Science.gov

Sample records for porous matrices constituted

  1. Microplane constitutive model for porous isotropic rocks

    NASA Astrophysics Data System (ADS)

    Baant, Zdenk P.; Zi, Goangseup

    2003-01-01

    The paper deals with constitutive modelling of contiguous rock located between rock joints. A fully explicit kinematically constrained microplane-type constitutive model for hardening and softening non-linear triaxial behaviour of isotropic porous rock is developed. The microplane framework, in which the constitutive relation is expressed in terms of stress and strain vectors rather than tensors, makes it possible to model various microstructural physical mechanisms associated with oriented internal surfaces, such as cracking, slip, friction and splitting of a particular orientation. Formulation of the constitutive relation is facilitated by the fact that it is decoupled from the tensorial invariance restrictions, which are satisfied automatically. In its basic features, the present model is similar to the recently developed microplane model M4 for concrete, but there are significant improvements and modifications. They include a realistic simulation of (1) the effects of pore collapse on the volume changes during triaxial loading and on the reduction of frictional strength, (2) recovery of frictional strength during shearing, and (3) the shear-enhanced compaction in triaxial tests, manifested by a deviation from the hydrostatic stress-strain curve. The model is calibrated by optimal fitting of extensive triaxial test data for Salem limestone, and good fits are demonstrated. Although these data do not cover the entire range of behaviour, credence in broad capabilities of the model is lend by its similarity to model M4 for concrete - an artificial rock. The model is intended for large explicit finite-element programs.

  2. Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material.

    PubMed

    Nayak, Sunita; Kundu, S C

    2014-06-01

    In this study, porous three-dimensional (3D) hydrogel matrices are fabricated composed of silk cocoon protein sericin of non-mulberry silkworm Antheraea mylitta and carboxymethyl cellulose. The matrices are prepared via freeze-drying technique followed by dual cross-linking with glutaraldehyde and aluminum chloride. The microstructure of the hydrogel matrices is assessed using scanning electron microscopy and biophysical characterization are carried out using Fourier transform infrared spectroscopy and X-ray diffraction. The transforming growth factor β1 release from the cross-linked matrices as a growth factor is evaluated by immunosorbent assay. Live dead assay and 3-[4,5-dimethylthiazolyl-2]-2,5-diphenyl tetrazolium bromide assay show no cytotoxicity of blended matrices toward human keratinocytes. The matrices support the cell attachment and proliferation of human keratinocytes as observed through scanning electron microscope and confocal images. Gelatin zymography demonstrates the low levels of matrix metalloproteinase 2 (MMP-2) and insignificant amount of MMP-9 in the culture media of cell seeded matrices. Low inflammatory response of the matrices is indicated through tumor necrosis factor alpha release assay. The results indicate that the fabricated matrices constitute 3D cell-interactive environment for tissue engineering applications and its potential use as a future cellular biological wound dressing material.

  3. NMR studies of metallic tin confined within porous matrices

    SciTech Connect

    Charnaya, E. V.; Tien, Cheng; Lee, M. K.; Kumzerov, Yu. A.

    2007-04-01

    {sup 119}Sn NMR studies were carried out for metallic tin confined within synthetic opal and porous glass. Tin was embedded into nanoporous matrices in the melted state under pressure. The Knight shift for liquid confined tin was found to decrease with decreasing pore size. Correlations between NMR line shapes, Knight shift, and pore filling were observed. The melting and freezing phase transitions of tin under confinement were studied through temperature dependences of NMR signals upon warming and cooling. Melting of tin within the opal matrix agreed well with the liquid skin model suggested for small isolated particles. The influence of the pore filling on the melting process was shown.

  4. Immobilization of plutonium from solutions on porous matrices by the method of high temperature sorption

    SciTech Connect

    Nardova, A.K.; Filippov, E.A.; Glagolenko, Y.B.

    1996-05-01

    This report presents the results of investigations of plutonium immobilization from solutions on inorganic matrices with the purpose of producing a solid waste form. High-temperature sorption is described which entails the adsorption of radionuclides from solutions on porous, inorganic matrices, as for example silica gel. The solution is brought to a boil with additional thermal process (calcination) of the saturated granules.

  5. Sulfur cathode hosted in porous organic polymeric matrices

    SciTech Connect

    Zhang, Zhengcheng; Weng, Wei; Yuan, Shengwen; Amine, Khalil

    2016-02-09

    A composite material includes a porous organic polymer and an electrochemically active material, wherein the porous organic polymer contains a plurality of pores having a diameter of from about 0.1 nm to about 100 nm, and the electrochemically active material is disposed within the pores.

  6. Preparation, characterization, and in vivo evaluation of valsartan porous matrices using emulsion solvent evaporation technique

    PubMed Central

    Babu, Govada Kishore; Babu, Puttagunta Srinivasa; Khagga, Mukkanti

    2016-01-01

    Introduction: Valsartan is a type II Biopharmaceutics Classification System (BCS) classified drug. The poor aqueous solubility restricts its use in developing sustained or controlled release systems for the treatment of chronic hypertensive conditions. The present investigation was conducted with an objective to formulate porous matrices (PMs) of valsartan in order to enhance aqueous solubility. Materials and Methods: Polyvinylpyrrolidone (PVP) K30 and poloxamer 407 were used as hydrophilic carriers; hexane was used as a pore-forming agent, ethanol was used as a solvent, and tween 20 was used as an emulgent. The prepared porous matrices were characterized and based on the maximum slope obtained from the Washburn method and other characterization results; the drug PVP K30 (1:1.5) was selected and further evaluated in vivo by the rat gut method. Results: The prepared porous matrices are white, free-flowing powders. Among prepared formulations drug PVP K30 (1:1.5) showed maximum Washburn slope of 0.0103. The mean particle size was found to be 0.82 μ and D50 (median) value was found to be 0.55 μ. The scanning of particles at various magnifications by scanning electron microscopy (SEM) analysis revealed that the method had effectively induced porosity. The Q value of valsartan from porous matrices was observed at 20 min with a first order regression value of 0.917. The calculated difference factor (F1) when compared with pure valsartan was observed to be 63.32%. From the values obtained, it was evident that the method amplifies the percentage of drug dissolution between sixfold and eightfold when compared to pure drug. From the absorption studies by the rat gut method, the absorption of porous matrices increased threefold. Conclusion: Porous matrices of valsartan: PVP K30 (1:1.5 ratio) hold promise for the enhancement of solubility and consecutive formulation of controlled release systems even with poorly soluble drugs. PMID:27606260

  7. Advances in Determining Soil Matric Potential Using an Engineered Porous Ceramic and Dielectric Permittivity

    NASA Astrophysics Data System (ADS)

    Cobos, D. R.; Campbell, C. S.; Campbell, G. S.

    2007-12-01

    Soil water potential is a key parameter for determining water availability for plant growth, water flow, and soil stability. Although an in situ measurement of matric potential has been the focus of considerable research over the years, existing solutions still have many draw backs such as high maintenance, limited longevity, individual calibration requirements, high cost, and small measurement range. The objective of this research was to develop a sensor that could be used in the field to accurately measure soil matric potential without the limitations noted above. The sensor, which consisted of a dielectric sensor sandwiched between porous ceramic, was tested over a range soil types, electrical conductivties, and temperatures to calibrate and characterize its output. Data show consistent calibration curves between sensor output and actual soil matric potential over a variety of soil textures and electrical conductivities. Although temperature showed an effect on sensor output, it was low compared to overall sensor output. Likewise, salt effects were not visible in saturated matrices up to 10 dS/m. Data suggest the sensor will be an effective and robust tool to determine in situ matric potential.

  8. A constitutive model of porous SMAs considering tensile-compressive asymmetry behaviors.

    PubMed

    Liu, Bingfei; Dui, Guansuo; Xie, Benming; Xue, Lijun

    2014-04-01

    A constitutive model of the macroscopic behaviors of porous shape memory alloys (SMA) is developed in this work. A yield function for porous SMAs considering both the effect of hydrostatic stress and the tensile-compressive asymmetry is proposed. Combining the constitutive model of dense SMAs and the macroscale and microscale analysis, the evolution equation for the overall transformation strain is then derived. Examples for the response of both dense SMA and porous Ni-Ti SMA subjected to uniaxial tension and compression loads are supplied. Good agreement between the numerical prediction results and the published experimental data is observed. Numerical result shows that the yielding stresses, loop width and length, strain-hardening behaviors of porous SMAs under pure tensile and pure compressive are different. Importantly, the transformation initiation stress is much closer to the experiment result than simulated by Zhao et al. (2005).

  9. Numerical simulation on forced convection heat transfer in porous media using Gibson-Ashby constitutive model

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Jia, P. Y.; Wang, Y. S.; Jiang, L.

    2010-03-01

    In this article, using Gibson-Ashby constitutive model, we suggest a new method for numerical investigation of forced convection heat transfer in porous foam metal, and try to consolidate the study for mechanical property and that for thermal characteristic. By available experimental data, we simulated to two cases, namely as the transfer in porous media for diameter is 0.6 mm and porosity is 0.402, and for diameter is 1.6 mm and porosity is 0.462. The result, from our constitutive model for single forced convection heat transfer, corresponds well with the experimental data. As for pressure drop prediction in porous is in good agreement with experiment, and the error is only 5% to 10%, but for transfer is less accurate, the error is about 20%, which is acceptable in practice. So it is done that constitutive model is used to simulate the transfer property.

  10. Porous media matric potential and water content measurements during parabolic flight.

    PubMed

    Norikane, Joey H; Jones, Scott B; Steinberg, Susan L; Levine, Howard G; Or, Dani

    2005-01-01

    Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.

  11. Porous media matric potential and water content measurements during parabolic flight

    NASA Technical Reports Server (NTRS)

    Norikane, Joey H.; Jones, Scott B.; Steinberg, Susan L.; Levine, Howard G.; Or, Dani

    2005-01-01

    Control of water and air in the root zone of plants remains a challenge in the microgravity environment of space. Due to limited flight opportunities, research aimed at resolving microgravity porous media fluid dynamics must often be conducted on Earth. The NASA KC-135 reduced gravity flight program offers an opportunity for Earth-based researchers to study physical processes in a variable gravity environment. The objectives of this study were to obtain measurements of water content and matric potential during the parabolic profile flown by the KC-135 aircraft. The flight profile provided 20-25 s of microgravity at the top of the parabola, while pulling 1.8 g at the bottom. The soil moisture sensors (Temperature and Moisture Acquisition System: Orbital Technologies, Madison, WI) used a heat-pulse method to indirectly estimate water content from heat dissipation. Tensiometers were constructed using a stainless steel porous cup with a pressure transducer and were used to measure the matric potential of the medium. The two types of sensors were placed at different depths in a substrate compartment filled with 1-2 mm Turface (calcined clay). The ability of the heat-pulse sensors to monitor overall changes in water content in the substrate compartment decreased with water content. Differences in measured water content data recorded at 0, 1, and 1.8 g were not significant. Tensiometer readings tracked pressure differences due to the hydrostatic force changes with variable gravity. The readings may have been affected by changes in cabin air pressure that occurred during each parabola. Tensiometer porous membrane conductivity (function of pore size) and fluid volume both influence response time. Porous media sample height and water content influence time-to-equilibrium, where shorter samples and higher water content achieve faster equilibrium. Further testing is needed to develop these sensors for space flight applications.

  12. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.

    PubMed

    Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S

    2015-02-01

    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings.

  13. 3-D Numerical Simulation of Hydrostatic Tests of Porous Rocks Using Adapted Constitutive Model

    NASA Astrophysics Data System (ADS)

    Chemenda, A. I.; Daniel, M.

    2014-12-01

    The high complexity and poor knowledge of the constitutive properties of porous rocks are principal obstacles for the modeling of their deformation. Normally, the constitutive lows are to be derived from the experimental data (nominal strains and stresses). They are known, however, to be sensitive to the mechanical instabilities within the rock specimen and the boundary (notably friction) conditions at its ends. To elucidate the impact of these conditions on the measured mechanical response we use 3-D finite-difference simulations of experimental tests. Modeling of hydrostatic tests was chosen because it does not typically involve deformation instabilities. The ends of the cylindrical 'rock sample' are in contact with the 'steel' elastic platens through the frictional interfaces. The whole system is subjected to a normal stress Pc applied to the external model surface. A new constitutive model of porous rocks with the cap-type yield function is used. This function is quadratic in the mean stress σm and depends on the inelastic strain γp in a way to generate strain softening at small σm and strain-hardening at high σm. The corresponding material parameters are defined from the experimental data and have clear interpretation in terms of the geometry of the yield surface. The constitutive model with this yield function and the Drucker-Prager plastic potential has been implemented in 3-D dynamic explicit code Flac3D. The results of an extensive set of numerical simulations at different model parameters will be presented. They show, in particular, that the shape of the 'numerical' hydrostats is very similar to that obtained from the experimental tests and that it is practically insensitive to the interface friction. On the other hand, the stress and strain fields within the specimen dramatically depend on this parameter. The inelastic deformation at the specimen's ends starts well before reaching the grain crushing pressure P* and evolves heterogeneously with Pc

  14. Effects of sodium chloride on constitutive relations in variably saturated porous media

    NASA Astrophysics Data System (ADS)

    Burns, Erick R.; Selker, John S.; Parlange, Jean-Yves; Guenther, Ronald B.

    2006-05-01

    Though many arid and contaminated sites have high salinity, prediction of effects of salinity on water movement in soils has been based on dilute solution approximations. Here a sensitivity analysis compares predicted liquid and vapor pressure in variably saturated porous media found using both the dilute approximations and a more general formulation that is valid for salt concentrations from zero to saturation. Sodium chloride (NaCl) was selected as a representative salt of environmental importance. Salt-mineral interactions are not included in the analysis. The dilute approximations neglect the salt-related changes in specific volume, which translate into nonnegligible pressure effects (i.e., error >1%) under dry conditions, being more pronounced for finer media. The analysis shows that for silt textures, the dilute approximation to the vapor pressure constitutive relation is acceptable for water contents θ > 5%, for sand θ > 1%, and for loam θ > 2%. When computing gradients of vapor pressure resulting from gradients in salt concentration, volume correction is necessary for silt for θ < 10%. Gradients in vapor pressure with changes in water content require volume correction, except under dilute conditions (i.e., <0.5 molal). For concentrated solutions in silt, salt effect errors are not acceptable for prediction of liquid pressure, nor are the effects on gradients negligible. Errors for sand and loam are only marginally better, with acceptable errors generally occurring only for ionic strengths of less than 1 molal. An example of use of the constitutive relations to plot results from experiments is provided to illustrate how the theory may be used to determine which thermodynamic corrections must be incorporated into analyses of the experimental results. Here the volumetric effects of the salt on vapor depression were negligible, though volumetric effects may be nonnegligible for computation of gradients of both vapor and liquid pressures. The method of

  15. Theoretical modeling of 2D porous matrices with tunable architecture: From cruciform molecular building blocks to enantioselective adsorbents

    NASA Astrophysics Data System (ADS)

    Kasperski, Adam; Rżysko, Wojciech; Szabelski, Paweł

    2016-12-01

    The ability of capturing guest molecules in a selective way is one of desirable properties of modern structured adsorbents. This refers to a wide class of guest molecules, especially to those which are chiral and whose enantiomers are to be efficiently separated. In this contribution, using Monte Carlo modeling, we show how simple molecular building blocks with cruciform shape can be used to create 2D porous matrices with tunable adsorptive properties. To that end we consider different self-assembled structures comprising cross-shaped molecules and probe their ability to retain model guest molecules differing in size and shape. In particular we focus on the adsorption of enantiomeric pairs on these substrates and quantify the associated selectivity. The obtained results show that a suitable choice of the building block, including size and aspect ratio allows for the creation of 2D functional matrices with programmed adsorption performance. The findings of our theoretical investigations can be helpful in designing molecular guest-host systems with potential applications in separations, sensing and heterogeneous catalysis.

  16. Computer-Aided Process Planning for the Layered Fabrication of Porous Scaffold Matrices

    NASA Astrophysics Data System (ADS)

    Starly, Binil

    Rapid Prototyping (RP) technology promises to have a tremendous impact on the design and fabrication of porous tissue replacement structures for applications in tissue engineering and regenerative medicine. The layer-by-layer fabrication technology enables the design of patient-specific medical implants and complex structures for diseased tissue replacement strategies. Combined with advancements in imaging modalities and bio-modeling software, physicians can engage themselves in advanced solutions for craniofacial and mandibular reconstruction. For example, prior to the advancement of RP technologies, solid titanium parts used as implants for mandibular reconstruction were fashioned out of molding or CNC-based machining processes (Fig. 3.1). Titanium implants built using this process are often heavy, leading to increased patient discomfort. In addition, the Young's modulus of titanium is almost five times that of healthy cortical bone resulting in stress shielding effects [1,2]. With the advent of CAD/CAM-based tools, the virtual reconstruction of the implants has resulted in significant design improvements. The new generation of implants can be porous, enabling the in-growth of healthy bone tissue for additional implant fixation and stabilization. Newer implants would conform to the external shape of the defect site that is intended to be filled in. More importantly, the effective elastic modulus of the implant can be designed to match that of surrounding tissue. Ideally, the weight of the implant can be designed to equal the weight of the tissue that is being replaced resulting in increased patient comfort. Currently, such porous structures for reconstruction can only be fabricated using RP-based metal fabrication technologies such as Electron Beam Melting (EBM), Selective Laser Sintering (SLS®), and 3D™ Printing processes.

  17. Experimental characterization of the deviation from Darcy flow at low Reynolds numbers through elastic porous matrices

    NASA Astrophysics Data System (ADS)

    Becker, Sid; Munro, Ben

    2014-11-01

    The subject of this study concerns viscous flow through an elastic porous matrial for which the solid matrix is capable of experiencing deformation under the influence of the flow field. The inherent challenges associated with developing experimental testing of flow in deformable porous media are largely related to the fabrication of a deformable matrix. In this study a method of media fabrication is presented that uses an indirect solid free form fabrication process combining 3D Printing with an infused Polydimethylsiloxane elastomer. This allows for the precise control of the matrix parameters: elasticity and pore geometry. The conjugate flow-media behavior is then observed in an experimental test rig which captures the global flow behavior, the local matrix deformation, and the onset of the deviation from Darcy flow at low Re. The experimental data is presented such that the results can be used for numerical validation. Dimensionless combinations of parameters are considered in the prediction of the point of deviation from Darcy flow at low Re and confirmed from the experimental data. Supported by the Marsden Fund Council from Government funding, Administered by the Royal Society of New Zealand.

  18. A mathematically continuous model for describing the hydraulic properties of unsaturated porous media over the entire range of matric suctions

    NASA Astrophysics Data System (ADS)

    Wang, Yunquan; Ma, Jinzhu; Guan, Huade

    2016-10-01

    Recent studies suggest that water flow in unsaturated porous media extends beyond the commonly known capillary-driven regime into the film regime. There is a need to develop the unsaturated hydraulic properties over the entire range of matric suctions to capture both flow regimes. In this study, Fredlund and Xing model is modified to represent the soil water retention curve from saturation to oven dryness. The new function is mathematically differentiable. The hydraulic conductivity function is composed of the capillary-driven term and film associated term, which is easy to apply. The new model has capacity to represent the bimodal hydraulic properties that are often present in structured and aggregated soils. Testing with the published data of sixteen soils shows good performance for both the water retention curve and the hydraulic conductivity function. For most soils, the new model results in a better agreement with observations than a published model. The result also indicates a possibility to improve the previously published film-associated hydraulic conductivity function.

  19. Encapsulation of biomaterials in porous glass-like matrices prepared via an aqueous colloidal sol-gel process

    DOEpatents

    Liu, Dean-Mo; Chen, I-Wei

    2001-01-01

    The present invention provides a process for the encapsulation of biologically important proteins into transparent, porous silica matrices by an alcohol-free, aqueous, colloidal sol-gel process, and to the biological materials encapsulated thereby. The process is exemplified by studies involving encapsulated cytochrome c, catalase, myoglobin, and hemoglobin, although non-proteinaceous biomaterials, such as active DNA or RNA fragments, cells or even tissues, may also be encapsulated in accordance with the present methods. Conformation, and hence activity of the biomaterial, is successfully retained after encapsulation as demonstrated by optical characterization of the molecules, even after long-term storage. The retained conformation of the biomaterial is strongly correlated to both the rate of gelation and the subsequent drying speed of the encapsulatng matrix. Moreover, in accordance with this process, gelation is accelerated by the use of a higher colloidal solid concentration and a lower synthesis pH than conventional methods, thereby enhancing structural stability and retained conformation of the biomaterials. Thus, the invention also provides a remarkable improvement in retaining the biological activity of the encapsulated biomaterial, as compared with those involved in conventional alkoxide-based processes. It further provides new methods for the quantitative and qualitative detection of test substances that are reactive to, or catalyzed by, the active, encapsulated biological materials.

  20. Reflection and transmission matrices at a free-space-chiral interface based on the invariant constitutive relations for gyrotropic media and the Drude-Born-Federov constitutive relations.

    PubMed

    Bahar, Ezekiel

    2009-08-01

    The expressions for the linear and cross-polarized reflection and transmission coefficients based on the invariant gyrotropic constitutive relations and the Drude-Born-Federov constitutive relations are compared. A physical interpretation for the first-order terms in the gyrotropic parameter and the chiral parameter is presented for normal and oblique angles of incidence. The analytical expressions for the linear cross-polarized or circular-like polarized reflection coefficients are proportional to the product of the gyrotropic measure, the tangent squared of the angle of refraction in the host medium, the round trip transmission coefficients for the horizontally and vertically polarized waves, and the polarization dependent reflection coefficients for a perfectly conducting mirror. These analytical results are consistent with the observed enhancement of the differential circular reflection for near-grazing incidence.

  1. Constitutive model for geological and other porous materials under dynamic loading

    SciTech Connect

    Dey, T.N.

    1991-01-01

    An effective stress model is described for use in numerical calculations on porous materials which are partially or fully saturated with water. The flow rule chosen for the shear failure portion of the model is examined and shown to have significant influence on wave propagation results. A flow rule which produces dilatancy results in less attenuation than a rule producing shear-enhanced void collapse. The dilatancy producing rule is less prone to producing liquefaction and results in significantly higher stress levels behind the wave front. 8 refs., 6 figs.

  2. Determining the concentration and distribution of arsenic deposits in rock matrices and porous media by X-ray difference microtomography

    NASA Astrophysics Data System (ADS)

    Peng, D.; Alsina, M.; Chen, C.; Keane, D.; Packman, A. I.; Gaillard, J.; Aubeneau, A. F.; Pasten, P. A.; Pizarro, G.

    2009-12-01

    Synchrotron-based high resolution X-ray microtomography was used to characterize arsenic (As) deposits within porous media. The distribution of arsenic was determined using difference tomography, where the X-rays used to image the sample were selected to be just above and below the As absorption edge at 11,853 eV. The difference tomograms have background noise from other minerals contained in the sample, local variation of X-ray beam intensity, and electronic noise associated with the data acquisition process. Image processing filters, such as windowing or adaptive filters derived from the Fast Fourier Transform (FFT) method, were employed to reduce background noise in the tomograms and enhance information on the arsenic deposits. These errors are generally larger in difference tomography than in conventional X-ray microtomography because this method requires operating at very specific X-ray energies (i.e., an edge of the element of interest), and this constraint makes it very difficult to obtain optimal contrast for tomographic reconstruction. In particular, the signal-to-noise ratio is often low in difference tomograms of geological samples having high background X-ray absorption. The relationship between As concentration and difference image intensity was evaluated using well defined As samples prepared in the laboratory, along with As-rich sinter deposits from El Tatio hydrothermal field and fluvial sediments from the Loa River downstream of El Tatio. This relationship is non-linear because of interactions between the different sources of error in the construction of the difference tomograms. As a result, the difference tomography method is relatively insensitive to bulk As concentrations, and instead primarily provides information on the distribution of regions of the sample that have high As concentrations, such as As-rich particles, precipitates, or evaporite deposits. Tomographic 3D reconstructions of the porous media and of the aggregate structure thus

  3. Electroluminescent layers based on ZnS:Cu deposited into matrices of porous anodic Al2O3

    NASA Astrophysics Data System (ADS)

    Valeev, R. G.; Petukhov, D. I.; Chukavin, A. I.; Bel'tyukov, A. N.

    2016-02-01

    It is suggested to use a new nanocomposite material—nanostructures of copper-doped zinc sulfide in a matrix of porous aluminum oxide—as a light-emitting layer of electroluminescent sources of light. The material was deposited by thermal evaporation in a vacuum. The microstructure of the layers, impurity distribution in the electroluminescent-phosphor layer, and electroluminescence spectra at various copper concentrations in ZnS:Cu were studied.

  4. Translation Matrices

    NASA Astrophysics Data System (ADS)

    Shurtleff, Richard

    2004-10-01

    Translation matrices together with rotation and boost matrices combine to represent spacetime symmetry transformations. A brief introduction to some of the properties of some not-so-well-known translation and momentum matrices is presented.

  5. Hyaluronic Acid/PLGA Core/Shell Fiber Matrices Loaded with EGCG Beneficial to Diabetic Wound Healing.

    PubMed

    Shin, Yong Cheol; Shin, Dong-Myeong; Lee, Eun Ji; Lee, Jong Ho; Kim, Ji Eun; Song, Sung Hwa; Hwang, Dae-Youn; Lee, Jun Jae; Kim, Bongju; Lim, Dohyung; Hyon, Suong-Hyu; Lim, Young-Jun; Han, Dong-Wook

    2016-12-01

    During the last few decades, considerable research on diabetic wound healing strategies has been performed, but complete diabetic wound healing remains an unsolved problem, which constitutes an enormous biomedical burden. Herein, hyaluronic acid (HA)/poly(lactic-co-glycolic acid, PLGA) core/shell fiber matrices loaded with epigallocatechin-3-O-gallate (EGCG) (HA/PLGA-E) are fabricated by coaxial electrospinning. HA/PLGA-E core/shell fiber matrices are composed of randomly-oriented sub-micrometer fibers and have a 3D porous network structure. EGCG is uniformly dispersed in the shell and sustainedly released from the matrices in a stepwise manner by controlled diffusion and PLGA degradation over four weeks. EGCG does not adversely affect the thermomechanical properties of HA/PLGA-E matrices. The number of human dermal fibroblasts attached on HA/PLGA-E matrices is appreciably higher than that on HA/PLGA counterparts, while their proliferation is steadily retained on HA/PLGA-E matrices. The wound healing activity of HA/PLGA-E matrices is evaluated in streptozotocin-induced diabetic rats. After two weeks of surgical treatment, the wound areas are significantly reduced by the coverage with HA/PLGA-E matrices resulting from enhanced re-epithelialization/neovascularization and increased collagen deposition, compared with no treatment or HA/PLGA. In conclusion, the HA/PLGA-E matrices can be potentially exploited to craft strategies for the acceleration of diabetic wound healing and skin regeneration.

  6. Depolarizing differential Mueller matrices.

    PubMed

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2011-07-01

    The evolution of a polarized beam can be described by the differential formulation of Mueller calculus. The nondepolarizing differential Mueller matrices are well known. However, they only account for 7 out of the 16 independent parameters that are necessary to model a general anisotropic depolarizing medium. In this work we present the nine differential Mueller matrices for general depolarizing media, highlighting the physical implications of each of them. Group theory is applied to establish the relationship between the differential matrix and the set of transformation generators in the Minkowski space, of which Lorentz generators constitute a particular subgroup.

  7. Converging Matrices.

    ERIC Educational Resources Information Center

    Wallace, Edward C.

    1985-01-01

    Explains an application of matrix algebra which involves probability matrices and weather predictions. Using probabilities of sunny or cloudy weather students can determine the effect weather on day one will have on subsequent days. (DH)

  8. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media.

    PubMed

    Lenhard, R J; Oostrom, M; Dane, J H

    2004-07-01

    A hysteretic constitutive model describing relations among relative permeabilities, saturations, and pressures in fluid systems consisting of air, nonaqueous-phase liquid (NAPL), and water is modified to account for NAPL that is postulated to be immobile in small pores and pore wedges and as films or lenses on water surfaces. A direct outcome of the model is prediction of the NAPL saturation that remains in the vadose zone after long drainage periods (residual NAPL). Using the modified model, water and NAPL (free, entrapped by water, and residual) saturations can be predicted from the capillary pressures and the water and total-liquid saturation-path histories. Relations between relative permeabilities and saturations are modified to account for the residual NAPL by adjusting the limits of integration in the integral expression used for predicting the NAPL relative permeability. When all of the NAPL is either residual or entrapped (i.e., no free NAPL), then the NAPL relative permeability will be zero. We model residual NAPL using concepts similar to those used to model residual water. As an initial test of the constitutive model, we compare predictions to published measurements of residual NAPL. Furthermore, we present results using the modified constitutive theory for a scenario involving NAPL imbibition and drainage.

  9. A constitutive model for air-NAPL-water flow in the vadose zone accounting for immobile, non-occluded (residual) NAPL in strongly water-wet porous media.

    PubMed

    Lenhard, R J; Oostrom, M; Dane, J H

    2004-09-01

    A hysteretic constitutive model describing relations among relative permeabilities, saturations, and pressures in fluid systems consisting of air, nonaqueous-phase liquid (NAPL), and water is modified to account for NAPL that is postulated to be immobile in small pores and pore wedges and as films or lenses on water surfaces. A direct outcome of the model is prediction of the NAPL saturation that remains in the vadose zone after long drainage periods (residual NAPL). Using the modified model, water and NAPL (free, entrapped by water, and residual) saturations can be predicted from the capillary pressures and the water and total-liquid saturation-path histories. Relations between relative permeabilities and saturations are modified to account for the residual NAPL by adjusting the limits of integration in the integral expression used for predicting the NAPL relative permeability. When all of the NAPL is either residual or entrapped (i.e., no free NAPL), then the NAPL relative permeability will be zero. We model residual NAPL using concepts similar to those used to model residual water. As an initial test of the constitutive model, we compare predictions to published measurements of residual NAPL. Furthermore, we present results using the modified constitutive theory for a scenario involving NAPL imbibition and drainage.

  10. Synbiotic matrices derived from plant oligosaccharides and polysaccharides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A porous synbiotic matrix was prepared by lyophilization of alginate and pectin or fructan oligosaccharides and polysaccharides cross-linked with calcium. These synbiotic matrices were excellent physical structures to support the growth of Lactobacillus acidophilus (1426) and Lactobacillus reuteri (...

  11. Constitutional Conservatism

    ERIC Educational Resources Information Center

    Berkowitz, Peter

    2009-01-01

    After their dismal performance in election 2008, conservatives are taking stock. As they examine the causes that have driven them into the political wilderness and as they explore paths out, they should also take heart. After all, election 2008 shows that America's constitutional order is working as designed. Indeed, while sorting out their errors…

  12. Surface enhanced fluorescence of anti-tumoral drug emodin adsorbed on silver nanoparticles and loaded on porous silicon

    NASA Astrophysics Data System (ADS)

    Hernandez, Margarita; Recio, Gonzalo; Martin-Palma, Raul J.; Garcia-Ramos, Jose V.; Domingo, Concepcion; Sevilla, Paz

    2012-07-01

    Fluorescence spectra of anti-tumoral drug emodin loaded on nanostructured porous silicon have been recorded. The use of colloidal nanoparticles allowed embedding of the drug without previous porous silicon functionalization and leads to the observation of an enhancement of fluorescence of the drug. Mean pore size of porous silicon matrices was 60 nm, while silver nanoparticles mean diameter was 50 nm. Atmospheric and vacuum conditions at room temperature were used to infiltrate emodin-silver nanoparticles complexes into porous silicon matrices. The drug was loaded after adsorption on metal surface, alone, and bound to bovine serum albumin. Methanol and water were used as solvents. Spectra with 1 μm spatial resolution of cross-section of porous silicon layers were recorded to observe the penetration of the drug. A maximum fluorescence enhancement factor of 24 was obtained when protein was loaded bound to albumin, and atmospheric conditions of inclusion were used. A better penetration was obtained using methanol as solvent when comparing with water. Complexes of emodin remain loaded for 30 days after preparation without an apparent degradation of the drug, although a decrease in the enhancement factor is observed. The study reported here constitutes the basis for designing a new drug delivery system with future applications in medicine and pharmacy.

  13. Spectral Theory of Matrices. I. General Matrices.

    DTIC Science & Technology

    1980-05-01

    criterion for similarity of two matrices 93 1.23 The equation AX - XB = C 98 1.24 A case of two nilpotent matrices 101 1.25 Components of a matrix and...following result is needed later. Theorem 1.24.1. Let A C M n(F) be a nilpotent matrix . Put XX . {xlx C in, A kx = 0), k - 0,1 ...... Assume that o - x 0 x x...establishes the theorem in case that A(x) is a nilpotent matrix . Next consider the case where A(x) is an upper triangular matrix whose diagonal entries

  14. STRUMPACK -- STRUctured Matrices PACKage

    SciTech Connect

    2014-12-01

    STRUMPACK - STRUctured Matrices PACKage - is a package for computations with sparse and dense structured matrix, i.e., matrices that exhibit some kind of low-rank property, in particular Hierarchically Semi Separable structure (HSS). Such matrices appear in many applications, e.g., FEM, BEM, Integral equations. etc. Exploiting this structure using certain compression algorithms allow for fast solution of linear systems and/or fast computation of matrix-vector products, which are the two main building blocks of matrix computations. STRUMPACK has presently two main components: a distributed-memory dense matrix computations package and a shared-memory sparse direct solver.

  15. What Is a Constitution?

    ERIC Educational Resources Information Center

    OAH Magazine of History, 1988

    1988-01-01

    Provides a lesson plan designed to help students better understand the concept of a constitution, distinguish constitutional law from statutory law, and recognize examples of constitutional government. (BSR)

  16. Optical detection of parasitic protozoa in sol-gel matrices

    NASA Astrophysics Data System (ADS)

    Livage, Jacques; Barreau, J. Y.; Da Costa, J. M.; Desportes, I.

    1994-10-01

    Whole cell parasitic protozoa have been entrapped within sol-gel porous silica matrices. Stationary phase promastigote cells of Leishmania donovani infantum are mixed with a silica sol before gelation occurs. They remain trapped within the growing oxide network and their cellular organization appears to be well preserved. Moreover protozoa retain their antigenic properties in the porous gel. They are still able to detect parasite specific antibodies in serum samples from infected patients via an enzyme linked immunosorbent assay (ELISA). Antigen- antibody associations occurring in the gel are optically detected via the reactions of a peroxidase conjugate with ortho-phenylenediamine leading to the formation of a yellow coloration. A clear-cut difference in optical density is measured between positive and negative sera. Such an entrapment of antigenic species into porous sol-gel matrices avoids the main problems due to non specific binding and could be advantageously used in diagnostic kits.

  17. Constitutive Models Based on Compressible Plastic Flows

    NASA Technical Reports Server (NTRS)

    Rajendran, A. M.

    1983-01-01

    The need for describing materials under time or cycle dependent loading conditions has been emphasized in recent years by several investigators. In response to the need, various constitutive models describing the nonlinear behavior of materials under creep, fatigue, or other complex loading conditions were developed. The developed models for describing the fully dense (non-porous) materials were mostly based on uncoupled plasticity theory. The improved characterization of materials provides a better understanding of the structual response under complex loading conditions. The pesent studies demonstrate that the rate or time dependency of the response of a porous aggregate can be incorporated into the nonlinear constitutive behavior of a porous solid by appropriately modeling the incompressible matrix behavior. It is also sown that the yield function which wads determined by a continuum mechanics approach must be verified by appropriate experiments on void containing sintered materials in order to obtain meaningful numbers for the constants that appear in the yield function.

  18. Calibration and temperature correction of heat dissipation matric potential sensors

    USGS Publications Warehouse

    Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.

    2002-01-01

    This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.

  19. Frequency filtering decompositions for unsymmetric matrices and matrices with strongly varying coefficients

    SciTech Connect

    Wagner, C.

    1996-12-31

    In 1992, Wittum introduced the frequency filtering decompositions (FFD), which yield a fast method for the iterative solution of large systems of linear equations. Based on this method, the tangential frequency filtering decompositions (TFFD) have been developed. The TFFD allow the robust and efficient treatment of matrices with strongly varying coefficients. The existence and the convergence of the TFFD can be shown for symmetric and positive definite matrices. For a large class of matrices, it is possible to prove that the convergence rate of the TFFD and of the FFD is independent of the number of unknowns. For both methods, schemes for the construction of frequency filtering decompositions for unsymmetric matrices have been developed. Since, in contrast to Wittums`s FFD, the TFFD needs only one test vector, an adaptive test vector can be used. The TFFD with respect to the adaptive test vector can be combined with other iterative methods, e.g. multi-grid methods, in order to improve the robustness of these methods. The frequency filtering decompositions have been successfully applied to the problem of the decontamination of a heterogeneous porous medium by flushing.

  20. The Constitutional Amendment Process

    ERIC Educational Resources Information Center

    Chism, Kahlil

    2005-01-01

    This article discusses the constitutional amendment process. Although the process is not described in great detail, Article V of the United States Constitution allows for and provides instruction on amending the Constitution. While the amendment process currently consists of six steps, the Constitution is nevertheless quite difficult to change.…

  1. Porous bioactive materials

    NASA Astrophysics Data System (ADS)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size <50 nm) sol-gel BGs in simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a

  2. Porous liquids: A promising class of media for gas separation

    SciTech Connect

    Zhang, Jinshui; Chai, Song -Hai; Qiao, Zhen -An; Mahurin, Shannon M.; Chen, Jihua; Fang, Youxing; Wan, Shun; Nelson, Kimberly; Zhang, Pengfei; Dai, Sheng

    2014-11-17

    In porous liquids with empty cavities we successfully has been successfully fabricated by surface engineering of hollow structures with suitable corona and canopy species. By taking advantage of the liquid-like polymeric matrices as a separation medium and the empty cavities as gas transport pathway, this unique porous liquid can function as a promising candidate for gas separation. A facile synthetic strategy can be further extended to other types of nanostructure-based porous liquid fabrication, opening up new opportunities for preparation of porous liquids with attractive properties for specific tasks.

  3. Novel Factor-loaded Polyphosphazene Matrices

    PubMed Central

    Oredein-McCoy, Olugbemisola; Krogman, Nicholas R.; Weikel, Arlin L.; Hindenlang, Mark D.; Allcock, Harry R.; Laurencin, Cato T.

    2009-01-01

    Currently employed bone tissue engineered scaffolds often lack the potential for vascularization, which may be enhanced through the incorporation of and regulated release of angiogenic factors. For this reason, our objective was to fabricate and characterize protein-loaded amino acid ester polyphosphazene (Pphos)-based scaffolds and evaluate the novel sintering method used for protein incorporation, a method which will ultimately allow for the incorporation of proangiogenic agents. To test the hypothesis, Pphos and their composite microspheres with nanocrystalline hydroxyapatite (Pphos-HAp) were fabricated via the emulsion solvent evaporation method. Next, bovine serum albumin (BSA)-containing microsphere matrices were created using a novel solvent-non solvent approach for protein loading. The resulting protein (BSA) loaded-circular porous microsphere based scaffolds were characterized for morphology, porosity, protein structure, protein distribution, and subsequent protein release pattern. Scanning electron microscopy revealed porous microsphere scaffolds with a smooth surface and sufficient level of sintering, illustrated by fusion of adjacent microspheres. The porosity measured for the PNPhGly and PNPhGly-HAp scaffolds were 23 +/- 0.11% and 18+/- 4.02%, respectively, and within the range of trabecular bone. Circular dichroism confirmed an intact secondary protein structure for BSA following the solvent sintering method used for loading, and confocal microscopy verified that FITC-BSA was successfully entrapped both between adjacent microspheres and within the surface of the microspheres while sintering. For both Pphos and their composite microsphere scaffolds, BSA was released at a steady rate over a 21day time period, following a zero order release profile. HAp particles in the composite scaffolds served to improve the release profile pattern, underscoring the potential of HAp for growth factor delivery. Moreover, the results of this work suggests that the

  4. Contesting the Constitution: The Constitutional Dialogues.

    ERIC Educational Resources Information Center

    Hilenski, Ferdinand Alexi

    This historical dramatization, prepared for presentation at the 1985 Wyoming Chatauqua, contains three dialogues, set during the administration of President Thomas Jefferson and presenting the issues surrounding the drafting and ratification of the U.S. Constitution. The dialogues are designed to be presented in three segments to permit discussion…

  5. Enhancing Understanding of Transformation Matrices

    ERIC Educational Resources Information Center

    Dick, Jonathan; Childrey, Maria

    2012-01-01

    With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…

  6. Intrinsic character of Stokes matrices

    NASA Astrophysics Data System (ADS)

    Gagnon, Jean-François; Rousseau, Christiane

    2017-02-01

    Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.

  7. On Some Properties of Gamma Matrices

    ERIC Educational Resources Information Center

    Dumais, Jean-Francois

    1977-01-01

    Discusses the problem of the order, reducibility, and equivalence of systems of Dirac gamma matrices. Gives a simple systematic method for finding the matrices connecting different systems of 4 x 4 gamma matrices. (MLH)

  8. The Constitution by Cell

    ERIC Educational Resources Information Center

    Greenhut, Stephanie; Jones, Megan

    2010-01-01

    On their visit to the National Archives Experience in Washington, D.C., students in Jenni Ashley and Gay Brock's U.S. history classes at the Potomac School in McLean, Virginia, participated in a pilot program called "The Constitution by Cell." Armed with their cell phones, a basic understanding of the Constitution, and a willingness to…

  9. Interpreting the Constitution.

    ERIC Educational Resources Information Center

    Brennan, William J., Jr.

    1987-01-01

    Discusses constitutional interpretations relating to capital punishment and protection of human dignity. Points out the document's effectiveness in creating a new society by adapting its principles to current problems and needs. Considers two views of the Constitution that lead to controversy over the legitimacy of judicial decisions. (PS)

  10. Constitutional Issues and Iowa.

    ERIC Educational Resources Information Center

    Gore, Deborah, Ed.

    1987-01-01

    Important constitutional issues are presented in a manner appropriate for use in the classroom. Case studies and events from the history of Iowa are used to illuminate the Constitution and Bill of Rights. Freedom of expression and students' rights are discussed in "The Black Armband Case"; free exercise of religion as won by the Iowa's…

  11. Estimating sparse precision matrices

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin; Zhou, Harrison H.; O'Connell, Ross

    2016-08-01

    We apply a method recently introduced to the statistical literature to directly estimate the precision matrix from an ensemble of samples drawn from a corresponding Gaussian distribution. Motivated by the observation that cosmological precision matrices are often approximately sparse, the method allows one to exploit this sparsity of the precision matrix to more quickly converge to an asymptotic 1/sqrt{N_sim} rate while simultaneously providing an error model for all of the terms. Such an estimate can be used as the starting point for further regularization efforts which can improve upon the 1/sqrt{N_sim} limit above, and incorporating such additional steps is straightforward within this framework. We demonstrate the technique with toy models and with an example motivated by large-scale structure two-point analysis, showing significant improvements in the rate of convergence. For the large-scale structure example, we find errors on the precision matrix which are factors of 5 smaller than for the sample precision matrix for thousands of simulations or, alternatively, convergence to the same error level with more than an order of magnitude fewer simulations.

  12. Numerical inversion of finite Toeplitz matrices and vector Toeplitz matrices

    NASA Technical Reports Server (NTRS)

    Bareiss, E. H.

    1969-01-01

    Numerical technique increases the efficiencies of the numerical methods involving Toeplitz matrices by reducing the number of multiplications required by an N-order Toeplitz matrix from N-cubed to N-squared multiplications. Some efficient algorithms are given.

  13. Computer-Access-Code Matrices

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.

    1990-01-01

    Authorized users respond to changing challenges with changing passwords. Scheme for controlling access to computers defeats eavesdroppers and "hackers". Based on password system of challenge and password or sign, challenge, and countersign correlated with random alphanumeric codes in matrices of two or more dimensions. Codes stored on floppy disk or plug-in card and changed frequently. For even higher security, matrices of four or more dimensions used, just as cubes compounded into hypercubes in concurrent processing.

  14. Applications of Random Matrices in Physics

    NASA Astrophysics Data System (ADS)

    Brezin, Edouard; Kazakov, Vladimir; Serban, Didina; Wiegmann, Paul; Zabrodin, Anton

    Random matrices are widely and successfully used in physics for almost 60-70 years, beginning with the works of Dyson and Wigner. Although it is an old subject, it is constantly developing into new areas of physics and mathematics. It constitutes now a part of the generalculture of a theoretical physicist. Mathematical methods inspired by random matrix theory become more powerful, sophisticated and enjoy rapidly growing applications in physics. Recent examples include the calculation of universal correlations in the mesoscopic system, new applications in disordered and quantum chaotic systems, in combinatorial and growth models, as well as the recent breakthrough, due to the matrix models, in two dimensional gravity and string theory and the non-abelian gauge theories.

  15. Constitution, 15 August 1982.

    PubMed

    1987-01-01

    This document reprints major provisions of the 1982 Constitution of Equatorial Guinea. The Constitution calls for protection of the family as the basic building block of society. Foreigners are afforded the same civil rights as citizens and may seek asylum but may not exercise political rights. The Constitution guarantees equality before the law and prohibits discrimination based on ethnic background, race, sex, language, religion, filiation, political or other views, social origin, economic position, or birth. Women are afforded the same rights as men regardless of their marital status. The Constitution also guarantees citizens freedom to travel nationally and internationally and to choose a place of residence. Equatoguineans are also entitled to a standard of living that insures health, nutrition, education, clothing, housing, medical care, and necessary social services. The family policy contained in the Constitution protects all types of legal marriages equally and recognizes nonattachable and inalienable family patrimony. Children are protected from the time of conception, and all inhabitants are guaranteed a basic state education which is compulsory and free. Efforts are also being made to eradicate illiteracy. Women are insured training and promotion for their integration into the active life and development of the country, and farmers are guaranteed traditional ownership of the lands they possess, although the state retains the right of eminent domain.

  16. Lattice Boltzmann simulations of convection heat transfer in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Qing; He, Ya-Ling

    2017-01-01

    A non-orthogonal multiple-relaxation-time (MRT) lattice Boltzmann (LB) method is developed to study convection heat transfer in porous media at the representative elementary volume scale based on the generalized non-Darcy model. In the method, two different LB models are constructed: one is constructed in the framework of the double-distribution-function approach, and the other is constructed in the framework of the hybrid approach. In particular, the transformation matrices used in the MRT-LB models are non-orthogonal matrices. The present method is applied to study mixed convection flow in a porous channel and natural convection flow in a porous cavity. It is found that the numerical results are in good agreement with the analytical solutions and/or other results reported in previous studies. Furthermore, the non-orthogonal MRT-LB method shows better numerical stability in comparison with the BGK-LB method.

  17. Shrinking mechanism of a porous collagen matrix immersed in solution.

    PubMed

    Chen, Po-Yang; Hsieh, Hsyue-Jen; Huang, Lynn L H

    2014-12-01

    The porous structure of collagen-based matrices enables the infiltration of cells both in in vitro and clinical applications. Reconstituted porous collagen matrices often collapse when they are in contact with aqueous solutions; however, the mechanism for the collapse of the pores is not understood. We, therefore, investigated the interactions between the collagen matrix and different solutions, and discuss the mechanisms for the change in microstructure of the matrix on immersing it in solution. When a dried collagen matrix was immersed in aqueous solutions, the matrix shrunk and pores close to the surface closed. The shrinkage ratio and thickness of the compact microstructure close to the superficial area decreased with increasing ethanol content in the solution. The original porous structure of the collagen matrix was preserved when the matrix was immersed in absolute ethanol. The shrinkage of a porous collagen matrix in contact with aqueous solutions was attributed to the liquid/gas interfacial tension. The average pore diameter of the matrix also significantly affected the shrinkage of the matrix. The shrinkage of the matrix, explained using the Young-Laplace equation, was found to result from the pressure drop, and especially in the pores located superficially, leading to the collapse of the matrix microstructure. The integrity of the porous microstructure allows better penetration of cells in medical applications. The numbers of NIH/3T3 fibroblasts penetrated through the hydrated Col/PBS porous collagen matrices pre-immersed in absolute ethanol with subsequent water and DMEM culture medium replacements were significantly higher than those through matrices hydrated directly in DMEM.

  18. Thermal effects in orthotropic porous elastic beams

    NASA Astrophysics Data System (ADS)

    Iaşan, D.

    2009-01-01

    This paper is concerned with the linear theory of anisotropic porous elastic bodies. The extension and bending of orthotropic porous elastic cylinders subjected to a plane temperature field is investigated. The work is motivated by the recent interest in the using of the orthotropic porous elastic solid as model for bones and various engineering materials. First, the thermoelastic deformation of inhomogeneous beams whose constitutive coefficients are independent of the axial coordinate is studied. Then, the extension and bending effects in orthotropic cylinders reinforced by longitudinal rods are investigated. The three-dimensional problem is reduced to the study of two-dimensional problems. The method is used to solve the problem of an orthotropic porous circular cylinder with a special kind of inhomogeneity.

  19. Constituting children's bodily integrity.

    PubMed

    Hill, B Jessie

    2015-04-01

    Children have a constitutional right to bodily integrity. Courts do not hesitate to vindicate that right when children are abused by state actors. Moreover, in at least some cases, a child's right to bodily integrity applies within the family, giving the child the right to avoid unwanted physical intrusions regardless of the parents' wishes. Nonetheless, the scope of this right vis-à-vis the parents is unclear; the extent to which it applies beyond the narrow context of abortion and contraception has been almost entirely unexplored and untheorized. This Article is the first in the legal literature to analyze the constitutional right of minors to bodily integrity within the family by spanning traditionally disparate doctrinal categories such as abortion rights; corporal punishment; medical decisionmaking; and nontherapeutic physical interventions such as tattooing, piercing, and circumcision. However, the constitutional right of minors to bodily integrity raises complex philosophical questions concerning the proper relationship between family and state, as well as difficult doctrinal and theoretical issues concerning the ever-murky idea of state action. This Article canvasses those issues with the ultimate goal of delineating a constitutional right of bodily security and autonomy for children.

  20. South Africa's Constitutional Change.

    ERIC Educational Resources Information Center

    Getman, Thomas

    1987-01-01

    Describes the striking dichotomy of South Africa's beauty and the squalor resulting from the apartheid policies of the government. Reviews reactions of black South Africans to recent constitutional changes and details efforts to secure more sweeping reform. Includes stories of several individuals who have taken actions which oppose the system of…

  1. The Constitutional Heritage.

    ERIC Educational Resources Information Center

    Baxter, Maurice

    Changing political, social, economic, and intellectual conditions over the past two hundred years have demanded innovation and adjustment of legal doctrine, thus giving the United States Constitution a character which the framers of the document could not have predicted. Historically, one must not only understand developments since 1787 but also…

  2. Constitutional Law--Elective.

    ERIC Educational Resources Information Center

    Gallagher, Joan; Wood, Robert J.

    The elective unit on Constitutional Law is intended for 11th and 12th grade students. The unit is designed around major course goals which are to develop those concepts whereby students recognize and understand the following three topic areas: 1) Role of the Federal Judicial Branch of Government, 2) Supreme Court Cases Involving the Three Branches…

  3. The Constitution in Action

    ERIC Educational Resources Information Center

    Potter, Lee Ann

    2007-01-01

    In this article, the author describes the experiences middle school students on a field trip to the new Constitution in Action Learning Lab in the Boeing Learning Center at the National Archives can expect. There, middle school students take on the roles of archivists and researchers collecting and analyzing primary sources from the holdings of…

  4. Sexuality and the Constitution.

    ERIC Educational Resources Information Center

    Copelon, Rhonda

    1987-01-01

    Argues for abortion rights and protection of intimate decisions and relationships. Describes the role and position of women in eighteenth century American society as a means of exposing the fallacy of the anti-abortion movement's insistence on adherence to constitutional text. Discusses the recent attempts to overturn the Roe v. Wade ruling. (PS)

  5. Gender and the Constitution

    ERIC Educational Resources Information Center

    Ginsburg, Ruth Bader

    1975-01-01

    In discussing the constitutional aspects of the sex-role debate in the U.S. the author traces the tradition, compares the present criterion of equal protection to the equal rights argument, and analyzes the equality principle with reference to affirmative action and to childbearing and childrearing, supporting the proposed equal rights amendment.…

  6. Iterative methods for Toeplitz-like matrices

    SciTech Connect

    Huckle, T.

    1994-12-31

    In this paper the author will give a survey on iterative methods for solving linear equations with Toeplitz matrices, Block Toeplitz matrices, Toeplitz plus Hankel matrices, and matrices with low displacement rank. He will treat the following subjects: (1) optimal (w)-circulant preconditioners is a generalization of circulant preconditioners; (2) Optimal implementation of circulant-like preconditioners in the complex and real case; (3) preconditioning of near-singular matrices; what kind of preconditioners can be used in this case; (4) circulant preconditioning for more general classes of Toeplitz matrices; what can be said about matrices with coefficients that are not l{sub 1}-sequences; (5) preconditioners for Toeplitz least squares problems, for block Toeplitz matrices, and for Toeplitz plus Hankel matrices.

  7. Symmetric Toeplitz-Structured Compressed Sensing Matrices

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Fan, Yi-Zheng; Zhu, Ming

    2015-11-01

    How to construct a suitable measurement matrix is an important topic in compressed sensing. A significant part of the recent work is that the measurement matrices are not completely random on the entries but exhibit some considerable structures. In this paper, we proved that a symmetric Toeplitz matrix and its variant can be used as measurement matrices and recovery signal with high probability. Compared with random matrices (e.g. Gaussian and Bernoulli matrices) and some structured matrices (e.g. Toeplitz and circulant matrices), we need to generate fewer independent entries to obtain the measurement matrix while the effectiveness of the recovery keeps good.

  8. Open string fields as matrices

    NASA Astrophysics Data System (ADS)

    Kishimoto, Isao; Masuda, Toru; Takahashi, Tomohiko; Takemoto, Shoko

    2015-03-01

    We show that the action expanded around Erler-Maccaferri's N D-brane solution describes the N+1 D-brane system where one D-brane disappears due to tachyon condensation. String fields on multi-branes can be regarded as block matrices of a string field on a single D-brane in the same way as matrix theories.

  9. Making almost commuting matrices commute

    SciTech Connect

    Hastings, Matthew B

    2008-01-01

    Suppose two Hermitian matrices A, B almost commute ({parallel}[A,B]{parallel} {<=} {delta}). Are they close to a commuting pair of Hermitian matrices, A', B', with {parallel}A-A'{parallel},{parallel}B-B'{parallel} {<=} {epsilon}? A theorem of H. Lin shows that this is uniformly true, in that for every {epsilon} > 0 there exists a {delta} > 0, independent of the size N of the matrices, for which almost commuting implies being close to a commuting pair. However, this theorem does not specifiy how {delta} depends on {epsilon}. We give uniform bounds relating {delta} and {epsilon}. The proof is constructive, giving an explicit algorithm to construct A' and B'. We provide tighter bounds in the case of block tridiagonal and tridiagnonal matrices. Within the context of quantum measurement, this implies an algorithm to construct a basis in which we can make a projective measurement that approximately measures two approximately commuting operators simultaneously. Finally, we comment briefly on the case of approximately measuring three or more approximately commuting operators using POVMs (positive operator-valued measures) instead of projective measurements.

  10. Fibonacci Identities, Matrices, and Graphs

    ERIC Educational Resources Information Center

    Huang, Danrun

    2005-01-01

    General strategies used to help discover, prove, and generalize identities for Fibonacci numbers are described along with some properties about the determinants of square matrices. A matrix proof for identity (2) that has received immense attention from many branches of mathematics, like linear algebra, dynamical systems, graph theory and others…

  11. Constitution, 29 March 1987.

    PubMed

    1987-01-01

    This document contains provisions of Haiti's 1987 Constitution relating to the family; the protection of children, aliens, and refugees; and individual rights. The age of majority in Haiti is 18, and political and civil rights are attained at age 21 regardless of sex or marital status. Haitians are equal before the law but native-born Haitians who have never renounced their nationality have special advantages. Human rights are guaranteed in conformity with the Universal Declaration of the Rights of Man. Every citizen has the right to decent housing, education, food, and social security. The state is obligated to provide citizens with appropriate means to protect, maintain, and restore their health. Primary schooling is compulsory and free. Aliens in Haiti enjoy the protection offered citizens, including a limited right to own real property. Political refugees have a right to asylum. The family is considered the foundation of society and enjoys state protection regardless of whether the family is constituted within the bonds of marriage. Legal protection is afforded mothers, children, and the aged. The Constitution also calls for creation of a Family Code to ensure protection and respect for the rights of the family.

  12. Noisy covariance matrices and portfolio optimization II

    NASA Astrophysics Data System (ADS)

    Pafka, Szilárd; Kondor, Imre

    2003-03-01

    Recent studies inspired by results from random matrix theory (Galluccio et al.: Physica A 259 (1998) 449; Laloux et al.: Phys. Rev. Lett. 83 (1999) 1467; Risk 12 (3) (1999) 69; Plerou et al.: Phys. Rev. Lett. 83 (1999) 1471) found that covariance matrices determined from empirical financial time series appear to contain such a high amount of noise that their structure can essentially be regarded as random. This seems, however, to be in contradiction with the fundamental role played by covariance matrices in finance, which constitute the pillars of modern investment theory and have also gained industry-wide applications in risk management. Our paper is an attempt to resolve this embarrassing paradox. The key observation is that the effect of noise strongly depends on the ratio r= n/ T, where n is the size of the portfolio and T the length of the available time series. On the basis of numerical experiments and analytic results for some toy portfolio models we show that for relatively large values of r (e.g. 0.6) noise does, indeed, have the pronounced effect suggested by Galluccio et al. (1998), Laloux et al. (1999) and Plerou et al. (1999) and illustrated later by Laloux et al. (Int. J. Theor. Appl. Finance 3 (2000) 391), Plerou et al. (Phys. Rev. E, e-print cond-mat/0108023) and Rosenow et al. (Europhys. Lett., e-print cond-mat/0111537) in a portfolio optimization context, while for smaller r (around 0.2 or below), the error due to noise drops to acceptable levels. Since the length of available time series is for obvious reasons limited in any practical application, any bound imposed on the noise-induced error translates into a bound on the size of the portfolio. In a related set of experiments we find that the effect of noise depends also on whether the problem arises in asset allocation or in a risk measurement context: if covariance matrices are used simply for measuring the risk of portfolios with a fixed composition rather than as inputs to optimization, the

  13. Thomas Jefferson and the Constitution.

    ERIC Educational Resources Information Center

    Peterson, Merrill D.

    1987-01-01

    Examines Thomas Jefferson's role in the making and interpretation of the United States Constitution. Discusses the dominant features of Jefferson's constitutional theory; the character of Jefferson's presidency; and Jefferson's ongoing concern about constitutional preservation and change. Lists important dates in the history of the constitution.…

  14. The Constitution in Other Lands.

    ERIC Educational Resources Information Center

    Bill of Rights in Action, 1987

    1987-01-01

    Designed for classroom teaching, this document contains articles on the new constitutions of Japan, South Korea, and the Philippine Islands which were modeled in part on the U.S. Constitution. These countries' experiences with constitutional government are examined, and whether or not the U.S. Constitution can be a suitable model for other…

  15. Making Porous Luminescent Regions In Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W.; Jones, Eric W.

    1994-01-01

    Regions damaged by ion implantation stain-etched. Porous regions within single-crystal silicon wafers fabricated by straightforward stain-etching process. Regions exhibit visible photoluminescence at room temperature and might constitute basis of novel class of optoelectronic devices. Stain-etching process has advantages over recently investigated anodic-etching process. Process works on both n-doped and p-doped silicon wafers. Related development reported in article, "Porous Si(x)Ge(1-x) Layers Within Single Crystals of Si," (NPO-18836).

  16. Constitution, 30 September 1987.

    PubMed

    1987-01-01

    This document reprints provisions of Suriname's 1987 Constitution relating to freedom of movement, equality of the sexes, the right to life, the right to physical integrity, equal opportunity in employment, the family, children, maternity benefits, the right to health care, parental responsibilities, free and compulsory education, illiteracy, and housing. All citizens enjoy freedom of movement within the bounds of the law. All people within the territory may claim protection of their person and property, and discrimination is forbidden on the basis of birth, sex, race, language, religion, education, political beliefs, economic position, or other status. Torture or inhuman treatment and punishment is banned, and the right to life is protected by the law. The state guarantees the right to work, and all employees have the right to equal remuneration for equal work, safe working conditions, and sufficient rest and recreation. The family is protected, and husbands and wives are equal before the law. Children have the right to protection, and working women are entitled to paid maternity leave. The state promotes the right to good health by systematic improvements in living and working conditions and dissemination of health education. The right to education is protected by the provision of free general primary education and efforts of the state to enable all citizens to achieve the highest educational levels possible. The Constitution also calls for the institution of a plan to allow the state to create public housing.

  17. S-matrices and integrability

    NASA Astrophysics Data System (ADS)

    Bombardelli, Diego

    2016-08-01

    In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU(2), SU(3) chiral Gross-Neveu models. In loving memory of Lilia Grandi.

  18. Heterogeneous porous media in hydrology

    NASA Astrophysics Data System (ADS)

    Ababou, Rachid

    In natural geologic formations, flow and transport-related processes are perturbed by multidimensional and anisotropic material heterogeneities of diverse sizes, shapes, and origins (bedding, layering, inclusions, fractures, grains, for example). Heterogeneity tends to disperse and mix transported quantities and may initiate new transfer mechanisms not seen in ideally homogeneous porous media. Effective properties such as conductivity and dispersivity may not be simple averages of locally measured quantities.The special session, “Effective Constitutive Laws for Heterogeneous Porous Media,” convened at AGU's 1992 Fall Meeting in San Francisco, addressed these issue. Over forty-five contributions, both oral and poster, covering a broad range of physical phenomena were presented. The common theme was the macroscale characterization and modeling of flow and flow-related processes in geologic media that are heterogeneous at various scales (from grain size or fracture aperture, up to regional scales). The processes analyzed in the session included coupled hydro-mechanical processes; Darcy-type flow in the saturated, unsaturated, or two-phase regimes; tracer transport, dilution, and dispersion. These processes were studied for either continuous (porous) or discontinuous (fractured) media.

  19. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2002-01-01

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  20. Open-cell glass crystalline porous material

    DOEpatents

    Anshits, Alexander G.; Sharonova, Olga M.; Vereshchagina, Tatiana A.; Zykova, Irina D.; Revenko, Yurii A.; Tretyakov, Alexander A.; Aloy, Albert S.; Lubtsev, Rem I.; Knecht, Dieter A.; Tranter, Troy J.; Macheret, Yevgeny

    2003-12-23

    An open-cell glass crystalline porous material made from hollow microspheres which are cenospheres obtained from fly ash, having an open-cell porosity of up to 90 vol. % is produced. The cenospheres are separated into fractions based on one or more of grain size, density, magnetic or non-magnetic, and perforated or non-perforated. Selected fractions are molded and agglomerated by sintering with a binder at a temperature below the softening temperature, or without a binder at a temperature about, or above, the softening temperature but below the temperature of liquidity. The porous material produced has an apparent density of 0.3-0.6 g/cm.sup.3, a compressive strength in the range of 1.2-3.5 MPa, and two types of openings: through-flow wall pores in the cenospheres of 0.1-30 micrometers, and interglobular voids between the cenospheres of 20-100 micrometers. The porous material of the invention has properties useful as porous matrices for immobilization of liquid radioactive waste, heat-resistant traps and filters, supports for catalysts, adsorbents and ion-exchangers.

  1. Constitution, 5 May 1989.

    PubMed

    1989-01-01

    This document contains provisions of Cambodia's Constitution of May 5, 1989. Article 7 gives men and women equal rights in marriage and the family, calls for monogamous marriages, and affords social protection to mothers and children. Article 8 guides parent-child relationships. The 14th article defines state property, and the 15th gives citizens full rights to own, use, and inherit land. The use of agricultural and forested land can only be changed with permission. Article 22 assigns educational responsibilities to the state, including free elementary education and a gradual expansion of higher education. Adult literacy classes are also promoted. Article 26 guarantees free medical consultations, and article 27 gives women a 90-day paid maternity leave. Breast-feeding women are also given special privileges. Article 33 guarantees the right to pay equity and to social security benefits. Article 36 grants the freedom to travel, the inviolability of homes, and privacy in correspondence of all types.

  2. Rotationally invariant ensembles of integrable matrices.

    PubMed

    Yuzbashyan, Emil A; Shastry, B Sriram; Scaramazza, Jasen A

    2016-05-01

    We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)-a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N-M independent commuting N×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.

  3. Genetic code, hamming distance and stochastic matrices.

    PubMed

    He, Matthew X; Petoukhov, Sergei V; Ricci, Paolo E

    2004-09-01

    In this paper we use the Gray code representation of the genetic code C=00, U=10, G=11 and A=01 (C pairs with G, A pairs with U) to generate a sequence of genetic code-based matrices. In connection with these code-based matrices, we use the Hamming distance to generate a sequence of numerical matrices. We then further investigate the properties of the numerical matrices and show that they are doubly stochastic and symmetric. We determine the frequency distributions of the Hamming distances, building blocks of the matrices, decomposition and iterations of matrices. We present an explicit decomposition formula for the genetic code-based matrix in terms of permutation matrices, which provides a hypercube representation of the genetic code. It is also observed that there is a Hamiltonian cycle in a genetic code-based hypercube.

  4. Rotationally invariant ensembles of integrable matrices

    NASA Astrophysics Data System (ADS)

    Yuzbashyan, Emil A.; Shastry, B. Sriram; Scaramazza, Jasen A.

    2016-05-01

    We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT)—a counterpart of random matrix theory (RMT) for quantum integrable models. A type-M family of integrable matrices consists of exactly N -M independent commuting N ×N matrices linear in a real parameter. We first develop a rotationally invariant parametrization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, similar to the construction of Gaussian ensembles in the RMT.

  5. Porous Carriers for Controlled/Modulated Drug Delivery

    PubMed Central

    Ahuja, G.; Pathak, K.

    2009-01-01

    Considerable research efforts have been directed in recent years towards the development of porous carriers as controlled drug delivery matrices because of possessing several features such as stable uniform porous structure, high surface area, tunable pore size and well-defined surface properties. Owing to wide range of useful properties porous carriers have been used in pharmaceuticals for many purposes including development of floating drug delivery systems, sustained drug delivery systems. Various types of pores like open, closed, transport and blind pores in the porous solid allow them to adsorb drugs and release them in a more reproducible and predictable manner. Pharmaceutically exploited porous adsorbents includes, silica (mesoporous), ethylene vinyl acetate (macroporous), polypropylene foam powder (microporous), titanium dioxide (nanoporous). When porous polymeric drug delivery system is placed in contact with appropriate dissolution medium, release of drug to medium must be preceded by the drug dissolution in the water filled pores or from surface and by diffusion through the water filled channels. The porous carriers are used to improve the oral bioavailability of poorly water soluble drugs, to increase the dissolution of relatively insoluble powders and conversion of crystalline state to amorphous state. PMID:20376211

  6. Porous Shape Memory Polymers.

    PubMed

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C; Wilson, Thomas S; Maitland, Duncan J

    2013-02-04

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use.

  7. Tailored Porous Materials

    SciTech Connect

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  8. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  9. Constitutive models in LAME.

    SciTech Connect

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    The Library of Advanced Materials for Engineering (LAME) provides a common repository for constitutive models that can be used in computational solid mechanics codes. A number of models including both hypoelastic (rate) and hyperelastic (total strain) constitutive forms have been implemented in LAME. The structure and testing of LAME is described in Scherzinger and Hammerand ([3] and [4]). The purpose of the present report is to describe the material models which have already been implemented into LAME. The descriptions are designed to give useful information to both analysts and code developers. Thus far, 33 non-ITAR/non-CRADA protected material models have been incorporated. These include everything from the simple isotropic linear elastic models to a number of elastic-plastic models for metals to models for honeycomb, foams, potting epoxies and rubber. A complete description of each model is outside the scope of the current report. Rather, the aim here is to delineate the properties, state variables, functions, and methods for each model. However, a brief description of some of the constitutive details is provided for a number of the material models. Where appropriate, the SAND reports available for each model have been cited. Many models have state variable aliases for some or all of their state variables. These alias names can be used for outputting desired quantities. The state variable aliases available for results output have been listed in this report. However, not all models use these aliases. For those models, no state variable names are listed. Nevertheless, the number of state variables employed by each model is always given. Currently, there are four possible functions for a material model. This report lists which of these four methods are employed in each material model. As far as analysts are concerned, this information is included only for the awareness purposes. The analyst can take confidence in the fact that model has been properly implemented

  10. This Constitution: A Bicentennial Chronicle.

    ERIC Educational Resources Information Center

    This Constitution, 1986

    1986-01-01

    Providing a link between constitutional scholars and the planners of school and public programs observing the Bicentennial of the United States Constitution, this series of the Bicentennial Chronicles features articles that provide a link between scholars of the Constitution and the people who will be planning programs for the public and for the…

  11. Constitution, 3 February 1987.

    PubMed

    1987-01-01

    This document contains provisions of the 1987 Constitution of the Philippines. The state policies reprinted from Article 2 note that the state recognizes the sanctity of family life and protects the life of the mother and of the unborn from conception. Women and men are afforded equality before the law. The state prioritizes education, science and technology, arts, culture, and sports and promotes comprehensive rural development and agrarian reform. Provisions reprinted from Article 13 (Social Justice and Human Rights) cover agrarian and natural resources reform, urban land reform and housing, health, and protection of women in the workforce. Sections from Article 14 (Education, Science and Technology, Arts, Culture, and Sports) set forth the state's duty to make quality education accessible to all citizens through a compulsory system of free public education, provision of incentives to deserving students, encouragement of informal education, and provision of adult education. Article 15, on the family, recognizes the family as the foundation of the nation and marriage as the foundation of the family. Spouses have the right to found a family, children have the right to appropriate care, the family has the right to a living wage and income, families or family associations have the right to participate in the planning and implementation of policies and programs that affect them, and the family has the duty to care for its elderly.

  12. Canonical form of Hamiltonian matrices

    NASA Astrophysics Data System (ADS)

    Zuker, A. P.; Waha Ndeuna, L.; Nowacki, F.; Caurier, E.

    2001-08-01

    On the basis of shell model simulations, it is conjectured that the Lanczos construction at fixed quantum numbers defines-within fluctuations and behavior very near the origin-smooth canonical matrices whose forms depend on the rank of the Hamiltonian, dimensionality of the vector space, and second and third moments. A framework emerges that amounts to a general Anderson model capable of dealing with ground state properties and strength functions. The smooth forms imply binomial level densities. A simplified approach to canonical thermodynamics is proposed.

  13. Capture of particles in soft porous media

    NASA Astrophysics Data System (ADS)

    Louvet, N.; Höhler, R.; Pitois, O.

    2010-10-01

    We investigate the capture of particles in soft porous media. Liquid foam constitutes a model system for such a study, allowing the radii of passage in the pore space to be tuned over several orders of magnitude by adjusting the liquid volume fraction. We show how particle capture is determined by the coupling of interstitial liquid flow and network deformation, and present a simple model of the capture process that shows good agreement with our experimental data.

  14. On phase transformation behavior of porous Shape Memory Alloys.

    PubMed

    Liu, Bingfei; Dui, Guansuo; Zhu, Yuping

    2012-01-01

    This paper is concerned on the phase transformation mechanism of porous Shape Memory Alloys (SMAs). A unit-cell model is adopted to establish the constitutive relation for porous SMAs, the stress distributions, the phase distributions and the martensitic volume fractions for the model are then derived under both pure hydrostatic stress and uniaxial compression. Further, an example for the uniaxial response under compression for a porous Ni-Ti SMA material considering hydrostatic stress is supplied. Good agreement between the theoretical prediction of the proposed model and published experimental data is observed.

  15. Constitution, 1989. [Selected provisions].

    PubMed

    1989-01-01

    Chapter XII of the Hungarian Constitution, 1989, details the Fundamental Rights and Duties of Citizens. Everyone lawfully within the territory of Hungary has the right to liberty of movement and the freedom to choose his or her residence, except when restricted by law, including the right to leave his or her residence or county. The Republic of Hungary grants asylum to foreign citizens who were persecuted for racial, religious ethnic, linguistic, or political reasons. Men and women shall equally enjoy all civil, political, economic, social and political rights. Mothers are entitled to special care and protection before and after childbirth; women and juveniles are protected at work by special regulations. Every child has the right to special care an assistance from his or her family, the State, and society, for appropriate physical, spiritual, and moral development. Parents shall decide the kind of education their children receive. Hungary grants equal rights to all person within its territories, without regard to race, color, sex, language, religion, political, or other opinion, national, and social origin, property, birth and other status. Prejudicial discrimination shall be severely punished. Everyone has the right to work, to the free choice of employment and profession and to equal pay for equal work. Citizens have the right to social security, including social services necessary in old age, sickness, disability, widowhood, orphanhood an unemployment through no fault of their own. Hungary guarantees the right to culture for its citizens and realized this right by free and compulsory elementary education, by secondary and higher education which is accessible to all on the basis of capacity, and by the financial support of those receiving an education.

  16. Constitutive equations for an electroactive polymer

    NASA Astrophysics Data System (ADS)

    Tixier, Mireille; Pouget, Joël

    2016-07-01

    Ionic electroactive polymers can be used as sensors or actuators. For this purpose, a thin film of polyelectrolyte is saturated with a solvent and sandwiched between two platinum electrodes. The solvent causes a complete dissociation of the polymer and the release of small cations. The application of an electric field across the thickness results in the bending of the strip and vice versa. The material is modeled by a two-phase continuous medium. The solid phase, constituted by the polymer backbone inlaid with anions, is depicted as a deformable porous media. The liquid phase is composed of the free cations and the solvent (usually water). We used a coarse grain model. The conservation laws of this system have been established in a previous work. The entropy balance law and the thermodynamic relations are first written for each phase and then for the complete material using a statistical average technique and the material derivative concept. One deduces the entropy production. Identifying generalized forces and fluxes provides the constitutive equations of the whole system: the stress-strain relations which satisfy a Kelvin-Voigt model, generalized Fourier's and Darcy's laws and the Nernst-Planck equation.

  17. Temperature Mapping in Hydrogel Matrices Using Unmodified Digital Camera.

    PubMed

    Darwish, Ghinwa H; Fakih, Hassan H; Karam, Pierre

    2017-02-09

    We report a simple, generally applicable, and noninvasive fluorescent method for mapping thermal fluctuations in hydrogel matrices using an unmodified commercially available digital single-lens reflex camera (DSLR). The nanothermometer is based on the complexation of short conjugated polyelectrolytes, poly(phenylene ethynylene) carboxylate, with an amphiphilic polymer, polyvinylpyrrolidone, which is in turn trapped within the porous network of a gel matrix. Changes in the temperature lead to a fluorescent ratiometric response with a maximum relative sensitivity of 2.0% and 1.9% at 45.0 °C for 0.5% agarose and agar, respectively. The response was reversible with no observed hysteresis when samples were cycled between 20 and 40 °C. As a proof of concept, the change in fluorescent signal/color was captured using a digital camera. The images were then dissected into their red-green-blue (RGB) components using a Matlab routine. A linear correlation was observed between the hydrogel temperature and the green and blue intensity channels. The reported sensor has the potential to provide a wealth of information when thermal fluctuations mapped in soft gels matrices are correlated with chemical or physical processes.

  18. Characterization of a New Heat Dissipation Matric Potential Sensor

    PubMed Central

    Matile, Luzius; Berger, Roman; Wächter, Daniel; Krebs, Rolf

    2013-01-01

    Soil moisture sensors can help to reduce the amount of water needed for irrigation. In this paper we describe the PlantCare soil moisture sensor as a new type of heat dissipation sensor, its calibration and the correction for temperature changes. With the PlantCare sensor it is possible to measure the matric potential indirectly to monitor or control irrigation. This sensor is based on thermal properties of a synthetic felt. After a defined heating phase the cooling time to a threshold temperature is a function of the water content in the synthetic felt. The water content in this porous matrix is controlled by the matric potential in the surrounding soil. Calibration measurements have shown that the sensor is most sensitive to −400 hPa and allows lower sensitivity measurements to −800 hPa. The disturbing effect of the temperature change during the measurement on the cooling time can be corrected by a linear function and the differences among sensors are minimized by a two point calibration. PMID:23344384

  19. Essential Medicines in National Constitutions

    PubMed Central

    Toebes, Brigit; Hogerzeil, Hans

    2016-01-01

    Abstract A constitutional guarantee of access to essential medicines has been identified as an important indicator of government commitment to the progressive realization of the right to the highest attainable standard of health. The objective of this study was to evaluate provisions on access to essential medicines in national constitutions, to identify comprehensive examples of constitutional text on medicines that can be used as a model for other countries, and to evaluate the evolution of constitutional medicines-related rights since 2008. Relevant articles were selected from an inventory of constitutional texts from WHO member states. References to states’ legal obligations under international human rights law were evaluated. Twenty-two constitutions worldwide now oblige governments to protect and/or to fulfill accessibility of, availability of, and/or quality of medicines. Since 2008, state responsibilities to fulfill access to essential medicines have expanded in five constitutions, been maintained in four constitutions, and have regressed in one constitution. Government commitments to essential medicines are an important foundation of health system equity and are included increasingly in state constitutions. PMID:27781006

  20. Porous organic molecules

    NASA Astrophysics Data System (ADS)

    Holst, James R.; Trewin, Abbie; Cooper, Andrew I.

    2010-11-01

    Most synthetic materials that show molecular-scale porosity consist of one-, two- or three-dimensional networks. Porous metal-organic frameworks in particular have attracted a lot of recent attention. By contrast, discrete molecules tend to pack efficiently in the solid state, leaving as little empty space as possible, which leads to non-porous materials. This Perspective discusses recent developments with discrete organic molecules that are porous in the solid state. Such molecules, which may be either crystalline or amorphous, can be categorized as either intrinsically porous (containing permanent covalent cavities) or extrinsically porous (inefficiently packed). We focus on the possible advantages of organic molecules over inorganic or hybrid systems in terms of molecular solubility, choice of components and functionalities, and structural mobility and responsiveness in non-covalent extended solids. We also highlight the potential for 'undiscovered' porous systems among the large number of cage-like organic molecules that are already known.

  1. Engineered matrices for bone regeneration

    NASA Astrophysics Data System (ADS)

    Winn, Shelley R.; Hu, Yunhua; Pugh, Amy; Brown, Leanna; Nguyen, Jesse T.; Hollinger, Jeffrey O.

    2000-06-01

    Traditional therapies of autografts and allogeneic banked bone can promote reasonable clinical outcome to repair damaged bone. However, under certain conditions the success of these traditional approaches plummets, providing the incentive for researchers to develop clinical alternatives. The evolving field of tissue engineering in the musculoskeletal system attempts to mimic many of the components from the intact, healthy subject. Those components consist of a biologic scaffold, cells, extracellular matrix, and signaling molecules. The bone biomimetic, i.e., an engineered matrix, provides a porous structural architecture for the regeneration and ingrowth of osseous tissue at the site of injury. To further enhance the regenerative cascade, our strategy has involved porous biodegradable scaffolds containing and releasing signaling molecules and providing a suitable environment for cell attachment, growth and differentiation. In addition, the inclusion of genetically modified osteogenic precursor cells has brought the technology closer to developing a tissue-engineered equivalent. The presentation will describe various formulations and the methods utilized to evaluate the clinical utility of these biomimetics.

  2. Constitutional Issues--Watergate and the Constitution. Teaching with Documents.

    ERIC Educational Resources Information Center

    National Archives and Records Administration, Washington, DC.

    When U.S. President Richard Nixon resigned in 1974 in the wake of the Watergate scandal, it was only the second time that impeachment of a president had been considered. Although the U.S. Constitution has provisions for a person removed from office to be indicted, there are no guidelines in the Constitution about a President who has resigned. The…

  3. Carbon in the matrices of ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Makjanic, J.; Vis, R. D.; Hovenier, J. W.; Heymann, D.

    1993-03-01

    Carbon in the petrologic matrices of a number of ordinary chondrites of groups H, L, and LL, and of types 3 through 6 was studied with a nuclear microprobe and a Raman microprobe. The majority of the matrices had carbon contents in the narrow range between 0.03 and 0.2 wt pct. The carbon content decreased only slightly with increasing petrologic type. Carbon-rich coats around troilite and/or metal phases occurred in five meteorites. Poorly ordered carbon was found in the matrices. The carbon in the meteorites of higher petrologic types was slightly better ordered than in the meteorites of lower types. The narrow range of carbon contents and the similarity of the structural form of carbon in the matrices of the measured ordinary chondrites, which represent all groups and types, imply that their matrices may contain a common component, which might be of interstellar origin.

  4. Constitutional Law and Liberal Education.

    ERIC Educational Resources Information Center

    Clor, Harry

    1985-01-01

    By studying constitutional law, students learn about the relationship between democratic theory and practice, one of the main concerns of liberal education. The mind is enlarged when it must apply ethical standards and political ideas to real human problems. How a political science professor teaches constitutional law is discussed. (RM)

  5. Reordering American Constitutional Law Teaching.

    ERIC Educational Resources Information Center

    Gerber, Scott D.

    1994-01-01

    Maintains that constitutional law is the cornerstone of an undergraduate public law curriculum. Asserts that there is a welcome trend toward teaching the subject over a two-semester sequence, instead of only one. Describes course content and teaching strategies used in a college constitutional law course. (CFR)

  6. Constitution And Bylaws: 2004 Edition

    ERIC Educational Resources Information Center

    Distance Education and Training Council, 2004

    2004-01-01

    This document contains the constitution and bylaws of the Distance Education and Training Council. The constitution and bylaws include 13 articles. Sections include: Name; Mission and Goals; Administration of the Council; Membership; Meetings; The Commission; Terms of Office; Officers; Committees; Compensation; Dues and Assessments; Miscellaneous…

  7. How Capitalistic Is the Constitution?

    ERIC Educational Resources Information Center

    Goldwin, Robert A., Ed.; Schambra, William A., Ed.

    Second in a three-part series designed to help prepare the nation for a thoughtful observance of the Constitutional bicentennial, this publication contains seven essays on the topic of capitalism and the Constitution. "American Democracy and the Acquisitive Spirit" (Marc F. Plattner) supports the argument that the framers of the…

  8. The Constitution and Its Critics

    ERIC Educational Resources Information Center

    Main, Thomas J.

    2011-01-01

    In planning a freshman undergraduate curriculum with colleagues recently, the question arose as to what type of understanding educators wanted to impart to their students about the Constitution. The alleged defects of the Constitution that these books point to are wide-ranging and can be classified into various categories. Some problems--such as…

  9. Bi-isotropic constitutive relations

    NASA Astrophysics Data System (ADS)

    Sihvola, A. H.; Lindell, I. V.

    1991-03-01

    The constitutive relations of general bi-isotropic media, requiring four material parameters, can be written in different ways to describe their electromagnetic behavior. This communication contains a two-way 'dictionary' between a proposed formulation of the constitutive relations with three other sets of relations, generalized from relations used for chiral materials.

  10. Analysis of surface microtopography of biodegradable polymer matrices using confocal reflection microscopy.

    PubMed

    Semler, E J; Tjia, J S; Moghe, P V

    1997-01-01

    Currently, synthetic degradable polymers are frequently employed as culture substrates prior to cell transplantation and as implantable scaffolds for cellular infiltration during soft and hard tissue repair. The surface microstructure of matrices based on such polymers may be important in controlling cellular anchorage, spreading, and growth on the external surface, as well as infiltration into the voids of porous polymer scaffolds. While the chemistry, bulk structure, and mechanical properties of such polymers have been extensively studied, the surface microstructure has not yet been systematically examined, particularly following polymer degradation. In this study, we present the first account of the use of confocal laser-scanning reflection microscopy (CLSM) to visualize and quantitate the microtopography of the surface of porous matrices of poly(lactic acid)/poly(glycolic acid) (PLAGA) copolymers following polymer degradation. Utilizing this technique, we report that the surface morphology of PLAGA matrices changes significantly upon degradation, with increased local clustering of textured regions. Our quantitative analysis suggests that polymer degradation results in a lower spatially-averaged surface roughness, with significant cyclical variations observed at later time points. The computed surface correlation function was observed to increase upon degradation, confirming the results from our morphological studies. Finally, we demonstrate the efficacy of CLSM to concomitantly image both the polymer surface and locally attached cells, in real time.

  11. Hierarchical Porous Structures

    SciTech Connect

    Grote, Christopher John

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  12. Ventilation of porous media

    DOEpatents

    Neeper, D.A.

    1994-02-22

    Methods are presented for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction. 10 figures.

  13. Ventilation of porous media

    DOEpatents

    Neeper, Donald A.

    1994-01-01

    Methods for distributing gases throughout the interstices of porous materials and removing volatile substances from the interstices of porous materials. Continuous oscillation of pressures and flows results in increased penetration of the interstices by flowing gases and increased transport of gaseous components out of the interstices. The invention is particularly useful in soil vapor extraction.

  14. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M.

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  15. Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique.

    PubMed

    Leong, K F; Phua, K K; Chua, C K; Du, Z H; Teo, K O

    2001-01-01

    New techniques in solid freeform fabrication (SFF) have prompted research into methods of manufacturing and controlling porosity. The strategy of this research is to integrate computer aided design (CAD) and the SFF technique of selective laser sintering (SLS) to fabricate porous polymeric matrix drug delivery devices (DDDs). This study focuses on the control of the porosity of a matrix by manipulating the SLS process parameters of laser beam power and scan speed. Methylene blue dye is used as a drug model to infiltrate the matrices via a degassing method; visual inspection of dye penetration into the matrices is carried out. Most notably, the laser power matrices show a two-stage penetration process. The matrices are sectioned along the XZ planes and viewed under scanning electron microscope (SEM). The morphologies of the samples reveal a general increase in channel widths as laser power decreases and scan speed increases. The fractional release profiles of the matrices are determined by allowing the dye to diffuse out in vitro within a controlled environment. The results show that laser power and scan speed matrices deliver the dye for 8-9 days and have an evenly distributed profile. Mercury porosimetry is used to analyse the porosity of the matrices. Laser power matrices show a linear relationship between porosity and variation in parameter values. However, the same relationship for scan speed matrices turns out to be rather inconsistent. Relationships between the SLS parameters and the experimental results are developed using the fractional release rate equation for the infinite slab porous matrix DDD as a basis for correlation.

  16. Rotationally invariant ensembles of integrable matrices

    NASA Astrophysics Data System (ADS)

    Scaramazza, Jasen; Yuzbashyan, Emil; Shastry, Sriram

    We construct ensembles of random integrable matrices with any prescribed number of nontrivial integrals and formulate integrable matrix theory (IMT) - a counterpart of random matrix theory (RMT) for quantum integrable models. A type- M family of integrable matrices consists of exactly N - M independent commuting N × N matrices linear in a real parameter. We first develop a rotationally invariant parameterization of such matrices, previously only constructed in a preferred basis. For example, an arbitrary choice of a vector and two commuting Hermitian matrices defines a type-1 family and vice-versa. Higher types similarly involve a random vector and two matrices. The basis-independent formulation allows us to derive the joint probability density for integrable matrices, in a manner similar to the construction of Gaussian ensembles in the RMT. This work was supported in part by the David and Lucille Packard Foundation. The work at UCSC was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # FG02-06ER46319.

  17. Modeling of porous elastic viscoplastic material with tensile failure

    SciTech Connect

    Glenn, L A; Rubin, M; Vorobiev, O

    1998-11-01

    This work describes simple but comprehensive constitutive equations that model a number of physical phenomena exhibited by dry porous geological materials and metals. Moreover, formulas have been developed for robust numerical integration of the evolution equations at the element level that can be easily implemented into standard computer programs for dynamic response of materials.

  18. Constitutional aneuploidy and cancer predisposition†

    PubMed Central

    Ganmore, Ithamar; Smooha, Gil; Izraeli, Shai

    2009-01-01

    Constitutional aneuploidies are rare syndromes associated with multiple developmental abnormalities and the alterations in the risk for specific cancers. Acquired somatic chromosomal aneuploidies are the most common genetic aberrations in sporadic cancers. Thus studies of these rare constitutional aneuploidy syndromes are important not only for patient counseling and clinical management, but also for deciphering the mechanisms by which chromosomal aneuploidy affect cancer initiation and progression. Here we review the major constitutional aneuploidy syndromes and suggest some general mechanisms for the associated cancer predisposition. PMID:19297405

  19. Remarks on turbulent constitutive relations

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Lumley, John L.

    1993-01-01

    The paper demonstrates that the concept of turbulent constitutive relations can be used to construct general models for various turbulent correlations. Some of the Generalized Cayley-Hamilton formulas for relating tensor products of higher extension to tensor products of lower extension are introduced. The combination of dimensional analysis and invariant theory can lead to 'turbulent constitutive relations' (or general turbulence models) for, in principle, any turbulent correlations. As examples, the constitutive relations for Reynolds stresses and scalar fluxes are derived. The results are consistent with ones from Renormalization Group (RNG) theory and two-scale Direct-Interaction Approximation (DIA) method, but with a more general form.

  20. Special symmetric quark mass matrices

    NASA Astrophysics Data System (ADS)

    Silva-Marcos, J. I.

    1998-12-01

    We give a procedure to construct a special class of symmetric quark mass matrices near the democratic limit of equal Yukawa couplings for each sector. It is shown that within appropriate weak-bases, the requirements of symmetry and arg[det(M)]=0 are very strong conditions, that necessarily lead to a Cabibbo angle given by Vus=sqrt(md/ms), and to Vcb~ms/mb, in first order. In addition, we prove that the recently classified ansätze, which also reproduce these mixing matrix relations, and which were based on the hypothesis of the Universal Strength for Yukawa couplings, where all Yukawa couplings have equal moduli while the flavour dependence is only in their phases, are, in fact, particular cases of the generalized symmetric quark mass matrix ansätze we construct here. In an excellent numerical example, the experimental values on all quark mixings and masses are accommodated, and the CP violation phase parameter is shown to be crucially dependent on the values of mu and Vus.

  1. Community Detection for Correlation Matrices

    NASA Astrophysics Data System (ADS)

    MacMahon, Mel; Garlaschelli, Diego

    2015-04-01

    A challenging problem in the study of complex systems is that of resolving, without prior information, the emergent, mesoscopic organization determined by groups of units whose dynamical activity is more strongly correlated internally than with the rest of the system. The existing techniques to filter correlations are not explicitly oriented towards identifying such modules and can suffer from an unavoidable information loss. A promising alternative is that of employing community detection techniques developed in network theory. Unfortunately, this approach has focused predominantly on replacing network data with correlation matrices, a procedure that we show to be intrinsically biased because of its inconsistency with the null hypotheses underlying the existing algorithms. Here, we introduce, via a consistent redefinition of null models based on random matrix theory, the appropriate correlation-based counterparts of the most popular community detection techniques. Our methods can filter out both unit-specific noise and system-wide dependencies, and the resulting communities are internally correlated and mutually anticorrelated. We also implement multiresolution and multifrequency approaches revealing hierarchically nested subcommunities with "hard" cores and "soft" peripheries. We apply our techniques to several financial time series and identify mesoscopic groups of stocks which are irreducible to a standard, sectorial taxonomy; detect "soft stocks" that alternate between communities; and discuss implications for portfolio optimization and risk management.

  2. Kerov's interlacing sequences and random matrices

    NASA Astrophysics Data System (ADS)

    Bufetov, Alexey

    2013-11-01

    To a N × N real symmetric matrix Kerov assigns a piecewise linear function whose local minima are the eigenvalues of this matrix and whose local maxima are the eigenvalues of its (N - 1) × (N - 1) submatrix. We study the scaling limit of Kerov's piecewise linear functions for Wigner and Wishart matrices. For Wigner matrices the scaling limit is given by the Verhik-Kerov-Logan-Shepp curve which is known from asymptotic representation theory. For Wishart matrices the scaling limit is also explicitly found, and we explain its relation to the Marchenko-Pastur limit spectral law.

  3. Revisiting the texture zero neutrino mass matrices

    NASA Astrophysics Data System (ADS)

    Singh, Madan; Ahuja, Gulsheen; Gupta, Manmohan

    2016-12-01

    In the light of refined and large measurements of the reactor mixing angle θ, we have revisited the texture three- and two-zero neutrino mass matrices in the flavor basis. For Majorana neutrinos, it has been explicitly shown that all the texture three-zero mass matrices remain ruled out. Further, for both normal and inverted mass ordering, for the texture two-zero neutrino mass matrices one finds interesting constraints on the Dirac-like CP-violating phase δ and Majorana phases ρ and σ.

  4. Random Matrices and Lyapunov Coefficients Regularity

    NASA Astrophysics Data System (ADS)

    Gallavotti, Giovanni

    2017-02-01

    Analyticity and other properties of the largest or smallest Lyapunov exponent of a product of real matrices with a "cone property" are studied as functions of the matrices entries, as long as they vary without destroying the cone property. The result is applied to stability directions, Lyapunov coefficients and Lyapunov exponents of a class of products of random matrices and to dynamical systems. The results are not new and the method is the main point of this work: it is is based on the classical theory of the Mayer series in Statistical Mechanics of rarefied gases.

  5. [Basal cell carcinoma with matrical differentiation].

    PubMed

    Goldman-Lévy, Gabrielle; Frouin, Eric; Soubeyran, Isabelle; Maury, Géraldine; Guillot, Bernard; Costes, Valérie

    2015-04-01

    Basal cell carcinoma with matrical differentiation is a very rare variant of basal cell carcinoma. To our knowledge, less than 30 cases have been reported. This tumor is composed of basaloid lobules showing a differentiation toward the pilar matrix cells. Recently, it has been demonstrated that beta-catenin would interfer with physiopathogenesis of matrical tumors, in particular pilomatricomas, but also basal cell carcinomas with matrical differentiation. This is a new case, with immunohistochemical and molecular analysis of beta-catenin, in order to explain its histogenesis.

  6. Direct dialling of Haar random unitary matrices

    NASA Astrophysics Data System (ADS)

    Russell, Nicholas J.; Chakhmakhchyan, Levon; O’Brien, Jeremy L.; Laing, Anthony

    2017-03-01

    Random unitary matrices find a number of applications in quantum information science, and are central to the recently defined boson sampling algorithm for photons in linear optics. We describe an operationally simple method to directly implement Haar random unitary matrices in optical circuits, with no requirement for prior or explicit matrix calculations. Our physically motivated and compact representation directly maps independent probability density functions for parameters in Haar random unitary matrices, to optical circuit components. We go on to extend the results to the case of random unitaries for qubits.

  7. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  8. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Lindholm, U. S.

    1984-01-01

    A state-of-the-art review of applicable constitutive models with selection of two for detailed comparison with a wide range of experimental tests was conducted. The experimental matrix contained uniaxial and biaxial tensile, creep, stress relaxation, and cyclic fatigue tests at temperatures to 1093 C and strain rates from .0000001 to .001/sec. Some nonisothermal cycles will also be run. The constitutive models will be incorporated into the MARC finite element structural analysis program with a demonstration computation made for advanced turbine blade configuration. In the code development work, particular emphasis is being placed on developing efficient integration algorithms for the highly nonlinear and stiff constitutive equations. Another area of emphasis is the appropriate and efficient methodology for determing constitutive constants from a minimum extent of experimental data.

  9. The Constitution's Prescription for Freedom.

    ERIC Educational Resources Information Center

    Peach, Lucinda

    1986-01-01

    Examines how the framers of the Constitution came to choose our system of government, how that system was designed to function, and how the separation of powers has served to maintain our democracy despite attempts to violate it. (JDH)

  10. Are Sanctions on Employers Constitutional?

    ERIC Educational Resources Information Center

    Gollobin, Ira

    1988-01-01

    Questions the constitutional validity of employer sanctions used to deter illegal immigration under the Immigration Reform and Control Act. Points out the anomaly of using criminal penalties to deter a civil, administrative violation. (FMW)

  11. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  12. Speciation of nanoscale objects by nanoparticle imprinted matrices

    NASA Astrophysics Data System (ADS)

    Hitrik, Maria; Pisman, Yamit; Wittstock, Gunther; Mandler, Daniel

    2016-07-01

    The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The selective matrix is formed by the adsorption of either oleic acid (OA) or poly(acrylic acid) (PAA) on the non-occupied areas. The AuNPs are removed by electrooxidation to form complementary voids. These voids are able to recognize the AuNPs selectively based on their size. Furthermore, the selectivity could be improved by adsorbing an additional layer of 1-hexadecylamine, which deepened the voids. Interestingly, silver nanoparticles (AgNPs) were also recognized if their size matched those of the template AuNPs. The steps in assembling the NAIMs and the reuptake of the nanoparticles were characterized carefully. The prospects for the analytical use of NAIMs, which are simple, of small dimension, cost-efficient and portable, are in the sensing and separation of nanoobjects.The toxicity of nanoparticles is not only a function of the constituting material but depends largely on their size, shape and stabilizing shell. Hence, the speciation of nanoscale objects, namely, their detection and separation based on the different species, similarly to heavy metals, is of outmost importance. Here we demonstrate the speciation of gold nanoparticles (AuNPs) and their electrochemical detection using the concept of ``nanoparticles imprinted matrices'' (NAIM). Negatively charged AuNPs are adsorbed as templates on a conducting surface previously modified with polyethylenimine (PEI). The

  13. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Ramaswamy, V. G.; Vanstone, R. H.; Dame, L. T.; Laflen, J. H.

    1984-01-01

    The unified constitutive theories for application to typical isotropic cast nickel base supperalloys used for air-cooled turbine blades were evaluated. The specific modeling aspects evaluated were: uniaxial, monotonic, cyclic, creep, relaxation, multiaxial, notch, and thermomechanical behavior. Further development of the constitutive theories to model thermal history effects, refinement of the material test procedures, evaluation of coating effects, and verification of the models in an alternate material will be accomplished in a follow-on for this base program.

  14. Fabricating porous silicon carbide

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1994-01-01

    The formation of porous SiC occurs under electrochemical anodization. A sample of SiC is contacted electrically with nickel and placed into an electrochemical cell which cell includes a counter electrode and a reference electrode. The sample is encapsulated so that only a bare semiconductor surface is exposed. The electrochemical cell is filled with an HF electrolyte which dissolves the SiC electrochemically. A potential is applied to the semiconductor and UV light illuminates the surface of the semiconductor. By controlling the light intensity, the potential and the doping level, a porous layer is formed in the semiconductor and thus one produces porous SiC.

  15. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.

    PubMed

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.

  16. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES

    PubMed Central

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    2016-01-01

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓr norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics. PMID:26806986

  17. Synchronous correlation matrices and Connes’ embedding conjecture

    SciTech Connect

    Dykema, Kenneth J.; Paulsen, Vern

    2016-01-15

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  18. Discoidin domain receptor 2 regulates the adhesion of fibroblasts to 3D collagen matrices.

    PubMed

    Kim, Daehwan; You, Eunae; Min, Na Young; Lee, Kwang-Ho; Kim, Hyoung Kyu; Rhee, Sangmyung

    2013-05-01

    The collagen matrix constitutes the primary extracellular matrix (ECM) portion of mammalian connective tissues in which the interaction of the cell and the surrounding collagen fibers has a significant impact on cell and tissue physiology, including morphogenesis, development and motility. Discoidin domain receptors (DDR1 and DDR2) have been identified as the receptor tyrosine kinases that are activated upon collagen binding. However, there is a lack of evidence regarding the effect of DDRs on the mechanical interaction between fibroblasts and ECM. In this study, we demonstrated that one of the major phosphotyrosine proteins in human fibroblasts during 3D collagen matrix polymerization is DDR2. Treatment of fibroblasts in 3D collagen matrices with platelet-derived growth factor (PDFG) has been shown to increase DDR2 phosphorylation. Silencing of DDR2 with siRNA in fibroblasts significantly reduced the number of dendritic extensions regardless of whether cells were cultured in the collagen or fibronectin 3D matrices. Decreasing dendritic extensions in DDR2-silenced cells has also been shown to decrease the ability of fibroblast entanglement to collagen fibrils in 3D collagen matrices. Finally, we also showed that the silencing of DDR2 decreased the cell migration in 3D nested collagen matrices but had no effect on 3D floating matrix contraction. Collectively, these results suggest that DDR2 functioning is required for the membrane dynamics to control the mechanical attachment of fibroblasts to the 3D collagen matrices in an integrin-independent manner.

  19. Graph run-length matrices for histopathological image segmentation.

    PubMed

    Tosun, Akif Burak; Gunduz-Demir, Cigdem

    2011-03-01

    The histopathological examination of tissue specimens is essential for cancer diagnosis and grading. However, this examination is subject to a considerable amount of observer variability as it mainly relies on visual interpretation of pathologists. To alleviate this problem, it is very important to develop computational quantitative tools, for which image segmentation constitutes the core step. In this paper, we introduce an effective and robust algorithm for the segmentation of histopathological tissue images. This algorithm incorporates the background knowledge of the tissue organization into segmentation. For this purpose, it quantifies spatial relations of cytological tissue components by constructing a graph and uses this graph to define new texture features for image segmentation. This new texture definition makes use of the idea of gray-level run-length matrices. However, it considers the runs of cytological components on a graph to form a matrix, instead of considering the runs of pixel intensities. Working with colon tissue images, our experiments demonstrate that the texture features extracted from "graph run-length matrices" lead to high segmentation accuracies, also providing a reasonable number of segmented regions. Compared with four other segmentation algorithms, the results show that the proposed algorithm is more effective in histopathological image segmentation.

  20. Decomposition of Balanced Matrices. Part 5: Goggles

    DTIC Science & Technology

    1991-10-01

    A D-A 247 462 Management Science Research Report #MSRR-573 1~ ~~112 Eil 11 I Decomposition of Balanced Matrices . Part V: Goggles Michele Conforti 12...9001705. I Dipartimento di Matematica Pura ed Applicata, UniversitA di Padova, Via Belzoni 7, 35131 Padova, Italy.f 2 Carnegie Mellon University...NUMBER 4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED DECOMPOSITION OF BALANCED MATRICES . Technical Report, Oct 1991 PART V: GOGGLES 6

  1. Flux Jacobian Matrices For Equilibrium Real Gases

    NASA Technical Reports Server (NTRS)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  2. Computation of transform domain covariance matrices

    NASA Technical Reports Server (NTRS)

    Fino, B. J.; Algazi, V. R.

    1975-01-01

    It is often of interest in applications to compute the covariance matrix of a random process transformed by a fast unitary transform. Here, the recursive definition of fast unitary transforms is used to derive recursive relations for the covariance matrices of the transformed process. These relations lead to fast methods of computation of covariance matrices and to substantial reductions of the number of arithmetic operations required.

  3. Fast Array Algorithms for Structured Matrices

    DTIC Science & Technology

    1989-06-01

    matrices and operators, Akademie-Verlag, Berlin, 1984. [111. T. Kailath , Linear Systems , Prentice-Hall, Englewood Cliffs, New Jersey, 1980. [121. T... Linear Systems Prentice-Hall, Englewood Cliffs, New Jersey, 1980. [131. T. Kailath, Signal processing in the VLSI era, VLSI and Modem Signal Processing...vol 5, No. 1., (1984), pp. 237-254. [11]. F. Gantmacher The theory of matrices, vol. 2, Chelsea Publishing Comp., New York, 1960. [121. T. Kailath

  4. Block Lanczos tridiagonalization of complex symmetric matrices

    NASA Astrophysics Data System (ADS)

    Qiao, Sanzheng; Liu, Guohong; Xu, Wei

    2005-08-01

    The classic Lanczos method is an effective method for tridiagonalizing real symmetric matrices. Its block algorithm can significantly improve performance by exploiting memory hierarchies. In this paper, we present a block Lanczos method for tridiagonalizing complex symmetric matrices. Also, we propose a novel componentwise technique for detecting the loss of orthogonality to stablize the block Lanczos algorithm. Our experiments have shown our componentwise technique can reduce the number of orthogonalizations.

  5. Infinite Products of Random Isotropically Distributed Matrices

    NASA Astrophysics Data System (ADS)

    Il'yn, A. S.; Sirota, V. A.; Zybin, K. P.

    2017-01-01

    Statistical properties of infinite products of random isotropically distributed matrices are investigated. Both for continuous processes with finite correlation time and discrete sequences of independent matrices, a formalism that allows to calculate easily the Lyapunov spectrum and generalized Lyapunov exponents is developed. This problem is of interest to probability theory, statistical characteristics of matrix T-exponentials are also needed for turbulent transport problems, dynamical chaos and other parts of statistical physics.

  6. Symmetry breaking and the geometry of reduced density matrices

    NASA Astrophysics Data System (ADS)

    Zauner, V.; Draxler, D.; Vanderstraeten, L.; Haegeman, J.; Verstraete, F.

    2016-11-01

    The concept of symmetry breaking and the emergence of corresponding local order parameters constitute the pillars of modern day many body physics. We demonstrate that the existence of symmetry breaking is a consequence of the geometric structure of the convex set of reduced density matrices of all possible many body wavefunctions. The surfaces of these convex bodies exhibit non-analyticities, which signal the emergence of symmetry breaking and of an associated order parameter and also show different characteristics for different types of phase transitions. We illustrate this with three paradigmatic examples of many body systems exhibiting symmetry breaking: the quantum Ising model, the classical q-state Potts model in two-dimensions at finite temperature and the ideal Bose gas in three-dimensions at finite temperature. This state based viewpoint on phase transitions provides a unique novel tool for studying exotic many body phenomena in quantum and classical systems.

  7. Von Neumann stability analysis of the u- p reproducing kernel formulation for saturated porous media

    NASA Astrophysics Data System (ADS)

    Chi, Sheng-Wei; Siriaksorn, Thanakorn; Lin, Shih-Po

    2017-02-01

    This paper introduces the von Neumann method to investigate the temporal stability of the displacement-pressure (u{-}p) reproducing kernel formulation for saturated porous media. Both dynamic and quasi-static formulations are considered and the critical time steps are derived. The effect of lumped and consistent matrices on temporal stability is analyzed under explicit temporal discretization. It is shown that lumped matrices have better temporal stability than consistent matrices. The study also shows that nodal support size greatly affects the critical time step size of the formulations. For consistent matrices, larger support size results in smaller critical time step size; however, opposite relation occurs if lumped scheme is used. The numerical study shows that stabilization parameter of the stabilized nodal integration methods reduces the critical time step size. Transient analyses are performed to verify the results from von Neumann analysis.

  8. Metal filled porous carbon

    DOEpatents

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  9. A Brief Historical Introduction to Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  10. High-temperature constitutive modeling

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Ellis, J. R.

    1984-01-01

    Thermomechanical service conditions for high-temperature levels, thermal transients, and mechanical loads severe enough to cause measurable inelastic deformation are studied. Structural analysis in support of the design of high-temperature components depends strongly on accurate mathematical representations of the nonlinear, hereditary, inelastic behavior of structural alloys at high temperature, particularly in the relatively small strain range. Progress is discussed in the following areas: multiaxial experimentation to provide a basis for high-temperature multiaxial constitutive relationships; nonisothermal testing and theoretical development toward a complete thermomechanically path dependent formulation of viscoplasticity; and development of viscoplastic constitutive model accounting for initial anisotropy.

  11. Condition number estimation of preconditioned matrices.

    PubMed

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager's method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei's matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei's matrix, and matrices generated with the finite element method.

  12. Condition Number Estimation of Preconditioned Matrices

    PubMed Central

    Kushida, Noriyuki

    2015-01-01

    The present paper introduces a condition number estimation method for preconditioned matrices. The newly developed method provides reasonable results, while the conventional method which is based on the Lanczos connection gives meaningless results. The Lanczos connection based method provides the condition numbers of coefficient matrices of systems of linear equations with information obtained through the preconditioned conjugate gradient method. Estimating the condition number of preconditioned matrices is sometimes important when describing the effectiveness of new preconditionerers or selecting adequate preconditioners. Operating a preconditioner on a coefficient matrix is the simplest method of estimation. However, this is not possible for large-scale computing, especially if computation is performed on distributed memory parallel computers. This is because, the preconditioned matrices become dense, even if the original matrices are sparse. Although the Lanczos connection method can be used to calculate the condition number of preconditioned matrices, it is not considered to be applicable to large-scale problems because of its weakness with respect to numerical errors. Therefore, we have developed a robust and parallelizable method based on Hager’s method. The feasibility studies are curried out for the diagonal scaling preconditioner and the SSOR preconditioner with a diagonal matrix, a tri-daigonal matrix and Pei’s matrix. As a result, the Lanczos connection method contains around 10% error in the results even with a simple problem. On the other hand, the new method contains negligible errors. In addition, the newly developed method returns reasonable solutions when the Lanczos connection method fails with Pei’s matrix, and matrices generated with the finite element method. PMID:25816331

  13. Porous matrix structures for alkaline electrolyte fuel cells

    NASA Technical Reports Server (NTRS)

    Vine, R. W.; Narsavage, S. T.

    1975-01-01

    A number of advancements have been realized by a continuing research program to develop higher chemically stable porous matrix structures with high bubble pressure (crossover resistance) for use as separators in potassium hydroxide electrolyte fuel cells. More uniform, higher-bubble-pressure asbestos matrices were produced by reconstituting Johns-Manville asbestos paper; Fybex potassium titanate which was found compatible with 42% KOH at 250 F for up to 3000 hr; good agreement was found between bubble pressures predicted by an analytical study and those measured with filtered structures; Teflon-bonded Fybex matrices with bubble pressures greater than 30 psi were obtained by filtering a water slurry of the mixture directly onto fuel cell electrodes; and PBI fibers have satisfactory compatibility with 42% KOH at 250 F.

  14. Characterization of porous media by means of the depolarization metrics

    NASA Astrophysics Data System (ADS)

    Savenkov, S.; Priezzhev, A.; Oberemok, Ye.; Silfsten, P.; Ervasti, T.; Ketolainen, J.; Peiponen, K.-E.

    2012-12-01

    In this paper Mueller polarimetry is applied to study the samples with different porosity compacted from microcrystalline cellulose. We measure the whole Mueller matrices of the samples as a function of the incident angle at a wavelength of 632.8 nm. To quantify separability of the different porous samples based on differences in their Mueller matrix behavior we apply depolarization and anisotropy analysis to measured Mueller matrices by calculating parameters characterizing depolarization (depolarization index, Q(M)-metric, first and second Lorenz indices, Cloude and Lorenz entropy) and anisotropy (values and azimuths of phase and amplitude anisotropy) properties of a sample. The results show that anisotropy parameters are almost completely insensitive to the range of porosity at least at 632.8 nm. Whereas, all depolarization metrics considered are sensitive to the range of porosity. Most sensitive (not worst than 5%) among depolarization metrics are the Lorenz entropy and Q(M)-metric.

  15. A Venture in Constitutional Law.

    ERIC Educational Resources Information Center

    Cole, W. Graham; Dillon, Dorothy H.

    1980-01-01

    Senior high girls and boys from two single-sex schools undertook a study of a Supreme Court case that provided insight not only into constitutional law and history but also into how men and women can work together and relate in other ways than dating. (DS)

  16. The Geography behind the Constitution.

    ERIC Educational Resources Information Center

    Salter, Christopher L.; Hobbs, Gail L.

    1988-01-01

    Examines some of the geographical elements that influenced the creation of the U.S. Constitution, such as sectionalism, the Piedmont, and the Atlantic Coastal Plain. Focusing on aspects of geography that underlie the thinking, writing, and ratification of the document, the authors explore geography as environment, image-maker, and explicit…

  17. Take Advantage of Constitution Day

    ERIC Educational Resources Information Center

    McCune, Bonnie F.

    2008-01-01

    The announcement of the mandate for Constitution and Citizenship Day shortly before September, 2005, probably led to groans of dismay. Not another "must-do" for teachers and schools already stressed by federal and state requirements for standardized tests, increasingly rigid curricula, and scrutiny from the public and officials. But the…

  18. Method of porous diamond deposition on porous silicon

    NASA Astrophysics Data System (ADS)

    Baranauskas, Vitor; Peterlevitz, Alfredo C.; Chang, Dahge C.; Durrant, Steven F.

    2001-12-01

    In this paper, we discuss the experimental results of the fabrication of porous diamond/porous silicon and porous diamond structures by chemical vapor deposition of diamond over a skeleton of porous silicon, replicating the porous surface geometry around the Si pores and also creating new porous diamond structures. Scanning electron microscopy (SEM) revealed that the diamond nuclei are deposited on the top of the porous silicon skeleton, forming isolated grains in the first nucleation stages, and then growing like the usual structure of most ceramic materials, making a self-sustained porous diamond structure. Raman spectroscopy revealed that the diamond films are of good quality, close to that of diamond films grown on crystalline silicon.

  19. Novel nanostructured biodegradable polymer matrices fabricated by phase separation techniques for tissue regeneration.

    PubMed

    Hsu, S-H; Huang, S; Wang, Y-C; Kuo, Y-C

    2013-06-01

    Biomimetic nanostructures have a wide range of applications. In particular, biodegradable polymer nanostructures that mimic the subtleties of extracellular matrix may provide favorable cell interactions. In this study, a co-solvent system was developed to configure a thermodynamically metastable biodegradable polymer solution, from which novel nanostructured matrices subsequently formed via wet phase separation (quaternary) or a combination with thermally induced phase separation. Three-dimensional (3D) nanostructured porous matrices were further fabricated by combination with particle-leaching (100-300μm glucose). The new co-solvent system may generate matrices with reproducible nanostructures from a variety of biodegradable polymers such as poly(d,l-lactide) (PLA), poly(ε-caprolactone) (PCL) and PCL-based polyurethane. In vitro cell culture experiments were performed with mouse pre-osteoblasts (MC3T3-E1) and human bone marrow-derived mesenchymal stem cells (hBM-MSC) to evaluate the osteoinductive potential of PLA nanostructures. The results showed that nanofibrous (<100nm) membranes promoted the bone-related marker gene expression and matrix mineralization of MC3T3-E1 at 14days. Nanofibrous 3D matrices seeded with hBM-MSC without osteogenic induction supplements demonstrated a 2.5-fold increase in bone matrix deposition vs. the conventional microporous matrices after 14 and 21days. Antimicrobial nanofibers were further obtained by plasma-assisted coating of chitosan on PLA nanofibers. This study reveals a platform for fabricating novel biodegradable nanofibrous architecture, with potential in tissue regeneration.

  20. Bayesian Nonparametric Clustering for Positive Definite Matrices.

    PubMed

    Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2016-05-01

    Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.

  1. Hysteresis of liquid adsorption in porous media by coarse-grained Monte Carlo with direct experimental validation

    NASA Astrophysics Data System (ADS)

    Zeidman, Benjamin D.; Lu, Ning; Wu, David T.

    2016-05-01

    The effects of path-dependent wetting and drying manifest themselves in many types of physical systems, including nanomaterials, biological systems, and porous media such as soil. It is desirable to better understand how these hysteretic macroscopic properties result from a complex interplay between gasses, liquids, and solids at the pore scale. Coarse-Grained Monte Carlo (CGMC) is an appealing approach to model these phenomena in complex pore spaces, including ones determined experimentally. We present two-dimensional CGMC simulations of wetting and drying in two systems with pore spaces determined by sections from micro X-ray computed tomography: a system of randomly distributed spheres and a system of Ottawa sand. Results for the phase distribution, water uptake, and matric suction when corrected for extending to three dimensions show excellent agreement with experimental measurements on the same systems. This supports the hypothesis that CGMC can generate metastable configurations representative of experimental hysteresis and can also be used to predict hysteretic constitutive properties of particular experimental systems, given pore space images.

  2. Porous carbonaceous electrode structure and method for secondary electrochemical cell

    DOEpatents

    Kaun, Thomas D.

    1977-03-08

    Positive and negative electrodes are provided as rigid, porous carbonaceous matrices with particulate active material fixedly embedded. Active material such as metal chalcogenides, solid alloys of alkali metal or alkaline earth metals along with other metals and their oxides in particulate form are blended with a thermosetting resin and a solid volatile to form a paste mixture. Various electrically conductive powders or current collector structures can be blended or embedded into the paste mixture which can be molded to the desired electrode shape. The molded paste is heated to a temperature at which the volatile transforms into vapor to impart porosity as the resin begins to cure into a rigid solid structure.

  3. Advanced incomplete factorization algorithms for Stiltijes matrices

    SciTech Connect

    Il`in, V.P.

    1996-12-31

    The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.

  4. PRM: A database of planetary reflection matrices

    NASA Astrophysics Data System (ADS)

    Stam, D. M.; Batista, S. F. A.

    2014-04-01

    We present the PRM database with reflection matrices of various types of planets. With the matrices, users can calculate the total, and the linearly and circularly polarized fluxes of incident unpolarized light that is reflected by a planet for arbitrary illumination and viewing geometries. To allow for flexibility in these geometries, the database does not contain the elements of reflection matrices, but the coefficients of their Fourier series expansion. We describe how to sum these coefficients for given illumination and viewing geometries to obtain the local reflection matrix. The coefficients in the database can also be used to calculate flux and polarization signals of exoplanets, by integrating, for a given planetary phase angle, locally reflected fluxes across the visible part of the planetary disk. Algorithms for evaluating the summation for locally reflected fluxes, as applicable to spatially resolved observations of planets, and the subsequent integration for the disk-integrated fluxes, as applicable to spatially unresolved exoplanets are also in the database

  5. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-05

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  6. Porous material neutron detector

    DOEpatents

    Diawara, Yacouba [Oak Ridge, TN; Kocsis, Menyhert [Venon, FR

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  7. A probabilistic model of a porous heat exchanger

    NASA Technical Reports Server (NTRS)

    Agrawal, O. P.; Lin, X. A.

    1995-01-01

    This paper presents a probabilistic one-dimensional finite element model for heat transfer processes in porous heat exchangers. The Galerkin approach is used to develop the finite element matrices. Some of the submatrices are asymmetric due to the presence of the flow term. The Neumann expansion is used to write the temperature distribution as a series of random variables, and the expectation operator is applied to obtain the mean and deviation statistics. To demonstrate the feasibility of the formulation, a one-dimensional model of heat transfer phenomenon in superfluid flow through a porous media is considered. Results of this formulation agree well with the Monte-Carlo simulations and the analytical solutions. Although the numerical experiments are confined to parametric random variables, a formulation is presented to account for the random spatial variations.

  8. FLUID TRANSPORT THROUGH POROUS MEDIA

    EPA Science Inventory

    Fluid transport through porous media is a relevant topic to many scientific and engineering fields. Soil scientists, civil engineers, hydrologists and hydrogeologists are concerned with the transport of water, gases and nonaqueous phase liquid contaminants through porous earth m...

  9. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    PubMed

    Nayak, Sunita; Dey, Sancharika; Kundu, Subhas C

    2013-01-01

    The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide) production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  10. Porous block nanofiber composite filters

    SciTech Connect

    Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold

    2016-08-09

    Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).

  11. Sparse Matrices in MATLAB: Design and Implementation

    NASA Technical Reports Server (NTRS)

    Gilbert, John R.; Moler, Cleve; Schreiber, Robert

    1992-01-01

    The matrix computation language and environment MATLAB is extended to include sparse matrix storage and operations. The only change to the outward appearance of the MATLAB language is a pair of commands to create full or sparse matrices. Nearly all the operations of MATLAB now apply equally to full or sparse matrices, without any explicit action by the user. The sparse data structure represents a matrix in space proportional to the number of nonzero entries, and most of the operations compute sparse results in time proportional to the number of arithmetic operations on nonzeros.

  12. Balanced 0, + or - Matrices. Part 1. Decomposition,

    DTIC Science & Technology

    1994-01-22

    AD-A278 170 Management Science Research Report Number *600 Balanced 0, ± Matrices Part 1: DecompositionDTIC~ SD’.I.CT 1 Michele Conforti:. F I, ECTE...G6rard CornuJ6jgsQE R15� Ajai Kapuur 00 P 1 4 Kristina Vuskovic U F January 22, 1994 Dipartimento di Matematica Pura ed Applicata Universiti di...two nonzero entries per row and column, the sum of the entries is a multiple of four. This paper extends the decomposition of balanced 0, 1 matrices

  13. Partitioning sparse rectangular matrices for parallel processing

    SciTech Connect

    Kolda, T.G.

    1998-05-01

    The authors are interested in partitioning sparse rectangular matrices for parallel processing. The partitioning problem has been well-studied in the square symmetric case, but the rectangular problem has received very little attention. They will formalize the rectangular matrix partitioning problem and discuss several methods for solving it. They will extend the spectral partitioning method for symmetric matrices to the rectangular case and compare this method to three new methods -- the alternating partitioning method and two hybrid methods. The hybrid methods will be shown to be best.

  14. Oligonucleotide formation catalyzed by mononucleotide matrices

    NASA Technical Reports Server (NTRS)

    Lohrmann, R.

    1982-01-01

    Pb(2+)-containing precipitates of mononucleotides form matrices which catalyze the self-condensation of nucleotide 5-prime-phosphorimidazolides and their condensation with nucleosides. The reactions exhibit base-pairing specificity between matrix nucleotide and substrate, and usually follow the Watson-Crick pairing rules. Although purine polynucleotides do not facilitate the oligomerization of pyrimidine nucleotide monomers in solution, it is interesting that purine-containing matrices do catalyze such a reaction. The significance of the results in the context of the prebiotic evolution of polynucleotides is discussed.

  15. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  16. Constitutional Reform for Conflict Management

    DTIC Science & Technology

    2014-04-01

    Regulation,” in Constitutional Design for Divided Societies: Integration or Accommodation? ed. Sujit Choudhry (New York: Oxford University Press , 2008...Conflict Management, and Democracy, ed. Andrew Reynolds (New York: Oxford University Press , 2002): 37-54. Andrew Reynolds and Timothy D. Sisk...ed. Andrew Reynolds (New York: Oxford University Press , 2002): 15-36. Benjamin Reilly, Democracy in Divided Societies: Electoral Engineering for

  17. [Women, gender, and the Constitution].

    PubMed

    1993-12-01

    Although all the constitutions of Latin America directly or indirectly acknowledge the juridical equality of the sexes, these patriarchal societies continue to maintain institutional power in male hands and to neutralize legal actions favoring women. International instruments such as the Convention on Elimination of All Forms of Discrimination Against Women, approved by the UN in 1979, have given a firmer basis to policies and actions to improve the status of women. Obstacles to full equality of Latin American women are rooted in economic and sociopolitical factors, but lack of true political will also plays a significant role. A number of new laws in the past several years as well as the new Constitution have improved the legal position of Colombian women. The new Constitution recognizes fundamental rights that may be claimed directly before a judge, and social, economic, and collective rights requiring legislative development. Article 43 of the new Constitution states that women will not be subjected to any form of discrimination. Another norm states that women will enjoy special assistance and protection before and after childbirth, in recognition of the social functions of maternity. Article 43 also states that women who are heads of households will receive special assistance, but the corresponding regulations have not yet been promulgated. The mechanism of tutelage has become an important recourse that has been used in several cases in which fundamental rights of women have been violated or threatened because of their sex. The order of tutelage has been used in cases of adolescents expelled from school for pregnancy and of abused wives, as well as to force recognition of the social and economic contributions of housework.

  18. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.

  19. Porous silicon biosensor: current status.

    PubMed

    Dhanekar, Saakshi; Jain, Swati

    2013-03-15

    Biosensing technologies cater to modern day diagnostics and point of care multi-specialty clinics, hospitals and laboratories. Biosensors aggregate the sensitivity of detection methodologies and constitutional selectivity of biomolecules. Endeavors to develop highly sensitive, fast, stable and low cost biosensors have been made possible by extensive and arduous research. Immense research work is going on for detection of molecules using various materials as immobilization substrate and sensing elements. Amongst materials being used as bio-sensing substrates, nano-porous silicon (PS) has amassed attention and gained popularity in recent years. It has captivating and tunable features like ease of fabrication, special optico-physico properties, tailored morphological structure and versatile surface chemistry enhancing its prospects as transducer for fabricating biosensors. The present review describes the fabrication of PS and its biosensing capabilities for detection of various analytes including, but not limited to, glucose, DNA, antibodies, bacteria and viruses. Attention has been consecrated on the various methodologies such as electrical, electrochemical, optical and label free techniques along with the performances of these biosensors. It concludes with some future prospects and challenges of PS based biosensors.

  20. Porous metallic bodies

    DOEpatents

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  1. Analysis of porous silicon

    NASA Astrophysics Data System (ADS)

    Earwaker, L. G.; Farr, J. P. G.; Grzeszczyk, P. E.; Sturland, I.; Keen, J. M.

    1985-06-01

    Porous silicon, suitable after oxidation for dielectric isolation, has been produced successfully by anodizing silicon in strong HF. The oxidized layer has been shown to have promise in device manufacture, providing high packing densities and radiation hardness. Anodizing has been carried out using both single and double cells, following the effects of current density. HF concentration and silicon resistivity. The resultant porous layers have been characterised with respect to composition and structure. The materials produced differ considerably in lattice strain, composition and reactivities. Prompt radiation analyses 19F(p,αγ), 16O(d,α), 12C(d,p), are useful for monitoring the anodizing procedures and subsequent oxidation: currently, interest centres on the mechanistic information obtained. RBS analysis using α-particles gives a much lower Si response from porous than from bulk silicon. Glancing angle proton recoil analyses reveal considerable quantities of hydrogen in the porous layers. These mutually consistent findings have considerable mechanistic significance; extensive Si-H bonding occurs following a 2 equivalent Faradaic process.

  2. Hydrophobic, Porous Battery Boxes

    NASA Technical Reports Server (NTRS)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  3. Circulant Matrices and Time-Series Analysis

    ERIC Educational Resources Information Center

    Pollock, D. S. G.

    2002-01-01

    This paper sets forth some salient results in the algebra of circulant matrices which can be used in time-series analysis. It provides easy derivations of some results that are central to the analysis of statistical periodograms and empirical spectral density functions. A statistical test for the stationarity or homogeneity of empirical processes…

  4. SPECIATION OF ARSENIC IN EXPOSURE ASSESSMENT MATRICES

    EPA Science Inventory

    The speciaton of arsenic in water, food and urine are analytical capabilities which are an essential part in arsenic risk assessment. The cancer risk associated with arsenic has been the driving force in generating the analytical research in each of these matrices. This presentat...

  5. Constructing random matrices to represent real ecosystems.

    PubMed

    James, Alex; Plank, Michael J; Rossberg, Axel G; Beecham, Jonathan; Emmerson, Mark; Pitchford, Jonathan W

    2015-05-01

    Models of complex systems with n components typically have order n(2) parameters because each component can potentially interact with every other. When it is impractical to measure these parameters, one may choose random parameter values and study the emergent statistical properties at the system level. Many influential results in theoretical ecology have been derived from two key assumptions: that species interact with random partners at random intensities and that intraspecific competition is comparable between species. Under these assumptions, community dynamics can be described by a community matrix that is often amenable to mathematical analysis. We combine empirical data with mathematical theory to show that both of these assumptions lead to results that must be interpreted with caution. We examine 21 empirically derived community matrices constructed using three established, independent methods. The empirically derived systems are more stable by orders of magnitude than results from random matrices. This consistent disparity is not explained by existing results on predator-prey interactions. We investigate the key properties of empirical community matrices that distinguish them from random matrices. We show that network topology is less important than the relationship between a species' trophic position within the food web and its interaction strengths. We identify key features of empirical networks that must be preserved if random matrix models are to capture the features of real ecosystems.

  6. Noisy covariance matrices and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Pafka, S.; Kondor, I.

    2002-05-01

    According to recent findings [#!bouchaud!#,#!stanley!#], empirical covariance matrices deduced from financial return series contain such a high amount of noise that, apart from a few large eigenvalues and the corresponding eigenvectors, their structure can essentially be regarded as random. In [#!bouchaud!#], e.g., it is reported that about 94% of the spectrum of these matrices can be fitted by that of a random matrix drawn from an appropriately chosen ensemble. In view of the fundamental role of covariance matrices in the theory of portfolio optimization as well as in industry-wide risk management practices, we analyze the possible implications of this effect. Simulation experiments with matrices having a structure such as described in [#!bouchaud!#,#!stanley!#] lead us to the conclusion that in the context of the classical portfolio problem (minimizing the portfolio variance under linear constraints) noise has relatively little effect. To leading order the solutions are determined by the stable, large eigenvalues, and the displacement of the solution (measured in variance) due to noise is rather small: depending on the size of the portfolio and on the length of the time series, it is of the order of 5 to 15%. The picture is completely different, however, if we attempt to minimize the variance under non-linear constraints, like those that arise e.g. in the problem of margin accounts or in international capital adequacy regulation. In these problems the presence of noise leads to a serious instability and a high degree of degeneracy of the solutions.

  7. Universal portfolios generated by Toeplitz matrices

    NASA Astrophysics Data System (ADS)

    Tan, Choon Peng; Chu, Sin Yen; Pan, Wei Yeing

    2014-06-01

    Performance of universal portfolios generated by Toeplitz matrices is studied in this paper. The general structure of the companion matrix of the generating Toeplitz matrix is determined. Empirical performance of the threeband and nine-band Toeplitz universal portfolios on real stock data is presented. Pseudo Toeplitz universal portfolios are studied with promising empirical achievement of wealth demonstrated.

  8. The Constitution: Perspectives on Contemporary American Democracy.

    ERIC Educational Resources Information Center

    Close Up Foundation, Arlington, VA.

    Four articles expressing the views of nine prominent United States citizens about the Constitution provide a context for reflecting on the meaning of the Constitution in present-day America. In "Why Has the Constitution Endured So Long?" Don Edwards, chairman of the House Civil and Constitutional Rights Subcommittee, discusses why the…

  9. Multiscale modeling of turbulent channel flow over porous walls

    NASA Astrophysics Data System (ADS)

    Yogaraj, Sudhakar; Lacis, Ugis; Bagheri, Shervin

    2016-11-01

    We perform direct numerical simulations of fully developed turbulent flow through a channel coated with a porous material. The Navier-stokes equations governing the fluid domain and the Darcy equations of the porous medium are coupled using an iterative partitioned scheme. At the interface between the two media, boundary conditions derived using a multiscale homogenization approach are enforced. The main feature of this approach is that the anisotropic micro-structural pore features are directly taken into consideration to derive the constitutive coefficients of the porous media as well as of the interface. The focus of the present work is to study the influence of micro-structure pore geometry on the dynamics of turbulent flows. Detailed turbulence statistics and instantaneous flow field are presented. For comparison, flow through impermeable channel flows are included. Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 708281.

  10. Chlorate analyses in matrices of animal origin.

    PubMed

    Smith, David J; Taylor, Joshua B

    2011-03-09

    Sodium chlorate is being developed as a potential food-safety tool for use in the livestock industry because of its effectiveness in decreasing concentrations of certain Gram-negative pathogens in the gastrointestinal tracts of food animals. A number of studies with sodium chlorate in animals have demonstrated that concentrations of chlorate in meat, milk, wastes, and gastrointestinal contents range from parts per billion to parts per thousand, depending upon chlorate dose, matrix, and time lapse after dosing. Although a number of analytical methods exist for chlorate salts, very few were developed for use in animal-derived matrices, and none have anticipated the range of chlorate concentrations that have been observed in animal wastes and products. To meet the analytical needs of this development work, LC-MS, ion chromatographic, and colorimetric methods were developed to measure chlorate residues in a variety of matrices. The LC-MS method utilizes a Cl(18)O(3)(-) internal standard, is applicable to a variety of matrices, and provides quantitative assessment of samples from 0.050 to 2.5 ppm. Due to ion suppression, matrix-matched standard curves are appropriate when using LC-MS to measure chlorate in animal-derived matrices. A colorimetric assay based on the acid-catalyzed oxidation of o-tolidine proved valuable for measuring ≥20 ppm quantities of chlorate in blood serum and milk, but not urine, samples. Ion chromatography was useful for measuring chlorate residues in urine and in feces when chlorate concentrations exceeded 100 ppm, but no effort was made to maximize ion chromatographic sensitivity. Collectively, these methods offer the utility of measuring chlorate in a variety of animal-derived matrices over a wide range of chlorate concentrations.

  11. A nonlocal constitutive model for trabecular bone softening in compression.

    PubMed

    Charlebois, Mathieu; Jirásek, Milan; Zysset, Philippe K

    2010-10-01

    Using the three-dimensional morphological data provided by computed tomography, finite element (FE) models can be generated and used to compute the stiffness and strength of whole bones. Three-dimensional constitutive laws capturing the main features of bone mechanical behavior can be developed and implemented into FE software to enable simulations on complex bone structures. For this purpose, a constitutive law is proposed, which captures the compressive behavior of trabecular bone as a porous material with accumulation of irreversible strain and loss of stiffness beyond its yield point and softening beyond its ultimate point. To account for these features, a constitutive law based on damage coupled with hardening anisotropic elastoplasticity is formulated using density and fabric-based tensors. To prevent mesh dependence of the solution, a nonlocal averaging technique is adopted. The law has been implemented into a FE software and some simple simulations are first presented to illustrate its behavior. Finally, examples dealing with compression of vertebral bodies clearly show the impact of softening on the localization of the inelastic process.

  12. Characterization of porous piezoelectric ceramics: The length expander case

    SciTech Connect

    Gomez Alvarez-Arenas, T.E.; Montero de Espinosa, F.

    1997-12-01

    Porous piezoelectric ceramics and 0{endash}3/3{endash}3 connectivity piezoelectric composites are normally characterized following the Standards on Piezoelectricity. Nevertheless, these materials are not homogeneous and losses are significant. New constitutive and wave equations have been obtained recently for these kind of materials. The objective of this paper is to derive new definitions for the electromechanical coupling coefficients and a suitable characterization procedure according to the new constitutive and wave equations previously mentioned. In particular, the case of the length expander bar mode is analyzed in detail. The study of resonant elements requires the use of suitable boundary conditions. In this case the boundary conditions are borrowed from the theory of poroelasticity and extended for a piezoelectric material. Finally the procedure is applied to characterize a commercial porous piezoelectric ceramic. {copyright} {ital 1997 Acoustical Society of America.}

  13. Bounds for Eigenvalues of Arrowhead Matrices and Their Applications to Hub Matrices and Wireless Communications

    DTIC Science & Technology

    2009-01-01

    2009 Recommended by Enrico Capobianco This paper considers the lower and upper bounds of eigenvalues of arrow-head matrices. We propose a parameterized...arrowhead matrices have been used to describe radiationless transitions in isolated molecules [1] and oscillators vibrationally coupled with a Fermi ...Journal of Chemical Physics, vol. 48, no. 2, pp. 715– 726, 1968. [2] J. W. Gadzuk, “Localized vibrational modes in Fermi liquids. General theory

  14. A parametric study on the dynamic behavior of porous bronze at various strain rates

    NASA Astrophysics Data System (ADS)

    Zhang, Yue; Hu, Jianxing; Lei, Jianyin; Wang, Zhihua; Zhao, Longmao

    2016-10-01

    An experimental investigation on the porous bronze at various strain rates is firstly carried out in this study to explore the effects of relative density and strain rate in the mechanical behavior. Furthermore, a multi-parameter constitutive model of describing the rate-dependent behavior for porous bronze is developed. The parameters in the constitutive model are density dependent, and the specific forms of these parameters as functions of relative density are obtained. It can be concluded from the test results and constitutive model that the high relative density leads to increase in yield strength and energy absorption capacity of the materials and the strain rate also has positive effects on the yield strength and energy absorption capacity of porous bronze.

  15. A test of the conjecture that G-matrices are more stable than B-matrices.

    PubMed

    Barker, Brittany S; Phillips, Patrick C; Arnold, Stevan J

    2010-09-01

    The G-matrix occupies an important position in evolutionary biology both as a summary of the inheritance of quantitative traits and as an ingredient in predicting how those traits will respond to selection and drift. Consequently, the stability of G has an important bearing on the accuracy of predicted evolutionary trajectories. Furthermore, G should evolve in response to stable features of the adaptive landscape and their trajectories through time. Although the stability and evolution of G might be predicted from knowledge of selection in natural populations, most empirical comparisons of G-matrices have been made in the absence of such a priori predictions. We present a theoretical argument that within-sex G-matrices should be more stable than between-sex B-matrices because they are more powerfully exposed to multivariate stabilizing selection. We tested this conjecture by comparing estimates of B- and within-sex G-matrices among three populations of the garter snake Thamnophis elegans. Matrix comparisons using Flury's hierarchical approach revealed that within-sex G-matrices had four principal components in common (full CPC), whereas B-matrices had only a single principal component in common and eigenvalues that were more variable among populations. These results suggest that within-sex G is more stable than B, as predicted by our theoretical argument.

  16. Constitutive modeling for isotropic materials

    NASA Technical Reports Server (NTRS)

    Lindholm, Ulric S.; Chan, Kwai S.

    1986-01-01

    The objective of the program is to evaluate and develop existing constitutive models for use in finite-element structural analysis of turbine engine hot section components. The class of constitutive equation studied is considered unified in that all inelastic deformation including plasticity, creep, and stress relaxation are treated in a single term rather than a classical separation of plasticity (time independent) and creep (time dependent) behavior. The unified theories employed also do not utilize the classical yield surface or plastic potential concept. The models are constructed from an appropriate flow law, a scalar kinetic relation between strain rate, temperature and stress, and evolutionary equations for internal variables describing strain or work hardening, both isotropic and directional (kinematic). This and other studies have shown that the unified approach is particularly suited for determining the cyclic behavior of superalloy type blade and vane materials and is entirely compatible with three-dimensional inelastic finite-element formulations. The behavior was examined of a second nickel-base alloy, MAR-M247, and compared it with the Bodner-Partom model, further examined procedures for determining the material-specific constants in the models, and exercised the MARC code for a turbine blade under simulated flight spectrum loading. Results are summarized.

  17. Release of albumin from oligoester plastic matrices: effect of magnesium oxide and bivalent stearates.

    PubMed

    Kladnícková, I; Dittrich, M; Klein, T; Pokorová, D

    2006-01-01

    Biodegradable implantable matrices containing bovine serum albumin were prepared from oligoesters by melting, and subsequently tested on in vitro albumin release. The linear poly (DL-lactic acid) and the branched terpolymer of DL-lactic acid, glycolic acid, and mannitol were synthesized. Products were of similar molecular weight and possessed different thermal and swelling characteristics. Oligoesters were loaded with 4% albumin and plasticized by 30% triacetin. Other additives added into the matrices as albumin stabilizers were divalent stearates and magnesium oxide. The influences of oligomer molecules constitution, divalent ion stearates or magnesium oxide addition, and triacetin concentration on the albumin release were quantified. SDS-PAGE revealed protein hydrolysis during the dissolution tests.

  18. Hydraulic properties of adsorbed water films in unsaturated porous media

    SciTech Connect

    Tokunaga, Tetsu K.

    2009-03-01

    Adsorbed water films strongly influence residual water saturations and hydraulic conductivities in porous media at low saturations. Hydraulic properties of adsorbed water films in unsaturated porous media were investigated through combining Langmuir's film model with scaling analysis, without use of any adjustable parameters. Diffuse double layer influences are predicted to be important through the strong dependence of adsorbed water film thickness (f) on matric potential ({Psi}) and ion charge (z). Film thickness, film velocity, and unsaturated hydraulic conductivity are predicted to vary with z{sup -1}, z{sup -2}, and z{sup -3}, respectively. In monodisperse granular media, the characteristic grain size ({lambda}) controls film hydraulics through {lambda}{sup -1} scaling of (1) the perimeter length per unit cross sectional area over which films occur, (2) the critical matric potential ({Psi}{sub c}) below which films control flow, and (3) the magnitude of the unsaturated hydraulic conductivity when {Psi} < {Psi}{sub c}. While it is recognized that finer textured sediments have higher unsaturated hydraulic conductivities than coarser sands at intermediate {Psi}, the {lambda}{sup -1} scaling of hydraulic conductivity predicted here extends this understanding to very low saturations where all pores are drained. Extremely low unsaturated hydraulic conductivities are predicted under adsorbed film-controlled conditions (generally < 0.1 mm y{sup -1}). On flat surfaces, the film hydraulic diffusivity is shown to be constant (invariant with respect to {Psi}).

  19. Decision Matrices: Tools to Enhance Middle School Engineering Instruction

    ERIC Educational Resources Information Center

    Gonczi, Amanda L.; Bergman, Brenda G.; Huntoon, Jackie; Allen, Robin; McIntyre, Barb; Turner, Sheri; Davis, Jen; Handler, Rob

    2017-01-01

    Decision matrices are valuable engineering tools. They allow engineers to objectively examine solution options. Decision matrices can be incorporated in K-12 classrooms to support authentic engineering instruction. In this article we provide examples of how decision matrices have been incorporated into 6th and 7th grade classrooms as part of an…

  20. Improved Separability Criteria Based on Bloch Representation of Density Matrices

    PubMed Central

    Shen, Shu-Qian; Yu, Juan; Li, Ming; Fei, Shao-Ming

    2016-01-01

    The correlation matrices or tensors in the Bloch representation of density matrices are encoded with entanglement properties. In this paper, based on the Bloch representation of density matrices, we give some new separability criteria for bipartite and multipartite quantum states. Theoretical analysis and some examples show that the proposed criteria can be more efficient than the previous related criteria. PMID:27350031

  1. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  2. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  3. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  4. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  5. 19 CFR 10.90 - Master records and metal matrices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Master records and metal matrices. 10.90 Section... Master Records, and Metal Matrices § 10.90 Master records and metal matrices. (a) Consumption entries... made, of each master record or metal matrix covered thereby. (c) A bond on Customs Form 301,...

  6. Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research.

    PubMed

    Waller, Niels G

    2016-01-01

    For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.

  7. Unborn children as constitutional persons.

    PubMed

    Roden, Gregory J

    2010-01-01

    In Roe v. Wade, the state of Texas argued that "the fetus is a 'person' within the language and meaning of the Fourteenth Amendment." To which Justice Harry Blackmun responded, "If this suggestion of personhood is established, the appellant's case, of course, collapses, for the fetus' right to life would then be guaranteed specifically by the Amendment." However, Justice Blackmun then came to the conclusion "that the word 'person,' as used in the Fourteenth Amendment, does not include the unborn." In this article, it is argued that unborn children are indeed "persons" within the language and meaning of the Fourteenth and Fifth Amendments. As there is no constitutional text explicitly holding unborn children to be, or not to be, "persons," this argument will be based on the "historical understanding and practice, the structure of the Constitution, and thejurisprudence of [the Supreme] Court." Specifically, it is argued that the Constitution does not confer upon the federal government a specifically enumerated power to grant or deny "personhood" under the Fourteenth Amendment. Rather, the power to recognize or deny unborn children as the holders of rights and duties has been historically exercised by the states. The Roe opinion and other Supreme Court cases implicitly recognize this function of state sovereignty. The states did exercise this power and held unborn children to be persons under the property, tort, and criminal law of the several states at the time Roe was decided. As an effect of the unanimity of the states in holding unborn children to be persons under criminal, tort, and property law, the text of the Equal Protection Clause of the Fourteenth Amendment compels federal protection of unborn persons. Furthermore, to the extent Justice Blackmun examined the substantive law in these disciplines, his findings are clearly erroneous and as a whole amount to judicial error. Moreover, as a matter of procedure, according to the due process standards recognized in

  8. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  9. Strong, Lightweight, Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Meador, Mary Ann B.; Johnston, James C.; Fabrizio, Eve F.; Ilhan, Ulvi

    2007-01-01

    A new class of strong, lightweight, porous materials has been invented as an outgrowth of an effort to develop reinforced silica aerogels. The new material, called X-Aerogel is less hygroscopic, but no less porous and of similar density to the corresponding unmodified aerogels. However, the property that sets X-Aerogels apart is their mechanical strength, which can be as much as two and a half orders of magnitude stronger that the unmodified aerogels. X-Aerogels are envisioned to be useful for making extremely lightweight, thermally insulating, structural components, but they may also have applications as electrical insulators, components of laminates, catalyst supports, templates for electrode materials, fuel-cell components, and filter membranes.

  10. Porous polymer media

    DOEpatents

    Shepodd, Timothy J.

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  11. Modeling of thermomechanical response of porous shape memory alloys

    NASA Astrophysics Data System (ADS)

    Lagoudas, Dimitris C.; Entchev, Pavlin B.; Vandygriff, Eric L.; Qidwai, Muhammad A.; DeGiorgi, Virginia G.

    2000-06-01

    Shape memory alloys (SMAs) have emerged as a class of materials with unique thermal and mechanical properties that have found numerous applications in various engineering areas. While the shape memory and pseudoelasticity effects have been extensively studied, only a few studies have been done on the high capacity of energy dissipation of SMAs. Because of this property, SMAs hold the promise of making high-efficiency damping devices that are superior to those made of conventional materials. In addition to the energy absorption capability of the dense SMA material, porous SMAs offer the possibility of higher specific damping capacity under dynamic loading conditions, du to scattering of waves. Porous SMAs also offer the possibility of impedance matching by grading the porosity at connecting joints with other structural materials. As a first step, the focus of this work, is on establishing the static properties of porous SMA material. To accomplish this, a micromechanics-based analysis of the overall behavior of porous SMA is carried out. The porous SMA is modeled as a composite with SMA matrix, which is modeled using an incremental formulation, and pores as inhomogeneities of zero stiffness. The macroscopic constitutive behavior of the effective medium is established using the incremental More-Tanaka averaging method for a random distribution of pores, and a FEM analysis of a unit cell for a periodic arrangement of pores. Results form both analyses are compared under various loading conditions.

  12. Non-Fickian mass transport in fractured porous media

    NASA Astrophysics Data System (ADS)

    Fomin, Sergei A.; Chugunov, Vladimir A.; Hashida, Toshiyuki

    2011-02-01

    The paper provides an introduction to fundamental concepts of mathematical modeling of mass transport in fractured porous heterogeneous rocks. Keeping aside many important factors that can affect mass transport in subsurface, our main concern is the multi-scale character of the rock formation, which is constituted by porous domains dissected by the network of fractures. Taking into account the well-documented fact that porous rocks can be considered as a fractal medium and assuming that sizes of pores vary significantly (i.e. have different characteristic scales), the fractional-order differential equations that model the anomalous diffusive mass transport in such type of domains are derived and justified analytically. Analytical solutions of some particular problems of anomalous diffusion in the fractal media of various geometries are obtained. Extending this approach to more complex situation when diffusion is accompanied by advection, solute transport in a fractured porous medium is modeled by the advection-dispersion equation with fractional time derivative. In the case of confined fractured porous aquifer, accounting for anomalous non-Fickian diffusion in the surrounding rock mass, the adopted approach leads to introduction of an additional fractional time derivative in the equation for solute transport. The closed-form solutions for concentrations in the aquifer and surrounding rocks are obtained for the arbitrary time-dependent source of contamination located in the inlet of the aquifer. Based on these solutions, different regimes of contamination of the aquifers with different physical properties can be readily modeled and analyzed.

  13. An analytical model for porous single crystals with ellipsoidal voids

    NASA Astrophysics Data System (ADS)

    Mbiakop, A.; Constantinescu, A.; Danas, K.

    2015-11-01

    A rate-(in)dependent constitutive model for porous single crystals with arbitrary crystal anisotropy (e.g., FCC, BCC, HCP, etc.) containing general ellipsoidal voids is developed. The proposed model, denoted as modified variational model (MVAR), is based on the nonlinear variational homogenization method, which makes use of a linear comparison porous material to estimate the response of the nonlinear porous single crystal. Periodic multi-void finite element simulations are used in order to validate the MVAR for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void shapes and orientations and various porosity levels. The MVAR model, which involves a priori no calibration parameters, is found to be in good agreement with the finite element results for all cases considered in the rate-dependent context. The model is then used in a predictive manner to investigate the complex response of porous single crystals in several cases with strong coupling between the anisotropy of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids. Finally, a simple way of calibrating the MVAR with just two adjustable parameters is depicted in the rate-independent context so that an excellent agreement with the FE simulation results is obtained. In this last case, this proposed model can be thought as a generalization of the Gurson model in the context of porous single crystals and general ellipsoidal void shapes and orientations.

  14. Centrifugally Driven Flow in Diverse Porous Media Over Wide-Ranging Moisture Conditions

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Caputo, M. C.

    2003-12-01

    Centrifugal force has been successfully applied to measurement of saturated and unsaturated hydraulic properties of soils and rock. The basis of most methods is to apply a steady flow of water, by either a constant head or a metering pump, to a sample in a centrifuge. If the centrifugal force is great enough to constitute the dominant driving force, measurements of the steady-state flux, water content, and matric pressure can yield highly accurate values of hydraulic conductivity and water retention. The great force permits measurement of properties and conditions that are otherwise impossible or impractical. For example an experiment lasting a few days can measure unsaturated conductivity as low as 1E-9 cm/s. Our new approach expands the range of media and conditions to which centrifugal techniques are applicable, using an assessment of the deviations from steadiness that can be tolerated without appreciable loss of accuracy and a quasi-steady methodology that controls flow within acceptable limits. Secondary goals are to reduce the cost and specialized nature of the necessary equipment, and to reduce the operator time and level of training required. Recent tests demonstrate these new techniques for carbonatic rock and other porous media. Numerical simulations predict the performance of the quasi-steady approach over a wide range of speeds and radii of rotation corresponding to various configurations, including centrifuges that are mass-produced for general laboratory use and the much larger ones designed for geotechnical applications. These simulations use a solution of Darcy's law in a centrifugal field to predict moisture conditions and net driving force within a sample, in order to assess the validity of these conditions for hydraulic property measurement. The tests and simulations show the improved techniques are useful for most porous rock and sedimentary media. With its simplified apparatus, capacity for larger samples, and the adaptability to various

  15. Approximate inverse preconditioners for general sparse matrices

    SciTech Connect

    Chow, E.; Saad, Y.

    1994-12-31

    Preconditioned Krylov subspace methods are often very efficient in solving sparse linear matrices that arise from the discretization of elliptic partial differential equations. However, for general sparse indifinite matrices, the usual ILU preconditioners fail, often because of the fact that the resulting factors L and U give rise to unstable forward and backward sweeps. In such cases, alternative preconditioners based on approximate inverses may be attractive. We are currently developing a number of such preconditioners based on iterating on each column to get the approximate inverse. For this approach to be efficient, the iteration must be done in sparse mode, i.e., we must use sparse-matrix by sparse-vector type operatoins. We will discuss a few options and compare their performance on standard problems from the Harwell-Boeing collection.

  16. Edge universality for deformed Wigner matrices

    NASA Astrophysics Data System (ADS)

    Lee, Ji Oon; Schnelli, Kevin

    2015-09-01

    We consider N × N random matrices of the form H = W + V where W is a real symmetric Wigner matrix and V a random or deterministic, real, diagonal matrix whose entries are independent of W. We assume subexponential decay for the matrix entries of W and we choose V so that the eigenvalues of W and V are typically of the same order. For a large class of diagonal matrices V, we show that the rescaled distribution of the extremal eigenvalues is given by the Tracy-Widom distribution F1 in the limit of large N. Our proofs also apply to the complex Hermitian setting, i.e. when W is a complex Hermitian Wigner matrix.

  17. Characteristic Matrices for Spherical Shell Photonic Systems

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A.; Smith, David D.

    2004-01-01

    We establish a parallel between the transfer matrix used in the study of plane-parallel photonic structures and the matrix characterizing transfer of partial waves in concentric spheres. We derive explicit expressions for the elements of the transfer matrix for concentric spherical layers, and from those expressions derive the scattering coefficients of a multilayered sphere. The transfer matrices are 4x4 block diagonal with only four independent elements. Matrix elements for the case of TM waves are related to those for the case of TE waves through simple interchange and multiplicative constants. In analogy with plane parallel layers, the transfer matrix for concentric multilayers is simply the product of the transfer matrices of the individual layers.

  18. Evolutionary Games with Randomly Changing Payoff Matrices

    NASA Astrophysics Data System (ADS)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  19. Analysis of thematic map classification error matrices.

    USGS Publications Warehouse

    Rosenfield, G.H.

    1986-01-01

    The classification error matrix expresses the counts of agreement and disagreement between the classified categories and their verification. Thematic mapping experiments compare variables such as multiple photointerpretation or scales of mapping, and produce one or more classification error matrices. This paper presents a tutorial to implement a typical problem of a remotely sensed data experiment for solution by the linear model method.-from Author

  20. Some physical applications of random hierarchical matrices

    SciTech Connect

    Avetisov, V. A.; Bikulov, A. Kh.; Vasilyev, O. A.; Nechaev, S. K.; Chertovich, A. V.

    2009-09-15

    The investigation of spectral properties of random block-hierarchical matrices as applied to dynamic and structural characteristics of complex hierarchical systems with disorder is proposed for the first time. Peculiarities of dynamics on random ultrametric energy landscapes are discussed and the statistical properties of scale-free and polyscale (depending on the topological characteristics under investigation) random hierarchical networks (graphs) obtained by multiple mapping are considered.

  1. Computing partial traces and reduced density matrices

    NASA Astrophysics Data System (ADS)

    Maziero, Jonas

    Taking partial traces (PTrs) for computing reduced density matrices, or related functions, is a ubiquitous procedure in the quantum mechanics of composite systems. In this paper, we present a thorough description of this function and analyze the number of elementary operations (ops) needed, under some possible alternative implementations, to compute it on a classical computer. As we note, it is worthwhile doing some analytical developments in order to avoid making null multiplications and sums, what can considerably reduce the ops. For instance, for a bipartite system ℋa⊗ℋb with dimensions da=dimℋa and db=dimℋb and for da,db≫1, while a direct use of PTr definition applied to ℋb requires 𝒪(da6db6) ops, its optimized implementation entails 𝒪(da2db) ops. In the sequence, we regard the computation of PTrs for general multipartite systems and describe Fortran code provided to implement it numerically. We also consider the calculation of reduced density matrices via Bloch’s parametrization with generalized Gell Mann’s matrices.

  2. Scattering Matrices and Conductances of Leaky Tori

    NASA Astrophysics Data System (ADS)

    Pnueli, A.

    1994-04-01

    Leaky tori are two-dimensional surfaces that extend to infinity but which have finite area. It is a tempting idea to regard them as models of mesoscopic systems connected to very long leads. Because of this analogy-scattering matrices on leaky tori are potentially interesting, and indeed-the scattering matrix on one such object-"the" leaky torus-was studied by M. Gutzwiller, who showed that it has chaotic behavior. M. Antoine, A. Comtet and S. Ouvry generalized Gutzwiller‧s result by calculating the scattering matrix in the presence of a constant magnetic field B perpendicular to the surface. Motivated by these results-we generalize them further. We define scattering matrices for spinless electrons on a general leaky torus in the presence of a constant magnetic field "perpendicular" to the surface. From the properties of these matrices we show the following: (a) For integer values of B, Tij (the transition probability from cusp i to cusp j), and hence also the Büttiker conductances of the surfaces, are B-independent (this cannot be interpreted as a kind of Aharonov-Bohm effect since a magnetic force is acting on the electrons). (b) The Wigner time-delay is a monotonically increasing function of B.

  3. Preconditioning matrices for Chebyshev derivative operators

    NASA Technical Reports Server (NTRS)

    Rothman, Ernest E.

    1986-01-01

    The problem of preconditioning the matrices arising from pseudo-spectral Chebyshev approximations of first order operators is considered in both one and two dimensions. In one dimension a preconditioner represented by a full matrix which leads to preconditioned eigenvalues that are real, positive, and lie between 1 and pi/2, is already available. Since there are cases in which it is not computationally convenient to work with such a preconditioner, a large number of preconditioners were studied which were more sparse (in particular three and four diagonal matrices). The eigenvalues of such preconditioned matrices are compared. The results were applied to the problem of finding the steady state solution to an equation of the type u sub t = u sub x + f, where the Chebyshev collocation is used for the spatial variable and time discretization is performed by the Richardson method. In two dimensions different preconditioners are proposed for the matrix which arises from the pseudo-spectral discretization of the steady state problem. Results are given for the CPU time and the number of iterations using a Richardson iteration method for the unpreconditioned and preconditioned cases.

  4. Modeling structure-function relationships for diffusive drug transport in inert porous geopolymer matrices.

    PubMed

    Jämstorp, Erik; Strømme, Maria; Frenning, Göran

    2011-10-01

    A unique structure-function relationship investigation of mechanically strong geopolymer drug delivery vehicles for sustained release of potent substances is presented. The effect of in-synthesis water content on geopolymer pore structure and diffusive drug transport is investigated. Scanning electron microscopy, N2 gas adsorption, mercury intrusion porosimetry, compression strength test, drug permeation, and release experiments are performed. Effective diffusion coefficients are measured and compared with corresponding theoretical values as derived from pore size distribution and connectivity via pore-network modeling. By solely varying the in-synthesis water content, mesoporous and mechanically strong geopolymers with porosities of 8%-45% are obtained. Effective diffusion coefficients of the model drugs Saccharin and Zolpidem are observed to span two orders of magnitude (∼1.6-120 × 10(-8) cm(2) /s), comparing very well to theoretical estimations. The ability to predict drug permeation and release from geopolymers, and materials alike, allows future formulations to be tailored on a structural and chemical level for specific applications such as controlled drug delivery of highly potent substances.

  5. Aerodynamic Synthesis of Biocompatible Matrices and their Functionalization by Nanoparticles Obtained by the Method of Laser Ablation

    NASA Astrophysics Data System (ADS)

    Bol'basov, E. N.; Lapin, I. N.; Tverdokhlebov, S. I.; Svetlichnyi, V. A.

    2014-07-01

    For applications in tissue engineering, three-dimensional biodegradable polymeric matrices, whose surface is functionalized by nanoparticles obtained in the liquid phase by the method of laser ablation from bulk metal (Ag or Zn) targets, are synthesized by the method of aerodynamic synthesis from a solution of poly-l-lactide acid. Their properties are investigated. It is demonstrated that the matrices represent a very porous spatial fibrous structure consisting of polymorphic fibers with diameters from 0.25 to 2.5 μm. It is established that functional coatings consisting of agglomerates of semiconductor (ZnO) or metal (Ag) nanoparticles can be produced on the surface of structural matrix elements by repeated matrix impregnation.

  6. Written Constitution or None: Which Works Better?

    ERIC Educational Resources Information Center

    Cowen, Zelman

    1987-01-01

    Explores the differences between the U.S. Constitution and British constitutional law. Specifically examines the concept of the U.S. Bill of Rights in relation to the United Kingdom common law doctrine of parliamentary sovereignty. (BSR)

  7. Porous microsphere and its applications

    PubMed Central

    Cai, Yunpeng; Chen, Yinghui; Hong, Xiaoyun; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies. PMID:23515359

  8. Strategic Implications of Japan Amending Its Constitution

    DTIC Science & Technology

    2008-12-09

    of force. 4 Background Japan’s Constitution in place at the termination of World War II was known as the “ Meiji ” Constitution and had been in place... Meiji Restoration that restored political power to the Japanese Emperor for the first time in over a millennium. Under the Meiji Constitution, the...came the daunting task of revising the Meiji Constitution to reflect the new world order. Acting more like a diplomat than a military general

  9. Deterministic sensing matrices in compressive sensing: a survey.

    PubMed

    Nguyen, Thu L N; Shin, Yoan

    2013-01-01

    Compressive sensing is a sampling method which provides a new approach to efficient signal compression and recovery by exploiting the fact that a sparse signal can be suitably reconstructed from very few measurements. One of the most concerns in compressive sensing is the construction of the sensing matrices. While random sensing matrices have been widely studied, only a few deterministic sensing matrices have been considered. These matrices are highly desirable on structure which allows fast implementation with reduced storage requirements. In this paper, a survey of deterministic sensing matrices for compressive sensing is presented. We introduce a basic problem in compressive sensing and some disadvantage of the random sensing matrices. Some recent results on construction of the deterministic sensing matrices are discussed.

  10. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Robert W. (Inventor); Jones, Eric W. (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H2O. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  11. Selective formation of porous silicon

    NASA Technical Reports Server (NTRS)

    Fathauer, Jones (Inventor)

    1993-01-01

    A pattern of porous silicon is produced in the surface of a silicon substrate by forming a pattern of crystal defects in said surface, preferably by applying an ion milling beam through openings in a photoresist layer to the surface, and then exposing said surface to a stain etchant, such as HF:HNO3:H20. The defected crystal will preferentially etch to form a pattern of porous silicon. When the amorphous content of the porous silicon exceeds 70 percent, the porous silicon pattern emits visible light at room temperature.

  12. State Constitutional Law: Teaching and Scholarship.

    ERIC Educational Resources Information Center

    Williams, Robert F.

    1991-01-01

    State constitutional law is an emerging area for legal education, partly because of state supreme court decisions relying on state rather than federal constitutional law. Studying state constitutional law highlights similarities and diversity of legal and governmental systems. Interest in establishment of curricula and materials in state law is…

  13. 32 CFR 536.42 - Constitutional torts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable under... partially payable as a state tort. For example, a Fifth Amendment taking may be payable in an altered...

  14. Theoretical Issues of the Constitutional Regulation Mechanism

    ERIC Educational Resources Information Center

    Zhussupova, Guldaray B.; Zhailyaubayev, Rassul T.; Ukin, Symbat K.; Shunayeva, Sylu M.; Nurmagambetov, Rachit G.

    2016-01-01

    The purpose of this research is to define the concept of "constitutional regulation mechanism." The definition of the concept of "constitutional regulation mechanism" will give jurists and legislators a theoretical framework for developing legal sciences, such as the constitutional law and the theory of state and law. The…

  15. 32 CFR 536.42 - Constitutional torts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable under... partially payable as a state tort. For example, a Fifth Amendment taking may be payable in an altered...

  16. American Focus on World Constitutions. Teacher's Guide.

    ERIC Educational Resources Information Center

    Holmes, Stanley T., III

    This curriculum project was designed to familiarize high school students with their own constitutional roots while gaining a better understanding of governmental systems developed by other nations. The project uses the U.S. Constitution as a baseline for analyzing the constitutions of other nations, and is intended to supplement courses in such…

  17. 32 CFR 536.42 - Constitutional torts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable under... partially payable as a state tort. For example, a Fifth Amendment taking may be payable in an altered...

  18. 32 CFR 536.42 - Constitutional torts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGAINST THE UNITED STATES Investigation and Processing of Claims § 536.42 Constitutional torts. A claim for violation of the U.S. Constitution does not constitute a state tort and is not cognizable under... partially payable as a state tort. For example, a Fifth Amendment taking may be payable in an altered...

  19. Centrosymmetric property of unitary matrices that preserve the set of ( T + H)-matrices under similarity transformations

    NASA Astrophysics Data System (ADS)

    Abdikalykov, A. K.

    2015-05-01

    The following problem is discussed: what are unitary n × n matrices U that map the linear space of ( T + H)-matrices into itself by similarity transformations? Analogous problems for the spaces of Toeplitz and Hankel matrices were solved recently. For ( T + H)-matrices, the problem of describing appropriate matrices U appears to be considerably more complex and is still open. The result proved in this paper may contribute to the complete solution of this problem. Namely, every such matrix U is either centrosymmetric or skew-centrosymmetric; moreover, only the first variant is possible for odd n.

  20. Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws

    NASA Astrophysics Data System (ADS)

    Cargo, Patricia; Gallice, Gérard

    1997-09-01

    In this paper, the construction of a Roe's scheme for the conservative system of ideal magnetohydrodynamics (MHD) is presented. As this method relies on the computation of a Roe matrix, the problem is to find a matrixA(Ul,Ur) which satisfies the following properties. It is required to be consistent with the jacobian of the fluxF, to have real eigenvalues, a complete set of eigenvectors and to satisfy the relation: ΔF=A(Ul,Ur) ΔU, whereUlandUrare two admissible states and ΔUtheir difference. For the ideal MHD system, using eulerian coordinates, a Roe matrix is obtained without any hypothesis on the specific heat ratio. Especially, its construction relies on an original expression of the magnetic pressure jump. Moreover, a Roe matrix is computed for lagrangian ideal MHD, by extending the results of Munz who obtained such a matrix for the system of lagrangian gas dynamics. So this second matrix involves arithmetic averages unlike the eulerian one, which contains classical Roe averages like in eulerian gas dynamics. In this paper, a systematic construction of lagrangian Roe matrices in terms of eulerian Roe matrices for a general system of conservation laws is also presented. This result, applied to the above eulerian and lagrangian matrices for ideal MHD, gives two new matrices for this system. In the same way, by applying this construction to the gas dynamics equations new Roe matrices are also obtained. All these matrices allow the construction of Roe type schemes. Some numerical examples on the shock tube problem show the applicability of this method.

  1. Diffusion of Bacterial Cells in Porous Media

    PubMed Central

    Licata, Nicholas A.; Mohari, Bitan; Fuqua, Clay; Setayeshgar, Sima

    2016-01-01

    The chemotaxis signal transduction network regulates the biased random walk of many bacteria in favorable directions and away from harmful ones through modulating the frequency of directional reorientations. In mutants of diverse bacteria lacking the chemotaxis response, migration in classic motility agar, which constitutes a fluid-filled porous medium, is compromised; straight-swimming cells unable to tumble become trapped within the agar matrix. Spontaneous mutations that restore spreading have been previously observed in the enteric bacterium Escherichia coli, and recent work in other bacterial species has isolated and quantified different classes of nonchemotacting mutants exhibiting the same spreading phenotype. We present a theoretical description of bacterial diffusion in a porous medium—the natural habitat for many cell types—which elucidates how diverse modifications of the motility apparatus resulting in a nonzero tumbling frequency allows for unjamming of otherwise straight-swimming cells at internal boundaries and leads to net migration. A unique result of our analysis is increasing diffusive spread with increasing tumbling frequency in the small pore limit, consistent with earlier experimental observations but not captured by previous models. Our theoretical results, combined with a simple model of bacterial diffusion and growth in agar, are compared with our experimental measurements of swim ring expansion as a function of time, demonstrating good quantitative agreement. Our results suggest that the details of the cellular tumbling process may be adapted to enable bacteria to propagate efficiently through complex environments. For engineered, self-propelled microswimmers that navigate via alternating straight runs and changes in direction, these results suggest an optimal reorientation strategy for efficient migration in a porous environment with a given microarchitecture. PMID:26745427

  2. Rigid porous filter

    DOEpatents

    Chiang, Ta-Kuan; Straub, Douglas L.; Dennis, Richard A.

    2000-01-01

    The present invention involves a porous rigid filter including a plurality of concentric filtration elements having internal flow passages and forming external flow passages there between. The present invention also involves a pressure vessel containing the filter for the removal of particulates from high pressure particulate containing gases, and further involves a method for using the filter to remove such particulates. The present filter has the advantage of requiring fewer filter elements due to the high surface area-to-volume ratio provided by the filter, requires a reduced pressure vessel size, and exhibits enhanced mechanical design properties, improved cleaning properties, configuration options, modularity and ease of fabrication.

  3. Photoactive porous silicon nanopowder.

    PubMed

    Meekins, Benjamin H; Lin, Ya-Cheng; Manser, Joseph S; Manukyan, Khachatur; Mukasyan, Alexander S; Kamat, Prashant V; McGinn, Paul J

    2013-04-24

    Bulk processing of porous silicon nanoparticles (nSi) of 50-300 nm size and surface area of 25-230 m(2)/g has been developed using a combustion synthesis method. nSi exhibits consistent photoresponse to AM 1.5 simulated solar excitation. In confirmation of photoactivity, the films of nSi exhibit prompt bleaching following femtosecond laser pulse excitation resulting from the photoinduced charge separation. Photocurrent generation observed upon AM 1.5 excitation of these films in a photoelectrochemical cell shows strong dependence on the thickness of the intrinsic silica shell that encompasses the nanoparticles and hinders interparticle electron transfer.

  4. Tortuosity of porous particles.

    PubMed

    Barrande, M; Bouchet, R; Denoyel, R

    2007-12-01

    Tortuosity is often used as an adjustable parameter in models of transfer properties through porous media. This parameter, not reducible to classical measured microstructural parameters like specific surface area, porosity, or pore size distribution, reflects the efficiency of percolation paths, which is linked to the topology of the material. The measurement of the effective conductivity of a bed of particles saturated with an electrolyte is a simple way to evaluate tortuosity. Nevertheless, it received only little attention because of the real difficulties in both getting reliable results and interpreting data. Notably, the discrimination between the contribution of interparticle and intraparticle porosities to the tortuosity is not resolved. To our knowledge, there is no model able to fit the experimental data of the tortuosity of a suspension, and a fortiori of a particle bed, in the whole porosity range. Only empirical expressions have been proposed, but they do not allow deriving intratortuosity of a porous particle. For a dilute system, Maxwell's equation predicts the effective conductivity of suspensions of spherical particles as a function of the bulk electrolyte conductivity and of particle conductivity. The intraparticle tortuosity can be derived from the particle conductivity obtained from the Maxwell equation applied to data at infinite dilution of particles. Then, by assuming that the Maxwell equation is a first-order approximation of the conductivity as a function of porosity, we propose an explicit relation of the tortuosity tau of a suspension of porous particles, obtained by conductivity measurement, as tau = tau(epsilon, epsilon(p), tau(p)), where epsilon is the total porosity of the suspension, tau(p) is the intraparticle tortuosity, and epsilon(p) is the particle porosity. This relationship fits the experimental data in the whole porosity range and can be used to determine tau(p) from an experiment at only one porosity. Finally, the obtained

  5. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  6. Small, porous polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  7. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  8. Constitutive Equation for Anisotropic Rock

    NASA Astrophysics Data System (ADS)

    Cazacu, O.

    2006-12-01

    In many rocks, due to the existence of well-defined fabric elements such as bedding, layering, foliation or lamination planes, or due to the existence of linear structures, anisotropy can be important. The symmetries most frequently encountered are: transverse isotropy and orthotropy. By adopting both theoretical and experimental approaches, many authors have investigated the effect of the presence within the rock of pronounced anisotropic feature on the mechanical behavior in the elastic regime and on strength properties. Fewer attempts however have been made to capture the anisotropy of rocks in the plastic range. In this paper an elastic/viscoplastic non-associated constitutive equation for an initially transversely isotropic material is presented. The model captures the observed dependency of the elastic moduli on the stress state. The limit of the elastic domain is given by an yield function whose expression is a priori unknown and is determined from data. The basic assumption adopted is that the type of anisotropy of the rock does not change during the deformation process. The anisotropy is thus described by a fourth order tensor invariant with respect to any transformation belonging to the symmetry group of the material. This tensor is assumed to be constant: it does not depend on time nor on deformation; A is involved in the expression of the flow rule, of the yield function, and of the failure criterion in the form of a transformed stress tensor. The components of the anisotropic tensor A are determined from the compressive strengths in conjunction with an anisotropic short- term failure The irreversibility is supposed to be due to transient creep, the irreversible stress work per unit volume being considered as hardening parameter. The adequacy of the model is demonstrated by applying it to a stratified sedimentary rock, Tournemire shale.

  9. Identifying complexity by means of matrices

    NASA Astrophysics Data System (ADS)

    Drożdż, S.; Kwapień, J.; Speth, J.; Wójcik, M.

    2002-11-01

    Complexity is an interdisciplinary concept which, first of all, addresses the question of how order emerges out of randomness. For many reasons matrices provide a very practical and powerful tool in approaching and quantifying the related characteristics. Based on several natural complex dynamical systems, like the strongly interacting quantum many-body systems, the human brain and the financial markets, by relating empirical observations to the random matrix theory and quantifying deviations in terms of a reduced dimensionality, we present arguments in favour of the statement that complexity is a phenomenon at the edge between collectivity and chaos.

  10. Parallel mergs sort using comparison matrices. I

    SciTech Connect

    Romm, Y.E.

    1995-05-01

    The topics discussed in this paper are connected with internal merge sorting by a key (in short, M-sorting or M-sort). Originally developed by von Neumann, this is one of the first sorting methods. It still remains one of the fastest, involving Nlog{sub 2}N comparisons. The purpose of our article is to demonstrate the use of comparison matrices (CMs) for merging in M-sort. While preserving the known advantages of the sequential implementation of M-sort. CMs ensure more efficient use of main memory (one of the known weaknesses of M-sort is its large memory requirements) and effective parallelizability.

  11. Asymptotic properties of infinite Leslie matrices.

    PubMed

    Gosselin, Frédéric; Lebreton, Jean-Dominique

    2009-01-21

    The stable population theory is classically applicable to populations in which there is a maximum age after which individuals die. Demetrius [1972. On an infinite population matrix. Math. Biosci. 13, 133-137] extended this theory to infinite Leslie matrices, in which the longevity of individuals is potentially infinite. However, Demetrius had to assume that the survival probability per time step tends to 0 with age. We generalise here the conditions of application of the stable population theory to infinite Leslie matrix models and apply these results to two examples, including or not senescence.

  12. 78 FR 39721 - Constitution Pipeline Company, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... Energy Regulatory Commission Constitution Pipeline Company, LLC; Notice of Application Take notice that on June 13, 2013, Constitution Pipeline Company, LLC (Constitution), having its principal place of...\\ Constitution further requests that the Commission grant Constitution a blanket certificate...

  13. 75 FR 57835 - Constitution Day and Citizenship Day, Constitution Week, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... Proclamation 8562--Constitution Day and Citizenship Day, Constitution Week, 2010 Proclamation 8563--National POW/MIA Recognition Day, 2010 #0; #0; #0; Presidential Documents #0; #0; #0;#0;Federal Register / Vol... President ] Proclamation 8562 of September 16, 2010 Constitution Day and Citizenship Day, Constitution...

  14. State Constitutionalism: Completing the Interdisciplinary Study of Constitutional Law and Political Theory.

    ERIC Educational Resources Information Center

    Williams, Robert F.

    1993-01-01

    Argues that a complete and accurate understanding of constitutional history and constitutional law requires the study of state constitutions. Maintains that state constitutions contain a coherent political theory that is, in important respects, at variance with the concept of federalism. (CFR)

  15. 78 FR 57777 - Constitution Day and Citizenship Day, Constitution Week, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-19

    ... September 19, 2013 Part IV The President Proclamation 9019--Constitution Day and Citizenship Day, Constitution Week, 2013 Proclamation 9020--Honoring the Victims of the Tragedy at the Washington Navy Yard #0... September 16, 2013 Constitution Day and Citizenship Day, Constitution Week, 2013 By the President of...

  16. Constitutional and Non-Constitutional Governments...Similarities and Differences throughout History. Resource Packet.

    ERIC Educational Resources Information Center

    Pallasch, Brian Thomas

    This civic education resource packet is designed to provide teachers, community leaders, and other civic educators with an understanding of the differences between constitutional and non-constitutional governments. Six papers discussing the topic are included: "The Differences bewteen Constitutional and Non-Constitutional Governments" (John…

  17. Bromination of selected pharmaceuticals in water matrices.

    PubMed

    Benitez, F Javier; Acero, Juan L; Real, Francisco J; Roldan, Gloria; Casas, Francisco

    2011-11-01

    The bromination of five selected pharmaceuticals (metoprolol, naproxen, amoxicillin, phenacetin, and hydrochlorothiazide) was studied with these compounds individually dissolved in ultra-pure water. The apparent rate constants for the bromination reaction were determined as a function of the pH, obtaining the sequence amoxicillin>naproxen>hydrochlorothiazide≈phenacetin≈metoprolol. A kinetic mechanism specifying the dissociation reactions and the species formed for each compound according to its pK(a) value and the pH allowed the intrinsic rate constants to be determined for each elementary reaction. There was fairly good agreement between the experimental and calculated values of the apparent rate constants, confirming the goodness of the proposed reaction mechanism. In a second stage, the bromination of the selected pharmaceuticals simultaneously dissolved in three water matrices (a groundwater, a surface water from a public reservoir, and a secondary effluent from a WWTP) was investigated. The pharmaceutical elimination trend agreed with the previously determined rate constants. The influence of the main operating conditions (pH, initial bromine dose, and characteristics of the water matrix) on the degradation of the pharmaceuticals was established. An elimination concentration profile for each pharmaceutical in the water matrices was proposed based on the use of the previously evaluated apparent rate constants, and the theoretical results agreed satisfactorily with experiment. Finally, chlorination experiments performed in the presence of bromide showed that low bromide concentrations slightly accelerate the oxidation of the selected pharmaceuticals during chlorine disinfection.

  18. Thermo-elasto-viscoplasticity of isotropic porous metals

    NASA Astrophysics Data System (ADS)

    Zavaliangos, A.; Anand, L.

    1993-06-01

    A RATE AND temperature dependent elastic-plastic model for isotropic, moderately porous metallic materials is formulated. This model is intended for material rate-sensitivities in the entire range spanning from highly rate-dependent behavior at high homologous temperatures to nearly rate-insensitive behavior at low homologous temperatures. The predictive capabilities of the constitutive model are verified by comparing results from finite element calculations against results from physical experiments. Specifically, example calculations are presented for: (a) isothermal hot compression of a tapered disk made from an initially porous material. This calculation illustrates the effect of secondary tensile stresses on hot workability of metals, (b) Tension tests, under isothermal conditions at low homologous temperatures, on axisymmetric notched bars made from initially porous materials. This calculation illustrates the effects of nonuniform multiaxial tensile stress states on void growth. Predictions from the computational procedures for both examples agree well with experimental results. The new state variable rate and temperature dependent constitutive model for microporous materials and the associated computational procedures form a basis for the simulation and design of deformation processing operations. This new capability should be useful for the prediction of formation of defects during both cold-working when the material rate sensitivity is low, as well as hot-working when the material is highly rate sensitive. The computational capability should also be useful in simulating the late stages of densification of powder metallurgical products in complex forming operations.

  19. Generating correlation matrices based on the boundaries of their coefficients.

    PubMed

    Numpacharoen, Kawee; Atsawarungruangkit, Amporn

    2012-01-01

    Correlation coefficients among multiple variables are commonly described in the form of matrices. Applications of such correlation matrices can be found in many fields, such as finance, engineering, statistics, and medicine. This article proposes an efficient way to sequentially obtain the theoretical bounds of correlation coefficients together with an algorithm to generate n × n correlation matrices using any bounded random variables. Interestingly, the correlation matrices generated by this method using uniform random variables as an example produce more extreme relationships among the variables than other methods, which might be useful for modeling complex biological systems where rare cases are very important.

  20. A multiple shift QR-step for structured rank matrices

    NASA Astrophysics Data System (ADS)

    Vandebril, Raf; van Barel, Marc; Mastronardi, Nicola

    2010-01-01

    Eigenvalue computations for structured rank matrices are the subject of many investigations nowadays. There exist methods for transforming matrices into structured rank form, QR-algorithms for semiseparable and semiseparable plus diagonal form, methods for reducing structured rank matrices efficiently to Hessenberg form and so forth. Eigenvalue computations for the symmetric case, involving semiseparable and semiseparable plus diagonal matrices have been thoroughly explored. A first attempt for computing the eigenvalues of nonsymmetric matrices via intermediate Hessenberg-like matrices (i.e. a matrix having all subblocks in the lower triangular part of rank at most one) was restricted to the single shift strategy. Unfortunately this leads in general to the use of complex shifts switching thereby from real to complex operations. This paper will explain a general multishift implementation for Hessenberg-like matrices (semiseparable matrices are a special case and hence also admit this approach). Besides a general multishift QR-step, this will also admit restriction to real computations when computing the eigenvalues of arbitrary real matrices. Details on the implementation are provided as well as numerical experiments proving the viability of the presented approach.

  1. Asphaltene multilayer growth in porous medium probed by SANS

    NASA Astrophysics Data System (ADS)

    Gummel, J.; Corvis, Y.; Jestin, J.; M'hamdi, J.; Barré, L.

    2009-02-01

    Presence of suspended particles such as asphaltene in crude oils could significantly affect the production by means of deposition in porous media especially near the well bore. We investigate this phenomenon using the ability of Small Angle Neutron Scattering technique to probe directly the asphaltene adsorption process in a porous medium at the nanometer length scale under flow conditions. A device based on a quartz tube filled with SiC particles constitute the porous medium in which an asphaltene solution in a mixture of good (toluene)/bad (heptane) solvent is injected under controlled flow. The contrast matching technique enables to match the porous medium scattering contributions and to measure the signal of the deposit. Such a device can be used for curves surface measurements on a setup originally designed for bulk studies and permit thus the direct comparison with measurements on flat surfaces (neutron reflectivity) and indirect adsorption measurements (adsorption isotherm). We show here that asphaltene in good solvent leads to a monolayer whereas addition of bad solvent results in a multilayer growth which is consistent with the deposition behaviour described in the literature.

  2. Constitutive receptor systems for drug discovery.

    PubMed

    Chen, G; Jayawickreme, C; Way, J; Armour, S; Queen, K; Watson, C; Ignar, D; Chen, W J; Kenakin, T

    1999-12-01

    This paper discusses the use of constitutively active G-protein-coupled receptor systems for drug discovery. Specifically, the ternary complex model is used to define the two major theoretical advantages of constitutive receptor screening-namely, the ability to detect antagonists as well as agonists directly and the fact that constitutive systems are more sensitive to agonists. In experimental studies, transient transfection of Chinese hamster ovary cyclic AMP response element (CRE) luciferase reporter cells with cDNA for human parathyroid hormone receptor, glucagon receptor, and glucagon-like peptide (GLP-1) receptor showed cDNA concentration-dependent constitutive activity with parathyroid hormone (PTH-1) and glucagon. In contrast, no constitutive activity was observed for GLP-1 receptor, yet responses to GLP-1 indicated that receptor expression had taken place. In another functional system, Xenopus laevi melanophores transfected with cDNA for human calcitonin receptor showed constitutive activity. Nine ligands for the calcitonin receptor either increased or decreased constitutive activity in this assay. The sensitivity of the system to human calcitonin increased with increasing constitutive activity. These data indicate that, for those receptors which naturally produce constitutive activity, screening in this mode could be advantageous over other methods.

  3. Testing of constitutive models in LAME.

    SciTech Connect

    Hammerand, Daniel Carl; Scherzinger, William Mark

    2007-09-01

    Constitutive models for computational solid mechanics codes are in LAME--the Library of Advanced Materials for Engineering. These models describe complex material behavior and are used in our finite deformation solid mechanics codes. To ensure the correct implementation of these models, regression tests have been created for constitutive models in LAME. A selection of these tests is documented here. Constitutive models are an important part of any solid mechanics code. If an analysis code is meant to provide accurate results, the constitutive models that describe the material behavior need to be implemented correctly. Ensuring the correct implementation of constitutive models is the goal of a testing procedure that is used with the Library of Advanced Materials for Engineering (LAME) (see [1] and [2]). A test suite for constitutive models can serve three purposes. First, the test problems provide the constitutive model developer a means to test the model implementation. This is an activity that is always done by any responsible constitutive model developer. Retaining the test problem in a repository where the problem can be run periodically is an excellent means of ensuring that the model continues to behave correctly. A second purpose of a test suite for constitutive models is that it gives application code developers confidence that the constitutive models work correctly. This is extremely important since any analyst that uses an application code for an engineering analysis will associate a constitutive model in LAME with the application code, not LAME. Therefore, ensuring the correct implementation of constitutive models is essential for application code teams. A third purpose of a constitutive model test suite is that it provides analysts with example problems that they can look at to understand the behavior of a specific model. Since the choice of a constitutive model, and the properties that are used in that model, have an enormous effect on the results of an

  4. Racetrack micro-resonators based on ridge waveguides made of porous silica

    NASA Astrophysics Data System (ADS)

    Girault, P.; Lorrain, N.; Lemaitre, J.; Poffo, L.; Guendouz, M.; Hardy, I.; Gadonna, M.; Gutierrez, A.; Bodiou, L.; Charrier, J.

    2015-12-01

    The fabrication of micro-resonators, made from porous silica ridge waveguides by using an electrochemical etching method of silicon substrate followed by thermal oxidation and then by a standard photolithography process, is reported. The design and fabrication process are described including a study of waveguide dimensions that provide single mode propagation and calculation of the coupling ratio between a straight access waveguide and the racetrack resonator. Scanning electronic microscopy observations and optical characterizations clearly show that the micro-resonator based on porous silica ridge waveguides has been well implemented. This porous micro-resonator is destined to be used as an optical sensor. The porous nature of the ridge waveguide constitutes the detection medium which will enhance the sensor sensitivity compared to usual micro-resonators based on the evanescent wave detection. A theoretical sensitivity of 1170 nm per refractive index unit has been calculated, taking into consideration experimental data obtained from the optical characterizations.

  5. Alternative CHCA-based matrices for the analysis of low molecular weight compounds by UV-MALDI-tandem mass spectrometry.

    PubMed

    Porta, Tiffany; Grivet, Chantal; Knochenmuss, Richard; Varesio, Emmanuel; Hopfgartner, Gérard

    2011-02-01

    Analysis of low molecular weight compounds (LMWC) in complex matrices by vacuum matrix-assisted laser desorption/ionization (MALDI) often suffers from matrix interferences, which can severely degrade limits of quantitation. It is, therefore, useful to have available a range of suitable matrices, which exhibit complementary regions of interference. Two newly synthesized α-cyanocinnamic acid derivatives are reported here; (E)-2-cyano-3-(naphthalen-2-yl)acrylic acid (NpCCA) and (2E)-3-(anthracen-9-yl)-2-cyanoprop-2enoic acid (AnCCA). Along with the commonly used α-cyano-4-hydroxycinnamic acid (CHCA), and the recently developed 4-chloro-α-cyanocinnamic acid (Cl-CCA) matrices, these constitute a chemically similar series of matrices covering a range of molecular weights, and with correspondingly differing ranges of spectral interference. Their performance was compared by measuring the signal-to-noise ratios (S/N) of 47 analytes, mostly pharmaceuticals, with the different matrices using the selected reaction monitoring (SRM) mode on a triple quadrupole instrument equipped with a vacuum MALDI source. AnCCA, NpCCA and Cl-CCA were found to offer better signal-to-noise ratios in SRM mode than CHCA, but Cl-CCA yielded the best results for 60% of the compounds tested. To better understand the relative performance of this matrix series, the proton affinities (PAs) were measured using the kinetic method. Their relative values were: AnCCA > CHCA > NpCCA > Cl-CCA. This ordering is consistent with the performance data. The synthesis of the new matrices is straightforward and they provide (1) tunability of matrix background interfering ions and (2) enhanced analyte response for certain classes of compounds.

  6. Biogenic Cracks in Porous Rock

    NASA Astrophysics Data System (ADS)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  7. Electrokinetic coupling in unsaturated porous media

    SciTech Connect

    Revil, A.; Linde, N.; Cerepi, A.; Jougnot, D.; Matthai, S.; Finsterle, S.

    2007-02-27

    We consider a charged porous material that is saturated bytwo fluid phases that are immiscible and continuous on the scale of arepresentative elementary volume. The wetting phase for the grains iswater and the nonwetting phase is assumed to be an electricallyinsulating viscous fluid. We use a volume-averaging approach to derivethe linear constitutive equations for the electrical current density aswell as the seepage velocities of the wetting and nonwetting phases onthe scale of a representative elementary volume. These macroscopicconstitutive equations are obtained by volume-averaging Ampere's lawtogether with the Nernst Planck equation and the Stokes equations. Thematerial properties entering the macroscopic constitutive equations areexplicitly described as functions of the saturation of the water phase,the electrical formation factor, and parameters that describe thecapillary pressure function, the relative permeability function, and thevariation of electrical conductivity with saturation. New equations arederived for the streaming potential and electro-osmosis couplingcoefficients. A primary drainage and imbibition experiment is simulatednumerically to demonstrate that the relative streaming potential couplingcoefficient depends not only on the water saturation, but also on thematerial properties of the sample, as well as the saturation history. Wealso compare the predicted streaming potential coupling coefficients withexperimental data from four dolomite core samples. Measurements on thesesamples include electrical conductivity, capillary pressure, thestreaming potential coupling coefficient at various level of saturation,and the permeability at saturation of the rock samples. We found verygood agreement between these experimental data and the modelpredictions.

  8. Regeneratively Cooled Porous Media Jacket

    NASA Technical Reports Server (NTRS)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  9. Light emission from porous silicon

    NASA Astrophysics Data System (ADS)

    Penczek, John

    The continuous evolution of silicon microelectronics has produced significant gains in electronic information processing. However, greater improvements in performance are expected by utilizing optoelectronic techniques. But these techniques have been severely limited in silicon- based optoelectronics due to the lack of an efficient silicon light emitter. The recent observation of efficient light emission from porous silicon offer a promising opportunity to develop a suitable silicon light source that is compatible with silicon microelectronics. This dissertation examined the porous silicon emission mechanism via photoluminescence, and by a novel device structure for porous silicon emitters. The investigation first examined the correlation between porous silicon formation conditions (and subsequent morphology) with the resulting photoluminescence properties. The quantum confinement theory for porous silicon light emission contends that the morphology changes induced by the different formation conditions determine the optical properties of porous silicon. The photoluminescence spectral shifts measured in this study, in conjunction with TEM analysis and published morphological data, lend support to this theory. However, the photoluminescence spectral broadening was attributed to electronic wavefunction coupling between adjacent silicon nanocrystals. An novel device structure was also investigated in an effort to improve current injection into the porous silicon layer. The selective etching properties of porous silicon were used to create a p-i-n structure with crystalline silicon contacts to the porous silicon layer. The resulting device was found to have unique characteristics, with a negative differential resistance region and current-induced emission that spanned from 400 nm to 5500 nm. The negative differential resistance was correlated to resistive heating effects in the device. A numerical analysis of thermal emission spectra from silicon films, in addition to

  10. Granulation and infiltration processes for the fabrication of minor actinide fuels, targets and conditioning matrices

    NASA Astrophysics Data System (ADS)

    Nästren, C.; Fernandez, A.; Haas, D.; Somers, J.; Walter, M.

    2007-05-01

    The impact of Pu and Am, two elements that potentially pose a long term hazard for the disposal of spent nuclear fuel, can be abated by their reintroduction into the fuel cycle for transmutation. Such transmutation targets can be fabricated by a sol gel method for the production of porous inactive beads, which are then infiltrated by Am solutions. Following calcination, compaction into pellets and sintering, the product is obtained. At its heart, the sol gel process relies on an ammonia precipitation, so that it is not universally applicable. Therefore, an alternative is sought not just to overcome this chemical limitation, but also to simplify the process and reduce waste streams. The new concept utilises powder metallurgy routes (compaction, crushing and sieving) to produce porous, almost, dust free granules, which are infiltrated with the actinide nitrate. The method has been developed using yttria stabilised zirconia and alumina, and has been demonstrated for the production of Al2O3-AmO2 targets for neutron capture investigations. The results are very promising and meet light water reactor fuel specifications. In addition, the process is ideally suited for the production of ceramic matrices for conditioning actinides for geological disposal.

  11. NMR 1D-imaging of water infiltration into mesoporous matrices.

    PubMed

    Le Feunteun, Steven; Diat, Olivier; Guillermo, Armel; Poulesquen, Arnaud; Podor, Renaud

    2011-04-01

    It is shown that coupling nuclear magnetic resonance (NMR) 1D-imaging with the measure of NMR relaxation times and self-diffusion coefficients can be a very powerful approach to investigate fluid infiltration into porous media. Such an experimental design was used to study the very slow seeping of pure water into hydrophobic materials. We consider here three model samples of nuclear waste conditioning matrices which consist in a dispersion of NaNO(3) (highly soluble) and/or BaSO(4) (poorly soluble) salt grains embedded in a bitumen matrix. Beyond studying the moisture progression according to the sample depth, we analyze the water NMR relaxation times and self-diffusion coefficients along its 1D-concentration profile to obtain spatially resolved information on the solution properties and on the porous structure at different scales. It is also shown that, when the relaxation or self-diffusion properties are multimodal, the 1D-profile of each water population is recovered. Three main levels of information were disclosed along the depth-profiles. They concern (i) the water uptake kinetics, (ii) the salinity and the molecular dynamics of the infiltrated solutions and (iii) the microstructure of the water-filled porosities: open networks coexisting with closed pores. All these findings were fully validated and enriched by NMR cryoporometry experiments and by performing environmental scanning electronic microscopy observations. Surprisingly, results clearly show that insoluble salts enhance the water progression and thereby increase the capability of the material to uptake water.

  12. Investigation of the rheology and transport of polymers in porous media using network models

    SciTech Connect

    Sorbie, K.S.; Clifford, P.J.

    1988-05-01

    Polymers have been used in improved oil recovery operations as mobility control agents in surfactant and polymer flooding and in gel treatments. In order to predict the outcome of such processes, it is necessary to have a good understanding of the rheology and transport of polymer solutions in porous media. The rheological behavior refers essentially to the pressure drop/flow rate relationship observed for the polymer solution in the porous medium. It is relatively straightforward to measure rheological properties of bulk polymer solutions such as the viscosity/shear rate behavior or, for elastic fluids, the normal stress differences. However, the pressure drop/flow rate behavior of the polymers in flow through porous media may be either qualitatively quite similar or very different from bulk flow behavior as measured, for example, in a capillary viscometer. In both the rheology and dispersion behavior of polymers in porous media, they see that the phenomenon being observed macroscopically is a result of the interaction between a fluid or molecular property and the stochastic nature of the porous medium at the microscopic level. If one views the porous medium as a network of joined capillaries, then the rheological behavior in each capillary will be quite well defined, e.g. through a single constitutive relationship. In the investigation of hydrodynamic dispersion of polymer and tracer in porous media, the role of the stochastic nature of the medium is clearly evident.

  13. Fabrication and characterization of porous silicon nanowires

    NASA Astrophysics Data System (ADS)

    Jung, Daeyoon; Cho, Soo Gyeong; Moon, Taeho; Sohn, Honglae

    2016-01-01

    We report the synthesis of porous silicon nanowires through the metalassisted chemical etching of porous silicon in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of porous silicon nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The etch rate of the porous silicon nanowires was faster than that of silicon nanowires, but slower than that of porous silicon. The porous silicon nanowires distributed uniformly on the entire porous silicon layer and the tips of the porous silicon nanowires congregated together. The single crystalline and sponge-like porous structure with the pore diameters of less than 5 nm was confirmed for the porous silicon nanowires. [Figure not available: see fulltext.

  14. Association of scattering matrices in quantum networks

    SciTech Connect

    Almeida, F.A.G.; Macêdo, A.M.S.

    2013-06-15

    Algorithms based on operations that associate scattering matrices in series or in parallel (analogous to impedance association in a classical circuit) are developed here. We exemplify their application by calculating the total scattering matrix of several types of quantum networks, such as star graphs and a chain of chaotic quantum dots, obtaining results with good agreement with the literature. Through a computational-time analysis we compare the efficiency of two algorithms for the simulation of a chain of chaotic quantum dots based on series association operations of (i) two-by-two centers and (ii) three-by-three ones. Empirical results point out that the algorithm (ii) is more efficient than (i) for small number of open scattering channels. A direct counting of floating point operations justifies quantitatively the superiority of the algorithm (i) for large number of open scattering channels.

  15. Investigation of degradation mechanisms in composite matrices

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.

    1982-01-01

    Degradation mechanisms were investigated for graphite/polysulfone and graphite/epoxy laminates exposed to ultraviolet and high-energy electron radiations in vacuum up to 960 equivalent sun hours and 10 to the ninth power rads respectively. Based on GC and combined GC/MS analysis of volatile by-products evolved during irradiation, several free radical mechanisms of composite degradation were identified. The radiation resistance of different matrices was compared in terms of G values and quantum yields for gas formation. All the composite materials evaluated show high electron radiation stability and relatively low ultraviolet stability as indicated by low G values and high quantum for gas formation. Mechanical property measurements of irradiated samples did not reveal significant changes, with the possible exception of UV exposed polysulfone laminates. Hydrogen and methane were identified as the main by-products of irradiation, along with unexpectedly high levels of CO and CO2.

  16. Carbon nanomaterials in silica aerogel matrices

    SciTech Connect

    Hamilton, Christopher E; Chavez, Manuel E; Duque, Juan G; Gupta, Gautam; Doorn, Stephen K; Dattelbaum, Andrew M; Obrey, Kimberly A D

    2010-01-01

    Silica aerogels are ultra low-density, high surface area materials that are extremely good thermal insulators and have numerous technical applications. However, their mechanical properties are not ideal, as they are brittle and prone to shattering. Conversely, single-walled carbon nanotubes (SWCNTs) and graphene-based materials, such as graphene oxide, have extremely high tensile strength and possess novel electronic properties. By introducing SWCNTs or graphene-based materials into aerogel matrices, it is possible to produce composites with the desirable properties of both constituents. We have successfully dispersed SWCNTs and graphene-based materials into silica gels. Subsequent supercritical drying results in monolithic low-density composites having improved mechanical properties. These nanocomposite aerogels have great potential for use in a wide range of applications.

  17. Quantum State Tomography via Reduced Density Matrices

    NASA Astrophysics Data System (ADS)

    Xin, Tao; Lu, Dawei; Klassen, Joel; Yu, Nengkun; Ji, Zhengfeng; Chen, Jianxin; Ma, Xian; Long, Guilu; Zeng, Bei; Laflamme, Raymond

    2017-01-01

    Quantum state tomography via local measurements is an efficient tool for characterizing quantum states. However, it requires that the original global state be uniquely determined (UD) by its local reduced density matrices (RDMs). In this work, we demonstrate for the first time a class of states that are UD by their RDMs under the assumption that the global state is pure, but fail to be UD in the absence of that assumption. This discovery allows us to classify quantum states according to their UD properties, with the requirement that each class be treated distinctly in the practice of simplifying quantum state tomography. Additionally, we experimentally test the feasibility and stability of performing quantum state tomography via the measurement of local RDMs for each class. These theoretical and experimental results demonstrate the advantages and possible pitfalls of quantum state tomography with local measurements.

  18. Politics, Economics, and Religion in the Constitution.

    ERIC Educational Resources Information Center

    Stevens, Richard G.

    1986-01-01

    Explains the relationship between politics, economics, and religion through the philosophies of Smith, Hobbes, and Locke. Maintains that the unamended Constitution is a reconciliation of politics, religion, and economics. Defends this claim by examining property rights and the Constitution's regard to means in pursuance of freedom and justice.…

  19. The Meaning of Religion: A Constitutional Perspective.

    ERIC Educational Resources Information Center

    Lilly, Edward R.

    The problems of formulating a legal definition of religion as used in the U.S. Constitution may be traced through the Supreme Court's interpretation of the word. According to the U.S. Constitution, religious tests cannot be required for any office or public trust under the central government. The Bill of Rights states that the national government…

  20. The Five Great Ideas of Our Constitution.

    ERIC Educational Resources Information Center

    Starr, Isidore

    1987-01-01

    Identifies five great ideas of the U.S. Constitution as power, liberty, justice, equality, and property. The first of two installments, article focuses on how ideas of power and liberty are presented in the Constitution. It also discusses how people may exercise power through voting and public protest and liberty through their First Amendment…

  1. 17 CFR 200.54 - Constitutional obligations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 2 2010-04-01 2010-04-01 false Constitutional obligations... ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Canons of Ethics § 200.54 Constitutional... faithfully execute the laws which they are charged with administering. Members shall also carefully...

  2. Public and Constitutional Support for Character Education.

    ERIC Educational Resources Information Center

    Vessels, Gordon G.; Boyd, Stephen M.

    1996-01-01

    Character education thrives on an informed understanding of constitutional principles and an inclusive commitment-building process. U.S. Supreme Court opinions that clarify public school students' free speech rights have established values education as a constitutionally acceptable practice. Challenges might lie in possible violations of the First…

  3. The Constitution at 200: Celebration Amidst Controversy.

    ERIC Educational Resources Information Center

    Collins, Sheila D.

    1987-01-01

    Current debates about the Constitution fall into the three following categories: (1) reappraisals of consitutional origins; (2) disagreements on hermeneutical principles used in contemporary applications; and (3) discussions of contemporary events whose consequences for law and political stability could not have been foreseen by the Constitution's…

  4. 29 CFR 452.18 - Constitutional officers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... performs no executive functions and whose duties are confined to promoting the interests of members in... officer position by the union's constitution, or the holder of the position performs executive functions... constitution, are not members of any executive board or similar governing body, and do not perform...

  5. 29 CFR 452.18 - Constitutional officers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... performs no executive functions and whose duties are confined to promoting the interests of members in... officer position by the union's constitution, or the holder of the position performs executive functions... constitution, are not members of any executive board or similar governing body, and do not perform...

  6. 29 CFR 452.18 - Constitutional officers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... performs no executive functions and whose duties are confined to promoting the interests of members in... officer position by the union's constitution, or the holder of the position performs executive functions... constitution, are not members of any executive board or similar governing body, and do not perform...

  7. 29 CFR 452.18 - Constitutional officers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... performs no executive functions and whose duties are confined to promoting the interests of members in... officer position by the union's constitution, or the holder of the position performs executive functions... constitution, are not members of any executive board or similar governing body, and do not perform...

  8. 29 CFR 452.18 - Constitutional officers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... performs no executive functions and whose duties are confined to promoting the interests of members in... officer position by the union's constitution, or the holder of the position performs executive functions... constitution, are not members of any executive board or similar governing body, and do not perform...

  9. From Confederation to Constitution: 1781-1789.

    ERIC Educational Resources Information Center

    Urofsky, Melvin I.; Cox, Nancy

    Students should achieve a higher level of understanding and appreciation of the evolving nature of the U.S. Constitution and its relevance to contemporary societal issues by studying historical documents from the period of time between the Articles of Confederation and the Constitution. This document begins with a history of that period and of the…

  10. The Educational Significance of Canada's Constitution.

    ERIC Educational Resources Information Center

    Wells, Allen R.

    1985-01-01

    Traces the historical relationship of Canada's educational system to its constitution. Concludes that the significance of the patriation of Canada's constitution for education includes strengthening a drive for bilingual education, promoting equality of opportunity, and continuing education as a provincial concern while unifying, nationally, the…

  11. Resources for Teaching about the Constitution.

    ERIC Educational Resources Information Center

    Cohen, Cheryl B.

    1987-01-01

    Describes eight resources for teaching about the United States Constitution available from ERIC. Described are instructional materials for junior and senior high school students on such topics as (1) the role of the U.S. Supreme Court, (2) freedom of the press, (3) the history of the United States Constitution, and (4) problems of the…

  12. The Constitution in the Twentieth Century.

    ERIC Educational Resources Information Center

    Murphy, Paul L.

    1987-01-01

    Investigates the development of the United States Constitution in the twentieth century up to and including the Burger Court. Contends that interpreting the Constitution is an important issue of our times. Consequently argues that we should teach students about the development of this document. (RKM)

  13. Dirac matrices for Chern-Simons gravity

    NASA Astrophysics Data System (ADS)

    Izaurieta, Fernando; Ramírez, Ricardo; Rodríguez, Eduardo

    2012-10-01

    A genuine gauge theory for the Poincaré, de Sitter or anti-de Sitter algebras can be constructed in (2n - 1)-dimensional spacetime by means of the Chern-Simons form, yielding a gravitational theory that differs from General Relativity but shares many of its properties, such as second order field equations for the metric. The particular form of the Lagrangian is determined by a rank n, symmetric tensor invariant under the relevant algebra. In practice, the calculation of this invariant tensor can be reduced to the computation of the trace of the symmetrized product of n Dirac Gamma matrices Γab in 2n-dimensional spacetime. While straightforward in principle, this calculation can become extremely cumbersome in practice. For large enough n, existing computer algebra packages take an inordinate long time to produce the answer or plainly fail having used up all available memory. In this talk we show that the general formula for the trace of the symmetrized product of 2n Gamma matrices Γab can be written as a certain sum over the integer partitions s of n, with every term being multiplied by a numerical cofficient αs. We then give a general algorithm that computes the α-coefficients as the solution of a linear system of equations generated by evaluating the general formula for different sets of tensors Bab with random numerical entries. A recurrence relation between different coefficients is shown to hold and is used in a second, "minimal" algorithm to greatly speed up the computations. Runtime of the minimal algorithm stays below 1 min on a typical desktop computer for up to n = 25, which easily covers all foreseeable applications of the trace formula.

  14. Robust Generalized Low Rank Approximations of Matrices.

    PubMed

    Shi, Jiarong; Yang, Wei; Zheng, Xiuyun

    2015-01-01

    In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods.

  15. Robust Generalized Low Rank Approximations of Matrices

    PubMed Central

    Shi, Jiarong; Yang, Wei; Zheng, Xiuyun

    2015-01-01

    In recent years, the intrinsic low rank structure of some datasets has been extensively exploited to reduce dimensionality, remove noise and complete the missing entries. As a well-known technique for dimensionality reduction and data compression, Generalized Low Rank Approximations of Matrices (GLRAM) claims its superiority on computation time and compression ratio over the SVD. However, GLRAM is very sensitive to sparse large noise or outliers and its robust version does not have been explored or solved yet. To address this problem, this paper proposes a robust method for GLRAM, named Robust GLRAM (RGLRAM). We first formulate RGLRAM as an l1-norm optimization problem which minimizes the l1-norm of the approximation errors. Secondly, we apply the technique of Augmented Lagrange Multipliers (ALM) to solve this l1-norm minimization problem and derive a corresponding iterative scheme. Then the weak convergence of the proposed algorithm is discussed under mild conditions. Next, we investigate a special case of RGLRAM and extend RGLRAM to a general tensor case. Finally, the extensive experiments on synthetic data show that it is possible for RGLRAM to exactly recover both the low rank and the sparse components while it may be difficult for previous state-of-the-art algorithms. We also discuss three issues on RGLRAM: the sensitivity to initialization, the generalization ability and the relationship between the running time and the size/number of matrices. Moreover, the experimental results on images of faces with large corruptions illustrate that RGLRAM obtains the best denoising and compression performance than other methods. PMID:26367116

  16. Mono- and biphotonic photochemistry in glass matrices

    NASA Astrophysics Data System (ADS)

    Kaupp, Gerd

    2006-04-01

    Photochemistry in hard glassy solvent matrices gives different results than in gas matrices. It is performed at 83, 77, and ≥10 K by continuous irradiation and by pulsed multi MW cm -2 peak intensity excitation for those systems that do not react monophotonically. The highly structured matrix spectra should be taken as a basis for the interpretation of transient spectra to avoid ambiguities. Numerous [2.2]paracyclophanes are photolyzed. Most of them give stable diradical and quinodimethane spectra in addition to fluorescence and phosphorescence. Some benzylic diradicals undergo chemiluminescence after their photochemical generation. Matrix isolation spectroscopy is at variance with common interpretations in the lepidopterene case. A [2+4]-photocycloreversion of a substituted cyclohexene at 83 K leads to diene stereoisomers/rotamers that isomerize upon further irradiation. E/Z-photoequilibria are obtained in MTHF matrix from both sides with ω-nitrostyrene and α-benzylidene-γ-butyrolactone at 83 K, the latter stereoisomerization was also successfully studied at 10 K. Pulsed irradiation of technical photostabilizers at 10 K leads to stable zwitterion formation by proton migration that cannot be seen by continuous excitation. Inter- and intramolecular donor acceptor systems provide stable charge separation at 15 or 77 K upon pulsed laser irradiation and radicalanion spectra are recorded. Biphotonic photochemistry at ≥10 K allows for the formation of new ring systems such as dioxathiirane ( cyclo-SO 2), several aryldioxaziridines, and an electron rich triaziridine, compounds that revert upon thawing and could not be obtained by continuous irradiation, except cyclo-SO 2 that can also be formed after absorption of the long lived SO 2 triplet by another two-photon process.

  17. Constitutive modeling of inelastic anisotropic material response

    NASA Technical Reports Server (NTRS)

    Stouffer, D. C.

    1984-01-01

    A constitutive equation was developed to predict the inelastic thermomechanical response of single crystal turbine blades. These equations are essential for developing accurate finite element models of hot section components and contribute significantly to the understanding and prediction of crack initiation and propagation. The method used was limited to unified state variable constitutive equations. Two approaches to developing an anisotropic constitutive equation were reviewed. One approach was to apply the Stouffer-Bodner representation for deformation induced anisotropy to materials with an initial anisotropy such as single crystals. The second approach was to determine the global inelastic strain rate from the contribution of the slip in each of the possible crystallographic slip systems. A three dimensional finite element is being developed with a variable constitutive equation link that can be used for constitutive equation development and to predict the response of an experiment using the actual specimen geometry and loading conditions.

  18. EPR study of porous silicon

    NASA Astrophysics Data System (ADS)

    Jishi, Fu; Jinchang, Mao; En, Wu; Yongqiang, Jia; Borui, Zhang; Lizhu, Zhang; Guogang, Qin; Yuhua, Zhang; Genshuan, Wui

    1994-12-01

    An anisotropic EPR signal was observed in porous Si. According to its symmetry and g value, the EPR signal can be attributed to silicon dangling bonds located on the surface of a porous Si skeleton. The evolution of the EPR signal at room temperature in air was measured. The annealing temperature dependence of the EPR and the PL of porous Si in oxygen and the effects of gamma irradiation on the EPR and the PL spectra of porous Si were studied. The changes of the EPR signal and the PL intensity induced in atmosphere by ethyl alcohol and acetone were discovered. The dangling bond is only one of the factors which affect the PL.

  19. Porous substrates filled with nanomaterials

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  20. Efficient quantum circuits for Toeplitz and Hankel matrices

    NASA Astrophysics Data System (ADS)

    Mahasinghe, A.; Wang, J. B.

    2016-07-01

    Toeplitz and Hankel matrices have been a subject of intense interest in a wide range of science and engineering related applications. In this paper, we show that quantum circuits can efficiently implement sparse or Fourier-sparse Toeplitz and Hankel matrices. This provides an essential ingredient for solving many physical problems with Toeplitz or Hankel symmetry in the quantum setting with deterministic queries.

  1. Asymptotic Spectra Of Banded Quasi-Toeplitz Matrices

    NASA Technical Reports Server (NTRS)

    Beam, Richard; Warming, Robert

    1995-01-01

    Paper presents theoretical and numerical study of asymptotic spectra of eigenvalues of banded Toeplitz and quasi-Toeplitz matrices. Emphasis in study on non-normal banded Toeplitz and quasi-Toeplitz matrices of arbitrarily large order and relatively small bandwidth.

  2. Infinite Töplitz Lipschitz matrices and operators

    NASA Astrophysics Data System (ADS)

    Eliasson, H. L.; Kuksin, S. B.

    2008-01-01

    We introduce a class of infinite matrices {(A_{ss', s, s' in mathbb{Z}^d)} , which are asymptotically ( as | s| + | s'| → ∞) close to Hankel Töplitz matrices. We prove that this class forms an algebra, and that flow-maps of nonautonomous linear equations with coefficients from the class also belong to it.

  3. The Modern Origin of Matrices and Their Applications

    ERIC Educational Resources Information Center

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  4. Component Identification and Item Difficulty of Raven's Matrices Items.

    ERIC Educational Resources Information Center

    Green, Kathy E.; Kluever, Raymond C.

    Item components that might contribute to the difficulty of items on the Raven Colored Progressive Matrices (CPM) and the Standard Progressive Matrices (SPM) were studied. Subjects providing responses to CPM items were 269 children aged 2 years 9 months to 11 years 8 months, most of whom were referred for testing as potentially gifted. A second…

  5. Computing Vibration-Mode Matrices From Finite-Element Output

    NASA Technical Reports Server (NTRS)

    Levy, Roy

    1993-01-01

    Postprocessing algorithms devised to facilitate vibrational-mode analyses of dynamics of complicated structures. Yields inertia matrices and elastic/rigid-coupling matrices. Such analyses important in simulation and control in active suppression of vibrations in large building or in precise aiming of large antenna.

  6. User-Friendly Tools for Random Matrices: An Introduction

    DTIC Science & Technology

    2012-12-03

    zeros of the Riemann zeta function [Mon73]). 1.2 The Modern Random Matrix By now, random matrices are ubiquitous. They arise throughout modern ... mathematics and statistics, as well as in many branches of science and engineering. Random matrices have sev- eral different purposes that we may wish to

  7. Random Matrices, Combinatorics, Numerical Linear Algebra and Complex Networks

    DTIC Science & Technology

    2012-02-16

    Rudelson and R. Vershynin, The Littlewood -Offord Problem and invertibility of random matrices, Advances in Mathematics 218 (2008), 600–633. [25] L... Littlewood -Offord theorems and the condition number of random discrete matrices, Annals of Mathematics, to appear. [29] T. Tao and V. Vu, The condition

  8. Porous light-emitting compositions

    SciTech Connect

    Burrell, Anthony K; McCleskey, Thomas Mark; Jia, Quanxi; Bauer, Eve; Mueller, Alexander H

    2012-04-17

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  9. Porous carbon EOS: numerical analysis

    NASA Astrophysics Data System (ADS)

    Aliverdiev, A.; Batani, D.; Dezulian, R.; Vinci, T.

    2010-10-01

    In this paper, we address the problem of direct simulation of laser-driven shock experiments aiming at determining the equation of state (EOS) of carbon using the "relative" impedance mismatch method. In particular, using tabulated carbon EOS (SESAME library, material number 7830), we have found some difficulties in reducing the initial density of the material in simulations with porous carbon. We have therefore calculated a new EOS for porous carbon with a reduced bulk modulus.

  10. Laser-induced growth of nanocrystals embedded in porous materials

    PubMed Central

    2013-01-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  11. Laser-induced growth of nanocrystals embedded in porous materials

    NASA Astrophysics Data System (ADS)

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed

    2013-06-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  12. Laser-induced growth of nanocrystals embedded in porous materials.

    PubMed

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed

    2013-06-06

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  13. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting.

  14. Time series, correlation matrices and random matrix models

    SciTech Connect

    Vinayak; Seligman, Thomas H.

    2014-01-08

    In this set of five lectures the authors have presented techniques to analyze open classical and quantum systems using correlation matrices. For diverse reasons we shall see that random matrices play an important role to describe a null hypothesis or a minimum information hypothesis for the description of a quantum system or subsystem. In the former case various forms of correlation matrices of time series associated with the classical observables of some system. The fact that such series are necessarily finite, inevitably introduces noise and this finite time influence lead to a random or stochastic component in these time series. By consequence random correlation matrices have a random component, and corresponding ensembles are used. In the latter we use random matrices to describe high temperature environment or uncontrolled perturbations, ensembles of differing chaotic systems etc. The common theme of the lectures is thus the importance of random matrix theory in a wide range of fields in and around physics.

  15. Modeling of shape memory alloys and application to porous materials

    NASA Astrophysics Data System (ADS)

    Panico, Michele

    In the last two decades the number of innovative applications for advanced materials has been rapidly increasing. Shape memory alloys (SMAs) are an exciting class of these materials which exhibit large reversible stresses and strains due to a thermoelastic phase transformation. SMAs have been employed in the biomedical field for producing cardiovascular stents, shape memory foams have been successfully tested as bone implant material, and SMAs are being used as deployable switches in aerospace applications. The behavior of shape memory alloys is intrinsically complex due to the coupling of phase transformation with thermomechanical loading, so it is critical for constitutive models to correctly simulate their response over a wide range of stress and temperature. In the first part of this dissertation, we propose a macroscopic phenomenological model for SMAs that is based on the classical framework of thermodynamics of irreversible processes and accounts for the effect of multiaxial stress states and non-proportional loading histories. The model is able to account for the evolution of both self-accommodated and oriented martensite. Moreover, reorientation of the product phase according to loading direction is specifically accounted for. Computational tests demonstrate the ability of the model to simulate the main aspects of the shape memory response in a one-dimensional setting and some of the features that have been experimentally found in the case of multi-axial non-proportional loading histories. In the second part of this dissertation, this constitutive model has been used to study the mesoscopic behavior of porous shape memory alloys with particular attention to the mechanical response under cyclic loading conditions. In order to perform numerical simulations, the model was implemented into the commercial finite element code ABAQUS. Due to stress concentrations in a porous microstructure, the constitutive law was enhanced to account for the development of

  16. The regularity theory of mechanistic constitution and a methodology for constitutive inference.

    PubMed

    Harbecke, Jens

    2015-12-01

    This paper discusses a Boolean method for establishing constitutive regularity statements which, according to the regularity theory of mechanistic constitution, form the core of any mechanistic explanation in neuroscience. After presenting the regularity definition for the constitution relation, the paper develops a set of inference rules allowing one to establish constitutive hypotheses in light of certain kinds of empirical evidence. The general methodology consisting of these rules is characterized as having formed the basis of many successful explanatory projects in neuroscience.

  17. Tissue engineered cartilage on collagen and PHBV matrices.

    PubMed

    Köse, Gamze Torun; Korkusuz, Feza; Ozkul, Aykut; Soysal, Yasemin; Ozdemir, Taner; Yildiz, Cemil; Hasirci, Vasif

    2005-09-01

    Cartilage engineering is a very novel approach to tissue repair through use of implants. Matrices of collagen containing calcium phosphate (CaP-Gelfix), and matrices of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) were produced to create a cartilage via tissue engineering. The matrices were characterized by scanning electron microscopy (SEM) and electron diffraction spectroscopy (EDS). Porosity and void volume analysis were carried out to characterize the matrices. Chondrocytes were isolated from the proximal humerus of 22 week-old male, adult, local albino rabbits. For cell type characterization, Type II collagen was measured by Western Blot analysis. The foams were seeded with 1x10(6) chondrocytes and histological examinations were carried out to assess cell-matrix interaction. Macroscopic examination showed that PHBV (with or without chondrocytes) maintained its integrity for 21 days, while CaP-Gelfix was deformed and degraded within 15 days. Cell-containing and cell-free matrices were implanted into full thickness cartilage defects (4.5 mm in diameter and 4 mm in depth) at the patellar groove on the right and left knees of eight rabbits, respectively. In vivo results at 8 and 20 weeks with chondrocyte seeded PHBV matrices presented early cartilage formation resembling normal articular cartilage and revealed minimal foreign body reaction. In CaP-Gelfix matrices, fibrocartilage formation and bone invasion was noted in 20 weeks. Cells maintained their phenotype in both matrices. PHBV had better healing response than CaP-Gelfix. Both matrices were effective in cartilage regeneration. These matrices have great potential for use in the repair of joint cartilage defects.

  18. 3 CFR 8562 - Proclamation 8562 of September 16, 2010. Constitution Day and Citizenship Day, Constitution Week...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., Constitution Week, 2010By the President of the United States of America A Proclamation The summer of 1787 was a... Convention in Philadelphia established a Constitution for the United States of America, signing the finished... taking a solemn oath to “support and defend the Constitution and laws of the United States of...

  19. 3 CFR 8714 - Proclamation 8714 of September 16, 2011. Constitution Day and Citizenship Day, Constitution Week...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., Constitution Week, 2011By the President of the United States of America A Proclamation In the summer of 1787... months of fierce debate and hard-fought compromise, the delegates signed the Constitution of the United States. For more than two centuries, the Constitution has presided as the supreme law of the...

  20. 3 CFR 9019 - Proclamation 9019 of September 16, 2013. Constitution Day and Citizenship Day, Constitution Week...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., Constitution Week, 2013By the President of the United States of America A Proclamation In May of 1787... each year as “Constitution Week.” NOW, THEREFORE, I, BARACK OBAMA, President of the United States of... through September 23, 2013, as Constitution Week. I encourage Federal, State, and local officials, as...

  1. An In-Depth Tutorial on Constitutive Equations for Elastic Anisotropic Materials

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2011-01-01

    An in-depth tutorial on the constitutive equations for elastic, anisotropic materials is presented. Basic concepts are introduced that are used to characterize materials, and notions about how anisotropic material deform are presented. Hooke s law and the Duhamel-Neuman law for isotropic materials are presented and discussed. Then, the most general form of Hooke s law for elastic anisotropic materials is presented and symmetry requirements are given. A similar presentation is also given for the generalized Duhamel-Neuman law for elastic, anisotropic materials that includes thermal effects. Transformation equations for stress and strains are presented and the most general form of the transformation equations for the constitutive matrices are given. Then, specialized transformation equations are presented for dextral rotations about the coordinate axes. Next, concepts of material symmetry are introduced and criteria for material symmetries are presented. Additionally, engineering constants of fully anisotropic, elastic materials are derived from first principles and the specialized to several cases of practical importance.

  2. A POROUS, LAYERED HELIOPAUSE

    SciTech Connect

    Swisdak, M.; Drake, J. F.; Opher, M. E-mail: drake@umd.edu

    2013-09-01

    The picture of the heliopause (HP)-the boundary between the domains of the Sun and the local interstellar medium (LISM)-as a pristine interface with a large rotation in the magnetic field fails to describe recent Voyager 1 (V1) data. Magnetohydrodynamic (MHD) simulations of the global heliosphere reveal that the rotation angle of the magnetic field across the HP at V1 is small. Particle-in-cell simulations, based on cuts through the MHD model at V1's location, suggest that the sectored region of the heliosheath (HS) produces large-scale magnetic islands that reconnect with the interstellar magnetic field while mixing LISM and HS plasma. Cuts across the simulation reveal multiple, anti-correlated jumps in the number densities of LISM and HS particles, similar to those observed, at the magnetic separatrices. A model is presented, based on both the observations and simulations, of the HP as a porous, multi-layered structure threaded by magnetic fields. This model further suggests that contrary to the conclusions of recent papers, V1 has already crossed the HP.

  3. [The right to health. Constitutional dimensions].

    PubMed

    Pestalozza, C

    2007-09-01

    A fundamental "right to health" is expressly guaranteed by the constitutions of several Bundesländer, but unknown to the German Federal Constitution. Instead the Federal Constitutional Court has - especially on the basis of related human rights - developed the obligation of the State to protect everybody's life and physical integrity, which in some respects comes near to a "right to health". The State's autonomy in financial matters, the scarcity of its financial resources and the individual's natural responsibility for his own health though advise against exaggerated hopes set in a "right to health".

  4. Large Deformations of a Soft Porous Material

    NASA Astrophysics Data System (ADS)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2016-04-01

    Compressing a porous material will decrease the volume of the pore space, driving fluid out. Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with Terzaghi's effective stress and linear elasticity in a linearized kinematic framework. Linear poroelasticity is a good model for very small deformations, but it becomes increasingly inappropriate for moderate to large deformations, which are common in the context of phenomena such as swelling and damage, and for soft materials such as gels and tissues. The well-known theory of large-deformation poroelasticity combines Darcy's law with Terzaghi's effective stress and nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in biomechanics to model large elastic deformations in soft tissues and in geomechanics to model large elastoplastic deformations in soils. Here, we first provide an overview and discussion of this theory with an emphasis on the physics of poromechanical coupling. We present the large-deformation theory in an Eulerian framework to minimize the mathematical complexity, and we show how this nonlinear theory simplifies to linear poroelasticity under the assumption of small strain. We then compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of two uniaxial model problems: fluid outflow driven by an applied mechanical load (the consolidation problem) and compression driven by a steady fluid throughflow. We explore the steady and dynamical errors associated with the linear model in both situations, as well as the impact of introducing a deformation-dependent permeability. We show that the error in linear poroelasticity is due primarily to kinematic

  5. The Constitution and the Black Experiences

    ERIC Educational Resources Information Center

    Miles, E. W.

    1973-01-01

    A review of the constitutional promises to black people, early congressional efforts to fulfill these promises, early court cases construing the Fourteenth Amendment and the impact of these decisions along with their subsequent overruling. (Author/JB)

  6. Capturing the Essence of the Constitution.

    ERIC Educational Resources Information Center

    McMorrow, Catherine

    1987-01-01

    Offers three sample lesson plans for elementary grades designed to demonstrate the religious values inherent in the United States Constitution. Each lesson plan focuses on one amendment and includes a discussion of class activities. (DMM)

  7. Constitutive Laws for Dynamic Modelling of Soils,

    DTIC Science & Technology

    1980-01-01

    Constitutive Model for Fluid-Saturated Granular Material ", 8th US Nat...CLAY b) CAP MODEL c) ZIENKIEWICZ’S VISCOPLASTICITY 3 FIGURE 4 PARABOLIC UNDRAINED STRESS PATHS IN PENDER ’S MODEL =,*ammi I I I REPORT CONSTITUTIVE ...1971) : " Material Model for Granular Soils", ASCE Jour. Eng. Mech. Div., vol 97, EM3:935-950. DUNCAN, J.M. & CHANG, C.Y., (1970) : "Nonlinear

  8. Constitutive Parameter Measurement Using Double Ridge Waveguide

    DTIC Science & Technology

    2013-03-01

    CONSTITUTIVE PARAMETER MEASUREMENT USING DOUBLE RIDGE WAVEGUIDE THESIS Nathan J. Lehman, Captain, USAF AFIT-ENG-13-M-30 DEPARTMENT OF THE AIR FORCE...copyright protection in the United States. AFIT-ENG-13-M-30 CONSTITUTIVE PARAMETER MEASUREMENT USING DOUBLE RIDGE WAVEGUIDE THESIS Presented to the Faculty...PARAMETER MEASUREMENT USING DOUBLE RIDGE WAVEGUIDE Nathan J. Lehman, B.S.E.E. Captain, USAF Approved: Michael Havrilla, PhD (Chairman) Maj Milo Hyde, PhD

  9. Mechanically implementable accommodation matrices for passive force control

    SciTech Connect

    Goswami, A.; Peshkin, M.

    1999-08-01

    Robot force control implemented by means of passive mechanical devices has inherent advantages over active implementations with regard to stability, response rapidity, and physical robustness. The class of devices considered in this paper consists of a Stewart platform-type mechanism interconnected with a network of adjustable mechanical elements such as springs and dampers. The control law repertoire of such a device, imagined as a robot wrist, is given by the range of admittance matrices that it may be programmed to possess. This paper focuses on wrists incorporating damper networks for which the admittance matrices reduce to accommodation or inverse-damping matrices. The authors show that a hydraulic network of fully adjustable damper elements may attain any diagonally dominant accommodation matrix. They describe the technique of selecting the individual damping coefficients to design a desired matrix. They identify the set of dominant matrices as a polyhedral convex cone in the space of matrix entries, and show that each dominant matrix can be composed of a positive linear combination of a fixed set of basis matrices. The overall wrist-accommodation matrix is obtained by projecting the accommodation matrix of the damper network through the wrist kinematics. The linear combination of the dominant basis matrices projected through the wrist kinematics generates the entire space of mechanically implementable force-control laws. The authors quantify the versatility of mechanically implementable force-control laws by comparing this space to the space of all matrices.

  10. South African court rejects country's new constitution.

    PubMed

    1996-09-20

    Fundamental principles designed to ensure that South Africa's new constitution upholds a wide range of individual rights and freedoms and establishes a responsive government with a balanced separation of powers, including recognition of the role of traditional tribal leadership, were adopted into the current interim constitution shortly before the 1994 free elections which brought Nelson Mandela and the African National Congress to power. In a judgement issued on September 6, 1996, South Africa's Constitutional Court rejected the country's new draft constitution, arguing that it failed to meet the standards of nine of the 34 principles established at the Kempton Park negotiations. The Constitutional Assembly is comprised of a joint meeting of the National Assembly and Senate. One of the court's major objections to the constitution concerned the proposed structure of rule, which was seen to give inadequate power to South Africa's nine provinces as compared with the national government. However, the bill of rights was almost entirely upheld. The bill would create a favorable environment for legalized abortion and guarantee a universal right of access to health care, including reproductive health services

  11. Dynamic Condensation of Mass and Stiffness Matrices

    NASA Astrophysics Data System (ADS)

    Zhang, N.

    1995-12-01

    Details are given of a procedure for condensing the mass and stiffness matrices of a structure for dynamic analysis. The condensed model is based on choosing ncnatural frequencies and the corresponding modes of original model. The model is constructed so that (1) it has ncnatural frequencies equal to those of the original model, (2) the modes φ ifcless than i,j = 1, 2, . . . , ncare the same as those for the master co-ordinates in the corresponding modes of the original and (3) the responses of the condensed system at the co-ordinates Xcdue to forces at these co-ordinates, at one particular chosen frequency, are the same as those of the original system. The natural frequencies, the corresponding modes and the dynamic responses used for the condensation can be obtained from finite element analysis of the original structure. The method has been applied to the modelling of two common structures to examine its applicability. Comparisons between the performance of the condensed models obtained by means of the dynamic condensation method and that of the models obtained by the Guyan method have been conducted. The results of the example show that the condensed models determined by the dynamic condensation method retain the natural frequencies and modal shapes and perform better in describing the dynamic responses of the structures than do the corresponding models obtained by the Guyan method.

  12. Nanostructured mesoporous silica matrices in nanomedicine.

    PubMed

    Vallet-Regí, M

    2010-01-01

    In the last few years the biomedical research field has shown a growing interest towards nanostructured mesoporous silica materials, whose chemical composition is silica and present nanometric pores. These bioceramics exhibit two important features: they can regenerate osseous tissues--the bond bioactivity of these materials has been confirmed by the formation of biological-like nanoapatites on their surface when in contact with physiological fluids--and they are able to act as controlled release systems. Drugs in the nanometre scale can be loaded on those matrices and then locally released in a controlled fashion. It is possible to chemically modify the silica walls to favour the adsorption of certain biomolecules such as peptides, proteins or growth factors. It is even possible to design smart biomaterials where the drug is released under an external stimulus. Thus, looking at all those properties, a question arises: Have these bioceramics good expectations to be used in clinical medical practice? Their biocompatibility, bioactivity, capacity to regenerate bone and ability to act as controlled release systems of biologically active species have been confirmed. In fact, their preliminary in vitro and in vivo essays have been positive. Now it is the time to adequate all these properties to the actual clinical problems, and to evaluate their efficiency in comparison with materials already known and currently employed such as bioglasses.

  13. Photochemistry of glycolaldehyde in cryogenic matrices

    SciTech Connect

    Chin, W. Chevalier, M.; Thon, R.; Crépin, C.; Pollet, R.

    2014-06-14

    The photochemistry of glycolaldehyde (GA) upon irradiation at 266 nm is investigated in argon, nitrogen, neon, and para-hydrogen matrices by IR spectroscopy. Isomerization and fragmentation processes are found to compete. The hydrogen-bonded Cis-Cis form of GA is transformed mainly to the open Trans-Trans conformer and to CO and CH{sub 3}OH fragments and their mixed complexes. Different photo-induced behaviours appear depending on the matrix. In nitrogen, small amounts of Trans-Gauche and Trans-Trans conformers are detected after deposition and grow together upon irradiation. The Trans-Gauche conformer is characterized for the first time. In para-hydrogen due to a weaker cage effect additional H{sub 2}CO and HCO fragments are seen. Calculations of the potential energy surfaces of S{sub 0}, S{sub 1}, and T{sub 1} states – to analyse the torsional deformations which are involved in the isomerization process – and a kinetic analysis are presented to investigate the different relaxation pathways of GA. Fragmentation of GA under UV irradiation through the CO+CH{sub 3}OH molecular channel is a minor process, as in the gas phase.

  14. Generalized graph states based on Hadamard matrices

    SciTech Connect

    Cui, Shawn X.; Yu, Nengkun; Zeng, Bei

    2015-07-15

    Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study the entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.

  15. Partitioning sparse matrices with eigenvectors of graphs

    NASA Technical Reports Server (NTRS)

    Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu

    1990-01-01

    The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.

  16. Decellularized matrices for cardiovascular tissue engineering

    PubMed Central

    Moroni, Francesco; Mirabella, Teodelinda

    2014-01-01

    Cardiovascular disease (CVD) is one of the leading causes of death in the Western world. The replacement of damaged vessels and valves has been practiced since the 1950’s. Synthetic grafts, usually made of bio-inert materials, are long-lasting and mechanically relevant, but fail when it comes to “biointegration”. Decellularized matrices, instead, can be considered biological grafts capable of stimulating in vivo migration and proliferation of endothelial cells (ECs), recruitment and differentiation of mural cells, finally, culminating in the formation of a biointegrated tissue. Decellularization protocols employ osmotic shock, ionic and non-ionic detergents, proteolitic digestions and DNase/RNase treatments; most of them effectively eliminate the cellular component, but show limitations in preserving the native structure of the extracellular matrix (ECM). In this review, we examine the current state of the art relative to decellularization techniques and biological performance of decellularized heart, valves and big vessels. Furthermore, we focus on the relevance of ECM components, native and resulting from decellularization, in mediating in vivo host response and determining repair and regeneration, as opposed to graft corruption. PMID:24660110

  17. Substituted amylose matrices for oral drug delivery

    NASA Astrophysics Data System (ADS)

    Moghadam, S. H.; Wang, H. W.; Saddar El-Leithy, E.; Chebli, C.; Cartilier, L.

    2007-03-01

    High amylose corn starch was used to obtain substituted amylose (SA) polymers by chemically modifying hydroxyl groups by an etherification process using 1,2-epoxypropanol. Tablets for drug-controlled release were prepared by direct compression and their release properties assessed by an in vitro dissolution test (USP XXIII no 2). The polymer swelling was characterized by measuring gravimetrically the water uptake ability of polymer tablets. SA hydrophilic matrix tablets present sequentially a burst effect, typical of hydrophilic matrices, and a near constant release, typical of reservoir systems. After the burst effect, surface pores disappear progressively by molecular association of amylose chains; this allows the creation of a polymer layer acting as a diffusion barrier and explains the peculiar behaviour of SA polymers. Several formulation parameters such as compression force, drug loading, tablet weight and insoluble diluent concentration were investigated. On the other hand, tablet thickness, scanning electron microscope analysis and mercury intrusion porosimetry showed that the high crushing strength values observed for SA tablets were due to an unusual melting process occurring during tabletting although the tablet external layer went only through densification, deformation and partial melting. In contrast, HPMC tablets did not show any traces of a melting process.

  18. Modeling Covariance Matrices via Partial Autocorrelations

    PubMed Central

    Daniels, M.J.; Pourahmadi, M.

    2009-01-01

    Summary We study the role of partial autocorrelations in the reparameterization and parsimonious modeling of a covariance matrix. The work is motivated by and tries to mimic the phenomenal success of the partial autocorrelations function (PACF) in model formulation, removing the positive-definiteness constraint on the autocorrelation function of a stationary time series and in reparameterizing the stationarity-invertibility domain of ARMA models. It turns out that once an order is fixed among the variables of a general random vector, then the above properties continue to hold and follows from establishing a one-to-one correspondence between a correlation matrix and its associated matrix of partial autocorrelations. Connections between the latter and the parameters of the modified Cholesky decomposition of a covariance matrix are discussed. Graphical tools similar to partial correlograms for model formulation and various priors based on the partial autocorrelations are proposed. We develop frequentist/Bayesian procedures for modelling correlation matrices, illustrate them using a real dataset, and explore their properties via simulations. PMID:20161018

  19. Unifying diffusion and seepage for nonlinear gas transport in multiscale porous media

    NASA Astrophysics Data System (ADS)

    Song, Hongqing; Wang, Yuhe; Wang, Jiulong; Li, Zhengyi

    2016-09-01

    We unify the diffusion and seepage process for nonlinear gas transport in multiscale porous media via a proposed new general transport equation. A coherent theoretical derivation indicates the wall-molecule and molecule-molecule collisions drive the Knudsen and collective diffusive fluxes, and constitute the system pressure across the porous media. A new terminology, nominal diffusion coefficient can summarize Knudsen and collective diffusion coefficients. Physical and numerical experiments show the support of the new formulation and provide approaches to obtain the diffusion coefficient and permeability simultaneously. This work has important implication for natural gas extraction and greenhouse gases sequestration in geological formations.

  20. Inherent formation of porous p-type Si nanowires using palladium-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Chen, Jun-Ming; Chen, Chia-Yuan; Wong, C. P.; Chen, Chia-Yun

    2017-01-01

    Porous silicon (Si) nanowire arrays were directly fabricated from lightly p-doped Si substrates using a palladium (Pd)-assisted chemical etching at room temperature. The mechanistic studies indicated that anodic dissolution of Si was established by the accumulated positive charges at Pd/Si schottky interfaces in the presence of H2O2 oxidants. In addition to the primary etching direction vertically to the substrate planes, the additional sidewall etching was stimulated by the separated Pd nanoparticles during reaction that constitutes the porous features covering on the nanowires surfaces thoroughly. These combined effects lead to the distinct etching characteristics and remarkable photoluminescent properties of resulted nanostructures.

  1. Random matrices as models for the statistics of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Guarneri, Italo; Mantica, Giorgio

    1986-05-01

    Random matrices from the Gaussian unitary ensemble generate in a natural way unitary groups of evolution in finite-dimensional spaces. The statistical properties of this time evolution can be investigated by studying the time autocorrelation functions of dynamical variables. We prove general results on the decay properties of such autocorrelation functions in the limit of infinite-dimensional matrices. We discuss the relevance of random matrices as models for the dynamics of quantum systems that are chaotic in the classical limit. Permanent address: Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.

  2. Bunch-Kaufman factorization for real symmetric indefinite banded matrices

    NASA Technical Reports Server (NTRS)

    Jones, Mark T.; Patrick, Merrell L.

    1989-01-01

    The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices was rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue problem using Lanczos's method, the Bunch-Kaufman algorithm does not result in major destruction of the bandwidth. Space time complexities of the algorithm are given and used to show that the Bunch-Kaufman algorithm is a significant improvement over LU factorization.

  3. On the asymptotic distribution of block-modified random matrices

    SciTech Connect

    Arizmendi, Octavio; Nechita, Ion; Vargas, Carlos

    2016-01-15

    We study random matrices acting on tensor product spaces which have been transformed by a linear block operation. Using operator-valued free probability theory, under some mild assumptions on the linear map acting on the blocks, we compute the asymptotic eigenvalue distribution of the modified matrices in terms of the initial asymptotic distribution. Moreover, using recent results on operator-valued subordination, we present an algorithm that computes, numerically but in full generality, the limiting eigenvalue distribution of the modified matrices. Our analytical results cover many cases of interest in quantum information theory: we unify some known results and we obtain new distributions and various generalizations.

  4. The explosive divergence in iterative maps of matrices

    NASA Astrophysics Data System (ADS)

    Navickas, Zenonas; Ragulskis, Minvydas; Vainoras, Alfonsas; Smidtaite, Rasa

    2012-11-01

    The effect of explosive divergence in generalized iterative maps of matrices is defined and described using formal algebraic techniques. It is shown that the effect of explosive divergence can be observed in an iterative map of square matrices of order 2 if and only if the matrix of initial conditions is a nilpotent matrix and the Lyapunov exponent of the corresponding scalar iterative map is greater than zero. Computational experiments with the logistic map and the circle map are used to illustrate the effect of explosive divergence occurring in iterative maps of matrices.

  5. ANOVA like analysis for structured families of stochastic matrices

    NASA Astrophysics Data System (ADS)

    Dias, Cristina; Santos, Carla; Varadinov, Maria; Mexia, João T.

    2016-12-01

    Symmetric stochastic matrices width a width a dominant eigenvalue λ and the corresponding eigenvector α appears in many applications. Such matrices can be written as M =λ α αt+E¯. Thus β = λ α will be the structure vector. When the matrices in such families correspond to the treatments of a base design we can carry out a ANOVA like analysis of the action of the treatments in the model on the structured vectors. This analysis can be transversal-when we worked width homologous components and - longitudinal when we consider contrast on the components of each structure vector. The analysis will be briefly considered at the end of our presentation.

  6. Statistical model for the mechanical behavior of the tissue engineering non-woven fibrous matrices under large deformation.

    PubMed

    Rizvi, Mohd Suhail; Pal, Anupam

    2014-09-01

    The fibrous matrices are widely used as scaffolds for the regeneration of load-bearing tissues due to their structural and mechanical similarities with the fibrous components of the extracellular matrix. These scaffolds not only provide the appropriate microenvironment for the residing cells but also act as medium for the transmission of the mechanical stimuli, essential for the tissue regeneration, from macroscopic scale of the scaffolds to the microscopic scale of cells. The requirement of the mechanical loading for the tissue regeneration requires the fibrous scaffolds to be able to sustain the complex three-dimensional mechanical loading conditions. In order to gain insight into the mechanical behavior of the fibrous matrices under large amount of elongation as well as shear, a statistical model has been formulated to study the macroscopic mechanical behavior of the electrospun fibrous matrix and the transmission of the mechanical stimuli from scaffolds to the cells via the constituting fibers. The study establishes the load-deformation relationships for the fibrous matrices for different structural parameters. It also quantifies the changes in the fiber arrangement and tension generated in the fibers with the deformation of the matrix. The model reveals that the tension generated in the fibers on matrix deformation is not homogeneous and hence the cells located in different regions of the fibrous scaffold might experience different mechanical stimuli. The mechanical response of fibrous matrices was also found to be dependent on the aspect ratio of the matrix. Therefore, the model establishes a structure-mechanics interdependence of the fibrous matrices under large deformation, which can be utilized in identifying the appropriate structure and external mechanical loading conditions for the regeneration of load-bearing tissues.

  7. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  8. Acoustic technique to monitor the kinetics of porous development phenomena in viscoelastic media

    NASA Astrophysics Data System (ADS)

    Nassar, G.; Skaf, A.; Saad, N.

    2012-01-01

    In this paper, the potential of a low frequency acoustic technique for the study and characterisation of viscoelastic porous media is investigated. This work was based on the limits of ultrasonic applications in highly absorbent porous media. In this context, fermenting dough was used as a model propagation medium. This type of product has a very complex matrix in terms of texture, openings and moisture. The basic theory of sound in such matter is recalled, especially the effects of the scattering of sound energy in matrices like that of the product under investigation. Depending on the properties of the openings, acoustic velocity and intensity of sound were chosen to represent the state of evolution of the matter. A tap-test acoustic technique was employed and allowed a quality indicator to be obtained. The results of the validation step using various technological parameters indicate that a high degree of sensitivity can be reached with non-destructive acoustic techniques.

  9. Electrode including porous particles with embedded active material for use in a secondary electrochemical cell

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1978-04-25

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure. The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  10. Method of preparing porous, active material for use in electrodes of secondary electrochemical cells

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1977-01-01

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure.The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  11. Microscale simulation of particle deposition in porous media.

    PubMed

    Boccardo, Gianluca; Marchisio, Daniele L; Sethi, Rajandrea

    2014-03-01

    In this work several geometries, each representing a different porous medium, are considered to perform detailed computational fluid dynamics simulation for fluid flow, particle transport and deposition. Only Brownian motions and steric interception are accounted for as deposition mechanisms. Firstly pressure drop in each porous medium is analyzed in order to determine an effective grain size, by fitting the results with the Ergun law. Then grid independence is assessed. Lastly, particle transport in the system is investigated via Eulerian steady-state simulations, where particle concentration is solved for, not following explicitly particles' trajectories, but solving the corresponding advection-diffusion equation. An assumption was made in considering favorable collector-particle interactions, resulting in a "perfect sink" boundary condition for the collectors. The gathered simulation data are used to calculate the deposition efficiency due to Brownian motions and steric interception. The original Levich law for one simple circular collector is verified; subsequently porous media constituted by a packing of collectors are scrutinized. Results show that the interactions between the different collectors result in behaviors which are not in line with the theory developed by Happel and co-workers, highlighting a different dependency of the deposition efficiency on the dimensionless groups involved in the relevant correlations.

  12. Bone Regeneration Using Gene-Activated Matrices.

    PubMed

    D'Mello, Sheetal; Atluri, Keerthi; Geary, Sean M; Hong, Liu; Elangovan, Satheesh; Salem, Aliasger K

    2017-01-01

    Gene delivery to bone is a potential therapeutic strategy for directed, sustained, and regulated protein expression. Tissue engineering strategies for bone regeneration include delivery of proteins, genes (viral and non-viral-mediated delivery), and/or cells to the bone defect site. In addition, biomimetic scaffolds and scaffolds incorporating bone anabolic agents greatly enhance the bone repair process. Regional gene therapy has the potential of enhancing bone defect healing and bone regeneration by delivering osteogenic genes locally to the osseous lesions, thereby reducing systemic toxicity and the need for using supraphysiological dosages of therapeutic proteins. By implanting gene-activated matrices (GAMs), sustained gene expression and continuous osteogenic protein production in situ can be achieved in a way that stimulates osteogenesis and bone repair within osseous defects. Critical parameters substantially affecting the therapeutic efficacy of gene therapy include the choice of osteogenic transgene(s), selection of non-viral or viral vectors, the wound environment, and the selection of ex vivo and in vivo gene delivery strategies, such as GAMs. It is critical for gene therapy applications that clinically beneficial amounts of proteins are synthesized endogenously within and around the lesion in a sustained manner. It is therefore necessary that reliable and reproducible methods of gene delivery be developed and tested for their efficacy and safety before translating into clinical practice. Practical considerations such as the age, gender, and systemic health of patients and the nature of the disease process also need to be taken into account in order to personalize the treatments and progress towards developing a clinically applicable gene therapy for healing bone defects. This review discusses tissue engineering strategies to regenerate bone with specific focus on non-viral gene delivery systems.

  13. ON THE STIFFNESS OF DEMINERALIZED DENTIN MATRICES

    PubMed Central

    Ryou, Heonjune; Turco, Gianluca; Breschi, Lorenzo; Tay, Franklin R.; Pashley, David H.; Arola, Dwayne

    2015-01-01

    Resin bonding to dentin requires the use of self-etching primers or acid etching to decalcify the surface and expose a layer of collagen fibrils of the dentin matrix. Acid-etching reduces the stiffness of demineralized dentin from approximately 19 GPa to 1 MPa, requiring that it floats in water to prevent it from collapsing during bonding procedures. Several publications show that crosslinking agents like gluteraladehyde, carbodiimide or grape seed extract can stiffen collagen and improve resin-dentin bond strength. Objective The objective was to assess a new approach for evaluating the changes in stiffness of decalcified dentin by polar solvents and a collagen cross-linker. Methods Fully demineralized dentin beams and sections of etched coronal dentin were subjected to indentation loading using a cylindrical flat indenter in water, and after treatment with ethanol or ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The stiffness was measured as a function of strain and as a function of loading rate from 1 to 50 µm/sec. Results At a strain of 0.25% the elastic modulus of the fully demineralized dentin was approximately 0.20 MPa. It increased to over 0.90 MPa at strains of 1%. Exposure to ethanol caused an increase in elastic modulus of up to four times. Increasing the loading rate from 1 to 50 µm/sec caused an increase in the apparent modulus of up to three times in both water and ethanol. EDC treatment caused increases in the stiffness in fully demineralized samples and in acid-etched demineralized dentin surfaces in situ. Significance Changes in the mechanical behavior of demineralized collagen matrices can be measured effectively under hydration via indentation with cylindrical flat indenters. This approach can be used for quantifying the effects of bonding treatments on the properties of decalcified dentin after acid etching, as well as to follow the loss of stiffness over time due to enzymatic degradation. PMID:26747822

  14. Luminescence decay of porous silicon

    NASA Astrophysics Data System (ADS)

    Chen, X.; Uttamchandani, D.; Sander, D.; O'Donnell, K. P.

    1993-04-01

    The luminescence decay pattern of porous silicon samples prepared by electrochemical etching is characterised experimentally by a non-exponential profile, a strong dependence on temperature and an absence of spectral diffusion. We describe this luminescence as carrier-dopping-assisted recombination. Following the correlation function approach to non-dispersive transport developed by Scher and co-workers [Physics Today 41 (1991) 26], we suggest a simple derivation of analytical functions which accurately describes the anomalous luminescence decay of porous silicon, and show that this model includes exponential and Kohlrausch [Pogg. Ann. Phys. 119 (1863) 352] (stretched-exponential) relaxations as special cases.

  15. Metal recovery from porous materials

    DOEpatents

    Sturcken, Edward F.

    1992-01-01

    A method for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF.sub.4 and HNO.sub.3 and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200.degree. C. The porous material can be pulverized before immersion to further increase the leach rate.

  16. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    ERIC Educational Resources Information Center

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  17. Separation of traces of metal ions from sodium matrices

    NASA Technical Reports Server (NTRS)

    Korkisch, J.; Orlandini, K. A.

    1969-01-01

    Method for isolating metal ion traces from sodium matrices consists of two extractions and an ion exchange step. Extraction is accomplished by using 2-thenoyltrifluoracetone and dithizone followed by cation exchange.

  18. Spectral density of a Wishart model for nonsymmetric correlation matrices.

    PubMed

    Vinayak

    2013-10-01

    The Wishart model for real symmetric correlation matrices is defined as W=AA^{t}, where matrix A is usually a rectangular Gaussian random matrix and A^{t} is the transpose of A. Analogously, for nonsymmetric correlation matrices, a model may be defined for two statistically equivalent but different matrices A and B as AB^{t}. The corresponding Wishart model, thus, is defined as C=AB^{t}BA^{t}. We study the spectral density of C for the case when A and B are not statistically independent. The ensemble average of such nonsymmetric matrices, therefore, does not simply vanishes to a null matrix. In this paper we derive a Pastur self-consistent equation which describes spectral density of C at large matrix dimension. We complement our analytic results with numerics.

  19. Eigenvalue statistics for the sum of two complex Wishart matrices

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh

    2014-09-01

    The sum of independent Wishart matrices, taken from distributions with unequal covariance matrices, plays a crucial role in multivariate statistics, and has applications in the fields of quantitative finance and telecommunication. However, analytical results concerning the corresponding eigenvalue statistics have remained unavailable, even for the sum of two Wishart matrices. This can be attributed to the complicated and rotationally noninvariant nature of the matrix distribution that makes extracting the information about eigenvalues a nontrivial task. Using a generalization of the Harish-Chandra-Itzykson-Zuber integral, we find exact solution to this problem for the complex Wishart case when one of the covariance matrices is proportional to the identity matrix, while the other is arbitrary. We derive exact and compact expressions for the joint probability density and marginal density of eigenvalues. The analytical results are compared with numerical simulations and we find perfect agreement.

  20. Morphic images of binary words and Parikh matrices

    NASA Astrophysics Data System (ADS)

    Isawasan, Pradeep; Venkat, Ibrahim; Subramanian, K. G.; Sarmin, Nor Haniza

    2014-07-01

    A word is a finite sequence of symbols. Parikh matrix of a word, introduced by Mateescu et al (2000), has become an effective tool in the study of certain numerical properties of words based on subwords. There have been several investigations on various properties of Parikh matrices such as M-ambiguity, M-equivalence, subword equalities and inequalities, commutativity and so on. Recently, Parikh matrices of words that are images under certain morphisms have been studied for their properties. On the other hand, Parikh matrices of words involving a certain ratio property called weak-ratio property have been investigated by Subramanian et al (2009). Here we consider two special morphisms called Fibonacci and Tribonacci morphisms and obtain properties of Parikh matrices of images of binary words under these morphisms, utilizing the notion of weak-ratio property.

  1. Joint Estimation of Multiple Precision Matrices with Common Structures

    PubMed Central

    Lee, Wonyul; Liu, Yufeng

    2015-01-01

    Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes. PMID:26568704

  2. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  3. Constitutive apical membrane recycling in Aplysia enterocytes.

    PubMed

    Keeton, Robert Aaron; Runge, Steven William; Moran, William Michael

    2004-11-01

    In Aplysia californica enterocytes, alanine-stimulated Na+ absorption increases both apical membrane exocytosis and fractional capacitance (fCa; a measure of relative apical membrane surface area). These increases are thought to reduce membrane tension during periods of nutrient absorption that cause the enterocytes to swell osmotically. In the absence of alanine, exocytosis and fCa are constant. These findings imply equal rates of constitutive endocytosis and exocytosis and constitutive recycling of the apical plasma membrane. Thus, the purpose of this study was to confirm and determine the relative extent of constitutive apical membrane recycling in Aplysia enterocytes. Biotinylated lectins are commonly used to label plasma membranes and to investigate plasma membrane recycling. Of fourteen biotinylated lectins tested, biotinylated wheat germ agglutinin (bWGA) bound preferentially to the enterocytes apical surface. Therefore, we used bWGA, avidin D (which binds tightly to biotin), and the UV fluorophore 7-amino-4-methylcoumarin-3-acetic acid (AMCA)-conjugated avidin D to assess the extent of constitutive apical membrane recycling. A temperature-dependent (20 vs. 4 degrees C) experimental protocol employed the use of two tissues from each of five snails and resulted in a approximately 60% difference in apical surface fluorescence intensity. Because the extent of membrane recycling is proportional to the difference in surface fluorescence intensity, this difference reveals a relatively high rate of constitutive apical membrane recycling in Aplysia enterocytes.

  4. A constitutive theory of reacting electrolyte mixtures

    NASA Astrophysics Data System (ADS)

    Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto

    2013-11-01

    A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).

  5. Health care law versus constitutional law.

    PubMed

    Hall, Mark A

    2013-04-01

    National Federation of Independent Business v. Sebelius, the Supreme Court's ruling on the Patient Protection and Affordable Care Act, is a landmark decision - both for constitutional law and for health care law and policy. Others will study its implications for constitutional limits on a range of federal powers beyond health care. This article considers to what extent the decision is also about health care law, properly conceived. Under one view, health care law is the subdiscipline that inquires how courts and government actors take account of the special features of medicine that make legal or policy issues especially problematic - rather than regarding health care delivery and finance more generically, like most any other economic or social enterprise. Viewed this way, the opinions from the Court's conservative justices are mainly about general constitutional law principles. In contrast, Justice Ruth Bader Ginsburg's dissenting opinion for the four more liberal justices is just as much about health care law as it is about constitutional law. Her opinion gives detailed attention to the unique features of health care finance and delivery in order to inform her analysis of constitutional precedents and principles. Thus, the Court's multiple opinions give a vivid depiction of the compelling contrasts between communal versus individualistic conceptions of caring for those in need, and between health care and health insurance as ordinary commodities versus ones that merit special economic, social, and legal status.

  6. Modeling nonbilinear total synchronous fluorescence data matrices with a novel adapted partial least squares method.

    PubMed

    Schenone, Agustina V; de Araújo Gomes, Adriano; Culzoni, María J; Campiglia, Andrés D; de Araújo, Mário Cesar Ugulino; Goicoechea, Héctor C

    2015-02-15

    A new residual modeling algorithm for nonbilinear data is presented, namely unfolded partial least squares with interference modeling of non bilinear data by multivariate curve resolution by alternating least squares (U-PLS/IMNB/MCR-ALS). Nonbilinearity represents a challenging data structure problem to achieve analyte quantitation from second-order data in the presence of uncalibrated components. Total synchronous fluorescence spectroscopy (TSFS) generates matrices which constitute a typical example of this kind of data. Although the nonbilinear profile of the interferent can be achieved by modeling TSFS data with unfolded partial least squares with residual bilinearization (U-PLS/RBL), an extremely large number of RBL factors has to be considered. Simulated data show that the new model can conveniently handle the studied analytical problem with better performance than PARAFAC, U-PLS/RBL and MCR-ALS, the latter modeling the unfolded data. Besides, one example involving TSFS real matrices illustrates the ability of the new method to handle experimental data, which consists in the determination of ciprofloxacin in the presence of norfloxacin as interferent in water samples.

  7. Homogenized stiffness matrices for mineralized collagen fibrils and lamellar bone using unit cell finite element models.

    PubMed

    Vercher, Ana; Giner, Eugenio; Arango, Camila; Tarancón, José E; Fuenmayor, F Javier

    2014-04-01

    Mineralized collagen fibrils have been usually analyzed like a two-phase composite material where crystals are considered as platelets that constitute the reinforcement phase. Different models have been used to describe the elastic behavior of the material. In this work, it is shown that when Halpin-Tsai equations are applied to estimate elastic constants from typical constituent properties, not all crystal dimensions yield a model that satisfy thermodynamic restrictions. We provide the ranges of platelet dimensions that lead to positive definite stiffness matrices. On the other hand, a finite element model of a mineralized collagen fibril unit cell under periodic boundary conditions is analyzed. By applying six canonical load cases, homogenized stiffness matrices are numerically calculated. Results show a monoclinic behavior of the mineralized collagen fibril. In addition, a 5-layer lamellar structure is also considered where crystals rotate in adjacent layers of a lamella. The stiffness matrix of each layer is calculated applying Lekhnitskii transformations, and a new finite element model under periodic boundary conditions is analyzed to calculate the homogenized 3D anisotropic stiffness matrix of a unit cell of lamellar bone. Results are compared with the rule-of-mixtures showing in general good agreement.

  8. A Nanostructured Matrices Assessment to Study Drug Distribution in Solid Tumor Tissues by Mass Spectrometry Imaging

    PubMed Central

    Giordano, Silvia; Pifferi, Valentina; Morosi, Lavinia; Morelli, Melinda; Falciola, Luigi; Cappelletti, Giuseppe; Visentin, Sonja; Licandro, Simonetta A.; Frapolli, Roberta; Zucchetti, Massimo; Pastorelli, Roberta; Brunelli, Laura; D’Incalci, Maurizio; Davoli, Enrico

    2017-01-01

    The imaging of drugs inside tissues is pivotal in oncology to assess whether a drug reaches all cells in an adequate enough concentration to eradicate the tumor. Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) is one of the most promising imaging techniques that enables the simultaneous visualization of multiple compounds inside tissues. The choice of a suitable matrix constitutes a critical aspect during the development of a MALDI-MSI protocol since the matrix ionization efficiency changes depending on the analyte structure and its physico-chemical properties. The objective of this study is the improvement of the MALDI-MSI technique in the field of pharmacology; developing specifically designed nanostructured surfaces that allow the imaging of different drugs with high sensitivity and reproducibility. Among several nanomaterials, we tested the behavior of gold and titanium nanoparticles, and halloysites and carbon nanotubes as possible matrices. All nanomaterials were firstly screened by co-spotting them with drugs on a MALDI plate, evaluating the drug signal intensity and the signal-to-noise ratio. The best performing matrices were tested on control tumor slices, and were spotted with drugs to check the ion suppression effect of the biological matrix. Finally; the best nanomaterials were employed in a preliminary drug distribution study inside tumors from treated mice. PMID:28336905

  9. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, R.F.; Welch, M.R.; Groeneveld, D.P.; Branson, F.A.

    1988-01-01

    Much of the floor of the Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first was the filter-paper method, which uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base 10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1 m depths derived by using the hand auger and filter paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter paper method could be obtained 90 to 95% of the time in soils where water content was less than field capacity. The greatest errors occurred at depths where there was a distinct transition between soils of different textures. (Lantz-PTT)

  10. Decomposition of Balanced Matrices. Part 4. Connected Squares

    DTIC Science & Technology

    1991-10-01

    AD-A247 308 Management Science Research Report #MSRR-572 Decomposition of Balanced Matrices . Part IV: Connected Squares Michele Conforti 2 Gerard...is unlimited. This work was supported in part by NSF grants DDM-8800281, DDM-8901495 and DDM-9001705. tDipartlmento di Matematica Pura ed Applicata...BALANCED MATRICES .• Technical Report, Oct 1991 PART IV: CONNECTED SQUARES 6. PERFORMING ORG. REPORT NUMBER 7. AUTHORS) CONTRACT OR GRANT NUMBER(S) Michele

  11. Boundary transfer matrices and boundary quantum KZ equations

    SciTech Connect

    Vlaar, Bart

    2015-07-15

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin’s boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  12. In vitro characterization of polycaprolactone matrices generated in aqueous media.

    PubMed

    Pok, Seok Won; Wallace, Kristin N; Madihally, Sundararajan V

    2010-03-01

    In this study, a novel process of dissolving polycaprolactone (PCL) matrices in glacial acetic acid was explored in which matrices spontaneously formed upon contact with water. Scanning electron microscopy analysis showed rough architecture and holes on the self-assembled matrix relative to matrices formed after dissolving in chloroform. Immersion in the gelatin solution reduced its roughness and number of micropores. Atomic force microscopy (AFM) analysis confirmed the increased roughness of the self-assembled matrices. The roughness of the matrices decreased after incubation in 1N NaOH for 10 min. AFM analysis also revealed that the self-assembled matrix had a net positive surface charge, whereas chloroform-cast matrix had a negative surface charge. The surface charge of self-assembled matrix after immersion in gelatin changed to negative. However, incubation in NaOH did not affect the surface charge. The tensile properties were tested in both the dry state (25 degrees Celsius) and the wet state (37 degrees Celsius) by immersion in phosphate-buffered saline. Self-assembled matrix had lower elastic modulus, break stress and break strain than chloroform-cast matrix in both states. The elastic modulus in the wet condition was reduced by half in self-assembled matrix but tensile strain increased. Samples were further analyzed by ramp-hold test for assessing stress relaxation behavior. Both self-assembled and chloroform-cast matrices had similar trends in stress relaxation behavior. However, stress accumulation in self-assembled matrix was half that of chloroform-cast matrix. In vitro cell cultures were conducted using human foreskin fibroblast (HFF-1) in serum-free medium. Cytoskeletal actin staining showed cell adhesion and spreading on all matrices. Cell retention was significantly increased in self-assembled matrix compared to chloroform-cast matrix. Addition of gelatin improved the retention of seeded cells on the surface. In summary, PCL matrices generated using

  13. Preliminary Analysis on Matric Suction for Barren Soil

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Fazlina, M. I. S.; Aziman, M.; Fairus, Y. M.; Azman, K.; Hazreek, Z. A. M.

    2016-11-01

    Most research conducted on slope failures can broadly be attributed to the convergence of three factors, i.e. rainfall, steepness of slope, and soil geological profile. The mechanism of the failures is mainly due to the loss of matric suction of soils by rainwater. When rainwater infiltrates into the slopes, it will start to saturate the soil, i.e., reduce the matric suction. A good understanding of landslide mechanisms and the characteristics of unsaturated soil and rock in tropical areas is crucial in landslide hazard formulation. Most of the slope failures in unsaturated tropical residual soil in Malaysia are mainly due to infiltration, especially during intense and prolonged rainfall, which reduces the soil matric suction and hence decreases the stability of the slope. Therefore, the aim of this research is to determine the matric suction for barren soil and to model an unsaturated slope with natural rainfall to evaluate the effects of matric suction on rainfall intensity. A field test was carried out using the Watermark Soil Moisture Sensor to determine the matric suction. The sensor was connected to a program called SpecWare 9 Basic which also used Data Logging Rain gauge Watermark 1120 to measure the intensity and duration of rainfall. This study was conducted at the Research Centre for Soft Soil which is a new Research and Development (R & D) initiative by Universiti Tun Hussein Onn Malaysia, Parit Raja. Field observation showed that the highest daily suction was recorded during noon while the lowest suction was obtained at night and early morning. The highest matric suction for loose condition was 31.0 kPa while the highest matric suction for compacted condition was 32.4 kPa. The results implied that the field suction variation was not only governed by the rainfall, but also the cyclic evaporation process. The findings clearly indicated that the changes in soil suction distribution patterns occurred due to different weather conditions.

  14. Process of preparing tritiated porous silicon

    DOEpatents

    Tam, S.W.

    1997-02-18

    A process of preparing tritiated porous silicon is described in which porous silicon is equilibrated with a gaseous vapor containing HT/T{sub 2} gas in a diluent for a time sufficient for tritium in the gas phase to replace hydrogen present in the pore surfaces of the porous silicon. 1 fig.

  15. Phase Behavior and Percolation Properties of the Patchy Colloidal Fluids in the Random Porous Media.

    PubMed

    Kalyuzhnyi, Y V; Holovko, M; Patsahan, T; Cummings, P T

    2014-12-18

    The lack of a simple analytical description of the hard-sphere fluid in a matrix with hard-core obstacles is limiting progress in the development of thermodynamic perturbation theories for the fluid in random porous media. We propose a simple and highly accurate analytical scheme, which allows us to calculate thermodynamic and percolation properties of a network-forming fluid confined in the random porous media, represented by the hard-sphere fluid and overlapping hard-sphere matrices, respectively. Our scheme is based on the combination of scaled-particle theory, Wertheim's thermodynamic perturbation theory for associating fluids and extension of the Flory-Stockmayer theory for percolation. The liquid-gas phase diagram and percolation threshold line for several versions of the patchy colloidal fluid model confined in a random porous media are calculated and discussed. The method presented enables calculation of the thermodynamic and percolation properties of a large variety of polymerizing and network-forming fluids confined in random porous media.

  16. The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection

    NASA Astrophysics Data System (ADS)

    Madeo, A.; Djeran-Maigre, I.; Rosi, G.; Silvani, C.

    2013-03-01

    In geomechanics, a relevant role is played by coupling phenomena between compressible fluid seepage flow and deformation of the solid matrix. The behavior of complex porous materials can be greatly influenced by such coupling phenomena. A satisfactorily theoretical framework for their description is not yet completely attained. In this paper, we discuss how the model developed in dell'Isola et al. (Int J Solids Struct 46:3150-3164, 2009) can describe how underground flows or, more generally, confined streams of fluid in deformable porous matrices affect compression wave propagation and their reflection and transmission at a solid-material discontinuity surface. Further work will investigate the effect of stream flow in porous media on shear waves, generalizing what done in Djeran Maigre and Kuznetsov (Comptes Rendus Mécanique 336(1-2):102-107, 2008) for shear waves in one-constituent orthotropic two-layered plates. The presented treatment shows that the presence of fluid streams considerably affect reflection and transmission phenomena in porous media.

  17. Direct atomic absorption determination of cadmium and lead in strongly interfering matrices by double vaporization with a two-step electrothermal atomizer

    NASA Astrophysics Data System (ADS)

    Grinshtein, Ilia L.; Vilpan, Yuri A.; Saraev, Alexei V.; Vasilieva, Lubov A.

    2001-03-01

    Thermal pretreatment of a sample using double vaporization in a two-step atomizer with a purged vaporizer makes possible the direct analysis of samples with strongly interfering matrices including solids. A porous-graphite capsule or a filter inserted into the vaporizer is used for solid sample analysis. The technique was used for the direct determination of Cd and Pb in human urine, potatoes, wheat, bovine liver, milk powder, grass-cereal mixtures, caprolactam, bituminous-shale and polyvinyl chloride plastic without chemical modification or any other sample pretreatment.

  18. Constitutional developments in Latin American abortion law.

    PubMed

    Bergallo, Paola; Ramón Michel, Agustina

    2016-11-01

    For most of the 20th Century, restrictive abortion laws were in place in continental Latin America. In recent years, reforms have caused a liberalizing shift, supported by constitutional decisions of the countries' high courts. The present article offers an overview of the turn toward more liberal rules and the resolution of abortion disputes by reference to national constitutions. For such purpose, the main legal changes of abortion laws in the last decade are first surveyed. Landmark decisions of the high courts of Argentina, Bolivia, Colombia, and Mexico are then analyzed. It is shown that courts have accepted the need to balance interests and competing rights to ground less restrictive laws. In doing so, they have articulated limits to protection of fetal interests, and basic ideas of women's dignity, autonomy, and equality. The process of constitutionalization has only just begun. Constitutional judgments are not the last word, but they are important contributions in reinforcing the legality of abortion.

  19. Constitutive model development for isotropic materials

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1982-01-01

    The objective is to develop a unified constitutive model for finite-element structural analysis of turbine engine hot section components. This effort constitutes a different approach for nonlinear finite-element computer codes which were heretofore based on classical inelastic methods. A unified constitutive theory will avoid the simplifying assumptions of classical theory and should more accurately represent the behavior of superalloy materials under cyclic loading conditions and high temperature environments. Model development will be directed toward isotropic, cast nickel-base alloys used for aircooled turbine blades and vanes. The contractor will select a base material for model development and an alternate material for verification purposes from a list of three alloys specified by NASA. The candidate alloys represent a cross-section of turbine blade and vane materials of interest to both large and small size engine manufacturers. Material stock for the base and alternate materials will be supplied to the Contractor by the government.

  20. Inference for High-dimensional Differential Correlation Matrices *

    PubMed Central

    Cai, T. Tony; Zhang, Anru

    2015-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed. PMID:26500380

  1. Inference for High-dimensional Differential Correlation Matrices.

    PubMed

    Cai, T Tony; Zhang, Anru

    2016-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.

  2. Action recognition from video using feature covariance matrices.

    PubMed

    Guo, Kai; Ishwar, Prakash; Konrad, Janusz

    2013-06-01

    We propose a general framework for fast and accurate recognition of actions in video using empirical covariance matrices of features. A dense set of spatio-temporal feature vectors are computed from video to provide a localized description of the action, and subsequently aggregated in an empirical covariance matrix to compactly represent the action. Two supervised learning methods for action recognition are developed using feature covariance matrices. Common to both methods is the transformation of the classification problem in the closed convex cone of covariance matrices into an equivalent problem in the vector space of symmetric matrices via the matrix logarithm. The first method applies nearest-neighbor classification using a suitable Riemannian metric for covariance matrices. The second method approximates the logarithm of a query covariance matrix by a sparse linear combination of the logarithms of training covariance matrices. The action label is then determined from the sparse coefficients. Both methods achieve state-of-the-art classification performance on several datasets, and are robust to action variability, viewpoint changes, and low object resolution. The proposed framework is conceptually simple and has low storage and computational requirements making it attractive for real-time implementation.

  3. The stress relaxation characteristics of composite matrices etched to produce nanoscale surface features

    PubMed Central

    Mirani, Rahul D.; Pratt, Jonathan; Iyer, Pooja; Madihally, Sundararajan V.

    2010-01-01

    Many synthetic and xenogenic natural matrices have been explored in tissue regeneration, however, they lack either mechanical strength or cell colonization characteristics found in natural tissue. Moreover natural matrices such as small intestinal submucosa (SIS) lack sample to sample homogeneity, leading to unpredictable clinical outcomes. This work explored a novel fabrication technique by blending together the useful characteristics of synthetic and natural polymers to form a composite structure by using a NaOH etching process that produces nanoscale surface features. The composite scaffold was formed by sandwiching a thin layer of PLGA between porous layers of gelatin–chitosan. The etching process increased the surface roughness of PLGA membrane, allowing easy spreading of the hydrophilic gelatin–chitosan solution on its hydrophobic surface and reducing the scaffold thickness by nearly 50% than otherwise. The viscoelastic properties of the scaffold, an area of mechanical analysis which remains largely unexplored in tissue regeneration was assessed. Stress relaxation experiments of the “ramp and hold” type performed at variable ranges of temperature (25 °C and 37 °C), loading rates (3.125% s−1 and 12.5% s−1) and relaxation times (60 s, 100 s and 200 s) found stress relaxation to be sensitive to temperature and the loading rate but less dependent on the relaxation time. Stress relaxation behavior of the composite matrix was compared with SIS structures at 25 °C (hydrated), 3.125% s−1 loading rate and 100 s relaxation time which showed that the synthetic matrix was found to be strain softening as compared to the strain hardening behavior exhibited by SIS. Popularly used quasi-linear viscoelastic (QLV) model to describe biomechanics of soft tissues was utilized. The QLV model predicted the loading behavior with an average error of 3%. The parameters of the QLV model predicted using nonlinear regression analysis appear to be in concurrence with soft

  4. Constitutional aspects of economic law enforcement

    SciTech Connect

    Tundermann, D.W.

    1980-01-01

    Economic remedies for violations of environmental standards provide a better administrative approach than civil penalties based on more traditional discretionary criteria. Economic penalties are not subject to the constitutional requirements that limit the procedures for criminal penalties. Economic penalties also provide a constitutionally permissible way of accruing liability during litigation. These penalties are large enough to eliminate the benefits of delayed compliance and unnecessary litigation; however, they do not alter the rights of judicial review. Agencies can determine economic penalties with more objectivity and accuracy than under traditional penalty schemes.

  5. Molecular karyotyping in human constitutional cytogenetics.

    PubMed

    Sanlaville, Damien; Lapierre, Jean-Michel; Turleau, Catherine; Coquin, Aurélie; Borck, Guntram; Colleaux, Laurence; Vekemans, Michel; Romana, Serge Pierrick

    2005-01-01

    Using array CGH it is possible to detect very small genetic imbalances anywhere in the genome. Its usefulness has been well documented in cancer and more recently in constitutional disorders. In particular it has been used to detect interstitial and subtelomeric submicroscopic imbalances, to characterize their size at the molecular level and to define the breakpoints of chromosomal translocation. Here, we review the various applications of array CGH in constitutional cytogenetics. This technology remains expensive and the existence of numerous sequence polymorphisms makes its interpretation difficult. The challenge today is to transfer this technology in the clinical setting.

  6. Thermoelastic constitutive equations for chemically hardening materials

    NASA Technical Reports Server (NTRS)

    Shaffer, B. W.; Levitsky, M.

    1974-01-01

    Thermoelastic constitutive equations are derived for a material undergoing solidification or hardening as the result of a chemical reaction. The derivation is based upon a two component model whose composition is determined by the degree of hardening, and makes use of strain-energy considerations. Constitutive equations take the form of stress rate-strain rate relations, in which the coefficients are time-dependent functions of the composition. Specific results are developed for the case of a material of constant bulk modulus which undergoes a transition from an initial liquidlike state into an isotropic elastic solid. Potential applications are discussed.

  7. Isomer-Specific Analysis of Released N-Glycans by LC-ESI MS/MS with Porous Graphitized Carbon.

    PubMed

    Kolarich, Daniel; Windwarder, Markus; Alagesan, Kathirvel; Altmann, Friedrich

    2015-01-01

    The combination of porous graphitized carbon (PGC) liquid chromatography (LC) with mass spectrometric (MS) detection probably constitutes the most elaborate single stage analysis for isomer-specific N-glycan analysis. Here, we describe sample preparation and analysis procedures for the identification of released N-glycans using PGC-LC-ESI-MS and MS/MS.

  8. Hyper-elastic modeling and mechanical behavior investigation of porous poly-D-L-lactide/nano-hydroxyapatite scaffold material.

    PubMed

    Han, Quan Feng; Wang, Ze Wu; Tang, Chak Yin; Chen, Ling; Tsui, Chi Pong; Law, Wing Cheung

    2017-03-28

    Poly-D-L-lactide/nano-hydroxyapatite (PDLLA/nano-HA) can be used as the biological scaffold material in bone tissue engineering as it can be readily made into a porous composite material with excellent performance. However, constitutive modeling for the mechanical response of porous PDLLA/nano-HA under various stress conditions has been very limited so far. In this work, four types of fundamental compressible hyper-elastic constitutive models were introduced for constitutive modeling and investigation of mechanical behaviors of porous PDLLA/nano-HA. Moreover, the unitary expressions of Cauchy stress tensor have been derived for the PDLLA/nano-HA under uniaxial compression (or stretch), biaxial compression (or stretch), pure shear and simple shear load by using the theory of continuum mechanics. The theoretical results determined from the approach based on the Ogden compressible hyper-elastic constitutive model were in good agreement with the experimental data from the uniaxial compression tests. Furthermore, this approach can also be used to predict the mechanical behaviors of the porous PDLLA/nano-HA material under the biaxial compression (or stretch), pure shear and simple shear.

  9. Reaction profiles in porous electrodes

    NASA Astrophysics Data System (ADS)

    Katan, T.; Carlen, P. J.

    1985-05-01

    An experimental program was conducted to ascertain causes of alkaline zinc electrode shape change and to determine the development of reaction profiles within the pores of porous zinc electrodes. Various analog electrochemical cells were operated to isolate and evaluate the individual processes occurring during charge and discharge. It was found that both edge effects and osmosis can be responsible for the shape change phenomenon.

  10. Neural Tissue as Porous Media

    SciTech Connect

    Basser, Peter J.

    2008-12-05

    The fields of MR in Porous Media and Neuroradiology have largely developed separately during the past two decades with little appreciation of the problems, challenges and methodologies of the other. However, this trend is clearly changing and possibilities for significant cross-fertilization and synergies are now being realized.

  11. Whey drying on porous carriers

    SciTech Connect

    Mitura, E.; Kaminski, W.

    1996-05-01

    Whey is treated very often as a waste which pollutes the natural environment. Whey which is a valuable source of protein, lacrose, vitamins and mineral salts should be utilized completely. The present paper is a proposal of whey drying on porous carriers. It is proved experimentally that the proposed drying method guarantees good product quality.

  12. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  13. Bounds for Eigenvalues of ArrowheadMatrices and Their Applications to HubMatrices andWireless Communications

    DTIC Science & Technology

    2009-01-01

    September 2009 Recommended by Enrico Capobianco This paper considers the lower and upper bounds of eigenvalues of arrow-head matrices. We propose a... Fermi liquid [2]. Numerically efficient algorithms for computing eigenvalues and eigenvectors of arrowhead matrices were discussed in [3]. The...tions,” The Journal of Chemical Physics, vol. 48, no. 2, pp. 715– 726, 1968. [2] J. W. Gadzuk, “Localized vibrational modes in Fermi liquids. General

  14. Inorganic Nanoparticle Nucleation on Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Kosteleski, Adrian John

    dressing applications. PAA's ability to nucleate nanoparticles in a solid matrix was displayed. Interestingly enough PAA retains its ability to nucleate nanoparticle even when its reactive functional groups are used in the crosslinking process. Silver nanoparticle composition and size on the solid polymer matrices was controlled by varying the composition of PAA. PAA and silver nanoparticles effect on the mechanical properties of the calcium alginate hydrogels were also studied. Physically crosslinking PAA with calcium alginate gels enables the development of intricate gel structures that are decorated with nucleated silver; yielding a composite biomaterial with improved and enhanced antimicrobial properties.

  15. Crystalline Colloidal Arrays in Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Sunkara, Hari B.; Penn, B. G.; Frazier, D. O.; Ramachandran, N.

    1997-01-01

    matrices, the factors which affect the optical diffraction qualities of resulting polymer films, and methods to improve the efficiencies of solid optical filters. Before this, we also present the experimental demonstration, of controlling the optical diffraction intensities from aqueous CCA dispersions by varying the temperature, which establishes the feasibility of fabricating all-optical switching devices with nonlinear periodic array structures.

  16. Estimated correlation matrices and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Pafka, Szilárd; Kondor, Imre

    2004-11-01

    Correlations of returns on various assets play a central role in financial theory and also in many practical applications. From a theoretical point of view, the main interest lies in the proper description of the structure and dynamics of correlations, whereas for the practitioner the emphasis is on the ability of the models to provide adequate inputs for the numerous portfolio and risk management procedures used in the financial industry. The theory of portfolios, initiated by Markowitz, has suffered from the “curse of dimensions” from the very outset. Over the past decades a large number of different techniques have been developed to tackle this problem and reduce the effective dimension of large bank portfolios, but the efficiency and reliability of these procedures are extremely hard to assess or compare. In this paper, we propose a model (simulation)-based approach which can be used for the systematical testing of all these dimensional reduction techniques. To illustrate the usefulness of our framework, we develop several toy models that display some of the main characteristic features of empirical correlations and generate artificial time series from them. Then, we regard these time series as empirical data and reconstruct the corresponding correlation matrices which will inevitably contain a certain amount of noise, due to the finiteness of the time series. Next, we apply several correlation matrix estimators and dimension reduction techniques introduced in the literature and/or applied in practice. As in our artificial world the only source of error is the finite length of the time series and, in addition, the “true” model, hence also the “true” correlation matrix, are precisely known, therefore in sharp contrast with empirical studies, we can precisely compare the performance of the various noise reduction techniques. One of our recurrent observations is that the recently introduced filtering technique based on random matrix theory performs

  17. Nonlinear Stability of Convection in a Porous Layer with Solid Partitions

    NASA Astrophysics Data System (ADS)

    Straughan, B.

    2014-07-01

    We show that for many classes of convection problem involving a porous layer, or layers, interleaved with finite but non-deformable solid layers, the global nonlinear stability threshold is exactly the same as the linear instability one. The layer(s) of porous material may be of Darcy type, Brinkman type, possess an anisotropic permeability, or even be such that they are of local thermal non-equilibrium type where the fluid and solid matrix constituting the porous material may have different temperatures. The key to the global stability result lies in proving the linear operator attached to the convection problem is a symmetric operator while the nonlinear terms must satisfy appropriate conditions.

  18. Synthetic vs Natural: Diatoms Bioderived Porous Materials for the Next Generation of Healthcare Nanodevices.

    PubMed

    Rea, Ilaria; Terracciano, Monica; De Stefano, Luca

    2017-02-01

    Nanostructured porous materials promise a next generation of innovative devices for healthcare and biomedical applications. The fabrication of such materials generally requires complex synthesis procedures, not always available in laboratories or sustainable in industries, and has adverse environmental impact. Nanosized porous materials can also be obtained from natural resources, which are an attractive alternative approach to man-made fabrication. Biogenic nanoporous silica from diatoms, and diatomaceous earths, constitutes largely available, low-cost reservoir of mesoporous nanodevices that can be engineered for theranostic applications, ranging from subcellular imaging to drug delivery. In this progress report, main experiences on nature-derived nanoparticles with healthcare and biomedical functionalities are reviewed and critically analyzed in search of a new collection of biocompatible porous nanomaterials.

  19. 3 CFR 8418 - Proclamation 8418 of September 16, 2009. Constitution Day and Citizenship Day, Constitution Week...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., Constitution Week, 2009By the President of the United States of America A Proclamation The United States... as “Constitution Week.” NOW, THEREFORE, I, BARACK OBAMA, President of the United States of America... beacon of hope for Americans and those who seek new lives in the United States. Every day, we welcome...

  20. Constitution 200: A Bicentennial Collection of Essays.

    ERIC Educational Resources Information Center

    Hepburn, Mary A., Ed.; And Others

    Constitutional essays which formed the basis of public assemblies throughout three states are compiled in this book. The first three essays consider the U.S. government principles of federalism, judicial review, and the separation of powers. Michael L. Benedict proposes that the question of ultimate sovereignty has been answered differently by…

  1. Great Constitutional Ideas: Justice, Equality, and Property.

    ERIC Educational Resources Information Center

    Starr, Isidore

    1987-01-01

    Examines the ideas of justice, equality, and property as they are represented in the Declaration of Independence, the U.S. Constitution and the Bill of Rights. Discusses how these ideas affect the way public schools operate and the lessons educators teach or don't teach about our society. Includes ideas for classroom activities. (JDH)

  2. Constitutive laws, tensorial invariance and chocolate cake

    NASA Astrophysics Data System (ADS)

    Rundle, John B.; Passman, S. L.

    1982-04-01

    Although constitutive modeling is a well-established branch of mathematics which has found wide industrial application, geophysicists often do not take full advantage of its known results. We present a synopsis of the theory of constitutive modeling, couched in terms of the ‘simple material’, which has been extensively studied and is complex enough to include most of the correct models proposed to describe the behavior of geological materials. Critical in the development of the theory are various invariance requirements, the principal ones being coordinate invariance, peer group invariance (isotropy), and frame-indifference. Each places distinet restrictions on constitutive equations. A noncomprehensive list of properly invariant and commonly used constitutive equations is given. To exemplify use of the equations, we consider two problems in detail: steady extension, which models the commonly performed constant strain rate triaxial test, and simple shearing. We note that each test is so restricted kinematically that only the most trivial aspects of material behavior are manifested in these tests, no matter how complex the material. Furthermore, the results of one test do not generally determine the results of the other.

  3. Children's Constitutional Rights: Interpretations and Implications.

    ERIC Educational Resources Information Center

    Sametz, Lynn; And Others

    1983-01-01

    Discusses a brief historical overview of constitutional law as it applies to children, delineated in the First, Fourth, Fifth, Sixth, Eighth, and Fourteenth Amendments. Emphasizes the need for school psychologists and educators to have an understanding of children's developing legal rights. Specific court cases are cited. (Author/JAC)

  4. A New Perspective on Teaching Constitutional Law

    ERIC Educational Resources Information Center

    Rosenblum, Robert

    1977-01-01

    The author suggests that a major failure of most law schools and traditional undergraduate constitutional law courses is that they omit an adequate analysis of the political nature of the judicial process. Political influences on a variety of court cases are discussed. (LBH)

  5. Globalization of Constitutional Law and Civil Rights.

    ERIC Educational Resources Information Center

    Weissbrodt, David

    1993-01-01

    Two issues are discussed: (1) reasons for raising global and international human rights issues in constitutional law, civil rights, and administrative law courses in United States law schools; and (2) barriers to globalization of courses and ways to overcome them. (MSE)

  6. The Constitutive Equation for Membrane Tether Extraction

    PubMed Central

    Chen, Yong; Yao, Da-Kang; Shao, Jin-Yu

    2010-01-01

    Membrane tethers or nanotubes play a critical role in a variety of cellular and subcellular processes such as leukocyte rolling and intercellular mass transport. The current constitutive equations that describe the relationship between the pulling force and the tether velocity during tether extraction have serious limitations. Here we propose a new phenomenological constitutive equation that captures all known characteristics of nanotube formation, including nonlinearity, nonzero threshold force, and possible negative tether velocity. We used tether extraction from endothelial cells as a prototype to illustrate how to obtain the material constants in the constitutive equation. With the micropipette aspiration technique, we measured tether pulling forces at both positive and negative tether velocities. We also determined the threshold force of 55 pN experimentally for the first time. This new constitutive equation unites two established ones and provides us a unified platform to better understand not only the physiological role of tether extraction during leukocyte rolling and intercellular or intracellular transport, but also the physics of membrane tether growth or retraction. PMID:20614242

  7. 17 CFR 200.54 - Constitutional obligations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 2 2013-04-01 2013-04-01 false Constitutional obligations... obligations. The members of this Commission have undertaken in their oaths of office to support the Federal... faithfully execute the laws which they are charged with administering. Members shall also carefully...

  8. Presidential Signing Statements: Constitutional and Institutional Implications

    DTIC Science & Technology

    2006-09-20

    constitutional judgment of the legislative branch,” the memorandum nonetheless declared that some encroachments would not be justiciable , and that in...the provision is justiciable ) and monitoring by Congress. A closely-related argument, also raised in the ABA Report, is that signing statements that

  9. Ohio's School Finance System: Constitutional or Unconstitutional?

    ERIC Educational Resources Information Center

    Bulach, Clete

    Since June 1979, when the Ohio Supreme Court declared Ohio's finance system constitutional, that system has continued to deteriorate, as evidenced by the number of districts borrowing from the school loan fund. Moreover, the supreme courts of four other states have recently declared their state financing systems unconstitutional. This paper…

  10. Western Canadians and the Mulroney Constitutional Proposal.

    ERIC Educational Resources Information Center

    Kilgour, David

    1991-01-01

    Reports findings of a survey suggesting that Edmonton, Alberta residents favor a referendum before any changes are made in Canada's constitution. Explains changes proposed by Prime Minister Brian Mulroney. Examines plans for House of Commons reform, aboriginal self-government, economic union for Canada, worker training, immigration, and other…

  11. Does the Constitution Protect the Despised?

    ERIC Educational Resources Information Center

    Roe, Richard L; And Others

    1984-01-01

    Presented is the history of the Scottsboro case, in which eight Black men were found guilty and sentenced to death for raping two White women in Alabama. At the heart of the Scottsboro trials was the issue of whether the U.S. Constitution established standards of justice in state criminal trials. (RM)

  12. Rapping the 27 Amendments to the Constitution

    ERIC Educational Resources Information Center

    Knaresborough, Adam

    2009-01-01

    Early in the year, the students of history and government at Mountain View High School in Stafford, Virginia, began to devise hand motions to help memorize the 27 amendments to the Constitution for government class. Three students in the school who are interested in hip hop music then suggested composing a rap song about the topic. Working with…

  13. North Carolina Outdoor Education Association Constitution.

    ERIC Educational Resources Information Center

    North Carolina Journal of Outdoor Education, 1980

    1980-01-01

    Gives the Association's constitution which covers membership, executive board, elections, terms of office, duties of officers, committees, parliamentary authority, amendments, and quorum. Available from: Center for Environmental, Camping and Outdoor Education; University of North Carolina at Greensboro; Pine Lake Field Campus; 4016 Blumenthal…

  14. Fetal pain, abortion, viability, and the Constitution.

    PubMed

    Cohen, I Glenn; Sayeed, Sadath

    2011-01-01

    In early 2010, the Nebraska state legislature passed a new abortion restricting law asserting a new, compelling state interest in preventing fetal pain. In this article, we review existing constitutional abortion doctrine and note difficulties presented by persistent legal attention to a socially derived viability construct. We then offer a substantive biological, ethical, and legal critique of the new fetal pain rationale.

  15. The U.S. Constitution and Education.

    ERIC Educational Resources Information Center

    Levin, Betsy

    Although education is primarily a state function, its importance to our society makes it fertile ground for litigation. The Constitution--by authorizing the Congress to enact legislation--constrains and prescribes what happens in schools. Legislative histories, especially since the early 1960s, are outlined here. The major topics include:…

  16. Porous silicon carbide (SIC) semiconductor device

    NASA Technical Reports Server (NTRS)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  17. Immobilization of Trametes hirsuta laccase into poly(3,4-ethylenedioxythiophene) and polyaniline polymer-matrices

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoju; Sjöberg-Eerola, Pia; Immonen, Kirsi; Bobacka, Johan; Bergelin, Mikael

    The immobilization of Trametes hirsuta laccase (ThL) in the poly(3,4-ethylenedioxythiophene) (PEDOT) and polyaniline (PANI) matrices was carried out in order to study the catalytic effect of ThL in different biocathode structures in a biofuel cell application. By using 2,2‧-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) as a mediator compound, the immobilized ThL in both polymer matrices, exhibited catalytic activity for the reduction of oxygen into water. The amount of ThL was adjustable in the PEDOT matrix by controlling the working parameters, such as the charge density used in the electropolymerization of EDOT monomer and the ThL concentration used in the electropolymerization electrolyte. In the PEDOT biocathode structure, the utilization of porous material as the PEDOT supporting template was studied in order to improve the current density generated per unit area/volume. Reticulated vitreous carbon foam (RVC foam) was chosen as the PEDOT supporting template material and the biocathodes were manufactured by in situ entrapment of ThL into PEDOT films polymerized on the RVC foam. These biocathodes possessed a high cathodic open circuit potential and produced a large current density, reaching 1 mA cm -3 at 0.45 V when 19.5 μg ml -1 of ThL was used in the electrolyte. The performance of these biocathodes was extremely sensitive to variations in pH and the optimal working pH was around 4.2. The biocathode reserved 80%, 50%, and 30% of the catalytic activity after storage in a +4 °C buffer solution for 1 day, 1 week, and 1 month, respectively. The PANI matrix was prepared in a form of printable ink where ThL was in situ entrapped in the PANI matrix during the laccase activated polymerization of aniline using a chemical batch reactor method. Different amounts of the ThL-containing printable PANI ink were then applied on carbon paper and the performance of the ink was subsequently electrochemically characterized. In this way, not only two different polymer

  18. Retinal pigment epithelium cell alignment on nanostructured collagen matrices.

    PubMed

    Ulbrich, Stefan; Friedrichs, Jens; Valtink, Monika; Murovski, Simo; Franz, Clemens M; Müller, Daniel J; Funk, Richard H W; Engelmann, Katrin

    2011-01-01

    We investigated attachment and migration of human retinal pigment epithelial cells (primary, SV40-transfected and ARPE-19) on nanoscopically defined, two-dimensional matrices composed of parallel-aligned collagen type I fibrils. These matrices were used non-cross-linked (native) or after riboflavin/UV-A cross-linking to study cell attachment and migration by time-lapse video microscopy. Expression of collagen type I and IV, MMP-2 and of the collagen-binding integrin subunit α(2) were examined by immunofluorescence and Western blotting. SV40-RPE cells quickly attached to the nanostructured collagen matrices and aligned along the collagen fibrils. However, they disrupted both native and cross-linked collagen matrices within 5 h. Primary RPE cells aligned more slowly without destroying either native or cross-linked substrates. Compared to primary RPE cells, ARPE-19 cells showed reduced alignment but partially disrupted the matrices within 20 h after seeding. Expression of the collagen type I-binding integrin subunit α(2) was highest in SV40-RPE cells, lower in primary RPE cells and almost undetectable in ARPE-19 cells. Thus, integrin α(2) expression levels directly correlated with the degree of cell alignment in all examined RPE cell types. Specific integrin subunit α(2)-mediated matrix binding was verified by preincubation with an α(2)-function-blocking antibody, which impaired cell adhesion and alignment to varying degrees in primary and SV40-RPE cells. Since native matrices supported extended and directed primary RPE cell growth, optimizing the matrix production procedure may in the future yield nanostructured collagen matrices serving as transferable cell sheet carriers.

  19. Combined Evaporation and Salt Precipitation in Porous Media

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Dragila, M. I.; Nachshon, U.; Or, D.; Shaharani, E.; Grader, A.

    2012-12-01

    The vadose zone pore water contains dissolved salts and minerals; therefore, evaporation results in high rates of salt accumulation that may change the physical and chemical properties of the porous media. Here, a series of experiments, together with a mathematical model, are presented to shed new light on these processes. Experiments included: (1) long-term column evaporation experiments to quantify changes in evaporation rates due to salt precipitation; (2) CT scans of evaporated porous media samples saturated with salt solutions, to observe salt precipitation from micro to macro scales; and (3) Infrared thermography analysis to quantify evaporation rates from porous media surfaces for homogeneous and heterogeneous conditions and constant water table, in the presence of salt precipitation. As expected, the majority of salt crystallization occurs in the upper parts of the matrix, near the evaporation front. For heterogeneous porous matrices, salt precipitation will occur mainly in the fine pore regions as preferential evaporation takes place in these locations. In addition, it was found that the precipitated NaCl salt crust diffusion coefficient for water vapor is one to two orders of magnitude lower than the vapor diffusion coefficient in free air, depending on environmental conditions and salt crystallization rates. Three new stages of evaporation were defined for saline solutions: SS1, SS2 and SS3. SS1 exhibits a low and gradual decrease in the evaporation rate due to osmotic pressure. During SS2, the evaporation rate falls progressively due to salt precipitation; SS3 is characterized by a constant low evaporation rate and determined by the diffusion rate of water vapor through the precipitated salt layer. Even though phenomenologically similar to the classical evaporation stages of pure water, these stages correspond to different mechanisms and the transition between stages can occur regardless the hydraulic conditions. As well, it was shown that matrix

  20. Producing Fiber Reinforced Composites Having Dense Ceramic Matrices

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R. (Inventor); Singh, Mrityunjay (Inventor)

    1999-01-01

    A fiber preform is partially infiltrated with a ceramic material. A porous solid polymer is formed by reaction forming the infiltrated preform which is then pyrolized. Microporous carbon in the composite matrix is converted into silicon carbide.

  1. Randomized Algorithms for Matrices and Data

    NASA Astrophysics Data System (ADS)

    Mahoney, Michael W.

    2012-03-01

    This chapter reviews recent work on randomized matrix algorithms. By “randomized matrix algorithms,” we refer to a class of recently developed random sampling and random projection algorithms for ubiquitous linear algebra problems such as least-squares (LS) regression and low-rank matrix approximation. These developments have been driven by applications in large-scale data analysis—applications which place very different demands on matrices than traditional scientific computing applications. Thus, in this review, we will focus on highlighting the simplicity and generality of several core ideas that underlie the usefulness of these randomized algorithms in scientific applications such as genetics (where these algorithms have already been applied) and astronomy (where, hopefully, in part due to this review they will soon be applied). The work we will review here had its origins within theoretical computer science (TCS). An important feature in the use of randomized algorithms in TCS more generally is that one must identify and then algorithmically deal with relevant “nonuniformity structure” in the data. For the randomized matrix algorithms to be reviewed here and that have proven useful recently in numerical linear algebra (NLA) and large-scale data analysis applications, the relevant nonuniformity structure is defined by the so-called statistical leverage scores. Defined more precisely below, these leverage scores are basically the diagonal elements of the projection matrix onto the dominant part of the spectrum of the input matrix. As such, they have a long history in statistical data analysis, where they have been used for outlier detection in regression diagnostics. More generally, these scores often have a very natural interpretation in terms of the data and processes generating the data. For example, they can be interpreted in terms of the leverage or influence that a given data point has on, say, the best low-rank matrix approximation; and this

  2. A Family of Reference Hugoniots for Two-phase Porous Materials

    DTIC Science & Technology

    2015-06-01

    UNCLASSIFIED UNCLASSIFIED A Family of Reference Hugoniots for Two-phase Porous Materials A.D. Resnyansky Weapons and Combat...of Australia 2015 AR-016-394 June 2015 APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED A Family of Reference Hugoniots for...EOS [4] is based on a constitutive consideration. The latter approach specifies Hugoniot states from a family of non-equilibrium Hugoniot for a

  3. Estimating soil matric potential in Owens Valley, California

    USGS Publications Warehouse

    Sorenson, Stephen K.; Miller, Reuben F.; Welch, Michael R.; Groeneveld, David P.; Branson, Farrel A.

    1989-01-01

    Much of the floor of Owens Valley, California, is covered with alkaline scrub and alkaline meadow plant communities, whose existence is dependent partly on precipitation and partly on water infiltrated into the rooting zone from the shallow water table. The extent to which these plant communities are capable of adapting to and surviving fluctuations in the water table depends on physiological adaptations of the plants and on the water content, matric potential characteristics of the soils. Two methods were used to estimate soil matric potential in test sites in Owens Valley. The first, the filter-paper method, uses water content of filter papers equilibrated to water content of soil samples taken with a hand auger. The previously published calibration relations used to estimate soil matric potential from the water content of the filter papers were modified on the basis of current laboratory data. The other method of estimating soil matric potential was a modeling approach based on data from this and previous investigations. These data indicate that the base-10 logarithm of soil matric potential is a linear function of gravimetric soil water content for a particular soil. The slope and intercepts of this function vary with the texture and saturation capacity of the soil. Estimates of soil water characteristic curves were made at two sites by averaging the gravimetric soil water content and soil matric potential values from multiple samples at 0.1-m depth intervals derived by using the hand auger and filter-paper method and entering these values in the soil water model. The characteristic curves then were used to estimate soil matric potential from estimates of volumetric soil water content derived from neutron-probe readings. Evaluation of the modeling technique at two study sites indicated that estimates of soil matric potential within 0.5 pF units of the soil matric potential value derived by using the filter-paper method could be obtained 90 to 95 percent of the

  4. Development of Stepwise Osteogenesis-mimicking Matrices for the Regulation of Mesenchymal Stem Cell Functions*

    PubMed Central

    Hoshiba, Takashi; Kawazoe, Naoki; Tateishi, Tetsuya; Chen, Guoping

    2009-01-01

    An extracellular microenvironment, including an extracellular matrix (ECM), is an important factor in regulating stem cell differentiation. During tissue development, the ECM is dynamically remodeled to regulate stem cell functions. Here, we developed matrices mimicking ECM remodeling during the osteogenesis of mesenchymal stem cells (MSCs). The matrices were prepared from cultured MSCs controlled at different stages of osteogenesis and referred to as “stepwise osteogenesis-mimicking matrices.” The matrices supported the adhesion and proliferation of MSCs and showed different effects on the osteogenesis of MSCs. On the matrices mimicking the early stage of osteogenesis (early stage matrices), the osteogenesis occurred more rapidly than did that on the matrices mimicking undifferentiated stem cells (stem cell matrices) and the late stage of osteogenesis (late stage matrices). RUNX2 was similarly expressed when MSCs were cultured on both the early stage and late stage matrices but decreased on the stem cell matrices. PPARG expression in the MSCs cultured on the late stage matrices was higher than for those cultured on the stem cell and early stage matrices. This increase of PPARG expression was caused by the suppression of the amount of β-catenin and downstream signal transduction. These results demonstrate that the osteogenesis-mimicking matrices had different effects on the osteogenesis of MSCs, and the early stage matrices provided a favorable microenvironment for the osteogenesis. PMID:19762920

  5. Fabrication of enzyme reactor utilizing magnetic porous polymer membrane for screening D-Amino acid oxidase inhibitors.

    PubMed

    Jiang, Jun Fang; Qiao, Juan; Mu, Xiao Yu; Moon, Myeong Hee; Qi, Li

    2017-04-01

    In this work, a unique D-amino acid oxidase reactor for enhanced enzymolysis efficiency is presented. A kind of magnetic polymer matrices, composed of iron oxide nanoparticles and porous polymer membrane (poly styrene-co-maleic anhydride), was prepared. With covalent bonding D-Amino acid oxidase on the surface of the matrices and characterization of scanning electron microscope and vibrating sample magnetometer, it demonstrated that the membrane enzyme reactor was successfully constructed. The enzymolysis efficiency of the enzyme reactor was evaluated and the apparent Michaelis-Menten constants of D-Amino acid oxidase were determined (Km was 1.10mM, Vmax was 23.8mMmin(-1)) by a chiral ligand exchange capillary electrophoresis protocol with methionine as the substrate. The results indicated that the enzyme reactor could exhibit good stability and excellent reusability. Importantly, because the enzyme and the substrate could be confined into the pores of the matrices, the enzyme reactor displayed the improved enzymolysis efficiency due to the confinement effect. Further, the prepared enzyme reactor was applied for D-Amino acid oxidase inhibitors screening. It has displayed that the proposed protocol could pave a new way for fabrication of novel porous polymer membrane based enzyme reactors to screen enzyme inhibitors.

  6. Null matrices and the analysis of species co-occurrences.

    PubMed

    Sanderson, James G; Moulton, Michael P; Selfridge, Ralph G

    1998-08-01

    Patterns in species occurrences on islands have been analyzed by several authors. At issue is the number of non-occurring pairs of species (also known as checkerboards). Previous authors have suggested that if the number of checkerboards differs from what is expected by chance, then island communities might have been structured by competition. Investigators have pursued this problem by first generating random (or null) matrices and then testing a metric derived from the collection of null matrices against the metric calculated from the actual species co-occurrence matrix. The random matrices were constrained by requiring the number of species on each island, and the number of islands on which each species occurred to be equal to their observed values. We show that results from previous studies are generally flawed. We present a fast, efficient algorithm to generate null matrices for any set of fixed row and column sums, and propose a modification of a previously proposed metric as a test statistic. We evaluated the efficacy of our construction method for null creation and our metric using incidence matrices from the avifauna of Vanuatu (formerly New Hebrides).

  7. Learning Discriminative Stein Kernel for SPD Matrices and Its Applications.

    PubMed

    Zhang, Jianjia; Wang, Lei; Zhou, Luping; Li, Wanqing

    2016-05-01

    Stein kernel (SK) has recently shown promising performance on classifying images represented by symmetric positive definite (SPD) matrices. It evaluates the similarity between two SPD matrices through their eigenvalues. In this paper, we argue that directly using the original eigenvalues may be problematic because: 1) eigenvalue estimation becomes biased when the number of samples is inadequate, which may lead to unreliable kernel evaluation, and 2) more importantly, eigenvalues reflect only the property of an individual SPD matrix. They are not necessarily optimal for computing SK when the goal is to discriminate different classes of SPD matrices. To address the two issues, we propose a discriminative SK (DSK), in which an extra parameter vector is defined to adjust the eigenvalues of input SPD matrices. The optimal parameter values are sought by optimizing a proxy of classification performance. To show the generality of the proposed method, three kernel learning criteria that are commonly used in the literature are employed as a proxy. A comprehensive experimental study is conducted on a variety of image classification tasks to compare the proposed DSK with the original SK and other methods for evaluating the similarity between SPD matrices. The results demonstrate that the DSK can attain greater discrimination and better align with classification tasks by altering the eigenvalues. This makes it produce higher classification performance than the original SK and other commonly used methods.

  8. Osteocalcin/fibronectin-functionalized collagen matrices for bone tissue engineering.

    PubMed

    Kim, S G; Lee, D S; Lee, S; Jang, J-H

    2015-06-01

    Collagen is the most abundant protein found in the extracellular matrix and is widely used to build scaffolds for biomedical applications which are the result of its biocompatibility and biodegradability. In the present study, we constructed a rhOCN/FNIII9-10 fusion protein and rhOCN/FNIII9-10-functionalized collagen matrices and investigated the potential value for bone tissue engineering. In vitro studies carried out with preosteoblastic MC3T3-E1 cells showed that rhOCN/FNIII9-10 fusion protein promoted cell adhesion and the mRNA levels of osteogenic markers including osteocalcin, runt-related transcription factor 2, alkaline phosphatase (ALP), and collagen type I. In addition, rhOCN/FNIII9-10-functionalized collagen matrices showed significant induction of the ALP activity more than rhFNIII9-10-functionalized collagen matrices or collagen matrices alone. These results suggested that rhOCN/FNIII9-10-functionalized collagen matrices have potential for bone tissue engineering.

  9. Laplacian matrices of weighted digraphs represented as quantum states

    NASA Astrophysics Data System (ADS)

    Adhikari, Bibhas; Banerjee, Subhashish; Adhikari, Satyabrata; Kumar, Atul

    2017-03-01

    Representing graphs as quantum states is becoming an increasingly important approach to study entanglement of mixed states, alternate to the standard linear algebraic density matrix-based approach of study. In this paper, we propose a general weighted directed graph framework for investigating properties of a large class of quantum states which are defined by three types of Laplacian matrices associated with such graphs. We generalize the standard framework of defining density matrices from simple connected graphs to density matrices using both combinatorial and signless Laplacian matrices associated with weighted directed graphs with complex edge weights and with/without self-loops. We also introduce a new notion of Laplacian matrix, which we call signed Laplacian matrix associated with such graphs. We produce necessary and/or sufficient conditions for such graphs to correspond to pure and mixed quantum states. Using these criteria, we finally determine the graphs whose corresponding density matrices represent entangled pure states which are well known and important for quantum computation applications. We observe that all these entangled pure states share a common combinatorial structure.

  10. Efficient computer algebra algorithms for polynomial matrices in control design

    NASA Technical Reports Server (NTRS)

    Baras, J. S.; Macenany, D. C.; Munach, R.

    1989-01-01

    The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.

  11. Dynamic Electromechanical Hydrogel Matrices for Stem Cell Culture

    PubMed Central

    Lim, Han L.; Chuang, Jessica C.; Tran, Tuan; Aung, Aereas; Arya, Gaurav; Varghese, Shyni

    2013-01-01

    Hydrogels have numerous biomedical applications including synthetic matrices for cell culture and tissue engineering. Here we report the development of hydrogel based multifunctional matrices that not only provide three-dimensional structural support to the embedded cells but also can simultaneously provide potentially beneficial dynamic mechanical and electrical cues to the cells. A unique aspect of these matrices is that they undergo reversible, anisotropic bending dynamics in an electric field. The direction and magnitude of this bending can be tuned through the hydrogel crosslink density while maintaining the same electric potential gradient, allowing control over the mechanical strain imparted to the cells in a three-dimensional environment. The conceptual design of these hydrogels was motivated through theoretical modeling of the osmotic pressure changes occurring at the gel-solution interfaces in an electric field. These electro-mechanical matrices support survival, proliferation, and differentiation of stem cells. Thus, these new three-dimensional in vitro synthetic matrices, which mimic multiple aspects of the native cellular environment, take us one step closer to in vivo systems. PMID:24273479

  12. Dynamic Electromechanical Hydrogel Matrices for Stem Cell Culture.

    PubMed

    Lim, Han L; Chuang, Jessica C; Tran, Tuan; Aung, Aereas; Arya, Gaurav; Varghese, Shyni

    2011-01-07

    Hydrogels have numerous biomedical applications including synthetic matrices for cell culture and tissue engineering. Here we report the development of hydrogel based multifunctional matrices that not only provide three-dimensional structural support to the embedded cells but also can simultaneously provide potentially beneficial dynamic mechanical and electrical cues to the cells. A unique aspect of these matrices is that they undergo reversible, anisotropic bending dynamics in an electric field. The direction and magnitude of this bending can be tuned through the hydrogel crosslink density while maintaining the same electric potential gradient, allowing control over the mechanical strain imparted to the cells in a three-dimensional environment. The conceptual design of these hydrogels was motivated through theoretical modeling of the osmotic pressure changes occurring at the gel-solution interfaces in an electric field. These electro-mechanical matrices support survival, proliferation, and differentiation of stem cells. Thus, these new three-dimensional in vitro synthetic matrices, which mimic multiple aspects of the native cellular environment, take us one step closer to in vivo systems.

  13. Aptamer-functionalized porous phospholipid nanoshells for direct measurement of Hg(2+) in urine.

    PubMed

    Li, Zhen; Muhandiramlage, Thusitha P; Keogh, John P; Hall, Henry K; Aspinwall, Craig A

    2015-01-01

    A porous phospholipid nanoshell (PPN) sensor functionalized with a specific aptamer sensor agent was prepared for rapid detection of Hg(2+) in human urine with minimal sample preparation. Aptamer sensors provide an important class of optical transducers that can be readily and reproducibly synthesized. A key limitation of aptamer sensors, and many other optical sensors, is the potential of biofouling or biodegradation when used in complex biological matrices such as serum or urine, particularly when high levels of nucleases are present. We prepared Hg(2+)-responsive, PPN-encapsulated aptamer sensors that overcome these limitations. PPNs provide a protective barrier to encapsulate the aptamer sensor in an aqueous environment free of diffusional restrictions encountered with many polymer nanomaterials. The unique porous properties of the PPN membrane enable ready and rapid transfer of small molecular weight ions and molecules into the sensor interior while minimizing the macromolecular interactions between the transducer and degradants or interferents in the exterior milieu. Using Hg(2+)-responsive, PPN-encapsulated aptamer sensors, we were able to detect sub-100 ppb (chronic threshold limit from urine test) Hg(2+) in human urine with no sample preparation, whereas free aptamer sensors yielded inaccurate results due to interferences from the matrix. The PPN architecture provides a new platform for construction of aptamer-functionalized sensors that target low molecular weight species in complex matrices, beyond the Hg(2+) demonstrated here.

  14. Aptamer-functionalized porous phospholipid nanoshells for direct measurement of Hg2+ in urine

    PubMed Central

    Li, Zhen; Muhandiramlage, Thusitha P.; Keogh, John P.; Hall, Henry K.; Aspinwall, Craig A.

    2014-01-01

    A porous phospholipid nanoshell (PPN) sensor functionalized with a specific aptamer sensor agent was prepared for rapid detection of Hg2+ in human urine with minimal sample preparation. Aptamer sensors provide an important class of optical transducers that can be readily and reproducibly synthesized. A key limitation of aptamer sensors, and many other optical sensors, is the potential of biofouling or biodegradation when used in complex biological matrices such as serum or urine, particularly when high levels of nucleases are present. We prepared Hg2+-responsive, PPN-encapsulated aptamer sensors that overcome these limitations. PPNs provide a protective barrier to encapsulate the aptamer sensor in an aqueous environment free of diffusional restrictions encountered with many polymer nanomaterials. The unique porous properties of the PPN membrane enable ready and rapid transfer of small molecular weight ions and molecules into the sensor interior while minimizing the macromolecular interactions between the transducer and degradants or interferents in the exterior milieu. Using Hg2+-responsive, PPN-encapsulated aptamer sensors, we were able to detect sub-100 ppb (chronic threshold limit from urine test) Hg2+ in human urine with no sample preparation, whereas free aptamer sensors yielded inaccurate results due to inteferences from the matrix. The PPN architecture provides a new platform for construction of aptamer-functionalized sensors that target low molecular weight species in complex matrices, beyond the Hg2+ demonstrated here. PMID:25326888

  15. An elastoplastic damage constitutive model for concrete

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Lin, Gao; Zhong, Hong

    2013-04-01

    An elastoplastic damage constitutive model to simulate nonlinear behavior of concrete is presented. Similar to traditional plastic theory, the irreversible deformation is modeled in effective stress space. In order to better describe different stiffness degradation mechanisms of concrete under tensile and compressive loading conditions, two damage variables, i.e., tension and compression are introduced, to quantitatively evaluate the degree of deterioration of concrete structure. The rate dependent behavior is taken into account, and this model is derived firmly in the framework of irreversible thermodynamics. Fully implicit backward-Euler algorithm is suggested to perform constitutive integration. Numerical results of the model accord well with the test results for specimens under uniaxial tension and compression, biaxial loading and triaxial loading. Failure processes of double-edge-notched (DEN) specimen are also simulated to further validate the proposed model.

  16. Washington upholds HIV exposure law as constitutional.

    PubMed

    1999-12-24

    A Washington State appeals court has rejected a constitutional challenge to a law that makes the intentional spreading of HIV to sex partners a crime. The court rejected the notion that the criminal exposure law violated the equal protection clause of the U.S. and State constitutions because it singled out those infected with HIV for unequal treatment. The court saw the law applied specific conduct to all, infected and non-infected alike, not specific groups of people. A second argument that the defendants were denied right of procreation was rejected because those rights are not protected if the defendant intended to inflict bodily injury. In this case, the defendant, [name removed], knowing his HIV status, willingly had sex with several women without warning them of his status or using a condom. The court viewed this behavior as acting with intent to inflict harm. An earlier case involving an HIV-specific criminal exposure law is described.

  17. In quest of constitutional principles of "neurolaw".

    PubMed

    Pizzetti, Federico Gustavo

    2011-01-01

    The growing use of brain imaging technology and the developing of cognitive neuroscience pose unaccustomed challenges to legal systems. Until now, the fields of Law much affected are the civil and criminal law and procedure, but the constitutional dimension of "neurolaw" cannot be easily underestimated. As the capacity to investigate and to trace brain mechanisms and functional neural activities increases, it becomes urgent the recognition and definition of the unalienable rights and fundamental values in respect of this new techno-scientific power, that must be protected and safeguard at "constitutional level" of norms such as: human dignity, personal identity, authenticity and the pursuit of individual "happiness". As the same as for the law regulating research and experimentation on human genome adopted in the past years, one may also argue if the above mentioned fundamental principles of "neurolaw" must be fixed and disciplined also at European and International level.

  18. Constitutive modeling for single crystal superalloys

    NASA Technical Reports Server (NTRS)

    Stouffer, Donald C.; Dame, L. Thomas; Jayaraman, N.

    1985-01-01

    A crystallographic approach to constitutive modeling of single crystal superalloys is discussed. The approach is based on identifying the active slip planes and slip directions. The shear stresses are computed on each of the slip planes from applied stress components. The slip rate is then computed on each slip system and the microscopic inelastic strain rates are the sum of the slip in the individual slip systems. The constitutive model was implemented in a finite element code using twenty noted isoparametric solid elements. Constants were determined for octahedral and cube slip systems. These constants were then used to predict tension-compression asymmetry and fatigue loops. Other data was used to model the tensile and creep response.

  19. A constitutive model for an overlay coating

    NASA Technical Reports Server (NTRS)

    Nissley, D. M.; Swanson, G. A.

    1988-01-01

    Coatings are frequently applied to gas turbine blades and vanes to provide protection against oxidation and corrosion. The results of an experimental and analytical study to develop a constitutive model for an overlay coating is presented. Specimens were machined from a hot isostatically pressed billet of PWA 286. The tests consisted of isothermal stress relaxation cycles with monotonically increasing maximum strain and were conducted at various temperatures. The results were used to calculate the constants for various constitutive models, including the classical, the Walker isotropic, a simplified Walker, and Stowell models. A computerized regression analysis was used to calculate model constants from the data. The best fit was obtained for the Walker model, with the simplified Walker and classical models close behind.

  20. Constitutive Modeling of Crosslinked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Frankland, S. J. V.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2004-01-01

    A non-linear, continuum-based constitutive model is developed for carbon nanotube materials in which bundles of aligned carbon nanotubes have varying amounts of crosslinks between the nanotubes. The model accounts for the non-linear elastic constitutive behavior of the material in terms of strain, and is developed using a thermodynamic energy approach. The model is used to examine the effect of the crosslinking on the overall mechanical properties of variations of the crosslinked carbon nanotube material with varying degrees of crosslinking. It is shown that the presence of the crosslinks has significant effects on the mechanical properties of the carbon nanotube materials. An increase in the transverse shear properties is observed when the nanotubes are crosslinked. However, this increase is accompanied by a decrease in axial mechanical properties of the nanotube material upon crosslinking.

  1. Biaxial constitutive equation development for single crystals

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    Current gas turbine engines utilize large single crystal superalloy components in the hot section. Structural analysis of these components requires a valid stress strain temperature constitutive equation. The goal of the program described is to create one or more models and verify these models. A constitutive equation based on an assumed slip behavior of a single slip system was formulated, programmed, and debugged. Specifically, the basic theory for a model based on aggravating slip behavior on individual slip systems was formulated and programmed and some simulations were run using assumed values of constants. In addition, a formulation allowing strain controlled simulations was completed. An approach to structural analysis of the specimen was developed. This approach uses long tube consistancy conditions and finite elements specially formulated to take advantage of the symmetry of 100 oriented specimens.

  2. President, Prime Minister, or Constitutional Monarch?

    DTIC Science & Technology

    1989-10-01

    however, without test cases, and the President has always been an important initiator of test cases. 6 EUGENE V. RosTOw This paper is divided into...Judge Gerhard A. Gesell in the trial of Oliver North confirms, those two issues do not raise either constitutional or significant statutory questions...expired after sixty or ninety days if congress did nothing. Section 6 of the 1973 act was never tested , but it was generally thought to be unworkable. The

  3. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1992-10-13

    A method is described for recovering plutonium and other metals from materials by leaching comprising the steps of incinerating the materials to form a porous matrix as the residue of incineration, immersing the matrix into acid in a microwave-transparent pressure vessel, sealing the pressure vessel, and applying microwaves so that the temperature and the pressure in the pressure vessel increase. The acid for recovering plutonium can be a mixture of HBF[sub 4] and HNO[sub 3] and preferably the pressure is increased to at least 100 PSI and the temperature to at least 200 C. The porous material can be pulverized before immersion to further increase the leach rate.

  4. Engineered porous metals for implants

    NASA Astrophysics Data System (ADS)

    Vamsi Krishna, B.; Xue, Weichang; Bose, Susmita; Bandyopadhyay, Amit

    2008-05-01

    Interest is significant in patient-specific implants with the possibility of guided tissue regeneration, particularly for load-bearing implants. For such implants to succeed, novel design approaches and fabrication technologies that can achieve balanced mechanical and functional performance in the implants are necessary. This article is focused on porous load-bearing implants with tailored micro-as well as macrostructures using laser-engineered net shaping (LENS™), a solid freeform fabrication or rapid prototyping technique that can be used to manufacture patient-specific implants. This review provides an insight into LENS, some properties of porous metals, and the potential applications of this process to fabricate unitized structures which can eliminate longstanding challenges in load-bearing implants to increase their in-vivo lifetime, such as in a total hip prosthesis.

  5. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  6. Image informatics for studying signal transduction in cells interacting with 3D matrices

    NASA Astrophysics Data System (ADS)

    Tzeranis, Dimitrios S.; Guo, Jin; Chen, Chengpin; Yannas, Ioannis V.; Wei, Xunbin; So, Peter T. C.

    2014-03-01

    Cells sense and respond to chemical stimuli on their environment via signal transduction pathways, complex networks of proteins whose interactions transmit chemical information. This work describes an implementation of image informatics, imaging-based methodologies for studying signal transduction networks. The methodology developed focuses on studying signal transduction networks in cells that interact with 3D matrices. It utilizes shRNA-based knock down of network components, 3D high-content imaging of cells inside the matrix by spectral multi-photon microscopy, and single-cell quantification using features that describe both cell morphology and cell-matrix adhesion pattern. The methodology is applied in a pilot study of TGFβ signaling via the SMAD pathway in fibroblasts cultured inside porous collagen-GAG scaffolds, biomaterials similar to the ones used clinically to induce skin regeneration. Preliminary results suggest that knocking down all rSMAD components affects fibroblast response to TGFβ1 and TGFβ3 isoforms in different ways, and suggest a potential role for SMAD1 and SMAD5 in regulating TGFβ isoform response. These preliminary results need to be verified with proteomic results that can provide solid evidence about the particular role of individual components of the SMAD pathway.

  7. Rapid implementation of advanced constitutive models

    NASA Astrophysics Data System (ADS)

    Starman, Bojan; Halilovič, Miroslav; Vrh, Marko; Štok, Boris

    2013-12-01

    This paper presents a methodology based on the NICE integration scheme [1, 2] for simple and rapid numerical implementation of a class of plasticity constitutive models. In this regard, an algorithm is purposely developed for the implementation of newly developed advanced constitutive models into explicit finite element framework. The methodology follows the organization of the problem state variables into an extended form, which allows the constitutive models' equations to be organized in such a way, that the algorithm can be optionally extended with minimal effort to integrate also evolution equations related to a description of other specific phenomena, such as damage, distortional hardening, phase transitions, degradation etc. To confirm simplicity of the program implementation, computational robustness, effectiveness and improved accuracy of the implemented integration algorithm, a deep drawing simulation of the cylindrical cup is considered as the case study, performed in ABAQUS/Explicit. As a fairly complex considered model, the YLD2004-18p model [3, 4] is first implemented via external subroutine VUMAT. Further, to give additional proof of the simplicity of the proposed methodology, a combination of the YLD2004-18p model and Gurson-Tvergaard-Needleman model (GTN) is considered. As demonstrated, the implementation is really obtained in a very simple way.

  8. Organelle size equalization by a constitutive process.

    PubMed

    Ludington, William B; Shi, Linda Z; Zhu, Qingyuan; Berns, Michael W; Marshall, Wallace F

    2012-11-20

    How cells control organelle size is an elusive problem. Two predominant models for size control can be distinguished: (1) induced control, where organelle genesis, maintenance, and disassembly are three separate programs that are activated in response to size change, and (2) constitutive control, where stable size results from the balance between continuous organelle assembly and disassembly. The problem has been studied in Chlamydomonas reinhardtii because the flagella are easy to measure, their size changes only in the length dimension, and the genetics are comparable to yeast. Length dynamics in Chlamydomonas flagella are quite robust: they maintain a length of about 12 μm and recover from amputation in about 90 min with a growth rate that decreases smoothly to zero as the length approaches 12 μm. Despite a wealth of experimental studies, existing data are consistent with both induced and constitutive control models for flagella. Here we developed novel microfluidic trapping and laser microsurgery techniques in Chlamydomonas to distinguish between length control models by measuring the two flagella on a single cell as they equilibrate after amputation of a single flagellum. The results suggest that cells equalize flagellar length by constitutive control.

  9. Constitutive modeling for isotropic materials (HOST)

    NASA Technical Reports Server (NTRS)

    Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.

    1984-01-01

    The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.

  10. Implicit constitutive relations for nonlinear magnetoelastic bodies

    PubMed Central

    Bustamante, R.; Rajagopal, K. R.

    2015-01-01

    Implicit constitutive relations that characterize the response of elastic bodies have greatly enhanced the arsenal available at the disposal of the analyst working in the field of elasticity. This class of models were recently extended to describe electroelastic bodies by the present authors. In this paper, we extend the development of implicit constitutive relations to describe the behaviour of elastic bodies that respond to magnetic stimuli. The models that are developed provide a rational way to describe phenomena that have hitherto not been adequately described by the classical models that are in place. After developing implicit constitutive relations for magnetoelastic bodies undergoing large deformations, we consider the linearization of the models within the context of small displacement gradients. We then use the linearized model to describe experimentally observed phenomena which the classical linearized magnetoelastic models are incapable of doing. We also solve several boundary value problems within the context of the models that are developed: extension and shear of a slab, and radial inflation and extension of a cylinder. PMID:25792968

  11. Implicit constitutive relations for nonlinear magnetoelastic bodies.

    PubMed

    Bustamante, R; Rajagopal, K R

    2015-03-08

    Implicit constitutive relations that characterize the response of elastic bodies have greatly enhanced the arsenal available at the disposal of the analyst working in the field of elasticity. This class of models were recently extended to describe electroelastic bodies by the present authors. In this paper, we extend the development of implicit constitutive relations to describe the behaviour of elastic bodies that respond to magnetic stimuli. The models that are developed provide a rational way to describe phenomena that have hitherto not been adequately described by the classical models that are in place. After developing implicit constitutive relations for magnetoelastic bodies undergoing large deformations, we consider the linearization of the models within the context of small displacement gradients. We then use the linearized model to describe experimentally observed phenomena which the classical linearized magnetoelastic models are incapable of doing. We also solve several boundary value problems within the context of the models that are developed: extension and shear of a slab, and radial inflation and extension of a cylinder.

  12. A stirred bath technique for diffusivity measurements in cell matrices.

    PubMed

    Chresand, T J; Dale, B E; Hanson, S L; Gillies, R J

    1988-10-05

    A stirred bath technique was developed for determining effective diffusivities in cell matrices. The technique involves cell immobilization in a dilute gel which has negligible effect on solute diffusion. Agar and collagen were tested as immobilizing gels. Agar gel was shown to have minor interactions with the diffusion of various biological molecules, and was used for immobilization of Ehrlich Ascites Tumor (EAT) cells. Diffusivities of glucose and lactic acid were measured in EAT matrices for cell loadings between 20 and 45 vol %. Treatment with glutaraldehyde was effective in quenching the metabolic activity of the cells while preserving their physical properties and diffusive resistance. The measured data agree favorably with predictions based on Maxwell's equation for effective diffusion in a periodic composite material. The stirred bath technique is useful for diffusivity determinations in immobilized matrices or free slurries, and is applicable to both microbial and mammalian cell systems.

  13. Sweeping the space of admissible quark mass matrices

    NASA Astrophysics Data System (ADS)

    Falk, Silke; Häußling, Rainer; Scheck, Florian

    2002-05-01

    We propose a new and efficient method of reconstructing quark mass matrices from their eigenvalues and a complete set of mixing observables. By a combination of the principle of NNI bases which are known to cover the general case, and of the polar decomposition theorem that allows us to convert arbitrary nonsingular matrices to triangular form, we achieve a parametrization where the remaining freedom is reduced to one complex parameter. While this parameter runs through the domain bounded by the circle with radius R=((m2t-m2u)/(m2t-m2c)) around the origin in the complex plane one sweeps the space of all mass matrices compatible with the given set of data.

  14. Scattering matrices in non-uniformly lined ducts

    NASA Astrophysics Data System (ADS)

    Demir, Ahmet

    2017-02-01

    Sudden area expansion and sudden area contraction in an infinitely long duct with discontinuous locally reacting lining are defined by respective mixed boundary value problems. In the absence of a sudden area change, a separate problem with an infinite duct having bifid lining on its wall is described. Introducing Fourier transform along the duct axis boundary value problems is solved by the well-known Wiener-Hopf technique, and then, corresponding scattering matrices are constructed. To show the proper use of scattering matrices in the case of several discontinuities and also validation and comparison purposes, transmitted field in a duct with an inserted expansion chamber whose walls are treated by acoustically absorbent material is derived by the help of the relevant scattering matrices. A perfect agreement is observed when the transmitted fields are compared numerically with a similar work exists in the literature.

  15. Asymmetric correlation matrices: an analysis of financial data

    NASA Astrophysics Data System (ADS)

    Livan, G.; Rebecchi, L.

    2012-06-01

    We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.

  16. Large N matrices from a nonlocal spin system

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Hartnoll, Sean A.; Huijse, Liza; Martin, Victoria L.

    2015-10-01

    Large N matrices underpin the best understood models of emergent spacetime. We suggest that large N matrices can themselves be emergent from simple quantum mechanical spin models with finite dimensional Hilbert spaces. We exhibit the emergence of large N matrices in a nonlocal statistical physics model of order N2 Ising spins. The spin partition function is shown to admit a large N saddle described by a matrix integral, which we solve. The matrix saddle is dominant at high temperatures, metastable at intermediate temperatures and ceases to exist below a critical order one temperature. The matrix saddle is disordered in a sense we make precise and competes with ordered low energy states. We verify our analytic results by Monte Carlo simulation of the spin system.

  17. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  18. Complications of acellular dermal matrices in breast surgery.

    PubMed

    Israeli, Ron

    2012-11-01

    Acellular dermal matrices have been used in breast surgery for a decade. They are widely used in implant-based breast reconstruction to provide coverage of the inferolateral aspects of the prosthesis. Numerous benefits have been reported with this approach including improved fold control, better support and control of the implant pocket with concomitant reduced risk of malposition, and improved lower pole expansion. Seroma, infection, mastectomy skin necrosis, and expander/implant loss are the most commonly reported complications with this approach, and the incidences vary widely among studies. Patient selection and adherence to established intraoperative technique principles related to acellular dermal matrix use are both critical to minimizing the risk of complications. Acellular dermal matrices are also being used in aesthetic breast surgery, revision breast surgery, and nipple reconstruction, but clinical experience is limited. This article reviews the complications associated with the use of matrices in breast surgery from the published literature.

  19. Modeling quantization matrices for perceptual image / video encoding

    NASA Astrophysics Data System (ADS)

    Zhang, Huipin; Cote, Guy

    2008-01-01

    Quantization matrix is an important encoding tool for discrete cosine transform (DCT) based perceptual image / video encoding in that DCT coefficients can be quantized according to the sensitivity of the human visual system to the coefficients' corresponding spatial frequencies. A quadratic model is introduced to parameterize the quantization matrices. This model is then used to optimize quantization matrices for a specific bitrate or bitrate range by maximizing the expected encoding quality via a trial based multidimensional numerical search method. The model is simple yet it characterizes the slope and the convexity of the quantization matrices along the horizontal, the vertical and the diagonal directions. The advantage of the model for improving perceptual video encoding quality is demonstrated with simulations using H.264 / AVC video encoding.

  20. Diffusion in porous crystalline materials.

    PubMed

    Krishna, Rajamani

    2012-04-21

    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso- and micro-porous structures. In meso-porous materials, with pore sizes 2 nm < d(p) < 50 nm, there is a central core region where the influence of interactions of the molecules with the pore wall is either small or negligible; meso-pore diffusion is governed by a combination of molecule-molecule and molecule-pore wall interactions. Within micro-pores, with d(p) < 2 nm, the guest molecules are always under the influence of the force field exerted with the wall and we have to reckon with the motion of adsorbed molecules, and there is no "bulk" fluid region. The characteristics and physical significance of the self-, Maxwell-Stefan, and Fick diffusivities are explained with the aid of data obtained either from experiments or molecular dynamics simulations, for a wide variety of structures with different pore sizes and topology. The influence of adsorption thermodynamics, molecular clustering, and segregation on both magnitudes and concentration dependences of the diffusivities is highlighted. In mixture diffusion, correlations in molecular hops have the effect of slowing-down the more mobile species. The need for proper modeling of correlation effects using the Maxwell-Stefan formulation is stressed with the aid of examples of membrane separations and catalytic reactors.

  1. Balanced 0, + or - Matrices. Part 2. Recognition Algorithm

    DTIC Science & Technology

    1994-01-22

    Matrices MAY 101994 Part II: Recognition Algorithm D Michele ConfortlI G6rard Cornu6j~ls2 Ajai Kapoor Krisina Vuskovi 2 January 22, 1994 Dipartimento...di Matematica Pura ed Applicata Universiti di Padova, Via Belzoni 7, 94-13892 35131 Padova, Italy I IIII In II ii I l1i III Graduate School of...for balanced 0, ± matrices . This algorithm is based on a decomposition theorem proved in a companion paper. Acce166 ýr7 NTIS CRA& D’BC TAB L 1 U

  2. Random reverse-cyclic matrices and screened harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Srivastava, Shashi C. L.; Jain, Sudhir R.

    2012-04-01

    We have calculated the joint probability distribution function for random reverse-cyclic matrices and shown that it is related to an N-body exactly solvable model. We refer to this well-known model potential as a screened harmonic oscillator. The connection enables us to obtain all the correlations among the particle positions moving in a screened harmonic potential. The density of nontrivial eigenvalues of this ensemble is found to be of the Wigner form and admits a hole at the origin, in contrast to the semicircle law of the Gaussian orthogonal ensemble of random matrices. The spacing distributions assume different forms ranging from Gaussian-like to Wigner.

  3. The algebraic theory of latent projectors in lambda matrices

    NASA Technical Reports Server (NTRS)

    Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.

    1981-01-01

    Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.

  4. Quantum hidden Markov models based on transition operation matrices

    NASA Astrophysics Data System (ADS)

    Cholewa, Michał; Gawron, Piotr; Głomb, Przemysław; Kurzyk, Dariusz

    2017-04-01

    In this work, we extend the idea of quantum Markov chains (Gudder in J Math Phys 49(7):072105 [3]) in order to propose quantum hidden Markov models (QHMMs). For that, we use the notions of transition operation matrices and vector states, which are an extension of classical stochastic matrices and probability distributions. Our main result is the Mealy QHMM formulation and proofs of algorithms needed for application of this model: Forward for general case and Vitterbi for a restricted class of QHMMs. We show the relations of the proposed model to other quantum HMM propositions and present an example of application.

  5. Photocatalytic Properties of Porous Silicon Nanowires.

    PubMed

    Qu, Yongquan; Zhong, Xing; Li, Yujing; Liao, Lei; Huang, Yu; Duan, Xiangfeng

    2010-01-01

    Porous silicon nanowires are synthesized through metal assisted wet-chemical etch of highly-doped silicon wafer. The resulted porous silicon nanowires exhibit a large surface area of 337 m(2)·g(-1) and a wide spectrum absorption across the entire ultraviolet, visible and near infrared regime. We further demonstrate that platinum nanoparticles can be loaded onto the surface of the porous silicon nanowires with controlled density. These combined advancements make the porous silicon nanowires an interesting material for photocatalytic applications. We show that the porous silicon nanowires and platinum nanoparticle loaded porous silicon nanowires can be used as effective photocatalysts for photocatalytic degradation of organic dyes and toxic pollutants under visible irradiation, and thus are of significant interest for organic waste treatment and environmental remediation.

  6. Thermally conductive porous element-based recuperators

    NASA Technical Reports Server (NTRS)

    Du, Jian Hua (Inventor); Chow, Louis C (Inventor); Lin, Yeong-Ren (Inventor); Wu, Wei (Inventor); Kapat, Jayanta (Inventor); Notardonato, William U. (Inventor)

    2012-01-01

    A heat exchanger includes at least one hot fluid flow channel comprising a first plurality of open cell porous elements having first gaps there between for flowing a hot fluid in a flow direction and at least one cold fluid flow channel comprising a second plurality of open cell porous elements having second gaps therebetween for flowing a cold fluid in a countercurrent flow direction relative to the flow direction. The thermal conductivity of the porous elements is at least 10 W/mK. A separation member is interposed between the hot and cold flow channels for isolating flow paths associated these flow channels. The first and second plurality of porous elements at least partially overlap one another to form a plurality of heat transfer pairs which transfer heat from respective ones of the first porous elements to respective ones of the second porous elements through the separation member.

  7. Porous Carbon Nanoparticle Networks with Tunable Absorbability

    PubMed Central

    Dai, Wei; Kim, Seong Jin; Seong, Won-Kyeong; Kim, Sang Hoon; Lee, Kwang-Ryeol; Kim, Ho-Young; Moon, Myoung-Woon

    2013-01-01

    Porous carbon materials with high specific surface areas and superhydrophobicity have attracted much research interest due to their potential application in the areas of water filtration, water/oil separation, and oil-spill cleanup. Most reported superhydrophobic porous carbon materials are fabricated by complex processes involving the use of catalysts and high temperatures but with low throughput. Here, we present a facile single-step method for fabricating porous carbon nanoparticle (CNP) networks with selective absorbability for water and oils via the glow discharge of hydrocarbon plasma without a catalyst at room temperature. Porous CNP networks were grown by the continuous deposition of CNPs at a relatively high deposition pressure. By varying the fluorine content, the porous CNP networks exhibited tunable repellence against liquids with various degrees of surface tension. These porous CNP networks could be applied for the separation of not only water/oil mixtures but also mixtures of liquids with different surface tension levels. PMID:23982181

  8. Power: Constitutional Update. Bar/School Partnership Programs Series.

    ERIC Educational Resources Information Center

    American Bar Association, Chicago, IL. Special Committee on Youth Education for Citizenship.

    The fourth in a special series of handbooks dealing with constitutional themes, this document looks at power in the context of the U.S. Constitution. "The Constitution's Prescription for Freedom" (L. Peach) examines the separation of powers provided for in the Constitution. "The Concept of Power" (C. Roach) is a series of…

  9. The Law of the Constitution: A Bicentennial Lecture.

    ERIC Educational Resources Information Center

    Meese, Edwin, III

    This paper discusses the distinction between the Constitution and constitutional law. The Constitution is the fundamental law of the United States. It creates the institutions of government, enumerates the powers of these institutions, and delineates areas government may not enter. The Constitution is the instrument by which the consent of the…

  10. 29 CFR 402.1 - Labor organization constitution and bylaws.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 2 2010-07-01 2010-07-01 false Labor organization constitution and bylaws. 402.1 Section... constitution and bylaws. Every labor organization shall adopt a constitution and bylaws consistent with the... a constitution and bylaws which it has previously adopted and under which it is operating when...

  11. Search, Seizure, and Privacy. Exploring the Constitution Series.

    ERIC Educational Resources Information Center

    McWhirter, Darien A., Ed.

    This book, part of the "Exploring the Constitution Series," provides a basic introduction to important areas of constitutional law. Each volume contains a general introduction to a particular constitutional issue combined with excerpts from significant Supreme Court decisions in that area. The text of the Constitution, a chronological…

  12. Piezoelectric and piezooptic effects in porous silicon

    NASA Astrophysics Data System (ADS)

    Vinikman-Pinhasi, Shirly; Ribak, Erez N.

    2006-03-01

    Although silicon is a simple cubic crystal, it can be induced to have a piezoelectric response, by making pores in it and thus spoiling its symmetry. By etching a silicon wafer into porous material, we found that it responds to voltage applied to it, as well as to light. A porous shallow layer on the surface of the wafer induced bimorph bending roughly proportional to the voltage squared. Illuminating the porous patch caused a similar bending.

  13. Bimodal porous gold opals for molecular sensing

    NASA Astrophysics Data System (ADS)

    Chae, Weon-Sik; Yu, Hyunung; Ham, Sung-Kyoung; Lee, Myung-Jin; Jung, Jin-Seung; Robinson, David B.

    2013-11-01

    We have fabricated bimodal porous gold skeletons by double-templating routes using poly(styrene) colloidal opals as templates. The fabricated gold skeletons show a bimodal pore-size distribution, with small pores within spheres and large pores between spheres. The templated bimodal porous gold skeletons were applied in Raman scattering experiments to study sensing efficiency for probe molecules. We found that the bimodal porous gold skeletons showed obvious enhancement of Raman scattering signals versus that of the unimodal porous gold which only has interstitial pores of several hundred nanometers.

  14. Foam drainage placed on a porous substrate.

    PubMed

    Arjmandi-Tash, O; Kovalchuk, N; Trybala, A; Starov, V

    2015-05-14

    A model for drainage/imbibition of a foam placed on the top of a porous substrate is presented. The equation of liquid imbibition into the porous substrate is coupled with a foam drainage equation at the foam/porous substrate interface. The deduced dimensionless equations are solved using a finite element method. It was found that the kinetics of foam drainage/imbibition depends on three dimensionless numbers and the initial liquid volume fraction. The result shows that there are three different regimes of the process. Each regime starts after initial rapid decrease of a liquid volume fraction at the foam/porous substrate interface: (i) rapid imbibition: the liquid volume fraction inside the foam at the foam/porous substrate interface remains constant close to a final liquid volume fraction; (ii) intermediate imbibition: the liquid volume fraction at the interface with the porous substrate experiences a peak point and imbibition into the porous substrate is slower as compared with the drainage; (iii) slow imbibition: the liquid volume fraction at the foam/porous substrate interface increases to a maximum limiting value and a free liquid layer is formed between the foam and the porous substrate. However, the free liquid layer disappears after some time. The transition points between these three different drainage/imbibition regimes were delineated by introducing two dimensionless numbers.

  15. Porous media heat transfer for injection molding

    DOEpatents

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  16. Transpiration Control Of Aerodynamics Via Porous Surfaces

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Wood, Richard M.; Bauer, Steven X. S.

    1993-01-01

    Quasi-active porous surface used to control pressure loading on aerodynamic surface of aircraft or other vehicle, according to proposal. In transpiration control, one makes small additions of pressure and/or mass to cavity beneath surface of porous skin on aerodynamic surface, thereby affecting rate of transpiration through porous surface. Porous skin located on forebody or any other suitable aerodynamic surface, with cavity just below surface. Device based on concept extremely lightweight, mechanically simple, occupies little volume in vehicle, and extremely adaptable.

  17. A constitutive law for dense granular flows.

    PubMed

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  18. [Constitutive synthesis of cellulase by Trichoderma lignorum].

    PubMed

    Lobanok, A G; Pavlovskaia, Zh I

    1977-01-01

    The induction of cellulase synthesis by lactose was studied in the resting cells of Trichoderma lignorum OM 534. The effect depended on the concentration of lactose, pH, and the age of the mycelium. The induction of the enzyme synthesis by lactose is supressed by glucose and its metabolites. The repression by glucose is partly eliminated by Cyk 3'-5'-AMP, theophylline, and coffeine. The induction of cellulase by lactose is regarded as a derepression of the synthesis of this enzyme as a result of slow assimilation of the disaccharide. The synthesis of cellulase in T. lignorum is presumed to be constitutive.

  19. Civil and Constitutional Rights of Adjudicated Youth.

    PubMed

    Landess, Jacqueline

    2016-01-01

    Mental health clinicians serving child and adolescent patients are frequently asked to evaluate youth who have been arrested for various offenses or who are otherwise involved with the juvenile justice system. To help orient clinicians and other stakeholders involved with such cases, this article describes the evolution of the juvenile justice system and summarizes the history and current status of the civil and constitutional rights of youth involved in the adjudicatory process. This article also points out key areas in which due process rights are still evolving, particularly in the case of status offenders.

  20. At law. Crack, symbolism, and the constitution.

    PubMed

    Annas, G J

    1989-01-01

    Annas comments on two 1989 Supreme Court decisions and dissenting opinions in cases involving the testing of employees for substance abuse. Regulations promulgated under the 1970 Federal Railroad Safety Act led to a court case, Skinner v. Railway Labor Executives' Association, challenging the collection of blood and urine samples from employees involved in serious rail accidents. Another case, National Treasury Employees Union v. Von Raab, questioned the constitutionality of requiring urine samples for drug testing from candidates for certain positions with the Customs Service. Annas speculates whether the Court's reasoning in these cases will lead it to support broader mandatory testing in the future at the cost of Fourth Amendment rights.

  1. Constitutive modeling for isotropic materials (HOST)

    NASA Technical Reports Server (NTRS)

    Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.

    1986-01-01

    The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined

  2. Constitutive equations of ageing polymeric materials

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.

    1985-01-01

    The constitutive equation for the relaxation behavior of time-dependent, chemically unstable materials developed by Valanis and Peng (1983), which used the irreversible thermodynamics of internal variables in Eyring's absolute reaction theory and yielded a theoretical expression for the effect of chemical crosslink density on the relaxation rate, is presently applied to the creep behavior of a network polymer which is undergoing a scission process. In particular, two equations are derived which may for the first time show the relations between mechanical models and internal variables in the creep expressions, using a three-element model with a Maxwell element.

  3. Numerically abnormal chromosome constitutions in humans

    SciTech Connect

    1993-12-31

    Chapter 24, discusses numerically abnormal chromosome constitutions in humans. This involves abnormalities of human chromosome number, including polyploidy (when the number of sets of chromosomes increases) and aneuploidy (when the number of individual normal chromosomes changes). Chapter sections discuss the following chromosomal abnormalities: human triploids, imprinting and uniparental disomy, human tetraploids, hydatidiform moles, anomalies caused by chromosomal imbalance, 13 trisomy (D{sub 1} trisomy, Patau syndrome), 21 trisomy (Down syndrome), 18 trisomy syndrome (Edwards syndrome), other autosomal aneuploidy syndromes, and spontaneous abortions. The chapter concludes with remarks on the nonrandom participation of chromosomes in trisomy. 69 refs., 3 figs., 4 tabs.

  4. Constitutive parameter measurements of lossy materials

    NASA Technical Reports Server (NTRS)

    Dominek, A.; Park, A.

    1989-01-01

    The electrical constitutive parameters of lossy materials are considered. A discussion of the NRL arch for lossy coatings is presented involving analytical analyses of the reflected field using the geometrical theory of diffraction (GTD) and physical optics (PO). The actual values for these parameters can be obtained through a traditional transmission technique which is examined from an error analysis standpoint. Alternate sample geometries are suggested for this technique to reduce sample tolerance requirements for accurate parameter determination. The performance for one alternate geometry is given.

  5. Advances in the study of mechanical properties and constitutive law in the field of wood research

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Zhao, J. X.; Han, G. Z.

    2016-07-01

    This paper presents an overview of mechanical properties and constitutive law for wood. Current research on the mechanical properties of wood have mostly focused on density, grain, moisture, and other natural factors. It has been established that high density, dense grain, and high moisture lead to higher strength. In most literature, wood has been regarded as an anisotropic material because of its fiber. A microscopic view is used in research of wood today, in this way, which has allowed for clear observation of anisotropy. In general, wood has higher strength under a dynamic load, and no densification. The constitutive model is the basis of numerical analysis. An anisotropic model of porous and composite materials has been used for wood, but results were poor, and new constitutions have been introduced. According to the literature, there is no single theory that is widely accepted for the dynamic load. Research has shown that grain and moisture are key factors in wood strength, but there has not been enough study on dynamic loads so far. Hill law has been the most common method of simulation. Models that consider high strain rate are attracting more and more attention.

  6. Quantitative mass spectrometry of unconventional human biological matrices

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Ewelina P.; Urban, Pawel L.

    2016-10-01

    The development of sensitive and versatile mass spectrometric methodology has fuelled interest in the analysis of metabolites and drugs in unconventional biological specimens. Here, we discuss the analysis of eight human matrices-hair, nail, breath, saliva, tears, meibum, nasal mucus and skin excretions (including sweat)-by mass spectrometry (MS). The use of such specimens brings a number of advantages, the most important being non-invasive sampling, the limited risk of adulteration and the ability to obtain information that complements blood and urine tests. The most often studied matrices are hair, breath and saliva. This review primarily focuses on endogenous (e.g. potential biomarkers, hormones) and exogenous (e.g. drugs, environmental contaminants) small molecules. The majority of analytical methods used chromatographic separation prior to MS; however, such a hyphenated methodology greatly limits analytical throughput. On the other hand, the mass spectrometric methods that exclude chromatographic separation are fast but suffer from matrix interferences. To enable development of quantitative assays for unconventional matrices, it is desirable to standardize the protocols for the analysis of each specimen and create appropriate certified reference materials. Overcoming these challenges will make analysis of unconventional human biological matrices more common in a clinical setting. This article is part of the themed issue 'Quantitative mass spectrometry'.

  7. Technologies for detecting botulinum neurotoxins in biological and environmental matrices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomonitoring of food and environmental matrices is critical for the rapid and sensitive diagnosis, treatment, and prevention of diseases caused by toxins. The United States Centers for Disease Control and Prevention (CDC) has noted that toxins from bacteria, fungi, algae, and plants present an ongo...

  8. Controlled growth factor release from synthetic extracellular matrices

    NASA Astrophysics Data System (ADS)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  9. Advances in detection of antipsychotics in biological matrices.

    PubMed

    Patteet, Lisbeth; Cappelle, Delphine; Maudens, Kristof E; Crunelle, Cleo L; Sabbe, Bernard; Neels, Hugo

    2015-02-20

    Measuring antipsychotic concentrations in human matrices is important for both therapeutic drug monitoring and forensic toxicology. This review provides a critical overview of the analytical methods for detection and quantification of antipsychotics published in the last four years. Focus lies on advances in sample preparation, analytical techniques and alternative matrices. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is used most often for quantification of antipsychotics. This sensitive technique makes it possible to determine low concentrations not only in serum, plasma or whole blood, but also in alternative matrices like oral fluid, dried blood spots, hair, nails and other body tissues. Current literature on analytical techniques for alternative matrices is still limited and often requires a more thorough validation including a comparison between conventional and alternative results to determine their actual value. Ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) makes it possible to quantify a high amount of compounds within a shorter run time. This technique is widely used for multi-analyte methods. Only recently, high-resolution mass spectrometry has gained importance when a combination of screening of (un)known metabolites, and quantification is required.

  10. A Role for M-Matrices in Modelling Population Growth

    ERIC Educational Resources Information Center

    James, Glyn; Rumchev, Ventsi

    2006-01-01

    Adopting a discrete-time cohort-type model to represent the dynamics of a population, the problem of achieving a desired total size of the population under a balanced growth (contraction) and the problem of maintaining the desired size, once achieved, are studied. Properties of positive-time systems and M-matrices are used to develop the results,…

  11. Development of epoxy matrices for filament-wound graphite structures

    SciTech Connect

    Morgan, R.J.; Walkup, C.M.; Kong, F.M.; Mones, E.T.

    1984-11-27

    This paper reviews our program to develop epoxy matrix systems for filament-wound graphite structures. The criteria for this matrix development program requires that the epoxide and amine components are processible and non-toxic; and the corresponding matrix itself is tough, possesses a Tg > 120/sup 0/C and does not lose its mechanical-thermal properties upon exposure to service environment conditions. We report our data on processible, hindered amine cured-epoxide matrices such as menthane or 2,5 dimethyl 2,5 hexane diamine cured bis-phenol-A-diglycidyl ether (DGEBA) epoxide systems in the presence of viscosity-lowering diluents. To produce tough, processible matrices that do not deteriorate upon exposure to service environment conditions requires a knowledge of the network structure formed and how such structure may deteriorate under molecular flow associated with the shear-band toughening mechanisms. For amine-cured DGEBA matrices we report deterioration in the mechanical response and Tg after plastic flow has occurred in such glasses. Permanent chemical changes that occur during this flow induced degradation process were monitored by stress-Fourier transform infrared spectroscopy. The ability to eliminate the aging of tough, cross-linked composite matrices upon molecular flow is discussed in terms of networks with segments of equal extensibility. 15 references, 4 figures, 2 tables.

  12. A Note on the Drazin Indices of Square Matrices

    PubMed Central

    Yu, Lijun; Bu, Tianyi; Zhou, Jiang

    2014-01-01

    For a square matrix A, the smallest nonnegative integer k such that rank (Ak) = rank (Ak+1) is called the Drazin index of A. In this paper, we give some results on the Drazin indices of sum and product of square matrices. PMID:24683337

  13. Automorphisms of semigroups of invertible matrices with nonnegative integer elements

    SciTech Connect

    Semenov, Pavel P

    2012-09-30

    Let G{sub n}(Z) be the subsemigroup of GL{sub n}(Z) consisting of the matrices with nonnegative integer coefficients. In the paper, the automorphisms of this semigroup are described for n{>=}2. Bibliography: 5 titles.

  14. Current technologies for detection of ricin in different matrices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ricin is a convenient, potent, and available toxin for terrorist acts. The importance of detecting it in various matrices is obvious. This chapter reviews methods for ricin detection based on the mechanisms used for assay development. Five detection approaches are reviewed: 1. Antibody-based metho...

  15. Validating Alternative Modes of Scoring for Coloured Progressive Matrices.

    ERIC Educational Resources Information Center

    Razel, Micha; Eylon, Bat-Sheva

    Conventional scoring of the Coloured Progressive Matrices (CPM) was compared with three methods of multiple weight scoring. The methods include: (1) theoretical weighting in which the weights were based on a theory of cognitive processing; (2) judged weighting in which the weights were given by a group of nine adult expert judges; and (3)…

  16. Inverse of polynomial matrices in the irreducible form

    NASA Technical Reports Server (NTRS)

    Chang, Fan R.; Shieh, Leang S.; Mcinnis, Bayliss C.

    1987-01-01

    An algorithm is developed for finding the inverse of polynomial matrices in the irreducible form. The computational method involves the use of the left (right) matrix division method and the determination of linearly dependent vectors of the remainders. The obtained transfer function matrix has no nontrivial common factor between the elements of the numerator polynomial matrix and the denominator polynomial.

  17. Cluster Matrices for Health Occupations. Education for Employment Task Lists.

    ERIC Educational Resources Information Center

    Lathrop, Janice

    These cluster matrices provide duties and tasks that form the basis of instructional content for secondary, postsecondary, and adult training programs for health occupations. The eight clusters (and the job titles included in each cluster) are as follows: (1) dental assisting (dental assistant); (2) dental laboratory technology (dental laboratory…

  18. Dimensionality of Data Matrices with Applications to Gene Expression Profiles

    ERIC Educational Resources Information Center

    Feng, Xingdong

    2009-01-01

    Probe-level microarray data are usually stored in matrices. Take a given probe set (gene), for example, each row of the matrix corresponds to an array, and each column corresponds to a probe. Often, people summarize each array by the gene expression level. Is one number sufficient to summarize a whole probe set for a specific gene in an array?…

  19. Evaluation of Commercially Available Cyanide Test Kits against Various Matrices

    DTIC Science & Technology

    2016-08-01

    EVALUATION OF COMMERCIALLY AVAILABLE CYANIDE TEST KITS AGAINST VARIOUS MATRICES ECBC-TR-1382 Darren W. Hicklin...3. DATES COVERED (From - To) Mar 2015 – Sep 2015 4. TITLE AND SUBTITLE Evaluation of Commercially Available Cyanide Test Kits against Various...available cyanide -detection test kits or strips were selected for evaluation based upon a premarket survey: Quantofix test strips, Cyantesmo test paper

  20. Products of rectangular random matrices: singular values and progressive scattering.

    PubMed

    Akemann, Gernot; Ipsen, Jesper R; Kieburg, Mario

    2013-11-01

    We discuss the product of M rectangular random matrices with independent Gaussian entries, which have several applications, including wireless telecommunication and econophysics. For complex matrices an explicit expression for the joint probability density function is obtained using the Harish-Chandra-Itzykson-Zuber integration formula. Explicit expressions for all correlation functions and moments for finite matrix sizes are obtained using a two-matrix model and the method of biorthogonal polynomials. This generalizes the classical result for the so-called Wishart-Laguerre Gaussian unitary ensemble (or chiral unitary ensemble) at M=1, and previous results for the product of square matrices. The correlation functions are given by a determinantal point process, where the kernel can be expressed in terms of Meijer G-functions. We compare the results with numerical simulations and known results for the macroscopic level density in the limit of large matrices. The location of the end points of support for the latter are analyzed in detail for general M. Finally, we consider the so-called ergodic mutual information, which gives an upper bound for the spectral efficiency of a MIMO communication channel with multifold scattering.