electron microscopy investigation was employed to analyse the interface between Ti/Ti and Ti/Mg particles, the grain structures in Ti particles and the topography of pore surfaces. It was found that using the proposed compaction method, high quality bonding between particles was obtained. Comparing with other powder metallurgy methods to fabricate Ti with an open porous structure, where thermal energy supplied by a laser beam or high temperature sintering is essential, the ECAP process conducted at a relatively low temperature of 400°C was shown to produce unique properties.

  19. Self-lubricating composite materials

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1980-01-01

    The mechanical properties of two types of self lubricating composites (polymer matrix composites and inorganic composites) are discussed. Specific emphasis is given to the applicability of these composites in the aerospace industry.

  20. Composite materials for fusion applications

    SciTech Connect

    Jones, R.H.; Henager, C.H. Jr.; Hollenberg, G.W.

    1991-10-01

    Ceramic matrix composites, CMCs, are being considered for advanced first-wall and blanket structural applications because of their high-temperature properties, low neutron activation, low density and low coefficient of expansion coupled with good thermal conductivity and corrosion behavior. This paper presents a review and analysis of the hermetic, thermal conductivity, corrosion, crack growth and radiation damage properties of CMCs. It was concluded that the leak rates of a gaseous coolant into the plasma chamber or tritium out of the blanket could exceed design criteria if matrix microcracking causes existing porosity to become interconnected. Thermal conductivities of unirradiated SiC/SiC and C/SiC materials are about 1/2 to 2/3 that of Type 316 SS whereas the thermal conductivity for C/C composites is seven times larger. The thermal stress figure-of-merit value for CMCs exceeds that of Type 316 SS for a single thermal cycle. SiC/SiC composites are very resistant to corrosion and are expected to be compatible with He or Li coolants if the O{sub 2} concentrations are maintained at the appropriate levels. CMCs exhibit subcritical crack growth at elevated temperatures and the crack velocity is a function of the corrosion conditions. The radiation stability of CMCs will depend on the stability of the fiber, microcracking of the matrix, and the effects of gaseous transmutation products on properties. 23 refs., 14 figs., 1 tab.

  1. Properties and modification of porous 3-D collagen/hydroxyapatite composites.

    PubMed

    Sionkowska, A; Kozłowska, J

    2013-01-01

    A freeze drying technique was used to form porous three-dimensional collagen matrixes modified by the addition of a variable amount of nano-hydroxyapatite. For chemical cross-linking EDC/NHS were used. Physical cross-linking was achieved by dehydrothermal treatment. Mechanical properties, morphology, dissolution, porosity, density, enzymatic degradation and swelling properties of materials have been studied after cross-linking. The density of scaffolds and its compressive modulus increased with an increasing amount of hydroxyapatite and collagen concentration in the composite scaffold, while the swelling ratio and porosity decreased. The studied scaffolds dissolved slowly in PBS solution. DHT cross-linked collagen matrices showed a much faster degradation rate after exposure to collagenase than the EDC cross-linked samples.

  2. Comparison of porous and nonporous materials for methane storage

    SciTech Connect

    Thallapally, Praveen K.; Kirby, Karen A.; Atwood, Jerry L.

    2007-05-10

    Sublimed, low-density p-tert-buytlcalix(4)arene absorbs methane more readily at room temperature and 1 atm pressure than do either single wall carbon nanotubes (SWNT) or a comparaitive porous metal-organic framework (MOF-1).

  3. Evaluation of porous gradient hydroxyapatite/zirconia composites for repair of lumbar vertebra defect in dogs.

    PubMed

    Shao, Rong-Xue; Quan, Ren-Fu; Huang, Xiao-Long; Wang, Tuo; Xie, Shang-Ju; Gao, Huan-Huan; Wei, Xi-Cheng; Yang, Di-Sheng

    2016-04-01

    To evaluate the effects of porous gradient composites with hydroxyapatite/zirconia and autologous iliac in repair of lumbar vertebra body defects in dogs. (1) New porous gradient hydroxyapatite/zirconia composites were prepared using foam immersion, gradient compound and high temperature sintering; (2) A total of 18 adult beagle dogs, aged five to eight months and weighted 10-13 kg, were randomly assigned into two subgroups, which were implanted with new porous gradient hydroxyapatite/zirconia composites (subgroup A in 12) or autologous iliac bone (subgroup B in 6); (3) The post-operative data were analyzed and compared between the subgroups to repair the vertebral body defect by roentgenoscopy, morphology and biomechanics. The porosity of new porous gradient hydroxyapatite/zirconia composites is at 25 poles per inch, and the size of pores is at between 150 and 300 µm. The post-operative roentgenoscopy displayed that new-bone formation is increased gradually, and the interface between composites and host-bone becomes became blur, and the new-bone around the composites were integrated into host-bone at 24 weeks postoperatively in subgroup A. As to subgroup B, the resorption and restructure were found at six weeks after the surgery, and the graft-bone and host-bone have been integrated completely without obvious boundary at 24 weeks postoperatively. Histomorphologic study showed that the amount of bone within pores of the porous gradient hydroxyapatite/zirconia composites increased continuously with a prolonged implantation time, and that partial composites were degradated and replaced by new-bone trabeculae. There was no significant difference between subgroups (P > 0.05) in the ultimate compressive strengths. New porous gradient hydroxyapatite/zirconia composites can promote the repair of bony defect, and induce bone tissue to ingrow into the pores, which may be applied widely to the treatment of bony defect in the future. © The Author(s) 2016.

  4. Composition of nanocomposites based on thin layers of tin on porous silicon formed by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lenshin, A. S.; Kashkarov, V. M.; Domashevskaya, E. P.; Seredin, P. V.; Ryabtsev, S. V.; Bel'tyukov, A. N.; Gil'mutdinov, F. Z.

    2017-01-01

    Using scanning electron microscopy and X-ray photoelectron spectroscopy the features of morphology and peculiarities of the surface composition of nanocomposites made of thin tin layers by magnetron sputtering formed on porous silicon with pores size of 50-150 nm. Porous silicon was obtained on n-type conductivity crystalline silicon substrate. The obtained nanocomposites were found differ between themselves by the ratio of the main phases: tin dioxide, sub-oxide and metal tin in a dependence on the thickness of the deposited tin layer. Fraction of the oxidized tin in the phase composition of composites was reduced from the surface to the bulk of the sample. Moreover, it was determined that the deposition of tin nanolayers did not result in a considerable change of the phase composition of porous silicon substrate.

  5. Vortex sound under the influence of a piecewise porous material on an infinite rigid plane.

    PubMed

    Lau, C K; Tang, S K

    2007-11-01

    The vortex dynamics and the sound generation by an inviscid vortex in the presence of a finite length porous material on an otherwise rigid plane are studied numerically in the present study in an attempt to understand the sound generation near the surface of a wall lining in a lined duct. The combined effects of the effective fluid density and flow resistance inside the porous material, and the length and thickness of the porous material on the sound generation process are examined in detail. Results obtained demonstrate the sound pressure is longitudinal dipole and show how seriously the above-mentioned parameters are affecting the vortex sound pressure under the influence of the porous material.

  6. Space processing of composite materials

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1975-01-01

    Materials and processes for the testing of aluminum-base fiber and particle composites, and of metal foams under extended-time low-g conditions were investigated. A wetting and dispersion technique was developed, based on the theory that under the absence of a gas phase all solids are wetted by liquids. The process is characterized by a high vacuum environment and a high temperature cycle. Successful wetting and dispersion experiments were carried out with sapphire fibers, whiskers and particles, and with fibers of silicon carbide, pyrolytic graphite and tungsten. The developed process and facilities permit the preparation of a precomposite which serves as sample material for flight experiments. Low-g processing consists then merely in the uniform redistribution of the reinforcements during a melting cycle. For the preparation of metal foams, gas generation by means of a thermally decomposing compound was found most adaptable to flight experiments. For flight experiments, the use of compacted mixture of the component materials limits low-g processing to a simple melt cycle.

  7. Activated porous carbon wrapped sulfur sub-microparticles as cathode materials for lithium sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yan, Y. L.; Ren, B.; Yang, R.; Zhang, W.; Xu, Y. H.

    2017-03-01

    The lithium-sulfur batteries holds a high theoretical capacity and specific energy, which is 4-5 times larger than that of today’s lithium-ion batteries, yet the low sulfur loading and large particles in the cathode greatly offset its advantage in high energy density. In the present paper, a liquid phase deposition method was introduced to synthesize sub-micro sulfur particles, which utilized as cathode materials after composed with activated porous carbon. Compared with common sublimed sulfur cathodes, as-obtained composite cathode shows an enhanced initial discharge capacity from 840.7 mAh/g to 1093 mAh/g at C/10. The reversible specific capacity after 50 cycles increased from 383 mAh/g to 504 mAh/g. The developed method has the advantages of simple process, convenient operation and low cost, and is suitable for the industrial preparation of lithium/sulfur batteries.

  8. Applicability of Washburn capillary rise for determining contact angles of powders/porous materials.

    PubMed

    Kirdponpattara, Suchata; Phisalaphong, Muenduen; Newby, Bi-min Zhang

    2013-05-01

    The Washburn capillary rise (WCR) technique has been widely utilized for determining contact angles of powders or porous materials; however, there are concerns regarding powder size and powder packing, especially for materials that exhibit large contact angle hysteresis. In this paper, some of these concerns were addressed. Due to the large water contact angle hysteresis on flat nylon 6/6 films, these films were ground into powders of different sizes and then used as model packing materials. The powders were packed in glass tubes to result in various packing structures that affected the penetration (i.e. advancing) rate of the test liquids. While all advancing contact angles obtained from WCR were found to be overestimated, more reasonable values were resulted when relatively large powders (e.g. 500-2000 μm) were used to pack the tubes. With larger powders, the packing contained bigger voids and consequently lead to slower penetration rates of the liquids, hence a relatively smaller advancing contact angle. The smaller advancing contact angle obtained from the slower advancing rate was also observed by using the sessile drop method. To verify the applicability of using large powders (500-2000 μm) for contact angle determination by using WCR, the advancing water contact angles of a bacterial cellulose/alginate composite sponge (BCA) with and without UV/ozone treatment were measured. The results showed that by using relatively large powders, WCR could be applied to obtain a reasonable advancing contact angle and assess the wettability change of complex porous materials.

  9. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    NASA Astrophysics Data System (ADS)

    Revil, A.; Mahardika, H.

    2013-02-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the

  10. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials

    PubMed Central

    Revil, A; Mahardika, H

    2013-01-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the

  11. Coupled hydromechanical and electromagnetic disturbances in unsaturated porous materials.

    PubMed

    Revil, A; Mahardika, H

    2013-02-01

    A theory of cross-coupled flow equations in unsaturated soils is necessary to predict (1) electroosmotic flow with application to electroremediation and agriculture, (2) the electroseismic and the seismoelectric effects to develop new geophysical methods to characterize the vadose zone, and (3) the streaming current, which can be used to investigate remotely ground water flow in unsaturated conditions in the capillary water regime. To develop such a theory, the cross-coupled generalized Darcy and Ohm constitutive equations of transport are extended to unsaturated conditions. This model accounts for inertial effects and for the polarization of porous materials. Rather than using the zeta potential, like in conventional theories for the saturated case, the key parameter used here is the quasi-static volumetric charge density of the pore space, which can be directly computed from the quasi-static permeability. The apparent permeability entering Darcy's law is also frequency dependent with a critical relaxation time that is, in turn, dependent on saturation. A decrease of saturation increases the associated relaxation frequency. The final form of the equations couples the Maxwell equations and a simplified form of two-fluid phases Biot theory accounting for water saturation. A generalized expression of the Richard equation is derived, accounting for the effect of the vibration of the skeleton during the passage of seismic waves and the electrical field. A new expression is obtained for the effective stress tensor. The model is tested against experimental data regarding the saturation and frequency dependence of the streaming potential coupling coefficient. The model is also adapted for two-phase flow conditions and a numerical application is shown for water flooding of a nonaqueous phase liquid (NAPL, oil) contaminated aquifer. Seismoelectric conversions are mostly taking place at the NAPL (oil)/water encroachment front and can be therefore used to remotely track the

  12. Manganese Dioxide Supported on Porous Biomorphic Carbons as Hybrid Materials for Energy Storage Devices.

    PubMed

    Gutierrez-Pardo, Antonio; Lacroix, Bertrand; Martinez-Fernandez, Julian; Ramirez-Rico, Joaquin

    2016-11-16

    A facile and low-cost method has been employed to fabricate MnO2/C hybrid materials for use as binder-free electrodes for supercapacitor applications. Biocarbon monoliths were obtained through pyrolysis of beech wood, replicating the microstructure of the cellulosic precursor, and serve as 3D porous and conductive scaffolds for the direct growth of MnO2 nanosheets by a solution method. Evaluation of the experimental results indicates that a homogeneous and uniform composite material made of a carbon matrix exhibiting ordered hierarchical porosity and MnO2 nanosheets with a layered nanocrystalline structure is obtained. The tuning of the MnO2 content and crystallite size via the concentration of KMnO4 used as impregnation solution allows to obtain composites that exhibit enhanced electrochemical behavior, achieving a capacitance of 592 F g(-1) in electrodes containing 3 wt % MnO2 with an excellent cyclic stability. The electrode materials were characterized before and after electrochemical testing.

  13. Porous polymer/bioactive glass composites for soft-to-hard tissue interfaces.

    PubMed

    Zhang, Kai; Ma, Yue; Francis, Lorraine F

    2002-09-15

    Porous composites consisting of a polysulfone (or cellulose acetate) matrix and bioactive glass particles were prepared by phase separation techniques. Microstructures were designed for potential application as an interconnect between artificial cartilage and bone. The effects of polymer type, concentration and molecular weight, as well as bioactive glass size and content, on the microstructures of the composites were studied. The composites have asymmetric structures with dense top layers and porous structures beneath. The microstructural features depend most strongly on the type of polymer, the interaction between the polymer and bioactive glass, and the glass content. The dense top layer could be removed by abrasion to make a structure with large pores (20-150 microm) exposed. Composites were immersed in simulated body fluid at body temperature. The growth of hydroxycarbonate apatite inside and on the composites demonstrates their potential for integration with bone. Composite modulus and break strength increased with increasing glass content due to the change in composition and pore content.

  14. Porous carbon nanotubes decorated with nanosized cobalt ferrite as anode materials for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Lingyan; Zhuo, Linhai; Cheng, Haiyang; Zhang, Chao; Zhao, Fengyu

    2015-06-01

    Generally, the fast ion/electron transport and structural stability dominate the superiority in lithium-storage applications. In this work, porous carbon nanotubes decorated with nanosized CoFe2O4 particles (p-CNTs@CFO) have been rationally designed and synthesized by the assistance of supercritical carbon dioxide (scCO2). When tested as anode materials for lithium-ion batteries, the p-CNTs@CFO composite exhibits outstanding electrochemical behavior with high lithium-storage capacity (1077 mAh g-1 after 100 cycles) and rate capability (694 mAh g-1 at 3 A g-1). These outstanding electrochemical performances are attributed to the synergistic effect of porous p-CNTs and nanosized CFO. Compared to pristine CNTs, the p-CNTs with substantial pores in the tubes possess largely increased specific surface area and rich oxygen-containing functional groups. The porous structure can not only accommodate the volume change during lithiation/delithiation processes, but also provide bicontinuous electron/ion pathways and large electrode/electrolyte interface, which facilitate the ion diffusion kinetics, improving the rate performance. Moreover, the CFO particles are bonded strongly to the p-CNTs through metal-oxygen bridges, which facilitate the electron fast capture from p-CNTs to CFO, and thus resulting in a high reversible capacity and excellent rate performance. Overall, the porous p-CNTs provide an efficient way for ion diffusion and continuous electron transport as anode materials.

  15. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    PubMed

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Monodisperse Porous Silicon Spheres as Anode Materials for Lithium Ion Batteries

    PubMed Central

    Wang, Wei; Favors, Zachary; Ionescu, Robert; Ye, Rachel; Bay, Hamed Hosseini; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2015-01-01

    Highly monodisperse porous silicon nanospheres (MPSSs) are synthesized via a simple and scalable hydrolysis process with subsequent surface-protected magnesiothermic reduction. The spherical nature of the MPSSs allows for a homogenous stress-strain distribution within the structure during lithiation and delithiation, which dramatically improves the electrochemical stability. To fully extract the real performance of the MPSSs, carbon nanotubes (CNTs) were added to enhance the electronic conductivity within the composite electrode structure, which has been verified to be an effective way to improve the rate and cycling performance of anodes based on nano-Si. The Li-ion battery (LIB) anodes based on MPSSs demonstrate a high reversible capacity of 3105 mAh g−1. In particular, reversible Li storage capacities above 1500 mAh g−1 were maintained after 500 cycles at a high rate of C/2. We believe this innovative approach for synthesizing porous Si-based LIB anode materials by using surface-protected magnesiothermic reduction can be readily applied to other types of SiOx nano/microstructures. PMID:25740298

  17. Mechanics of interfacial composite materials.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Mahadevan, L; Stone, Howard A

    2006-11-21

    Recent experiments and simulations have demonstrated that particle-covered fluid/fluid interfaces can exist in stable nonspherical shapes as a result of the steric jamming of the interfacially trapped particles. The jamming confers the interface with solidlike properties. We provide an experimental and theoretical characterization of the mechanical properties of these armored objects, with attention given to the two-dimensional granular state of the interface. Small inhomogeneous stresses produce a plastic response, while homogeneous stresses produce a weak elastic response. Shear-driven particle-scale rearrangements explain the basic threshold needed to obtain the near-perfect plastic deformation that is observed. Furthermore, the inhomogeneous stress state of the interface is exhibited experimentally by using surfactants to destabilize the particles on the surface. Since the interfacially trapped particles retain their individual characteristics, armored interfaces can be recognized as a kind of composite material with distinct chemical, structural, and mechanical properties.

  18. Durability of polymer composite materials

    NASA Astrophysics Data System (ADS)

    Liu, Liu

    The purpose of this research is to examine structural durability of advanced composite materials under critical loading conditions, e.g., combined thermal and mechanical loading and shear fatigue loading. A thermal buckling model of a burnt column, either axially restrained or under an axial applied force was developed. It was predicted that for a column exposed to the high heat flux under simultaneous constant compressive load, the response of the column is the same as that of an imperfection column; the instability of the burnt column happens. Based on the simplified theoretical prediction, the post-fire compressive behavior of fiberglass reinforced vinyl-ester composite columns, which have been exposed to high heat flux for a certain time was investigated experimentally, the post-fire compressive strength, modulus and failure mode were determined. The integrity of the same column under constant compressive mechanical loading combined with heat flux exposure was examined using a specially designed mechanical loading fixture that mounted directly below a cone calorimeter. All specimens in the experiments exhibited compressive instability. The experimental results show a thermal bending moment exists and has a significant influence on the structural behavior, which verified the thermal buckling model. The trend of response between the deflection of the column and exposure time is similar to that predicted by the model. A new apparatus was developed to study the monotonic shear and cyclic-shear behavior of sandwich structures. Proof-of-concept experiments were performed using PVC foam core polymeric sandwich materials. Shear failure occurred by the extension of cracks parallel to the face-sheet/core interface, the shear modulus degraded with the growth of fatigue damage. Finite element analysis was conducted to determine stress distribution in the proposed specimen geometry used in the new technique. Details for a novel apparatus used for the fatigue testing of thin

  19. Efficiently mapping structure-property relationships of gas adsorption in porous materials: application to Xe adsorption.

    PubMed

    Kaija, A R; Wilmer, C E

    2017-09-08

    Designing better porous materials for gas storage or separations applications frequently leverages known structure-property relationships. Reliable structure-property relationships, however, only reveal themselves when adsorption data on many porous materials are aggregated and compared. Gathering enough data experimentally is prohibitively time consuming, and even approaches based on large-scale computer simulations face challenges. Brute force computational screening approaches that do not efficiently sample the space of porous materials may be ineffective when the number of possible materials is too large. Here we describe a general and efficient computational method for mapping structure-property spaces of porous materials that can be useful for adsorption related applications. We describe an algorithm that generates random porous "pseudomaterials", for which we calculate structural characteristics (e.g., surface area, pore size and void fraction) and also gas adsorption properties via molecular simulations. Here we chose to focus on void fraction and Xe adsorption at 1 bar, 5 bar, and 10 bar. The algorithm then identifies pseudomaterials with rare combinations of void fraction and Xe adsorption and mutates them to generate new pseudomaterials, thereby selectively adding data only to those parts of the structure-property map that are the least explored. Use of this method can help guide the design of new porous materials for gas storage and separations applications in the future.

  20. Fabrication of Porous Ceramic-Geopolymer Based Material to Improve Water Absorption and Retention in Construction Materials: A Review

    NASA Astrophysics Data System (ADS)

    Jamil, N. H.; Ibrahim, W. M. A. W.; Abdullah, M. M. A. B.; Sandu, A. V.; Tahir, M. F. M.

    2017-06-01

    Porous ceramic nowadays has been investigated for a variety of its application such as filters, lightweight structural component and others due to their specific properties such as high surface area, stability and permeability. Besides, it has the properties of low thermal conductivity. Various formation techniques making these porous ceramic properties can be tailored or further fine-tuned to obtain the optimum characteristic. Porous materials also one of the good candidate for absorption properties. Conventional construction materials are not design to have good water absorption and retention that lead to the poor performance on these criteria. Temperature is a major driving force for moisture movement and influences sorption characteristics of many constructions materials. The effect of elevated temperatures on the water absorption coefficient and retention remain as critical issue that need to be investigated. Therefore, this paper will review the process parameters in fabricating porous ceramic for absorption properties.

  1. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds.

    PubMed

    Taboas, J M; Maddox, R D; Krebsbach, P H; Hollister, S J

    2003-01-01

    Precise control over scaffold material, porosity, and internal pore architecture is essential for tissue engineering. By coupling solid free form (SFF) manufacturing with conventional sponge scaffold fabrication procedures, we have developed methods for casting scaffolds that contain designed and controlled locally porous and globally porous internal architectures. These methods are compatible with numerous bioresorbable and non-resorbable polymers, ceramics, and biologic materials. Phase separation, emulsion-solvent diffusion, and porogen leaching were used to create poly(L)lactide (PLA) scaffolds containing both computationally designed global pores (500, 600, or 800 microm wide channels) and solvent fashioned local pores (50-100 microm wide voids or 5-10 microm length plates). Globally porous PLA and polyglycolide/PLA discrete composites were made using melt processing. Biphasic scaffolds with mechanically interdigitated PLA and sintered hydroxyapatite regions were fabricated with 500 and 600 microm wide global pores. PLA scaffolds with complex internal architectures that mimicked human trabecular bone were produced. Our indirect fabrication using casting in SFF molds provided enhanced control over scaffold shape, material, porosity and pore architecture, including size, geometry, orientation, branching, and interconnectivity. These scaffolds that contain concurrent local and global pores, discrete material regions, and biomimetic internal architectures may prove valuable for multi-tissue and structural tissue interface engineering. Copyright 2002 Elsevier Science Ltd.

  2. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold.

    PubMed

    Huang, Jianghong; Xiong, Jianyi; Liu, Jianquan; Zhu, Weimin; Chen, Jielin; Duan, Li; Zhang, Jufeng; Wang, Daping

    2015-01-01

    To determine the optimal ratio of nano-hydroxyapatite (n-HA) to polylactic acid (PLLA) in the novel three-dimensional porous PLLA/n-HA composite scaffolds, low-temperature rapid prototyping technology was employed to fabricate the composite materials with different n-HA contents. Mechanical properties and degradation behaviors of the composites were examined, and the scaffold microstructure and n-HA dispersion were observed by scanning electron microscope (SEM). Mechanical tests demonstrated that the tensile strength of the composite material gradually decreased with an increase in n-HA content. When the n-HA content reached 20 wt%, the bending strength of the composite material peaked at 138.5 MPa. SEM images demonstrated that the optimal content of n-HA was 20 wt% as the largest interconnected pore size that can be seen, with a porosity as high as 80%. In vitro degradation experiments demonstrated that the pH value of the material containing solution gradually decreased in a time-dependent manner, with a simultaneous weakening of the mechanical properties. In vitro study using rat osteoblast cells showed that the composite scaffolds were biocompatible; the 20 wt% n-HA scaffold offered particular improvement to rat osteoblast cell adhesion and proliferation compared to other compositions. It was therefore concluded that 20 wt% n-HA is the optimal nano-hydroxyapatite (n-HA) to polylactic acid (PLLA) ratio, with promise for bone tissue engineering.

  3. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1986-01-01

    The Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) specimens are employed to characterize MODE I and MODE II interlaminar fracture resistance of graphite/epoxy (CYCOM 982) and graphite/PEEK (APC2) composites. Sizing of test specimen geometries to achieve crack growth in the linear elastic regime is presented. Data reduction schemes based upon beam theory are derived for the ENF specimen and include the effects of shear deformation and friction between crack surfaces on compliance, C, and strain energy release rate, G sub II. Finite element (FE) analyses of the ENF geometry including the contact problem with friction are presented to assess the accuracy of beam theory expressions for C and G sub II. Virtual crack closure techniques verify that the ENF specimen is a pure Mode II test. Beam theory expressions are shown to be conservative by 20 to 40 percent for typical unidirectional test specimen geometries. A FE parametric study investigating the influence of delamination length and depth, span, thickness and material properties on G sub II is presented. Mode I and II interlaminar fracture test results are presented. Important experimental parameters are isolated, such as precracking techniques, rate effects, and nonlinear load-deflection response. It is found that subcritical crack growth and inelastic materials behavior, responsible for the observed nonlinearities, are highly rate-dependent phenomena with high rates generally leading to linear elastic response.

  4. Three-dimensional porous MXene/layered double hydroxide composite for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Ya; Dou, Hui; Wang, Jie; Ding, Bing; Xu, Yunling; Chang, Zhi; Hao, Xiaodong

    2016-09-01

    In this work, an exfoliated MXene (e-MXene) nanosheets/nickel-aluminum layered double hydroxide (MXene/LDH) composite as supercapacitor electrode material is fabricated by in situ growth of LDH on e-MXene substrate. The LDH platelets homogeneously grown on the surface of the e-MXene sheets construct a three-dimensional (3D) porous structure, which not only leads to high active sites exposure of LDH and facile liquid electrolyte penetration, but also alleviates the volume change of LDH during the charge/discharge process. Meanwhile, the e -MXene substrate forms a conductive network to facilitate the electron transport of active material. The optimized MXene/LDH composite exhibits a high specific capacitance of 1061 F g-1 at a current density of 1 A g-1, excellent capacitance retention of 70% after 4000 cycle tests at a current density of 4 A g-1 and a good rate capability with 556 F g-1 retention at 10 A g-1.

  5. Two Stage Repair of Composite Craniofacial Defects with Antibiotic Releasing Porous Poly(methyl methacrylate) Space Maintainers and Bone Regeneration

    NASA Astrophysics Data System (ADS)

    Spicer, Patrick

    Craniofacial defects resulting from trauma and resection present many challenges to reconstruction due to the complex structure, combinations of tissues, and environment, with exposure to the oral, skin and nasal mucosal pathogens. Tissue engineering seeks to regenerate the tissues lost in these defects; however, the composite nature and proximity to colonizing bacteria remain difficult to overcome. Additionally, many tissue engineering approaches have further hurdles to overcome in the regulatory process to clinical translation. As such these studies investigated a two stage strategy employing an antibiotic-releasing porous polymethylmethacrylate space maintainer fabricated with materials currently part of products approved or cleared by the United States Food and Drug Administration, expediting the translation to the clinic. This porous space maintainer holds the bone defect open allowing soft tissue to heal around the defect. The space maintainer can then be removed and one regenerated in the defect. These studies investigated the individual components of this strategy. The porous space maintainer showed similar soft tissue healing and response to non-porous space maintainers in a rabbit composite tissue defect. The antibiotic-releasing space maintainers showed release of antibiotics from 1-5 weeks, which could be controlled by loading and fabrication parameters. In vivo, space maintainers releasing a high dose of antibiotics for an extended period of time increased soft tissue healing over burst release space maintainers in an infected composite tissue defect model in a rabbit mandible. Finally, stabilization of bone defects and regeneration could be improved through scaffold structures and delivery of a bone forming growth factor. These studies illustrate the possibility of the two stage strategy for repair of composite tissue defects of the craniofacial complex.

  6. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  7. Composite materials for space structures

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Sykes, G. F.; Bowles, D. E.

    1985-01-01

    The use of advanced composites for space structures is reviewed. Barriers likely to limit further applications of composites are discussed and highlights of research to improve composites are presented. Developments in composites technology which could impact spacecraft systems are reviewed to identify technology needs and opportunities.

  8. Polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O.

    1991-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  9. Sensory properties of hybrid composites based on poly(3,4-ethylenedioxythiophene)-porous silicon-carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Olenych, Igor B.; Aksimentyeva, Olena I.; Monastyrskii, Liubomyr S.; Horbenko, Yulia Yu; Yarytska, Lidia I.

    2015-04-01

    In this work, we have prepared film sensor elements based on a hybrid system poly(3,4-ethylenedioxythiophene)-porous silicon nanocrystals-carbon nanotubes on flexible polymer substrates. Our FTIR spectroscopy-based studies for the molecular structure of the materials obtained suggest some interaction of their components in the hybrid layer. The influence of adsorption of water molecules on the conductivity and capacitance of the hybrid composites has been investigated in the temperature range of 20°C to 40°C. We have detected essential changes in the electrical conductivity and capacitance which depend on the humidity of the surrounding atmosphere. For estimating the sensing properties of our composites, we have analyzed the sensing abilities of the hybrid systems and their dynamic characteristics. The hybrid composites as working materials for the sensors provide improved performance of the latter. In particular, the response time is reduced by 3 to 5 times.

  10. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction.

    PubMed

    Brown, Andrew; Zaky, Samer; Ray, Herbert; Sfeir, Charles

    2015-01-01

    Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma-atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium's impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices.

  11. Soil Surface Composition Effects on the Wettability of Aquifer Materials

    NASA Astrophysics Data System (ADS)

    Ryder, J. L.; Demond, A. H.

    2004-05-01

    The wettability of subsurface porous media is critical for determining the distribution of non-aqueous phase liquids. Variations in the wettability of subsurface materials are generally attributed to sorption of hydrophobic contaminants. However, naturally occurring carbonaceous materials may influence the wettability as well. A series of seven soil materials were selected to determine the effect of organic carbon surfaces on soil wetting behavior. The materials represent organic carbon containing surfaces that may be found in soils from young humic matter to mature coal and shale kerogen. Measurements of organic liquid-water contact angle against cut rock faces reveal that surface composition alters the contact angle from the completely water wetted condition of quartz in the case of the mature carbon materials (Lachine Shale, Garfield Shale, Waynesburg Coal, and Plumbago Mineral Carbon). An examination of the soil elemental composition confirms that the bulk elemental composition of each material is separated on a plot of hydrogen to carbon versus oxygen to carbon ratios. The functional groups present at the surface of the soil materials were obtained with Fourier Transform Infrared Spectroscopy (FT-IR) analysis and indicate that the presence of oxygen containing surface functional groups is positively correlated with increased organic-liquid wetting. This study demonstrates that even in the absence of sorbing contaminants the subsurface is fractionally water-wet. This finding may help explain why subsurface distributions of non aqueous phase liquids can vary from those determined with laboratory sands.

  12. Nonlinear Dynamic Properties of Layered Composite Materials

    SciTech Connect

    Andrianov, Igor V.; Topol, Heiko; Weichert, Dieter; Danishevs'kyy, Vladyslav V.

    2010-09-30

    We present an application of the asymptotic homogenization method to study wave propagation in a one-dimensional composite material consisting of a matrix material and coated inclusions. Physical nonlinearity is taken into account by considering the composite's components as a Murnaghan material, structural nonlinearity is caused by the bonding condition between the components.

  13. High Strain-Rate and Quasi-Static Ductile Failure Mechanisms in Porous Materials

    DTIC Science & Technology

    2007-11-02

    detailed understanding of the interrelated physical mechanisms that can result in ductile material failure in rate-dependent porous crystalline materials subjected...strains and slip-rates, and hydrostatic stresses on failure paths and ligament damage in face centered cubic (f.c.c.) crystalline materials have been

  14. Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels

    NASA Astrophysics Data System (ADS)

    Li, Ruru; Yang, Y. Sam; Pan, Jinxiao; Pereira, Gerald G.; Taylor, John A.; Clennell, Ben; Zou, Caineng

    2014-09-01

    A partial-bounce-back lattice Boltzmann model has been used to simulate flow on a lattice consisting of cubic voxels with a locally varying effective percolating fraction. The effective percolating fraction of a voxel is the total response to the partial-bounce-back techniques for porous media flow due to subvoxel fine structures. The model has been verified against known analytic solutions on two- and three-dimensional regular geometries, and has been applied to simulate flow and permeabilities of two real-world rock samples. This enables quantitative determination of permeability for problems where voxels cannot be adequately segmented as discrete compositions. The voxel compositions are represented as volume fractions of various material phases and void. The numerical results have shown that, for the tight-sandstone sample, the bulk permeability is sensitive to the effective percolating fraction of calcite. That is, the subvoxel flow paths in the calcite phase are important for bulk permeability. On the other hand, flow in the calcite phase in the sandstone sample makes an insignificant contribution to the bulk permeability. The calculated permeability value for the sandstone sample is up to two orders of magnitude greater than the tight sandstone. This model is generic and could be applied to other oil and gas reservoir media or to material samples.

  15. Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels.

    PubMed

    Li, Ruru; Yang, Y Sam; Pan, Jinxiao; Pereira, Gerald G; Taylor, John A; Clennell, Ben; Zou, Caineng

    2014-09-01

    A partial-bounce-back lattice Boltzmann model has been used to simulate flow on a lattice consisting of cubic voxels with a locally varying effective percolating fraction. The effective percolating fraction of a voxel is the total response to the partial-bounce-back techniques for porous media flow due to subvoxel fine structures. The model has been verified against known analytic solutions on two- and three-dimensional regular geometries, and has been applied to simulate flow and permeabilities of two real-world rock samples. This enables quantitative determination of permeability for problems where voxels cannot be adequately segmented as discrete compositions. The voxel compositions are represented as volume fractions of various material phases and void. The numerical results have shown that, for the tight-sandstone sample, the bulk permeability is sensitive to the effective percolating fraction of calcite. That is, the subvoxel flow paths in the calcite phase are important for bulk permeability. On the other hand, flow in the calcite phase in the sandstone sample makes an insignificant contribution to the bulk permeability. The calculated permeability value for the sandstone sample is up to two orders of magnitude greater than the tight sandstone. This model is generic and could be applied to other oil and gas reservoir media or to material samples.

  16. Method for the preparation of ferrous low carbon porous material

    SciTech Connect

    Miller, Curtis Jack

    2014-05-27

    A method for preparing a porous metal article using a powder metallurgy forming process is provided which eliminates the conventional steps associated with removing residual carbon. The method uses a feedstock that includes a ferrous metal powder and a polycarbonate binder. The polycarbonate binder can be removed by thermal decomposition after the metal article is formed without leaving a carbon residue.

  17. Composite Material Hazard Assessment at Crash Sites

    DTIC Science & Technology

    2015-01-01

    isocyanates, blood-borne pathogens, radioactive material , plastics, polymers composed of organic material , and composite fibers. Aircraft...projectiles and release of materials All Interior and exterior Strontium Radioactive material used in aircraft construction Internal and external...exposure and subsequent risk. The Defense Reutilization and Marketing Office requires that materials be packaged together for disposal, segregating

  18. Is macroporosity absolutely required for preliminary in vitro bone biomaterial study? A comparison between porous materials and flat materials.

    PubMed

    Lee, Juliana T Y; Chow, King L; Wang, Kefeng; Tsang, Wai-Hung

    2011-11-08

    Porous materials are highly preferred for bone tissue engineering due to space for blood vessel ingrowth, but this may introduce extra experimental variations because of the difficulty in precise control of porosity. In order to decide whether it is absolutely necessary to use porous materials in in vitro comparative osteogenesis study of materials with different chemistries, we carried out osteoinductivity study using C3H/10T1/2 cells, pluripotent mesenchymal stem cells (MSCs), on seven material types: hydroxyapatite (HA), α-tricalcium phosphate (α-TCP) and b-tricalcium phosphate (β-TCP) in both porous and dense forms and tissue culture plastic. For all materials under test, dense materials give higher alkaline phosphatase gene (Alp) expression compared with porous materials. In addition, the cell density effects on the 10T1/2 cells were assessed through alkaline phosphatase protein (ALP) enzymatic assay. The ALP expression was higher for higher initial cell plating density and this explains the greater osteoinductivity of dense materials compared with porous materials for in vitro study as porous materials would have higher surface area. On the other hand, the same trend of Alp mRNA level (HA > β-TCP > α-TCP) was observed for both porous and dense materials, validating the use of dense flat materials for comparative study of materials with different chemistries for more reliable comparison when well-defined porous materials are not available. The avoidance of porosity variation would probably facilitate more reproducible results. This study does not suggest porosity is not required for experiments related to bone regeneration application, but emphasizes that there is often a tradeoff between higher clinical relevance, and less variation in a less complex set up, which facilitates a statistically significant conclusion. Technically, we also show that the base of normalization for ALP activity may influence the conclusion and there may be ALP activity from

  19. Porous tooling process for manufacture of graphite/polyimide composites

    NASA Technical Reports Server (NTRS)

    Smiser, L. W.; Orr, K. K.; Araujo, S. M.

    1981-01-01

    A porous tooling system was selected for the processing of Graphite/PMR-15 Polyimide laminates in thickness up to 3.2 mm. (0.125 inch). This tool system must have a reasonable strength, permeability dimensional stability, and thermal conductivity to accomplish curing at 600 F and 200 psi and 200 psi autoclave temperature and pressure. A permeability measuring apparatus was constructed and permeability vs. casting water level determined to produce tools at three different permeability levels. On these tools, laminates of 5, 11, and 22 plies (.027, .060, and 0.121 inch) were produced and evaluated by ultrasonic, mechanical, and thermal tests to determine the effect of the tool permeability on the cured laminates. All tools produced acceptable laminates at 5 and 11 plies but only the highest permeability produced acceptable clear ultrasonic C-Scans. Recommendations are made for future investigations of design geometry, and strengthening techniques for porous ceramic tooling.

  20. Method for machining holes in composite materials

    NASA Technical Reports Server (NTRS)

    Daniels, Julia G. (Inventor); Ledbetter, Frank E., III (Inventor); Clemons, Johnny M. (Inventor); Penn, Benjamin G. (Inventor); White, William T. (Inventor)

    1987-01-01

    A method for boring well defined holes in a composite material such as graphite/epoxy is discussed. A slurry of silicon carbide powder and water is projected onto a work area of the composite material in which a hole is to be bored with a conventional drill bit. The silicon carbide powder and water slurry allow the drill bit, while experiencing only normal wear, to bore smooth, cylindrical holes in the composite material.

  1. Durability of Composite Materials and Structures

    DTIC Science & Technology

    2009-11-02

    Michigan State University Composite Materials and Structures Center 2100 Engineering Building , East Lansing, MI 48824-1226 6.1 Objectives The...DATES COVERED (From - To) February 7, 2005 - January 31. 2009 4. TITLE AND SUBTITLE DURABILITY OF COMPOSITE MATERIALS AND STRUCTURES 5a...Manager: Dr. Yapa D.S. Rajapakse Office of Naval Research 875 N. Randolph Street Arlington, VA 22203-1995 DURABILITY OF COMPOSITE MATERIALS AND

  2. Regeneration and Remodeling of Composite Materials

    DTIC Science & Technology

    2015-08-27

    AFRL-AFOSR-VA-TR-2015-0263 REGENERATION AND REMODELING OF COMPOSITE MATERIALS Scott White UNIVERSITY OF ILLINOIS Final Report 08/27/2015 DISTRIBUTION...Remodeling of Composite Materials 5a. CONTRACT NUMBER FA9550-10-1-0255 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) White, Scott R., Sottos...distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Regeneration and Remodeling of Composite Materials (Regeneration) Program was

  3. Method of calculating the phase composition of SiC-Si-C materials obtained by silicon infiltration of carbon matrices

    NASA Astrophysics Data System (ADS)

    Ershov, A. E.; Shikunov, S. L.; Kurlov, V. N.

    2017-06-01

    The synthesis of SiC-Si-C materials by siliconizing porous carbon matrices has been considered, and a method of determining their phase composition has been devised. Preforms of two types have been siliconized, i.e., biomorphic carbon matrices prepared by wood pyrolysis and artificial porous graphites prepared by mixing and compacting carbon powders with an organic binder. The calculated phase compositions are in good agreement with microstructure metallographic examination data.

  4. Interaction of a He-Ne laser light with the moist surface zone of porous material

    NASA Astrophysics Data System (ADS)

    Rozniakowski, Kazimierz; Wojtatowicz, Tomasz W.; Drobnik, Antoni; Jeske, I.

    1995-03-01

    The light scattered from the `rough' surface of a porous body illuminated by a narrow laser beam is carrying the information on geometrical micro structure of this surface. It is possible that the water vapor and water droplets in pores will cause changes in scattered light too. The aim of this paper is to present the results of the experimental investigations of the intensity of a helium-neon laser light reflected by a porous and moist gypsum slurry surface. Experiments show that the scattered light intensity increases with the decrease of the moisture content in porous material.

  5. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  6. Process for producing dispersed particulate composite materials

    DOEpatents

    Henager, Jr., Charles H.; Hirth, John P.

    1995-01-01

    This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

  7. The Effect of Carbon Layer Variations in Carbon/Porous Silicon Composite Rugate Filters for End-of-Service-Life Indicators

    NASA Astrophysics Data System (ADS)

    Gofus, John Stephen, III

    Carbon/porous silicon composite rugate filters, for use as end-of service-life indicators in gas mask filters, are more capable of increased sensitivity to volatile organic chemical vapors than porous silicon sensors alone. Compositional variations of the carbon layer within these composite materials have not been well studied. At low carbon content, the carbonized surface will not effectively mimic the active carbon used in gas mask filters. At high carbon content, there is increased noise and a broader, less intense rugate stop band, reducing the signal to noise level of the sensor response. The focus of this thesis is the optimization of the carbon layer in the carbon/porous silicon composite rugate filters. To accomplish this, porous silicon rugate filters were etched and then carbonized using varying concentrations of the poly(furfuryl alcohol) precursor. Variations in the carbon layer were then analyzed via spectral analysis, elemental analysis, and nitrogen adsorption/desorption isotherms. At concentrations greater than 50% furfuryl alcohol there is minimal difference observed in the carbon layer on the porous silicon surface. Samples were also shown to have a minimal increase in sensitivity at concentrations greater than 50% furfuryl alcohol, and an increased signal-to-noise with increased furfuryl alcohol concentration. It is shown that the optimal carbon layer for volatile organic vapor sensing is achieved by using a furfuryl alcohol concentration of 50% furfuryl alcohol (in ethanol) during carbon layer synthesis.

  8. Hydrogen-Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Proton-Conducting Materials.

    PubMed

    Karmakar, Avishek; Illathvalappil, Rajith; Anothumakkool, Bihag; Sen, Arunabha; Samanta, Partha; Desai, Aamod V; Kurungot, Sreekumar; Ghosh, Sujit K

    2016-08-26

    Two porous hydrogen-bonded organic frameworks (HOFs) based on arene sulfonates and guanidinium ions are reported. As a result of the presence of ionic backbones appended with protonic source, the compounds exhibit ultra-high proton conduction values (σ) 0.75× 10(-2)  S cm(-1) and 1.8×10(-2)  S cm(-1) under humidified conditions. Also, they have very low activation energy values and the highest proton conductivity at ambient conditions (low humidity and at moderate temperature) among porous crystalline materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). These values are not only comparable to the conventionally used proton exchange membranes, such as Nafion used in fuel cell technologies, but is also the highest value reported in organic-based porous architectures. Notably, this report inaugurates the usage of crystalline hydrogen-bonded porous organic frameworks as solid-state proton conducting materials.

  9. A composite material based on recycled tires

    NASA Astrophysics Data System (ADS)

    Malers, L.; Plesuma, R.; Locmele, L.

    2009-01-01

    The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.

  10. Computational study of porous materials for gas separations

    NASA Astrophysics Data System (ADS)

    Lin, Li-Chiang

    Nanoporous materials such as zeolites, zeolitic imidazolate frameworks (ZIFs), and metal-organic frameworks (MOFs) are used as sorbents or membranes for gas separations such as carbon dioxide capture, methane capture, paraffin/olefin separations, etc. The total number of nanoporous materials is large; by changing the chemical composition and/or the structural topologies we can envision an infinite number of possible materials. In practice one can synthesize and fully characterize only a small subset of these materials. Hence, computational study can play an important role by utilizing various techniques in molecular simulations as well as quantum chemical calculations to accelerate the search for optimal materials for various energy-related separations. Accordingly, several large-scale computational screenings of over one hundred thousand materials have been performed to find the best materials for carbon capture, methane capture, and ethane/ethene separation. These large-scale screenings identified a number of promising materials for different applications. Moreover, the analysis of these screening studies yielded insights into those molecular characteristics of a material that contribute to an optimal performance for a given application. These insights provided useful guidelines for future structural design and synthesis. For instance, one of the screening studies indicated that some zeolite structures can potentially reduce the energy penalty imposed on a coal-fired power plant by as much as 35% compared to the near-term MEA technology for carbon capture application. These optimal structures have topologies with a maximized density of pockets and they capture and release CO2 molecules with an optimal energy. These screening studies also pointed to some systems, for which conventional force fields were unable to make sufficiently reliable predictions of the adsorption isotherms of different gasses, e.g., CO2 in MOFs with open-metal sites. For these systems, we

  11. Dielectric Properties of Porous Si3N4-SiO2-BN Composites

    NASA Astrophysics Data System (ADS)

    Sun, Yinbao; Zhang, Yumin; Li, Dihong; Han, Jiecai

    Porous Si3N4-SiO2-BN composites were prepared by adding starch as both pore former and consolidator. Bruggeman effective-medium model, Maxwell-Garnett model and logarithmic model were used to describe and predict the dielectric constant of porous Si3N4-SiO2-BN ceramics. Relative dielectric constant of porous Si3N4-SiO2-BN composites decreases with the increase of apparent porosity within limits, and these models can forecast the change of the dielectric constant of the porous ceramics quite well. The minimum relative dielectric constant is 2.5 at the apparent porosity of 0.555 at room-temperature. The relationship between dielectric constant and temperature were investigated. It was found dielectric constant varied a lot with the increase of temperature, and Debye relaxation theory was employed to explain the variation of the dielectric constant with temperature increment. But the Debye relaxation theory can not explain the reason of variation of dielectric constant at the temperature range from 300°C to 900°C. To ascertain the cause of changes of dielectric constant at this temperature region, differential scanning calorimentry (DSC) measurement was performed. In this temperature region, phase transition behavior occurs at nearly 300°C in the porous composites. The new phase probably has a tidy large dielectric constant, and the dielectric constant increases sharply.

  12. Growth of alumina/metal composites into porous ceramics by the oxidation of aluminum

    SciTech Connect

    Watari, Takanori; Mori, Koichiro; Torikai, Toshio; Matsuda, Ohsaku . Dept. of Applied Chemistry)

    1994-10-01

    Ductile metal is incorporated into brittle ceramics to improve their fracture toughness. Of the many methods for fabricating ceramic/metal composites, the oxidation of a molten alloy (DIMOX process) is particularly interesting because it affords (1) ease of composite production, (2) low cost, and (3) near-net-shape capability. Alumina/metal composites were grown into the pores of porous alumina, porous aluminosilicate, and porous silicon carbide substrates through the oxidation of Al-Si (5 wt %) powder compacts coated with magnesia powder (11 mg/cm[sup 2]). The thickness of the resulting composite increased with oxidation time and temperature, and was proportional to (pore size)[sup 0.5] on using porous alumina. The composite thickness was more than 2 times larger in the silicon carbide and about 4 times larger in the aluminosilicate than in the alumina at 1,523 K for 1 h. The products using these three types of substrates consisted of alumina, aluminum, and silicon, except that a silicon carbide phase occurred when using the silicon carbide substrate. Silica and mullite in the aluminosilicate substrate changed to silicon and alumina, and silica in the silicon carbide substrate changed to silicon because of the reduction by aluminum.

  13. Development of porous Ti6Al4V/chitosan sponge composite scaffold for orthopedic applications.

    PubMed

    Guo, Miao; Li, Xiang

    2016-01-01

    A novel composite scaffold consisting of porous Ti6Al4V part filled with chitosan sponge was fabricated using a combination of electron beam melting and freeze-drying. The mechanical properties of porous Ti6Al4V part were examined via compressive test. The ultimate compressive strength was 85.35 ± 8.68 MPa and the compressive modulus was 2.26 ± 0.42 GPa. The microstructure of composite scaffold was characterized using scanning electron microscopy. The chitosan sponge filled in Ti6Al4V part exhibited highly porous and well-interconnected micro-pore architecture. The osteoblastic cells were seeded on scaffolds to test their seeding efficiency and biocompatibility. Significantly higher cell seeding efficiency was found on composite scaffold. The biological response of osteoblasts on composite scaffolds was superior in terms of improved cell attachment, higher proliferation, and well-spread morphology in relation to porous Ti6Al4V part. These results suggest that the Ti6Al4V/chitosan composite scaffold is potentially useful as a biomedical scaffold for orthopedic applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. NASA technology utilization survey on composite materials

    NASA Technical Reports Server (NTRS)

    Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.

    1972-01-01

    NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.

  15. Sound propagation in and low frequency noise absorption by helium-filled porous material.

    PubMed

    Choy, Y S; Huang, Lixi; Wang, Chunqi

    2009-12-01

    Low-frequency noise is difficult to deal with by traditional porous material due to its inherent high acoustic impedance. This study seeks to extend the effective range of sound absorption to lower frequencies by filling a low density gas, such as helium, in the porous material. Compared with conventional air-filled absorption material, the helium-filled porous material has a much reduced characteristic impedance; hence, a good impedance matching with pure air becomes more feasible at low frequencies. The acoustic properties of a series of helium-filled porous materials are investigated with a specially designed test rig. The characteristic of the sound propagation in a helium-filled porous material is established and validated experimentally. Based on the measured acoustic properties, the sound absorption performance of a helium-filled absorber (HA) of finite thickness is studied numerically as well as experimentally. For a random incidence field, the HA is found to perform much better than the air-filled absorber at low frequencies. The main advantage of HA lies in the middle range of oblique incidence angles where wave refraction in the absorber enhances sound absorption. The advantage of HA as duct lining is demonstrated both numerically and experimentally.

  16. Composite materials for battery applications

    DOEpatents

    Amine, Khalil; Yang, Junbing; Abouimrane, Ali; Ren, Jianguo

    2017-03-14

    A process for producing nanocomposite materials for use in batteries includes electroactive materials are incorporated within a nanosheet host material. The process may include treatment at high temperatures and doping to obtain desirable properties.

  17. Graphene-Like 2D Porous Carbon Nanosheets Derived from Cornstalk Pith for Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Gao, Kezheng; Niu, Qingyuan; Tang, Qiheng; Guo, Yaqing; Wang, Lizhen

    2017-09-01

    Biomass materials from different organisms or different parts (even different periods) of the same organism have different microscopic morphologies, hierarchical pore structures and even elemental compositions. Therefore, carbon materials inheriting the unique hierarchical microstructure of different biomass materials may exhibit significantly different electrochemical properties. Cornstalk pith and cornstalk skin (dried by freeze-drying) exhibit significantly different microstructures due to their different biological functions. The cornstalk skin-based carbon (S-carbon) exhibits a thick planar morphology, and the Barrett-Emmett-Teller (BET) surface area is only about 332.07 m2 g-1. However, cornstalk pith-based carbon (P-carbon) exhibits a graphene-like 2D porous nanosheet structure with a rough, wrinkled morphology, and the BET surface area is about 805.17 m2 g-1. In addition, a P-carbon supercapacitor exhibits much higher specific capacitance and much better rate capability than an S-carbon supercapacitor in 6 M potassium hydroxide (KOH) electrolyte.

  18. Influence of porous PTFE/LDPE/PP composite electret in skin ultrastructure

    NASA Astrophysics Data System (ADS)

    Jiang, J.; Liang, Y. Y.; Cui, L. L.; Hou, X. M.; Tang, Y.; Ye, X. T.; Yang, Y. J.; Song, M. H.

    2008-12-01

    Corona charging and heat melting method were used to prepare porous PTFE electret and porous PTFE/LDPE/PP composite electret, respectively. After 0.5, 1, 1.5, 3 and 4 hour's action of fluorescein sodium (FINa) and -300V porous PTFE/LDPE/PP composite electret on the excised abdominal skin of rat, the skin structure was studied by means of scanning electron microscopy, transmission electron microscopy and confocal laser scanning microscopy, respectively, to probe the mechanism of electret on transdermal drug delivery. The results indicated that negative electret could increase the transdermal delivery of FINa due to its effect on changing the organized structure of stratum corneum, enlarging the hair follicles, which may be the mechanism of electret in enhancing transdermal drug delivery.

  19. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  20. Microbial ranking of porous packaging materials (exposure chamber method), ASTM method: collaborative study.

    PubMed

    Placencia, A M; Peeler, J T

    1999-01-01

    A collaborative study involving 11 laboratories was conducted to measure the microbial barrier effectiveness of porous medical packaging. Two randomly cut samples from each of 6 commercially available porous materials and one positive and one negative control were tested by one operator in each of 11 laboratories. Microbial barrier effectiveness was measured in terms of logarithm reduction value (LRV), which reflects the log10 microbial penetration of the material being tested. The logarithm of the final concentration is subtracted from that of the initial concentration to obtain the LRV. Thus the higher the LRV, the better the barrier. Repeatability standard deviations ranged from 6.42 to 16.40; reproducibility standard deviations ranged from 15.50 to 22.70. Materials B(53), C(50), D(CT), and E(45MF) differ significantly from the positive control. The microbial ranking of porous packaging materials (exposure chamber method), ASTM method, has been adopted First Action by AOAC INTERNATIONAL.

  1. Material Characterization for Composite Materials in Load Bearing Wave Guides

    DTIC Science & Technology

    2012-03-01

    in their thermal expansions. Fiber composites offer high internal damping, which leads to better "vibrational energy absorption within the material... internal stresses. Composites are normally coated or painted to prevent moisture absorption. Composites first started seeing use in military... internal protons and electrons. The additional energy from EM waves excites the electrons allowing them to potentially jump into higher energy bands or

  2. On the Acoustic Absorption of Porous Materials with Different Surface Shapes and Perforated Plates

    NASA Astrophysics Data System (ADS)

    CHEN, WEN-HWA; LEE, FAN-CHING; CHIANG, DAR-MING

    2000-10-01

    In architectural acoustic design, perforated plates are often used to protect porous materials from erosion. Although porous materials are usually applied to passive noise control, the effects of their surface shapes are seldom studied. To study the acoustic absorption of porous materials with different surface shapes and perforated plates, an efficient finite element procedure, which is derived by the Galerkin residual method and Helmholtz wave propagation equation, is used in this work. The two-microphone transfer function method and the modified Ingard and Dear impedance tube testing system are employed to measure the parameters deemed necessary for the finite element analysis, such as complex wave propagation constant, characteristic impedance and flow resistivity. For verifying the finite element results, the two-microphone transfer function method is also applied to measure the absorption coefficients of the discussed acoustic absorbers. Four surface shapes of commercially available porous materials, i.e., triangle, semicircle, convex rectangle and plate shapes, are chosen for analysis. The porosity of perforated plates is then evaluated. Finally, the distinct effect of the flow resistivity of porous materials on the acoustic absorption is demonstrated.

  3. Synthesis and gas adsorption study of porous metal-organic framework materials

    NASA Astrophysics Data System (ADS)

    Mu, Bin

    Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have become the focus of intense study over the past decade due to their potential for advancing a variety of applications including air purification, gas storage, adsorption separations, catalysis, gas sensing, drug delivery, and so on. These materials have some distinct advantages over traditional porous materials such as the well-defined structures, uniform pore sizes, chemically functionalized sorption sites, and potential for postsynthetic modification, etc. Thus, synthesis and adsorption studies of porous MOFs have increased substantially in recent years. Among various prospective applications, air purification is one of the most immediate concerns, which has urgent requirements to improve current nuclear, biological, and chemical (NBC) filters involving commercial and military purposes. Thus, the major goal of this funded project is to search, synthesize, and test these novel hybrid porous materials for adsorptive removal of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs), and to install the benchmark for new-generation NBC filters. The objective of this study is three-fold: (i) Advance our understanding of coordination chemistry by synthesizing novel MOFs and characterizing these porous coordination polymers; (ii) Evaluate porous MOF materials for gasadsorption applications including CO2 capture, CH4 storage, other light gas adsorption and separations, and examine the chemical and physical properties of these solid adsorbents including thermal stability and heat capacity of MOFs; (iii) Evaluate porous MOF materials for next-generation NBC filter media by adsorption breakthrough measurements of TICs on MOFs, and advance our understanding about structureproperty relationships of these novel adsorbents.

  4. Clues for biomimetics from natural composite materials.

    PubMed

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2012-09-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine.

  5. Clues for biomimetics from natural composite materials

    PubMed Central

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  6. A colloidal assembly approach to synthesize magnetic porous composite nanoclusters for efficient protein adsorption.

    PubMed

    Yang, Qi; Lan, Fang; Yi, Qiangying; Wu, Yao; Gu, Zhongwei

    2015-11-14

    A combination strategy of the inverse emulsion crosslinking approach and the colloidal assembly technique is first proposed to synthesize Fe3O4/histidine composite nanoclusters as new-type magnetic porous nanomaterials. The nanoclusters possess uniform morphology, high magnetic content and excellent protein adsorption capacity, exhibiting their great potential for bio-separation.

  7. Removal of Algal Blooms in Freshwater by Meso-porous Composite Coagulant

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Li, Fengting; Hui, Franck; Lédion, Jean

    2010-11-01

    Based on the concept of "using waste to treat waste and changing waste into valuables", this paper put forward a new meso-porous composite coagulant with good performance and low cost, and the removal effects of meso-porous composite coagulant on algae cells and toxins, dissolved organics in water was studied, the object of this research was to provide a new and effective way for emergency needs to clear up harmful algal blooms in freshwater. The results showed that meso-porous composite coagulant at optimal loadings (1g/L) could remove over 99% algal cells; meanwhile, the removal efficiency of COD, microcystin, total nitrogen and phosphorus was found to be 87.5%, 97.7%, 41.5% and 77.8% respectively, moreover, the forming speed of floccules was fast, and the dense floccules had good settling performance. Furthermore, the mechanism of algae removal was explored preliminarily by meso-porous composite coagulant which played a dual role in adsorption and flocculation.

  8. Synthesis of selenium/EDTA-derived porous carbon composite as a Li-Se battery cathode

    NASA Astrophysics Data System (ADS)

    Zhao, Chenhao; Fang, Shuzhen; Hu, Zhibiao; Qiu, Sheng'en; Liu, Kaiyu

    2016-07-01

    The carbon substrate with unique 3D macroporous structure has been prepared through the immediate carbonization of ethylenediaminetetraacetic acid (EDTA) and KOH mixture. The porous carbon composed of micro- and small mesoporous (2-5 nm) structure has a BET specific surface area of 1824.8 m2 g-1. The amorphous and nanosized Se is uniformly encapsulated into the porous structure of porous carbon using melting diffusion route, and the weight content of Se in target Se/C composite can be as high as 50 %. As an Li-Se battery cathode, the Se/C composite delivers a reversible (2nd) discharge capacity of 597.4 mAh g-1 at 0.24C and retains a discharge capacity of 538.4 mAh g-1 at 0.24C after 100 cycles. Furthermore, the composite also has a stable capacity of 291.0 mAh g-1 at a high current of 4.8C. The high specific area and good porous size of EDTA-derived carbon substrate may a be responsibility for the excellent electrochemical performances of Se/C composite.

  9. Sulfur-Immobilized, Activated Porous Carbon Nanotube Composite Based Cathodes for Lithium-Sulfur Batteries.

    PubMed

    Lee, Jun Seop; Jun, Jaemoon; Jang, Jyongsik; Manthiram, Arumugam

    2017-03-01

    Activated highly porous carbon nanotubes are synthesized with a facile dual-nozzle co-electrospinning and a redox process to apply the framework of a sulfur-immobilized composite as a high-performance cathode in lithium-sulfur batteries.

  10. Composite, nanostructured, super-hydrophobic material

    DOEpatents

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  11. Composite materials and method of making

    DOEpatents

    Simmons, Kevin L [Kennewick, WA; Wood, Geoffrey M [North Saanich, CA

    2011-05-17

    A method for forming improved composite materials using a thermosetting polyester urethane hybrid resin, a closed cavity mold having an internal heat transfer mechanism used in this method, and the composite materials formed by this method having a hybrid of a carbon fiber layer and a fiberglass layer.

  12. Optimal rigid and porous material distributions for noise barrier by acoustic topology optimization

    NASA Astrophysics Data System (ADS)

    Kim, Ki Hyun; Yoon, Gil Ho

    2015-03-01

    This research applies acoustic topology optimization (ATO) for noise barrier design with rigid and porous materials. Many researchers have investigated the pressure attenuation phenomena of noise barriers under various geometric, material, and boundary conditions. To improve the pressure attenuation performance of noise barriers, size and shape optimization have been applied, and ATO methods have been proposed that allow concurrent size, shape, and topological changes of rigid walls and cavities. Nevertheless, it is unusual to optimize the topologies of noise barriers by considering the pressure attenuation effect of a porous material. The present research develops a new ATO considering both porous and rigid materials and applies it to the discovery of optimal topologies of noise barriers composed of both materials. In the present approach, the noise absorption characteristics of porous materials are numerically modeled using the Delany-Bazley empirical material model, and we also investigate the effects of some interpolation functions on optimal material distributions. Applying the present ATO approach, we found some novel noise barriers optimized for various geometric and environmental conditions.

  13. Encapsulated recyclable porous materials: an effective moisture-triggered fragrance release system.

    PubMed

    Vaughn, John; Wu, Haohan; Efremovska, Bisera; Olson, David H; Mattai, Jairajh; Ortiz, Claudio; Puchalski, Allen; Li, Jing; Pan, Long

    2013-06-28

    A moisture-triggered release system was developed using porous metal-organic materials as encapsulating agents. Release of both hydrophilic (ethyl butyrate) and hydrophobic (D-limonene) fragrance compounds was investigated by gas adsorption measurement, thermogravimetric analysis and gas chromatography-mass spectroscopy. These materials exhibit exceptional fragrance compatibility and controlled release compared to the current leading encapsulation technology.

  14. Preparation of porous TiO 2/Ti composite membrane for immunoisolation

    NASA Astrophysics Data System (ADS)

    Minjing, Zhan; Gang, Li; Qiang, Wei; Hualei, Cui; Ling, Lin

    2008-12-01

    The TiO 2 membrane supported on porous Ti planar can be used as a kind of alternative material of immunoisolation membranes, which are presently prepared by polymeric materials, in order to overcome defects of conventional immunoisolation membranes. The composite membranes were prepared by sol-gel technique with tetrabutyl titanate and the withdrawal velocity was 4 mm/s. The circle of 'dip-coating-sintering' must be repeated five times. The retention rate of proteins and flux of glucose were used to evaluate the effect of immunoisolation. The result showed that the membranes, which were sintered under 700 °C, could completely retain the proteins with molecular weight over 156 kDa and the retention rate of BSA exceeded 85%. At the same time, the glucose and proteins, whose molecular weight were under 45 kDa, could all freely pass the membranes according to the concentration difference of both sides. However, the retention rate of proteins first increased and subsequently decreased with the increase of sintering temperature. The membranes, which were sintered at 600 °C, retained more proteins than the membranes sintered at other temperatures. So a better sintering temperature, which can be used as immunoisolation membrane, is about 600 °C.

  15. Development of porous clay-based composites for the sorption of lead from water.

    PubMed

    Ake, C L; Mayura, K; Huebner, H; Bratton, G R; Phillips, T D

    2001-07-20

    Lead contamination of water is a major health hazard, as illustrated by the fact that exposure to this metal has been associated with death and disease in humans, birds, and animals. The present research was aimed at the development of a porous, solid-phase sorbent that can be used in the remediation of lead-contaminated water. A suitable sorbent was identified by screening various clays and other materials for their ability to effectively bind lead. The clay was adhered to a solid support using an aqueous solution of carboxymethyl cellulose. The binary composite was then tested for its ability to bind lead from solution, while providing void volume, increased surface area, and considerably enhanced hydraulic conductivity. The results suggested that a combination of sodium montmorillonite clay and carbon exhibited enhanced sorption of lead compared to carbon alone, and also supported the potential application of various combinations of sorbent materials. This value-added combination of clay, solid support, and adhesive will allow for the construction of column filtration systems that are multifunctional and capable of purifying large volumes of contaminated water.

  16. Porous hollow carbon spheres for electrode material of supercapacitors and support material of dendritic Pt electrocatalyst

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Liu, Pei-Fang; Huang, Zhong-Yuan; Jiang, Tong-Wu; Yao, Kai-Li; Han, Ran

    2015-04-01

    Porous hollow carbon spheres (PHCSs) are prepared through hydrothermal carbonization of alginic acid and subsequent chemical activation by KOH. The porosity of the alginic acid derived PHCSs can be finely modulated by varying activation temperature in the range of 600-900 °C. The PHCSs activated at 900 °C possess the largest specific surface area (2421 m2 g-1), well-balanced micro- and mesoporosity, as well as high content of oxygen-containing functional groups. As the electrode material for supercapacitors, the PHCSs exhibit superior capacitive performance with specific capacitance of 314 F g-1 at current density of 1 A g-1. Pt nanodendrites supported on the PHCSs are synthesized by polyol reduction method which exhibit high electrocatalytic activity towards methanol oxidation reaction (MOR). Moreover, CO-poisoning tolerance of the Pt nanodendrites is greatly enhanced owing to the surface chemical property of the PHCSs support.

  17. Stimulated light emission in a dielectrically disordered composite porous matrix

    NASA Astrophysics Data System (ADS)

    Gross, E.; Künzner, N.; Diener, J.; Fujii, Minoru; Timoshenko, V. Yu.; Kovalev, D.

    2005-06-01

    We report on a medium exhibiting extremely efficient light scattering properties: a liquid network formed in a porous matrix. Liquid fragments confined in the solid matrix result in a random fluctuation of the dielectric function and act as scattering objects for photons. The optical scattering efficiency is defined by the filling factor of the liquid in the pores and its dielectric constant. The spectral dependence of the scattering length of photons indicates that the phenomenon is governed by a Mie-type scattering mechanism. The degree of the dielectric disorder of the medium, i.e. the level of opacity is tunable by the ambient vapor pressure of the dielectric substance. In the strongest scattering regime the scattering length of photons is found to be in the micrometer range. By incorporation of dye molecules in the voids of the porous layer a system exhibiting optical gain is realized. In the multiple scattering regime the optical path of diffusively propagating photons is enhanced and light amplification through stimulated emission occurs: a strong intensity enhancement of the dye emission accompanied by significant spectral narrowing is observed above the excitation threshold for a layer being in the opalescence state.

  18. Composite Dielectric Materials for Electrical Switching

    SciTech Connect

    Modine, F.A.

    1999-04-25

    Composites that consist of a dielectric host containing a particulate conductor as a second phase are of interest for electrical switching applications. Such composites are "smart" materials that can function as either voltage or current limiters, and the difference in fimction depends largely upon whether the dielectric is filled to below or above the percolation threshold. It also is possible to combine current and voltage limiting in a single composite to make a "super-smart" material.

  19. Wood-based composite materials : panel products, glued-laminated timber, structural composite lumber, and wood-nonwood composite materials

    Treesearch

    Nicole M. Stark; Zhiyong Cai; Charles Carll

    2010-01-01

    This chapter gives an overview of the general types and composition of wood-based composite products and the materials and processes used to manufacture them. It describes conventional wood-based composite panels and structural composite materials intended for general construction, interior use, or both. This chapter also describes wood–nonwood composites. Mechanical...

  20. Numerical study of thermally stratified flows of a fluid overlying a highly porous material

    NASA Astrophysics Data System (ADS)

    Antoniadis, Panagiotis D.; Papalexandris, Miltiadis V.

    2014-11-01

    In this talk we are concerned with thermally stratified flows in domains that contain a macroscopic interface between a highly porous material and a pure-fluid domain. Our study is based on the single-domain approach according to which the same set of governing equations is employed both inside the porous medium and in the pure-fluid domain. Also, the mathematical model that we employ treats the porous skeleton as a rigid solid that is in thermal non-equilibrium with the fluid. First, we present briefly the basic steps of the derivation of the mathematical model. Then, we present and discuss numerical results for both thermally stratified shear flows and natural convection. Our discussion focuses on the role of thermal stratification on the flows of interest and on the effect of thermal non-equilibrium between the solid matrix and the fluid inside the porous medium. This work is supported by the National Fund for Scientific Research (FNRS), Belgium.

  1. Porous Media and Mixture Models for Hygrothermal Behavior of Phenolic Composites

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.; Stokes, Eric H.

    1999-01-01

    Theoretical models are proposed to describe the interaction of water with phenolic polymer. The theoretical models involve the study of the flow of a viscous fluid through a porous media and the thermodynamic theory of mixtures. From the theory, a set of mathematical relations are developed to simulate the effect of water on the thermostructural response of phenolic composites. The expressions are applied to simulate the measured effect of water in a series of experiments conducted on carbon phenolic composites.

  2. Composites and blends from biobased materials

    SciTech Connect

    Kelley, S.S.

    1995-05-01

    The program is focused on the development of composites and blends from biobased materials to use as membranes, high value plastics, and lightweight composites. Biobased materials include: cellulose derivative microporous materials, cellulose derivative copolymers, and cellulose derivative blends. This year`s research focused on developing an improved understanding of the molecular features that cellulose based materials with improved properties for gas separation applications. Novel cellulose ester membrane composites have been developed and are being evaluated under a collaborative research agreement with Dow Chemicals Company.

  3. In vitro behavior of a porous TiO2/perlite composite and its surface modification with fibronectin.

    PubMed

    von Walter, Matthias; Rüger, Matthias; Ragoss, Christian; Steffens, Guy C M; Hollander, Dirk A; Paar, Othmar; Maier, Horst R; Jahnen-Dechent, Willi; Bosserhoff, Anja K; Erli, Hans-Josef

    2005-06-01

    In this study, we introduce a porous composite material, termed "Ecopore", and describe in vitro investigation of the material and its modification with fibronectin. The material is a sintered compound of rutile TiO2 and the volcanic silicate perlite with a macrostructure of interconnecting pores. It is both inexpensive and easy to manufacture. We first investigated Ecopore for corrosion and leaching of elements in physiological saline. The corrosion supernatants did not contain critical concentrations of toxic trace elements. In an in vitro model, human primary osteoblasts (HOB) were cultured directly on Ecopore. HOB grew on the composite as well as on samples of its single constituents, TiO2 and perlite glass, and remained vital, but cellular spreading was less than on tissue culture plastic. The pro-inflammatory cytokines IL-1 and TNF-alpha were below detection limits in HOB culture supernatants, whereas IL-6 was detectable on a low level. To enhance cellular attachment and growth, the surface of the composite was modified by etching, functionalization with aminosilane and coupling of fibronectin. This modification greatly enhanced the spreading of HOB, indicated by vital staining and Sodium 3'-[1-(phenylaminocarbonyl)-3,4-tetrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate (XTT) metabolism assays. HOB grew on the entire visible surface of porous fibronectin-modified composite, expressing alkaline phosphatase, a mature osteoblast marker. We conclude that Ecopore is non-toxic and sustains HOB growth, cellular spreading being improvable by coating with fibronectin. The composite may be usable in the field of bone substitution.

  4. Composite materials for biomedical applications: a review.

    PubMed

    Salernitano, E; Migliaresi, C

    2003-01-01

    The word "composite" refers to the combination, on a macroscopic scale, of two or more materials, different for composition, morphology and general physical properties. In many cases, and depending on the constituent properties, composites can be designed with a view to produce materials with properties tailored to fulfill specific chemical, physical or mechanical requirements. Therefore over the past 40 years the use of composites has progressively increased, and today composite materials have many different applications, i.e., aeronautic, automotive, naval, and so on. Consequently many composite biomaterials have recently been studied and tested for medical application. Some of them are currently commercialized for their advantages over traditional materials. Most human tissues such as bones, tendons, skin, ligaments, teeth, etc., are composites, made up of single constituents whose amount, distribution, morphology and properties determine the final behavior of the resulting tissue or organ. Man-made composites can, to some extent, be used to make prostheses able to mimic these biological tissues, to match their mechanical behavior and to restore the mechanical functions of the damaged tissue. Different types of composites that are already in use or are being investigated for various biomedical applications are presented in this paper. Specific advantages and critical issues of using composite biomaterials are also described (Journal of Applied Bio-materials & Biomechanics 2003; 1: 3-18).

  5. Synthesis of P(AM-co-MAA)/AEM composite microspheres with lichi-like surface structure using porous microgel as template.

    PubMed

    Yang, Juxiang; Hu, Daodao; Xue, Min; Yang, Xing

    2014-03-15

    The P(AM-co-MAA)/AEM composite microspheres with lichi-like structure were synthesized by the hydrolysis and condensation of 3-(trimethoxysilyl)-propyldimethyloctadecyl-ammonium chloride (AEM) located within porous poly(acrylamide-co-methylacrylic acid) (P(AM-co-MAA)) microgels in an ammonia water atmosphere. The morphology and composition of the composite microspheres were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectrometer (FI-IR), and X-ray photoelectron spectroscopy (XPS), respectively. The results indicated that the composite microspheres with lichi-like surface structure could be obtained by controlling the loaded amount of AEM, the hydrolysis-condensation time of AEM, and the cross-linking degree of the porous P(AM-co-MAA) microgels. On the basis of the results, the mechanism on the formation of the microspheres with lichi-like surface structure was proposed. The multiple factors play a role in the formation of the specific surface morphology. The pores of the porous microgels make AEM behavior localized; the migration of AEM along with solvent evaporation leads to the structural change; the hydrolysis-condensation of AEM brings the temporarily structural solidification; the surface tension of hydrophobic AEM in hydrophilic atmosphere induces AEM liquid membrane constriction. Although the mechanism is complicated, the method is very simple. Based on the analogous principle, other composite materials with lichi-like structure could be constructed by altering precursor and porous template. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Inclusion of thiazyl radicals in porous crystalline materials.

    PubMed

    Potts, Storm V; Barbour, Leonard J; Haynes, Delia A; Rawson, Jeremy M; Lloyd, Gareth O

    2011-08-24

    The incorporation of benzodithiazolyl (BDTA) and methylbenzodithiazolyl (MBDTA) radicals into porous hybrid frameworks via gas phase diffusion revealed that inclusion appeared selective for the MIL53(Al) framework against a range of other potential hosts. Both PXRD and EPR studies are consistent with retention of a π*-π* dimer motif for BDTA in MIL53(Al)@BDTA whereas MBDTA in MIL53(Al)@MBDTA appears to be monomeric. The guests are readily released by the addition of solvent (CH(2)Cl(2)).

  7. Flame-retardant composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1991-01-01

    The properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: VPSP/BMI, a blend of vinylpolystyryl pyridine and bismaleimide; BMI, a bismaleimide; and phenolic and PSP, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that VPSP/BMI with the graphite tape was the optimum design giving the lowest heat release rate.

  8. Synthetic vs Natural: Diatoms Bioderived Porous Materials for the Next Generation of Healthcare Nanodevices.

    PubMed

    Rea, Ilaria; Terracciano, Monica; De Stefano, Luca

    2017-02-01

    Nanostructured porous materials promise a next generation of innovative devices for healthcare and biomedical applications. The fabrication of such materials generally requires complex synthesis procedures, not always available in laboratories or sustainable in industries, and has adverse environmental impact. Nanosized porous materials can also be obtained from natural resources, which are an attractive alternative approach to man-made fabrication. Biogenic nanoporous silica from diatoms, and diatomaceous earths, constitutes largely available, low-cost reservoir of mesoporous nanodevices that can be engineered for theranostic applications, ranging from subcellular imaging to drug delivery. In this progress report, main experiences on nature-derived nanoparticles with healthcare and biomedical functionalities are reviewed and critically analyzed in search of a new collection of biocompatible porous nanomaterials.

  9. Investigation of Sintering Temperature on Attrition Resistance of Highly Porous Diatomite Based Material

    SciTech Connect

    Garderen, Noemie van; Clemens, Frank J.; Scharf, Dagobert; Graule, Thomas

    2010-05-30

    Highly porous diatomite based granulates with a diameter of 500 mum have been produced by an extrusion method. In order to investigate the relation between microstructure, phase composition and attrition resistance of the final product, the granulates were sintered between 800 and 1300 deg. C. Mean pore size of the granulates was evaluated by Hg-porosimetry. An increase of the pore size is observed in the range of 3.6 nm to 40 mum with increasing sintering temperature. Higher mean pore radii of 1.6 mum and 5.7 mum obtained by sintering at 800 and 1300 deg. C respectively. X-ray diffraction shows that mullite phase appears at 1100 deg. C due to the presence of clay. At 1100 deg. C diatomite (amorphous silicate) started to transform into alpha-cristobalite. Attrition resistance was determined by evaluating the amount of ground material passed through a sieve with a predefined mesh size. It was observed that a material sintered at high temperature leads to an increase of attrition resistance due to the decrease of total porosities and phase transformation. Due to the reason that attrition resistance significantly increased by sintering the granulates at higher temperature, a so called attrition resistance index was determined in order to compare all the different attrition resistance values. This attrition resistance index was determined by using the exponential component of the equation obtained from attrition resistance curves. It permits comparison of the attrition behaviour without a time influence.

  10. A mesomechanical analysis of the deformation and fracture in polycrystalline materials with ceramic porous coatings

    NASA Astrophysics Data System (ADS)

    Balokhonov, R. R.; Zinoviev, A. V.; Romanova, V. A.; Batukhtina, E. E.

    2015-10-01

    The special features inherent in the mesoscale mechanical behavior of a porous ceramic coating-steel substrate composite are investigated. Microstructure of the coated material is accounted for explicitly as initial conditions of a plane strain dynamic boundary-value problem solved by the finite difference method. Using a mechanical analogy method, a procedure for generating a uniform curvilinear finite difference computational mesh is developed to provide a more accurate description of the complex grain boundary geometry. A modified algorithm for generation of polycrystalline microstructure of the substrate is designed on the basis of the cellular automata method. The constitutive equations for a steel matrix incorporate an elastic-plastic model for a material subjected to isotropic hardening. The Hall-Petch relation is used to account for the effect of the grain size on the yield stress and strain hardening history. A brittle fracture model for a ceramic coating relying on the Huber criterion is employed. The model allows for crack nucleation in the regions of triaxial tension. The complex inhomogeneous stress and plastic strain patterns are shown to be due to the presence of interfaces of three types: coating-substrate interface, grain boundaries, and pore surfaces.

  11. Systems and strippable coatings for decontaminating structures that include porous material

    DOEpatents

    Fox, Robert V [Idaho Falls, ID; Avci, Recep [Bozeman, MT; Groenewold, Gary S [Idaho Falls, ID

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  12. New textile composite materials development, production, application

    NASA Technical Reports Server (NTRS)

    Mikhailov, Petr Y.

    1993-01-01

    New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

  13. Polymer Matrix Composite Material Oxygen Compatibility

    NASA Technical Reports Server (NTRS)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  14. Center for Cement Composite Materials

    DTIC Science & Technology

    1990-01-31

    displacement plots. I I 21 Table 6. Polymers used in the study of organoceramics. U I Polymer Abbreviation Structure II all Poly ( vinyl alcohol ) PVA...using commercial Portland cements and a poly ( vinyl U aclohol)/acetate copolymer. Laminations in the cured composites limited flexural strengths to...cement and partially hydrolysed 3 polyvinyl alcohol was investigated as a function of relative humidity. Unmodified and crosslinked compositions were

  15. Composite Materials for Low-Temperature Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  16. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  17. Potential of Lattice Boltzmann Method to Determine the Ohmic Resistance in Porous Materials

    NASA Astrophysics Data System (ADS)

    Espinoza-Andaluz, Mayken; Andersson, Martin; Sundén, Bengt

    2016-08-01

    The lattice Boltzmann method (LBM) is a suitable tool for solving transport phenomena that occur in gas- and liquid phases at different length scales, especially when complex geometries such as porous media are involved. However, investigations about applications of LBM in the solid electrical conducting material have not been carried out yet. Since in fuel cells (FCs) the multifunctional layers play an important role during the energy conversion process, and such layers consist of porous material, the ohmic resistance of porous materials represents a crucial characteristic to be studied to predict the internal ohmic losses. The purpose of this paper is to show the feasibility of LBM to determine the ohmic resistance of electrical conducting materials whose dimensions are modified considering the crosssectional area and length. Characteristics, limitations and recommendations of LBM applied to solid electrical conducting materials calculating the ohmic resistance are presented considering the coupling of the methodology with the Ohm's Law. Additionally, the behavior of the ohmic resistance for a given porous material is presented.

  18. Combinatorial synthesis of inorganic or composite materials

    DOEpatents

    Goldwasser, Isy; Ross, Debra A.; Schultz, Peter G.; Xiang, Xiao-Dong; Briceno, Gabriel; Sun, Xian-Dong; Wang, Kai-An

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  19. Coordination Covalent Frameworks: A New Route for Synthesis and Expansion of Functional Porous Materials

    SciTech Connect

    Elsaidi, Sameh K.; Mohamed, Mona H.; Loring, John S.; McGrail, Bernard. Pete; Thallapally, Praveen K.

    2016-10-26

    The synthetic approaches for fine-tuning the structural properties of coordination polymers or metal organic frameworks have exponentially grown during the last decade. This is due to the control over the properties of the resulting structures such as stability, pore size, pore chemis-try and surface area for myriad possible applications. Herein, we present a new class of porous materials called Covalent Coordination Frameworks (CCFs) that were designed and effectively synthesized using a two-step reticular chemistry approach. During the first step, trigonal prismatic molecular building block was isolated using 4-aminobenazoic acid and Cr (III) salt, subsequently in the second step the polymerization of the isolated molecular building blocks (MBBs) takes place by the formation of strong covalent bonds where small organic molecules can connect the MBBs forming extended porous CCF materials. All the isolated CCFs were found to be permanently porous while the discrete MBB were non-porous. This approach would inevitably open a feasible path for the applications of reticular chemistry and the synthesis of novel porous materials with various topologies under ambient conditions using simple organic molecules and versatile MBBs with different functionalities which would not be possible using the traditional one step approach

  20. A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow

    NASA Astrophysics Data System (ADS)

    Mosthaf, K.; Baber, K.; Flemisch, B.; Helmig, R.; Leijnse, A.; Rybak, I.; Wohlmuth, B.

    2011-10-01

    Domains composed of a porous part and an adjacent free-flow region are of special interest in many fields of application. So far, the coupling of free flow with porous-media flow has been considered only for single-phase systems. Here we extend this classical concept to two-component nonisothermal flow with two phases inside the porous medium and one phase in the free-flow region. The mathematical modeling of flow and transport phenomena in porous media is often based on Darcy's law, whereas in free-flow regions the (Navier-) -Stokes equations are used. In this paper, we give a detailed description of the employed subdomain models. The main contribution is the developed coupling concept, which is able to deal with compositional (miscible) flow and a two-phase system in the porous medium. It is based on the continuity of fluxes and the assumption of thermodynamic equilibrium, and uses the Beavers-Joseph-Saffman condition. The phenomenological explanations leading to a simple, solvable model, which accounts for the physics at the interface, are laid out in detail. Our model can account for evaporation and condensation processes at the interface and is used to model evaporation from soil influenced by a wind field in a first numerical example.

  1. Macromolecular coatings on porous silicon: Applications in drug delivery, biosensing, and composites

    NASA Astrophysics Data System (ADS)

    Perelman, Loren Avery

    Two classes of macromolecules, proteins and polymers, are coated onto porous Si films in a variety of geometries in order to study fundamental behaviors of these coatings and their potential device applications. The unique preparation control that porous Si allows in both nano-morphology and surface functionalization provides the means for the coatings. In chapter two, a drug delivery platform using bovine serum albumin (BSA) protein as a stimuli-responsive capping layer on porous Si is described and characterized. It was found that the surface chemistry of the porous Si film has a profound influence on both drug loading capacity and drug release kinetics, providing for control over these drug release variables. The BSA is observed to act as a pH-responsive trigger for the release of vancomycin from the porous Si film. The drug is safely stored in the porous matrix at pH 4 and is released after triggering with pH 7.4 phosphate buffered saline. Chapter three discusses a porous SiO2-based biosensor that is prepared by oxidizing a porous Si film, adsorbing BSA to the surface as a coating, and functionalizing the protein with specific target probes for vancomycin. The BSA was observed to adsorb strongly to the surface, resisting desoprtion in both phosphate buffered saline and triton-X buffer solutions. Quantitative binding information for the tripeptide Ac-L-Lysine-D-Alanine-D-Alanine and vancomycin is determined using the optical properties of the porous Si as a transduction methodology. Chapters four and five describe the fabrication of thermoresponsive and multifunctional nanohybrids, respectively, using stimuli-responsive hydrogels to infiltrate and coat oxidized porous Si films. The optical properties of the porous Si films are used to study the response of the hydrogel phase of the hybrids to a variety of stimuli. The optical changes correspond to previously-described physical changes in the hydrogel phase, and it was determined that this platform provides a

  2. IMPACT OF COMPOSITION AND HEAT TREATMENT ON PORE SIZE IN POROUS WALLED HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2007-12-04

    The Savannah River National Laboratory (SRNL) developed a new geometric form: hollow glass microspheres (HGMs), with unique porous walls. The new geometric form combines the existing technology of HGMs with basic glass science knowledge in the realm of glass-in-glass phase separation. Conceptually, the development of a HGM with porous walls (referred to as a PWHGM) provides a unique system in which various media or filling agents can be incorporated into the PWHGM (via transport through the porous walls) and ultimately has the capacity to serve as a functional delivery system in various industrial applications. Applications of these types of systems could range from hydrogen storage, molecular sieves, drug and bioactive delivery systems, to environmental, chemical and biological indicators, relevant to Energy, Environmental Processing and Homeland Security fields. As a specific example, previous studies at SRNL have introduced materials capable of hydrogen storage (as well as other materials) into the interior of the PWHGMs. The goal of this project was to determine if the microstructure (i.e., pore size and pore size distribution) of a PWHGM could be altered or tailored by varying composition and/or heat treatment (time and/or temperature) conditions. The ability to tailor the microstructure through composition or heat treatments could provide the opportunity to design the PWHGM system to accommodate different additives or fill agents. To meet this objective, HGMs of various alkali borosilicate compositions were fabricated using a flame forming apparatus installed at the Aiken County Technical Laboratory (ACTL). HGMs were treated under various heat treatment conditions to induce and/or enhance glass in glass phase separation. Heat treatment temperatures ranged from 580 C to 620 C, while heat treatment times were either 8 or 24 hours. Of the two primary variables assessed in this study, heat treatment temperature was determined to be most effective in changing the

  3. Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Jiu-Xing, Jiang; Xu-Zhi, Zhang; Zhen-Hua, Wang; Jian-Jun, Xu

    2016-04-01

    As a supercapacitor electrode, the graphene/polyaniline (PANI) composite sponge with a three-dimensional (3D) porous network structure is synthesized by a simple three-step method. The three steps include an in situ polymerization, freeze-drying and reduction by hydrazine vapor. The prepared sponge has a large specific surface area and porous network structure, so it is in favor of spreading the electrolyte ion and increasing the charge transfer efficiency of the system. The process of preparation is simple, easy to operate and low cost. The composite sponge shows better electrochemical performance than the pure individual graphene sponge while PANI cannot keep the shape of a sponge. Such a composite sponge exhibits specific capacitances of 487 F·g-1 at 2 mV/s compared to pristine PANI of 397 F·g-1. Project supported by the Natural Science Foundation from Harbin University of Science and Technology and Harbin Institute of Technology.

  4. Spectral representation theory of graded composite materials

    NASA Astrophysics Data System (ADS)

    Chan, K. L.; Kwok, C. M.; Yu, K. W.

    2008-03-01

    In graded composite materials, the physical properties can vary continuously in space and it may give different physical phenomena when compared with homogeneous materials. The Bergman-Milton spectral representation is a rigorous mathematical formalism to express the effective dielectric constant of nongraded composite materials [1]. In this study, we consider a material (rather than microsture [2]) graded composites, and generalize the Bergman-Milton spectral representation to extract the spectral density function for the effective dielectric constant of this graded composite material in the frequency domain [3]. Analytic and numerical solution will be presented for graded films and graded spheres. [1] D. J. Bergman, Phys. Rev. B 14, 4304 (1976). [2] J. P. Huang, K. W. Yu, G. Q. Gu, M. Karttunen, Phys. Rev. E 67, 051405 (2003). [3] L. Gao, J. P. Huang, K.W. Yu, Eur. Phys. J. B 36, 475 (2003).

  5. Composite Materials for Optical Limiting

    DTIC Science & Technology

    2001-04-01

    This project funded two principle investigators to explore materials for optical limiting . Dr. Charles Spangle’s research group synthesized organic...and dendritic materials designed to optically limit via reverse saturable absorption (RSA) via photoinduced formation of charged states. Dr. Lee

  6. Production and characterization of a composite insulation material from waste polyethylene teraphtalates

    SciTech Connect

    Kurtulmus, Erhan; Karaboyacı, Mustafa; Yigitarslan, Sibel

    2013-12-16

    The pollution of polyethylene teraphtalate (PET) is in huge amounts due to the most widely usage as a packaging material in several industries. Regional pumice has several desirable characteristics such as porous structure, low-cost and light-weight. Considering the requirements approved by the Ministry of Public Works on isolation, composite insulation material consisting of PET and pumice was studied. Sheets of composites differing both in particle size of pumice and composition of polymer were produced by hot-molding technique. Characterization of new composite material was achieved by measuring its weight, density, flammability, endurance against both to common acids and bases, and to a force applied, heat insulation and water adsorption capacity. The results of the study showed that produced composite material is an alternative building material due to its desirable characteristics; low weight, capability of low heat conduction.

  7. Production and characterization of a composite insulation material from waste polyethylene teraphtalates

    NASA Astrophysics Data System (ADS)

    Kurtulmus, Erhan; Karaboyacı, Mustafa; Yigitarslan, Sibel

    2013-12-01

    The pollution of polyethylene teraphtalate (PET) is in huge amounts due to the most widely usage as a packaging material in several industries. Regional pumice has several desirable characteristics such as porous structure, low-cost and light-weight. Considering the requirements approved by the Ministry of Public Works on isolation, composite insulation material consisting of PET and pumice was studied. Sheets of composites differing both in particle size of pumice and composition of polymer were produced by hot-molding technique. Characterization of new composite material was achieved by measuring its weight, density, flammability, endurance against both to common acids and bases, and to a force applied, heat insulation and water adsorption capacity. The results of the study showed that produced composite material is an alternative building material due to its desirable characteristics; low weight, capability of low heat conduction.

  8. Laser-induced growth of nanocrystals embedded in porous materials

    NASA Astrophysics Data System (ADS)

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed

    2013-06-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  9. Laser-induced growth of nanocrystals embedded in porous materials.

    PubMed

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed

    2013-06-06

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  10. Laser-induced growth of nanocrystals embedded in porous materials

    PubMed Central

    2013-01-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  11. Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Sk, Md Moniruzzaman; Yue, Chee Yoon; Ghosh, Kalyan; Jena, Rajeeb Kumar

    2016-03-01

    Recently, porous nanostructured transition metal oxides with excellent electrochemical performance have become a new class of energy storage materials for supercapacitors. The ever-growing global demand of electrically powered devices makes it imperative to develop renewable, efficient and reliable electrochemical energy storage devices. This review article focuses on the Ni based transition metal oxides and their composite electrode materials including carbons, metals and transition metal oxides for supercapacitor applications, providing an overview on the charge mechanisms, methodologies and nanostructures discovered in recent years, and latest research findings. The NiO and their composites possess higher reversible capacity, good structural stability, and have been studied for usage as novel electrode materials for supercapacitors. Their fine-tuned physical and chemical properties make them ideal candidates for supercapacitor applications as they possess higher accessible electroactive sites, which will provide both high power density and also high energy density. Moreover, synergistic effects can be derived from the constituent materials of the NiO based composite electrodes. The potential problems like device fabrication, measurement techniques, and future prospects of utilizing these materials as supercapacitor electrodes highlighting the fundamental understanding of the relationship between electrochemical and structural performances are also discussed.

  12. Ceramic composites: Enabling aerospace materials

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  13. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1980-08-01

    projected composite systems are elastomeric-shelled, liquid-filled * microcapsules . Experiments continued on the interfacial polymerization process with...filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules achieved. Needs identified are...consists of liquid-filled, elastomeric-shelled microcapsules held together to form a deformable mass; this is to simulate the semi-liquid cellular structure

  14. In vitro antimicrobial properties of silver-polysaccharide coatings on porous fiber-reinforced composites for bone implants.

    PubMed

    Nganga, Sara; Travan, Andrea; Marsich, Eleonora; Donati, Ivan; Söderling, Eva; Moritz, Niko; Paoletti, Sergio; Vallittu, Pekka K

    2013-12-01

    Biostable fiber-reinforced composite (FRC) implants prepared from bisphenol-A-dimethacrylate and triethyleneglycoldimethacrylate resin reinforced with E-glass fibers have been successfully used in cranial reconstructions in 15 patients. Recently, porous FRC structures were suggested as potential implant materials. Compared with smooth surface, porous surface allows implant incorporation via bone ingrowth, but is also a subject to bacterial attachment. Non-cytotoxic silver-polysaccharide nanocomposite coatings may provide a way to decrease the risk of bacterial contamination of porous FRC structures. This study is focused on the in vitro characterization of the effect porosity on the antimicrobial efficiency of the coatings against Staphylococcus aureus and Pseudomonas aeruginosa by a series of microbiological tests (initial adhesion, antimicrobial efficacy, and biofilm formation). Characterization included confocal laser scanning microscopy and scanning electron microscopy. The effect of porosity on the initial attachment of S. aureus was pronounced, but in the case of P. aeruginosa the effect was negligible. There were no significant effects of the coatings on the initial bacterial attachment. In the antimicrobial efficacy test, the coatings were potent against both strains regardless of the sample morphology. In the biofilm tests, there were no clear effects either of morphology or of the coating. Further coating development is foreseen to achieve a longer-term antimicrobial effect to inhibiting bacterial implant colonization.

  15. Bone attachment to glass-fibre-reinforced composite implant with porous surface.

    PubMed

    Mattila, R H; Laurila, P; Rekola, J; Gunn, J; Lassila, L V J; Mäntylä, T; Aho, A J; Vallittu, P K

    2009-06-01

    A method has recently been developed for producing fibre-reinforced composites (FRC) with porous surfaces, intended for use as load-bearing orthopaedic implants. This study focuses on evaluation of the bone-bonding behaviour of FRC implants. Three types of cylindrical implants, i.e. FRC implants with a porous surface, solid polymethyl methacrylate (PMMA) implants and titanium (Ti) implants, were inserted in a transverse direction into the intercondular trabeculous bone area of distal femurs and proximal tibias of New Zealand White rabbits. Animals were sacrificed at 3, 6 and 12 weeks post operation, and push-out tests (n=5-6 per implant type per time point) were then carried out. At 12 weeks the shear force at the porous FRC-bone interface was significantly higher (283.3+/-55.3N) than the shear force at interfaces of solid PMMA/bone (14.4+/-11.0 N; p<0.001) and Ti/bone (130.6+/-22.2N; p=0.001). Histological observation revealed new bone growth into the porous surface structure of FRC implants. Solid PMMA and Ti implants were encapsulated mostly with fibrous connective tissue. Finite element analysis (FEA) revealed that porous FRC implants had mechanical properties which could be tailored to smooth the shear stress distribution at the bone-implant interface and reduce the stress-shielding effect.

  16. Hierarchical porous structured zeolite composite for removal of ionic contaminants from waste streams and effective encapsulation of hazardous waste.

    PubMed

    Al-Jubouri, Sama M; Curry, Nicholas A; Holmes, Stuart M

    2016-12-15

    A hierarchical structured composite made from clinoptilolite supported on date stones carbon is synthesized using two techniques. The composites are manufactured by fixing a natural zeolite (clinoptilolite) to the porous surface of date stones carbon or by direct hydrothermal synthesis on to the surface to provide a supported high surface area ion-exchange material for metal ion removal from aqueous streams. The fixing of the clinoptilolite is achieved using sucrose and citric acid as a binder. The composites and pure clinoptilolite were compared to test the efficacy for the removal of Sr(2+) ions from an aqueous phase. The encapsulation of the Sr(2+) using either vitrification or a geo-polymer addition was tested to ensure that the hazardous waste can be made safe for disposal. The hierarchical structured composites were shown to achieve a higher ion exchange capacity per gram of zeolite than the pure clinoptilolite (65mg/g for the pure natural clinoptilolite and 72mg/g for the pure synthesized clinoptilolite) with the synthesized composite (160mg/g) having higher capacity than the natural clinoptilolite composite (95mg/g). The rate at which the equilibria were established followed the same trend showing the composite structure facilitates diffusion to the ion-exchange sites in the zeolite.

  17. Freeze-drying of “pearl milk tea”: A general strategy for controllable synthesis of porous materials

    NASA Astrophysics Data System (ADS)

    Zhou, Yingke; Tian, Xiaohui; Wang, Pengcheng; Hu, Min; Du, Guodong

    2016-05-01

    Porous materials have been widely used in many fields, but the large-scale synthesis of materials with controlled pore sizes, pore volumes, and wall thicknesses remains a considerable challenge. Thus, the controllable synthesis of porous materials is of key general importance. Herein, we demonstrate the “pearl milk tea” freeze-drying method to form porous materials with controllable pore characteristics, which is realized by rapidly freezing the uniformly distributed template-containing precursor solution, followed by freeze-drying and suitable calcination. This general and convenient method has been successfully applied to synthesize various porous phosphate and oxide materials using different templates. The method is promising for the development of tunable porous materials for numerous applications of energy, environment, and catalysis, etc.

  18. Thermography as an evaluation tool for studying the movement of water through various porous materials: capillary rise and evaporation

    NASA Astrophysics Data System (ADS)

    Moropoulou, Antonia; Avdelidis, Nicolas P.; Theoulakis, Panayiotis; Koui, Maria

    2001-03-01

    In this work, infrared thermography is used for detecting the movement of water - moisture in various porous materials in the laboratory, with the intention of validating the examination of real scale material systems in situ. Different materials have been subjected to capillary rise tests and to cycles of evaporation with water under controlled environmental conditions (Relative Humidity and Temperature). Material samples of a reference porous stone, of three basic categories of repair mortars, of consolidated porous stones and of simulating prototype porous materials were examined in lab. Furthermore, systems like historic masonries, were examined in situ, more specifically the Venetian Fortification in Heraklion, Crete and the Medieval Fortifications in Rhodes, undergoing severe alveolation in the aggressive marine atmosphere of the Aegean. Infrared thermography has been shown to be an effective technique for verifying relations between moisture and environmental conditions. Hence, infrared thermography can be used as an evaluation tool for studying the movement of water through porous materials - water absorption and evaporation.

  19. Freeze-drying of “pearl milk tea”: A general strategy for controllable synthesis of porous materials

    PubMed Central

    Zhou, Yingke; Tian, Xiaohui; Wang, Pengcheng; Hu, Min; Du, Guodong

    2016-01-01

    Porous materials have been widely used in many fields, but the large-scale synthesis of materials with controlled pore sizes, pore volumes, and wall thicknesses remains a considerable challenge. Thus, the controllable synthesis of porous materials is of key general importance. Herein, we demonstrate the “pearl milk tea” freeze-drying method to form porous materials with controllable pore characteristics, which is realized by rapidly freezing the uniformly distributed template-containing precursor solution, followed by freeze-drying and suitable calcination. This general and convenient method has been successfully applied to synthesize various porous phosphate and oxide materials using different templates. The method is promising for the development of tunable porous materials for numerous applications of energy, environment, and catalysis, etc. PMID:27193866

  20. Effect of crystallization time on the physico-chemical and catalytic properties of the hierarchical porous materials

    SciTech Connect

    Xu, Ling; Ma, Yuanyuan; Ding, Wenli; Guan, Jingqi; Wu, Shujie; Kan, Qiubin

    2010-09-15

    A series of hierarchical porous materials were prepared by a dual template method. The effect of different crystallization time on the channel architecture, morphology, acid performance of the hierarchical porous materials was investigated. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, nitrogen adsorption and {sup 27}Al nuclear magnetic resonance were performed to obtain information on the physico-chemical properties of the materials. It was shown that the change in crystallization time could influence the structure/texture and surface acid properties of the hierarchical porous materials. In addition, alkylation of phenol with tert-butanol reaction was carried out to investigate the catalytic performance of the hierarchical porous materials. The results showed that the catalytic activity of the hierarchical porous materials and the selectivity to the bulkly product 2,4-di-tert-butyl-phenol decreased with processing time.