Science.gov

Sample records for porous polymer coatings

  1. Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides.

    PubMed

    Lamprou, Alexandros; Wang, Hongxia; Saeed, Adeela; Svec, Frantisek; Britt, David; Maya, Fernando

    2015-07-14

    We describe a protocol for the preparation of hybrid materials based on highly porous coordination polymer coatings on the internal surface of macroporous polymer monoliths. The developed approach is based on the preparation of a macroporous polymer containing carboxylic acid functional groups and the subsequent step-by-step solution-based controlled growth of a layer of a porous coordination polymer on the surface of the pores of the polymer monolith. The prepared metal-organic polymer hybrid has a high specific micropore surface area. The amount of iron(III) sites is enhanced through metal-organic coordination on the surface of the pores of the functional polymer support. The increase of metal sites is related to the number of iterations of the coating process. The developed preparation scheme is easily adapted to a capillary column format. The functional porous polymer is prepared as a self-contained single-block porous monolith within the capillary, yielding a flow-through separation device with excellent flow permeability and modest back-pressure. The metal-organic polymer hybrid column showed excellent performance for the enrichment of phosphopeptides from digested proteins and their subsequent detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented experimental protocol is highly versatile, and can be easily implemented to different organic polymer supports and coatings with a plethora of porous coordination polymers and metal-organic frameworks for multiple purification and/or separation applications.

  2. Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides.

    PubMed

    Lamprou, Alexandros; Wang, Hongxia; Saeed, Adeela; Svec, Frantisek; Britt, David; Maya, Fernando

    2015-01-01

    We describe a protocol for the preparation of hybrid materials based on highly porous coordination polymer coatings on the internal surface of macroporous polymer monoliths. The developed approach is based on the preparation of a macroporous polymer containing carboxylic acid functional groups and the subsequent step-by-step solution-based controlled growth of a layer of a porous coordination polymer on the surface of the pores of the polymer monolith. The prepared metal-organic polymer hybrid has a high specific micropore surface area. The amount of iron(III) sites is enhanced through metal-organic coordination on the surface of the pores of the functional polymer support. The increase of metal sites is related to the number of iterations of the coating process. The developed preparation scheme is easily adapted to a capillary column format. The functional porous polymer is prepared as a self-contained single-block porous monolith within the capillary, yielding a flow-through separation device with excellent flow permeability and modest back-pressure. The metal-organic polymer hybrid column showed excellent performance for the enrichment of phosphopeptides from digested proteins and their subsequent detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented experimental protocol is highly versatile, and can be easily implemented to different organic polymer supports and coatings with a plethora of porous coordination polymers and metal-organic frameworks for multiple purification and/or separation applications. PMID:26273850

  3. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  4. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  5. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  6. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  7. 21 CFR 888.3565 - Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Knee joint patellofemorotibial metal/polymer... Devices § 888.3565 Knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint patellofemorotibial metal/polymer porous-coated uncemented prosthesis is a...

  8. Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers

    PubMed Central

    2012-01-01

    A significant enhancement of the photoluminescence (PL) efficiency is observed for aqueous suspensions of porous silicon nanoparticles (PSiNPs) coated by bioresorbable polymers, i.e., polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA). PSiNPs with average size about 100 nm prepared by mechanical grinding of electrochemically etched porous silicon were dispersed in water to prepare the stable suspension. The inner hydrophobic PLGA layer prevents the PSiNPs from the dissolution in water, while the outer PVA layer makes the PSiNPs hydrophilic. The PL quantum yield of PLGA/PVA-coated PSiNPs was found to increase by three times for 2 weeks of the storage in water. The observed effect is explained by taking into account both suppression of the dissolution of PSiNPs in water and a process of the passivation of nonradiative defects in PSiNPs. The obtained results are interesting in view of the potential applications of PSiNPs in bioimaging. PMID:22873790

  9. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors.

    PubMed

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-28

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl(2)) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.

  10. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors.

    PubMed

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-28

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl(2)) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer. PMID:26598964

  11. Porous palladium coated conducting polymer nanoparticles for ultrasensitive hydrogen sensors

    NASA Astrophysics Data System (ADS)

    Lee, Jun Seop; Kim, Sung Gun; Cho, Sunghun; Jang, Jyongsik

    2015-12-01

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm) and stability toward hydrogen gas at room temperature due to the palladium sensing layer.Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and in the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen leak detection and surveillance sensor systems are needed; additionally, the ability to maintain uniformity through repetitive hydrogen sensing is becoming increasingly important. In this report, we detail the fabrication of porous palladium coated conducting polymer (3-carboxylate polypyrrole) nanoparticles (Pd@CPPys) to detect hydrogen gas. The Pd@CPPys are produced by means of facile alkyl functionalization and chemical reduction of a pristine 3-carboxylate polypyrrole nanoparticle-contained palladium precursor (PdCl2) solution. The resulting Pd@CPPy-based sensor electrode exhibits ultrahigh sensitivity (0.1 ppm

  12. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .../polymer porous-coated uncemented prosthesis. 888.3535 Section 888.3535 Food and Drugs FOOD AND DRUG... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  13. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a...

  14. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a...

  15. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a...

  16. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a...

  17. 21 CFR 888.3358 - Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Hip joint metal/polymer/metal semi-constrained... Devices § 888.3358 Hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis. (a) Identification. A hip joint metal/polymer/metal semi-constrained porous-coated uncemented prosthesis is a...

  18. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .../polymer porous-coated uncemented prosthesis. 888.3535 Section 888.3535 Food and Drugs FOOD AND DRUG... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  19. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .../polymer porous-coated uncemented prosthesis. 888.3535 Section 888.3535 Food and Drugs FOOD AND DRUG... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer...

  20. 21 CFR 888.3670 - Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Shoulder joint metal/polymer/metal nonconstrained... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3670 Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented prosthesis. (a) Identification. A shoulder joint...

  1. 21 CFR 888.3670 - Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Shoulder joint metal/polymer/metal nonconstrained... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3670 Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented prosthesis. (a) Identification. A shoulder joint...

  2. 21 CFR 888.3670 - Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/polymer/metal nonconstrained... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3670 Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented prosthesis. (a) Identification. A shoulder joint...

  3. Continuous synthesis of polymer-coated drug particles by porous hollow fiber membrane-based antisolvent crystallization.

    PubMed

    Chen, Dengyue; Singh, Dhananjay; Sirkar, Kamalesh K; Pfeffer, Robert

    2015-01-01

    Using porous hollow fiber membranes, this study illustrates a novel technique to continuously synthesize polymer-coated drug crystals by antisolvent crystallization. The synthesized polymer-coated drug crystals involve crystals of the drug Griseofulvin (GF) coated by a thin layer of the polymer Eudragit RL100. The process feed, an acetone solution of the drug GF containing the dissolved polymer, was passed through the shell side of a membrane module containing many porous hollow fibers of Nylon-6. Through the lumen of the hollow fibers, the antisolvent water was passed at a higher pressure to inject water jets through every pore in the fiber wall into the shell-side acetone feed solution, creating an extremely high level of supersaturation and immediate crystallization. It appears that the GF crystals are formed first and serve as nuclei for the precipitation of the polymer Eudragit, which forms a thin coating around the GF crystals. The polymer-coated drug crystals were collected by a filtration device at the shell-side outlet of the membrane module, and the surface morphology, particle size distribution, and the polymer coating thickness were then characterized by scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), laser diffraction spectroscopy (LDS), and thermogravimetric analysis (TGA). To study the properties of the coated drug crystals, X-ray diffraction (XRD), Raman spectroscopy, and dissolution tests were implemented. These results indicate that a polymer-coated, free-flowing product was successfully developed under appropriate conditions in this novel porous hollow fiber antisolvent crystallization (PHFAC) method. The coated drug particles can be potentially used for controlled release. The molecular and the crystal structures of GF were not affected by the PHFAC method, which may be easily scaled up.

  4. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... across-the-joint. This generic type of device is designed to achieve biological fixation to bone without... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated...

  5. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... across-the-joint. This generic type of device is designed to achieve biological fixation to bone without... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated...

  6. Correlation to Predict Collision Efficiency of Natural Organic Matter (NOM)- and Polymer- coated Nanoparticles in Porous Media

    NASA Astrophysics Data System (ADS)

    Lowry, G. V.; Phenrat, T.; Cisneros, C. M.; Schoenfelder, D. P.; Fagerlund, F.; Kim, H.; Illangasekare, T.; Tilton, R. D.

    2008-12-01

    The fate of manufactured nanoparticles released to the environment is of great interest due to their increasing use in consumer products and their potential risk to the environment and human health. Manufactured nanomaterials typically have a polymeric surface coating to provide specific functionality, or will adsorb natural organic matter (NOM) once released into the environment. Adsorbed polymer and NOM can provide electrosteic repulsions that enhance the migration of nanoparticles in porous media. Semi-empirical correlations to predict the collision efficiency of electrostatically stabilized (uncoated) colloids are available, however, they are not applicable to nanomaterials coated with polymeric or NOM layers. We present a semi- empirical correlation to predict the collision efficiency of NOM and polymer-coated nanomaterials in saturated porous media. The adsorbed mass and adsorbed layer properties (including thickness) are determined and particle breakthrough curves are generated for a number of particle and coating types. Regression analysis is then used to develop a semi-empirical correlation that includes a parameter (NLEK) representing electrosteric repulsions afforded by adsorbed NOM or polymer. The correlation appears robust over a range of four particle and four coating types and should be a valuable tool for predicting the relative mobility of different manufactured and natural nanomaterials based on a few measurable properties.

  7. Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media.

    PubMed

    Yang, Xinyao; Lin, Shihong; Wiesner, Mark R

    2014-01-15

    Interactions between organic matter (OM) and engineered polymer coatings as they affect the retention of polyvinylpyrrolidone (PVP) polymer-coated silver nanoparticles (AgNPs) were studied. Two distinct types of OM-cysteine representing low molecular weight multivalent functional groups, and Suwannee River Humic Acid (HA) representing high molecular weight polymers, were investigated with respect to their effects on particle stability in aggregation and deposition. Aggregation of the PVP coated AgNPs (PVP-AgNPs) was enhanced by cysteine addition at high ionic strengths, which was attributed to cysteine binding to the AgNPs and replacing the otherwise steric stabilizing agent PVP. In contrast the addition of HA did not increase aggregation rates and decreased PVP-AgNP deposition to the silica porous medium, consistent with enhanced electrosteric stabilization by the HA. Although cysteine also reduced deposition in the porous medium, the mechanisms of reduced deposition appear to be enhanced electric double layer (EDL) interaction at low ionic strengths. At higher ionic strengths, aggregation was favored leading to lower deposition due to smaller diffusion coefficients and single collector efficiencies despite the reduced EDL interactions. PMID:24295767

  8. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  9. Porous polymer media

    DOEpatents

    Shepodd, Timothy J.

    2002-01-01

    Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.

  10. Antibacterial polymer coatings.

    SciTech Connect

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  11. Optical ammonia gas sensor based on a porous silicon rugate filter coated with polymer-supported dye.

    PubMed

    Shang, Yunling; Wang, Xiaobo; Xu, Erchao; Tong, Changlun; Wu, Jianmin

    2011-01-24

    An ammonia gas sensor chip was prepared by coating an electrochemically-etched porous Si rugate filter with a chitosan film that is crosslinked by glycidoxypropyltrimethoxysilane (GPTMS). The bromothylmol blue (BTB), a pH indicator, was loaded in the film as ammonia-sensing molecules. White light reflected from the porous Si has a narrow bandwidth spectrum with a peak at 610 nm. Monitoring reflective optical intensity at the peak position allows for direct, real-time observation of changes in the concentration of ammonia gas in air samples. The reflective optical intensity decreased linearly with increasing concentrations of ammonia gas over the range of 0-100 ppm. The lowest detection limit was 0.5 ppm for ammonia gas. At optimum conditions, the full response time of the ammonia gas sensor was less than 15s. The sensor chip also exhibited a good long-term stability over 1 year. Therefore, the simple sensor design has potential application in miniaturized optical measurement for online ammonia gas detection.

  12. Antithrombogenic Polymer Coating.

    DOEpatents

    Huang, Zhi Heng; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2003-01-21

    An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

  13. Thermal Spray Formation of Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Coquill, Scott; Galbraith, Stephen L.; Tuss. Darren L.; Ivosevic, Milan

    2008-01-01

    This innovation forms a sprayable polymer film using powdered precursor materials and an in-process heating method. This device directly applies a powdered polymer onto a substrate to form an adherent, mechanically-sound, and thickness-regulated film. The process can be used to lay down both fully dense and porous, e.g., foam, coatings. This system is field-deployable and includes power distribution, heater controls, polymer constituent material bins, flow controls, material transportation functions, and a thermal spray apparatus. The only thing required for operation in the field is a power source. Because this method does not require solvents, it does not release the toxic, volatile organic compounds of previous methods. Also, the sprayed polymer material is not degraded because this method does not use hot combustion gas or hot plasma gas. This keeps the polymer from becoming rough, porous, or poorly bonded.

  14. Porous silicon and porous polymer substrates for optical chemical sensors

    NASA Astrophysics Data System (ADS)

    Hajj-Hassan, Mohamad; Kim, Sung-Jin; Cheung, Maurice C.; Yao, Lei; Chodavarapu, Vamsy; Cartwright, Alexander

    2010-07-01

    Mesoporous materials, such as porous silicon and porous polymer gratings (Bragg structures), offer an attractive platform for the encapsulation of chemical and biological recognition elements. These materials include the advantages of high surface to volume ratio, biocompatibility, functionality with various recognition elements, and the ability to modify the material surface/volume properties and porosity. Two porous structures were used for chemical and biological sensing: porous silicon and porous polymer photonic bandgap structures. Specifically, a new dry etching manufacturing technique employing xenon difluoride (XeF2) based etching was used to produce porous silicon Porous silicon continues to be extensively researched for various optical and electronic devices and applications in chemical and biological sensing are abundant. The dry etching technique to manufacture porous silicon offers a simple and efficient alternative to the traditional wet electrochemical etching using hydrofluoric acid. This new porous silicon material was characterized for its pore size and morphology using top and cross-sectional views from scanning electron microscopy. Its optical properties were determined by angular dependence of reflectance measurements. A new class of holographically ordered porous polymer gratings that are an extension of holographic polymer dispersed liquid crystal (H-PDLC) structures. As an alternative structure and fabrication process, porous polymer gratings that include a volatile solvent as the phase separation fluid was fabricated. Porous silicon and porous polymer materials were used as substrates to encapsulate gaseous oxygen (O2) responsive luminophores in their nanostructured pores. These substrate materials behave as optical interference filters that allow efficient and selective detection of the wavelengths of interest in optical sensors.

  15. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.

    PubMed

    Phenrat, Tanapon; Cihan, Abdullah; Kim, Hye-Jin; Mital, Menka; Illangasekare, Tissa; Lowry, Gregory V

    2010-12-01

    Concentrated suspensions of polymer-modified Fe(0) nanoparticles (NZVI) are injected into heterogeneous porous media for groundwater remediation. This study evaluated the effect of porous media heterogeneity and the dispersion properties including particle concentration, Fe(0) content, and adsorbed polymer mass and layer thickness which are expected to affect the delivery and emplacement of NZVI in heterogeneous porous media in a two-dimensional (2-D) cell. Heterogeneity in hydraulic conductivity had a significant impact on the deposition of NZVI. Polymer modified NZVI followed preferential flow paths and deposited in the regions where fluid shear is insufficient to prevent NZVI agglomeration and deposition. NZVI transported in heterogeneous porous media better at low particle concentration (0.3 g/L) than at high particle concentrations (3 and 6 g/L) due to greater particle agglomeration at high concentration. High Fe(0) content decreased transport during injection due to agglomeration promoted by magnetic attraction. NZVI with a flat adsorbed polymeric layer (thickness ∼30 nm) could not be transported effectively due to pore clogging and deposition near the inlet, while NZVI with a more extended adsorbed layer thickness (i.e., ∼70 nm) were mobile in porous media. This study indicates the importance of characterizing porous media heterogeneity and NZVI dispersion properties as part of the design of a robust delivery strategy for NZVI in the subsurface. PMID:21058703

  16. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.

    PubMed

    Phenrat, Tanapon; Cihan, Abdullah; Kim, Hye-Jin; Mital, Menka; Illangasekare, Tissa; Lowry, Gregory V

    2010-12-01

    Concentrated suspensions of polymer-modified Fe(0) nanoparticles (NZVI) are injected into heterogeneous porous media for groundwater remediation. This study evaluated the effect of porous media heterogeneity and the dispersion properties including particle concentration, Fe(0) content, and adsorbed polymer mass and layer thickness which are expected to affect the delivery and emplacement of NZVI in heterogeneous porous media in a two-dimensional (2-D) cell. Heterogeneity in hydraulic conductivity had a significant impact on the deposition of NZVI. Polymer modified NZVI followed preferential flow paths and deposited in the regions where fluid shear is insufficient to prevent NZVI agglomeration and deposition. NZVI transported in heterogeneous porous media better at low particle concentration (0.3 g/L) than at high particle concentrations (3 and 6 g/L) due to greater particle agglomeration at high concentration. High Fe(0) content decreased transport during injection due to agglomeration promoted by magnetic attraction. NZVI with a flat adsorbed polymeric layer (thickness ∼30 nm) could not be transported effectively due to pore clogging and deposition near the inlet, while NZVI with a more extended adsorbed layer thickness (i.e., ∼70 nm) were mobile in porous media. This study indicates the importance of characterizing porous media heterogeneity and NZVI dispersion properties as part of the design of a robust delivery strategy for NZVI in the subsurface.

  17. 21 CFR 888.3670 - Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... articulating ultra-high molecular weight bearing surface fixed in a metal shell made of alloys such as Co-Cr-Mo... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Shoulder joint metal/polymer/metal nonconstrained... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3670 Shoulder joint metal/polymer/metal nonconstrained or...

  18. 21 CFR 888.3670 - Shoulder joint metal/polymer/metal nonconstrained or semi-constrained porous-coated uncemented...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... articulating ultra-high molecular weight bearing surface fixed in a metal shell made of alloys such as Co-Cr-Mo... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Shoulder joint metal/polymer/metal nonconstrained... ORTHOPEDIC DEVICES Prosthetic Devices § 888.3670 Shoulder joint metal/polymer/metal nonconstrained or...

  19. Thiazolothiazole-linked porous organic polymers

    SciTech Connect

    Zhu, Xiang; Tian, Chengcheng; Jin, Tian; Wang, Jitong; Mahurin, Shannon Mark; Mei, Wenwen; Xiong, Yan; Hu, Jun; Feng, Xinliang; Liu, Honglai; Dai, Sheng

    2014-10-07

    In this study, thiazolothiazole-linked porous organic polymers have been synthesized from a facile catalyst-free condensation reaction between aldehydes and dithiooxamide under solvothermal conditions. The resultant porous frameworks exhibit a highly selective uptake of CO2 over N2 under ambient conditions.

  20. Thiazolothiazole-linked porous organic polymers

    DOE PAGESBeta

    Zhu, Xiang; Tian, Chengcheng; Jin, Tian; Wang, Jitong; Mahurin, Shannon Mark; Mei, Wenwen; Xiong, Yan; Hu, Jun; Feng, Xinliang; Liu, Honglai; et al

    2014-10-07

    In this study, thiazolothiazole-linked porous organic polymers have been synthesized from a facile catalyst-free condensation reaction between aldehydes and dithiooxamide under solvothermal conditions. The resultant porous frameworks exhibit a highly selective uptake of CO2 over N2 under ambient conditions.

  1. Adsorption Kinetics in Nanoscale Porous Coordination Polymers

    SciTech Connect

    Nune, Satish K.; Thallapally, Praveen K.; McGrail, Benard Peter; Annapureddy, Harsha V. R.; Dang, Liem X.; Mei, Donghai; Karri, Naveen; Alvine, Kyle J.; Olszta, Matthew J.; Arey, Bruce W.; Dohnalkova, Alice

    2015-10-07

    Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.

  2. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  3. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  4. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  5. Microfluidic devices and methods including porous polymer monoliths

    DOEpatents

    Hatch, Anson V; Sommer, Gregory J; Singh, Anup K; Wang, Ying-Chih; Abhyankar, Vinay V

    2014-04-22

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  6. Microfluidic devices and methods including porous polymer monoliths

    SciTech Connect

    Hatch, Anson V.; Sommer, Gregory j.; Singh, Anup K.; Wang, Ying-Chih; Abhyankar, Vinay

    2015-12-01

    Microfluidic devices and methods including porous polymer monoliths are described. Polymerization techniques may be used to generate porous polymer monoliths having pores defined by a liquid component of a fluid mixture. The fluid mixture may contain iniferters and the resulting porous polymer monolith may include surfaces terminated with iniferter species. Capture molecules may then be grafted to the monolith pores.

  7. Conformal coating using parylene polymers.

    PubMed

    Noordegraaf, J

    1997-01-01

    Parylene, a conformal polymer film, is being used increasingly in Europe to provide environmental and dielectric isolation. Application areas include electronic circuitry, sensors, and medical substrates. This article describes the variants of parylene and their characteristics, together with the process and applications of parylene coating. PMID:10167681

  8. Thin film-coated polymer webs

    DOEpatents

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  9. A Novel Method to Make Breath Figure Patterns by Spin Coating under Dry Environment: One-step Preparation of Porous Polymer Films

    NASA Astrophysics Data System (ADS)

    Park, Min Soo; Kim, Jin Kon

    2004-03-01

    We introduce a novel method for fabricating breath figure patterns on a homopolymer film by spin coating of polymer solutions with various solvents. The homopolymers employed in this study were cellulose acetate butyrate (CAB), mono-carboxylated end-functional polystyrene (PS-mCOOH) and poly(methyl methacrylate) (PMMA). Breath figure patterns were generated even when a water-miscible solvent such as tetrahydrofuran (THF) was used as a solvent. We even succeeded in generating breath figure patterns by spin coating even under a dry environment (relative humidity less than 30 With the combination of the spin coating method, pores with few hundreds nanometers to several micrometers have been generated. We found that the pore size becomes larger with increasing water content in THF solution and decreasing rotating speed. This is equivalent to increasing humidity and decreasing evaporation speed, respectively, in the conventional method, direct solvent evaporation under a humid environment. Thus, compared with the conventional method for making breath figure patterns, this method would be very convenient for fabricating large-scale films with various pore sizes.

  10. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  11. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  12. Porous Polyolefin Films via Polymer Blends

    NASA Astrophysics Data System (ADS)

    Macosko, Chris

    Porous polymer films have broad application including battery separators, membrane supports and filters. Polyolefins are attractive for these applications because of their solvent resistance, low electrical and thermal conductivity, easy fabrication and cost. We will describe fabrication of porous films using cocontinuous blends of a polyolefin with another polymer which can be readily removed with a solvent. Methods to image and control the cocontinuous morphology will be presented.Bell, J. R., K. Chang, C. R. Lopez-Barron, C. W. Macosko, and D. C. Morse, ''Annealing of cocontinuous polymer blends: effect of block copolymer molecular weight and architecture,'' Macromolecules 43, 5024-5032 (2010).Lopez-Barron, C. R., and C. W. Macosko, ''Direct measurement of interface anisotropy of bicontinuous structures via 3D image analysis,'' Langmuir 26, 14284-14293 (2010).Trifkovic, M., A. T. Hedegaard, K. Huston, M. Sheikhzadeh, and C. W. Macosko, ''Porous films via PE/PEO cocontinuous blends,'' Macromolecules 45, 6036-6044 (2012).Hedegaard, A.T., L.L. Gu and C. W. Macosko, ``Effect of Extensional Viscosity on Cocontinuity of Immiscible Polymer Blends'' J. Rheol. 59, 1397-1417 (2015).

  13. Production of porous coating on a prosthesis

    DOEpatents

    Sump, Kenneth R.

    1987-01-01

    Preselected surface areas of a prosthesis are covered by a blend of matching primary metallic particles and expendable particles. The particles are compressed and heated to assure that deformation and metallurgical bonding occurs between them and between the primary particles and the surface boundaries of the prosthesis. Porosity is achieved by removal of the expendable material. The result is a coating including discrete bonded particles separated by a network of interconnected voids presenting a homogeneous porous coating about the substrate. It has strength suitable for bone implant usage without intermediate adhesives, and adequate porosity to promote subsequent bone ingrowth.

  14. Distributed Pore Chemistry in Porous Organic Polymers

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1998-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The sub-strate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic region, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  15. Distributed Pore Chemistry in Porous Organic Polymers

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1999-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge. wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions. and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  16. Coating of fertilizers by degradable polymers.

    PubMed

    Devassine, M; Henry, F; Guerin, P; Briand, X

    2002-08-21

    The conventional agriculture leads to some important pollution of ground water (particularly, by nitrates). The solution is the coating of fertilizers by degradable polymers. In this work, we have studied the water vapour and liquid diffusion through polymer films detached from their support. Therefore, we may classify polymers as a function of their properties like water vapour and liquid barrier. We may choose the best polymer(s) for coating.coated fertilizers by chosen polymer(s) with mechanical techniques such as fluidised bed and pan coating. Moreover, the electron microscopy used to see the quality of the wall has showed the presence of pores due to the rapid evaporation of solvent. A drying in air current and an annealing could be done to avoid this problem.followed the ions release of fertilizers immersed in distilled water by conductimetry. The more interesting result was obtained with fertilizers coated by polylactic acid. In effect, the total release reached three weeks.

  17. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  18. Influence of residual polymer on nanoparticle deposition in porous media.

    PubMed

    Wang, Yonggang; Becker, Matthew D; Colvin, Vicki L; Abriola, Linda M; Pennell, Kurt D

    2014-09-16

    Although surface coatings and free polymers are known to affect the mobility of nanoparticles in water-saturated porous media, the influence of these compounds on nanoparticle deposition behavior has received limited attention. A series of column experiments was conducted to evaluate the transport and retention of quantum dots (QDs) coated with a synthetic polymer, polyacrylic acid-octylamine (PAA-OA). Initial column studies, conducted with three size fractions of Ottawa sand, resulted in unusual solid-phase retention profiles, characterized by low QD deposition near the column inlet and increasing solid-phase concentrations along the column until a plateau or limiting capacity was reached near the column midpoint. Mathematical modeling studies indicated that the observed retention behavior could not be reproduced using one-dimensional simulators based on either clean-bed filtration theory or a modified filtration theory (MFT) model that incorporated a maximum retention capacity. Additional column studies demonstrated that changes in the inlet end plate configuration designed to ensure uniform flow did not alter the observed effluent breakthrough curves (BTCs) or shape of the retention profile. Subsequent QD transport experiments, pretreated by flushing with a pulse of PAA-OA solution, resulted in almost complete QD breakthrough with minimal retention. It is postulated that free polymer was preferentially adsorbed onto the solid surface near the column inlet, thereby preventing QD attachment, whereas in the down-gradient portion of the column, QDs attached to the solid phase without competition from the polymer. These findings reveal the importance of accounting for the influence of coconstituents on nanoparticle deposition and demonstrate the need to simulate both transport and retention data when assessing nanoparticle mobility in porous media.

  19. Polymer-Coated Graphene Aerogel Beads and Supercapacitor Application.

    PubMed

    Ouyang, An; Cao, Anyuan; Hu, Song; Li, Yanhui; Xu, Ruiqiao; Wei, Jinquan; Zhu, Hongwei; Wu, Dehai

    2016-05-01

    Graphene aerogels are highly porous materials with many energy and environmental applications; tailoring the structure and composition of pore walls within the aerogel is the key to those applications. Here, by freeze casting the graphene oxide sheets, we directly fabricated freestanding porous graphene beads containing radially oriented through channels from the sphere center to its surface. Furthermore, we introduced pseudopolymer to make reinforced, functional composite beads with a unique pore morphology. We showed that polymer layers can be coated smoothly on both sides of the pore walls, as well as on the junctions between adjacent pores, resulting in uniform polymer-graphene-polymer sandwiched structures (skeletons) throughout the bead. These composite beads significantly improved the electrochemical properties, with specific capacitances up to 669 F/g and good cyclic stability. Our results indicate that controlled fabrication of homogeneous hierarchical structures is a potential route toward high performance composite electrodes for various energy applications. PMID:27058391

  20. Polymer-Coated Graphene Aerogel Beads and Supercapacitor Application.

    PubMed

    Ouyang, An; Cao, Anyuan; Hu, Song; Li, Yanhui; Xu, Ruiqiao; Wei, Jinquan; Zhu, Hongwei; Wu, Dehai

    2016-05-01

    Graphene aerogels are highly porous materials with many energy and environmental applications; tailoring the structure and composition of pore walls within the aerogel is the key to those applications. Here, by freeze casting the graphene oxide sheets, we directly fabricated freestanding porous graphene beads containing radially oriented through channels from the sphere center to its surface. Furthermore, we introduced pseudopolymer to make reinforced, functional composite beads with a unique pore morphology. We showed that polymer layers can be coated smoothly on both sides of the pore walls, as well as on the junctions between adjacent pores, resulting in uniform polymer-graphene-polymer sandwiched structures (skeletons) throughout the bead. These composite beads significantly improved the electrochemical properties, with specific capacitances up to 669 F/g and good cyclic stability. Our results indicate that controlled fabrication of homogeneous hierarchical structures is a potential route toward high performance composite electrodes for various energy applications.

  1. Spray forming polymer membranes, coatings and films

    DOEpatents

    McHugh, Kevin M.; Watson, Lloyd D.; McAtee, Richard E.; Ploger, Scott A.

    1993-01-01

    A method of forming a polymer film having controlled physical and chemical characteristics, wherein a plume of nebulized droplets of a polymer or polymer precursor is directed toward a substrate from a converging/diverging nozzle having a throat at which the polymer or a precursor thereof is introduced and an exit from which the nebulized droplets of the polymer or precursor thereof leave entrained in a carrier gas. Relative movement between the nozzle and the substrate is provided to form a polymer film. Physical and chemical characteristics can be controlled by varying the deposition parameters and the gas and liquid chemistries. Semipermeable membranes of polyphosphazene films are disclosed, as are a variety of other polymer systems, both porous and non-porous.

  2. Spray forming polymer membranes, coatings and films

    DOEpatents

    McHugh, K.M.; Watson, L.D.; McAtee, R.E.; Ploger, S.A.

    1993-10-12

    A method is described for forming a polymer film having controlled physical and chemical characteristics, wherein a plume of nebulized droplets of a polymer or polymer precursor is directed toward a substrate from a converging/diverging nozzle having a throat at which the polymer or a precursor thereof is introduced and an exit from which the nebulized droplets of the polymer or precursor thereof leave entrained in a carrier gas. Relative movement between the nozzle and the substrate is provided to form a polymer film. Physical and chemical characteristics can be controlled by varying the deposition parameters and the gas and liquid chemistries. Semipermeable membranes of polyphosphazene films are disclosed, as are a variety of other polymer systems, both porous and non-porous. 4 figures.

  3. Spray-Deposited Superconductor/Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  4. Inorganic nanoparticles in porous coordination polymers.

    PubMed

    Kim, Cho Rong; Uemura, Takashi; Kitagawa, Susumu

    2016-07-21

    Porous coordination polymers (PCPs) have been recently highlighted because of their high synthetic designability in structure and functions. Because of their ordered nanoporous structures with a large surface area and tunable pore surface functionality, PCPs have emerged as a significant class of nanoporous materials with potential applications in gas storage, separation, catalysis, and chemical sensing. Recent research has shown the utility of PCPs as host materials for the confinement of nanoparticles of inorganic polymers (IPs), such as metals, metal oxides, and metal chalcogenides. The fabrication of IP nanoparticles in PCPs (PCP⊃IP) has been studied for manifesting specific nanosized-dependent properties and host-guest synergistic functions. In this review, we describe the recent progress in the accommodation of IPs in the nanochannels of PCPs and the remarkable functions of the composite materials. PMID:27051891

  5. Electrocatalysts using porous polymers and method of preparation

    DOEpatents

    Liu, Di-Jia; Yuan, Shengwen; Goenaga, Gabriel A.

    2016-08-02

    A method of producing an electrocatalyst article using porous polymers. The method creates a porous polymer designed to receive transition metal groups disposed at ligation sites and activating the transition metals to form an electrocatalyst which can be used in a fuel cell. Electrocatalysts prepared by this method are also provided. A fuel cell which includes the electrocatalyst is also provided.

  6. Organosiloxane-grafted natural polymer coatings

    DOEpatents

    Sugama, Toshifumi

    1998-01-01

    A new family of polysaccharide graft polymers are provided as corrosion resistant coatings having antimicrobial properties which are useful on light metals such as aluminum, magnesium, zinc, steel and their alloys. Methods of making the polysaccharide graft polymers are also included. The methods of making the polysaccharide graft polymers involve reacting a polysaccharide source with an antimicrobial agent under conditions of hydrolysis-condensation.

  7. Porous coatings for hypersonic laminar flow control

    NASA Astrophysics Data System (ADS)

    Inkman, Matthew; Bres, Guillaume; Colonius, Tim; Fedorov, Alexander

    2010-11-01

    We present the results of linear and nonlinear simulations of hypersonic boundary layers over ultrasonic absorptive coatings consisting of uniform arrays of rectangular pores. Through direct numerical simulation of the two-dimensional Navier-Stokes equations, we explore the effects of coatings of various porosities and pore aspect ratios on the growth rate of the second mode instability. The performance of deep pores operating in the attenuative regime, in which acoustic waves are attenuated by viscous effects within the pores, is contrasted with more shallow pores operating in the cancellation/reinforcement regime. The results of linear simulations in many cases match the results of linear stability theory and confirm the ability of such coatings to stabilize the second mode. At certain conditions such as high porosity and large acoustic Reynolds numbers, the porous layer leads to instability of slow waves, introducing a new instability due to coupled resonant forcing of the cavity array. We confirm the observed instability arises in the linear stability theory, and suggest constraints on cavity size and spacing. Finally, nonlinear simulations of the same geometries confirm the results of our linear analysis; in particular, we did not observe and "tripping" of the boundary layer due to small scale disturbances associated with individual pores.

  8. Polymer-coated vesicles: development and characterization.

    PubMed

    Venkatesan, N; Vyas, S P

    1998-01-01

    Unilamellar polyacrylonitrile-coated niosomes were prepared using an interfacial pH induced polymerization technique. Polymer coated niosomes were then compared with plain niosomes for their physical characteristics, i.e., shape, size, lamellarity, and release profile. It was observed that polymer-coated niosomes could maintain their shape and size under osmotic stresses. The trapping efficiency of the polymer-coated system was slightly higher when compared to plain niosomes, and the release rate was slower. However, the release rate was also found to be anomolous and followed near zero-order kinetics. The effect of osmotic stress on the release rate was also investigated. It was observed that the polymer-coated vesicles did not show any significant change in release rate profile under osmotic variations. PMID:19569992

  9. Porous Ceramic Coating for Transpiration Cooling of Gas Turbine Blade

    NASA Astrophysics Data System (ADS)

    Arai, M.; Suidzu, T.

    2013-06-01

    A transpiration cooling system for gas turbine applications has significant benefit for reducing the amount of cooling air and increasing cooling efficiency. In this paper, the porous ceramic coating, which can infiltrate cooling gas, is developed with plasma spraying process, and the properties of the porous coating material such as permeability of cooling gas, thermal conductivity, and adhesion strength are examined. The mixture of 8 wt.% yttria-stabilized zirconia and polyester powders was employed as the coating material, in order to deposit the porous ceramic coating onto Ni-based super alloy substrate. It was shown that the porous ceramic coating has superior permeability for cooling gas. The adhesion strength of the porous coating was low only 20% compared with the thermal barrier coating utilized in current gas turbine blades. Simulation test of hot gas flow around the gas turbine blade verified remarkable reduction of the coating surface temperature by the transpiration cooling mechanism. It was concluded that the transpiration cooling system for the gas turbine could be achieved using the porous ceramic coating developed in this study.

  10. Porous alumina based ordered nanocomposite coating for wear resistance

    NASA Astrophysics Data System (ADS)

    Yadav, Arti; Muthukumar, M.; Bobji, M. S.

    2016-08-01

    Uniformly dispersed nanocomposite coating of aligned metallic nanowires in a matrix of amorphous alumina is fabricated by pulsed electrodeposition of copper into the pores of porous anodic alumina. Uniform deposition is obtained by controlling the geometry of the dendritic structure at the bottom of pores through stepwise voltage reduction followed by mild etching. The tribological behaviour of this nanocomposite coating is evaluated using a ball on flat reciprocating tribometer under the dry contact conditions. The nanocomposite coating has higher wear resistance compared to corresponding porous alumina coating. Wear resistant nanocomposite coating has wide applications especially in protecting the internal surfaces of aluminium internal combustion engines.

  11. The flow around circular cylinders partially coated with porous media

    NASA Astrophysics Data System (ADS)

    Ruck, Bodo; Klausmann, Katharina; Wacker, Tobias

    2012-05-01

    There are indications that the flow resistance of bodies can be reduced by a porous coating or porous sheath. A few numerical investigations exists in this field, however, experimental evidence is lacking. In order to investigate this phenomenon, the drag resistance of cylinders with porous coating has been investigated qualitatively and quantitatively in wind tunnel experiments. The Reynolds number was systematically varied in the range from 104 to 1.3*105. The results show that the boundary layer over the porous surface is turbulent right from the beginning and thickens faster because of the possible vertical momentum exchange at the interface. The region of flow detachment is widened resulting in a broader area with almost vanishing low flow velocities. All in all, the measurements show that a full porous coating of the cylinders increase the flow resistance. However, the measurements show that a partial coating only on the leeward side can decrease the flow resistance of the body. This effect seems due to the fact that the recirculating velocity and the underpressure in the wake is reduced significantly through a leeward porous coating. Thus, combining a smooth non-permeable windward side with a porous-coated leeward side can lead to a reduction of the body's flow resistance. These findings can be applied advantageously in many technical areas, such as energy saving of moving bodies (cars/trains/planes) or in reducing fluid loads on submersed bodies.

  12. Photoinitiated grafting of porous polymer monoliths and thermoplastic polymers for microfluidic devices

    DOEpatents

    Frechet, Jean M. J.; Svec, Frantisek; Rohr, Thomas

    2008-10-07

    A microfluidic device preferably made of a thermoplastic polymer that includes a channel or a multiplicity of channels whose surfaces are modified by photografting. The device further includes a porous polymer monolith prepared via UV initiated polymerization within the channel, and functionalization of the pore surface of the monolith using photografting. Processes for making such surface modifications of thermoplastic polymers and porous polymer monoliths are set forth.

  13. Aqueous vinylidene fluoride polymer coating composition

    NASA Technical Reports Server (NTRS)

    Bartoszek, Edward J. (Inventor); Christofas, Alkis (Inventor)

    1978-01-01

    A water-based coating composition which may be air dried to form durable, fire resistant coatings includes dispersed vinylidene fluoride polymer particles, emulsified liquid epoxy resin and a dissolved emulsifying agent for said epoxy resin which agent is also capable of rapidly curing the epoxy resin upon removal of the water from the composition.

  14. Organosiloxane-grafted natural polymer coatings

    DOEpatents

    Sugama, Toshifumi

    1998-12-01

    A new family of polysaccharide graft polymers are provided as corrosion resistant coatings having antimicrobial properties which are useful on light metals such as aluminum, magnesium, zinc, steel and their alloys. Methods of making the polysaccharide graft polymers are also included. The methods of making the polysaccharide graft polymers involve reacting a polysaccharide source with an antimicrobial agent under conditions of hydrolysis-condensation. 17 figs.

  15. Thin film fabricated from solution-dispersible porous hyperbranched conjugated polymer nanoparticles without surfactants

    NASA Astrophysics Data System (ADS)

    Wu, Xiaofu; Li, Haibo; Xu, Yuxiang; Xu, Bowei; Tong, Hui; Wang, Lixiang

    2014-01-01

    Porous hyperbranched conjugated polymer nanoparticles with an average particle size of 20-60 nm and a specific surface area of 225 m2 g-1 have been prepared through Suzuki polymerization in a miniemulsion, which could be stably dispersed in common organic solvents after complete removal of surfactants. Furthermore, a simple spin-coating method for the preparation of homogeneous transparent thin films of the nanoparticle has been developed. Bright blue emission of the porous nanoparticle films could be reversibly quenched by nitroaromatics with enhanced sensitivity compared to dense films of the linear conjugated polymer analogue.Porous hyperbranched conjugated polymer nanoparticles with an average particle size of 20-60 nm and a specific surface area of 225 m2 g-1 have been prepared through Suzuki polymerization in a miniemulsion, which could be stably dispersed in common organic solvents after complete removal of surfactants. Furthermore, a simple spin-coating method for the preparation of homogeneous transparent thin films of the nanoparticle has been developed. Bright blue emission of the porous nanoparticle films could be reversibly quenched by nitroaromatics with enhanced sensitivity compared to dense films of the linear conjugated polymer analogue. Electronic supplementary information (ESI) available: Synthesis, experimental details, structural characterization, morphological images, fluorescence response data etc. See DOI: 10.1039/c3nr05402k

  16. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and

  17. Coating to enhance metal-polymer adhesion

    SciTech Connect

    Parthasarathi, A.; Mahulikar, D.

    1996-12-31

    An ultra-thin electroplated coating has been developed to enhance adhesion of metals to polymers. The coating was developed for microelectronic packaging applications where it greatly improves adhesion of metal leadframes to plastic molding compounds. Recent tests show that the coating enhances adhesion of different metals to other types of adhesives as well and may thus have wider applicability. Results of adhesion tests with this coating, as well as its other characteristics such as corrosion resistance, are discussed. The coating is a very thin transparent electroplated coating containing zinc and chromium. It has been found to be effective on a variety of metal surfaces including copper alloys, Fe-Ni alloys, Al alloys, stainless steel, silver, nickel, Pd/Ni and Ni-Sn. Contact resistance measurements show that the coating has little or no effect on electrical resistivity.

  18. Conducting polymers as corrosion resistant coatings

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.

    1994-09-01

    Although the majority of top coatings used for corrosion protection are electrically insulating, previous workers have proposed using an electrically active barrier for corrosion control. The most effective corrosion resistant undercoatings in use today are based on chromium compounds. Coatings based on other materials will need to replace these coatings by the turn of the century because of environmental and health concerns. For this reason the authors have begun an investigation of the use of conducting polymers as corrosion resistant coatings as an alternative to metal-based coatings. Conducting polymers have long been considered to be unsuitable for commercial processing, hindering their use for practical applications. Research in the field of electrically conducting polymers has recently produced a number of polymers such as polyaniline and its derivatives which are readily soluble in common organic solvents. The authors coating system, consisting of a conducting polyaniline primer layer, topcoated with epoxy or polyurethane, has been evaluated for corrosion resistance on mild steel substrates. In this paper, the authors report the results of laboratory testing under acidic and saline conditions and the results of testing in the severe launch environment at the Beach Testing Facility at Kennedy Space Center. The launch environment consists of exposure to corrosive HCl exhaust fumes and the salt spray from the Atlantic Ocean.

  19. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    NASA Astrophysics Data System (ADS)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  20. Interpenetrating phase ceramic/polymer composite coatings: Fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Craig, Bradley Dene

    The goals of this thesis research were to fabricate interpenetrating phase composite (IPC) ceramic/polymer coatings and to investigate the effect of the interconnected microstructure on the physical and wear properties of the coatings. IPC coatings with an interpenetrating phase microstructure were successfully fabricated by first forming a porous ceramic with an interconnected microstructure using a chemical bonding route (mainly reacting alpha-alumina (0.3 mum) with orthophosphoric acid to form a phosphate bond). Porosity within these ceramic coatings was easily controlled between 20 and 50 vol. % by phosphoric acid addition, and was measured by a new porosity measurement technique (thermogravimetric volatilization of liquids, or TVL) which was developed. The resulting ceramic preforms were infiltrated with a UV and thermally curable cycloaliphatic epoxide resin and cured. This fabrication route resulted in composite coatings with thicknesses ranging from ˜1mum to 100 mum with complete filling of open pore space. The physical properties of the composite coatings, including microhardness, flexural modulus and wear resistance, were evaluated as a function of processing variables, including orthophosphoric acid content and ceramic phase firing temperature, which affected the microstructure and interparticulate bonding between particles in the coatings. For example, microhardness increased from ˜30 on the Vicker's scale to well over 200 as interparticulate bonding was increased in the ceramic phase. Additionally, Taber wear resistance in the best TPC coatings was found to approach that of fully-densified alumina under certain conditions. Several factors were found to influence the wear mechanism in the IPC coating materials. Forming strong connections between ceramic particles led to up to an order of magnitude increase in the wear resistance. Additionally, coating microhardness and ceramic/polymer interfacial strength were studied and found to be important in

  1. Advanced Porous Coating for Low-Density Ceramic Insulation Materials

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Churchward, Rex; Katvala, Victor; Stewart, David; Balter, Aliza

    1988-01-01

    The need for improved coatings on low-density reusable surface insulation (RSI) materials used on the space shuttle has stimulated research into developing tougher coatings. The processing of a new porous composite "coating" for RST called toughened unipiece fibrous insulation Is discussed. Characteristics including performance in a simulated high-speed atmospheric entry, morphological structure before and after this exposure, resistance to Impact, and thermal response to a typical heat pulse are described. It is shown that this coating has improved impact resistance while maintaining optical and thermal properties comparable to the previously available reaction-cured glass coating.

  2. Macromolecular coatings on porous silicon: Applications in drug delivery, biosensing, and composites

    NASA Astrophysics Data System (ADS)

    Perelman, Loren Avery

    Two classes of macromolecules, proteins and polymers, are coated onto porous Si films in a variety of geometries in order to study fundamental behaviors of these coatings and their potential device applications. The unique preparation control that porous Si allows in both nano-morphology and surface functionalization provides the means for the coatings. In chapter two, a drug delivery platform using bovine serum albumin (BSA) protein as a stimuli-responsive capping layer on porous Si is described and characterized. It was found that the surface chemistry of the porous Si film has a profound influence on both drug loading capacity and drug release kinetics, providing for control over these drug release variables. The BSA is observed to act as a pH-responsive trigger for the release of vancomycin from the porous Si film. The drug is safely stored in the porous matrix at pH 4 and is released after triggering with pH 7.4 phosphate buffered saline. Chapter three discusses a porous SiO2-based biosensor that is prepared by oxidizing a porous Si film, adsorbing BSA to the surface as a coating, and functionalizing the protein with specific target probes for vancomycin. The BSA was observed to adsorb strongly to the surface, resisting desoprtion in both phosphate buffered saline and triton-X buffer solutions. Quantitative binding information for the tripeptide Ac-L-Lysine-D-Alanine-D-Alanine and vancomycin is determined using the optical properties of the porous Si as a transduction methodology. Chapters four and five describe the fabrication of thermoresponsive and multifunctional nanohybrids, respectively, using stimuli-responsive hydrogels to infiltrate and coat oxidized porous Si films. The optical properties of the porous Si films are used to study the response of the hydrogel phase of the hybrids to a variety of stimuli. The optical changes correspond to previously-described physical changes in the hydrogel phase, and it was determined that this platform provides a

  3. Porous carbon-coated graphite electrodes for energy production from salinity gradient using reverse electrodialysis

    NASA Astrophysics Data System (ADS)

    Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo

    2016-04-01

    Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foilcoated titanium (Ti) meshcoated Ti platecoated graphite foil showed 5-10% higher power density than the metal mesh electrodes. From the polarization curve of the Vulcan-coated graphite foil electrode, it was found that total resistance decreased as thickness and geometric surface area of the electrode increased.

  4. Compressibility of porous TiO2 nanoparticle coating on paperboard.

    PubMed

    Stepien, Milena; Saarinen, Jarkko J; Teisala, Hannu; Tuominen, Mikko; Haapanen, Janne; Mäkelä, Jyrki M; Kuusipalo, Jurkka; Toivakka, Martti

    2013-01-01

    Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross‒sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure. PACS: 61.46.-w; 68.08.Bc; 81.07.-b. PMID:24160373

  5. Compressibility of porous TiO2 nanoparticle coating on paperboard

    PubMed Central

    2013-01-01

    Compressibility of liquid flame spray-deposited porous TiO2 nanoparticle coating was studied on paperboard samples using a traditional calendering technique in which the paperboard is compressed between a metal and polymer roll. Surface superhydrophobicity is lost due to a smoothening effect when the number of successive calendering cycles is increased. Field emission scanning electron microscope surface and cross‒sectional images support the atomic force microscope roughness analysis that shows a significant compressibility of the deposited TiO2 nanoparticle coating with decrease in the surface roughness and nanoscale porosity under external pressure. PACS 61.46.-w; 68.08.Bc; 81.07.-b PMID:24160373

  6. Bulk metallic glass coating of polymer substrates

    NASA Astrophysics Data System (ADS)

    Soinila, Erno; Sharma, Parmanand; Heino, Markku; Pischow, Kaj; Inoue, Akihisa; Hänninen, Hannu

    2009-01-01

    Bulk Metallic Glass (BMG) alloy with the composition of Zr55Cu30Al10Ni5 was deposited by sputtering as thin films on several different engineering polymers and polymer composites. Polycarbonate, polymethyl methacrylate, polyamide 12, polyarylamide (50GF=50 % glass fibers), polyphenylene sulfide (30GF) and polybutylene terephthalate (30GF) were used as substrates. The microstructure of the deposited BMG coatings was studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results of XRD and SEM studies were consistent with amorphous microstructure. Elemental compositions of the coatings were verified by energy dispersive spectroscopy (EDS). Mechanical properties of the coatings were compared to copper mould cast BMG using nano- indentation tests with similar results. According to the cross-cut tape tests good adhesion was achieved between the studied BMG alloy and all other polymer substrates except polycarbonate. Nano-indentation results showed similar mechanical properties for coating and cast BMG. The results of this study look promising as they open new opportunities for BMG- polymer composite applications.

  7. Electrochemical Impedance Spectroscopy of Conductive Polymer Coatings

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; MacDowell, Louis G.

    1996-01-01

    Electrochemical impedance spectroscopy (EIS) was used to investigate the corrosion protection performance of twenty nine proprietary conductive polymer coatings for cold rolled steel under immersion in 3.55 percent NaCl. Corrosion potential as well as Bode plots of the data were obtained for each coating after one hour immersion, All coatings, with the exception of one, have a corrosion potential that is higher in the positive direction than the corrosion potential of bare steel under the same conditions. Group A consisted of twenty one coatings with Bode plots indicative of the capacitive behavior characteristic of barrier coatings. An equivalent circuit consisting of a capacitor in series with a resistor simulated the experimental EIS data for these coatings very well. Group B consisted of eight coatings that exhibited EIS spectra showing an inflection point which indicates that two time constants are present. This may be caused by an electrochemical process taking place which could be indicitive of coating failing. These coatings have a lower impedance that those in Group A.

  8. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  9. Porous coatings from wire mesh for bone implants

    DOEpatents

    Sump, Kenneth R.

    1986-01-01

    A method of coating areas of bone implant elements and the resulting implant having a porous coating are described. Preselected surface areas are covered by a preform made from continuous woven lengths of wire. The preform is compressed and heated to assure that diffusion bonding occurs between the wire surfaces and between the surface boundaries of the implant element and the wire surfaces in contact with it. Porosity is achieved by control of the resulting voids between the bonded wire portions.

  10. Moisture sensor based on evanescent wave light scattering by porous sol-gel silica coating

    DOEpatents

    Tao, Shiquan; Singh, Jagdish P.; Winstead, Christopher B.

    2006-05-02

    An optical fiber moisture sensor that can be used to sense moisture present in gas phase in a wide range of concentrations is provided, as well techniques for making the same. The present invention includes a method that utilizes the light scattering phenomenon which occurs in a porous sol-gel silica by coating an optical fiber core with such silica. Thus, a porous sol-gel silica polymer coated on an optical fiber core forms the transducer of an optical fiber moisture sensor according to an embodiment. The resulting optical fiber sensor of the present invention can be used in various applications, including to sense moisture content in indoor/outdoor air, soil, concrete, and low/high temperature gas streams.

  11. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    DOEpatents

    Kanatzidis, Mercouri G.; Katsoulidis, Alexandros

    2016-10-18

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  12. Porous polymer networks and ion-exchange media and metal-polymer composites made therefrom

    DOEpatents

    Kanatzidis, Mercouri G; Katsoulidis, Alexandros

    2015-03-10

    Porous polymeric networks and composite materials comprising metal nanoparticles distributed in the polymeric networks are provided. Also provided are methods for using the polymeric networks and the composite materials in liquid- and vapor-phase waste remediation applications. The porous polymeric networks, are highly porous, three-dimensional structures characterized by high surface areas. The polymeric networks comprise polymers polymerized from aldehydes and phenolic molecules.

  13. Temperature dependence of porous silica antireflective (AR) coating

    NASA Astrophysics Data System (ADS)

    Tang, Yongxing; Le, Yueqin; Zhang, Weiqing; Jiang, Minhua; Sun, Jinren; Liu, Xiaolin

    1998-02-01

    In this paper, the antireflective coatings consisting of porous silica particles from a silica sol are applied by dip method. The relationships among composition, viscosity and temperature have been studied. The coating homogeneity is opium for the laser wavelengths of 1064 nm, 532 nm and 355 nm. The peak transmission of coated BK-7 glass substrate is higher than 99.5%. The laser induced damage thresholds of the antireflective coatings were range of 7 - 10 J/cm2, for 1 ns pulse width and 1064 nm wavelength. These damage thresholds were suitable for our national ICF program. It is noted that the optical homogeneity of coating and the viscosity of coating sol were strongly influenced by the temperatures in the duration of sol ripening.

  14. Electrospun Fibro-porous Polyurethane Coatings for Implantable Glucose Biosensors

    PubMed Central

    Wang, Ning; Burugapalli, Krishna; Song, Wenhui; Halls, Justin; Moussy, Francis; Ray, Asim; Zheng, Yudong

    2012-01-01

    This study reports methods for coating miniature implantable glucose biosensors with electrospun polyurethane (PU) membranes, their effects on sensor function and efficacy as mass-transport limiting membranes. For electrospinning fibres directly on sensor surface, both static and dynamic collector systems, were designed and tested. Optimum collector configurations were first ascertained by FEA modelling. Both static and dynamic collectors allowed complete covering of sensors, but it was the dynamic collector that produced uniform fibro-porous PU coatings around miniature ellipsoid biosensors. The coatings had random fibre orientation and their uniform thickness increased linearly with increasing electrospinning time. The effects of coatings having an even spread of submicron fibre diameters and sub-100μm thicknesses on glucose biosensor function were investigated. Increasing thickness and fibre diameters caused a statistically insignificant decrease in sensor sensitivity for the tested electrospun coatings. The sensors’ linearity for the glucose detection range of 2 to 30mM remained unaffected. The electrospun coatings also functioned as mass-transport limiting membranes by significantly increasing the linearity, replacing traditional epoxy-PU outer coating. To conclude, electrospun coatings, having controllable fibro-porous structure and thicknesses, on miniature ellipsoid glucose biosensors were demonstrated to have minimal effect on pre-implantation sensitivity and also to have mass-transport limiting ability. PMID:23146433

  15. Entropy-induced separation of star polymers in porous media

    SciTech Connect

    Blavats'ka, V.; Ferber, C. von; Holovatch, Yu.

    2006-09-15

    We present a quantitative picture of the separation of star polymers in a solution where part of the volume is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder on the entropy and scaling properties of f-arm star polymers in a good solvent. We assume that the disorder is correlated on the polymer length scale with a power-law decay of the pair correlation function g(r){approx}r{sup -a}. Applying the field-theoretical renormalization group approach we show in a double expansion in {epsilon}=4-d and {delta}=4-a that there is a range of correlation strengths {delta} for which the disorder changes the scaling behavior of star polymers. In a second approach we calculate for fixed space dimension d=3 and different values of the correlation parameter a the corresponding scaling exponents {gamma}{sub f} that govern entropic effects. We find that {gamma}{sub f}-1, the deviation of {gamma}{sub f} from its mean field value is amplified by the disorder once we increase {delta} beyond a threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside a porous medium are that star polymers exert a higher osmotic pressure than chain polymers and in general higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly, polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density while the opposite is the case for star polymers.

  16. Mechanical properties of crosslinked polymer coatings

    NASA Technical Reports Server (NTRS)

    Csernica, Jeffrey

    1994-01-01

    The objectives of this experiment are to: fabricate and test thin films to explore relations between a polymer's structure and its mechanical properties; expose students to testing methods for hardness and impact energy that are simple to perform and which have results that are easy to comprehend; show importance of polymer properties in materials that students frequently encounter; illustrate a system which displays a tradeoff between strength and impact resistance, the combination of which would need to be optimized for a particular application; and to expose students to coatings technology and testing.

  17. Polymer Coatings Reduce Electro-osmosis

    NASA Technical Reports Server (NTRS)

    Herren, Blair J.; Snyder, Robert; Shafer, Steven G.; Harris, J. Milton; Van Alstine, James M.

    1989-01-01

    Poly(ethylene glycol) film controls electrostatic potential. Electro-osmosis in quartz or glass chambers reduced or reversed by coating inside surface of chambers with monomacromolecular layers of poly(ethylene glycol). Stable over long times. Electrostatic potential across surface of untreated glass or plastic chamber used in electro-phoresis is negative and attracts cations in aqueous electrolyte. Cations solvated, entrains flow of electrolyte migrating toward cathode. Electro-osmotic flow interferes with desired electrophoresis of particles suspended in electrolyte. Polymer coats nontoxic, transparent, and neutral, advantageous for use in electrophoresis.

  18. Dialysis on microchips using thin porous polymer membranes

    DOEpatents

    Singh, Anup K.; Kirby, Brian J.; Shepodd, Timothy J.

    2007-09-04

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and form a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  19. Method for dialysis on microchips using thin porous polymer membrane

    DOEpatents

    Singh, Anup K.; Kirby, Brian J.; Shepodd, Timothy J.

    2009-05-19

    Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 .mu.m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.

  20. Stem cell behavior on tailored porous oxide surface coatings.

    PubMed

    Lavenus, Sandrine; Poxson, David J; Ogievetsky, Nika; Dordick, Jonathan S; Siegel, Richard W

    2015-07-01

    Nanoscale surface topographies are known to have a profound influence on cell behavior, including cell guidance, migration, morphology, proliferation, and differentiation. In this study, we have observed the behavior of human mesenchymal stem cells cultured on a range of tailored porous SiO2 and TiO2 nanostructured surface coatings fabricated via glancing angle electron-beam deposition. By controlling the physical vapor deposition angle during fabrication, we could control systematically the deposited coating porosity, along with associated topographic features. Immunocytochemistry and image analysis quantitatively revealed the number of adherent cells, as well as their basic cellular morphology, on these surfaces. Signaling pathway studies showed that even with subtle changes in nanoscale surface structures, the behavior of mesenchymal stem cells was strongly influenced by the precise surface structures of these porous coatings.

  1. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    DOEpatents

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  2. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    DOEpatents

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  3. Fluorescence-Tuned Polyhedral Oligomeric Silsesquioxane-Based Porous Polymers.

    PubMed

    Wang, Dengxu; Feng, Shengyu; Liu, Hongzhi

    2016-09-26

    Two series of new polyhedral oligomeric silsesquioxane (POSS)-based fluorescent hybrid porous polymers, HPP-1 and HPP-2, have been prepared by the Heck reaction of octavinylsilsesquioxane with 2,2',7,7'-tetrabromo-9,9'-spirobifluorene and 1,3,6,8-tetrabromopyrene, respectively. Three sets of reaction conditions were employed to assess their effect on fluorescence. These materials exhibit tunable fluorescence from nearly no fluorescence to bright fluorescence both in the solid state and dispersed in ethanol under UV light irradiation by simply altering the reaction conditions. We speculated that the difference may be attributable to the fluorescence quenching induced by Et3 N, P(o-CH3 Ph)3 , and their hydrogen bromide salts employed in the reactions. This finding could give valuable suggestions for the construction of porous polymers with tunable/controllable fluorescence, especially those prepared by Heck and Sonogashira reactions in which these quenchers are used as organic bases or co-catalysts. In addition, the porosities can also be tuned, but different trends in porosity have been found in these two series of polymers, which suggests that various factors should be carefully considered in the preparation of porous polymers with tunable/controllable porosity. Furthermore, HPP-1 c showed moderate CO2 uptake and fluorescence that was efficiently quenched by nitroaromatic explosives, thereby indicating that these materials could be utilized as solid absorbents for the capture and storage of CO2 and as sensing agents for the detection of explosives. PMID:27533795

  4. Durability of an inorganic polymer concrete coating

    NASA Astrophysics Data System (ADS)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  5. Solventless adhesive bonding using reactive polymer coatings.

    PubMed

    Chen, Hsien-Yeh; McClelland, Arthur A; Chen, Zhan; Lahann, Joerg

    2008-06-01

    A novel solventless adhesive bonding (SAB) process is reported, which is applicable to a wide range of materials including, but not limited to, poly(dimethylsiloxane) (PDMS). The bonding is achieved through reactions between two complementary polymer coatings, poly(4-aminomethyl-p-xylylene-co-p-xylylene) and poly(4-formyl-p-xylylene-co-p-xylylene), which are prepared by chemical vapor deposition (CVD) polymerization of the corresponding [2.2]paracyclophanes and can be deposited on complementary microfluidic units to be bonded. These CVD-based polymer films form well-adherent coatings on a range of different substrate materials including polymers, glass, silicon, metals, or paper and can be stored for extended periods prior to bonding without losing their bonding capability. Tensile stress data are measured on PDMS with various substrates and compared favorably to current methods such as oxygen plasma and UV/ozone. Sum frequency generation (SFG) has been used to probe the presence of amine and aldehyde groups on the surface after CVD polymerization and their conversion during bonding. In addition to bonding, unreacted functional groups present on the luminal surface of microfluidic channels provide free chemical groups for further surface modification. Fluorescently labeled molecules including rhodamine-conjugated streptavidin and atto-655 NHS ester were used to verify the presence of active functional groups on the luminal surfaces after bonding.

  6. Carbon coatings on polymers and their biocompatibility

    NASA Astrophysics Data System (ADS)

    Hubáček, T.; Siegel, J.; Khalili, R.; Slepičková-Kasálková, N.; Švorčík, V.

    2013-06-01

    In this paper we modified the surface properties of polymer foils (polyethyleneterephthalate (PET) and polytetrafluoroethylene (PTFE)) by flash evaporation of carbon layers (C-layers). Adhesion and proliferation of vascular smooth muscle cells (VSMC) on carbon coated PTFE and PET were studied in vitro. Chemical composition of deposited C-layers was determined by Raman spectroscopy, surface contact angle was measured by goniometry. Surface morphology of carbon coated samples was studied using atomic force microscopy. Electrical properties of deposited C-layers were determined by measuring its sheet resistance. It was found that the carbon deposition leads to a decrease of surface roughness of PTFE and PET and to a significant increase of sample wettability. Electrical resistance and wettability of deposited C-layers depends significantly on both the thickness of C-layer and the type of polymeric substrate used. It was found that maximal stimulation of the VSMC (adhesion and proliferation) on carbon coated polymers depends on the surface roughness and contact angle of cell carriers used.

  7. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  8. Shockwave loading of mechanochemically active polymer coatings.

    PubMed

    Grady, Martha E; Beiermann, Brett A; Moore, Jeffrey S; Sottos, Nancy R

    2014-04-23

    Thin films of mechanochemically active polymer were subjected to laser-generated, high amplitude acoustic pulses. Stress wave propagation through the film produced large amplitude stresses (>100 MPa) in short time frames (10-20 ns), leading to very high strain rates (ca. 1 × 10(7) to 1 × 10(8) s(-1)). The polymer system, spiropyran (SP)-linked polystyrene (PS), undergoes a force-induced chemical reaction causing fluorescence and color change. Activation of SP was evident via a fluorescence signal in thin films subject to high strain-rates. In contrast, quasi-static loading of bulk SP-linked PS samples failed to result in SP activation. Mechanoresponsive coatings have potential to indicate deformation under shockwave loading conditions.

  9. Protection of alodine coatings from thermal aging by removable polymer coatings.

    SciTech Connect

    Wagstaff, Brett R.; Bradshaw, Robert W.; Whinnery, LeRoy L., Jr.

    2006-12-01

    Removable polymer coatings were evaluated as a means to suppress dehydration of Alodine chromate conversion coatings during thermal aging and thereby retain the corrosion protection afforded by Alodine. Two types of polymer coatings were applied to Alodine-treated panels of aluminum alloys 7075-T73 and 6061-T6 that were subsequently aged for 15 to 50 hours at temperatures between 135 F to 200 F. The corrosion resistance of the thermally aged panels was evaluated, after stripping the polymer coatings, by exposure to a standard salt-fog corrosion test and the extent of pitting of the polymer-coated and untreated panels compared. Removable polymer coatings mitigated the loss of corrosion resistance due to thermal aging experienced by the untreated alloys. An epoxide coating was more effective than a fluorosilicone coating as a dehydration barrier.

  10. Corrosion-protective coatings from electrically conducting polymers

    NASA Technical Reports Server (NTRS)

    Thompson, Karen Gebert; Bryan, Coleman J.; Benicewicz, Brian C.; Wrobleski, Debra A.

    1991-01-01

    In a joint effort between NASA Kennedy and LANL, electrically conductive polymer coatings were developed as corrosion protective coatings for metal surfaces. At NASA Kennedy, the launch environment consist of marine, severe solar, and intermittent high acid and/or elevated temperature conditions. Electrically conductive polymer coatings were developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  11. Corrosion-protective coatings from electrically conducting polymers

    SciTech Connect

    Thompson, K.G.; Bryan, C.J.; Benicewicz, B.C.; Wrobleski, D.A.

    1991-12-31

    In a joint research effort involving the Kennedy Space Center and the Los Alamos National Laboratory, electrically conductive polymer coatings have been developed as corrosion-protective coatings for metal surfaces. At the Kennedy Space Center, the launch environment consists of marine, severe solar, and intermittent high acid/elevated temperature conditions. Electrically conductive polymer coatings have been developed which impart corrosion resistance to mild steel when exposed to saline and acidic environments. Such coatings also seem to promote corrosion resistance in areas of mild steel where scratches exist in the protective coating. Such coatings appear promising for many commercial applications.

  12. Porous light-emitting compositions

    DOEpatents

    Burrell, Anthony K.; McCleskey, Thomas Mark; Jia, Quanxi; Bauer, Eve; Mueller, Alexander H.

    2012-04-17

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  13. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.; Daroonparvar, M.; Kasiri-Asgarani, M.; Shah, A. M.; Medraj, M.

    2016-07-01

    A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids, globular porosities, and micro-cracks with a thickness of 40-50 μm, while the Al2O3·13%TiO2 coating, as the second layer, presented a unique bimodal microstructure with a thickness of 70-80 μm. The top layer was a hydrophobic polymer, which effectively sealed the porosities of plasma layers. The results of micro-hardness and bonding strength tests showed that the plasma coating presented excellent hardness (870 HV) and good bonding strength (14.8 MPa). However, the plasma/polymer coatings interface exhibited low bonding strength (8.6 MPa). The polymer coating formed thick layer (100-110 μm) that homogeneously covered the surface of the plasma layers. Contact angle measurement showed that polymer coating over plasma layers significantly decreased surface wettability. The corrosion current density (i corr) of an uncoated sample (262.7 µA/cm2) decreased to 76.9 µA/cm2 after plasma coatings were applied. However, it was found that the i corr decreased significantly to 0.002 µA/cm2 after polymer sealing of the porous plasma layers.

  14. Preparation and Performance of Plasma/Polymer Composite Coatings on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Bakhsheshi-Rad, H. R.; Hamzah, E.; Bagheriyan, S.; Daroonparvar, M.; Kasiri-Asgarani, M.; Shah, A. M.; Medraj, M.

    2016-09-01

    A triplex plasma (NiCoCrAlHfYSi/Al2O3·13%TiO2)/polycaprolactone composite coating was successfully deposited on a Mg-1.2Ca alloy by a combination of atmospheric plasma spraying and dip-coating techniques. The NiCoCrAlHfYSi (MCrAlHYS) coating, as the first layer, contained a large number of voids, globular porosities, and micro-cracks with a thickness of 40-50 μm, while the Al2O3·13%TiO2 coating, as the second layer, presented a unique bimodal microstructure with a thickness of 70-80 μm. The top layer was a hydrophobic polymer, which effectively sealed the porosities of plasma layers. The results of micro-hardness and bonding strength tests showed that the plasma coating presented excellent hardness (870 HV) and good bonding strength (14.8 MPa). However, the plasma/polymer coatings interface exhibited low bonding strength (8.6 MPa). The polymer coating formed thick layer (100-110 μm) that homogeneously covered the surface of the plasma layers. Contact angle measurement showed that polymer coating over plasma layers significantly decreased surface wettability. The corrosion current density ( i corr) of an uncoated sample (262.7 µA/cm2) decreased to 76.9 µA/cm2 after plasma coatings were applied. However, it was found that the i corr decreased significantly to 0.002 µA/cm2 after polymer sealing of the porous plasma layers.

  15. Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel.

    PubMed

    Gopi, D; Ramya, S; Rajeswari, D; Kavitha, L

    2013-07-01

    Polypyrrole/strontium hydroxyapatite bilayer coatings were achieved on 316L stainless steel (316L SS) by the electropolymerisation of pyrrole from sodium salicylate solution followed by the electrodeposition of porous strontium hydroxyapatite. The formation and the morphology of the bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM), respectively. The corrosion resistance of the coated 316L SS specimens was investigated in Ringer's solution by electrochemical techniques and the results were substantiated with inductively coupled plasma atomic emission spectrometry (ICP-AES). The passive film underneath the polypyrrole layer is effective in protecting 316L SS against corrosion in Ringer's solution. Moreover, we believe that the top porous strontium hydroxyapatite layer can provide potential bioactivity to the 316L SS.

  16. Corrosion protection performance of porous strontium hydroxyapatite coating on polypyrrole coated 316L stainless steel.

    PubMed

    Gopi, D; Ramya, S; Rajeswari, D; Kavitha, L

    2013-07-01

    Polypyrrole/strontium hydroxyapatite bilayer coatings were achieved on 316L stainless steel (316L SS) by the electropolymerisation of pyrrole from sodium salicylate solution followed by the electrodeposition of porous strontium hydroxyapatite. The formation and the morphology of the bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM), respectively. The corrosion resistance of the coated 316L SS specimens was investigated in Ringer's solution by electrochemical techniques and the results were substantiated with inductively coupled plasma atomic emission spectrometry (ICP-AES). The passive film underneath the polypyrrole layer is effective in protecting 316L SS against corrosion in Ringer's solution. Moreover, we believe that the top porous strontium hydroxyapatite layer can provide potential bioactivity to the 316L SS. PMID:23475060

  17. New Polymer Coatings for Chemically Selective Mass Sensors

    NASA Technical Reports Server (NTRS)

    Sims, S. C.; Wright, Cassandra; Cobb, J.; McCalla, T.; Revelle, R.; Morris, V. R.; Pollack, S. K.

    1997-01-01

    There is a current need to develop sensitive and chemically specific sensors for the detection of nitric acid for in-situ measurements in the atmosphere. Polymer coatings have been synthesized and tested for their sensitivity and selectivity to nitric acid. A primary requirement for these polymers is detectability down to the parts per trillion range. The results of studies using these polymers as coatings for quartz crystal microbalances (QCM) and surface acoustic wave (SAW) devices will be presented.

  18. Conductive polymer coatings for anodes in aqueous electrowinning

    NASA Astrophysics Data System (ADS)

    Alfantazi, A. M.; Moskalyk, R. R.

    2003-07-01

    This article discusses the potential application of electrically conductive polymers as protective coatings for permanent lead anodes employed in aqueous electrowinning processes. Also presented are results from a preliminary study of the performance of two intrinsically conductive polymers (polyaniline and poly 3,4,5-trifluorophenylthiophene [TFPT]) under mild copper electrowinning conditions as conductive and protective coatings on anodic surfaces. The laboratory results indicated that using lead alloy anodes coated with TFPT merits continued research.

  19. Modeling Methane Adsorption in Interpenetrating Porous Polymer Networks

    SciTech Connect

    Martin, RL; Shahrak, MN; Swisher, JA; Simon, CM; Sculley, JP; Zhou, HC; Smit, B; Haranczyk, M

    2013-10-03

    Porous polymer networks (PPNs) are a class of porous materials of particular interest in a variety of energy-related applications because of their stability, high surface areas, and gas uptake capacities. Computationally derived structures for five recently synthesized PPN frameworks, PPN-2, -3, -4, -5, and -6, were generated for various topologies, optimized using semiempirical electronic structure methods, and evaluated using classical grand canonical Monte Carlo simulations. We show that a key factor in modeling the methane uptake performance of these materials is whether, and how, these material frameworks interpenetrate and demonstrate a computational approach for predicting the presence, degree, and nature of interpenetration in PPNs that enables the reproduction of experimental adsorption data.

  20. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    NASA Astrophysics Data System (ADS)

    Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten

    2014-05-01

    An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO-PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (Rp) of the PEO-PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (icorr) of the pure Mg was reduced by 65% with the PEO coating, the PEO-PLLA coating reduced the icorr by almost 100%. As expected, the Rp of the PEO-PLLA Mg decreased with increase in exposure time. However, it was noted that the Rp of the PEO-PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  1. Cysteine could change the transport mechanism of PVP-coated silver nanoparticles in porous media

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lin, S.; Wiesner, M.

    2012-12-01

    Silver nanoparticles (AgNPs) can hardly be removed by wastewater treatment plant and have big potential to enter groundwater, jeopardizing the water quality & aquatic ecosystem. Most AgNPs have surface coatings such as polyvinylpyrrolidone (PVP) which dominate their transport in porous media. Our previous study shows that PVP may promote the deposition of AgNPs on silica surface by a bridging mechanism. This study further explored how cysteine, a natural organic matter type, may influence the role of the PVP coating on AgNP translocation. Dynamic Light Scattering (DLS) measurement (Figure 1A) shows that the PVP coating rendered the AgNP dispersion high stability during the measuring period (3hrs). Addition of 100 ppm cysteine to the dispersion resulted in a rapid decrease in particle size from 100nm to 52nm within one hour, following which no further decline in particle size occurred. Column experiment results (Figure 1B) show that corresponding to the particle size change was a substantial decrease in particle deposition rates: introduction of 100 ppm cysteine into the particle dispersion resulted in a decrease in AgNP attenuation by the porous medium from 67% to 26%. The decline in particle size suggested that cysteine may have displaced the macromolecular PVP from the particle surface. Desorption of PVP resulted in a weakening or vanish of polymer bridging effect which in turn lowered the deposition rates substantially. This study demonstrated an implication of environmental transformation of coated AgNPs to their mobility in saturated sand aquifers. Acknowledgment Xinyao Yang appreciates the Natural Science Foundation of China (Grant No.:41101475) for covering the registration fee and traveling costs.igure 1 Particle size measurement (A) and breakthrough curves (B) of PVP-coated silver nanoparticle in the absence and presence of cysteine: pH=7.0, ionic strength=1mM, flow rate=1ml/min.

  2. Stability analysis of a polymer coating process

    NASA Astrophysics Data System (ADS)

    Kallel, A.; Hachem, E.; Demay, Y.; Agassant, J. F.

    2015-05-01

    A new coating process involving a short stretching distance (1 mm) and a high draw ratio (around 200) is considered. The resulting thin molten polymer film (around 10 micrometers) is set down on a solid primary film and then covered by another solid secondary film. In experimental studies, periodical fluctuation in the thickness of the coated layer may be observed. The processing conditions markedly influence the onset and the development of these defects and modeling will help our understanding of their origins. The membrane approach which has been commonly used for cast film modeling is no longer valid and two dimensional time dependent models (within the thickness) are developed in the whole domain (upstream die and stretching path). A boundary-value problem with a free surface for the Stokes equations is considered and stability of the free surface is assessed using two different numerical strategies: a tracking strategy combined with linear stability analysis involving computation of leading eigenvalues, and a Level Set capturing strategy coupled with transient stability analysis.

  3. Characterization of Porous, Dexamethasone-Releasing Polyurethane Coatings for Glucose Sensors

    PubMed Central

    Vallejo-Heligon, Suzana G.; Klitzman, Bruce; Reichert, William M.

    2014-01-01

    Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release, and bioactivity characterization of tubular, porous dexamethasone (Dex) releasing polyurethane coatings designed to attenuate local inflammation in the tissue-sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy (SEM) and Micro-computed tomography (Micro-CT) showed a controlled porosity and coating thickness. In vitro drug release from coatings monitored over two weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance. PMID:25065548

  4. Synthesis and characterization of porous hydroxyapatite and hydroxyapatite coatings

    SciTech Connect

    Nieh, T G; Choi, B W; Jankowski, A F

    2000-10-25

    A technique is developed to construct bulk hydroxyapatite (HAp) with different cellular structures. The technique involves the initial synthesis of nanocrystalline hydroxyapatite powder from an aqueous solution using water-soluble compounds and then followed by spray drying into agglomerated granules. The granules were further cold pressed and sintered into bulks at elevated temperatures. The sintering behavior of the HAp granules was characterized and compared with those previously reported. Resulting from the fact that the starting HAp powders were extremely fine, a relatively low activation energy for sintering was obtained. In the present study, both porous and dense structures were produced by varying powder morphology and sintering parameters. Porous structures consisting of open cells were constructed. Sintered structures were characterized using scanning electron microscopy and x-ray tomography. In the present paper, hydroxyapatite coatings produced by magnetron sputtering on silicon and titanium substrates will also be presented. The mechanical properties of the coatings were measured using nanoindentation techniques and microstructures examined using transmission electron microscopy.

  5. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects

    PubMed Central

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-01-01

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death. PMID:26703586

  6. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects.

    PubMed

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-12-22

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  7. Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Liang, Bo; Jiang, Qingbai; Tang, Siqi; Li, Shengliang; Chen, Xu

    2016-03-01

    Porous polymer electrolytes (PPEs) are attractive for developing lithium-ion batteries because of the combined advantages of liquid and solid polymer electrolytes. In the present study, a new porous polymer membrane doped with phytic acid (PA) is prepared, which is used as a crosslinker in polymer electrolyte matrix and can also plasticize porous polymer electrolyte membranes, changing them into soft tough flexible materials. A PEO-PMMA-LiClO4-x wt.% PA (x = weight of PA/weight of polymer, PEO: poly(ethylene oxide); PMMA: poly(methyl methacrylate)) polymer membrane is prepared by a simple evaporation method. The effects of the ratio of PA to PEO-PMMA on the properties of the porous membrane, including morphology, porous structure, and mechanical property, are systematically studied. PA improves the porous structure and mechanical properties of polymer membrane. The maximum tensile strength and elongation of the porous polymer membranes are 20.71 MPa and 45.7% at 15 wt.% PA, respectively. Moreover, the PPEs with 15 wt.% PA has a conductivity of 1.59 × 10-5 S/cm at 20 °C, a good electrochemical window (>5 V), and a low interfacial resistance. The results demonstrate the compatibility of the mechanical properties and conductivity of the PPEs, indicating that PPEs have good application prospects for lithium-ion batteries.

  8. Modulating Electro-osmotic Flow with Polymer Coatings

    NASA Astrophysics Data System (ADS)

    Hickey, Owen A.

    Micro- and nano-fluidic devices represent an exciting field with a wide range of possible applications. These devices, typically made of either silica or glass, ionize when placed in contact with water. Upon the application of an electric field parallel to the wall, a flow is produced by the charged walls called the electro-osmotic flow (EOF). Since electric fields are so often used as the driving force in these devices, EOF is an extremely common phenomenon. For this reason it is highly desirable to be able to control EOF in order to optimize the functioning of these devices. One method which is quite common experimentally is the modification of the surface using polymer coatings. These coatings can be either adsorbed or grafted, and charged or neutral. The first part of this thesis looks at the role of neutral adsorbed polymer coatings for the modulation of EOF. Specifically our simulation results show that for adsorbed coatings made from a dilute polymer solution the strongest quenching of EOF is found for an adsorption strength at the phase transition for adsorption of the polymers. Further evidence is presented that shows that by using a high density of polymer solution and a polymer which has a strong attraction to the surface a very thick polymer layer can be created. Next the case of charged grafted polymer coatings is examined. The variation of the EOF with respect to several key parameters which characterize the polymer coating is investigated and compared to theory. The prediction that the electrophoretic velocity of the polymers is the same as the EOF generated by a coating made up of the same polymers is found to be false though the two values are quite close. The last section presents results which show how hydrodynamic interactions in charged polymer systems can be modeled mesoscopically without the use of explicit charges by forcing a slip between monomers and the surrounding fluid. This model is validated by simulating some surprising predictions

  9. Improved electrochemical performance of lithium iron phosphate in situ coated with hierarchical porous nitrogen-doped graphene-like membrane

    NASA Astrophysics Data System (ADS)

    zhang, Yue; Huang, Yudai; Wang, Xingchao; Guo, Yong; Jia, Dianzeng; Tang, Xincun

    2016-02-01

    LiFePO4 in situ coated with hierarchical porous nitrogen-doped graphene-like membrane (HPNGM) composite derived from a electrospun polymer membrane (EPM) precursor has been achieved for the first time. The N-doped graphene-like membrane which is in situ coating on LiFePO4 can provide a highly conductive layer, and the hierarchical porous structure facilitates Li+ transfer. The composite exhibits a high reversible capacity (171 mAh g-1 at 0.1 C), excellent high-rate capability and cycling stability. In addition to construct the traditional structure of nanofiber or nanowire, the EPM can also form graphene-like structure after annealing, which is a new application in constructing sheet structure by electrospinning.

  10. Periodic porous stripe patterning in a polymer blend film induced by phase separation during spin-casting.

    PubMed

    Kim, Jae-Kyung; Taki, Kentaro; Nagamine, Shinsuke; Ohshima, Masahiro

    2008-08-19

    A periodic striping pattern with microscale pore size is observed on the surface of thin films prepared by spin-casting from a polystyrene (PS) and polyethylene glycol (PEG) blend solution. The pattern is created by the convection generated by thermal gradients in the solution between the substrate and film solution during solvent evaporation, the radial flow of the spin-coated solution, and the primary and secondary phase separation of the PS and PEG solutions. The formation mechanism of the periodic porous stripe pattern is discussed, wherein the effects of the polymer blend weight ratio, polymer concentration, and drying rate on the formation of the periodic porous striping pattern are investigated using scanning electron and atomic force microscopy.

  11. Stained state and wear resistance of polymer coatings

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Bashkarev, A. Ya.; Mamalimov, R. I.; Sytov, V. V.

    2015-07-01

    Powders of polyamides PA 6 and PA 6.6 were deposited on the surface of steel heated to temperatures above melting points of these polymers. Strong wear-resistant coatings were formed on the surface after cooling. Measurements showed that, as the thickness of coatings decreases, their wear resistance increases. In order to reveal the nature of this phenomenon, stresses in polymer molecules were measured in coatings of mentioned polymers by infrared spectroscopy. It was found that the skeleton of polyamide molecules in coatings is compressed. This effect was explained by the formation of coordination compounds between nitrogen atoms of polyamide molecules and Fe2+ ions. It was revealed that the compression of the skeleton of molecules leads to an increase in their strength and wear resistance of coatings.

  12. Dopamine/Silica Nanoparticle Assembled, Microscale Porous Structure for Versatile Superamphiphobic Coating.

    PubMed

    Li, Fang; Du, Miao; Zheng, Qiang

    2016-02-23

    Artificial superamphiphobic surfaces, which could repel both water and low surface tension organic liquids, have been limited to particular kinds of materials or surfaces thus far. In this work, a kind of microscale porous coating was developed. Taking dopamine and hydrophilic fumed silica nanoparticles as initial building blocks, microscale porous coating was constructed via ice templation. Polydopamine bound silica nanoparticles together to form a porous structure network and rendered the coating to have potential for further postfunctionalization. After two-step CVD, the microscale porous coating changes from superhydrophilic to superamphiphobic, exhibiting super-repellency to droplets with surface tension of 73-23 mN/m. The influences of concentration of initial dopamine, hydrophilic fumed silica nanoparticles, and dry conditions on the formation of the porous structure have been studied to optimize the conditions. Coatings with different pore sizes and pore heights have been fabricated to discover the relationship between the structure parameters and the repellency of the porous coatings. Only with optimal pore size and pore height can the porous coating display superamphiphobicity. Compared with nanoscale, the microscale structure favors the achievement of superamphiphobicity. Given the outstanding adhesive ability of polydopamine, the superamphiphobic coatings have been successfully applied to various materials including artificial materials and natural materials. PMID:26828414

  13. Dopamine/Silica Nanoparticle Assembled, Microscale Porous Structure for Versatile Superamphiphobic Coating.

    PubMed

    Li, Fang; Du, Miao; Zheng, Qiang

    2016-02-23

    Artificial superamphiphobic surfaces, which could repel both water and low surface tension organic liquids, have been limited to particular kinds of materials or surfaces thus far. In this work, a kind of microscale porous coating was developed. Taking dopamine and hydrophilic fumed silica nanoparticles as initial building blocks, microscale porous coating was constructed via ice templation. Polydopamine bound silica nanoparticles together to form a porous structure network and rendered the coating to have potential for further postfunctionalization. After two-step CVD, the microscale porous coating changes from superhydrophilic to superamphiphobic, exhibiting super-repellency to droplets with surface tension of 73-23 mN/m. The influences of concentration of initial dopamine, hydrophilic fumed silica nanoparticles, and dry conditions on the formation of the porous structure have been studied to optimize the conditions. Coatings with different pore sizes and pore heights have been fabricated to discover the relationship between the structure parameters and the repellency of the porous coatings. Only with optimal pore size and pore height can the porous coating display superamphiphobicity. Compared with nanoscale, the microscale structure favors the achievement of superamphiphobicity. Given the outstanding adhesive ability of polydopamine, the superamphiphobic coatings have been successfully applied to various materials including artificial materials and natural materials.

  14. Coat thickness dependent adsorption of hydrophobic molecules at polymer brushes

    NASA Astrophysics Data System (ADS)

    Smiatek, Jens; Heuer, Andreas; Wagner, Hendrik; Studer, Armido; Hentschel, Carsten; Chi, Lifeng

    2013-01-01

    We study the adsorption properties of hydrophobic test particles at polymer brushes with different coat thicknesses via mesoscopic dissipative particle dynamics simulations. Our findings indicate stronger free energies of adsorption at thin polymer brushes. The reason for this difference is mainly given by entropic contributions due to different elastic deformations of the coatings. The numerical findings are supported by analytical calculations and are in good qualitative agreement to experimental fluorescence intensity results.

  15. Polymer Coats Leads on Implantable Medical Device

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Langley Research Center s Soluble Imide (LaRC-SI) was discovered by accident. While researching resins and adhesives for advanced composites for high-speed aircraft, Robert Bryant, a Langley engineer, noticed that one of the polymers he was working with did not behave as predicted. After putting the compound through a two-stage controlled chemical reaction, expecting it to precipitate as a powder after the second stage, he was surprised to see that the compound remained soluble. This novel characteristic ended up making this polymer a very significant finding, eventually leading Bryant and his team to win several NASA technology awards, and an "R&D 100" award. The unique feature of this compound is the way that it lends itself to easy processing. Most polyimides (members of a group of remarkably strong and incredibly heat- and chemical-resistant polymers) require complex curing cycles before they are usable. LaRC-SI remains soluble in its final form, so no further chemical processing is required to produce final materials, like thin films and varnishes. Since producing LaRC-SI does not require complex manufacturing techniques, it has been processed into useful forms for a variety of applications, including mechanical parts, magnetic components, ceramics, adhesives, composites, flexible circuits, multilayer printed circuits, and coatings on fiber optics, wires, and metals. Bryant s team was, at the time, heavily involved with the aircraft polymer project and could not afford to further develop the polymer resin. Believing it was worth further exploration, though, he developed a plan for funding development and submitted it to Langley s chief scientist, who endorsed the experimentation. Bryant then left the high-speed civil transport project to develop LaRC-SI. The result is an extremely tough, lightweight thermoplastic that is not only solvent-resistant, but also has the ability to withstand temperature ranges from cryogenic levels to above 200 C. The thermoplastic

  16. Laser-induced porous graphene films from commercial polymers

    PubMed Central

    Lin, Jian; Peng, Zhiwei; Liu, Yuanyue; Ruiz-Zepeda, Francisco; Ye, Ruquan; Samuel, Errol L. G.; Yacaman, Miguel Jose; Yakobson, Boris I.; Tour, James M.

    2014-01-01

    Synthesis and patterning of carbon nanomaterials cost effectively is a challenge in electronic and energy storage devices. Here report a one-step, scalable approach for producing and patterning porous graphene films with 3-dimensional networks from commercial polymer films using a CO2 infrared laser. The sp3-carbon atoms are photothermally converted to sp2-carbon atoms by pulsed laser irradiation. The resulting laser-induced graphene (LIG) exhibits high electrical conductivity. The LIG can be readily patterned to interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF·cm−2 and power densities of ~9 mW·cm−2. Theoretical calculations partially suggest that enhanced capacitance may result from LIG’s unusual ultra-polycrystalline lattice of pentagon-heptagon structures. Combined with the advantage of one-step processing of LIG in air from commercial polymer sheets, which would allow the employment of a roll-to-roll manufacturing process, this technique provides a rapid route to polymer-written electronic and energy storage devices. PMID:25493446

  17. Laser-induced porous graphene films from commercial polymers.

    PubMed

    Lin, Jian; Peng, Zhiwei; Liu, Yuanyue; Ruiz-Zepeda, Francisco; Ye, Ruquan; Samuel, Errol L G; Yacaman, Miguel Jose; Yakobson, Boris I; Tour, James M

    2014-01-01

    The cost effective synthesis and patterning of carbon nanomaterials is a challenge in electronic and energy storage devices. Here we report a one-step, scalable approach for producing and patterning porous graphene films with three-dimensional networks from commercial polymer films using a CO2 infrared laser. The sp(3)-carbon atoms are photothermally converted to sp(2)-carbon atoms by pulsed laser irradiation. The resulting laser-induced graphene (LIG) exhibits high electrical conductivity. The LIG can be readily patterned to interdigitated electrodes for in-plane microsupercapacitors with specific capacitances of >4 mF cm(-2) and power densities of ~9 mW cm(-2). Theoretical calculations partially suggest that enhanced capacitance may result from LIG's unusual ultra-polycrystalline lattice of pentagon-heptagon structures. Combined with the advantage of one-step processing of LIG in air from commercial polymer sheets, which would allow the employment of a roll-to-roll manufacturing process, this technique provides a rapid route to polymer-written electronic and energy storage devices. PMID:25493446

  18. Experimental study of spray cooling performance on micro-porous coated surfaces

    NASA Astrophysics Data System (ADS)

    Kim, Yoon-Ho; Choi, Chihwan; Lee, Kyu-Jung; Han, Donghyouck

    2009-08-01

    Experiments on evaporative spray cooling of flat heaters with plain and micro-porous coated surfaces were performed in this study. Micro-porous coated surfaces were made by using the DOM [Diamond particle, Omegabond 101, Methyl-Ethyl-Keton] coating method. In pure air-jet cooling, micro-porous coating did not show heat transfer improvement over plain surface. In spray cooling, however, three different flow patterns (complete wetting, evaporative wetting and dryout) were observed on both plain and micro-porous coated surfaces. The effects of various operating conditions, such as water flow rate, particle size, and coating thickness on the micro-porous coated surface were investigated. It was found that the level of surface wetting was an important factor in determining the performance of spray cooling. The level of surface wetting depended on the balance between the amount of liquid absorbed by capillary force over porosity and the amount of liquid evaporated. A micro-porous coated surface has a very high cooling capacity, especially in the evaporative wetting zone. The liquid flow rate and coating thickness are significant factors in the evaporative wetting zone, but are not in the complete wetting zone and the dryout zone.

  19. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials.

  20. Ordered mesoporous polymers in situ coated on a stainless steel wire for a highly sensitive solid phase microextraction fibre.

    PubMed

    Zheng, Juan; Liang, Yeru; Liu, Shuqin; Ding, Yajuan; Shen, Yong; Luan, Tiangang; Zhu, Fang; Jiang, Ruifen; Wu, Dingcai; Ouyang, Gangfeng

    2015-07-21

    Development of facile and effective methods for fabrication of high-performance solid phase microextraction (SPME) fibres remains a great challenge. Herein, a new class of ordered mesoporous polymers (OMPs) in situ coated on a stainless steel wire were successfully developed and utilized as a highly sensitive and stable SPME fibre for the first time. Because of the highly ordered mesoporous structure of its OMP coating, the π-π interactions and the dispersion forces, the OMP-coated SPME fibre exhibited much better extraction properties as compared to the commercial PDMS fibre. The findings could provide a new benchmark for preparing well-defined porous materials for the SPME application.

  1. Apparatus and method for depositing coating onto porous substrate

    DOEpatents

    Isenberg, A.O.; Zymboly, G.E.

    1986-09-02

    Disclosed is an apparatus for forming a chemically vapor deposited coating on a porous substrate where oxygen from a first gaseous reactant containing a source of oxygen permeates through the pores of the substrate to react with a second gaseous reactant that is present on the other side of the substrate. The apparatus includes means for controlling the pressure and flow rate of each gaseous reactant, a manometer for measuring the difference in pressure between the gaseous reactants on each side of the substrate, and means for changing the difference in pressure between the gaseous reactants. Also disclosed is a method of detecting and closing cracks in the coating by reducing the pressure difference between the two gaseous reactants whenever the pressure difference falls suddenly after gradually rising, then again increasing the pressure difference on the two gases. The attack by the by-products of the reaction on the substrate are reduced by maintaining the flow rate of the first reactant through the pores of the substrate. 1 fig.

  2. Apparatus and method for depositing coating onto porous substrate

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is an apparatus for forming a chemically vapor deposited coating on a porous substrate where oxygen from a first gaseous reactant containing a source of oxygen permeates through the pores of the substrate to react with a second gaseous reactant that is present on the other side of the substrate. The apparatus includes means for controlling the pressure and flow rate of each gaseous reactant, a manometer for measuring the difference in pressure between the gaseous reactants on each side of the substrate, and means for changing the difference in pressure between the gaseous reactants. Also disclosed is a method of detecting and closing cracks in the coating by reducing the pressure difference between the two gaseous reactants whenever the pressure difference falls suddenly after gradually rising, then again increasing the pressure difference on the two gases. The attack by the by-products of the reaction on the substrate are reduced by maintaining the flow rate of the first reactant through the pores of the substrate.

  3. The influence of three-dimensional capillary-porous coatings on heat transfer at liquid boiling

    NASA Astrophysics Data System (ADS)

    Surtaev, A. S.; Pavlenko, A. N.; Kalita, V. I.; Kuznetsov, D. V.; Komlev, D. I.; Radyuk, A. A.; Ivannikov, A. Yu.

    2016-04-01

    The process of heat transfer at pool boiling of liquid (Freon R21) on tubes with three-dimensional plasma-deposited capillary-porous coatings of various thicknesses has been experimentally studied. Comparative analysis of experimental data showed that the heat transfer coefficient for a heater tube with a 500-μm-thick porous coating is more than twice as large as that in liquid boiling on an otherwise similar uncoated tube. At the same time, no intensification of heat exchange in the regime of bubble boiling is observed on a tube with a 100-μm-thick porous coating.

  4. Polymer coatings as separator layers for microbial fuel cell cathodes

    NASA Astrophysics Data System (ADS)

    Watson, Valerie J.; Saito, Tomonori; Hickner, Michael A.; Logan, Bruce E.

    2011-03-01

    Membrane separators reduce oxygen flux from the cathode into the anolyte in microbial fuel cells (MFCs), but water accumulation and pH gradients between the separator and cathode reduces performance. Air cathodes were spray-coated (water-facing side) with anion exchange, cation exchange, and neutral polymer coatings of different thicknesses to incorporate the separator into the cathode. The anion exchange polymer coating resulted in greater power density (1167 ± 135 mW m-2) than a cation exchange coating (439 ± 2 mW m-2). This power output was similar to that produced by a Nafion-coated cathode (1114 ± 174 mW m-2), and slightly lower than the uncoated cathode (1384 ± 82 mW m-2). Thicker coatings reduced oxygen diffusion into the electrolyte and increased coulombic efficiency (CE = 56-64%) relative to an uncoated cathode (29 ± 8%), but decreased power production (255-574 mW m-2). Electrochemical characterization of the cathodes ex situ to the MFC showed that the cathodes with the lowest charge transfer resistance and the highest oxygen reduction activity produced the most power in MFC tests. The results on hydrophilic cathode separator layers revealed a trade off between power and CE. Cathodes coated with a thin coating of anion exchange polymer show promise for controlling oxygen transfer while minimally affecting power production.

  5. Microstructures and bond strengths of plasma-sprayed hydroxyapatite coatings on porous titanium substrates.

    PubMed

    Oh, Ik-Hyun; Nomura, N; Chiba, A; Murayama, Y; Masahashi, N; Lee, Byong-Taek; Hanada, S

    2005-07-01

    Hydroxyapatite (HA) coating was carried out by plasma spraying on bulk Ti substrates and porous Ti substrates having a Young's modulus similar to that of human bone. The microstructures and bond strengths of HA coatings were investigated in this study. The HA coatings with thickness of 200-250 microm were free from cracks at interfaces between the coating and Ti substrates. XRD analysis revealed that the HA powder used for plasma spraying had a highly crystallized apatite structure, while the HA coating contained several phases other than HA. The bond strength between the HA coating and the Ti substrates evaluated by standard bonding test (ASTM C633-01) were strongly affected by the failure behavior of the HA coating. A mechanism to explain the failure is discussed in terms of surface roughness of the plasma-sprayed HA coatings on the bulk and porous Ti substrates.

  6. Hierarchically porous polymers from hyper-cross-linked block polymer precursors.

    PubMed

    Seo, Myungeun; Kim, Soobin; Oh, Jaehoon; Kim, Sun-Jung; Hillmyer, Marc A

    2015-01-21

    We report synthesis of hierarchically porous polymers (HPPs) consisting of micropores and well-defined 3D continuous mesopores by combination of hyper-cross-linking and block polymer self-assembly. Copolymerization of 4-vinylbenzyl chloride (VBzCl) with divinylbenzene (DVB) in the presence of polylactide (PLA) macro-chain-transfer agent produced a cross-linked block polymer precursor PLA-b-P(VBzCl-co-DVB) via reversible addition-fragmentation chain transfer polymerization. A nanoscopic bicontinuous morphology containing PLA and P(VBzCl-co-DVB) microdomains was obtained as a result of polymerization-induced microphase separation. While a basic treatment of the precursor selectively removed PLA to yield a reticulated mesoporous polymer, hyper-cross-linking of the precursor by FeCl3 generated micropores in the P(VBzCl-co-DVB) microdomain via Friedel-Crafts alkylation and simultaneously degraded PLA to produce the HPP containing micropores in the mesoporous framework. The mesopore size of the HPP could be precisely controlled from 6 to 15 nm by controlling the molar mass of PLA. We demonstrate acceleration in adsorption rate in the HPP compared to a hyper-cross-linked microporous polymer. PMID:25551291

  7. Does hydroxyapatite coating have no advantage over porous coating in primary total hip arthroplasty? A meta-analysis.

    PubMed

    Chen, Yun-Lin; Lin, Tiao; Liu, An; Shi, Ming-Min; Hu, Bin; Shi, Zhong-Li; Yan, Shi-Gui

    2015-01-28

    There are some arguments between the use of hydroxyapatite and porous coating. Some studies have shown that there is no difference between these two coatings in total hip arthroplasty (THA), while several other studies have shown that hydroxyapatite has advantages over the porous one. We have collected the studies in Pubmed, MEDLINE, EMBASE, and the Cochrane library from the earliest possible years to present, with the search strategy of "(HA OR hydroxyapatite) AND ((total hip arthroplasty) OR (total hip replacement)) AND (RCT* OR randomiz* OR control* OR compar* OR trial*)". The randomized controlled trials and comparative observation trials that evaluated the clinical and radiographic effects between hydroxyapatite coating and porous coating were included. Our main outcome measurements were Harris hip score (HHS) and survival, while the secondary outcome measurements were osteolysis, radiolucent lines, and polyethylene wear. Twelve RCTs and 9 comparative observation trials were included. Hydroxyapatite coating could improve the HHS (p < 0.01), reduce the incidence of thigh pain (p = 0.01), and reduce the incidence of femoral osteolysis (p = 0.01), but hydroxyapatite coating had no advantages on survival (p = 0.32), polyethylene wear (p = 0.08), and radiolucent lines (p = 0.78). Hydroxyapatite coating has shown to have an advantage over porous coating. The HHS and survival was duration-dependent-if given the sufficient duration of follow-up, hydroxyapatite coating would be better than porous coating for the survival. The properties of hydroxyapatite and the implant design had influence on thigh pain incidence, femoral osteolysis, and polyethylene wear. Thickness of 50 to 80 μm and purity larger than 90% increased the thigh pain incidence. Anatomic design had less polyethylene wear.

  8. In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers.

    PubMed

    Ghani, Milad; Frizzarin, Rejane M; Maya, Fernando; Cerdà, Víctor

    2016-07-01

    Herein we report the use of cobalt porous coordination polymers (PCP) as intermediates to prepare advanced extraction media based on layered double hydroxides (LDH) supported on melamine polymer foam. The obtained dissolvable Ni-Co LDH composite sponges can be molded and used as sorbent for the in-syringe solid-phase extraction (SPE) of phenolic acids from fruit juices. The proposed sorbent is obtained due to the surfactant-assisted self-assembly of Co(II)/imidazolate PCPs on commercially available melamine foam, followed by the in situ conversion of the PCP into the final dissolvable LDH coating. Advantageous features for SPE are obtained by using PCPs with hierarchical porosity (HPCPs). The LDH-sponge prepared using intermediate HPCPs (HLDH-sponge) is placed in the headspace of a glass syringe, enabling flow-through extraction followed by analyte elution by the dissolution of the LDH coating in acidic conditions. Three phenolic acids (gallic acid, p-hydroxybenzoic acid and caffeic acid) were extracted and quantified using high performance liquid chromatography. Using a 5mL sample volume, the obtained detection limits were 0.15-0.35μgL(-1). The proposed method for the preparation of HLDH-sponges showed a good reproducibility as observed from the intra- and inter-day RSD's, which were <10% for all analytes. The batch-to-batch reproducibility for three different batches of HLDH-sponges was 10.6-11.2%. Enrichment factors of 15-21 were obtained. The HLDH-sponges were applied satisfactorily to the determination of phenolic acids in natural and commercial fruit juices, obtaining relative recoveries among 89.7-95.3%.

  9. Porous, High Capacity Coatings for Solid Phase Microextraction by Sputtering.

    PubMed

    Diwan, Anubhav; Singh, Bhupinder; Roychowdhury, Tuhin; Yan, DanDan; Tedone, Laura; Nesterenko, Pavel N; Paull, Brett; Sevy, Eric T; Shellie, Robert A; Kaykhaii, Massoud; Linford, Matthew R

    2016-02-01

    We describe a new process for preparing porous solid phase microextraction (SPME) coatings by the sputtering of silicon onto silica fibers. The microstructure of these coatings is a function of the substrate geometry and mean free path of the silicon atoms, and the coating thickness is controlled by the sputtering time. Sputtered silicon structures on silica fibers were treated with piranha solution (a mixture of concd H2SO4 and 30% H2O2) to increase the concentration of silanol groups on their surfaces, and the nanostructures were silanized with octadecyldimethylmethoxysilane in the gas phase. The attachment of this hydrophobic ligand was confirmed by X-ray photoelectron spectroscopy and contact angle goniometry on model, planar silicon substrates. Sputtered silicon coatings adhered strongly to their surfaces, as they were able to pass the Scotch tape adhesion test. The extraction time and temperature for headspace extraction of mixtures of alkanes and alcohols on the sputtered fibers were optimized (5 min and 40 °C), and the extraction performances of SPME fibers with 1.0 or 2.0 μm of sputtered silicon were compared to those from a commercial 7 μm poly(dimethylsiloxane) (PDMS) fiber. For mixtures of alcohols, aldehydes, amines, and esters, the 2.0 μm sputtered silicon fiber yielded signals that were 3-9, 3-5, 2.5-4.5, and 1.5-2 times higher, respectively, than those of the commercial fiber. For the heavier alkanes (undecane-hexadecane), the 2.0 μm sputtered fiber yielded signals that were approximately 1.0-1.5 times higher than the commercial fiber. The sputtered fibers extracted low molecular weight analytes that were not detectable with the commercial fiber. The selectivity of the sputtered fibers appears to favor analytes that have both a hydrophobic component and hydrogen-bonding capabilities. No detectable carryover between runs was noted for the sputtered fibers. The repeatability (RSD%) for a fiber (n = 3) was less than 10% for all analytes tested

  10. COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS

    SciTech Connect

    CZECHOWICZ, DG; CASTILLO, ER; NIKROO, A

    2002-04-01

    OAK A271 COMPOSITION AND STRUCTURAL STUDIES OF STRONG GLOW DISCHARGE POLYMER COATINGS. An investigation of the chemical composition and structure of strong glow discharge (GDP) polymer shells made for cryogenic experiments at OMEGA is described. The investigation was carried out using combustion and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The strongest coatings were observed to have the lowest hydrogen content or hydrogen/carbon H/C ratio, whereas the weakest coatings had the highest hydrogen content or H/C ratio. Chemical composition results from combustion were used to complement FTIR analysis to determine the relative hydrogen content of as-fabricated coatings. Good agreement was observed between composition results obtained from combustion and FTIR analysis. FTIR analysis of coating structures showed the strongest coatings to have less terminal methyl groups and a more double bond or olefinic structure. Strong GDP coatings that were aged in air react more with oxygen and moisture than standard GDP coatings. In addition to a more olefinic structure, there may also be more free-radial sites present in strong GDP coatings, which leads to greater oxygen uptake.

  11. Microstructure and Properties of Porous Abradable Alumina Coatings Flame-Sprayed with Semi-molten Particles

    NASA Astrophysics Data System (ADS)

    Li, Chang-Jiu; Zou, Jiao; Huo, Hui-Bin; Yao, Jian-Tao; Yang, Guan-Jun

    2016-01-01

    High-efficiency gas turbines require high-temperature sealing by use of abradable porous ceramic coatings to increase engine efficiency. In this study, porous Al2O3 coatings were deposited by flame spraying; the coatings were applied in a semi-molten state by controlled melting of the sprayed powder particles. The effects of the degree of melting of the sprayed particles, which depends on spraying conditions, on coating microstructure and porosity were investigated. The degree of melting of the sprayed particles was characterized by use of 3D confocal laser microscopy. The porosity of the coating was estimated by image analysis. The results showed that the degree of melting of alumina particles can be changed from 70 to 30%, and thus coating porosity can be increased from 30% up to over 70%. The standard hardness test yielded no useful data for porous coatings deposited by use of sprayed particles with a degree of melting <60%, and a hardness of 32-75 HR15Y for Al2O3 coatings deposited by use of sprayed particles with a degree of melting >60%. Pin-on-disk abrasion tests, performed at room temperature by use of an Inconel 738 (IN738) nickel-based superalloy pin with a spherical tip 5 mm in diameter, were conducted on the porous alumina coating to evaluate its abrasion behavior. It was found that for coatings of hardness <32 HR15Y and porosity >40% the wear weight loss of the IN738 pin was negligible despite the high rate of wear of the coating. It is evident that flame-sprayed porous alumina coatings of high porosity prepared by this approach have potential for use as abradable coatings for gas turbines operating at high temperatures.

  12. Corrosion resistant coatings from conducting polymers

    SciTech Connect

    Wrobleski, D.A.; Benicewicz, B.C.; Thompson, K.G.; Bryan, C.J.

    1993-12-01

    Cr-based corrosion resistant undercoatings will have to be replaced because of environmental and health concerns. A coating system of a conducting polyaniline primer layer topcoated with epoxy or polyurethane, is being evaluated for corrosion resistance on mild steel in 0.1 M HCl or in a marine setting. Results of both laboratory and Beach Site testing indicate that this coating is very effective; even when the coatings are scratched to expose bare metal, the coated samples show very little signs of corrosion in the exposed area. 3 figs, 6 refs.

  13. Photocatalytic TiO2 nanoparticles enhanced polymer antimicrobial coating

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojin; Yang, Zhendi; Tay, See Leng; Gao, Wei

    2014-01-01

    Copper (Cu) containing coatings can provide sustainable protection against microbial contamination. However, metallic Cu coatings have not been widely used due to the relatively high cost, poor corrosion resistance, and low compatibility with non-metal substrates. Titanium dioxide (TiO2) possesses antibacterial functions by its photocatalytic properties which can destroy bacteria or suppress their reproduction. TiO2 also has the function of improving the mechanical properties through particle dispersion strengthening. We have recently developed an innovative polymer based coating system containing fine particles of Cu and TiO2 nanoparticles. These polymer based coatings simultaneously display excellent antimicrobial and good mechanical properties. The results showed that the addition of TiO2 has improved the antimicrobial property under sunlight, which provides extended applications in outdoor environment. The elimination of 106 bacterial by contacting the coatings without TiO2 needs 5 h, while contacting with the Cu/TiO2- 1 wt.% TiO2 took only 2 h to kill the same amount of bacteria. The coatings also presented enhanced hardness and wear resistance after adding TiO2. The width of wear track decreased from 270 μm of the Cu-polymer coating to 206 μm of Cu/TiO2-polymer coatings with 10 wt.% TiO2. Synchrotron Infrared Microscopy was used to in-situ and in-vivo study the bacteria killing process at the molecular level. The real-time chemical images of bacterial activities showed that the bacterial cell membranes were damaged by the Cu and TiO2 containing coatings

  14. Phosphonium salt incorporated hypercrosslinked porous polymers for CO2 capture and conversion.

    PubMed

    Wang, Jinquan; Wei Yang, Jason Gan; Yi, Guangshun; Zhang, Yugen

    2015-11-01

    Various novel hypercrosslinked porous polymers with phosphonium salt incorporated into their networks were developed. These porous materials have high BET surface areas (up to 1168 m(2) g(-1)) and can be used to selectively capture CO2 and efficiently convert CO2 into cyclic carbonates.

  15. Computational Strategies for Polymer Coated Steel Sheet Forming Simulations

    SciTech Connect

    Owen, D. R. J.; Andrade Pires, F. M.; Dutko, M.

    2007-05-17

    This contribution discusses current issues involved in the numerical simulation of large scale industrial forming processes that employ polymer coated steel sheet. The need for rigorous consideration of both theoretical and algorithmic issues is emphasized, particularly in relation to the computational treatment of finite strain deformation of polymer coated steel sheet in the presence of internal degradation. Other issues relevant to the effective treatment of the problem, including the modelling of frictional contact between the work piece and tools, low order element technology capable of dealing with plastic incompressibility and thermo mechanical coupling, are also addressed. The suitability of the overall approach is illustrated by the solution of an industrially relevant problem.

  16. Hydrophobic and oleophobic coating technologies for polymer optics

    NASA Astrophysics Data System (ADS)

    Fiore, Daniel; Wilson, Brian

    2012-10-01

    With the array of thin-film coated polymer based optics currently in use within the optoelectronic and photonic industries the need for finger print reducing coatings has drastically increased. Due to the peak-to-valley micro structure of thinfilms fingerprint oils and other airborne particulate are prone to create disruptive optical interference within films, which negate their overall effectiveness in transmitting light and or data. Our approach in combating this issue is a deposition process that is capable of being deposited on numerous injection-molded and cast sheet polymer formulations to help reduce the appearance of fingerprint oils on optically and cosmetically critical components. In many cases, such vacuum-applied coatings improve the optical performance of polymers by improving the visual acuity of the display through the drastic reduction of fingerprint oils and airborne particulate. This presentation will focus on the full spectrum of thin-film coatings that are currently being deployed to polymer optics in order to combat smudging and fingerprints on polymer optics and displays.

  17. Doubly renewable cellulose polymer for water-based coatings.

    PubMed

    Tristram, Cameron J; Mason, Jennifer M; Williams, D Bradley G; Hinkley, Simon F R

    2015-01-01

    A levulinoyl ester-containing cellulose polymer is introduced as a waterborne coating. Incorporation of the biomass-derived levulinic acid proceeds via an unexpected intermediate and provides the unusual feature of a cellulose derivative that is readily chemically modified. The levulinoyl-cellulose ester could be chemically manipulated, allowing it to be dispersed to generate a waterborne hydrocolloid latex. This was capable of film-formation at room temperature, and was formulated for use as a coating of high-renewable content.

  18. Functioning of nanovalves on polymer coated mesoporous silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dong, Juyao; Xue, Min; Zink, Jeffrey I.

    2013-10-01

    Nanomachines activated by a pH change can be combined with polymer coatings on mesoporous silica nanoparticles to produce a new generation of nanoparticles for drug delivery that exhibits properties of both components. The nanovalves can trap cargos inside the mesoporous silica nanoparticles without premature release and only respond to specific stimuli, resulting in a high local concentration of drugs at the site of release. The polymer surface coatings can increase the cellular uptake, avoid the reticuloendothelial uptake, provide protected space for storing siRNA, and enhance the biodistribution of nanoparticles. Two nanovalve-polymer systems are designed and their successful assembly is confirmed by solid state NMR and thermogravimetric analysis. The fluorescence spectroscopy results demonstrate that the controlled release functions of the nanomachines in both of the systems are not hindered by the polymer surface coatings. These new multifunctional nanoparticles combining stimulated molecule release together with the functionality provided by the polymers produce enhanced biological properties and multi-task drug delivery applications.Nanomachines activated by a pH change can be combined with polymer coatings on mesoporous silica nanoparticles to produce a new generation of nanoparticles for drug delivery that exhibits properties of both components. The nanovalves can trap cargos inside the mesoporous silica nanoparticles without premature release and only respond to specific stimuli, resulting in a high local concentration of drugs at the site of release. The polymer surface coatings can increase the cellular uptake, avoid the reticuloendothelial uptake, provide protected space for storing siRNA, and enhance the biodistribution of nanoparticles. Two nanovalve-polymer systems are designed and their successful assembly is confirmed by solid state NMR and thermogravimetric analysis. The fluorescence spectroscopy results demonstrate that the controlled release

  19. Synthesis design of polar polymers and nanostructured porous silica

    NASA Astrophysics Data System (ADS)

    Schmidt-Winkel, Patrick Niels

    Nanostructured and functional materials have attracted a great deal of attention because of their importance for scientific and technological progress in our society. We have proposed a novel concept for functional, polar organic polymers that is based on the ferrielectric ordering of electric dipoles along the polymer backbone. In this context, a polar odd-numbered aliphatic polysulfone and low-molecular weight model compounds possessing remarkable thermal stability, degrading at 100°C above previously prepared polysulfones, have been synthesized and characterized. Mesoporous molecular sieves with uniform pores ranging from 2--50 nm in size are promising materials for catalysis, host-guest chemistry, separation, immobilization, encapsulation, insulation, etc. We have described a novel synthesis method to produce hierarchically ordered mesoporous silica in which the ordering on meso- to macroscopic length scales is controlled and significantly improved in one step. In search of a simple, efficient procedure to synthesize porous materials with ultralarge mesopores (30--50 nm), we have discovered microemulsions as novel colloidal templates for mesostructured cellular foams (MCFs). MCFs represent a new class of materials with well-defined, adjustable, and continuous ultralarge mesopores (9--42 nm). The microemulsion templating route has opened up new possibilities to engineer mesoporous systems for applications such as catalyst supports where mass transport is often limited by narrow pore openings. The microemulsion templates used to prepare MCF materials have been characterized by small-angle neutron scattering (SANS) studies. The microemulsion droplet size increases linearly with the cube root of the oil concentration, ethanol is required as cosurfactant, and the temperature behavior of the microemulsions is similar to the pure surfactant solution. In situ SANS studies of acid-synthesized SBA-15- and MCF-type silica have shown that silica condensation is fast early

  20. Multi-source/component spray coating for polymer solar cells.

    PubMed

    Chen, Li-Min; Hong, Ziruo; Kwan, Wei Lek; Lu, Cheng-Hsueh; Lai, Yi-Feng; Lei, Bao; Liu, Chuan-Pu; Yang, Yang

    2010-08-24

    A multi-source/component spray coating process to fabricate the photoactive layers in polymer solar cells is demonstrated. Well-defined domains consisting of polymer:fullerene heterojunctions are constructed in ambient conditions using an alternating spray deposition method. This approach preserves the integrity of the layer morphology while forming an interpenetrating donor (D)/acceptor (A) network to facilitate charge transport. The formation of multi-component films without the prerequisite of a common solvent overcomes the limitations in conventional solution processes for polymer solar cells and enables us to process a wide spectrum of materials. Polymer solar cells based on poly(3-hexylthiophene):[6,6]-phenyl C(61) butyric acid methyl ester spray-coated using this alternating deposition method deliver a power conversion efficiency of 2.8%, which is comparable to their blend solution counterparts. More importantly, this approach offers the versatility to independently select the optimal solvents for the donor and acceptor materials that will deliver well-ordered nanodomains. This method also allows the direct stacking of multiple photoactive polymers with controllable absorption in a tandem structure even without an interconnecting junction layer. The introduction of multiple photoactive materials through multisource/component spray coating offers structural flexibility and tenability of the photoresponse for future polymer solar cell applications. PMID:20690608

  1. In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor.

    PubMed

    Yang, Yajie; Li, Shibin; Yang, Wenyao; Yuan, Wentao; Xu, Jianhua; Jiang, Yadong

    2014-08-27

    Porous conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) nanocomposite prepared on reduced graphene oxide (RGO) film was used as efficient chemiresistor sensor platform for NO2 detection. The comparable electrical performance between RGO and porous PEDOT nanostructure, the large surface area and opening porous structure of this RGO/porous PEDOT nanocomposite resulted in excellent synergistic effect. The gas sensing performance revealed that, in contrast to bare RGO, the RGO/porous PEDOT exhibited the enhanced sensitivity (2 orders of magnitude) as well as response and recovery performance. As a result of the highly uniform distribution of PEDOT porous network and excellent synergetic effect between RGO and porous PEDOT, this nanocomposite based sensor exhibited higher selectivity to NO2 in contrast to other oxidant analyte gases, e.g., HCl, H2S and SO2. PMID:25073562

  2. Synthesis of a further improved porous polymer for the separation of nitrogen, oxygen, argon, and carbon monoxide by gas chromatography

    NASA Technical Reports Server (NTRS)

    Pollock, G. E.

    1986-01-01

    A further improvement has been made in the synthesis of an N-type porous polymer for the separation of permanent gases. Changing the ratios of reactants and diluting the Hi-DVB with styrene led to a porous polymer gas chromatographic packing which is superior to commercial products and to the author's own previously reported custom-made polymer.

  3. Recognition of Bread Key Odorants by Using Polymer Coated QCMs

    NASA Astrophysics Data System (ADS)

    Nakai, Takashi; Kouno, Shinji; Hiruma, Naoya; Shuzo, Masaki; Delaunay, Jean-Jacques; Yamada, Ichiro

    Polyisobutylene (PIB) polymer and methylphenylsiloxane (25%) diphenylsiloxane (75%) copolymer (OV25) were coated on Quartz Crystal Microbalance (QCM) sensors and used in recognition of bread key odorants. Representative compounds of key roasty odorants of bread were taken as 3-acetylpyridine and benzaldehyde, and representative key fatty odorants were hexanal and (E)-2-nonenal. Both OV25- and PIB-coated QCM fabricated sensors could detect concentration as low as 0.9 ppm of 3-acetylpyridine and 1.2 ppm of (E)-2-nonenal. The sensitivity to 3-acetylpyridine of the OV25-coated QCM was about 1000 times higher than that of ethanol, the major interference compound in bread key odorant analysis. Further, the OV25-coated QCM response was 5-6 times and 2-3 times larger than that of the PIB-coated QCM when exposed to roasty odorants and to fatty odorants, respectively. The difference in sensitivity of the OV25- and PIB-coated QCMs we fabricated made possible to discriminate roasty from fatty odorants as was evidenced by the odor recognition map representing the frequency shifts of the OV25-coated QCM against the frequency shift of the PIB-coated QCM. In conclusion, we found that the combination of an OV25-coated QCM and a PIB-coated QCM was successful in discriminating roasty odorants from fatty odorants at the ppm level.

  4. Polyaniline: a conductive polymer coating for durable nanospray emitters

    PubMed

    Maziarz; Lorenz; White; Wood

    2000-07-01

    Despite the tremendous sensitivity and lower sample requirements for nanospray vs. conventional electrospray, metallized nanospray emitters have suffered from one of two problems: low mechanical stability (leading to emitter failure) or lengthy, tedious production methods. Here, we describe a simple alternative to metallized tips using polyaniline (PANI), a synthetic polymer well known for its high conductivity, anticorrosion properties, antistatic properties, and mechanical stability. A simple method for coating borosilicate emitters (1.2 mm o.d.) pulled to fine tapers (4 +/- 1 microm) with water-soluble and xylene-soluble dispersions of conductive polyaniline (which allows for electrical contact at the emitter outlet) is described. The polyaniline-coated emitters show high durability and are resistant to electrical discharge, likely because of the thick (yet optically transparent) coatings; a single emitter can be used over a period of days for multiple samples with no visible indication of the destruction of the polyaniline coating. The optical transparency of the coating also allows the user to visualize the sample plug loaded into the emitter. Examples of nanospray using coatings of the water-soluble and xylene-soluble polyaniline dispersions are given. A comparison of PANI-coated and gold-coated nanospray emitters to conventional electrospray ionization (ESI) show that PANI-coated emitters provide similar enhanced sensitivity that gold-coated emitters exhibit vs. conventional ESI.

  5. Design of nanocomposite polymer coatings for MEMS applications

    NASA Astrophysics Data System (ADS)

    Julthongpiput, Duangrut

    The recent evolution in microelectronics of combining electrical and mechanical functions has brought about the exciting field of microelectromechanical system (MEMS). As the dimensions of the components shrink, adhesion, stiction, friction, and wear become a significant technological barrier for the successful development of durable microdevices. In this thesis, we investigate wear-resistant, nanocomposite, molecular coatings from advanced polymers with controlled nanomechanical and nanotribological properties from the prospective of long-term applications for MEMS. We discuss fundamentals governing the mechanical and tribological properties on a micro scale associated with the morphology and microstructure of these molecular coatings. In order to fabricate wear-resistant and superelastic molecular coatings, several types of the molecular designs are proposed and tested in this work. All designs are based on chemical attachment of the polymer layers onto a functionalized silicon surface. We focus on developing two different kinds of molecular coatings: reinforced elastomeric layers from grafted block-copolymers and polymer brush layers grown by the "grafted to" technique. A more complicated design included bilayered nanocomposite coatings consisting of a hard polymer layer placed on the top of an elastomeric layer to regulate surface adhesion and to increase surface stiffness of nanocomposite bilayers. Another design incorporates a paraffinic oil component to assure the presence of highly mobile molecules inside of the elastomeric phase. This oily fraction can be a source of an instant supply of mobile lubricant to a deformed contact area, thus providing potential self-lubrication and self-healing mechanisms for surface areas affected by excessive deformation. We observed that the interfacial assemblies, as presented in this paper, exhibited very low friction coefficient, low stiction, and better wear stability as compared to other, non-structured, non

  6. In vitro and in vivo characterization of porous poly-l-lactic acid coatings for subcutaneously implanted glucose sensors

    PubMed Central

    Koschwanez, H. E.; Yap, F. Y.; Klitzman, B.; Reichert, W. M.

    2014-01-01

    The purpose of this study was to test the hypothesis that porous poly-l-lactic acid (PLLA) sensor coatings reduce fibrosis and promote blood microvessel formation in tissue adjacent to the sensor surface. Porous PLLA coatings were produced using ammonium bicarbonate as the gas foaming/salt leaching agent, and deployed on functional and nonfunctional sensors. The porous coatings minimally affected sensor accuracy and response rate in vitro. Three-week subcutaneous rat studies of nonfunctional glucose sensors showed the anticipated effect of porous coatings enhancing vascularity and decreasing collagen deposition. In contrast, percutaneous functional sensors with and without porous coatings showed no significant difference in terms of histology or sensor response. In spite of the observation that texturing increases the vascularity of the tissue that surrounds implanted sensors, other factors such as the additional mechanical stresses imposed by percutaneous tethering may override the beneficial effects of the porous coatings. PMID:18200540

  7. Protective coatings for high-temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Harding, David R.; Sutter, James K.; Papadopoulos, Demetrios S.

    1993-01-01

    Plasma-enhanced chemical vapor deposition was used to deposit silicon nitride on graphite-fiber-reinforced polyimide composites to protect against oxidation at elevated temperatures. The adhesion and integrity of the coating were evaluated by isothermal aging (371 C for 500 hr) and thermal cycling. The amorphous silicon nitride (a-SiN:H) coating could withstand stresses ranging from approximately 0.18 GPa (tensile) to -1.6 GPa (compressive) and provided a 30 to 80 percent reduction in oxidation-induced weight loss. The major factor influencing the effectiveness of a-SiN:H as a barrier coating against oxidation is the surface finish of the polymer composite.

  8. Long-lasting Antifouling Coating from Multi-Armed Polymer

    PubMed Central

    Mizrahi, Boaz; Khoo, Xiaojuan; Chaing, Homer H.; Sher, Katalina J.; Feldman, Rose G.; Lee, Jung-Jae; Irusta, Silvia; Kohane, Daniel S.

    2013-01-01

    We describe a new antifouling surface coating, based on aggregation of a short amphiphilic four-armed PEG-dopamine polymer into particles, and on surface binding by catechol chemistry. An unbroken and smooth polymeric coating layer with an average thickness of approximately 4 microns was formed on top of titanium oxide surfaces by a single step reaction. Coatings conferred excellent resistance to protein adhesion. Cell attachment was completely prevented for at least eight weeks, although the membranes themselves did not appear to be intrinsically cytotoxic. When linear PEG or four-armed PEG of higher molecular weight were used, the resulting coatings were inferior in thickness and in preventing protein adhesion. This coating method has potential applicability for biomedical devices susceptible to fouling after implantation. PMID:23855875

  9. Polymer-coated long-circulating microparticulate pharmaceuticals.

    PubMed

    Torchilin, V P

    1998-01-01

    The field of long-circulating microparticulate drug carriers is reviewed. The protective effect of certain polymers including poly(ethylene glycol) on nanoparticulate carriers (liposomes, nanoparticles, micelles) is considered in terms of statistical behaviour of macromolecules in solution. Using liposomes as an example, the mechanism is discussed assuming that surface-grafted chains of flexible and hydrophilic polymers form dense 'conformational clouds' preventing other macromolecules from interaction with the surface even at low concentrations of the protecting polymer. The scale of the protective effect is interpreted as the balance between the energy of the hydrophobic anchor interaction with the liposome membrane core or with the particle surface and the energy of the polymer chain free motion in solution. The possibility of using protecting polymers other than poly(ethylene glycol) is analysed, and examples of such polymers are given, based on polymer-coated liposome biodistribution data. General requirements for protecting polymers are formulated. Sterically protected nanoparticles and micelles are considered, and differences in steric protection of liposomes and particles are discussed. The problem of the preparation of drug carriers combining longevity and targetability is analysed. The biological consequences of steric protection of drug carriers with surface-grafted polymers are discussed, and possible clinical applications for long-circulating pharmaceutical carriers are considered.

  10. Porous devices derived from co-continuous polymer blends as a route for controlled drug release.

    PubMed

    Salehi, Pouneh; Sarazin, Pierre; Favis, Basil D

    2008-04-01

    In this study we examine the release profile of bovine serum albumin (BSA) from a porous polymer matrix derived from a co-continuous polymer blend. The porosity is generated through the selective extraction of one of the continuous phases. This is the first study to examine the approach of using morphologically tailored co-continuous polymer blends as a template for generating porous polymer materials for use in controlled release. A method for the preparation of polymeric capsules is introduced, and the effect of matrix pore size and surface area on the BSA release profile is investigated. Furthermore, the effect of surface charge on release is examined by surface modification of the porous substrate using layer-by-layer deposition techniques. Synthetic, nonerodible polymer, high-density polyethylene (HDPE), was used as a model substrate prepared by melt blending with two different styrene-ethylene-butylene copolymers. Blends with HDPE allow for the preparation of porous substrates with small pore sizes (300 and 600 nm). A blend of polylactide (PLA) and polystyrene was also used to prepare porous PLA with a larger pore size (1.5 microm). The extents of interconnectivity, surface area, and pore dimension of the prepared porous substrates were examined via gravimetric solvent extraction, BET nitrogen adsorption, mercury porosimetry, and image analysis of scanning electron microscopy micrographs. With a loading protocol into the porous HDPE and PLA involving the alternate application of pressure and vacuum, it is shown that virtually the entire porous network was accessible to BSA loading, and loading efficiencies of between 80% and 96% were obtained depending on the pore size of the carrier and the applied pressure. The release profile of BSA from the microporous structure was monitored by UV spectrophotometry. The influence of pore size, surface area, surface charge, and number of deposited layers is demonstrated. It is shown that an effective closed-cell structure

  11. Thermal Protective Coating for High Temperature Polymer Composites

    NASA Technical Reports Server (NTRS)

    Barron, Andrew R.

    1999-01-01

    The central theme of this research is the application of carboxylate-alumoxane nanoparticles as precursors to thermally protective coatings for high temperature polymer composites. In addition, we will investigate the application of carboxylate-alumoxane nanoparticle as a component to polymer composites. The objective of this research was the high temperature protection of polymer composites via novel chemistry. The significance of this research is the development of a low cost and highly flexible synthetic methodology, with a compatible processing technique, for the fabrication of high temperature polymer composites. We proposed to accomplish this broad goal through the use of a class of ceramic precursor material, alumoxanes. Alumoxanes are nano-particles with a boehmite-like structure and an organic periphery. The technical goals of this program are to prepare and evaluate water soluble carboxylate-alumoxane for the preparation of ceramic coatings on polymer substrates. Our proposed approach is attractive since proof of concept has been demonstrated under the NRA 96-LeRC-1 Technology for Advanced High Temperature Gas Turbine Engines, HITEMP Program. For example, carbon and Kevlar(tm) fibers and matting have been successfully coated with ceramic thermally protective layers.

  12. Hierarchical polymer coating for optimizing the antifouling and bactericidal efficacies.

    PubMed

    Yan, Shunjie; Song, Lingjie; Li, Zhihong; Luan, Shifang; Shi, Hengchong; Xin, Zhirong; Li, Shenghai; Yang, Yuming; Yin, Jinghua

    2016-10-01

    The bacteria-repellent and bactericidal functionalities in a single system are generally need to be carefully optimized in order to obtain the highest antibacterial performance. In this study, the controlled SI-PIMP strategy was developed for creating hierarchical polymer brushes possessing the bacteria-repellent and bactericidal functionalities. To obtain a bactericidal surface with minimal interference to its nonfouling property, optimization studies were conducted by facilely tailoring the surface density of the quaternary ammonium compound moieties through control over the monomer concentration. An optimal hierarchical polymer coating showed potent protein and bacteria repellence as well as certain bactericidal property. The longlasting antibacterial performance was also achieved due to the good balance between the dual functionalities. The tenability of the hierarchical polymer coating is applicable to surface chemistries for biosensors, molecular imaging, and biomedical applications.

  13. Hierarchical polymer coating for optimizing the antifouling and bactericidal efficacies.

    PubMed

    Yan, Shunjie; Song, Lingjie; Li, Zhihong; Luan, Shifang; Shi, Hengchong; Xin, Zhirong; Li, Shenghai; Yang, Yuming; Yin, Jinghua

    2016-10-01

    The bacteria-repellent and bactericidal functionalities in a single system are generally need to be carefully optimized in order to obtain the highest antibacterial performance. In this study, the controlled SI-PIMP strategy was developed for creating hierarchical polymer brushes possessing the bacteria-repellent and bactericidal functionalities. To obtain a bactericidal surface with minimal interference to its nonfouling property, optimization studies were conducted by facilely tailoring the surface density of the quaternary ammonium compound moieties through control over the monomer concentration. An optimal hierarchical polymer coating showed potent protein and bacteria repellence as well as certain bactericidal property. The longlasting antibacterial performance was also achieved due to the good balance between the dual functionalities. The tenability of the hierarchical polymer coating is applicable to surface chemistries for biosensors, molecular imaging, and biomedical applications. PMID:27363527

  14. ATR-FTIR as a thickness measurement technique for hydrated polymer-on-polymer coatings.

    PubMed

    Kane, Sheryl R; Ashby, Paul D; Pruitt, Lisa A

    2009-11-01

    Hydrated polymer coatings on polymer substrates are common for many biomedical applications, such as tissue engineering constructs, contact lenses, and catheters. The thickness of the coatings can affect the mechanical behavior of the systems and the cellular response, but measuring the coating thickness can be quite challenging using conventional methods. We propose a new method, that is, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to determine the relative thickness, combined with atomic force microscopy to calibrate the ATR-FTIR measurements. This technique was successfully employed to determine the hydrated thickness of a series of crosslinked tetraglyme coatings on ultrahigh molecular weight polyethylene substrates intended to reduce wear of acetabular cups in total hip replacements. The hydrated coatings ranged from 30 to 200 nm thick and were accurately measured despite the relatively high root-mean-square (RMS) roughness of the substrates, 20-35 nm (peak-to-peak roughness 55-100 nm). The calibrated ATR-FTIR technique is a promising new method for measuring the thickness of many other polymer-on-polymer and hydrated coatings.

  15. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior.

    PubMed

    Zhang, Sheng; Cheng, Xian; Yao, Yao; Wei, Yehui; Han, Changjun; Shi, Yusheng; Wei, Qingsong; Zhang, Zhen

    2015-08-01

    Nb, an expensive and refractory element with good wear resistance and biocompatibility, is gaining more attention as a new metallic biomaterial. However, the high price of the raw material, as well as the high manufacturing costs because of Nb's strong oxygen affinity and high melting point have limited the widespread use of Nb and its compounds. To overcome these disadvantages, porous Nb coatings of various thicknesses were fabricated on Ti substrate via selective laser melting (SLM), which is a 3D printing technique that uses computer-controlled high-power laser to melt the metal. The morphology and microstructure of the porous Nb coatings, which had pores ranging from 15 to 50 μm in size, were characterized with scanning electron microscopy (SEM). The average hardness of the coating, which was measured with the linear intercept method, was 392±37 HV. In vitro tests of the porous Nb coating which was monitored with SEM, immunofluorescence, and CCK-8 counts of cells, exhibited excellent cell morphology, attachment, and growth. The simulated body fluid test also proved the bioactivity of the Nb coating. Therefore, these new porous Nb coatings could potentially be used for enhanced early biological fixation to bone tissue. In addition, this study has shown that SLM technique could be used to fabricate coatings with individually tailored shapes and/or porosities from group IVB and VB biomedical metals and their alloys on stainless steel, Co-Cr, and other traditional biomedical materials without wasting raw materials. PMID:26042690

  16. Porous niobium coatings fabricated with selective laser melting on titanium substrates: Preparation, characterization, and cell behavior.

    PubMed

    Zhang, Sheng; Cheng, Xian; Yao, Yao; Wei, Yehui; Han, Changjun; Shi, Yusheng; Wei, Qingsong; Zhang, Zhen

    2015-08-01

    Nb, an expensive and refractory element with good wear resistance and biocompatibility, is gaining more attention as a new metallic biomaterial. However, the high price of the raw material, as well as the high manufacturing costs because of Nb's strong oxygen affinity and high melting point have limited the widespread use of Nb and its compounds. To overcome these disadvantages, porous Nb coatings of various thicknesses were fabricated on Ti substrate via selective laser melting (SLM), which is a 3D printing technique that uses computer-controlled high-power laser to melt the metal. The morphology and microstructure of the porous Nb coatings, which had pores ranging from 15 to 50 μm in size, were characterized with scanning electron microscopy (SEM). The average hardness of the coating, which was measured with the linear intercept method, was 392±37 HV. In vitro tests of the porous Nb coating which was monitored with SEM, immunofluorescence, and CCK-8 counts of cells, exhibited excellent cell morphology, attachment, and growth. The simulated body fluid test also proved the bioactivity of the Nb coating. Therefore, these new porous Nb coatings could potentially be used for enhanced early biological fixation to bone tissue. In addition, this study has shown that SLM technique could be used to fabricate coatings with individually tailored shapes and/or porosities from group IVB and VB biomedical metals and their alloys on stainless steel, Co-Cr, and other traditional biomedical materials without wasting raw materials.

  17. Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants

    NASA Astrophysics Data System (ADS)

    Lindahl, Carl; Xia, Wei; Engqvist, Håkan; Snis, Anders; Lausmaa, Jukka; Palmquist, Anders

    2015-10-01

    The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca2+ in sealed plastic bottles, kept at 60 °C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300-500 nm. Cross-section imaging showed a thickness of 300-500 nm. In addition, dissolution tests in Tris-HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.

  18. Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface.

    PubMed

    Bedair, Tarek M; Cho, Youngjin; Joung, Yoon Ki; Han, Dong Keun

    2014-10-01

    Metal-based drug-eluting stents (DESs) have severe drawbacks such as peeling-off and cracking of the coated polymer. To prevent the fracture of polymer-coated layer and improve the durability of DES, poly(l-lactide) (PLLA) brushes were synthesized onto cobalt-chromium (Co-Cr or CC) surface through atom transfer radical polymerization (ATRP) of 2-hydroxyethylmethacrylate (HEMA) followed by surface-initiated ring opening polymerization (SI-ROP) of l-lactide. The polymer brushes were then characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR), water contact angle, ellipsometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All of the unmodified and modified Co-Cr surfaces were coated with a matrix of poly(d,l-lactide) (PDLLA) and sirolimus (SRL). The in vitro drug release profile was measured for 70 days. The PLLA-modified Co-Cr showed a biphasic release pattern in the initial burst followed by a slow release. On the other hand, the unmodified Co-Cr showed fast drug release and detachment of the coated polymer layer due to the instability of the polymer layer on Co-Cr surface. In comparison, the PLLA-modified Co-Cr preserved a uniform coating without detachment even after 6 weeks of degradation test. The platelet morphology and low density of platelet adhered on the modified layer and the SRL-in-PDLLA coated Co-Cr surfaces demonstrated that these samples would be blood compatible. Therefore, the introduction of PLLA brush onto Co-Cr surface is proved to dramatically improve the durability of the coating layer, and it is a promising strategy to prevent the coating defects found in DESs. PMID:25200098

  19. Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface.

    PubMed

    Bedair, Tarek M; Cho, Youngjin; Joung, Yoon Ki; Han, Dong Keun

    2014-10-01

    Metal-based drug-eluting stents (DESs) have severe drawbacks such as peeling-off and cracking of the coated polymer. To prevent the fracture of polymer-coated layer and improve the durability of DES, poly(l-lactide) (PLLA) brushes were synthesized onto cobalt-chromium (Co-Cr or CC) surface through atom transfer radical polymerization (ATRP) of 2-hydroxyethylmethacrylate (HEMA) followed by surface-initiated ring opening polymerization (SI-ROP) of l-lactide. The polymer brushes were then characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR), water contact angle, ellipsometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All of the unmodified and modified Co-Cr surfaces were coated with a matrix of poly(d,l-lactide) (PDLLA) and sirolimus (SRL). The in vitro drug release profile was measured for 70 days. The PLLA-modified Co-Cr showed a biphasic release pattern in the initial burst followed by a slow release. On the other hand, the unmodified Co-Cr showed fast drug release and detachment of the coated polymer layer due to the instability of the polymer layer on Co-Cr surface. In comparison, the PLLA-modified Co-Cr preserved a uniform coating without detachment even after 6 weeks of degradation test. The platelet morphology and low density of platelet adhered on the modified layer and the SRL-in-PDLLA coated Co-Cr surfaces demonstrated that these samples would be blood compatible. Therefore, the introduction of PLLA brush onto Co-Cr surface is proved to dramatically improve the durability of the coating layer, and it is a promising strategy to prevent the coating defects found in DESs.

  20. Metallated porphyrin based porous organic polymers as efficient electrocatalysts

    NASA Astrophysics Data System (ADS)

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-10-01

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm-2) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm-2). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e- pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system.Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(ii) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ~100% constant ORR current over 50 000 s in both

  1. Simultaneous sorption and mechanical entrapment during polymer flow through porous media

    NASA Astrophysics Data System (ADS)

    Farajzadeh, R.; Bedrikovetsky, P.; Lotfollahi, M.; Lake, L. W.

    2016-03-01

    Physical adsorption and mechanical entrapment are two major causes of polymer retention in porous media. Physical adsorption is considered an equilibrium process and is often modeled by assuming a Langmuir isotherm. The outcome is a steady state pressure response because the permeability reduction is also accounted for by adsorption. However, some experimental data show gradual increase of pressure with time, implying that polymer retention is a time-dependent process. We discuss simultaneous effect of sorption and mechanical entrapment on the polymer retention in porous media. An exact solution for 1-D flow problem for the case of constant filtration coefficient and Langmuir-sorption isotherm, including explicit formulae for breakthrough concentration and pressure drop across the core is derived. The general model with a varying filtration coefficient was successfully matched with experimental data confirming the occurrence of simultaneous sorption with deep-bed filtration during polymer flow in porous media. In the absence of mechanical entrapment, the physical adsorption causes delay in the polymer front and does not affect the polymer concentration behind the front. Addition of mechanical entrapment results in slow recovery of the injected concentration at the outlet (for a varying filtration coefficient) or reaching to a steady state concentration, which is only a fraction of the injected concentration (for a constant filtration coefficient). Accurate assessment and quantification of the polymer retention requires both pressure and effluent concentration data at the outlet of the porous medium.

  2. Annealed perfluorinated cation exchange polymers for corrosion resistant coatings

    SciTech Connect

    Kinlen, P.J.; Silverman, D.C. )

    1993-11-01

    Casting and annealing a perfluorinated cation exchange (Nafion) polymer onto aluminum or 316SS results in a system which inhibits pitting and crevice corrosion that normally occurs in the presence of chloride ions and dissolved oxygen. This inhibition is believed to results from the unique chloride ion rejection properties of the annealed Nafion coating. Under neutral and basic conditions (pH > 5), localized corrosion is suppressed. Potentiodynamic polarization scans of the annealed Nafion coated aluminum and 316SS positive to the potential of the bare electrode does not produce pits. Electrochemical impedance results show that corrosion is unchanged after the coated alloy has been polarized above the pitting potential. In addition, the electrochemical impedance results indicate that the electrical resistance of the coating is low, hardly increasing the uncompensated resistance above that found for the bare metal. Hence, the movement of water and positive ions through the coating is unhindered Long-term stability and long-term corrosion inhibition afforded by the polymer must still be assessed to determine the practical limits of applicability of this coating system.

  3. Metallated porphyrin based porous organic polymers as efficient electrocatalysts.

    PubMed

    Lu, Guolong; Zhu, Youlong; Xu, Kongliang; Jin, Yinghua; Ren, Zhiyong Jason; Liu, Zhenning; Zhang, Wei

    2015-11-21

    Developing efficient, stable and low-cost catalysts for Oxygen Reduction Reaction (ORR) is of great significance to many emerging technologies including fuel cells and metal-air batteries. Herein, we report the development of a cobalt(II) porphyrin based porous organic polymer (CoPOP) and its pyrolyzed derivatives as highly active ORR catalysts. The as-synthesized CoPOP exhibits high porosity and excellent catalytic performance stability, retaining ∼100% constant ORR current over 50,000 s in both alkaline and acidic media. Pyrolysis of CoPOP at various temperatures (600 °C, 800 °C, and 1000 °C) yields the materials consisting of graphitic carbon layers and cobalt nanoparticles, which show greatly enhanced catalytic activity compared to the as-synthesized CoPOP. Among them, CoPOP-800/C pyrolyzed at 800 °C shows the highest specific surface area and ORR activity, displaying the most positive half-wave potential (0.825 V vs. RHE) and the largest limited diffusion current density (5.35 mA cm(-2)) in an alkaline medium, which are comparable to those of commercial Pt/C (20 wt%) (half-wave potential 0.829 V vs. RHE, limited diffusion current density 5.10 mA cm(-2)). RDE and RRDE experiments indicate that CoPOP-800/C directly reduces molecular oxygen to water through a 4-e(-) pathway in both alkaline and acidic media. More importantly, CoPOP-800/C exhibits excellent durability and methanol-tolerance under acidic and alkaline conditions, which surpass the Pt/C (20 wt%) system. PMID:26486413

  4. Titania sol-gel coatings with silver on non-porous titanium and titanium alloys

    NASA Astrophysics Data System (ADS)

    Horkavcova, D.; Cerny, M.; Sanda, L.; Novak, P.; Jablonska, E.; Zlamalova-Cflova, Z.; Helebrant, A.

    2016-04-01

    The objective of the work was to prepare and characterize titania sol-gel coatings on non-porous titanium and newly developed titanium alloys. Basic titania sol contained two forms of silver. Titania sol without silver was used as a reference sample. Coatings were prepared by dip-coating technique during stirring and fired. Coatings after firing were characterized by scanning electron microscopy. All titania coatings were measured to determine their adhesive and bactericidal properties. Adhesion of the coatings to the substrate was measured by tape test. Gram-negative bacteria E. coli was used for the bactericidal test. Coated substrates were immersed into suspension of E. coli in physiological solution for 24 hours. The in vitro cytotoxicity test was performed after one day. The bactericidal effect without toxicity was confirmed for selected coatings.

  5. Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs).

    PubMed

    Hu, Ming; Reboul, Julien; Furukawa, Shuhei; Radhakrishnan, Logudurai; Zhang, Yuanjian; Srinivasu, Pavuluri; Iwai, Hideo; Wang, Hongjing; Nemoto, Yoshihiro; Suzuki, Norihiro; Kitagawa, Susumu; Yamauchi, Yusuke

    2011-07-28

    We report a new synthetic route for preparation of nanoporous carbon nitride fibers with graphitic carbon nitride polymers, by calcination of Al-based porous coordination polymers (Al-PCPs) with dicyandiamide (DCDA) under a nitrogen atmosphere.

  6. Coatings Would Protect Polymers Against Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.

    1995-01-01

    Proposed interposition of layers of silver oxide tens to hundreds of angstroms thick between polymeric substrates and overlying films helps protect substrates against chemical attack by monatomic oxygen. In original application, polymer substrate would be, sheet of polyimide supporting array of solar photovoltaic cells on spacecraft in low orbit around Earth. Concept also applicable to protection of equipment in terrestrial laboratory and industrial vacuum and plasma chambers in which monatomic oxygen present.

  7. Click Chemistry Immobilization of Antibodies on Polymer Coated Gold Nanoparticles.

    PubMed

    Finetti, Chiara; Sola, Laura; Pezzullo, Margherita; Prosperi, Davide; Colombo, Miriam; Riva, Benedetta; Avvakumova, Svetlana; Morasso, Carlo; Picciolini, Silvia; Chiari, Marcella

    2016-07-26

    The goal of this work is to develop an innovative approach for the coating of gold nanoparticles (AuNPs) with a synthetic functional copolymer. This stable coating with a thickness of few nanometers provides, at the same time, stabilization and functionalization of the particles. The polymeric coating consists of a backbone of polydimethylacrylamide (DMA) functionalized with an alkyne monomer that allows the binding of azido modified molecules by Cu(I)-catalyzed azide/alkyne 1,3-dipolar cycloaddition (CuAAC, click chemistry). The thin polymer layer on the surface stabilizes the colloidal suspension whereas the alkyne functions pending from the backbone are available for the reaction with azido-modified proteins. The reactivity of the coating is demonstrated by immobilizing an azido modified anti-mouse IgG antibody on the particle surface. This approach for the covalent binding of antibody to a gold-NPs is applied to the development of gold labels in biosensing techniques.

  8. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats.

    PubMed

    van der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A; Esbrit, Pedro; Weinans, Harrie

    2015-05-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous titanium is improved with a coating of osteostatin, an osteoinductive peptide that consists of the 107-111 domain of the parathyroid hormone (PTH)-related protein (PTHrP), and the effects of this osteostatin coating on bone regeneration were evaluated in vitro and in vivo. SLM-produced porous titanium received an alkali-acid-heat treatment and was coated with osteostatin through soaking in a 100 nM solution for 24 h or left uncoated. Osteostatin-coated scaffolds contained ∼0.1 μg peptide/g titanium, and in vitro 81% was released within 24 h. Human periosteum-derived osteoprogenitor cells cultured on osteostatin-coated scaffolds did not induce significant changes in osteogenic (alkaline phosphatase [ALP], collagen type 1 [Col1], osteocalcin [OCN], runt-related transcription factor 2 [Runx2]), or angiogenic (vascular endothelial growth factor [VEGF]) gene expression; however, it resulted in an upregulation of osteoprotegerin (OPG) gene expression after 24 h and a lower receptor activator of nuclear factor kappa-B ligand (RankL):OPG mRNA ratio. In vivo, osteostatin-coated, porous titanium implants increased bone regeneration in critical-sized cortical bone defects (p=0.005). Bone regeneration proceeded until 12 weeks, and femurs grafted with osteostatin-coated implants and uncoated implants recovered, respectively, 66% and 53% of the original femur torque strength (97±31 and 77±53 N·mm, not significant). In conclusion, the osteostatin coating improved bone regeneration of porous titanium. This effect was initiated after a short burst release and might be related to the observed in vitro upregulation of OPG gene expression by osteostatin in osteoprogenitor

  9. Osteostatin-coated porous titanium can improve early bone regeneration of cortical bone defects in rats.

    PubMed

    van der Stok, Johan; Lozano, Daniel; Chai, Yoke Chin; Amin Yavari, Saber; Bastidas Coral, Angela P; Verhaar, Jan A N; Gómez-Barrena, Enrique; Schrooten, Jan; Jahr, Holger; Zadpoor, Amir A; Esbrit, Pedro; Weinans, Harrie

    2015-05-01

    A promising bone graft substitute is porous titanium. Porous titanium, produced by selective laser melting (SLM), can be made as a completely open porous and load-bearing scaffold that facilitates bone regeneration through osteoconduction. In this study, the bone regenerative capacity of porous titanium is improved with a coating of osteostatin, an osteoinductive peptide that consists of the 107-111 domain of the parathyroid hormone (PTH)-related protein (PTHrP), and the effects of this osteostatin coating on bone regeneration were evaluated in vitro and in vivo. SLM-produced porous titanium received an alkali-acid-heat treatment and was coated with osteostatin through soaking in a 100 nM solution for 24 h or left uncoated. Osteostatin-coated scaffolds contained ∼0.1 μg peptide/g titanium, and in vitro 81% was released within 24 h. Human periosteum-derived osteoprogenitor cells cultured on osteostatin-coated scaffolds did not induce significant changes in osteogenic (alkaline phosphatase [ALP], collagen type 1 [Col1], osteocalcin [OCN], runt-related transcription factor 2 [Runx2]), or angiogenic (vascular endothelial growth factor [VEGF]) gene expression; however, it resulted in an upregulation of osteoprotegerin (OPG) gene expression after 24 h and a lower receptor activator of nuclear factor kappa-B ligand (RankL):OPG mRNA ratio. In vivo, osteostatin-coated, porous titanium implants increased bone regeneration in critical-sized cortical bone defects (p=0.005). Bone regeneration proceeded until 12 weeks, and femurs grafted with osteostatin-coated implants and uncoated implants recovered, respectively, 66% and 53% of the original femur torque strength (97±31 and 77±53 N·mm, not significant). In conclusion, the osteostatin coating improved bone regeneration of porous titanium. This effect was initiated after a short burst release and might be related to the observed in vitro upregulation of OPG gene expression by osteostatin in osteoprogenitor

  10. Enhanced ingrowth of porous-coated CoCr implants plasma-sprayed with tricalcium phosphate.

    PubMed

    Chae, J C; Collier, J P; Mayor, M B; Surprenant, V A; Dauphinais, L A

    1992-01-01

    Tricalcium phosphate (TCP) is an osteo-conductive bioceramic which, when applied to a porous-coated prosthesis, may enhance osseous ingrowth and mechanical stability. TCP plasma-sprayed and unsprayed porous-coated tibial intramedullary rods were bilaterally implanted in seven adult rabbits. All rabbits were killed at 12 weeks. Pull-out tests were performed on 4 rabbits while all were evaluated histologically for osseous response and adverse tissue reaction. TCP-sprayed implants showed significantly greater osseous ingrowth in comparison to unsprayed implants. Neither implant type exhibited adverse tissue reactions. Average pull-out strengths were 69 lb for treated rods and 72 lb for controls (p greater than 0.05); quality of fit for all pull-out specimens except one was deemed poor. We conclude that plasma-sprayed TCP enhances osseous ingrowth into porous-coated devices. However, our data further suggest that enhanced ingrowth may not always lead to enhanced fixation.

  11. Dynamics and response of polymer-coated acoustic devices

    SciTech Connect

    Martin, S.J.; Frye, G.C.

    1992-01-01

    In this paper we consider the dynamic behavior and the electrical response of a thickness-shear mode resonator with a polymer film coating one face. With glassy polymers (shear stiffness G{prime} {approx} 10{sup 10} dyne/cm{sup 2}), this film tends to move synchronously with the oscillating resonator surface, while with rubbery polymers (G{prime} {approx} 10{sup 7} dyne/cm{sup 2}), the upper portions of the film lag behind the driven resonator/film interface, causing shear deformation of the film. As polymer properties change, interesting dynamic film behavior results, notably a film resonance when the acoustic phase shift across the film is an odd multiple of {pi}2. This dynamic behavior influences the electrical response of the resonator due to the coupling between shear displacement and electric field in the piezoelectric quartz. Utilizing the fact that the polymer shear modulus changes rapidly as a function of temperature, these film behavior trends were demonstrated by measuring the electrical characteristics of a polyisobutylene-coated resonator as a function of frequency and at several temperatures. We show how these changing film dynamics can be correlated with changes in the measured electrical response. 11 refs.

  12. Dynamics and response of polymer-coated acoustic devices

    SciTech Connect

    Martin, S.J.; Frye, G.C.

    1992-06-01

    In this paper we consider the dynamic behavior and the electrical response of a thickness-shear mode resonator with a polymer film coating one face. With glassy polymers (shear stiffness G{prime} {approx} 10{sup 10} dyne/cm{sup 2}), this film tends to move synchronously with the oscillating resonator surface, while with rubbery polymers (G{prime} {approx} 10{sup 7} dyne/cm{sup 2}), the upper portions of the film lag behind the driven resonator/film interface, causing shear deformation of the film. As polymer properties change, interesting dynamic film behavior results, notably a film resonance when the acoustic phase shift across the film is an odd multiple of {pi}2. This dynamic behavior influences the electrical response of the resonator due to the coupling between shear displacement and electric field in the piezoelectric quartz. Utilizing the fact that the polymer shear modulus changes rapidly as a function of temperature, these film behavior trends were demonstrated by measuring the electrical characteristics of a polyisobutylene-coated resonator as a function of frequency and at several temperatures. We show how these changing film dynamics can be correlated with changes in the measured electrical response. 11 refs.

  13. Adhesion of preceramic inorganic polymer coatings to carbon fibers

    SciTech Connect

    Chaudhry, T.M.; Drzal, L.T.; Ho, H.; Laine, R.

    1996-12-31

    To determine whether the preceramic inorganic polymer coating can provide not only the thermal oxidative protection during both processing and use in metal matrix composites or ceramic matrix composites but also the appropriate composite properties, it is desirable to know how and at what point in the thermal processing cycle the coating-carbon fiber interface undergoes changes that affect the interfacial adhesion and failure mode. Also, it is important to identify the locus of interfacial failure i.e. between fiber and coating or between coating and matrix. This work is directed at determining the interfacial changes and the locus of failure in order to optimize both the coating chemistry and the conversion process. The characteristics of the benchmark interface coating material, silicon oxycarbide, SiO{sub x}C{sub y} or black glass have been studied. SiO{sub x}C{sub y} was chosen because (1) SiO{sub x}C{sub y} is amorphous, (2) it is possible to prepare very well-defined materials, where the chemistry and the evolution of the material with time and temperature are known in detail, and (3) SiO{sub x}C{sub y} is a matrix material used in commercial composites. It has been shown that these coatings are effective in increasing the oxidation resistance of the carbon fibers themselves.

  14. Design of Highly Photofunctional Porous Polymer Films with Controlled Thickness and Prominent Microporosity

    PubMed Central

    Gu, Cheng; Huang, Ning; Wu, Yang; Xu, Hong; Jiang, Donglin

    2015-01-01

    Porous organic polymers allow the integration of various π-units into robust porous π-networks, but they are usually synthesized as unprocessable solids with poor light-emitting performance as a result of aggregation-related excitation dissipation. Herein, we report a general strategy for the synthesis of highly emissive photofunctional porous polymer films on the basis of a complementary scheme for the structural design of aggregation-induced-emissive π-systems. We developed a high-throughput and facile method for the direct synthesis of large-area porous thin films at the liquid–electrode interface. The approach enables the preparation of microporous films within only a few seconds or minutes and allows precise control over their thickness with sub-nanometer precision. By virtue of rapid photoinduced electron transfer, the thin films can detect explosives with enhanced sensitivity to low parts-per-million levels in a selective manner. PMID:26234636

  15. Water-thinnable polymers for durable coatings for different materials

    NASA Astrophysics Data System (ADS)

    Jankowski, Piotr; Kijowska, Dorota

    2014-05-01

    The methods of obtaining water-thinnable polymers - water-thinnable unsaturated polyester resins (WTUPR) - by polycondensation were elaborate and optimized. As hydrophilic monomers different types of sulfonate monomers were used. The monomers, with sulfonate groups and other reactive groups, were obtained by sulfonation of organic compounds with satisfactory yield. All products were analyzed by 1H NMR and 13C NMR spectra. WTUPR were used as polymeric binders for coatings applications. Coatings with relatively high pendulum hardness, good properties and durability, useful for practical applications, were obtained. Typical existing equipment for the production of unsaturated polyester resins can be applied for the industrial preparation of WTUPR.

  16. Doubly renewable cellulose polymer for water-based coatings.

    PubMed

    Tristram, Cameron J; Mason, Jennifer M; Williams, D Bradley G; Hinkley, Simon F R

    2015-01-01

    A levulinoyl ester-containing cellulose polymer is introduced as a waterborne coating. Incorporation of the biomass-derived levulinic acid proceeds via an unexpected intermediate and provides the unusual feature of a cellulose derivative that is readily chemically modified. The levulinoyl-cellulose ester could be chemically manipulated, allowing it to be dispersed to generate a waterborne hydrocolloid latex. This was capable of film-formation at room temperature, and was formulated for use as a coating of high-renewable content. PMID:25169869

  17. Water-thinnable polymers for durable coatings for different materials

    SciTech Connect

    Jankowski, Piotr Kijowska, Dorota

    2014-05-15

    The methods of obtaining water-thinnable polymers - water-thinnable unsaturated polyester resins (WTUPR) - by polycondensation were elaborate and optimized. As hydrophilic monomers different types of sulfonate monomers were used. The monomers, with sulfonate groups and other reactive groups, were obtained by sulfonation of organic compounds with satisfactory yield. All products were analyzed by {sup 1}H NMR and {sup 13}C NMR spectra. WTUPR were used as polymeric binders for coatings applications. Coatings with relatively high pendulum hardness, good properties and durability, useful for practical applications, were obtained. Typical existing equipment for the production of unsaturated polyester resins can be applied for the industrial preparation of WTUPR.

  18. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer.

    PubMed

    Shimomura, Satoru; Higuchi, Masakazu; Matsuda, Ryotaro; Yoneda, Ko; Hijikata, Yuh; Kubota, Yoshiki; Mita, Yoshimi; Kim, Jungeun; Takata, Masaki; Kitagawa, Susumu

    2010-08-01

    Porous coordination polymers are materials formed from metal ions that are bridged together by organic linkers and that can combine two seemingly contradictory properties-crystallinity and flexibility. Porous coordination polymers can therefore create highly regular yet dynamic nanoporous domains that are particularly promising for sorption applications. Here, we describe the effective selective sorption of dioxygen and nitric oxide by a structurally and electronically dynamic porous coordination polymer built from zinc centres and tetracyanoquinodimethane (TCNQ) as a linker. In contrast to a variety of other gas molecules (C(2)H(2), Ar, CO(2), N(2) and CO), O(2) and NO are accommodated in its pores. This unprecedented preference arises from the concerted effect of the charge-transfer interaction between TCNQ and these guests, and the switchable gate opening and closing of the pores of the framework. This system provides further insight into the efficient recognition of small gas molecules.

  19. Imidazolium salt-modified porous hypercrosslinked polymers for synergistic CO2 capture and conversion.

    PubMed

    Wang, Jinquan; Sng, Waihong; Yi, Guangshun; Zhang, Yugen

    2015-08-01

    A new type of imidazolium salt-modified porous hypercrosslinked polymer (BET surface area up to 926 m(2) g(-1)) was reported. These porous materials exhibited good CO2 capture capacities (14.5 wt%) and catalytic activities for the conversion of CO2 into various cyclic carbonates under metal-free conditions. The synergistic effect of CO2 capture and conversion was observed.

  20. Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures.

    PubMed

    Biemond, J Elizabeth; Eufrásio, Tatiane S; Hannink, Gerjon; Verdonschot, Nico; Buma, Pieter

    2011-04-01

    The bone ingrowth potential of biomimetic hydroxyapatite and brushite coatings applied on porous E-beam structure was examined in goats and compared to a similar uncoated porous structure and a conventional titanium plasma spray coating. Specimens were implanted in the iliac crest of goats for a period of 3 (4 goats) or 15 weeks (8 goats). Mechanical implant fixation generated by bone ingrowth was analyzed by a push out test. Histomorphometry was performed to assess the bone ingrowth depth and bone implant contact. The uncoated and hydroxyapatite-coated cubic structure had significantly higher mechanical strength at the interface compared to the Ti plasma spray coating at 15 weeks of implantation. Bone ingrowth depth was significantly larger for the hydroxyapatite- and brushite-coated structures compared to the uncoated structure. In conclusion, the porous E-beam surface structure showed higher bone ingrowth potential compared to a conventional implant surface after 15 weeks of implantation. Addition of a calcium phosphate coating to the E-beam structure enhanced bone ingrowth significantly. Furthermore, the calcium phosphate coating appears to work as an accelerator for bone ingrowth.

  1. Systems and strippable coatings for decontaminating structures that include porous material

    DOEpatents

    Fox, Robert V.; Avci, Recep; Groenewold, Gary S.

    2011-12-06

    Methods of removing contaminant matter from porous materials include applying a polymer material to a contaminated surface, irradiating the contaminated surface to cause redistribution of contaminant matter, and removing at least a portion of the polymer material from the surface. Systems for decontaminating a contaminated structure comprising porous material include a radiation device configured to emit electromagnetic radiation toward a surface of a structure, and at least one spray device configured to apply a capture material onto the surface of the structure. Polymer materials that can be used in such methods and systems include polyphosphazine-based polymer materials having polyphosphazine backbone segments and side chain groups that include selected functional groups. The selected functional groups may include iminos, oximes, carboxylates, sulfonates, .beta.-diketones, phosphine sulfides, phosphates, phosphites, phosphonates, phosphinates, phosphine oxides, monothio phosphinic acids, and dithio phosphinic acids.

  2. Porous networks derived from synthetic polymer-clay complexes

    SciTech Connect

    Carrado, K.A.; Thiyagarajan, P.; Elder, D.L.

    1995-05-12

    Synthetic hectorites were hydrothermally crystallized with direct incorporation of a cationic polymer poly(dimethyl diallyl ammonium chloride) (PDDA), and two neutral cellulosic polymers hydroxypropyl methylcellulose (HPMC) and hydroxyethyl cellulose (HEC). Synthetic PDDA-hectorite displays the lowest d-spacing at 15.8 {Angstrom} along with less polymer incorporation (7.8 wt % organic) than the neutral polymers (18--22 wt % organic). Thermal analysis and small angle neutron scattering were used to further examine the polymer-clay systems. Clay platelets of the largest size and best stacking order occur when cationic PDDA polymer is used. PDDA also enhances these properties over the crystallites prepared for a control mineral, where no polymer is used. HEC acts to aggregate the silica, leaving less to react to form clay. The clay platelets which result from HEC are small, not stacked to a large degree, and oriented randomly. Neutral HPMC acts more like cationic PDDA in that larger clay platelets are allowed to form. The extended microstructure of the clay network remains undisturbed after polymer is removed by calcination. When no polymer is used, the synthetic hectorite has a N{sub 2} BET surface area of 200 M{sup 2}/gm, even after calcination. This increases by 20--50% for the synthetic polymer-hectorites after the polymer is removed by calcination.

  3. Process optimization of ultrasonic spray coating of polymer films.

    PubMed

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films.

  4. Process optimization of ultrasonic spray coating of polymer films.

    PubMed

    Bose, Sanjukta; Keller, Stephan S; Alstrøm, Tommy S; Boisen, Anja; Almdal, Kristoffer

    2013-06-11

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect to thickness, roughness (profilometer), and morphology (optical microscopy). Polyvinylpyrrolidone (PVP) is used to do a full factorial design of experiments with selected process parameters such as temperature, distance between spray nozzle and substrate, and speed of the spray nozzle. A mathematical model is developed for statistical analysis which identifies the distance between nozzle and substrate as the most significant parameter. Depending on the drying of the sprayed droplets on the substrate, we define two broad regimes, "dry" and "wet". The optimum condition of spraying lies in a narrow window between these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating with poly (D,L-lactide) (PDLLA). The results confirm the processing knowledge obtained with PVP and indicate that the observed trends are identical for spraying of other polymer films. PMID:23631433

  5. Debonding of porous coating of a threaded acetabular component: retrieval analysis.

    PubMed

    Łapaj, Łukasz; Markuszewski, Jacek; Rybak, Tomasz; Wierusz-Kozłowska, Małgorzata

    2013-01-01

    This report presents a case of debonding of plasma sprayed porous titanium coating from a threaded acetabular component which caused aseptic loosening of the implant. Weight bearing after delamination caused abrasive damage of the acetabular shell, and particles of the coating embedded in the acetabular liner. Microscopic examination of periprosthetic tissues showed presence of metal particles and macrophage infiltration. Despite microscopic examination of the retrieved component the cause of debonding remains unclear. PMID:23127634

  6. Multipurpose Polymeric Coating for Functionalizing Inert Polymer Surfaces.

    PubMed

    Özçam, A Evren; Efimenko, Kirill; Spontak, Richard J; Fischer, Daniel A; Genzer, Jan

    2016-03-01

    In this work, we report on the development of a highly functionalizable polymer coating prepared by the chemical coupling of trichlorosilane (TCS) to the vinyl groups of poly(vinylmethyl siloxane) (PVMS). The resultant PVMS-TCS copolymer can be coated as a functional organic primer layer on a variety of polymeric substrates, ranging from hydrophilic to hydrophobic. Several case studies demonstrating the remarkable and versatile properties of PVMS-TCS coatings are presented. In particular, PVMS-TCS is found to serve as a convenient precursor for the deposition of organosilanes and the subsequent growth of polymer brushes, even on hydrophobic surfaces, such as poly(ethylene terephthalate) and polypropylene. In this study, the physical and chemical characteristics of these versatile PVMS-TCS coatings are interrogated by an arsenal of experimental probes, including scanning electron microscopy, water contact-angle measurements, ellipsometry, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy. PMID:26814561

  7. Multipurpose Polymeric Coating for Functionalizing Inert Polymer Surfaces.

    PubMed

    Özçam, A Evren; Efimenko, Kirill; Spontak, Richard J; Fischer, Daniel A; Genzer, Jan

    2016-03-01

    In this work, we report on the development of a highly functionalizable polymer coating prepared by the chemical coupling of trichlorosilane (TCS) to the vinyl groups of poly(vinylmethyl siloxane) (PVMS). The resultant PVMS-TCS copolymer can be coated as a functional organic primer layer on a variety of polymeric substrates, ranging from hydrophilic to hydrophobic. Several case studies demonstrating the remarkable and versatile properties of PVMS-TCS coatings are presented. In particular, PVMS-TCS is found to serve as a convenient precursor for the deposition of organosilanes and the subsequent growth of polymer brushes, even on hydrophobic surfaces, such as poly(ethylene terephthalate) and polypropylene. In this study, the physical and chemical characteristics of these versatile PVMS-TCS coatings are interrogated by an arsenal of experimental probes, including scanning electron microscopy, water contact-angle measurements, ellipsometry, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy.

  8. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media.

    PubMed

    HonetschlÄgerová, Lenka; Janouškovcová, Petra; Kubal, Martin

    2016-01-01

    Laboratory column experiments were conducted to evaluate the effect of previously described silica coating method on the transport of nanoscale zero-valent iron (nZVI) in porous media. The silica coating method showed the potential to prevent the agglomeration of nZVI. Transport experiments were conducted using laboratory-scale sand-packed columns at conditions that were very similar of natural groundwater. Transport properties of non-coated and silica-coated nZVI are investigated in columns of 40 cm length, which were filled with porous media. A suspension was injected in three different Fe particle concentrations (100, 500, and 1000 mg/L) at flow 5  mL/min. Experimental results were compared using nanoparticle attachment efficiency and travel distances which were calculated by classical particle filtration theory. It was found that non-coated particles were essentially immobile in porous media. In contrast, silica-coated particles showed significant transport distances at the tested conditions. Results of this study suggest that silica can increase nZVI mobility in the subsurface.

  9. Solid polymer electrolyte composite membrane comprising laser micromachined porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.; Mittelsteadt, Cortney K.; McCallum, Thomas J.

    2011-01-11

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 5 microns, are made by laser micromachining and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  10. Interfacial Behavior of Polymer Coated Nanoparticle

    NASA Astrophysics Data System (ADS)

    Qi, Luqing; Shamsijazeyi, Hadi; Mann, Jason; Verduzco, Rafael; Hirasaki, George; Rice University Team

    2015-03-01

    Oxidized carbon black (OCB) nanoparticle is functionalized with different coatings, i.e. alkyl group, polyvinyl alcohol (PVA) and partially sulfonated polyvinyl alcohol (sPVA). In oil and water systems, the functionalized nanoparticle is found to have a versatile dispersion i.e. in lower aqueous phase, in upper oil phase, or in middle phase microemulsion. Oil substitute n-octane and commercial oil IOSPAR have been test as oil phase; series of commercially available surfactant, C12-4,5 orthoxylene sulfonate(OXS), i-C13-(PO)7 -SO4Na (S13B), surfactant blend of anionic Alfoterra with nonionic Tergitol have been test as additive to help with the OCB dispersion. It is found that the OCB with sulfonated polyvinyl alcohol attachment (sPVA-OCB) stays in microemulsion; with the increase of salinity, it follows the microemulsion to go from lower phase, to middle phase, and to upper phase. The dispersion of sPVA and alkyl functionalized OCB (Cn-OCB-sPVA) is the balance of the length of alkyl and sPVA and the degree of sulfonation of PVA, depending on which, it can either disperse into microemulsion or form a separate layer. The sPVA-OCB also indicates a tolerance of high salinity; this is shown by the stable dispersion of it in blend surfactant solution of anionic Alfoterra and nonionic Tergitol at high salinity API brine(8% NaCl and 2% CaCl2). The study of different functionality on OCB dispersion can help design appropriate modified nanoparticle as additive for enhanced oil recovery either to reduce the interfacial tension between oil and water, or to stabilize microemulsion.

  11. Enhanced stability of uncemented canine femoral components by bone ingrowth into the porous coatings.

    PubMed

    Jasty, M; Bragdon, C R; Zalenski, E; O'Connor, D; Page, A; Harris, W H

    1997-01-01

    The following questions were answered in this study: (1) What is the initial stability of proximally porous-coated canine femoral components? (2) Does bone ingrowth occur under these conditions? (3) Is the stability enhanced by tissue ingrowth in vivo? The stability of proximally porous-coated femoral components of canine total hip arthroplasties after 6 months to 2 years of in vivo service in dogs was measured in vitro using displacement transducers under loads simulating canine midstance. This was compared with the stability of identical components under the same loading conditions immediately after implantation in vitro in the contralateral femurs. The femurs were then sectioned and bone ingrowth into the porous coatings was quantified. The results showed that immediately after implantation the implants can move as much as 50 microns, but that the bone ingrowth into porous coatings of canine femoral components can occur even under such conditions. These data also suggested that the relative motion existing at the time of insertion can be reduced to very small amounts (< 10 microns) by bone ingrowth. PMID:9021510

  12. Erosion Resistant Coatings for Polymer Matrix Composites in Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Naik, Subhash K.; Horan, Richard; Miyoshi, Kazuhisa; Bowman, Cheryl; Ma, Kong; Leissler, George; Sinatra, Raymond; Cupp, Randall

    2003-01-01

    Polymer Matrix Composites (PMCs) offer lightweight and frequently low cost alternatives to other materials in many applications. High temperature PMCs are currently used in limited propulsion applications replacing metals. Yet in most cases, PMC propulsion applications are not in the direct engine flow path since particulate erosion degrades PMC component performance and therefore restricts their use in gas turbine engines. This paper compares two erosion resistant coatings (SANRES and SANPRES) on PMCs that are useful for both low and high temperature propulsion applications. Collaborating over a multi-year period, researchers at NASA Glenn Research Center, Allison Advanced Developed Company, and Rolls-Royce Corporation have optimized these coatings in terms of adhesion, surface roughness, and erosion resistance. Results are described for vigorous hot gas/particulate erosion rig and engine testing of uncoated and coated PMC fan bypass vanes from the AE 3007 regional jet gas turbine engine. Moreover, the structural durability of these coatings is described in long-term high cycle fatigue tests. Overall, both coatings performed well in all tests and will be considered for applications in both commercial and defense propulsion applications.

  13. Porous polymer film calcium ion chemical sensor and method of using the same

    DOEpatents

    Porter, M.D.; Chau, L.K.

    1991-02-12

    A method of measuring calcium ions is disclosed wherein a calcium sensitive reagent, calcichrome, is immobilized on a porous polymer film. The reaction of the calcium sensitive reagent to the Ca(II) is then measured and concentration determined as a function of the reaction. 1 figure.

  14. Porous nickel MCFC cathode coated by potentiostatically deposited cobalt oxide. I. A structural and morphological study

    NASA Astrophysics Data System (ADS)

    Escudero, M. J.; Rodrigo, T.; Mendoza, L.; Cassir, M.; Daza, L.

    Porous nickel cathode was protected by potentiostatically deposited cobalt at different experimental conditions: oxidation potential and electrolysis duration. The deposition growth increased with the oxidation potential yielding a more developed granular structure with smaller grains. Thin layers of Co 3O 4 were identified by X-ray diffraction (XRD) and Raman spectroscopy. CoOOH was detected by X-ray photoelectron spectroscopy (XPS) before annealing treatment and Co 3O 4 after heating the sample at 500 °C during 4 h in air. After this treatment, some morphological changes were observed on the coated samples due to grain compaction and oxidation of the nickel substrate. The porosity of the coated samples was relatively close to that of the sole porous nickel. These coatings exhibited an appropriate dual-pore structure with macro and micro pores, a basic MCFC requirement.

  15. Surface Coating by Gold Nanoparticles on Functional Polymers: On-Demand Portable Catalysts for Suzuki Reactions.

    PubMed

    García-Calvo, José; García-Calvo, Víctor; Vallejos, Saúl; García, Félix C; Avella, Manuel; García, José-Miguel; Torroba, Tomás

    2016-09-28

    We have developed new functionalized polymers capable of being easily coated by gold nanoparticles, uniformly distributed on the surface of the polymers, by simply adding a gold(III) solution in water to the polymers. The polymer-supported gold nanoparticle material was used as an efficient portable and reusable catalyst for Suzuki reactions in mixed organic-aqueous solvents. PMID:27617785

  16. Selective surface-enhanced Raman spectroscopy using a polymer-coated substrate

    SciTech Connect

    Pal, A.; Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T.

    1995-09-15

    The polymer, poly(vinylpyrrolidone), is investigated as a potential coating for alumina-based surface-enhanced Raman scattering (SERS) substrates. Description for dip-coating alumina substrates with a 5% (w/v) methanolic solution of the polymer is included. Using these polymer-coated substrates, various compounds, including monocyclic aromatic compounds with hydroxyl, carboxyl, and various nitrogen-based functional groups, are detected. Intensity of SERS signals from the polymer-coated substrates in comparison to that of SERS signals from uncoated substrates is demonstrated to be a function of the analyte permeability to the polymer coating. Different enhancement factors are reported for various compounds, such as benzoic acid, isonicotinic acid, and 2,4-dinitrophenol, thus indicating some enhancement selectivity of the polymer coating to various analytes. Using benzoic acid as a test compound, various coating procedures (horizontal and vertical dipping procedures) have been evaluated. The poly(vinylpyrrolidone)-coated substrate is shown to yield a relative standard deviation in SERS signal intensity of approximately 20%. The potential of the polymer-coated substrate as a selective detection probe is illustrated using the analyses of binary mixtures. Finally, the advantages of the polymer coating for protecting the SERS-active layer are also discussed. 29 refs., 7 figs., 1 tab.

  17. Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications.

    PubMed

    Braem, Annabel; Van Mellaert, Lieve; Mattheys, Tina; Hofmans, Dorien; De Waelheyns, Evelien; Geris, Liesbet; Anné, Jozef; Schrooten, Jan; Vleugels, Jef

    2014-01-01

    Implant-related infections are a serious complication in prosthetic surgery, substantially jeopardizing implant fixation. As porous coatings for improved osseointegration typically present an increased surface roughness, their resulting large surface area (sometimes increasing with over 700% compared to an ideal plane) renders the implant extremely susceptible to bacterial colonization and subsequent biofilm formation. Therefore, there is particular interest in orthopaedic implantology to engineer surfaces that combine both the ability to improve osseointegration and at the same time reduce the infection risk. As part of this orthopaedic coating development, the interest of in vitro studies on the interaction between implant surfaces and bacteria/biofilms is growing. In this study, the in vitro staphylococcal adhesion and biofilm formation on newly developed porous pure Ti coatings with 50% porosity and pore sizes up to 50 μm is compared to various dense and porous Ti or Ti-6Al-4V reference surfaces. Multiple linear regression analysis indicates that surface roughness and hydrophobicity are the main determinants for bacterial adherence. Accordingly, the novel coatings display a significant reduction of up to five times less bacterial surface colonization when compared to a commercial state-of-the-art vacuum plasma sprayed coating. However, the results also show that a further expansion of the porosity with over 15% and/or the pore size up to 150 μm is correlated to a significant increase in the roughness parameters resulting in an ascent of bacterial attachment. Chemically modifying the Ti surface in order to improve its hydrophilicity, while preserving the average roughness, is found to strongly decrease bacteria quantities, indicating the importance of surface functionalization to reduce the infection risk of porous coatings.

  18. Size-selective yolk-shell nanoreactors with nanometer-thin porous polymer shells.

    PubMed

    Jia, Ying; Shmakov, Sergey N; Register, Paul; Pinkhassik, Eugene

    2015-09-01

    Yolk-shell nanoreactors with metal nanoparticle core and ultrathin porous polymer shells are effective catalysts for heterogeneous reactions. Polymer shells provide size-selectivity and improved reusability of catalyst. Nanocapsules with single-nanometer porous shells are prepared by vesicle-templated directed assembly. Metal nanoparticles are formed either by selective initiation in pre-fabricated nanocapsules or simultaneously with the creation of a crosslinked polymer shell. In this study, we investigated the oxidation of benzyl alcohol and benzaldehyde catalyzed by gold nanoparticles and hydrogenation of cyclohexene catalyzed by platinum nanoparticles. Comparison of newly created nanoreactors with commercially available nanoparticles revealed superior reusability and size selectivity in nanoreactors while showing no negative effect on reaction kinetics.

  19. Soluble porous coordination polymers by mechanochemistry: from metal-containing films/membranes to active catalysts for aerobic oxidation.

    PubMed

    Zhang, Pengfei; Li, Haiying; Veith, Gabriel M; Dai, Sheng

    2015-01-14

    Soluble porous coordination polymers from mechanochemical synthesis are presented through a coordination polymerization between highly contorted, rigid tetraphenol and a broad variety of transition metal ions. These polymers can be easily cast as metal-containing films or freestanding membranes. Importantly, as-made coordination polymers are highly active and stable in the aerobic oxidation of allylic C-H bonds. PMID:25389070

  20. Solid polymer electrolyte composite membrane comprising plasma etched porous support

    DOEpatents

    Liu, Han; LaConti, Anthony B.

    2010-10-05

    A solid polymer electrolyte composite membrane and method of manufacturing the same. According to one embodiment, the composite membrane comprises a rigid, non-electrically-conducting support, the support preferably being a sheet of polyimide having a thickness of about 7.5 to 15 microns. The support has a plurality of cylindrical pores extending perpendicularly between opposing top and bottom surfaces of the support. The pores, which preferably have a diameter of about 0.1 to 5 microns, are made by plasma etching and preferably are arranged in a defined pattern, for example, with fewer pores located in areas of high membrane stress and more pores located in areas of low membrane stress. The pores are filled with a first solid polymer electrolyte, such as a perfluorosulfonic acid (PFSA) polymer. A second solid polymer electrolyte, which may be the same as or different than the first solid polymer electrolyte, may be deposited over the top and/or bottom of the first solid polymer electrolyte.

  1. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    PubMed

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. PMID:27524006

  2. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    PubMed

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application.

  3. Electrochemical coating of dental implants with anodic porous titania for enhanced osteointegration

    PubMed Central

    Shayganpour, Amirreza; Rebaudi, Alberto; Cortella, Pierpaolo; Diaspro, Alberto

    2015-01-01

    Summary Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researchers. This material, investigated mainly for its photocatalytic properties and for applications in solar cells, is usually obtained from the anodization of ultrapure titanium. We anodized dental implants made of commercial grade titanium under different experimental conditions and characterized the resulting surface morphology with scanning electron microscopy equipped with an energy dispersive spectrometer. The appearance of nanopores on these implants confirm that anodic porous titania can be obtained not only on ultrapure and flat titanium but also as a conformal coating on curved surfaces of real objects made of industrial titanium alloys. Raman spectroscopy showed that the titania phase obtained is anatase. Furthermore, it was demonstrated that by carrying out the anodization in the presence of electrolyte additives such as magnesium, these can be incorporated into the porous coating. The proposed method for the surface nanostructuring of biomedical implants should allow for integration of conventional microscale treatments such as sandblasting with additive nanoscale patterning. Additional advantages are provided by this material when considering the possible loading of bioactive drugs in the porous cavities. PMID:26665091

  4. Electrical insulation of implantable devices by composite polymer coatings.

    PubMed

    Nichols, M F; Hahn, A W

    1987-01-01

    Protection of implanted integrated circuits has required hermetic sealing, usually in metal containers and usually in package sizes that would preclude implantation in small and confined areas of the body. We have developed a method whereby ultrathin (10 micron) composite films consisting of glow discharge and vapor deposited polymers can be placed directly over integrated circuit substrates to provide protection from water and ions for up to 30 days (our present test limits). Our paper describes the reactor, surface preparation, and polymerization conditions necessary to obtain the water/ion resistant coatings. Results indicate little change in leakage current when comb patterns with 10 micron line widths and our insulating composite coatings are exposed to physiological saline solution and a 3 VDC bias.

  5. In vivo integrity of polymer-coated gold nanoparticles.

    PubMed

    Kreyling, Wolfgang G; Abdelmonem, Abuelmagd M; Ali, Zulqurnain; Alves, Frauke; Geiser, Marianne; Haberl, Nadine; Hartmann, Raimo; Hirn, Stephanie; de Aberasturi, Dorleta Jimenez; Kantner, Karsten; Khadem-Saba, Gülnaz; Montenegro, Jose-Maria; Rejman, Joanna; Rojo, Teofilo; de Larramendi, Idoia Ruiz; Ufartes, Roser; Wenk, Alexander; Parak, Wolfgang J

    2015-07-01

    Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles ((198)Au) and engineered an (111)In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for (198)Au and (111)In showed partial removal of the polymer shell in vivo. While (198)Au accumulates mostly in the liver, part of the (111)In shows a non-particulate biodistribution similar to intravenous injection of chelated (111)In. Further in vitro studies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo.

  6. In vivo integrity of polymer-coated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kreyling, Wolfgang G.; Abdelmonem, Abuelmagd M.; Ali, Zulqurnain; Alves, Frauke; Geiser, Marianne; Haberl, Nadine; Hartmann, Raimo; Hirn, Stephanie; de Aberasturi, Dorleta Jimenez; Kantner, Karsten; Khadem-Saba, Gülnaz; Montenegro, Jose-Maria; Rejman, Joanna; Rojo, Teofilo; de Larramendi, Idoia Ruiz; Ufartes, Roser; Wenk, Alexander; Parak, Wolfgang J.

    2015-07-01

    Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles (198Au) and engineered an 111In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for 198Au and 111In showed partial removal of the polymer shell in vivo. While 198Au accumulates mostly in the liver, part of the 111In shows a non-particulate biodistribution similar to intravenous injection of chelated 111In. Further in vitro studies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo.

  7. In vivo integrity of polymer-coated gold nanoparticles.

    PubMed

    Kreyling, Wolfgang G; Abdelmonem, Abuelmagd M; Ali, Zulqurnain; Alves, Frauke; Geiser, Marianne; Haberl, Nadine; Hartmann, Raimo; Hirn, Stephanie; de Aberasturi, Dorleta Jimenez; Kantner, Karsten; Khadem-Saba, Gülnaz; Montenegro, Jose-Maria; Rejman, Joanna; Rojo, Teofilo; de Larramendi, Idoia Ruiz; Ufartes, Roser; Wenk, Alexander; Parak, Wolfgang J

    2015-07-01

    Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles ((198)Au) and engineered an (111)In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for (198)Au and (111)In showed partial removal of the polymer shell in vivo. While (198)Au accumulates mostly in the liver, part of the (111)In shows a non-particulate biodistribution similar to intravenous injection of chelated (111)In. Further in vitro studies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo. PMID:26076469

  8. Interfacial activity of polymer-coated gold nanoparticles.

    PubMed

    Borrell, Marcos; Leal, L Gary

    2007-12-01

    A systematic study of the interfacial activity of polymer-coated gold nanoparticles was performed with the use of a computer-controlled four-roll mill. The nanoparticle locality within the polymeric domains (bulk or interface) was controlled by means of a mixture of polymeric ligands grafted to the gold nanoparticle core. The bulk polymers were polybutadiene (PBd) and polydimethylsiloxane (PDMS). Monoterminated PDMS and PBd ligands were synthesized on the basis of the esterification of reactive groups (such as hydroxyl or amino groups) with lipoic acid anhydride. The formation of polymer-coated nanoparticles using these lipoic acid-functionalized polymers was confirmed via transmission electron microscopy (TEM), and their interfacial activity was manifested as a reduction of the interfacial tension and in the enhanced stability of thin films (as seen via the inhibition of coalescence). The nanoparticles showed an equal, if not superior, ability to reduce the interfacial tension when compared to previous studies on the effect of insoluble surfactants; however, these particles proved not to be as effective at inhibiting coalescence as their surfactant counterpart. We suggest that this effect may be caused by an increase in the attractive van der Waals forces created by the presence of metal-core nanoparticles. Experimental measurements using the four-roll mill allow us to explore the relationship between nanoparticle concentration at the interface and interfacial tension. In particular, we have found evidence that the interface concentration can be increased relative to the equilibrium value achieved by diffusion alone, and thus the interfacial tension can be systematically reduced if the interfacial area is increased temporarily via drop deformation or breakup followed by recoalescence. PMID:17973410

  9. Surface dynamics and mechanics in liquid crystal polymer coatings

    NASA Astrophysics Data System (ADS)

    Liu, Danqing; Broer, Dirk J.

    2015-03-01

    Based on liquid crystal networks we developed `smart' coatings with responsive surface topographies. Either by prepatterning or by the formation of self-organized structures they can be switched on and off in a pre-designed manner. Here we provide an overview of our methods to generate coatings that form surface structures upon the actuation by light. The coating oscillates between a flat surface and a surface with pre-designed 3D micro-patterns by modulating a light source. With recent developments in solid state lighting, light is an attractive trigger medium as it can be integrated in a device for local control or can be used remotely for flood or localized exposure. The basic principle of formation of surface topographies is based on the change of molecular organization in ordered liquid crystal polymer networks. The change in order leads to anisotropic dimensional changes with contraction along the director and expansion to the two perpendicular directions and an increase in volume by the formation of free volume. These two effects work in concert to provide local expansion and contraction in the coating steered by the local direction of molecular orientation. The surface deformation, expressed as the height difference between the activated regions and the non-activated regions divided by the initial film thickness, is of the order of 20%. Switching occurs immediately when the light is switched `on' and `off' and takes several tens of seconds.

  10. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.

    PubMed

    Zilio, Caterina; Sola, Laura; Damin, Francesco; Faggioni, Lucia; Chiari, Marcella

    2014-02-01

    A number of materials used to fabricate disposable microfluidic devices are hydrophobic in nature with water contact angles on their surface ranging from 80° to over 100°. This characteristic makes them unsuitable for a number of microfluidic applications. Both the wettability and analyte adsorption parameters are highly dependent on the surface hydrophobicity. In this article, we propose a general method to coat the surface of five materials: polydimethylsiloxane (PDMS), cyclic olefin copolymer (COC), polyethylene terephthalate (PET), polycarbonate (PC), and polytetrafluoroethylene (PTFE). This fast and robust process, which is easily implementable in any laboratory including microfabrication clean room facilities, was devised by combining gas-phase and wet chemical modification processes. Two different coatings that improve the surface hydrophilicity were prepared via the "dip and rinse" approach by immersing the plasma oxidized materials into an aqueous solution of two different poly(dimethylacrylamide) copolymers incorporating a silane moiety and functionalized with either N-acryloyloxysuccinimide (NAS) (poly(DMA-NAS-MAPS) or glycidyl methacrylate (GMA) (poly(DMA-GMA-MAPS). The coating formation was confirmed by contact angle (CA) analysis comparing the variation of CAs of uncoated and coated surfaces subjected to different aging treatments. The antifouling character of the polymer was demonstrated by fluorescence and interferometric detection of proteins adsorbed on the surafce. This method is of great interest in microfluidics due to its broad applicability to a number of materials with varying chemical compositions. PMID:24037663

  11. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.

    PubMed

    Zilio, Caterina; Sola, Laura; Damin, Francesco; Faggioni, Lucia; Chiari, Marcella

    2014-02-01

    A number of materials used to fabricate disposable microfluidic devices are hydrophobic in nature with water contact angles on their surface ranging from 80° to over 100°. This characteristic makes them unsuitable for a number of microfluidic applications. Both the wettability and analyte adsorption parameters are highly dependent on the surface hydrophobicity. In this article, we propose a general method to coat the surface of five materials: polydimethylsiloxane (PDMS), cyclic olefin copolymer (COC), polyethylene terephthalate (PET), polycarbonate (PC), and polytetrafluoroethylene (PTFE). This fast and robust process, which is easily implementable in any laboratory including microfabrication clean room facilities, was devised by combining gas-phase and wet chemical modification processes. Two different coatings that improve the surface hydrophilicity were prepared via the "dip and rinse" approach by immersing the plasma oxidized materials into an aqueous solution of two different poly(dimethylacrylamide) copolymers incorporating a silane moiety and functionalized with either N-acryloyloxysuccinimide (NAS) (poly(DMA-NAS-MAPS) or glycidyl methacrylate (GMA) (poly(DMA-GMA-MAPS). The coating formation was confirmed by contact angle (CA) analysis comparing the variation of CAs of uncoated and coated surfaces subjected to different aging treatments. The antifouling character of the polymer was demonstrated by fluorescence and interferometric detection of proteins adsorbed on the surafce. This method is of great interest in microfluidics due to its broad applicability to a number of materials with varying chemical compositions.

  12. One-step dip coating of zwitterionic sulfobetaine polymers on hydrophobic and hydrophilic surfaces.

    PubMed

    Sundaram, Harihara S; Han, Xia; Nowinski, Ann K; Ella-Menye, Jean-Rene; Wimbish, Collin; Marek, Patrick; Senecal, Kris; Jiang, Shaoyi

    2014-05-14

    Zwitterionic sulfobetaine polymers with a catechol chain end (DOPA-PSB) were applied to a variety of hydrophobic polymer sheets and fibers. In addition, a silica surface was tested as a representative hydrophilic substrate. The polymer-coated surfaces showed significantly lower fouling levels than uncoated controls. Because of the anti-polyelectrolyte nature of sulfobetaine zwitterionic polymers, the effect of salt concentration on the coating solutions and the quality of the polymer coating against fouling are studied. The coating method involves only water-based solutions, which is compatible with most surfaces and is environmentally friendly. To demonstrate the versatility of the reported method, we evaluated the fouling levels of the polymer coating on commonly used polymeric surfaces such as polypropylene (PP), polydimethylsiloxane (PDMS), polystyrene (PS), nylon, polyvinyl chloride (PVC), and poly(methyl methacrylate) (PMMA). PMID:24730392

  13. Fabrication and Characterization of a Porous Silicon Drug Delivery System with an Initiated Chemical Vapor Deposition Temperature-Responsive Coating.

    PubMed

    McInnes, Steven J P; Szili, Endre J; Al-Bataineh, Sameer A; Vasani, Roshan B; Xu, Jingjing; Alf, Mahriah E; Gleason, Karen K; Short, Robert D; Voelcker, Nicolas H

    2016-01-12

    This paper reports on the fabrication of a pSi-based drug delivery system, functionalized with an initiated chemical vapor deposition (iCVD) polymer film, for the sustainable and temperature-dependent delivery of drugs. The devices were prepared by loading biodegradable porous silicon (pSi) with a fluorescent anticancer drug camptothecin (CPT) and coating the surface with temperature-responsive poly(N-isopropylacrylamide-co-diethylene glycol divinyl ether) (pNIPAM-co-DEGDVE) or non-stimulus-responsive poly(aminostyrene) (pAS) via iCVD. CPT released from the uncoated oxidized pSi control with a burst release fashion (∼21 nmol/(cm(2) h)), and this was almost identical at temperatures both above (37 °C) and below (25 °C) the lower critical solution temperature (LCST) of the switchable polymer used, pNIPAM-co-DEGDVE (28.5 °C). In comparison, the burst release rate from the pSi-pNIPAM-co-DEGDVE sample was substantially slower at 6.12 and 9.19 nmol/(cm(2) h) at 25 and 37 °C, respectively. The final amount of CPT released over 16 h was 10% higher at 37 °C compared to 25 °C for pSi coated with pNIPAM-co-DEGDVE (46.29% vs 35.67%), indicating that this material can be used to deliver drugs on-demand at elevated temperatures. pSi coated with pAS also displayed sustainable drug delivery profiles, but these were independent of the release temperature. These data show that sustainable and temperature-responsive delivery systems can be produced by functionalization of pSi with iCVD polymer films. Benefits of the iCVD approach include the application of the iCVD coating after drug loading without causing degradation of the drug commonly caused by exposure to factors such as solvents or high temperatures. Importantly, the iCVD process is applicable to a wide array of surfaces as the process is independent of the surface chemistry and pore size of the nanoporous matrix being coated.

  14. Drug release from film-coated chlorpheniramine maleate nonpareil beads: effect of water-soluble polymer, coating level, and soluble core material.

    PubMed

    Tang, L; Schwartz, J B; Porter, S C; Schnaare, R L; Wigent, R J

    2000-01-01

    The purpose of this research was to use a new drug release model to study the effects of formulation parameters on drug release from a film-coated chlorpheniramine (CPM) nonpareil system. The film-coated CPM nonpareils were prepared by using a fluid bed apparatus. A hydroxylpropylmethylcellulose (HPMC) solution was blended with an aqueous ethylcellulose dispersion (Surelease) to adjust the permeability of the film. The apparent permeability of samples was obtained from dissolution data using a previously reported drug release equation. The apparent permeability was plotted versus the film coating level or the HPMC concentration in the film. When the natural logarithm of the apparent permeability versus coating level was graphed, a biphasic plot was observed in the group without HPMC in the film, showing the occurrence of a critical coating level. It was suggested that a mechanically formed porous film (due to an incomplete coating) could change to a nonporous film after the bead was completely coated. However, in the group that contained 12% HPMC in the film, the critical coating level was not observed. A porous film, formed by the leaching out of the water-soluble polymer, would not change to a nonporous film even after the bead is completely coated. Through a mathematical derivation, the decrease of apparent permeability versus coating level was related to the reduction of the total hole area. The apparent permeability was found to increase with the HPMC concentration. After a critical concentration was reached, the further addition of HPMC into the film caused a rapid increase in apparent permeability. The critical HPMC concentration was related to a minimum domain formation concentration (MDFC). A rapid increase of the drug release was observed when the dissolution profile of a sample made from a regular sugar nonpareil core (soluble) was compared with the sample made from a precoated nonpareil core (insoluble), which suggests that the drug release can be

  15. Poly (ε-caprolactone) coating delays vancomycin delivery from porous chitosan/β-tricalcium phosphate composites.

    PubMed

    Fang, Taolin; Wen, Jianchuan; Zhou, Jian; Shao, Zhengzhong; Dong, Jian

    2012-10-01

    The orthopedic infection, such as osteomyelitis, especially those caused by Methicillin-resistant Staphylococcus aureus (MRSA), remains a major complication of open fractures. Local vancomycin delivery is considered to provide better methods when avascular zones prevent the delivery of drugs from conventional routes of administration. Chitosan (CS) delivery system has been developed with the disadvantages, such as mechanically weakness, lacking osteoconductivity, and the initial burst of antibiotics into the environment. The aim of this study was to confirm that the prepared CS/β-tricalcium phosphate (β-TCP) composites coated with poly (ε-caprolactone) (PCL), similar to natural bone in components, had a three-dimensional porous structure and could be used as drug carriers to deliver vancomycin in a sustained and controlled manner effectively for 6 weeks at levels to inhibit MRSA proliferation. We prepared porous CS/β-TCP composites by incorporating β-TCP into the system, and coated the composites with PCL of three different concentrations. The morphological structure of composites, including pore size and porosity, was examined. The result showed that CS/β-TCP coated with 2.5w/v% PCL solution had the best coating effect and it retarded the release of vancomycin in a near zero-order mechanism from 0 to 14 days. The drug delivery was significantly delayed after coated with 2.5w/v% PCL. The quantitative release of vancomycin was extended to 42 days. Therefore PCL coating could be used to retard the release of vancomycin from CS/β-TCP composites in a sustained and controlled manner. Porous CS/β-TCP coated with PCL might be one of the candidate vancomycin carriers for treating MRSA-related osteomyelitis.

  16. Evaluation of coating degradation for polymer coated steel exposed to seawater

    SciTech Connect

    Mansfeld, F.; Xiao, H.; Han, L.T.; Lee, C.C.; Chen, C.; Jones-Meehan, J.; Little, B.J.

    1996-10-01

    Three sets of polymer coated steel were exposed to Pacific ocean water (NS) and artificial (AS) sea water. Each set had a different primer -- metallic zinc, IVD-Al or phosphate. Within each set one group of samples had an epoxy coating, the other set had an additional layer of polyurethane as a topcoat. Degradation of the protective properties of the polymer coating was followed by recording impedance spectra and electrochemical potential and current noise data as well as by visual observation. Statistical analyses concerning the effects of the nature of the primer, presence of a topcoat and exposure medium (biotic vs. abiotic) were performed based on the breakpoint frequency f{sub b} obtained from impedance data and the noise resistance R{sub n} and the spectral noise resistance R{sup o}{sub sn} obtained from noise data. Samples exposed to three different colonies of microorganisms containing sulfate reducing-bacteria (SRB) and a control solution were evaluated using electrochemical impedance spectroscopy (EIS). All samples were examined by environmental scanning electron microscopy (ESEM) to determine biofilm distribution and spatial relationships between coating damage and microorganisms.

  17. Versatile surface engineering of porous nanomaterials with bioinspired polyphenol coatings for targeted and controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Li, Juan; Wu, Shuxian; Wu, Cuichen; Qiu, Liping; Zhu, Guizhi; Cui, Cheng; Liu, Yuan; Hou, Weijia; Wang, Yanyue; Zhang, Liqin; Teng, I.-Ting; Yang, Huang-Hao; Tan, Weihong

    2016-04-01

    The development of biocompatible drug delivery systems with targeted recognition and controlled release has experienced a number of design challenges, including, for example, complicated preparation steps and premature drug release. Herein, we address these problems through an in situ self-polymerization method that synthesizes biodegradable polyphenol-coated porous nanomaterials for targeted and controlled drug delivery. As a proof of concept, we synthesized polyphenol-coated mesoporous silica nanoparticles, termed MSN@polyphenol. The polyphenol coatings not only improved colloidal stability and prevented premature drug leakage, but also provided a scaffold for immobilization of targeting moieties, such as aptamers. Both immobilization of targeting aptamers and synthesis of polyphenol coating are easily accomplished without the aid of any other organic reagents. Importantly, the polyphenol coating (EGCg) used in this study could be biodegraded by acidic pH and intracellular glutathione, resulting in the release of trapped anticancer drugs. Based on confocal fluorescence microscopy and cytotoxicity experiments, drug-loaded and polyphenol-coated MSNs were shown to possess highly efficient internalization and an apparent cytotoxic effect on target cancer, but not control, cells. Our results suggest that these highly biocompatible and biodegradable polyphenol-coated MSNs are promising vectors for controlled-release biomedical applications and cancer therapy.The development of biocompatible drug delivery systems with targeted recognition and controlled release has experienced a number of design challenges, including, for example, complicated preparation steps and premature drug release. Herein, we address these problems through an in situ self-polymerization method that synthesizes biodegradable polyphenol-coated porous nanomaterials for targeted and controlled drug delivery. As a proof of concept, we synthesized polyphenol-coated mesoporous silica nanoparticles

  18. Effect of the properties of a porous coating on boundary layer stability. [considering porous slates

    NASA Technical Reports Server (NTRS)

    Gaponov, S. A.

    1978-01-01

    Drawing off gas from the boundary layer is a well-known method for increasing the stability of boundary layers. The increase in stability is primarily connected with a change in the velocity profile form in the case of suction. On the basis of the assumption that the velocity perturbations on a porous slate do not equal zero, the influence of the properties of a permeable surface upon the boundary layer stability were studied.

  19. Mechanisms of chain adsorption on porous substrates and critical conditions of polymer chromatography.

    PubMed

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-11-01

    Polymer adsorption is a ubiquitous phenomenon with numerous technological and healthcare applications. The mechanisms of polymer adsorption on surfaces and in pores are complex owing to a competition between various entropic and enthalpic factors. Due to adsorption of monomers to the surface, the chain gains in enthalpy yet loses in entropy because of confining effects. This competition leads to the existence of critical conditions of adsorption when enthalpy gain and entropy loss are in balance. The critical conditions are controlled by the confining geometry and effective adsorption energy, which depends on the solvent composition and temperature. This phenomenon has important implications in polymer chromatography, since the retention at the critical point of adsorption (CPA) is chain length independent. However, the mechanisms of polymer adsorption in pores are poorly understood and there is an ongoing discussion in the theoretical literature about the very existence of CPA for polymer adsorption on porous substrates. In this work, we examine the mechanisms of chain adsorption on a model porous substrate using Monte Carlo (MC) simulations. We distinguish three adsorption mechanisms depending on the chain location: on external surface, completely confined in pores, and also partially confined in pores in so-called "flower" conformations. The free energies of different conformations of adsorbed chains are calculated by the incremental gauge cell MC method that allows one to determine the partition coefficient as a function of the adsorption potential, pore size, and chain length. We confirm the existence of the CPA for chain length independent separation on porous substrates, which is explained by the dominant contributions of the chain adsorption at the external surface, in particular in flower conformations. Moreover, we show that the critical conditions for porous and nonporous substrates are identical and depend only on the surface chemistry. The theoretical

  20. Mechanisms of chain adsorption on porous substrates and critical conditions of polymer chromatography.

    PubMed

    Cimino, Richard T; Rasmussen, Christopher J; Brun, Yefim; Neimark, Alexander V

    2016-11-01

    Polymer adsorption is a ubiquitous phenomenon with numerous technological and healthcare applications. The mechanisms of polymer adsorption on surfaces and in pores are complex owing to a competition between various entropic and enthalpic factors. Due to adsorption of monomers to the surface, the chain gains in enthalpy yet loses in entropy because of confining effects. This competition leads to the existence of critical conditions of adsorption when enthalpy gain and entropy loss are in balance. The critical conditions are controlled by the confining geometry and effective adsorption energy, which depends on the solvent composition and temperature. This phenomenon has important implications in polymer chromatography, since the retention at the critical point of adsorption (CPA) is chain length independent. However, the mechanisms of polymer adsorption in pores are poorly understood and there is an ongoing discussion in the theoretical literature about the very existence of CPA for polymer adsorption on porous substrates. In this work, we examine the mechanisms of chain adsorption on a model porous substrate using Monte Carlo (MC) simulations. We distinguish three adsorption mechanisms depending on the chain location: on external surface, completely confined in pores, and also partially confined in pores in so-called "flower" conformations. The free energies of different conformations of adsorbed chains are calculated by the incremental gauge cell MC method that allows one to determine the partition coefficient as a function of the adsorption potential, pore size, and chain length. We confirm the existence of the CPA for chain length independent separation on porous substrates, which is explained by the dominant contributions of the chain adsorption at the external surface, in particular in flower conformations. Moreover, we show that the critical conditions for porous and nonporous substrates are identical and depend only on the surface chemistry. The theoretical

  1. Dynamics of polymer film formation during spin coating

    SciTech Connect

    Mouhamad, Y.; Clarke, N.; Jones, R. A. L.; Geoghegan, M.; Mokarian-Tabari, P.

    2014-09-28

    Standard models explaining the spin coating of polymer solutions generally fail to describe the early stages of film formation, when hydrodynamic forces control the solution behavior. Using in situ light scattering alongside theoretical and semi-empirical models, it is shown that inertial forces (which initially cause a vertical gradient in the radial solvent velocity within the film) play a significant role in the rate of thinning of the solution. The development of thickness as a function of time of a solute-free liquid (toluene) and a blend of polystyrene and poly(methyl methacrylate) cast from toluene were fitted to different models as a function of toluene partial pressure. In the case of the formation of the polymer blend film, a concentration-dependent (Huggins) viscosity formula was used to account for changes in viscosity during spin coating. A semi-empirical model is introduced, which permits calculation of the solvent evaporation rate and the temporal evolution of the solute volume fraction and solution viscosity.

  2. Electrokinetic behaviour of porous TiO2-coated implants.

    PubMed

    Lorenzetti, Martina; Luxbacher, Thomas; Kobe, Spomenka; Novak, Saša

    2015-06-01

    It is known that the "race for the surface" determining the in vivo response is strictly connected to the physico-chemical properties of the material, especially at its surface. Accordingly, the study of surface roughness, charge and wettability is fundamental to predict the bio-response to the implant. In this work, streaming potential was chosen as a reliable method to quantify the solid surface charge of hydrothermally treated (HT) TiO2-anatase nano-crystalline coatings, grown on titanium substrates. The influence of metal and ionic conductance on the zeta potential values was taken into account, allowing for the correlation of the surface charge with the coating porosity, the semiconductor character of the TiO2 nano-crystals and the metallic nature of the bulk titanium.

  3. Prognostic Significance of Polymer Coatings in Zotarolimus-Eluting Stents.

    PubMed

    Iqbal, M Bilal; Nadra, Imad J; Din, Jehangir N; Hendry, Cara; Ding, Lillian; Fung, Anthony; Aymong, Eve; Chan, Albert W; Hodge, Steven; Robinson, Simon D; Della Siega, Anthony

    2016-03-01

    Polymer coatings on drug-eluting stents (DES) serve as a vehicle for delivery of antirestenotic drugs. Whether they influence outcomes for contemporary DES is unknown. The evolution of polymer coatings for zotarolimus-eluting stents (ZES) provides a natural experiment that facilitates such analysis. The Resolute ZES (R-ZES) uses the same antirestenotic drug as the Endeavor ZES (E-ZES) but has a more biocompatible polymer with enhanced drug release kinetics. However, there are limited data on the real-world comparative efficacy of R-ZES and the preceding E-ZES. Thus, we analyzed 17,643 patients who received either E-ZES or R-ZES from 2008 to 2014 from the British Columbia Cardiac Registry. A total of 9,869 patients (56%) received E-ZES and 7,774 patients (44%) received R-ZES. Compared with E-ZES, R-ZES was associated with lower 2-year mortality (4.1% vs 6.4%, p <0.001) and 2-year target vessel revascularization (TVR; 6.8% vs 10.7%, p <0.001). R-ZES use was an independent predictor of lower mortality rate and TVR. This was confirmed in propensity-matched analyses for 2-year mortality (hazard ratio [HR] 0.59, 95% CI 0.49 to 0.71, p <0.001) and 2-year TVR (HR 0.86, 95% CI 0.75 to 0.98, p = 0.032). Instrumental variable analyses demonstrated R-ZES to be associated with lower 2-year mortality (Δ = -2.2%, 95% CI -4.3% to -0.2%, p = 0.032) and 2-year TVR (Δ = -3.3% to 95% CI -6.1% to -0.7%, p = 0.015). Acknowledging the limitations of observational analyses, this study has shown that R-ZES was associated with lower long-term TVR and mortality. These data are reassuring for the newer R-ZES and demonstrate how polymer coatings may influence the clinical performance of DES with wider implications for future DES development and design. PMID:26796194

  4. Porous α-Al2O3 thermal barrier coatings with dispersed Pt particles prepared by cathode plasma electrolytic deposition

    NASA Astrophysics Data System (ADS)

    Wang, Peng; He, Ye-dong; Deng, Shun-jie; Zhang, Jin

    2016-01-01

    Porous α-Al2O3 thermal barrier coatings (TBCs) containing dispersed Pt particles were prepared by cathode plasma electrolytic deposition (CPED). The influence of the Pt particles on the microstructure of the coatings and the CPED process were studied. The prepared coatings were mainly composed of α-Al2O3. The average thickness of the coatings was approximately 100 μm. Such single-layer TBCs exhibited not only excellent high-temperature cyclic oxidation and spallation resistance, but also good thermal insulation properties. Porous α-Al2O3 TBCs inhibit further oxidation of alloy substrates because of their extremely low oxygen diffusion rate, provide good thermal insulation because of their porous structure, and exhibit excellent mechanical properties because of the toughening effect of the Pt particles and because of stress relaxation induced by deformation of the porous structure.

  5. Propagation of Terahertz Radiation in Porous Polymer and Ceramic Materials

    NASA Astrophysics Data System (ADS)

    Dodson, Caroline; Spicer, James; Fitch, Michael; Schuster, Paul; Osiander, Robert

    2005-04-01

    In this work we investigate the propagation of terahertz radiation through polyurethane foam and porous alumina ceramics to understand the effects of structure on the optical properties of these materials at terahertz frequencies. A terahertz time domain system with a GaAs photoconductive emitter and a ZnTe electro-optic crystal was used to generate and detect the transmitted terahertz signal. Using the amplitude and phase characteristics of these signals, the thickness, index of refraction, and other physical and optical properties of the materials were determined.

  6. Porous anodic alumina with low refractive index for broadband graded-index antireflection coatings.

    PubMed

    Chen, Junwu; Wang, Biao; Yang, Yi; Shi, Yuanyuan; Xu, Gaojie; Cui, Ping

    2012-10-01

    Materials with very low refractive index are essential to prepare broadband graded-index antireflection (AR) coatings. However, the availability of such materials is very limited. In this study, large-area (4 cm×4 cm) low refractive index porous anodic alumina (PAA) coatings on glass substrate were prepared successfully by electron-beam evaporation, electrochemical oxidation, and chemical etching method. The nanopore size of PAA film is smaller than 40 nm, and the refractive index of PAA film is n=1.08. Besides, five-layered graded-index broadband PAA coatings with refractive indices following the Gaussian profile were also prepared to noticeably eliminate the reflectance of glass over a broadband wavelength, and the lowest reflectivity is 0.64% at the wavelength of 534 nm at normal incidence. The PAA AR coatings having an omnidirectional nature are likely to have practical applications in photovoltaic cells and optical devices.

  7. Osseointegration of porous titanium implants with and without electrochemically deposited DCPD coating in an ovine model

    PubMed Central

    2011-01-01

    Background Uncemented fixation of components in joint arthroplasty is achieved primarily through de novo bone formation at the bone-implant interface and establishment of a biological and mechanical interlock. In order to enhance bone-implant integration osteoconductive coatings and the methods of application thereof are continuously being developed and applied to highly porous and roughened implant substrates. In this study the effects of an electrochemically-deposited dicalcium phosphate dihydrate (DCPD) coating of a porous substrate on implant osseointegration was assessed using a standard uncemented implant fixation model in sheep. Methods Plasma sprayed titanium implants with and without a DCPD coating were inserted into defects drilled into the cancellous and cortical sites of the femur and tibia. Cancellous implants were inserted in a press-fit scenario whilst cortical implants were inserted in a line-to-line fit. Specimens were retrieved at 1, 2, 4, 8 and 12 weeks postoperatively. Interfacial shear-strength of the cortical sites was assessed using a push-out test, whilst bone ingrowth, ongrowth and remodelling were investigated using histologic and histomorphometric endpoints. Results DCPD coating significantly improved cancellous bone ingrowth at 4 weeks but had no significant effect on mechanical stability in cortical bone up to 12 weeks postoperatively. Whilst a significant reduction in cancellous bone ongrowth was observed from 4 to 12 weeks for the DCPD coating, no other statistically significant differences in ongrowth or ingrowth in either the cancellous or cortical sites were observed between TiPS and DCPD groups. Conclusion The application of a DCPD coating to porous titanium substrates may improve the extent of cancellous bone ingrowth in the early postoperative phase following uncemented arthroplasty. PMID:22053991

  8. Development of Polymer Coatings for the ProSEDS Tether

    NASA Technical Reports Server (NTRS)

    Vaughn, Jason A.; Kamenetsky, Rachel R.; Finckenor, Miria; Wright, Ken

    2000-01-01

    The ProSEDS mission is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta 11 unmanned, expendable booster. A 5 km conductive tether is attached to the deployer baseplate on the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma to facilitate de-orbit of the Delta II second stage. The conductive tether is attached to a 10-15 km non-conductive tether, which in turn is attached to an endmass. A bare metal tether would have the best conductivity but thermal concerns preclude this design. A conductive polymer developed by Triton Systems has been optimized for optimum conductivity and thermo-optical properties. The current design for the ProSEDS conductive tether is seven individually coated strands of 28 AWG aluminum wire, coated with 12.7 micrometers (0.5 mil) atomic oxygen-resistant conductive polymer composed of a mixture of COR and PANi, wrapped around a braided Kevlar 29 core. Extensive testing has been performed at the Marshall Space Flight Center to qualify this material for flight on ProSEDS. Atomic oxygen exposure has been performed, with solar absorptance and infrared emittance measured before and after exposure. Plasma chamber tests have been completed, as well as tether deployment tests. Also developed for the ProSEDS mission was the insulating polymer TOR-BP. Approximately 200 meters of the conductive tether closest to the Delta II second stage is insulated to prevent any electron reconnection to the tether from the plasma contactor. The insulating material is TOR-BP with a dielectric strength of TBD.

  9. Bioinspired porous membranes containing polymer nanoparticles for wound healing.

    PubMed

    Ferreira, Ana M; Mattu, Clara; Ranzato, Elia; Ciardelli, Gianluca

    2014-12-01

    Skin damages covering a surface larger than 4 cm(2) require a regenerative strategy based on the use of appropriate wound dressing supports to facilitate the rapid tissue replacement and efficient self-healing of the lost or damaged tissue. In the present work, A novel biomimetic approach is proposed for the design of a therapeutic porous construct made of poly(L-lactic acid) (PLLA) fabricated by thermally induced phase separation (TIPS). Biomimicry of ECM was achieved by immobilization of type I collagen through a two-step plasma treatment for wound healing. Anti-inflammatory (indomethacin)-containing polymeric nanoparticles (nps) were loaded within the porous membranes in order to minimize undesired cell response caused by post-operative inflammation. The biological response to the scaffold was analyzed by using human keratinocytes cell cultures. In this work, a promising biomimetic construct for wound healing and soft tissue regeneration with drug-release properties was fabricated since it shows (i) proper porosity, pore size, and mechanical properties, (ii) biomimicry of ECM, and (iii) therapeutic potential.

  10. Bioinspired porous membranes containing polymer nanoparticles for wound healing.

    PubMed

    Ferreira, Ana M; Mattu, Clara; Ranzato, Elia; Ciardelli, Gianluca

    2014-12-01

    Skin damages covering a surface larger than 4 cm(2) require a regenerative strategy based on the use of appropriate wound dressing supports to facilitate the rapid tissue replacement and efficient self-healing of the lost or damaged tissue. In the present work, A novel biomimetic approach is proposed for the design of a therapeutic porous construct made of poly(L-lactic acid) (PLLA) fabricated by thermally induced phase separation (TIPS). Biomimicry of ECM was achieved by immobilization of type I collagen through a two-step plasma treatment for wound healing. Anti-inflammatory (indomethacin)-containing polymeric nanoparticles (nps) were loaded within the porous membranes in order to minimize undesired cell response caused by post-operative inflammation. The biological response to the scaffold was analyzed by using human keratinocytes cell cultures. In this work, a promising biomimetic construct for wound healing and soft tissue regeneration with drug-release properties was fabricated since it shows (i) proper porosity, pore size, and mechanical properties, (ii) biomimicry of ECM, and (iii) therapeutic potential. PMID:24522948

  11. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics

    PubMed Central

    2014-01-01

    Background Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. Methods We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. Results nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50–200 nm and diameters from ~15–30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Conclusions Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more

  12. Distributed Pore Chemistry in Porous Organic Polymers in Tissue Culture Flasks

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1999-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclose. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  13. Revealing amphiphilic nanodomains of anti-biofouling polymer coatings.

    PubMed

    Amadei, Carlo A; Yang, Rong; Chiesa, Matteo; Gleason, Karen K; Santos, Sergio

    2014-04-01

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be ∼1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry. PMID:24617757

  14. Revealing Amphiphilic Nanodornains of Anti-Biofouling Polymer Coatings

    SciTech Connect

    Amadei, CA; Yang, R; Chiesa, M; Gleason, KK; Santos, S

    2014-04-09

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be similar to 1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  15. Revealing amphiphilic nanodomains of anti-biofouling polymer coatings.

    PubMed

    Amadei, Carlo A; Yang, Rong; Chiesa, Matteo; Gleason, Karen K; Santos, Sergio

    2014-04-01

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be ∼1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  16. Biodegradability of regenerated cellulose films coated with polyurethane/natural polymers interpenetrating polymer networks

    SciTech Connect

    Zhang, L.; Zhou, J.; Huang, J.; Gong, P. Zhou, Q.; Zheng, L.; Du, Y.

    1999-11-01

    Interpenetrating polymer network (IPN) coatings synthesized from castor-oil-based polyurethane (PU) with chitosan, nitrocellulose, or elaeostearin were coated on regenerated cellulose (RC) film for curing at 80--100 C for 2--5 min, providing biodegradable, water-resistant cellulose films coded, respectively, as RCCH, RCNC, and RCEs. The coated films were buried in natural soil for decaying and inoculated with a spore suspension of fungi on the agar medium, respectively, to test biodegradability. The viscosity-average molecular weight, M{sub {eta}}, and the weight of the degraded films decreased sharply with the progress of degradation. The degradation half-lifes, t{sub 1/2}, of the films in soil at 30 C were found to be 19 days for RC, 25 days for RCNC, 32 days for RCCH, and 45 days for the RCEs films. Scanning electron microscopy (SEM) showed that the extent of decay followed in the order RC {gt} RCNC {gt} RCCH {gt} RCEs. SEM, infrared (IR), high-performance liquid chromatography (HPLC), and CO{sub 2} evolution results indicated that the microorganisms directly attacked the water-resistant coating layer and then penetrated into the cellulose to speedily metabolize, while accompanying with producing CO{sub 2}, H{sub 2}O, glucose cleaved from cellulose, and small molecules decomposed from the coatings.

  17. Adhesion of E. coli to silver- or copper-coated porous clay ceramic surfaces

    NASA Astrophysics Data System (ADS)

    Yakub, I.; Soboyejo, W. O.

    2012-06-01

    Porous ceramic water filters (CWFs), produced by sintering a mixture of clay and a combustible material (such as woodchips), are often used in point-of-use water filtration systems that occlude microbes by size exclusion. They are also coated with colloidal silver, which serves as a microbial disinfectant. However, the adhesion of microbes to porous clay surfaces and colloidal silver coated clay surfaces has not been studied. This paper presents the results of atomic force microscopy (AFM) measurements of the adhesion force between Escherichia coli bacteria, colloidal silver, and porous clay-based ceramic surfaces. The adhesion of silver and copper nanoparticles is also studied in control experiments on these alternative disinfectant materials. The adhesive force between the wide range of possible bi-materials was measured using pull-off measurements during force microscopy. These were combined with measurements of AFM tip radii/substrate roughness that were incorporated into adhesion models to obtain the adhesion energies for the pair wise interaction. Of the three antimicrobial metals studied, the colloidal silver had the highest affinity for porous ceramic surface (125 ± 32 nN and ˜0.29 J/m2) while the silver nanoparticles had the highest affinity for E. coli bacteria (133 ± 21 nN and ˜0.39 J/m2). The implications of the results are then discussed for the design of ceramic water filter that can purify water by adsorption and size exclusion.

  18. Porous Silicon Coated with Ultrathin Diamond-Like Carbon Film Cathodes

    SciTech Connect

    Evtukh, A A; Litovchenko, V G; Litvin, Y M; Fedin, D V; Rassamakin, Y V; Sarikov, A V; Chakhovskoi, A G; Felter, T E

    2001-04-01

    The main requirements to electron field emission cathodes are their efficiency, stability and uniformity. In this work we combined the properties of porous silicon layers and diamond-like carbon (DLC) film to obtain emission cathodes with improved parameters. The layered structures of porous silicon and DLC film were formed both on flat n-Si surface and silicon tips created by chemical etching. The conditions of the anodic and stain etching of silicon in HF containing solution under the illumination have been widely changed. The influence of thin ({le} 10nm) DLC film coating of the porous silicon layer on electron emission has been investigated. The parameters of emission efficiency such as field enhancement coefficient, effective emission areas and threshold voltages have been estimated from current-voltage dependencies to compare and characterize different layered structures. The improvement of the emission efficiency of silicon tip arrays with porous layers coated with thin DLC film has been observed. These silicon-based structures are promising for flat panel display applications.

  19. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding.

    PubMed

    Shen, Bin; Li, Yang; Zhai, Wentao; Zheng, Wenge

    2016-03-01

    The fabrication of low-density and compressible polymer/graphene composite (PGC) foams for adjustable electromagnetic interference (EMI) shielding remains a daunting challenge. Herein, ultralightweight and compressible PGC foams have been developed by simple solution dip-coating of graphene on commercial polyurethane (PU) sponges with highly porous network structure. The resultant PU/graphene (PUG) foams had a density as low as ∼0.027-0.030 g/cm(3) and possessed good comprehensive EMI shielding performance together with an absorption-dominant mechanism, possibly due to both conductive dissipation and multiple reflections and scattering of EM waves by the inside 3D conductive graphene network. Moreover, by taking advantage of their remarkable compressibility, the shielding performance of the PUG foams could be simply adjusted through a simple mechanical compression, showing promise for adjustable EMI shielding. We believe that the strategy for fabricating PGC foams through a simple dip-coating method could potentially promote the large-scale production of lightweight foam materials for EMI shielding. PMID:26974443

  20. Development of electrically conductive DLC coated stainless steel separators for polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuo; Watanabe, Masanori; Toda, Tadao; Fujii, Toshiaki

    2013-06-01

    Polymer electrolyte fuel cell (PEFC) as one of generation devices of electrical power is rapidly expanding the market as clean energy instead of petroleum and atomic energy. Residential fuel cell goes into quantity production and introduction of fuel cell for use in automobiles starts in the year 2015 in Japan. Critical subject for making fuel cell expand is how to reduce cost of fuel cell. In this paper we describe about separator plate which domains large ratio of cost in fuel cell stack. In present time, carbon is used in material of residential fuel cell separator. Metal separators are developed in fuel cell for use in automobiles because of need of mechanical strength at first. In order to make fuel cell expand in market, further cost reduction is required. But the metal separator has problem that by using metal separator contact resistance occurred by metal corrosion increases and catalyst layer and membrane degrade. In recent time we found out to protect from corrosion and dissolution of metals by coating the film of porous free conductive DLC with plasma ion implantation and deposition technology that we have developed. Film of electrically conductive DLC was formed with high speed of 13 μm/hr by ICP plasma, and coating cost breakout was performed.

  1. A porous polymer scaffold for meniscal lesion repair--a study in dogs.

    PubMed

    Tienen, T G; Heijkants, R G J C; Buma, P; De Groot, J H; Pennings, A J; Veth, R P H

    2003-06-01

    Meniscal lesions often occur in the avascular area of the meniscus with little chance of spontaneous repair. An access channel in the meniscal tissue can function as an entrance for ingrowing repair tissue from the vascular periphery of the meniscus to the lesion in the avascular zone which again induced healing of the lesion. Implantation of a porous polymer in a full-thickness access channel induced healing. However, a better integration between meniscal tissue and the implant might be achieved with the combination of the newly developed porous polymers and a modified surgical technique. This might improve meniscal lesion healing and the repair of the access channel with neo-meniscal tissue. Longitudinal lesions were created in the avascular part of 24 canine lateral menisci and a partial-thickness access channel was formed to connect the lesion with the meniscal periphery. In 12 menisci, the access channel was left empty (control group), while in the remaining 12 menisci the polymer implant was sutured into the access channel. Repair of the longitudinal lesions was achieved with and without polymer implantation in the partial-thickness access channel. Polymer implants induced fibrous ingrowth with cartilaginous areas, which resembled neo-meniscal tissue. Implantation did not prevent articular cartilage degeneration.

  2. Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers.

    PubMed

    Zhang, Jie-Peng; Liao, Pei-Qin; Zhou, Hao-Long; Lin, Rui-Biao; Chen, Xiao-Ming

    2014-08-21

    X-Ray single-crystal diffraction has been the most straightforward and important technique in structural determination of crystalline materials for understanding their structure-property relationships. This powerful tool can be used to directly visualize the precise and detailed structural information of porous coordination polymers or metal-organic frameworks at different states, which are unique for their flexible host frameworks compared with conventional adsorbents. With a series of selected recent examples, this review gives a brief overview of single-crystal X-ray diffraction studies and single-crystal to single-crystal transformations of porous coordination polymers under various chemical and physical stimuli such as solvent and gas sorption/desorption/exchange, chemical reaction and temperature change.

  3. Sampling for organic chemicals in workplace atmospheres with porous polymer beads.

    PubMed

    Dietrich, M W; Chapman, L M; Mieure, J P

    1978-05-01

    Porous polymer bead collection columns are frequently used in air pollution measurements. They are also useful for industrial hygiene applications when used with miniature personal pumps. Analytical procedures using this type of collection column are described which use thermal desorption for sample recovery followed by GC or GC/MS analysis. A means is shown to modify a gas chromatograph for this type of analysis. A technique which permits splitting of the collected sample is also described. Precision and accuracy data for recovery of nineteen chemicals are presented. Advantages of porous polymer bead procedures include high sensitivity (the total collected sample is analyzed), ease of sample handling and ability to analyze polar materials not recoverable from charcoal.

  4. Tunable hydrophilicity on a hydrophobic fluorocarbon polymer coating on silicon

    SciTech Connect

    Kolari, K.; Hokkanen, A.

    2006-07-15

    An efficient, economic, reliable, and repeatable patterning procedure of hydrophobic surfaces was developed. A fluorocarbon polymer derived from the C{sub 4}F{sub 8} gas in an inductively coupled plasma etcher was used as the hydrophobic coating. For a subsequent patterning of hydrophilic apertures on the polymer, a short O{sub 2} plasma exposure through a silicon shadow mask was utilized. The overall hydrophilicity of the patterned surface can be tuned by the duration of the O{sub 2} plasma exposure, and also by the density and the size of the hydrophilic apertures. The laborious photolithography and tricky lift-off procedures are avoided. Optimization of the whole patterning process is explained thoroughly and supported with experimental data. The hydrophilic adhesion of the patterned polymer was evaluated with aqueous droplets, which were studied on matrices of the hydrophilic apertures of different sizes. The deposition parameters of the fluorocarbon polymer, the size of the droplet required to enable rolling on the patterned surface, and the duration of the O{sub 2} plasma exposure were considered as the main parameters. To determine the achievable resolution of the patterning procedure, the subsurface etching beneath the shadow mask was evaluated. The results show that a resolution of less than 10 {mu}m can be achieved. The simple hydrophilic patterning procedure described here can be used for the production of on-plane microfluidics, where a controlled adhesion or decohesion of 8-50 {mu}l droplets on the surface with a variable hydrophilicity from one location to another can be achieved.

  5. Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts

    SciTech Connect

    Zou, LF; Feng, DW; Liu, TF; Chen, YP; Fordham, S; Yuan, S; Tian, J; Zhou, HC

    2015-01-01

    Stable porphyrin based porous polymer networks, PPN-23 and PPN-24, have been synthesized through a facile one-pot approach by the aromatic substitution reactions of pyrrole and aldehydes. PPN-24(Fe) shows high catalytic efficiency as a biomimetic catalyst in the oxidation reaction of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2.

  6. Porous cationic polymers: the impact of counteranions and charges on CO2 capture and conversion.

    PubMed

    Buyukcakir, Onur; Je, Sang Hyun; Choi, Dong Shin; Talapaneni, Siddulu Naiudu; Seo, Yongbeom; Jung, Yousung; Polychronopoulou, Kyriaki; Coskun, Ali

    2016-01-18

    Porous cationic polymers (PCPs) with surface areas up to 755 m(2) g(-1) bearing positively charged viologen units in their backbones and different counteranions have been prepared. We have demonstrated that by simply varying counteranions both gas sorption and catalytic properties of PCPs can be tuned for metal-free capture and conversion of CO2 into value-added products such as cyclic carbonates with excellent yields. PMID:26583526

  7. Porous cationic polymers: the impact of counteranions and charges on CO2 capture and conversion.

    PubMed

    Buyukcakir, Onur; Je, Sang Hyun; Choi, Dong Shin; Talapaneni, Siddulu Naiudu; Seo, Yongbeom; Jung, Yousung; Polychronopoulou, Kyriaki; Coskun, Ali

    2016-01-18

    Porous cationic polymers (PCPs) with surface areas up to 755 m(2) g(-1) bearing positively charged viologen units in their backbones and different counteranions have been prepared. We have demonstrated that by simply varying counteranions both gas sorption and catalytic properties of PCPs can be tuned for metal-free capture and conversion of CO2 into value-added products such as cyclic carbonates with excellent yields.

  8. Novel lubricated surface of titanium alloy based on porous structure and hydrophilic polymer brushes

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Xiong, Dangsheng; Niu, Yuxiang

    2014-10-01

    On the purpose of improving the tribological properties of titanium alloy through mimicking natural articular cartilage, porous structure was prepared on the surface of Ti6Al4V alloy by anodic oxidation method, and then hydrophilic polymer brushes were grafted onto its surface. Surface morphology of porous oxidized film was investigated by metalloscope and scanning electron microscope (SEM). The composition and structure of modified surface were characterized by Fourier-transform infrared spectroscopy with attenuated total reflection (FTIR/ATR), and the wettability was also evaluated. Friction and wear properties of modified alloys sliding against ultra-high molecular weight polyethylene (UHMWPE) were tested by a pin-on-disc tribometer in physiological saline. The results showed that, the optimum porous structure treated by anodic oxidation formed when the voltage reached as high as 100 V. Hydrophilic monomers [Acrylic acid (AA) and 3-dimethyl-(3-(N-methacrylamido) propyl) ammonium propane sulfonate (DMMPPS)] were successfully grafted onto porous Ti6Al4V surface to form polymer brushes by UV radiation. The change of contact angle showed that wettability of modified Ti6Al4V was improved significantly. The friction coefficient of modified Ti6Al4V was much lower and more stable than untreated ones. The lowest friction coefficient was obtained when the sample was anodized at 100 V and grafted with DMMPPS, and the value was 0.132. The wear of modified samples was also obviously improved.

  9. Tailoring of the porous structure of soft emulsion-templated polymer materials.

    PubMed

    Kovalenko, Artem; Zimny, Kévin; Mascaro, Benoit; Brunet, Thomas; Mondain-Monval, Olivier

    2016-06-21

    This paper discusses the formation of soft porous materials obtained by the polymerization of inverse water-in-silicone (polydimethylsiloxane, PDMS) emulsions. We show that the initial state of the emulsion has a strong impact on the porous structure and properties of the final material. We show that using a surfactant with different solubilities in the emulsion continuous phase (PDMS), it is possible to tune the interaction between emulsion droplets, which leads to materials with either interconnected or isolated pores. These two systems present completely different behavior upon drying, which results in macroporous air-filled materials in the interconnected case and in a collapsed material with low porosity in the second case. Finally, we compare the mechanical and acoustical properties of these two types of bulk polymer monoliths. We also describe the formation of micrometric polymer particles (beads) in these two cases. We show that materials with an interconnected macroporous structure have low mechanical moduli and low sound speed, and are suitable for acoustic applications. The mechanical and acoustical properties of the materials with a collapsed porous structure are similar to those of non-porous silicone, which makes them acoustically inactive. PMID:27195990

  10. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings.

    PubMed

    He, Xiaojing; Zhang, Xiangyu; Bai, Long; Hang, Ruiqiang; Huang, Xiaobo; Qin, Lin; Yao, Xiaohong; Tang, Bin

    2016-01-01

    Implant-associated infection and poor osseointegration remains a major clinical challenge in Ti-based implant materials. A versatile strategy to endow Ti-based implants with long-term antibacterial ability as well as better osteogenic activity is highly desirable for high quality implantation. Strontium (Sr) has been shown to be a significant element to favor bone growth by promoting new bone formation and inhibiting bone resorption. In this study, a novel duplex-treatment technique encompassing magnetron sputtering with micro-arc oxidation is utilized to fabricate porous Sr/Ag-containing TiO2 coatings loaded with different concentrations of Ag and Sr. All coatings are porous with pore size less than 5 µm. Ag is primarily distributed homogeneously inside the pores, and the concentrations of Ag in Sr/Ag-containing TiO2 coatings with low and high Ag contents are 0.40 at.% and 0.83 at.% respectively. We have demonstrated that this kind of coating displays long-lasting antibacterial ability even up to 28 d due to the incorporation of Ag. Further, Sr/Ag-containing TiO2 coatings with optimum Ag and Sr contents revealed good cytocompatibility, enhanced osteoblast spreading and osseointegration, which stemmed primarily from the synergistic effect exerted by the porous surface topography and the bioactive element Sr. However, this study has also identified, for the first time, that proper addition of Ag would further facilitate osteogenic effects. Besides, Sr may be able to alleviate the potential cytotoxic effect of excessive Ag. Thus, integration of optimum functional elements Ag and Sr into Ti-based implant materials would be expected to expedite osseointegration while simultaneously sustaining long-term antibacterial activity, which would provide new insights for relevant fundamental investigations and biomedical applications. PMID:27508428

  11. Continuous preparation of polymer coated drug crystals by solid hollow fiber membrane-based cooling crystallization.

    PubMed

    Chen, Dengyue; Singh, Dhananjay; Sirkar, Kamalesh K; Pfeffer, Robert

    2016-02-29

    A facile way to continuously coat drug crystals with a polymer is needed in controlled drug release. Conventional polymer coating methods have disadvantages: high energy consumption, low productivity, batch processing. A novel method for continuous polymer coating of drug crystals based on solid hollow fiber cooling crystallization (SHFCC) is introduced here. The drug acting as the host particle and the polymer for coating are Griseofulvin (GF) and Eudragit RL100, respectively. The polymer's cloud point temperature in its acetone solution was determined by UV spectrophotometry. An acetone solution of the polymer containing the drug in solution as well as undissolved drug crystals in suspension were pumped through the tube side of the SHFCC device; a cold liquid was circulated in the shell side to rapidly cool down the feed solution-suspension in the hollow-fiber lumen. The polymer precipitated from the solution and coated the suspended crystals due to rapid temperature reduction and heterogeneous nucleation; crystals formed from the solution were also coated by the polymer. Characterizations by scanning electron microscopy, thermogravimetric analysis, laser diffraction spectroscopy, X-ray diffraction, Raman spectroscopy, and dissolution tests show that a uniformly coated, free-flowing drug/product can be obtained under appropriate operating conditions without losing the drug's pharmaceutical properties and controlled release characteristics.

  12. Fabrication of interpenetrating polymer network chitosan/gelatin porous materials and study on dye adsorption properties.

    PubMed

    Cui, Li; Xiong, Zihao; Guo, Yi; Liu, Yun; Zhao, Jinchao; Zhang, Chuanjie; Zhu, Ping

    2015-11-01

    One kind of adsorbent based on chitosan and gelatin with interpenetrating polymer networks (IPN) and porous dual structures was prepared using genipin as the cross-linker. These dual structures were demonstrated by means of Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Adsorptions of acid orange II dye from aqueous solution were carried out at different genipin contents, adsorption times and pH values. The results showed that this material was put up the largest adsorption capacity when the genipin content is 0.25 mmol/L, meanwhile, the lower the solution pH value the greater the adsorption capacity. The chitosan/gelatin interpenetrating polymer networks porous material displayed pH-sensitive and rapidly response in adsorption and desorption to pH altered. It is indicated that the cross-linked chitosan/gelatin interpenetrating polymer networks porous material could be used as a recyclable adsorbent in removal or separation of anionic dyes as environmental pH condition changed.

  13. General Preparation of Three-Dimensional Porous Metal Oxide Foams Coated with Nitrogen-Doped Carbon for Enhanced Lithium Storage.

    PubMed

    Lu, Ke; Xu, Jiantie; Zhang, Jintao; Song, Bin; Ma, Houyi

    2016-07-13

    Porous metal oxide architectures coated with a thin layer of carbon are attractive materials for energy storage applications. Here, a series of porous metal oxide (e.g., vanadium oxides, molybdenum oxides, manganese oxides) foams with/without nitrogen-doped carbon (N-C) coating have been synthesized via a general surfactant-assisted template method, involving the formation of porous metal oxides coated with 1-hexadecylamine (HDA) and a subsequent thermal treatment. The presence of HDA is of importance for the formation of a porous structure, and the successive pyrolysis of such a nitrogen-containing surfactant generates nitrogen-doped carbon (N-C) coated on the surface of metal oxides, which also provides a facile way to adjust the valence states of metal oxides via the carbothermal reduction reaction. When used as electrode materials, the highly porous metal oxides with N-C coating exhibited enhanced performance for lithium ion storage, thanks to the unique 3D structures associated with highly porous structure and thin N-C coating. Typically, the porous metal oxides (V2O5, MoO3, MnO2) exhibited discharge capacities of 286, 303, and 463 mAh g(-1) at current densities of 30 and 100 mA g(-1), respectively. In contrast, the metal oxides with low valences and carbon coating (VO2@N-C, MoO2@N-C, and MnO@N-C) exhibited improved capacities of 461, 613, and 892 mAh g(-1). The capacity retentions of about 87.5, 80.2, and 85.0% for VO2@N-C, MoO2@N-C, and MnO@N-C were achieved after 600 cycles, suggesting the acceptable cycling stability. The present strategy would provide general guidance for preparing porous metal oxide foams with enhanced lithium storage performances. PMID:27322176

  14. General Preparation of Three-Dimensional Porous Metal Oxide Foams Coated with Nitrogen-Doped Carbon for Enhanced Lithium Storage.

    PubMed

    Lu, Ke; Xu, Jiantie; Zhang, Jintao; Song, Bin; Ma, Houyi

    2016-07-13

    Porous metal oxide architectures coated with a thin layer of carbon are attractive materials for energy storage applications. Here, a series of porous metal oxide (e.g., vanadium oxides, molybdenum oxides, manganese oxides) foams with/without nitrogen-doped carbon (N-C) coating have been synthesized via a general surfactant-assisted template method, involving the formation of porous metal oxides coated with 1-hexadecylamine (HDA) and a subsequent thermal treatment. The presence of HDA is of importance for the formation of a porous structure, and the successive pyrolysis of such a nitrogen-containing surfactant generates nitrogen-doped carbon (N-C) coated on the surface of metal oxides, which also provides a facile way to adjust the valence states of metal oxides via the carbothermal reduction reaction. When used as electrode materials, the highly porous metal oxides with N-C coating exhibited enhanced performance for lithium ion storage, thanks to the unique 3D structures associated with highly porous structure and thin N-C coating. Typically, the porous metal oxides (V2O5, MoO3, MnO2) exhibited discharge capacities of 286, 303, and 463 mAh g(-1) at current densities of 30 and 100 mA g(-1), respectively. In contrast, the metal oxides with low valences and carbon coating (VO2@N-C, MoO2@N-C, and MnO@N-C) exhibited improved capacities of 461, 613, and 892 mAh g(-1). The capacity retentions of about 87.5, 80.2, and 85.0% for VO2@N-C, MoO2@N-C, and MnO@N-C were achieved after 600 cycles, suggesting the acceptable cycling stability. The present strategy would provide general guidance for preparing porous metal oxide foams with enhanced lithium storage performances.

  15. Honeycomb-like porous gel polymer electrolyte membrane for lithium ion batteries with enhanced safety

    PubMed Central

    Zhang, Jinqiang; Sun, Bing; Huang, Xiaodan; Chen, Shuangqiang; Wang, Guoxiu

    2014-01-01

    Lithium ion batteries have shown great potential in applications as power sources for electric vehicles and large-scale energy storage. However, the direct uses of flammable organic liquid electrolyte with commercial separator induce serious safety problems including the risk of fire and explosion. Herein, we report the development of poly(vinylidene difluoride-co-hexafluoropropylene) polymer membranes with multi-sized honeycomb-like porous architectures. The as-prepared polymer electrolyte membranes contain porosity as high as 78%, which leads to the high electrolyte uptake of 86.2 wt%. The PVDF-HFP gel polymer electrolyte membranes exhibited a high ionic conductivity of 1.03 mS cm−1 at room temperature, which is much higher than that of commercial polymer membranes. Moreover, the as-obtained gel polymer membranes are also thermally stable up to 350°C and non-combustible in fire (fire-proof). When applied in lithium ion batteries with LiFePO4 as cathode materials, the gel polymer electrolyte demonstrated excellent electrochemical performances. This investigation indicates that PVDF-HFP gel polymer membranes could be potentially applicable for high power lithium ion batteries with the features of high safety, low cost and good performance. PMID:25168687

  16. Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration

    PubMed Central

    Nasiri, Noushin; Ceramidas, Anthony; Mukherjee, Shayanti; Panneerselvan, Anitha; Nisbet, David R.; Tricoli, Antonio

    2016-01-01

    Orthopedic treatments are amongst the most common cause of surgery and are responsible for a large share of global healthcare expenditures. Engineering materials that can hasten bone integration will improve the quality of life of millions of patients per year and reduce associated medical costs. Here, we present a novel hierarchical biomimetic coating that mimics the inorganic constituent of mammalian bones with the aim of improving osseointegration of metallic implants. We exploit the thermally-driven self-organization of metastable core-shell nanoparticles during their aerosol self-assembly to rapidly fabricate robust, ultra-porous nanoparticle networks (UNN) of crystalline hydroxyapatite (HAp). Comparative analysis of the response of osteoblast cells to the ultra-porous nanostructured HAp surfaces and to the spin coated HAp surfaces revealed superior osseointegrative properties of the UNN coatings with significant cell and filopodia infiltration. This flexible synthesis approach for the engineering of UNN HAp coatings on titanium implants provides a platform technology to study the bone-implant interface for improved osseointegration and osteoconduction. PMID:27076035

  17. Processing Methods Established To Fabricate Porous Oxide Ceramic Spheres for Thermal Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.

    2003-01-01

    As gas turbine technology advances, the demand for efficient engines and emission reduction requires a further increase in operating temperatures, but combustion temperatures are currently limited by the temperature capability of the engine components. The existing thermal barrier coating (TBC) technology does not provide sufficient thermal load reduction at a 3000 F (1649 C) operating condition. Advancement in thermal barrier coating technology is needed to meet this aggressive goal. One concept for improving thermal barrier coating effectiveness is to design coating systems that incorporate a layer that reflects or scatters photon radiation. This can be achieved by using porous structures. The refractive index mismatch between the solid and pore, the pore size, and the pore density can be engineered to efficiently scatter photon radiation. Under NASA s Ultra-Efficient Engine Technology (UEET) Program, processing methods to fabricate porous ceramic spheres suitable for scattering photon radiation at elevated temperatures have been established. A straightforward templating process was developed at the NASA Glenn Research Center that requires no special processing equipment. The template was used to define particle shape, particle size, and pore size. Spherical organic cation exchange resins were used as a structure-directing template. The cation exchange resins have dual template capabilities that can produce different pore architectures. This process can be used to fabricate both metal oxide and metal carbide spheres.

  18. Virus capture using anionic polymer-coated magnetic beads (review).

    PubMed

    Sakudo, Akikazu; Onodera, Takashi

    2012-07-01

    The recent incidence of emerging and re-emerging viruses is a serious health concern worldwide. The development of transportation systems, such as air travel, has increased the risk of a global pandemic caused by emerging viruses. Agents causing novel infections are often zoonotic, crossing from the natural host into the human population. Hence, comprehensive surveillance of virus-infected animals as well as humans is required. However, the number of virus particles in clinical and environmental samples is usually very low. Thus, a method to concentrate the virus is sometimes required in order to enable detection. We recently reported that magnetic beads coated with an anionic polymer, poly(methyl vinyl ether-maleic anhydride) can be used to facilitate the rapid and sensitive detection of viruses. In this review, we describe recent developments for concentrating viruses using anionic magnetic beads.

  19. Polymer-coated echogenic lipid nanoparticles with dual release triggers.

    PubMed

    Nahire, Rahul; Haldar, Manas K; Paul, Shirshendu; Mergoum, Anaas; Ambre, Avinash H; Katti, Kalpana S; Gange, Kara N; Srivastava, D K; Sarkar, Kausik; Mallik, Sanku

    2013-03-11

    Although lipid nanoparticles are promising drug delivery vehicles, passive release of encapsulated contents at the target site is often slow. Herein, we report contents release from targeted, polymer-coated, echogenic lipid nanoparticles in the cell cytoplasm by redox trigger and simultaneously enhanced by diagnostic frequency ultrasound. The lipid nanoparticles were polymerized on the external leaflet using a disulfide cross-linker. In the presence of cytosolic concentrations of glutathione, the lipid nanoparticles released 76% of encapsulated contents. Plasma concentrations of glutathione failed to release the encapsulated contents. Application of 3 MHz ultrasound for 2 min simultaneously with the reducing agent enhanced the release to 96%. Folic acid conjugated, doxorubicin-loaded nanoparticles showed enhanced uptake and higher cytotoxicity in cancer cells overexpressing the folate receptor (compared to the control). With further developments, these lipid nanoparticles have the potential to be used as multimodal nanocarriers for simultaneous targeted drug delivery and ultrasound imaging.

  20. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers

    NASA Astrophysics Data System (ADS)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata

    2016-09-01

    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10‑4 S cm‑1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  1. Enhancement of Li+ ion conductivity in solid polymer electrolytes using surface tailored porous silica nanofillers

    NASA Astrophysics Data System (ADS)

    Mohanta, Jagdeep; Singh, Udai P.; Panda, Subhendu K.; Si, Satyabrata

    2016-09-01

    The current study represents the design and synthesis of polyethylene oxide (PEO)-based solid polymer electrolytes by solvent casting approach using surface tailored porous silica as nanofillers. The surface tailoring of porous silica nanostructure is achieved through silanization chemistry using 3-glycidyloxypropyl trimethoxysilane in which silane part get anchored to the silica surface whereas epoxy group get stellated from the silica surface. Surface tailoring of silica with epoxy group increases the room temperature electrochemical performances of the resulting polymer electrolytes. Ammonical hydrolysis of organosilicate precursor is used for both silica preparation and their surface tailoring. The composite solid polymer electrolyte films are prepared by solution mixing of PEO with lithium salt in presence of silica nanofillers and cast into film by solvent drying, which are then characterized by impedance measurement for conductivity study and wide angle x-ray diffraction for change in polymer crystallinity. Room temperature impedance measurement reveals Li+ ion conductivity in the order of 10-4 S cm-1, which is correlated to the decrease in PEO crystallinity. The enhancement of conductivity is further observed to be dependent on the amount of silica as well as on their surface characteristics.

  2. Fluorinated raspberry-like polymer particles for superamphiphobic coatings.

    PubMed

    Jiang, Weijie; Grozea, Claudia M; Shi, Zengqian; Liu, Guojun

    2014-02-26

    Raspberry-like (RB) polymer particles were prepared, fluorinated, and cast onto glass plates to yield highly water- and oil-repellant superamphiphobic particulate coatings. To procure the RB particles, glycidyl-bearing 212 and 332 nm particles (abbreviated as s-GMA and l-GMA, respectively) were first prepared via surfactant-free free radical emulsion polymerization. Reacting the glycidyl groups of the l-GMA particles with 2,2'-(ethylenedioxy)bis(ethylamine) (EDEA) produced large amine-functionalized particles (l-NH2). The l-NH2 particles were then reacted with an excess of the s-GMA particles to create RB particles. For surface fluorination, the residual glycidyl groups of the smaller s-GMA particles surrounding the central l-NH2 core of the RB particles were first converted to amino groups by reaction with EDEA. The purified amino-bearing particles were subsequently reacted with an excess of a statistical copolymer poly(2-(perfluorooctyl)ethyl methacrylate-co-glycidyl methacrylate), P(FOEMA-co-GMA). Casting these particles onto glass plates yielded particulate films that exhibited static contact angles of 165 ± 2°, 155 ± 3°, 152 ± 4°, and 143 ± 1° and droplet rolling angles of <1 °, <1 °, 7 ± 2°, and 13 ± 2° for water, diiodomethane, corn-based cooking oil, and hexadecane droplets, respectively. These results demonstrated that this practical bottom-up approach could be used to produce superamphiphobic coatings.

  3. Advanced polymer-inorganic hybrid hard coatings utilizing in situ polymerization method.

    PubMed

    Takaki, Toshihiko; Nishiura, Katsunori; Mizuta, Yasushi; Itou, Yuichi

    2006-12-01

    Hard coatings are frequently used to give plastics high scratch resistance. Coating hardness and adhesion to the substrate are considered to be key factors influencing scratch resistance, but it is difficult to produce coatings that have both properties. Hybridization of polymers and inorganic materials is a promising approach for solving this problem. We prepared polymer-silica hybrid coatings by using in situ polymerization to carry out radical polymerization of vinyl monomers in a sol-gel solution of alkoxysilanes, and measured the abrasion resistance of the coatings. However, the expected properties were not obtained because the sol-gel reaction did not perfectly proceed on the surface of the coatings under the N2 conditions. We found that curing the hybrid coatings by UV irradiation in air promoted the sol-gel reaction on the surface, resulting in coatings having excellent abrasion resistance.

  4. Porous tantalum coatings prepared by vacuum plasma spraying enhance bmscs osteogenic differentiation and bone regeneration in vitro and in vivo.

    PubMed

    Tang, Ze; Xie, Youtao; Yang, Fei; Huang, Yan; Wang, Chuandong; Dai, Kerong; Zheng, Xuebin; Zhang, Xiaoling

    2013-01-01

    Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrates by vacuum plasma spraying (VPS), which would exert the excellent biocompatibility of tantalum and alleviate the elastic modulus of tantalum for bone tissue. We evaluated cytocompatibility and osteogenesis activity of the porous tantalum coatings using human bone marrow stromal cells (hBMSCs) and its ability to repair rabbit femur bone defects. The morphology and actin cytoskeletons of hBMSCs were observed via electron microscopy and confocal, and the cell viability, proliferation and osteogenic differentiation potential of hBMSCs were examined quantitatively by PrestoBlue assay, Ki67 immunofluorescence assay, real-time PCR technology and ALP staining. For in vivo detection, the repaired femur were evaluated by histomorphology and double fluorescence labeling 3 months postoperation. Porous tantalum coating surfaces promoted hBMSCs adhesion, proliferation, osteogenesis activity and had better osseointegration and faster new bone formation rate than titanium coating control. Our observation suggested that the porous tantalum coatings had good biocompatibility and could enhance osseoinductivity in vitro and promote new bone formation in vivo. The porous tantalum coatings prepared by VPS is a promising strategy for bone regeneration.

  5. Study on lotus-type porous copper electroplated with a Ni coating on inner surface of pores

    NASA Astrophysics Data System (ADS)

    Du, Hao; Song, Guihong; Nakajima, Hideo; Zhao, Yanhui; Xiao, Jinquan; Xiong, Tianying

    2013-01-01

    Deposition of Ni coating on inner surface of pores was attempted by electroplating for lotus-type porous copper with pore size of 0.6 mm and pore length of 6 mm. The surface morphology, thickness, thickness distribution along the pore length, and phase composition of the coating were characterized. It is proven that the Ni coating with a polycrystalline structure can be deposited on the inner surface of the pores with length/diameter of 10 for lotus-type porous copper by agitating the electroplating solution properly during the process. It is indicated that the coating thickness distributes uniformly along the pore depth and is about 4-5 μm. Furthermore, the mechanical properties including vicker hardness, compressive yield strength and absorbed energy ability of the electroplated porous copper were evaluated. It is found that the mechanical properties are improved significantly after depositing the nickel coating inside pores of the lotus-type porous copper. Among them, 0.2% yield stress increases from 22.96 to 30.15 MPa, while absorbed energy per volume from 60.83 to 96.01 MJ/m3 when compressed to strain of 80%, which is attributed mainly to the Ni coating as an obstacle to dislocation slip during deformation and its strengthening effect for the higher strength, and the good adhesion to the pore wall of the porous copper.

  6. Porous Tantalum Coatings Prepared by Vacuum Plasma Spraying Enhance BMSCs Osteogenic Differentiation and Bone Regeneration In Vitro and In Vivo

    PubMed Central

    Tang, Ze; Xie, Youtao; Yang, Fei; Huang, Yan; Wang, Chuandong; Dai, Kerong; Zheng, Xuebin; Zhang, Xiaoling

    2013-01-01

    Tantalum, as a potential metallic implant biomaterial, is attracting more and more attention because of its excellent anticorrosion and biocompatibility. However, its significantly high elastic modulus and large mechanical incompatibility with bone tissue make it unsuitable for load-bearing implants. In this study, porous tantalum coatings were first successfully fabricated on titanium substrates by vacuum plasma spraying (VPS), which would exert the excellent biocompatibility of tantalum and alleviate the elastic modulus of tantalum for bone tissue. We evaluated cytocompatibility and osteogenesis activity of the porous tantalum coatings using human bone marrow stromal cells (hBMSCs) and its ability to repair rabbit femur bone defects. The morphology and actin cytoskeletons of hBMSCs were observed via electron microscopy and confocal, and the cell viability, proliferation and osteogenic differentiation potential of hBMSCs were examined quantitatively by PrestoBlue assay, Ki67 immunofluorescence assay, real-time PCR technology and ALP staining. For in vivo detection, the repaired femur were evaluated by histomorphology and double fluorescence labeling 3 months postoperation. Porous tantalum coating surfaces promoted hBMSCs adhesion, proliferation, osteogenesis activity and had better osseointegration and faster new bone formation rate than titanium coating control. Our observation suggested that the porous tantalum coatings had good biocompatibility and could enhance osseoinductivity in vitro and promote new bone formation in vivo. The porous tantalum coatings prepared by VPS is a promising strategy for bone regeneration. PMID:23776648

  7. Water repellent porous silica films by sol-gel dip coating method.

    PubMed

    Rao, A Venkateswara; Gurav, Annaso B; Latthe, Sanjay S; Vhatkar, Rajiv S; Imai, Hiroaki; Kappenstein, Charles; Wagh, P B; Gupta, Satish C

    2010-12-01

    The wetting of solid surfaces by water droplets is ubiquitous in our daily lives as well as in industrial processes. In the present research work, water repellent porous silica films are prepared on glass substrate at room temperature by sol-gel process. The coating sol was prepared by keeping the molar ratio of methyltriethoxysilane (MTES), methanol (MeOH), water (H(2)O) constant at 1:12.90:4.74, respectively, with 2M NH(4)OH throughout the experiments and the molar ratio (M) of MTES/Ph-TMS was varied from 0 to 0.22. A simple dip coating technique is adopted to coat silica films on the glass substrates. The static water contact angle as high as 164° and water sliding angle as low as 4° was obtained for silica film prepared from M=0.22. The surface morphological studies of the prepared silica film showed the porous structure with pore sizes typically ranging from 200nm to 1.3μm. The superhydrophobic silica films prepared from M=0.22 retained their superhydrophobicity up to a temperature of 285°C and above this temperature the films became superhydrophilic. The porous and water repellent silica films are prepared by proper alteration of the Ph-TMS in the coating solution. The prepared silica films were characterized by surface profilometer, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform Infrared (FT-IR) spectroscopy, humidity tests, chemical aging tests, static and dynamic water contact angle measurements.

  8. Manufacture of porous polymer nerve conduits through a lyophilizing and wire-heating process.

    PubMed

    Huang, Yi-Cheng; Huang, Yi-You; Huang, Chun-Chieh; Liu, Hwa-Chang

    2005-07-01

    We have developed a method for nerve tissue regeneration using longitudinally oriented channels within biodegradable polymers created by a combined lyophilizing and wire-heating process. This type of cell-adhesive scaffold provides increased area to support and guide extending axons subsequent to nerve injury. Utilizing Ni-Cr wires as mandrels to create channels in scaffold increased safety, effectiveness, and reproducibility. The scaffolds tested were made from different biodegradable polymers, chitosan and poly(D,L-lactide-co-glycolide) (PLGA), because of their availability, ease of processing, low inflammatory response, and approval by the FDA. According to our experimental results, the high permeability and the characteristic porous structure of chitosan proved to be a better material for nerve guidance than PLGA. The scanning electron micrographs revealed that the scaffolds were consistent along the longitudinal axis with channels being distributed evenly throughout the scaffolds. There was no evidence to suggest merging or splitting of individual channels. The diameter of the channels was about 100 mum, similar to the 115 micromameter of the Ni-Cr wire. Regulating the size and quantity of the Ni-Cr wires allow us to control the number and the diameter of the channels. Furthermore, the neutralizing processes significantly influenced the porous structure of chitosan scaffolds. Using weak base (NaHCO(3) 1M) to neutralize chitosan scaffolds made the porous structure more uniform. The innovative method of using Ni-Cr wires as mandrels could be easily tailored to other polymer and solvent systems. The high permeability and the characteristic porous structure of chitosan made it a superior material for nerve tissue engineering. These scaffolds could be useful for guiding regeneration of the peripheral nerve or spinal cord after a transection injury. PMID:15909301

  9. Biocompatible interface films deposited within porous polymers by Atomic Layer Deposition (ALD).

    PubMed

    Liang, Xinhua; Lynn, Aaron D; King, David M; Bryant, Stephanie J; Weimer, Alan W

    2009-09-01

    Ultrathin ceramic films were deposited throughout highly porous poly(styrene-divinylbenzene) (PS-DVB) particles using a low-temperature atomic layer deposition (ALD) process. Alumina and titania films were deposited by alternating reactions of trimethylaluminum and H2O at 33 degrees C and of titanium tetrachloride and H2O2 (50 wt % in H2O) at 100 degrees C, respectively. Analytical characterization revealed that conformal alumina and titania films were grown on internal and external polymer surfaces. The improved bioactivity of the polymer substrates was revealed on the basis of the formation of hydroxyapatite (HA) in simulated body fluid. The accelerated formation of HA on the ALD-modified polymer surface was caused by the negatively charged surface provided by the ultrathin ceramic interface. The potential for ALD films to support cell attachment was demonstrated.

  10. Influence of implantation on the electrochemical properties of smooth and porous TiN coatings for stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Meijs, S.; Sørensen, C.; Sørensen, S.; Rechendorff, K.; Fjorback, M.; Rijkhoff, N. J. M.

    2016-04-01

    Objective. To determine whether changes in electrochemical properties of porous titanium nitride (TiN) electrodes as a function of time after implantation are different from those of smooth TiN electrodes. Approach. Eight smooth and 8 porous TiN coated electrodes were implanted in 8 rats. Before implantation, voltage transients, cyclic voltammograms and impedance spectra were recorded in phosphate buffered saline (PBS). After implantation, these measurements were done weekly to investigate how smooth and porous electrodes were affected by implantation. Main results. The electrode capacitance of the porous TiN electrodes decreased more than the capacitance of the smooth electrodes due to acute implantation under fast measurement conditions (such as stimulation pulses). This indicates that protein adhesion presents a greater diffusion limitation for counter-ions for the porous than for the smooth electrodes. The changes in electrochemical properties during the implanted period were similar for smooth and porous TiN electrodes, indicating that cell adhesion poses a similar diffusion limitation for smooth and porous electrodes. Significance. This knowledge can be used to optimize the porous structure of the TiN film, so that the effect of protein adhesion on the electrochemical properties is diminished. Alternatively, an additional coating could be applied on the porous TiN that would prevent or minimize protein adhesion.

  11. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer.

    PubMed

    Alsbaiee, Alaaeddin; Smith, Brian J; Xiao, Leilei; Ling, Yuhan; Helbling, Damian E; Dichtel, William R

    2016-01-14

    The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment. PMID:26689365

  12. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer.

    PubMed

    Alsbaiee, Alaaeddin; Smith, Brian J; Xiao, Leilei; Ling, Yuhan; Helbling, Damian E; Dichtel, William R

    2016-01-14

    The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.

  13. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer

    NASA Astrophysics Data System (ADS)

    Alsbaiee, Alaaeddin; Smith, Brian J.; Xiao, Leilei; Ling, Yuhan; Helbling, Damian E.; Dichtel, William R.

    2016-01-01

    The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.

  14. Facile approach in fabricating superhydrophobic SiO2/polymer nanocomposite coating

    NASA Astrophysics Data System (ADS)

    Chen, Hengzhen; Zhang, Xia; Zhang, Pingyu; Zhang, Zhijun

    2012-11-01

    We have developed a facile spin-coating method to prepare water-repellent SiO2/polymer composite coating without any surface chemical modification. The wettability can be adjusted by controlling the content of SiO2 nanoparticles. The coating demonstrates sustainable superhydrophobicity in the condition of continuous contact with corrosive liquids. Importantly, the coating can be fabricated on various metal substrates to prevent metal from corrosion.

  15. Carbon-coated Fe3O4 microspheres with a porous multideck-cage structure for highly reversible lithium storage.

    PubMed

    Wang, Yanrong; Zhang, Lei; Wu, Yali; Zhong, Yijun; Hu, Yong; Lou, Xiong Wen David

    2015-04-25

    A novel H3PO4 etching strategy together with subsequent carbon coating has been developed for the synthesis of carbon-coated Fe3O4 microspheres with a porous multideck-cage structure. These carbon-coated Fe3O4 microspheres manifest high specific capacity (∼1100 m h g(-1) at 200 mA g(-1)) and excellent cycling stability for lithium storage.

  16. Fabrication of Optical Multilayer Devices from Porous Silicon Coatings with Closed Porosity by Magnetron Sputtering.

    PubMed

    Caballero-Hernández, Jaime; Godinho, Vanda; Lacroix, Bertrand; Jiménez de Haro, Maria C; Jamon, Damien; Fernández, Asunción

    2015-07-01

    The fabrication of single-material photonic-multilayer devices is explored using a new methodology to produce porous silicon layers by magnetron sputtering. Our bottom-up methodology produces highly stable amorphous porous silicon films with a controlled refractive index using magnetron sputtering and incorporating a large amount of deposition gas inside the closed pores. The influence of the substrate bias on the formation of the closed porosity was explored here for the first time when He was used as the deposition gas. We successfully simulated, designed, and characterized Bragg reflectors and an optical microcavity that integrates these porous layers. The sharp interfaces between the dense and porous layers combined with the adequate control of the refractive index and thickness allowed for excellent agreement between the simulation and the experiments. The versatility of the magnetron sputtering technique allowed for the preparation of these structures for a wide range of substrates such as polymers while also taking advantage of the oblique angle deposition to prepare Bragg reflectors with a controlled lateral gradient in the stop band wavelengths.

  17. Coating of meso-porous metallic membranes with oriented channel-likefine pores by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Mukherji, D.; Lackner, J.; Wanderka, N.; Kardjilov, N.; Näth, O.; Jäger, S.; Schmitz, F.; Rösler, J.

    2008-02-01

    There is increasing demand to functionalize meso- and nanoporous materials by coating and make the porous substrate biocompatible or environmentally friendly. However, coating on a meso-porous substrate poses great challenges, especially if the pore aspect ratio is high. We adopted the pulsed laser deposition (PLD) method to coat Ni3Al-based meso-porous membranes, which were fabricated from a single-crystal Ni-based superalloy by a unique selective phase dissolution technique. These membranes were about 250 µm thick and had channel-like pores (~200 nm wide) with very high aspect ratio. Two different coating materials, i.e. diamond-like carbon (DLC) and titanium, were used to coat these membranes. High energy C or Ti ions, produced in the plasma plume by the PLD process, penetrated the channel-like pores and deposited coatings on the pore walls deep inside the membrane. The thickness and the quality of coatings on the pore walls were examined using the dual-beam system. The coating thickness, of the order of 50 nm, was adherent to the pore walls and was quite uniform at different depths. The carbon and the Ti deposition behaved quite similarly. The preliminary experiments showed that the PLD is an adequate method for coating fine open cavities of complex geometry. Simulations based on stopping and the range of ions in matter (SRIM) calculations helped in understanding the deposition processes on pore walls at great depths.

  18. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion

    PubMed Central

    Totani, Masayasu; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Tanihara, Masao

    2014-01-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78–88% relative to noncoated PET surface) and Escherichia coli (94–97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria. PMID:25485105

  19. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion.

    PubMed

    Totani, Masayasu; Ando, Tsuyoshi; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Kuroda, Kenichi; Tanihara, Masao

    2014-09-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78-88% relative to noncoated PET surface) and Escherichia coli (94-97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria.

  20. Polyaniline-coated freestanding porous carbon nanofibers as efficient hybrid electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Tran, Chau; Singhal, Richa; Lawrence, Daniel; Kalra, Vibha

    2015-10-01

    Three-dimensional, free-standing, hybrid supercapacitor electrodes combining polyaniline (PANI) and porous carbon nanofibers (P-CNFs) were fabricated with the aim to integrate the benefits of both electric double layer capacitors (high power, cyclability) and pseudocapacitors (high energy density). A systematic investigation of three different electropolymerization techniques, namely, potentiodynamic, potentiostatic, and galvanostatic, for electrodeposition of PANI on freestanding carbon nanofiber mats was conducted. It was found that the galvanostatic method, where the current density is kept constant and can be easily controlled facilitates conformal and uniform coating of PANI on three-dimensional carbon nanofiber substrates. The electrochemical tests indicated that the PANI-coated P-CNFs exhibit excellent specific capacitance of 366 F g-1 (vs. 140 F g-1 for uncoated porous carbon nanofibers), 140 F cm-3 volumetric capacitance, and up to 2.3 F cm-2 areal capacitance at 100 mV s-1 scan rate. Such excellent performance is attributed to a thin and conformal coating of PANI achieved using the galvanostatic electrodeposition technique, which not only provides pseudocapacitance with high rate capability, but also retains the double-layer capacitance of the underlying P-CNFs.

  1. Dry powder process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1997-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. A material is applied to each side of the towpreg to form a sandwich. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  2. A Dry Powder Process for Preparing Uni-Tape Prepreg from Polymer Powder Coated Filamentary Towpregs

    NASA Technical Reports Server (NTRS)

    Wilkinson, Steven P. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    1995-01-01

    A process for preparing uni-tape prepreg from polymer powder coated filamentary towpregs is provided. A plurality of polymer powder coated filamentary towpregs are provided. The towpregs are collimated so that each towpreg is parallel. The sandwich is heated to a temperature wherein the polymer flows and intimately contacts the filaments and pressure is repeatedly applied perpendicularly to the sandwich with a longitudinal oscillating action wherein the filaments move apart and the polymer wets the filaments forming a uni-tape prepreg. The uni-tape prepreg is subsequently cooled.

  3. Polymer coating on the surface of zirconia nanoparticles by inductively coupled plasma polymerization

    NASA Astrophysics Data System (ADS)

    He, Wei; Guo, Zhigang; Pu, Yikang; Yan, Luting; Si, Wenjie

    2004-08-01

    Polymer coating on the surface of inorganic ceramic nanoparticles is beneficial to decrease agglomeration and improve dispersion in organic solvent in ceramic injection moulding technology. A layer of thin polymer film on zirconia nanoparticles is deposited by inductively coupled ethylene/nitrogen plasma. Transmission electron microscopy photographs indicate the presence of uniform polymer coatings and the thickness of the polymer layer is estimated as several nanometers. The chemical structure of the film is revealed as quasi-polyethylene long hydrocarbon chain by x-ray photoelectron spectroscopy examination.

  4. Polymer composites and porous materials prepared by thermally induced phase separation and polymer-metal hybrid methods

    NASA Astrophysics Data System (ADS)

    Yoon, Joonsung

    The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and

  5. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    NASA Astrophysics Data System (ADS)

    Xu, Liping; Yamamoto, Akiko

    2012-06-01

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly (ɛ-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg2+ are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg2+ (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  6. Effects of ultrathin silicone coating of porous membrane on gas transfer and hemolytic performance.

    PubMed

    Niimi, Y; Ueyama, K; Yamaji, K; Yamane, S; Tayama, E; Sueoka, A; Kuwana, K; Tahara, K; Nosé, Y

    1997-10-01

    To assess the effect of an ultrathin (0.2 microm) silicone-coated microporous membrane oxygenator on gas transfer and hemolytic performance, a silicone-coated capillary membrane oxygenator (Mera HP Excelung-prime, HPO-20H-C, Senko Medical Instrument Mfg. Co., Ltd., Tokyo, Japan) was compared with a noncoated polypropylene microporous membrane oxygenator of the same model and manufacturer using an in vitro test circuit. The 2 oxygenators showed little difference in the oxygen (O2) transfer rate over a wide range of blood flow rates (1 L/min to 8 L/min). The carbon dioxide (CO2) transfer rate was almost the same in both devices at low blood flow rates, but the silicone-coated oxygenator showed a decrease of more than 20% in the CO2 transfer rate at higher blood flow rates. This loss in performance could be partly attenuated by increasing the gas/blood flow ratio from 0.5 or 1.0 to 2.0. In the hemolysis study, the silicone-coated membrane oxygenator showed a smaller increase in plasma free hemoglobin than the noncoated oxygenator. The pressure drop across both oxygenators was the same. These results suggest that the ultrathin silicone-coated porous membrane oxygenator may be a useful tool for long-term extracorporeal lung support while maintaining a sufficient gas transfer rate and causing less blood component damage.

  7. Enhanced ionic polymer metal composite actuator with porous nafion membrane using zinc oxide particulate leaching method

    NASA Astrophysics Data System (ADS)

    Jung, Sun Yong; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2015-03-01

    In this study, to improve the performance of an ionic polymer metal composite (IPMC), we suggest a porous nafion membrane fabricated with the particulate leaching method with zinc oxide and propose an IPMC that uses the porous nafion membrane. To fabricate this membrane, the proper ratio of nafion and zinc oxide powder is dispersed in a solvent. Then the zinc oxide embedded in the nafion membrane is fabricated with a casting method. With the particulate leaching method, the embedded zinc oxide particles are dissolved by an acid solution, and the spaces of the zinc oxide particles changed to pores. Finally, through electroless plating and ion exchange procedures, an IPMC with the porous nafion membrane is fabricated. The proposed IPMC has higher water uptake (WUP) and ion exchange capacity (IEC) and can show better actuation performance compared to the conventional nafion-based IPMC. We also measure the actuation displacement and blocking forces of the proposed IPMC. Compared with the conventional nafion-based IPMC, the proposed IPMC with the porous nafion membrane has increased displacements: about 80% at ac input and about 250% at dc input, and increased blocking force about 130% at dc input.

  8. Undercutting of defects in thin film protective coatings on polymer surfaces exposed to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Mihelcic, Judith A.

    1989-01-01

    Protection for polymeric surfaces is needed to make them durable in the low Earth orbital environment, where oxidation by atomic oxygen is the predominant failure mechanism. Thin film coatings of oxides such as silicon dioxide are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies occurring during the deposition process, handling, or micrometeoroid and debris bombardment in low Earth orbit. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of silicon dioxide on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface.

  9. Undercutting of defects in thin film protective coatings on polymer surfaces exposed to atomic oxygen

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Mihelcic, Judith A.

    1989-01-01

    Protection for polymeric surfaces is needed to make them durable in the low earth orbital environment. Thin film coatings of oxides such as SiO2 are viable candidates to provide this protection, but concern has been voiced over the ability of these coatings to protect when defects are present in the coating due to surface anomalies. When a defected coating protecting a polymer substrate is exposed to atomic oxygen, the defect provides a pathway to the underlying polymer allowing oxidation and subsequent undercutting to occur. Defect undercutting was studied for sputter deposited coatings of SiO2 on polyimide Kapton. Preliminary results indicate that undercutting may be limited as long as the coating remains intact with the substrate. Therefore, coatings may not need to be defect free to give protection to the underlying surface.

  10. A novel surface modification technique for forming porous polymer monoliths in poly(dimethylsiloxane).

    PubMed

    Burke, Jeffrey M; Smela, Elisabeth

    2012-03-01

    A new method of surface modification is described for enabling the in situ formation of homogenous porous polymer monoliths (PPMs) within poly(dimethylsiloxane) (PDMS) microfluidic channels that uses 365 nm UV illumination for polymerization. Porous polymer monolith formation in PDMS can be challenging because PDMS readily absorbs the monomers and solvents, changing the final monolith morphology, and because PDMS absorbs oxygen, which inhibits free-radical polymerization. The new approach is based on sequentially absorbing a non-hydrogen-abstracting photoinitiator and the monomers methyl methacrylate and ethylene diacrylate within the walls of the microchannel, and then polymerizing the surface treatment polymer within the PDMS, entangled with it but not covalently bound. Four different monolith compositions were tested, all of which yielded monoliths that were securely anchored and could withstand pressures exceeding the bonding strength of PDMS (40 psi) without dislodging. One was a recipe that was optimized to give a larger average pore size, required for low back pressure. This monolith was used to concentrate and subsequently mechanical lyse B lymphocytes.

  11. A polymer-free Paclitaxel eluting coronary stent: effects of solvents, drug concentrations and coating methods.

    PubMed

    Lamichhane, Sujan; Gallo, Annemarie; Mani, Gopinath

    2014-06-01

    Some polymer coatings used in drug-eluting stents (DES) cause adverse reactions. Hence, the use of self-assembled monolayers (SAMs) as a polymer-free platform to deliver an anti-proliferative drug (paclitaxel-PAT) from 2D metal substrates was previously demonstrated. In this study, we optimized the PAT coating on SAMs coated 3D coronary stents. For the optimization process, we investigated the effects of solvents (ethanol, DMSO, and their mixtures), drug concentrations (2, 3, 4, 8, and 12 mg/mL) in the coating solution, and coating methods (dip and spray) on PAT deposition. A solvent mixture of 75:25 v/v Et-OH:DMSO was determined to be the best for obtaining smooth and homogenous PAT coating. PAT coated stents prepared using 8 mg/mL and 3 mg/mL concentrations of PAT by dip and spray coating methods, respectively, were optimal in terms of carrying adequate drug doses (0.35 µg/mm(2) for dipping and 0.76 µg/mm(2) for spraying) as well as negligible defects observed in the coating. PAT was successfully released from SAMs coated stents in a biphasic manner with an initial burst followed by a sustained release for up to 10 weeks. Thus, this study sheds light on the effects of solvents, drug concentrations, and coating methods on preparing a polymer-free DES. PMID:24705673

  12. Novel thiophene-bearing conjugated microporous polymer honeycomb-like porous spheres with ultrahigh iodine uptake.

    PubMed

    Ren, Feng; Zhu, Zhaoqi; Qian, Xin; Liang, Weidong; Mu, Peng; Sun, Hanxue; Liu, Jiehua; Li, An

    2016-07-28

    Two conjugated microporous polymers containing thiophene-moieties (SCMPs) were obtained by the polymerization of 3,3',5,5'-tetrabromo-2,2'-bithiophene and ethynylbenzene monomers through the palladium-catalyzed Sonogashira-Hagihara crosscoupling reaction. The resulting SCMPs show high thermal stability with a decomposition temperature above 300 °C. Scanning electron microscopy images show that the resulting SCMPs formed as an aggregation composed of micrometer-sized SCMP spheres, in which honeycomb-like porous spheres with penetrated pores on the surface were observed. Taking advantage of such a unique honeycomb-like porous morphology as well as π-conjugated structures, the SCMPs show ultrahigh absorption performance for iodine vapour with an uptake of up to 345 wt% obtained, which is the highest value reported to date for CMPs, thus making the resulting SCMPs ideal absorbent materials for reversible iodine capture to address environmental issues. PMID:27417941

  13. Effects of Calcination Condition on Porous Reduced Titanium Oxides and Oxynitrides via Preceramic Polymer Route

    SciTech Connect

    Hasegawa, George; Sato, Tatsuya; Kanamori, Kazuyoshi; Sun, Cheng-Jun; Ren, Yang; Kobayashi, Yoji; Kageyama, Hiroshi; Abe, Takeshi; Nakanishi, Kazuki

    2015-03-16

    The preceramic polymer route from titanium-based inorganic-organic hybrid networks provides electro conductive N-doped reduced titanium oxides (TinO2n–1) and titanium oxynitrides (TiOxNy) with a monolithic shape as well as well-defined porous structure. This methodology demonstrates advantageously lower temperature of crystal phase transition compared to the reduction of TiO2 by carbon or H2. In this study, effects of calcination condition on various features of the products have been explored by adopting three different atmospheric conditions and varying the calcination temperature. The detailed crystallographic and elemental analyses disclose the distinguished difference in phase transition behavior with respect to calcination atmosphere. Correlation between the crystallization and nitridation behaviors, porous properties and electric conductivities in the final products has been discussed.

  14. Strengthening of polymer ordered porous materials based on a layered nanocomposite internal structure.

    PubMed

    Heng, Liping; Guo, Xieyou; Guo, Tianqi; Wang, Bin; Jiang, Lei

    2016-07-21

    Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on. PMID:27355160

  15. Trapping of a spatial transient state during the framework transformation of a porous coordination polymer.

    PubMed

    Kondo, Mio; Furukawa, Shuhei; Hirai, Kenji; Tsuruoka, Takaaki; Reboul, Julien; Uehara, Hiromitsu; Diring, Stéphane; Sakata, Yoko; Sakata, Osami; Kitagawa, Susumu

    2014-04-01

    Structural transformability accompanied by molecular accommodation is a distinguished feature of porous coordination polymers (PCPs) among porous materials. Conventional X-ray crystallography allows for the determination of each structural phase emerged during transformation. However, the propagation mechanism of transformation through an entire crystal still remains in question. Here we elucidate the structural nature of the spatial transient state, in which two different but correlated framework structures, an original phase and a deformed phase, simultaneously exist in one crystal. The deformed phase is distinctively generated only at the crystal surface region by introducing large guest molecules, while the remaining part of crystal containing small molecules maintains the original phase. By means of grazing incidence diffraction techniques we determine that the framework is sheared with sharing one edge of the original primitive cubic structure, leading to the formation of crystal domains with four mirror image relationships.

  16. Gas turbine ceramic-coated-vane concept with convection-cooled porous metal core

    NASA Technical Reports Server (NTRS)

    Kascak, A. F.; Liebert, C. H.; Handschuh, R. F.; Ludwig, L. P.

    1981-01-01

    Analysis and flow experiments on a ceramic-coated-porous-metal vane concept indicated the feasibility, from a heat transfer standpoint, of operating in a high-temperature (2500 F) gas turbine cascade facility. The heat transfer and pressure drop calculations provided a basis for selecting the ceramic layer thickness (to 0.08 in.), which was found to be the dominant factor in the overall heat transfer coefficient. Also an approximate analysis of the heat transfer in the vane trailing edge revealed that with trailing-edge ejection the ceramic thickness could be reduced to (0.01 in.) in this portion of the vane.

  17. Porous poly(propylene fumarate) foam coating of orthotopic cortical bone grafts for improved osteoconduction.

    PubMed

    Lewandrowski, Kai-Uwe; Bondre, Shrikar; Hile, David D; Thompson, Benjamin M J; Wise, Donald L; Tomford, William W; Trantolo, Debra J

    2002-12-01

    A porous biodegradable scaffold coating for perforated and demineralized cortical bone allografts could maintain immediate structural recovery and subsequently allow normal healing and remodeling by promoting bony ingrowth and avoiding accelerated graft resorption. This new type of osteoconductive surface modification should improve allograft incorporation by promoting new bone growth throughout the biodegradable scaffold, hence encasing the graft with the recipient's own bone. We investigated the feasibility of augmenting orthotopically transplanted cortical bone grafts with osteoconductive biodegradable polymeric scaffold coatings. Five types of bone grafts were prepared: type I, untreated fresh-frozen cortical bone grafts (negative control); type II, perforated and partially demineralized cortical bone grafts without additional coating (positive control); type III, perforated and partially demineralized cortical bone coated with a low-porosity poly(propylene fumarate) (PPF) foam; type IV, perforated and partially demineralized cortical bone coated with a medium-porosity PPF foam; and type V, perforated and partially demineralized cortical bone coated with a high-porosity PPF foam. Grafts were implanted into the rat tibial diaphysis. Fixation was achieved with an intramedullary threaded K-wire. Two sets of animals were operated on. Animals were killed in groups of eight with one set being killed 12 weeks, and the other 16 weeks, postoperatively. Radiographic, histologic, and histomorphometric analyses of grafts showed that the amount of new bone forming around the foam-coated grafts was significantly higher than that in the type I control group (uncoated) or that in type II group (perforated and partially demineralized cortical bone grafts). Although all foam formulations appeared initially equally osteoconductive, histologic evaluation of medium-porosity PPF foam-based coatings appeared to result in a sustained response 16 weeks postoperatively. Significant

  18. Mixed Polymer-Coated Magnetic Nanoparticles as Forward Osmosis Draw Agents of Tuned Hydrophilicity.

    PubMed

    Dey, Priyanka; Izake, Emad L

    2016-08-01

    We recently reported a polymer-coated magnetic nanoparticle (MNP) draw agent for the forward osmosis (FO) water desalination process. The water flux was found to increase when the polymer poly(sodium acrylate) (PSA) was anchored to the MNP surface as compared to the polymer (or polyelectrolyte solution) alone, due to the polymer chains being stretched out and most of the hydrophilic groups on the polymer contributing to water flux. We herein report the use of a secondary polymer poly(N-isopropylacrylamide) PNIPAM to manipulate the PSA polymer conformation and influence inter- and intrachain interactions to enhance the efficiency of the FO draw agent. These PSA-PNIPAM-coated MNPs generated a much higher water flux of ∼11.66 LMH when compared to the 100 % PSA-coated MNPs featuring a value of ∼5.32 LMH under identical FO conditions. The osmotic pressure and water flux driven by the mixed polymer-coated MNPs were found to be a strong function of the net polymer coverage on MNPs, that is, net available hydrophilic groups. Our new draw agent demonstrates potential for use in the water industry due to its improved efficiency and cost effectiveness as it uses only ∼0.062 % (w/v) of the draw agent solution.

  19. Mixed Polymer-Coated Magnetic Nanoparticles as Forward Osmosis Draw Agents of Tuned Hydrophilicity.

    PubMed

    Dey, Priyanka; Izake, Emad L

    2016-08-01

    We recently reported a polymer-coated magnetic nanoparticle (MNP) draw agent for the forward osmosis (FO) water desalination process. The water flux was found to increase when the polymer poly(sodium acrylate) (PSA) was anchored to the MNP surface as compared to the polymer (or polyelectrolyte solution) alone, due to the polymer chains being stretched out and most of the hydrophilic groups on the polymer contributing to water flux. We herein report the use of a secondary polymer poly(N-isopropylacrylamide) PNIPAM to manipulate the PSA polymer conformation and influence inter- and intrachain interactions to enhance the efficiency of the FO draw agent. These PSA-PNIPAM-coated MNPs generated a much higher water flux of ∼11.66 LMH when compared to the 100 % PSA-coated MNPs featuring a value of ∼5.32 LMH under identical FO conditions. The osmotic pressure and water flux driven by the mixed polymer-coated MNPs were found to be a strong function of the net polymer coverage on MNPs, that is, net available hydrophilic groups. Our new draw agent demonstrates potential for use in the water industry due to its improved efficiency and cost effectiveness as it uses only ∼0.062 % (w/v) of the draw agent solution. PMID:27376360

  20. Nitric oxide releasing plasma polymer coating with bacteriostatic properties and no cytotoxic side effects.

    PubMed

    Michl, Thomas D; Coad, Bryan R; Doran, Michael; Osiecki, Michael; Kafshgari, Morteza Hasanzadeh; Voelcker, Nicolas H; Hüsler, Amanda; Vasilev, Krasimir; Griesser, Hans J

    2015-04-25

    We report a stable plasma polymer coating, using isopentyl nitrite as a volatile precursor, which releases nitric oxide at bacteriostatic concentrations when contacted with water, inhibiting bacterial growth without cytotoxic side effects to human mesenchymal stem/stromal cells.

  1. High internal phase emulsion with double emulsion morphology and their templated porous polymer systems.

    PubMed

    Lei, Lei; Zhang, Qi; Shi, Shuxian; Zhu, Shiping

    2016-12-01

    This paper reports synthesis of the first high internal phase emulsion (HIPE) system with double emulsion (DE) morphology (HIPE-DE). HIPE is a highly concentrated but highly stable emulsion system, which has a dispersed/internal phase fraction over 74vol%. DE represents an emulsion system that hierarchically encapsulates two immiscible phases. The combination of HIPE and DE provides an efficient method for fabrication of complex structures. In this work, HIPE-DE having a water-in-oil-in-water (W/O/W) morphology has been prepared for the first time via a simple one-step emulsification method with poly(2-(diethylamino)ethyl methacrylate) (PDEA) microgel particles as Pickering stabilizer. An oil phase fraction up to 90vol% was achieved by optimizing the microgel concentration in aqueous phase. The mechanism of the DE formation has been elucidated. It was found that while PDEA microgels stabilized the oil droplets in water, small amount protonated DEA monomers acted as surfactant and formed water-containing micelles inside the oil droplets. It was demonstrated that the W/O/W HIPE-DE could be precisely converted into porous polymer structures. With styrene as the oil phase in W/O/W HIPE-DE, porous polystyrene particles were obtained upon polymerization. With dissolved acrylamide as the aqueous phase and toluene as the continuous phase, porous polyacrylamide matrixes were prepared. Elevating temperature required for polymerization did not change the W/O/W HIPE-DE morphologies. This simple approach provides a versatile platform for synthesis of a variety of porous polymer systems. PMID:27560496

  2. Strengthening of polymer ordered porous materials based on a layered nanocomposite internal structure

    NASA Astrophysics Data System (ADS)

    Heng, Liping; Guo, Xieyou; Guo, Tianqi; Wang, Bin; Jiang, Lei

    2016-07-01

    Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on.Ordered porous polymeric films attract more and more attention because they have many advantages and broad application prospects in many fields. But because of their large flexibility and poor mechanical properties, some of the scope for application is greatly limited. Inspired by the ordered pore structure of the honeycomb and the layered structure of natural nacre, we prepared an ordered porous polymer film with a layered structure in the pore wall by the solvent-evaporation-restriction assisted hard template method. Compared with other samples, this kind of film with the layered structure showed both excellent mechanical properties and good stability. This kind of film with high mechanical strength, is considered to have wide applications in the areas of separation, biomedicine, precision instruments, aerospace, environmental protection and so on. Electronic supplementary information (ESI) available: SEM image of hexagonal silicon pillar templates, AFM images of clay platelets on a silicon substrate, photographs of free-standing gels, X-ray diffraction profiles for dried materials, FTIR and TGA of the samples, and

  3. Process to produce lithium-polymer batteries

    DOEpatents

    MacFadden, Kenneth Orville

    1998-01-01

    A polymer bonded sheet product suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance.

  4. Process to produce lithium-polymer batteries

    DOEpatents

    MacFadden, K.O.

    1998-06-30

    A polymer bonded sheet product is described suitable for use as an electrode in a non-aqueous battery system. A porous electrode sheet is impregnated with a solid polymer electrolyte, so as to diffuse into the pores of the electrode. The composite is allowed to cool, and the electrolyte is entrapped in the porous electrode. The sheet products composed have the solid polymer electrolyte composition diffused into the active electrode material by melt-application of the solid polymer electrolyte composition into the porous electrode material sheet. The solid polymer electrolyte is maintained at a temperature that allows for rapid diffusion into the pores of the electrode. The composite electrolyte-electrode sheets are formed on current collectors and can be coated with solid polymer electrolyte prior to battery assembly. The interface between the solid polymer electrolyte composite electrodes and the solid polymer electrolyte coating has low resistance. 1 fig.

  5. Enhanced electrochemical performance of Lithium-ion batteries by conformal coating of polymer electrolyte.

    PubMed

    Plylahan, Nareerat; Maria, Sébastien; Phan, Trang Nt; Letiche, Manon; Martinez, Hervé; Courrèges, Cécile; Knauth, Philippe; Djenizian, Thierry

    2014-01-01

    This work reports the conformal coating of poly(poly(ethylene glycol) methyl ether methacrylate) (P(MePEGMA)) polymer electrolyte on highly organized titania nanotubes (TiO2nts) fabricated by electrochemical anodization of Ti foil. The conformal coating was achieved by electropolymerization using cyclic voltammetry technique. The characterization of the polymer electrolyte by proton nuclear magnetic resonance ((1)H NMR) and size-exclusion chromatography (SEC) shows the formation of short polymer chains, mainly trimers. X-ray photoelectron spectroscopy (XPS) results confirm the presence of the polymer and LiTFSI salt. The galvanostatic tests at 1C show that the performance of the half cell against metallic Li foil is improved by 33% when TiO2nts are conformally coated with the polymer electrolyte.

  6. Enhanced electrochemical performance of Lithium-ion batteries by conformal coating of polymer electrolyte

    PubMed Central

    2014-01-01

    This work reports the conformal coating of poly(poly(ethylene glycol) methyl ether methacrylate) (P(MePEGMA)) polymer electrolyte on highly organized titania nanotubes (TiO2nts) fabricated by electrochemical anodization of Ti foil. The conformal coating was achieved by electropolymerization using cyclic voltammetry technique. The characterization of the polymer electrolyte by proton nuclear magnetic resonance (1H NMR) and size-exclusion chromatography (SEC) shows the formation of short polymer chains, mainly trimers. X-ray photoelectron spectroscopy (XPS) results confirm the presence of the polymer and LiTFSI salt. The galvanostatic tests at 1C show that the performance of the half cell against metallic Li foil is improved by 33% when TiO2nts are conformally coated with the polymer electrolyte. PMID:25317101

  7. Carbon nanotube thermal interfaces enhanced with sprayed on nanoscale polymer coatings.

    PubMed

    Taphouse, John H; Bougher, Thomas L; Singh, Virendra; Abadi, Parisa Pour Shahid Saeed; Graham, Samuel; Cola, Baratunde A

    2013-03-15

    Vertical carbon nanotube (CNT) forests bonded at room temperature with sprayed on nanoscale polymer coatings are found by measurement to produce thermal resistances that are on a par with those of conventional metallic solders. These results are achieved by reducing the high contact resistance at CNT tips, which has hindered the development of high performance thermal interface materials based on CNTs. A spray coating process is developed for depositing nanoscale coatings of polystyrene and poly-3-hexylthiophene onto CNT forests, as a bonding agent that mitigates thermal resistance by enhancing the area available for heat transfer at CNT contacts. Resistances as low as 4.9 ± 0.3 mm(2) K W(-1) are achieved for the entire polymer coated CNT interface structure. The suitability of the spray coating process for large-scale implementation and the role of polymer and CNT forest thickness in determining the thermal resistance are also examined.

  8. Preparation and characterization of porous composite filter medium by polytetrafluoroethylene foam coating.

    PubMed

    Park, Byung Hyun; Lee, Myong-Hwa; Kim, Sang Bum; Kim, Gyung Soo; Jo, Young Min

    2010-02-01

    The high costs of ceramic and Teflon filter media for hot gas cleaning has limited their industrial applications. This paper presents a foam coating technology that can be used to produce an inexpensive and highly efficient filter for industrial applications. A new apparatus was designed and built that coats porous glass mats with liquid-phase polytetrafluoroethylene (PTFE). The machine generates bubbles, enables the formation of uniform micropores less than 45 microm in diameter, and produces a product with air permeability greater than 5.5 cm3/cm2/sec. The resulting filter was found to be thermally stable up to 270 degrees C without any visible distortion and was comparable in dust collection efficiency to other commercial filter media. In addition, its de-dusting efficiency was greater than 85%, which is similar to that of other test filter media.

  9. Polymer coating for immobilizing soluble ions in a phosphate ceramic product

    DOEpatents

    Singh, Dileep; Wagh, Arun S.; Patel, Kartikey D.

    2000-01-01

    A polymer coating is applied to the surface of a phosphate ceramic composite to effectively immobilize soluble salt anions encapsulated within the phosphate ceramic composite. The polymer coating is made from ceramic materials, including at least one inorganic metal compound, that wet and adhere to the surface structure of the phosphate ceramic composite, thereby isolating the soluble salt anions from the environment and ensuring long-term integrity of the phosphate ceramic composite.

  10. The contribution of the nonporous distal stem to the stability of proximally porous-coated canine femoral components.

    PubMed

    Jasty, M; Krushell, R; Zalenski, E; O'Connor, D; Sedlacek, R; Harris, W

    1993-02-01

    The contribution of the distal nonporous-coated stem to the stability of the uncemented femoral components, which were porous coated only proximally, was investigated under two conditions: (1) immediately after insertion and (2) at 6 months, 1 year, and 2 years after surgery in a canine model. The relative motion of the femoral components at the bone porous-coating interface under loads simulating the canine midstance was measured at these time periods using displacement transducers. The measurements were repeated after severing the connection between the porous-coated proximal body and the nonporous-coated distal stem through a small hole in the anterior cortex. The results showed that while the distal nonporous-coated stem enhanced the immediate stability of the proximally porous-coated uncemented femoral components, it contributed little to the long-term stability of the femoral components after bony ingrowth had occurred in vivo. The mean relative motion between the body of the prosthesis and the cortical bone increased from 12 microns (+/- 7 microns) to 31 microns (+/- 34 microns) in the posterior transverse direction when the stem was immediately severed after the surgery. However, at 6 months, 1 year, and 2 years after surgery, extensive bone ingrowth had occurred into the proximal porous-coated regions of the body and provided excellent stability to the femoral components. With bone ingrowth, the mean relative motion was less than 5 microns at any site. Under these conditions, severing the stem did not increase the relative motion of the prostheses significantly.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8436987

  11. An ultra-sensitive microfluidic immunoassay using living radical polymerization and porous polymer monoliths.

    SciTech Connect

    Abhyankar, Vinay V.; Singh, Anup K.; Hatch, Anson V.

    2010-07-01

    We present a platform that combines patterned photopolymerized polymer monoliths with living radical polymerization (LRP) to develop a low cost microfluidic based immunoassay capable of sensitive (low to sub pM) and rapid (<30 minute) detection of protein in 100 {micro}L sample. The introduction of LRP functionality to the porous monolith allows one step grafting of functionalized affinity probes from the monolith surface while the composition of the hydrophilic graft chain reduces non-specific interactions and helps to significantly improve the limit of detection.

  12. Effect of porous polymer films (track membranes) on the isothermal evaporation kinetics of water

    NASA Astrophysics Data System (ADS)

    Novikov, S. N.; Ermolaeva, A. I.; Timoshenkov, S. P.; Korobova, N. E.; Goryunova, E. P.

    2016-06-01

    The kinetics of isothermal evaporation of distilled water that was in remote (10-15-mm) contact with porous polymer films (track membranes (TMs)) was studied by microgravimetry (derivatograph). When the H2O-TM system contained a disperse medium, the supramolecular structure of water changed, and the number of clusters (coherent domains) drastically decreased. The extraction of the light phase from liquid water was correlated with the chemisorption of H2O molecules containing the para-isomer of hydrogen, which predominantly form coherent domains of water.

  13. Selective Adsorption of CO2 from Light Gas Mixtures Using a Structurally Dynamic Porous Coordination Polymer**

    SciTech Connect

    Kristi L. Kauffman, Jeffrey T. Culp, Andrew J. Allen, Laura Espinal, Winnie Wong-Ng, Thomas D. Brown, Angela Goodman, Mark P. Bernardo, Russel J. Pancoast, Danielle Chirdon, Christopher Matranga*

    2010-01-01

    The selective adsorption of CO{sub 2} from mixtures with N{sub 2}, CH{sub 4}, and N{sub 2}O in a dynamic porous coordination polymer (see monomer structure) was evaluated by ATR-FTIR spectroscopy, GC, and SANS. All three techniques indicate highly selective adsorption of CO{sub 2} from CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} mixtures at 30 C, with no selectivity observed for the CO{sub 2}/N{sub 2}O system.

  14. A novel 2D porous indium coordination polymer with tunable luminescent property

    NASA Astrophysics Data System (ADS)

    Li, Xuejiao; Wang, Fangfang; Yang, He; Xu, Bo; Li, Cuncheng

    2016-08-01

    A new Indium coordination polymer [In(pda)1.5(phen)]n1 based on 1,4-phenylenediacetic acid (H2pda) and phen = 1,10-phenanthroline was obtained under hydrothermal condition and further characterized by single crystal X-ray analysis and other physicochemical studies such as infrared spectrum (IR), elemental analysis, thermogravimetric analysis (TGA) and powder X-ray diffraction (PXRD). Structure analysis reveals that complex 1 exhibits 2D porous (6,3) connected layer structure. Luminescent property of 1 was investigated both in the solid state and in different solvents and the results indicated that complex 1 demonstrates distinct solvent dependent luminescent property.

  15. Decoding the Morphological Diversity in Two Dimensional Crystalline Porous Polymers by Core Planarity Modulation.

    PubMed

    Halder, Arjun; Kandambeth, Sharath; Biswal, Bishnu P; Kaur, Gagandeep; Roy, Neha Chaki; Addicoat, Matthew; Salunke, Jagadish K; Banerjee, Subhrashis; Vanka, Kumar; Heine, Thomas; Verma, Sandeep; Banerjee, Rahul

    2016-06-27

    Two new chemically stable triazine- and phenyl-core-based crystalline porous polymers (CPPs) have been synthesized using a single-step template-free solvothermal route. Unique morphological diversities were observed for these CPPs [2,3-DhaTta (ribbon) and 2,3-DhaTab (hollow sphere)] by simply altering the linker planarity. A detailed time-dependent study established a significant correlation between the molecular level structures of building blocks with the morphology of CPPs. Moreover, a DFT study was done for calculating the interlayer stacking energy, which revealed that the extent of stacking efficiency is responsible for governing the morphological diversity in these CPPs. PMID:26953562

  16. Evaluation of Metal-Organic Frameworks and Porous Polymer Networks for CO2 -Capture Applications.

    PubMed

    Verdegaal, Wolfgang M; Wang, Kecheng; Sculley, Julian P; Wriedt, Mario; Zhou, Hong-Cai

    2016-03-21

    This manuscript presents experimental data for 20 adsorption materials (metal-organic frameworks, porous polymer networks, and Zeolite-5A), including CO2 and N2 isotherms and heat capacities. With input from only experimental data, working capacities per energy for each material were calculated. Furthermore, by running seven different carbon-capture scenarios in which the initial flue-gas composition and process temperature was systematically changed, we present a range of performances for each material and quantify how sensitive each is to these varying parameters. The presented calculations provide researchers with a tool to investigate promising carbon-capture materials more easily and completely.

  17. Biomineral coating increases bone formation by ex vivo BMP-7 gene therapy in rapid prototyped poly(L-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) porous scaffolds.

    PubMed

    Saito, Eiji; Suarez-Gonzalez, Darilis; Murphy, William L; Hollister, Scott J

    2015-03-11

    Porousbiodegradable polymer scaffolds are widely utilized for bone tissue engineering, but are not osteoconductive like calcium phosphate scaffolds. We combine indirect solid freeform fabrication (SFF), ex vivo gene therapy, with biomineral coating to compare the effect of biomineral coating on bone regeneration for Poly (L-lactic acid) (PLLA) and Poly (ε-caprolactone) (PCL) scaffolds with the same porous architecture. Scanning electron microscope (SEM) and micro-computed tomography (μ-CT) demonstrate PLLA and PCL scaffolds have the same porous architecture and are completely coated. All scaffolds are seeded with human gingival fibroblasts (HGF) transduced with adenovirus encoded with either bone morphogenetic protein 7 (BMP-7) or green fluorescent protein (GFP), and implanted into mice subcutaneously for 3 and 10 weeks. Only scaffolds with BMP-7 transduced HGFs show mineralized tissue formation. At 3 weeks some blood vessel-like structures are observed in coated PLLA and PCL scaffolds, but there is no significant difference in bone ingrowth between the coated and uncoated scaffolds for either PLLA or PCL. At 10 weeks, however, coated scaffolds (both PLLA and PCL) have significantly more bone ingrowth than uncoated scaffolds, which have more fibrous tissue. Coated PLLA scaffolds have improved mechanical properties compared with uncoated PLLA scaffolds due to increased bone ingrowth.

  18. Adhesion Issues with Polymer/Oxide Barrier Coatings on Organic Displays

    SciTech Connect

    Matson, Dean W.; Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Hall, Michael G.; Mast, Eric S.; Bonham, Charles C.; Zumhoff, Mac R.; Rutherford, Nicole M.; Moro, Lorenza; Rosenblum, Martin; Praino, Robert F.; Visser, Robert J.

    2005-01-01

    Multilayer polymer/oxide coatings are being developed to protect sensitive organic display devices, such as OLEDs, from oxygen and water vapor permeation. The coatings have permeation levels ~ 10-6 g/m2/d for water vapor and ~10-6 cc/m2/d for oxygen, and are deposited by vacuum polymer technology. The coatings consist of either a base Al2O3 or acrylate polymer adhesion layer followed by alternating Al2O3/polymer layers. The polymer is used to decouple the 30 nm-thick Al2O3 barrier layers. Adhesion of the barrier coating to the substrate and display device is critical for the operating lifetime of the device. The substrate material could be any transparent flexible plastic. The coating technology can also be used to encapsulate organic-based electronic devices to protect them from atmospheric degradation. Plasma pretreatment is also needed for good adhesion to the substrate, but if it is too aggressive, it will damage the organic display device. We report on the effects of plasma treatment on the adhesion of barrier coatings to plastic substrates and the performance of OLED devices after plasma treatment and barrier coating deposition. We find that initial OLED performance is not significantly affected by the deposition process and plasma treatment, as demonstrated by luminosity and I-V curves.

  19. Predictable crestal bone remodelling around two porous-coated titanium alloy dental implant designs. A radiographic study in dogs.

    PubMed

    al-Sayyed, A; Deporter, D A; Pilliar, R M; Watson, P A; Pharoah, M; Berhane, K; Carter, S

    1994-09-01

    We have previously suggested that altering the height of the porous-coat segment of a partially porous-coated TiAl6V4 endosseous dental implant would affect the degree of crestal bone loss occurring during implant function by changing the patterns of stress transfer. This conclusion arose from the analysis of data from several different experiments and lacked a direct intra-animal comparison. In the present study we have compared two implant designs varying only in the extent to which they were porous-coated. With one design (type A) the coronal 1.8 mm of the implant root had a machined surface while the remainder of its length was porous-coated with TiAl6V4 beads. The other design (type B) had all but the coronal-most 0.75 mm porous-coated. Two implants of each type were placed in each of 4 dogs and the sites allowed to heal for 4 weeks before re-entry and prosthesis attachment. Monthly the implant-supported bridges were removed and radiographs exposed of each implant using a special film holder connected separately to each implant. These radiographs were analyzed for crestal bone loss using both direct visual and computer-assisted techniques. The results showed that bone remodelled to the machined surface-to-porous coat junction for type B implants and achieved a steady state by 12 weeks of function, whereas a longer time was required to achieve this state with type A implants. Significantly more bone loss occurred with the type A design, and this difference was detectable as early as after the first month of function.

  20. Piezoelectric biosensor with a ladder polymer substrate coating

    DOEpatents

    Renschler, Clifford L.; White, Christine A.; Carter, Robert M.

    1998-01-01

    A piezoelectric biosensor substrate useful for immobilizing biomolecules in an oriented manner on the surface of a piezoelectric sensor has a ladder polymer of polyacrylonitrile. To make the substrate, a solution of an organic polymer, preferably polyacrylonitrile, is applied to the surface of a piezoelectric sensor. The organic polymer is modifying by heating the polymer in a controlled fashion in air such that a ladder polymer is produced which, in turn, forms the attachment point for the biomolecules comprising the piezoelectric biosensor.

  1. Toward compositional design of reticular type porous films by mixing and coating titania-based frameworks with silica

    NASA Astrophysics Data System (ADS)

    Kimura, T.

    2015-12-01

    A recently developed reticular type porous structure, which can be fabricated as the film through the soft colloidal block copolymer (e.g., PS-b-PEO) templating, is very promising as the porous platform showing high-performance based on its high surface area as well as high diffusivity of targeted organic molecules and effective accommodation of bulky molecules, but the compositional design of oxide frameworks has not been developed so enough to date. Here, I report reliable synthetic methods of the reticular type porous structure toward simple compositional variations. Due to the reproducibility of reticular type porous titania films from titanium alkoxide (e.g., TTIP; titanium tetraisopropoxide), a titania-silica film having similar porous structure was obtained by mixing silicon alkoxide (e.g., tetraethoxysilane) and TTIP followed by their pre-hydrolysis, and the mixing ratio of Ti to Si composition was easily reached to 1.0. For further compositional design, a concept of surface coating was widely applicable; the reticular type porous titania surfaces can be coated with other oxides such as silica. Here, a silica coating was successfully achieved by the simple chemical vapor deposition of silicon alkoxide (e.g., tetramethoxysilane) without water (with water at the humidity level), which was also utilized for pore filling with silica by the similar process with water.

  2. Preparation and characterization of porous carbon material-coated solid-phase microextraction metal fibers.

    PubMed

    Zhu, Fang; Guo, Jiaming; Zeng, Feng; Fu, Ruowen; Wu, Dingcai; Luan, Tiangang; Tong, Yexiang; Lu, Tongbu; Ouyang, Gangfeng

    2010-12-10

    Two kinds of porous carbon materials, including carbon aerogels (CAs), wormhole-like mesoporous carbons (WMCs), were synthesized and used as the coatings of solid-phase microextraction (SPME) fibers. By using stainless steel wire as the supporting core, six types of fibers were prepared with sol-gel method, direct coating method and direct coating plus sol-gel method. Headspace SPME experiments indicated that the extraction efficiencies of the CA fibers are better than those of the WMC fibers, although the surface area of WMCs is much higher than that of CAs. The sol-gel-CA fiber (CA-A) exhibited excellent extraction properties for non-polar compounds (BTEX, benzene, toluene, ethylbenzene, o-xylene), while direct-coated CA fiber (CA-B) presented the best performance in extracting polar compounds (phenols). The two CA fibers showed wide linear ranges, low detection limits (0.008-0.047μgL(-1) for BTEX, 0.15-5.7μgL(-1) for phenols) and good repeatabilities (RSDs less than 4.6% for BTEX, and less than 9.5% for phenols) and satisfying reproducibilities between fibers (RSDs less than 5.2% for BTEX, and less than 9.9% for phenols). These fibers were successfully used for the analysis of water samples from the Pearl River, which demonstrated the applicability of the home-made CA fibers. PMID:21074162

  3. Preparation and characterization of porous carbon material-coated solid-phase microextraction metal fibers.

    PubMed

    Zhu, Fang; Guo, Jiaming; Zeng, Feng; Fu, Ruowen; Wu, Dingcai; Luan, Tiangang; Tong, Yexiang; Lu, Tongbu; Ouyang, Gangfeng

    2010-12-10

    Two kinds of porous carbon materials, including carbon aerogels (CAs), wormhole-like mesoporous carbons (WMCs), were synthesized and used as the coatings of solid-phase microextraction (SPME) fibers. By using stainless steel wire as the supporting core, six types of fibers were prepared with sol-gel method, direct coating method and direct coating plus sol-gel method. Headspace SPME experiments indicated that the extraction efficiencies of the CA fibers are better than those of the WMC fibers, although the surface area of WMCs is much higher than that of CAs. The sol-gel-CA fiber (CA-A) exhibited excellent extraction properties for non-polar compounds (BTEX, benzene, toluene, ethylbenzene, o-xylene), while direct-coated CA fiber (CA-B) presented the best performance in extracting polar compounds (phenols). The two CA fibers showed wide linear ranges, low detection limits (0.008-0.047μgL(-1) for BTEX, 0.15-5.7μgL(-1) for phenols) and good repeatabilities (RSDs less than 4.6% for BTEX, and less than 9.5% for phenols) and satisfying reproducibilities between fibers (RSDs less than 5.2% for BTEX, and less than 9.9% for phenols). These fibers were successfully used for the analysis of water samples from the Pearl River, which demonstrated the applicability of the home-made CA fibers.

  4. A mesomechanical analysis of the deformation and fracture in polycrystalline materials with ceramic porous coatings

    NASA Astrophysics Data System (ADS)

    Balokhonov, R. R.; Zinoviev, A. V.; Romanova, V. A.; Batukhtina, E. E.

    2015-10-01

    The special features inherent in the mesoscale mechanical behavior of a porous ceramic coating-steel substrate composite are investigated. Microstructure of the coated material is accounted for explicitly as initial conditions of a plane strain dynamic boundary-value problem solved by the finite difference method. Using a mechanical analogy method, a procedure for generating a uniform curvilinear finite difference computational mesh is developed to provide a more accurate description of the complex grain boundary geometry. A modified algorithm for generation of polycrystalline microstructure of the substrate is designed on the basis of the cellular automata method. The constitutive equations for a steel matrix incorporate an elastic-plastic model for a material subjected to isotropic hardening. The Hall-Petch relation is used to account for the effect of the grain size on the yield stress and strain hardening history. A brittle fracture model for a ceramic coating relying on the Huber criterion is employed. The model allows for crack nucleation in the regions of triaxial tension. The complex inhomogeneous stress and plastic strain patterns are shown to be due to the presence of interfaces of three types: coating-substrate interface, grain boundaries, and pore surfaces.

  5. Optimal rheological characteristics in dynamic stability of polymer flow through porous media: Topical report

    SciTech Connect

    Gao, H.W.; French, T.R.

    1988-04-01

    To identify the optimal rheological characteristics for maintaining the dynamic stability of polymer solutions flowing through porous media, displacement tests with a Newtonian fluid and a non-Newtonian fluid were performed in a 4-ft Berea sandstone core. A solution of 63 wt pct gylcerin in 53 meg/1 NaCL and a solution of 1500 ppM Pusher 500 in 53 meq/1 NaCl were used as the Newtonian fluid and non-Newtonian fluid, respectively. Two flow rates one in the purely viscous regime and one in the viscoelastic flow regime of Pusher 500 in Berea sandstone, were used in the displacement tests. The effluents collected were analyzed to determine polymer and tracer concentrations. The viscosities of the effluents were also measured with a Contraves viscometer. By comparing the concentration profiles obtained in tests with Pusher 500 and in those with gylcerin, the effects of flow rate, mobility ratio, and rheological characteristics on the dynamic stability of polymer flow in porous media were determined. At both leading and trailing edges of the polymer slug, stability increases with decreasing mobility ratio. At both high and low flow rates, a Newtonian fluid gives a more stable displacement at the fluid front than does a non-Newtonian fluid. Measurements on the mixing lengths at the back edge show that the size of the mobility buffer bank required for a flow rate at reservior conditions (viscous flow regime) would be less for a Newtonian fluid than for a non-Newtonian fluid. At a flow rate in the viscoelastic flow regime, the required size of the mobility buffer bank is less for a non-Newtonian fluid than for a Newtonian fluid. 39 refs., 13 figs., 1 tab.

  6. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration

    NASA Technical Reports Server (NTRS)

    Widmer, M. S.; Gupta, P. K.; Lu, L.; Meszlenyi, R. K.; Evans, G. R.; Brandt, K.; Savel, T.; Gurlek, A.; Patrick, C. W. Jr; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    We have fabricated porous, biodegradable tubular conduits for guided tissue regeneration using a combined solvent casting and extrusion technique. The biodegradable polymers used in this study were poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA). A polymer/salt composite was first prepared by a solvent casting process. After drying, the composite was extruded to form a tubular construct. The salt particles in the construct were then leached out leaving a conduit with an open-pore structure. PLGA was studied as a model polymer to analyze the effects of salt weight fraction, salt particle size, and processing temperature on porosity and pore size of the extruded conduits. The porosity and pore size were found to increase with increasing salt weight fraction. Increasing the salt particle size increased the pore diameter but did not affect the porosity. High extrusion temperatures decreased the pore diameter without altering the porosity. Greater decrease in molecular weight was observed for conduits manufactured at higher temperatures. The mechanical properties of both PLGA and PLLA conduits were tested after degradation in vitro for up to 8 weeks. The modulus and failure strength of PLLA conduits were approximately 10 times higher than those of PLGA conduits. Failure strain was similar for both conduits. After degradation for 8 weeks, the molecular weights of the PLGA and PLLA conduits decreased to 38% and 43% of the initial values, respectively. However, both conduits maintained their shape and did not collapse. The PLGA also remained amorphous throughout the time course, while the crystallinity of PLLA increased from 5.2% to 11.5%. The potential of seeding the conduits with cells for transplantation or with biodegradable polymer microparticles for drug delivery was also tested with dyed microspheres. These porous tubular structures hold great promise for the regeneration of tissues which require tubular scaffolds such as peripheral nerve

  7. Radioisotope albedo thickness gauging of polymer coatings on a metallic substrate

    SciTech Connect

    Kapranov, B.I.; Myakin 'Kova, L.V.; Shaverin, V.A.

    1986-12-01

    This paper presents results of theoretical and experimental analysis of the possibilities of albedo thickness gauging of the polymer coating on metals. The ranges of measured coating thickness and their relationship with the thickness of the substrate for aluminum, copper, steel, and lead using Pm 147, Am 241, Cd 109, and Co 57 radionuclides as readiation sources are presented.

  8. Preparation of polymer-coated separators using an electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Sohn, Joon-Yong; Gwon, Sung-Jin; Choi, Jae-Hak; Shin, Junhwa; Nho, Young-Chang

    2008-12-01

    A polymer-coated polyethylene (PE) separator was prepared by a dip-coating of PVDF-HFP/PEGDMA on both sides of a PE separator followed by an electron beam irradiation. The thermal and electrochemical properties of the polymer-coated PE separator were investigated by using FT-IR, SEM, DSC and an impedance analyzer. The results showed that the coated PVDF-HFP/PEGDMA layer was covalently bound to the PE separator and also crosslinked by an electron beam irradiation. Thermal shrinkage dramatically decreased with an increase in the absorption dose and the PEGDMA content due to the crosslinking of the coated PVDF-HFP/PEGDMA by an irradiation. The PE separator coated with the composition of PVDF-HFP/PEGDMA (9.5/0.5) and irradiated to 150 kGy showed the highest electrolyte uptake of 125% and ionic conductivity of 3.82 × 10 -4 S/cm at room temperature.

  9. Thermal and flow analysis of a convection air-cooled ceramic coated porous metal concept for turbine vanes

    NASA Technical Reports Server (NTRS)

    Stepka, F. S.

    1981-01-01

    The heat transfer and pressure drop through turbine vanes made of a sintered, porous metal coated with a thin layer of ceramic and convection cooled by spanwise flow of cooling air were analyzed. The analysis was made to determine the feasibility of using this concept for cooling very small turbines, primarily for short duration applications such as in missile engines. The analysis was made for gas conditions of approximately 10 and 40 atm and 1644 K and with turbine vanes made of felt type porous metals with relative densities from 0.2 to 0.6 and ceramic coating thicknesses of 0.076 to 0.254 mm.

  10. A data-driven approach to establishing microstructure-property relationships in porous transport layers of polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Çeçen, A.; Fast, T.; Kumbur, E. C.; Kalidindi, S. R.

    2014-01-01

    The diffusion media (DM) has been shown to be a vital component for performance of polymer electrolyte fuel cells (PEFCs). The DM has a dual-layer structure composed of a macro-substrate referred to as the gas diffusion layer (GDL) coated with a micro-porous layer (MPL). Efficient prediction of the effective transport properties of the DM from its internal structure is essential to optimizing the multifunctional characteristics of this critical component. In this work, a unique data-driven approach to establishing structure-property correlations is introduced and applied to the case of gas diffusion in the GDL and MPL. This new approach provides an automated process to produce unbiased estimators to microstructural variance, in contrast to many process-related (hence biased) parameters employed by prominent correlations in the field. The present approach starts with a rigorous quantification of microstructure in the form of n-point statistics. It is followed by the identification of the key aspects of the internal structure through the use of principle component analysis. A data-driven correlation is established when the principal components are related to effective diffusivity by multivariate linear regression. This data-driven approach is compared to the conventional correlations and shown to achieve a very high accuracy for capturing the diffusive transport in the tested PEFC components.

  11. Polymer coating of glass microballoons levitated in a focused acoustic field

    NASA Technical Reports Server (NTRS)

    Young, A. T.; Lee, M. C.; Feng, I.-A.; Elleman, D. D.; Wang, T. G.

    1982-01-01

    Inertial confinement fusion (ICF) glass microballoons (GMBs) levitated in a focusing radiator acoustic device can be coated with liquid materials by deploying the liquid into the levitation field with a stepped-horn atomizer. The GMB can be forced to the center of the coating liquid with a strong acoustically generated centering force. Water solutions of organic polymers, UV-curable liquid organic monomers, and paraffin waxes have been used to prepare solid coatings on the surface of GMBs using this technique.

  12. Polymer coating of glass microballoons levitated in a focused acoustic field

    SciTech Connect

    Young, A.T.; Lee, M.C.; Feng, I.A.; Elleman, D.D.; Wang, T.G.

    1981-01-01

    Inertial confinement fusion (ICF) glass microballoons (GMBs) levitated in a focusing radiator acoustic device can be coated with liquid materials by deploying the liquid into the levitation field with a stepped-horn atomizer. The GMB can be forced to the center of the coating liquid with a strong acoustically generated centering force. Water solutions of organic polymers, uv-curable liquid organic monomers, and paraffin waxes have been used to prepare solid coatings on the surface of GMBs using this technique.

  13. Bone Tissue Response to Porous and Functionalized Titanium and Silica Based Coatings

    PubMed Central

    Chaudhari, Amol; Braem, Annabel; Vleugels, Jozef; Martens, Johan A.; Naert, Ignace; Cardoso, Marcio Vivan; Duyck, Joke

    2011-01-01

    Background Topography and presence of bio-mimetic coatings are known to improve osseointegration. The objective of this study was to evaluate the bone regeneration potential of porous and osteogenic coatings. Methodology Six-implants [Control (CTR); porous titanium coatings (T1, T2); thickened titanium (Ti) dioxide layer (TiO2); Amorphous Microporous Silica (AMS) and Bio-active Glass (BAG)] were implanted randomly in tibiae of 20-New Zealand white rabbits. The animals were sacrificed after 2 or 4 weeks. The samples were analyzed histologically and histomorphometrically. In the initial bone-free areas (bone regeneration areas (BRAs)), the bone area fraction (BAF) was evaluated in the whole cavity (500 µm, BAF-500), in the implant vicinity (100 µm, BAF-100) and further away (100–500 µm, BAF-400) from the implant. Bone-to-implant contact (BIC-BAA) was measured in the areas where the implants were installed in contact to the host bone (bone adaptation areas (BAAs)) to understand and compare the bone adaptation. Mixed models were used for statistical analysis. Principal Findings After 2 weeks, the differences in BAF-500 for different surfaces were not significant (p>0.05). After 4 weeks, a higher BAF-500 was observed for BAG than CTR. BAF-100 for AMS was higher than BAG and BAF-400 for BAG was higher than CTR and AMS. For T1 and AMS, the bone regeneration was faster in the 100-µm compared to the 400-µm zone. BIC-BAA for AMS and BAG was lower after 4 than 2 weeks. After 4 weeks, BIC-BAA for BAG was lower than AMS and CTR. Conclusions BAG is highly osteogenic at a distance from the implant. The porous titanium coatings didn't stimulate bone regeneration but allowed bone growth into the pores. Although AMS didn't stimulate higher bone response, it has a potential of faster bone growth in the vicinity compared to further away from the surface. BIC-BAA data were inconclusive to understand the bone adaptation. PMID:21935382

  14. In silico design of porous polymer networks: high-throughput screening for methane storage materials.

    PubMed

    Martin, Richard L; Simon, Cory M; Smit, Berend; Haranczyk, Maciej

    2014-04-01

    Porous polymer networks (PPNs) are a class of advanced porous materials that combine the advantages of cheap and stable polymers with the high surface areas and tunable chemistry of metal-organic frameworks. They are of particular interest for gas separation or storage applications, for instance, as methane adsorbents for a vehicular natural gas tank or other portable applications. PPNs are self-assembled from distinct building units; here, we utilize commercially available chemical fragments and two experimentally known synthetic routes to design in silico a large database of synthetically realistic PPN materials. All structures from our database of 18,000 materials have been relaxed with semiempirical electronic structure methods and characterized with Grand-canonical Monte Carlo simulations for methane uptake and deliverable (working) capacity. A number of novel structure-property relationships that govern methane storage performance were identified. The relationships are translated into experimental guidelines to realize the ideal PPN structure. We found that cooperative methane-methane attractions were present in all of the best-performing materials, highlighting the importance of guest interaction in the design of optimal materials for methane storage.

  15. Porous coordination polymers as novel sorption materials for heat transformation processes.

    PubMed

    Janiak, Christoph; Henninger, Stefan K

    2013-01-01

    Porous coordination polymers (PCPs)/metal-organic frameworks (MOFs) are inorganic-organic hybrid materials with a permanent three-dimensional porous metal-ligand network. PCPs or MOFs are inorganic-organic analogs of zeolites in terms of porosity and reversible guest exchange properties. Microporous water-stable PCPs with high water uptake capacity are gaining attention for low temperature heat transformation applications in thermally driven adsorption chillers (TDCs) or adsorption heat pumps (AHPs). TDCs or AHPs are an alternative to traditional air conditioners or heat pumps operating on electricity or fossil fuels. By using solar or waste heat as the operating energy TDCs or AHPs can significantly help to minimize primary energy consumption and greenhouse gas emissions generated by industrial or domestic heating and cooling processes. TDCs and AHPs are based on the evaporation and consecutive adsorption of coolant liquids, preferably water, under specific conditions. The process is driven and controlled by the microporosity and hydrophilicity of the employed sorption material. Here we summarize the current investigations, developments and possibilities of PCPs/MOFs for use in low-temperature heat transformation applications as alternative materials for the traditional inorganic porous substances like silica gel, aluminophosphates or zeolites.

  16. Porous coordination polymers as novel sorption materials for heat transformation processes.

    PubMed

    Janiak, Christoph; Henninger, Stefan K

    2013-01-01

    Porous coordination polymers (PCPs)/metal-organic frameworks (MOFs) are inorganic-organic hybrid materials with a permanent three-dimensional porous metal-ligand network. PCPs or MOFs are inorganic-organic analogs of zeolites in terms of porosity and reversible guest exchange properties. Microporous water-stable PCPs with high water uptake capacity are gaining attention for low temperature heat transformation applications in thermally driven adsorption chillers (TDCs) or adsorption heat pumps (AHPs). TDCs or AHPs are an alternative to traditional air conditioners or heat pumps operating on electricity or fossil fuels. By using solar or waste heat as the operating energy TDCs or AHPs can significantly help to minimize primary energy consumption and greenhouse gas emissions generated by industrial or domestic heating and cooling processes. TDCs and AHPs are based on the evaporation and consecutive adsorption of coolant liquids, preferably water, under specific conditions. The process is driven and controlled by the microporosity and hydrophilicity of the employed sorption material. Here we summarize the current investigations, developments and possibilities of PCPs/MOFs for use in low-temperature heat transformation applications as alternative materials for the traditional inorganic porous substances like silica gel, aluminophosphates or zeolites. PMID:23945102

  17. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    PubMed

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. PMID:27142455

  18. Electrochemical characterization of plasma polymer coatings in corrosion protection of aluminum alloys

    NASA Astrophysics Data System (ADS)

    Chan, Yenfong; Yu, Qingsong

    2005-07-01

    Low-temperature plasma polymerization is a promising pretreatment technique to create environmentally friendly coating systems for corrosion protection of aluminum alloys. In this study, the pretreatment effects of plasma treatment and plasma polymerization on corrosion properties of alclad aluminum alloy 2024-T3 ([2A]) were investigated using electrochemical characterization techniques, including cyclic polarization (CP) and electrochemical impedance spectroscopy (EIS). The [2A] panels were coated with an ultrathin layer (~50 nm) of plasma polymers in a direct current (dc) glow discharge of trimethylsilane or its mixtures with one of two diatomic gases (O2 and N2). The CP measurement results showed that the plasma polymer coated [2A] panels exhibited more negative corrosion potentials (Ecorr), smaller corrosion currents (Icorr), and no surface passivation when compared with uncoated [2A] control panels. The lower values of Icorr imply a higher corrosion resistance on the plasma polymer coated [2A]. When investigated using EIS, these plasma polymer coated [2A] panels exhibited higher impedance (|Z|) at lower frequency when first immersed in electrolyte solution, yet degraded quickly to a similar level as uncoated controls within 1 day of immersion. These results illustrated that thin plasma polymer films provided a certain but very limited corrosion resistance to [2A] substrate; their dominant role in plasma interface engineered coating systems still relied mostly on their adhesion enhancement at metal/paint interface as observed in our previous studies.

  19. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response.

    PubMed

    Bajgar, Václav; Penhaker, Marek; Martinková, Lenka; Pavlovič, Andrej; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2016-04-08

    The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology.

  20. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response

    PubMed Central

    Bajgar, Václav; Penhaker, Marek; Martinková, Lenka; Pavlovič, Andrej; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2016-01-01

    The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology. PMID:27070612

  1. Effect of soluble polymer binder on particle distribution in a drying particulate coating.

    PubMed

    Buss, Felix; Roberts, Christine C; Crawford, Kathleen S; Peters, Katharina; Francis, Lorraine F

    2011-07-01

    Soluble polymer is frequently added to inorganic particle suspensions to provide mechanical strength and adhesiveness to particulate coatings. To engineer coating microstructure, it is essential to understand how drying conditions and dispersion composition influence particle and polymer distribution in a drying coating. Here, a 1D model revealing the transient concentration profiles of particles and soluble polymer in a drying suspension is proposed. Sedimentation, evaporation and diffusion govern particle movement with the presence of soluble polymer influencing the evaporation rate and solution viscosity. Results are summarized in drying regime maps that predict particle accumulation at the free surface or near the substrate as conditions vary. Calculations and experiments based on a model system of poly(vinyl alcohol) (PVA), silica particles and water reveal that the addition of PVA slows the sedimentation and diffusion of the particles during drying such that accumulation of particles at the free surface is more likely.

  2. Cotton Fabric Coated with Conducting Polymers and its Application in Monitoring of Carnivorous Plant Response.

    PubMed

    Bajgar, Václav; Penhaker, Marek; Martinková, Lenka; Pavlovič, Andrej; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2016-01-01

    The paper describes the electrical plant response to mechanical stimulation monitored with the help of conducting polymers deposited on cotton fabric. Cotton fabric was coated with conducting polymers, polyaniline or polypyrrole, in situ during the oxidation of respective monomers in aqueous medium. Thus, modified fabrics were again coated with polypyrrole or polyaniline, respectively, in order to investigate any synergetic effect between both polymers with respect to conductivity and its stability during repeated dry cleaning. The coating was confirmed by infrared spectroscopy. The resulting fabrics have been used as electrodes to collect the electrical response to the stimulation of a Venus flytrap plant. This is a paradigm of the use of conducting polymers in monitoring of plant neurobiology. PMID:27070612

  3. Conducting polymer/polyimide-clay nanocomposite coatings for corrosion protection of AA-2024 alloy

    NASA Astrophysics Data System (ADS)

    Shah, Kunal G.

    Corrosion of metals is a major problem in the aerospace and automobile industry. The current methods of corrosion protection such as chromate conversion coatings are under increased scrutiny from the Environmental Protection Agency (EPA) due to their carcinogenic nature. Intrinsically conducting polymers (ICPs) like polyaniline and polypyrrole have been considered as a potential replacement for chromate conversion coatings and have been under investigation since past decade. The goal of this study is to replace the chromate conversion coating by an environmentally friendly organic coating. Poly (N-ethyl aniline) coating was electrodeposited as the primer layer and polyimide-clay nanocomposite was solution cast as the barrier layer on AA-2024 alloy. This study will provide a better understanding of the corrosion protection mechanism of the conducting polymer coating. Various characterization techniques such as infrared spectroscopy, cyclic voltammetry and scanning electron microscopy were used to study the formation, chemical structure and morphology of the coatings. Electrodeposition parameters like monomer concentration, applied current density and the reaction time were varied in order to optimize the properties of the conducting polymer coating. The corrosion performance of the primer coating was evaluated by DC polarization studies. It was found that poly (N-ethyl aniline) reduces from emeraldine to leucoemeraldine form; reducing the rate of cathodic reaction, which reduces the rate of corrosion of AA-2024 alloy. Polyimide-clay nanocomposite coating was solution cast on the conducting polymer primer layer for enhancing the barrier and corrosion properties of the coating system. The concentration of polyimide (10--25 vol%) and clay (0.1 and 1 wt%) were varied in the coating formulation to optimize the barrier properties of topcoat. X-ray diffraction showed that the intergallery clay distance decreased from 17.2 A to 11.79 A after immidization of polyimide

  4. Study on iron oxide nanoparticles coated with glucose-derived polymers for biomedical applications

    NASA Astrophysics Data System (ADS)

    Herea, D. D.; Chiriac, H.; Lupu, N.; Grigoras, M.; Stoian, G.; Stoica, B. A.; Petreus, T.

    2015-10-01

    This study reports an approach for a facile one-step synthesis of magnetic nanoparticles (MNPs) coated with glucose-derived polymers (GDP) through a mechanochemical hydrothermal process for biomedical applications. Polymer-coated magnetic nanoparticles (Fe2O3/Fe3O4), with sizes below 10 nm, exhibited superparamagnetic behavior, with a specific magnetization saturation value of about 40 emu/g, and a maximum specific absorption rate (SAR) of 30 W/g in AC magnetic fields. Depending on the intensity of the applied AC magnetic field, a temperature of 42 °C can be achieved in 4-17 min. The surface polymerized layer affords functional hydroxyl groups for binding to biomolecules containing carboxyl, thiol, or amino groups, thereby making the coated nanoparticles feasible for bio-conjugation. In vitro cytotoxicity evaluation pointed out that a relatively high concentration of polymer-coated magnetic nanoparticles (GDP-MNPs) did not induce severe cell alteration, suggesting a good biocompatibility.

  5. Piezoelectric biosensor with a ladder polymer substrate coating

    DOEpatents

    Renschler, C.L.; White, C.A.; Carter, R.M.

    1998-09-29

    A piezoelectric biosensor substrate useful for immobilizing biomolecules in an oriented manner on the surface of a piezoelectric sensor has a ladder polymer of polyacrylonitrile. To make the substrate, a solution of an organic polymer, preferably polyacrylonitrile, is applied to the surface of a piezoelectric sensor. The organic polymer is modifying by heating the polymer in a controlled fashion in air such that a ladder polymer is produced which, in turn, forms the attachment point for the biomolecules comprising the piezoelectric biosensor. 3 figs.

  6. Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter

    NASA Astrophysics Data System (ADS)

    Bastarrachea, Luis J.; Goddard, Julie M.

    2016-08-01

    A method to prepare a self-healing, antimicrobial polymer coating that retains efficacy against Escherichia coli O157:H7 in the presence of organic matter is reported. A coating composed of branched polyethyleneimine (PEI) and styrene maleic anhydride copolymer (SMA) was applied to a maleic anhydride functionalized polypropylene support. The chemistry of the polymer coating was designed to impart hydrophobicity due to the styrene subunits, intrinsic antimicrobial character (>99.9% reduction) from the cationic primary amine groups, and enhanced antimicrobial character (> 99.99% reduction) after chlorination of N-halamine forming groups. Antimicrobial effectiveness was demonstrated under conditions of increasing organic load. Up to 500 ppm horse serum, chlorinated coatings retained full antimicrobial character (>99.99% reduction). Even at 50,000 ppm of horse serum, the coating provided ∼90% reduction as prepared, and between ∼75% and ∼80% reduction in the form of N-halamines. Microscopy confirmed no evidence of bacterial adhesion on the coating surface. Finally, the coating exhibited self-healing properties after exposure to acid and alkaline solutions and restoration by heat, as confirmed through spectroscopy from the rebuilding of characteristic chemical bonds. Such robust antimicrobial polymer coatings with efficacy under conditions of increasing organic load may support reducing microbial cross-contamination in food and biomedical industries.

  7. Application of hybrid organic/inorganic polymers as coatings on metallic substrates

    NASA Astrophysics Data System (ADS)

    Augustinho, T. R.; Motz, G.; Ihlow, S.; Machado, R. A. F.

    2016-09-01

    Acrylic polymers, particularly poly (methyl methacrylate) (PMMA), have certain specific properties, such as good film formation, transparency, and good mechanical properties, which have been widely used in paints, coatings and adhesives. However, the limited chemical and physical stability of these pure polymers limits their applications when exposed to hostile conditions, as in ship hulls, for example. A suitable way to enhance PMMA properties is the addition of silicon polymers with very good protective characteristics. In this study, a PMMA and HTT 1800 (commercial silazane) copolymer were applied on metallic substrate and compared to pure PMMA and HTT 1800. All the materials were applied as coatings. They were applied on stainless steel via dip-coating to investigate the coating properties. Thermal cycling was employed to analyze coating durability at high temperatures (50 °C to 600 °C). Optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the coated surfaces, and the adhesion of pure PMMA, pure HTT 1800 and PMMA/HTT 1800 coatings on metallic substrate was investigated by Cross-Cut-Test (ASTM D 3359). The sessile drop method was used to determine the contact angle. PMMA coatings presented complete degradation from 250 °C, while hybrid coatings of PMMA and HTT 1800 have good protection until 400 °C. The adherence of the coating on metallic substrate showed improvement in all synthesized materials when compared to pure PMMA, obtaining the best adherence possible. The contact angle test showed that the hydrophobicity of the hybrid coatings is higher than that of the pure coatings.

  8. Porous silica coated spherical microresonator for vapor phase sensing of ammonia at a sub-ppm level

    NASA Astrophysics Data System (ADS)

    Mallik, Arun K.; Farrell, Gerald; Liu, Dejun; Kavungal, Vishnu; Wu, Qiang; Semenova, Yuliya

    2016-05-01

    A new type of fiber optic sensor for the detection and quantification of ammonia (NH3) vapor levels is proposed and experimentally demonstrated. This sensor is based on a spherical silica micro resonator coated with porous silica gel. Whispering gallery modes (WGMs) in the micro resonator are excited by evanescent coupling to a tapered fiber with a 3.3 μm waist diameter. The optical properties of the porous silica layer change when it is exposed to ammonia vapor, leading to a spectral shift of the WGM resonant wavelengths. The sensitivity of the proposed sensor has been tested by exposing it to different low level concentrations of ammonia: 4 ppm, 8 ppm, 12 ppm and 30 ppm at a constant relative humidity (50% RH) and constant temperature (23°C). The detection limit is calculated from experimental results as 57 ppb of ammonia for a 282 μm diameter porous silica coated microsphere.

  9. Coating of meso-porous metallic membranes with oriented channel-like fine pores by pulsed laser deposition.

    PubMed

    Mukherji, D; Lackner, J; Wanderka, N; Kardjilov, N; Näth, O; Jäger, S; Schmitz, F; Rösler, J

    2008-02-13

    There is increasing demand to functionalize meso- and nanoporous materials by coating and make the porous substrate biocompatible or environmentally friendly. However, coating on a meso-porous substrate poses great challenges, especially if the pore aspect ratio is high. We adopted the pulsed laser deposition (PLD) method to coat Ni(3)Al-based meso-porous membranes, which were fabricated from a single-crystal Ni-based superalloy by a unique selective phase dissolution technique. These membranes were about 250 µm thick and had channel-like pores (∼200 nm wide) with very high aspect ratio. Two different coating materials, i.e. diamond-like carbon (DLC) and titanium, were used to coat these membranes. High energy C or Ti ions, produced in the plasma plume by the PLD process, penetrated the channel-like pores and deposited coatings on the pore walls deep inside the membrane. The thickness and the quality of coatings on the pore walls were examined using the dual-beam system. The coating thickness, of the order of 50 nm, was adherent to the pore walls and was quite uniform at different depths. The carbon and the Ti deposition behaved quite similarly. The preliminary experiments showed that the PLD is an adequate method for coating fine open cavities of complex geometry. Simulations based on stopping and the range of ions in matter (SRIM) calculations helped in understanding the deposition processes on pore walls at great depths. PMID:21730712

  10. Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production.

    PubMed

    Li, Lianwei; Cai, Zhengxu; Wu, Qinghe; Lo, Wai-Yip; Zhang, Na; Chen, Lin X; Yu, Luping

    2016-06-22

    Developing highly efficient photocatalyts for water splitting is one of the grand challenges in solar energy conversion. Here, we report the rational design and synthesis of porous conjugated polymer (PCP) that photocatalytically generates hydrogen from water splitting. The design mimics natural photosynthetics systems with conjugated polymer component to harvest photons and the transition metal part to facilitate catalytic activities. A series of PCPs have been synthesized with different light harvesting chromophores and transition metal binding bipyridyl (bpy) sites. The photocatalytic activity of these bpy-containing PCPs can be greatly enhanced due to the improved light absorption, better wettability, local ordering structure, and the improved charge separation process. The PCP made of strong and fully conjugated donor chromophore DBD (M4) shows the highest hydrogen production rate at ∼33 μmol/h. The results indicate that copolymerization between a strong electron donor and weak electron acceptor into the same polymer chain is a useful strategy for developing efficient photocatalysts. This study also reveals that the residual palladium in the PCP networks plays a key role for the catalytic performance. The hydrogen generation activity of PCP photocatalyst can be further enhanced to 164 μmol/h with an apparent quantum yield of 1.8% at 350 nm by loading 2 wt % of extra platinum cocatalyst. PMID:27254306

  11. Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production.

    PubMed

    Li, Lianwei; Cai, Zhengxu; Wu, Qinghe; Lo, Wai-Yip; Zhang, Na; Chen, Lin X; Yu, Luping

    2016-06-22

    Developing highly efficient photocatalyts for water splitting is one of the grand challenges in solar energy conversion. Here, we report the rational design and synthesis of porous conjugated polymer (PCP) that photocatalytically generates hydrogen from water splitting. The design mimics natural photosynthetics systems with conjugated polymer component to harvest photons and the transition metal part to facilitate catalytic activities. A series of PCPs have been synthesized with different light harvesting chromophores and transition metal binding bipyridyl (bpy) sites. The photocatalytic activity of these bpy-containing PCPs can be greatly enhanced due to the improved light absorption, better wettability, local ordering structure, and the improved charge separation process. The PCP made of strong and fully conjugated donor chromophore DBD (M4) shows the highest hydrogen production rate at ∼33 μmol/h. The results indicate that copolymerization between a strong electron donor and weak electron acceptor into the same polymer chain is a useful strategy for developing efficient photocatalysts. This study also reveals that the residual palladium in the PCP networks plays a key role for the catalytic performance. The hydrogen generation activity of PCP photocatalyst can be further enhanced to 164 μmol/h with an apparent quantum yield of 1.8% at 350 nm by loading 2 wt % of extra platinum cocatalyst.

  12. Tackling Mg alloy corrosion by natural polymer coatings-A review.

    PubMed

    Heise, Svenja; Virtanen, Sannakaisa; Boccaccini, Aldo R

    2016-10-01

    The field of protective coatings for magnesium and its alloys (e.g., AZ31) using natural polymers is reviewed. Polymers utilized are broadly divided into polysaccharides and proteins. For both polymer classes examples are given focusing on coating processing and characterization. Several analysing methods reported in literature are summarized highlighting the different characterization approaches applied in different studies, which makes difficult a direct comparison of the outcomes. In most cases, the protective behavior of coatings was determined using electrochemical impedance spectroscopy or by assessing hydrogen evolution in different fluids. Mechanical tests and in vitro cell culture studies have been also carried out on selected coating systems. Overall, the results show the possibility of applying protective coatings based on natural polymers on magnesium and its alloys, however, in vivo investigations are scarce so that long-term results in relevant conditions are not yet available. A comparison with the use of synthetic polymers is presented and current challenges and areas for future research are discussed, highlighting the need for further investigations in the field, which should enable broadening the applications of Mg and Mg alloys in medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2628-2641, 2016.

  13. Segment-Structured Diamond-Like Carbon Coatings on Polymer Catheter

    NASA Astrophysics Data System (ADS)

    Nakagawa, Taku; Ohishi, Ryusuke; Ohtake, Naoto; Takai, Osamu; Tsutsui, Nobumasa; Tsutsui, Yasuhiro; Muraki, Yasuhiro; Ogura, Jyunpei

    Diamond-like carbon (DLC) has remarkable mechanical and tribological properties. Besides those mechanical properties, it has been clarified that DLC shows high biocompatibility in recent years. DLC coating can give high strength, abrasion resistance, and biocompatibility for surface of substrates. Hence DLC is a candidate for the coating material for medical devices such as artificial organ, joint, catheter, etc. The objective of this study is to develop safety protection films for implantable medical polymer devices utilizing segment-structured DLC (S-DLC) coatings. S-DLC and continuous-structured DLC were deposited on polyurethane and nylon sheet for balloon catheters. As a result, friction coefficient of DLC coated polyurethane sheet was approximately one-sixth of that of pristine polyurethane sheet, and S-DLC showed very low friction coefficient of μ=0.1-0.15. DLC coating can prevent polyurethane sheet from worn out. The puncture-resistance of nylon sheets increased 0.2MPa on average by DLC coatings regardless of the film structure. It was confirmed that DLC inhibits adsorption of blood coagulation factor. In conclusion, we succeed to verify that these DLC films can improve tribological property, abrasion-resistance, puncture-resistance, and anti-thrombogenicity of polymer catheters. Moreover, segment-structured DLC films exhibits high performance for protection of polymer material for polymer catheters.

  14. Computational investigation of the delamination of polymer coatings during stent deployment.

    PubMed

    Hopkins, C G; McHugh, P E; McGarry, J P

    2010-07-01

    Recent advances in angioplasty have involved the application of polymer coatings to stent surfaces for purposes of drug delivery. Given the high levels of deformation developed in the plastic hinge of a stent during deployment, the achievement of an intact bond between the coating and the stent presents a significant mechanical challenge. Problems with coating delamination have been reported in recent experimental studies. In this paper, a cohesive zone model of the stent-coating interface is implemented in order to investigate coating debonding during stent deployment. Simulations reveal that coatings debond from the stent surface in tensile regions of the plastic hinge during deployment. The critical parameters governing the initiation of delamination include the coating thickness and stiffness, the interface strength between the coating and stent surface, and the curvature of the plastic hinge. The coating is also computed to debond from the stent surface in compressive regions of the plastic hinge by a buckling mechanism. Computed patterns of coating delamination correlate very closely with experimental images. This study provides insight into the critical factors governing coating delamination during stent deployment and offers a predictive framework that can be used to improve the design of coated stents.

  15. Polymer-coated fibrous materials as the stationary phase in packed capillary gas chromatography.

    PubMed

    Saito, Yoshihiro; Tahara, Ai; Imaizumi, Motohiro; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2003-10-15

    Synthetic polymer filaments have been introduced as the support material in packed capillary gas chromatography (GC). The filaments of the heat-resistant polymers, Zylon, Kevlar, Nomex, and Technora, were longitudinally packed into a short fused-silica capillary, followed by the conventional coating process for open-tubular GC columns. The separation of several test mixtures such as n-alkylbenzenes and n-alkanes was carried out with these polymer-coated fiber-packed capillary columns. With the coating by various polymeric materials on the surface of these filaments, the retentivity was significantly improved over the parent fiber-packed column (without polymer coating) as well as a conventional open-tubular capillary of the same length. The results demonstrated a good combination of Zylon as the support and poly(dimethylsiloxane)-based materials as the coating liquid-phase for the successful GC separation of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while successful applications for other separations such as poly(ethylene glycol) coating for the separation of alcohols were also obtained. From the results it has been suggested that the selectivity of the fiber-packed column could be tuned by selecting different coating materials, indicating the promising possibility for a novel usage of fine fibrous polymers as the support material that can be combined with newly synthesized coating materials specially designed for particular separations. Taking advantage of good thermal stability of the fibers, the column temperature could be elevated to higher than 350 degrees C with the combination of a short metallic capillary.

  16. Polymer-coated fibrous materials as the stationary phase in packed capillary gas chromatography.

    PubMed

    Saito, Yoshihiro; Tahara, Ai; Imaizumi, Motohiro; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2003-10-15

    Synthetic polymer filaments have been introduced as the support material in packed capillary gas chromatography (GC). The filaments of the heat-resistant polymers, Zylon, Kevlar, Nomex, and Technora, were longitudinally packed into a short fused-silica capillary, followed by the conventional coating process for open-tubular GC columns. The separation of several test mixtures such as n-alkylbenzenes and n-alkanes was carried out with these polymer-coated fiber-packed capillary columns. With the coating by various polymeric materials on the surface of these filaments, the retentivity was significantly improved over the parent fiber-packed column (without polymer coating) as well as a conventional open-tubular capillary of the same length. The results demonstrated a good combination of Zylon as the support and poly(dimethylsiloxane)-based materials as the coating liquid-phase for the successful GC separation of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), while successful applications for other separations such as poly(ethylene glycol) coating for the separation of alcohols were also obtained. From the results it has been suggested that the selectivity of the fiber-packed column could be tuned by selecting different coating materials, indicating the promising possibility for a novel usage of fine fibrous polymers as the support material that can be combined with newly synthesized coating materials specially designed for particular separations. Taking advantage of good thermal stability of the fibers, the column temperature could be elevated to higher than 350 degrees C with the combination of a short metallic capillary. PMID:14710834

  17. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates

    NASA Astrophysics Data System (ADS)

    Cai, Sheng; Zhu, Dongliang; Zou, Yan; Zhao, Jing

    2016-07-01

    A series of porous polymers bearing functional quaternary ammonium salts were solvothermally synthesized through the free radical copolymerization of divinylbenzene (DVB) and functionalized quaternary ammonium salts. The obtained polymers feature highly cross-linked matrices, large surface areas, and abundant halogen anions. These polymers were evaluated as heterogeneous catalysts for the synthesis of cyclic carbonates from epoxides and CO2 in the absence of co-catalysts and solvents. The results revealed that the synergistic effect between the functional hydroxyl groups and the halide anion Br- afforded excellent catalytic activity to cyclic carbonates. In addition, the catalyst can be easily recovered and reused for at least five cycles without significant loss in activity.

  18. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates.

    PubMed

    Cai, Sheng; Zhu, Dongliang; Zou, Yan; Zhao, Jing

    2016-12-01

    A series of porous polymers bearing functional quaternary ammonium salts were solvothermally synthesized through the free radical copolymerization of divinylbenzene (DVB) and functionalized quaternary ammonium salts. The obtained polymers feature highly cross-linked matrices, large surface areas, and abundant halogen anions. These polymers were evaluated as heterogeneous catalysts for the synthesis of cyclic carbonates from epoxides and CO2 in the absence of co-catalysts and solvents. The results revealed that the synergistic effect between the functional hydroxyl groups and the halide anion Br(-) afforded excellent catalytic activity to cyclic carbonates. In addition, the catalyst can be easily recovered and reused for at least five cycles without significant loss in activity.

  19. Microstructure and corrosion behavior of porous coatings on titanium alloy by vacuum-brazed method.

    PubMed

    Lee, T M; Chang, E; Yen, C H

    2006-05-01

    The microstructural evolution and electrochemical characteristics of brazed porous-coated Ti-6Al-4V alloy were analyzed and compared with respect to the conventionally 1300 degrees C sintering method. The titanium filler metal of low-melting-point (934 degrees C) Ti-15Cu-15Ni was used to braze commercially pure (CP) titanium beads onto the substrate of Ti-6Al-4V alloy at 970 degrees C for 2 and 8 h. Optical microscopy, scanning and transmission electron microscopy, and X-ray diffractometry (XRD) were used to characterize the microstructure and phase of the brazed metal; also, the potentiostat was used for corrosion study. Experimental results indicate that the bead/substrate contact interface of the 970 degrees C brazed specimens show larger contact area and higher radius curvature in comparison with 1300 degrees C sintering method. The microstructure of brazed specimens shows the Widmanstätten structure in the brazed zone and equiaxed alpha plus intergranular beta in the Ti-6Al-4V substrate. The intermetallic Ti2Ni phase existing in the prior filler metal diminishes, while the Ti2Cu phase can be identified for the substrate at 970 for 2 h, but the latter phase decrease with time. In Hank's solution at 37 degrees C, the corrosion rates of the 1300 degrees C sintering and the 970 degrees C brazed samples are similar at corrosion potential (E(corr)) in potentiodynamic test, and the value of E(corr) for the brazed sample is noble to the sintering samples. The current densities of the brazed specimens do not exceed 100 microA/cm2 at 3.5 V (SCE). These results suggest that the vacuum-brazed method exhibits the potentiality to manufacture the porous-coated specimens for biomedical application.

  20. Improving the quality of polymer-coated urea with recycled plastic, proper additives, and large tablets.

    PubMed

    Yang, Yue-Chao; Zhang, Min; Li, Yuncong; Fan, Xiao-Hui; Geng, Yu-Qing

    2012-11-14

    Polymer-coated urea (PCU) has great potential for increasing crop production and enhancing nitrogen (N) fertilizer use efficiency, benefiting the ecosystem. However, current PCUs are used only in a limited market, and the main obstacle to the wider use of PCUs is high cost compared to that of conventional N fertilizers. In this study, the low cost PCU and large tablet polymer-coated urea (LTPCU) were prepared by using recycling polystyrene foam and various sealants as the coating materials. The structural and chemical characteristics of the coating shells of the coated fertilizers were examined. The N release characteristics of coated fertilizers were determined in 25 °C water under laboratory conditions. The relationship between the N release longevity and the amount of coating material and the percentage of different sealants were evaluated. The results indicated that recycling polystyrene foam was the ideal coating material of the controlled release fertilizer. The polyurethane that was synthesized by the reaction of castor oil and isocyanate was better than the wax as the additive to delay the N release rate of coated urea. The coating material used for LTPCU was 70-80% less than those used for commercial PCUs under the same N release longevity. The cost of the recycling polystyrene foam used for coating one ton of pure N of the LTPCU was about one-seventh to one-eighth of the cost of the traditional polymer used for the commercial PCU. The experimental data showed that the LTPCU with good controlled-release capacities, being economical and eco-friendly, could be promising for wide use in agriculture and horticulture. PMID:23094596

  1. Improving the quality of polymer-coated urea with recycled plastic, proper additives, and large tablets.

    PubMed

    Yang, Yue-Chao; Zhang, Min; Li, Yuncong; Fan, Xiao-Hui; Geng, Yu-Qing

    2012-11-14

    Polymer-coated urea (PCU) has great potential for increasing crop production and enhancing nitrogen (N) fertilizer use efficiency, benefiting the ecosystem. However, current PCUs are used only in a limited market, and the main obstacle to the wider use of PCUs is high cost compared to that of conventional N fertilizers. In this study, the low cost PCU and large tablet polymer-coated urea (LTPCU) were prepared by using recycling polystyrene foam and various sealants as the coating materials. The structural and chemical characteristics of the coating shells of the coated fertilizers were examined. The N release characteristics of coated fertilizers were determined in 25 °C water under laboratory conditions. The relationship between the N release longevity and the amount of coating material and the percentage of different sealants were evaluated. The results indicated that recycling polystyrene foam was the ideal coating material of the controlled release fertilizer. The polyurethane that was synthesized by the reaction of castor oil and isocyanate was better than the wax as the additive to delay the N release rate of coated urea. The coating material used for LTPCU was 70-80% less than those used for commercial PCUs under the same N release longevity. The cost of the recycling polystyrene foam used for coating one ton of pure N of the LTPCU was about one-seventh to one-eighth of the cost of the traditional polymer used for the commercial PCU. The experimental data showed that the LTPCU with good controlled-release capacities, being economical and eco-friendly, could be promising for wide use in agriculture and horticulture.

  2. Facile Carbonization of Microporous Organic Polymers into Hierarchically Porous Carbons Targeted for Effective CO2 Uptake at Low Pressures.

    PubMed

    Gu, Shuai; He, Jianqiao; Zhu, Yunlong; Wang, Zhiqiang; Chen, Dongyang; Yu, Guipeng; Pan, Chunyue; Guan, Jianguo; Tao, Kai

    2016-07-20

    The advent of microporous organic polymers (MOPs) has delivered great potential in gas storage and separation (CCS). However, the presence of only micropores in these polymers often imposes diffusion limitations, which has resulted in the low utilization of MOPs in CCS. Herein, facile chemical activation of the single microporous organic polymers (MOPs) resulted in a series of hierarchically porous carbons with hierarchically meso-microporous structures and high CO2 uptake capacities at low pressures. The MOPs precursors (termed as MOP-7-10) with a simple narrow micropore structure obtained in this work possess moderate apparent BET surface areas ranging from 479 to 819 m(2) g(-1). By comparing different activating agents for the carbonization of these MOPs matrials, we found the optimized carbon matrials MOPs-C activated by KOH show unique hierarchically porous structures with a significant expansion of dominant pore size from micropores to mesopores, whereas their microporosity is also significantly improved, which was evidenced by a significant increase in the micropore volume (from 0.27 to 0.68 cm(3) g(-1)). This maybe related to the collapse and the structural rearrangement of the polymer farmeworks resulted from the activation of the activating agent KOH at high temperature. The as-made hierarchically porous carbons MOPs-C show an obvious increase in the BET surface area (from 819 to 1824 m(2) g(-1)). And the unique hierarchically porous structures of MOPs-C significantly contributed to the enhancement of the CO2 capture capacities, which are up to 214 mg g(-1) (at 273 K and 1 bar) and 52 mg g(-1) (at 273 K and 0.15 bar), superior to those of the most known MOPs and porous carbons. The high physicochemical stabilities and appropriate isosteric adsorption heats as well as high CO2/N2 ideal selectivities endow these hierarchically porous carbon materials great potential in gas sorption and separation. PMID:27332739

  3. Facile Carbonization of Microporous Organic Polymers into Hierarchically Porous Carbons Targeted for Effective CO2 Uptake at Low Pressures.

    PubMed

    Gu, Shuai; He, Jianqiao; Zhu, Yunlong; Wang, Zhiqiang; Chen, Dongyang; Yu, Guipeng; Pan, Chunyue; Guan, Jianguo; Tao, Kai

    2016-07-20

    The advent of microporous organic polymers (MOPs) has delivered great potential in gas storage and separation (CCS). However, the presence of only micropores in these polymers often imposes diffusion limitations, which has resulted in the low utilization of MOPs in CCS. Herein, facile chemical activation of the single microporous organic polymers (MOPs) resulted in a series of hierarchically porous carbons with hierarchically meso-microporous structures and high CO2 uptake capacities at low pressures. The MOPs precursors (termed as MOP-7-10) with a simple narrow micropore structure obtained in this work possess moderate apparent BET surface areas ranging from 479 to 819 m(2) g(-1). By comparing different activating agents for the carbonization of these MOPs matrials, we found the optimized carbon matrials MOPs-C activated by KOH show unique hierarchically porous structures with a significant expansion of dominant pore size from micropores to mesopores, whereas their microporosity is also significantly improved, which was evidenced by a significant increase in the micropore volume (from 0.27 to 0.68 cm(3) g(-1)). This maybe related to the collapse and the structural rearrangement of the polymer farmeworks resulted from the activation of the activating agent KOH at high temperature. The as-made hierarchically porous carbons MOPs-C show an obvious increase in the BET surface area (from 819 to 1824 m(2) g(-1)). And the unique hierarchically porous structures of MOPs-C significantly contributed to the enhancement of the CO2 capture capacities, which are up to 214 mg g(-1) (at 273 K and 1 bar) and 52 mg g(-1) (at 273 K and 0.15 bar), superior to those of the most known MOPs and porous carbons. The high physicochemical stabilities and appropriate isosteric adsorption heats as well as high CO2/N2 ideal selectivities endow these hierarchically porous carbon materials great potential in gas sorption and separation.

  4. The enhanced characteristics of osteoblast adhesion to porous Zinc-TiO2 coating prepared by plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxiang; Gu, Beibei; Zhang, Wenjie; Kan, Guangyu; Sun, Junying

    2012-06-01

    Zinc-incorporated TiO2 coating (Zn-TiO2) was prepared on titanium (Ti) plate by plasma electrolytic oxidation (PEO) technique in the Ca, P, Zn-containing electrolyte. The surface topography, phase and element composition of the coatings were characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectrometer, respectively. Osteoblast-like MC3T3-E1 cell adhesion on Ti, TiO2 and Zn-TiO2 surfaces was evaluated and its possible signal transduction pathway involved was confirmed by the sequential gene expressions of integrin β1, α1, α3 and α5, focal adhesion kinase (FAK), and extracellular regulated kinases (ERK, including ERK1 and ERK2). The obtained results showed that Zn was successfully incorporated into the porous TiO2 coating, which did not alter apparently its surface topography and phase composition. The adhesion of MC3T3-E1 cells on Zn-incorporated TiO2 coating was significantly enhanced compared with that on the Zn-free TiO2 coating and pure Ti plate. In addition, the enhanced cell adhesion on Zn-TiO2 coating may be mediated by integrin (subunits β1 and α5) binding and subsequent signal transduction pathway (involving FAK and ERK1). The present work suggests that the Zn-incorporated porous TiO2 coating produced by PEO technique is promising as a candidate for orthopedic implant applications.

  5. Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy.

    PubMed

    Jing, Wensen; Zhang, Minghua; Jin, Lei; Zhao, Jian; Gao, Qing; Ren, Min; Fan, Qingyu

    2015-12-01

    Surface modification and material improvement is now an important way to improve the osseointegration between bone and uncemented prothesis. The purpose of this study was to investigate the bone ingrowth potential of porous hydroxyapatite (HA) coatings prepared by micro-arc oxidation (MAO) on Ti-3Zr-2Sn-3Mo-25Nb, a new titanium alloy. HA-coated specimens were implanted in the left proximal femoral medullary canal of beagles for 4, 12, and 24 weeks, and uncoated specimens were implanted in the right as a control. The surface morphology and phase composition were investigated with environmental scanning electron microscopy and X-ray diffractometry. The bone ingrowth was assessed by histomorphometry. A pull-out test was performed to assess the mechanical performance of the bone-implant interface. A porous coating was well prepared on the new titanium alloy by using the MAO method. The bone-to-implant contact was significantly higher for the HA-coated group compared to that in the uncoated group. Mechanical tests showed that the HA-coated group had significantly higher maximum force at the bone-implant interface compared to the uncoated specimens. MAO is a suitable coating approach for this new titanium alloy. The HA coating prepared by this approach can significantly promote bone ingrowth and the mechanical performance of the bone-implant interface.

  6. Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy.

    PubMed

    Jing, Wensen; Zhang, Minghua; Jin, Lei; Zhao, Jian; Gao, Qing; Ren, Min; Fan, Qingyu

    2015-12-01

    Surface modification and material improvement is now an important way to improve the osseointegration between bone and uncemented prothesis. The purpose of this study was to investigate the bone ingrowth potential of porous hydroxyapatite (HA) coatings prepared by micro-arc oxidation (MAO) on Ti-3Zr-2Sn-3Mo-25Nb, a new titanium alloy. HA-coated specimens were implanted in the left proximal femoral medullary canal of beagles for 4, 12, and 24 weeks, and uncoated specimens were implanted in the right as a control. The surface morphology and phase composition were investigated with environmental scanning electron microscopy and X-ray diffractometry. The bone ingrowth was assessed by histomorphometry. A pull-out test was performed to assess the mechanical performance of the bone-implant interface. A porous coating was well prepared on the new titanium alloy by using the MAO method. The bone-to-implant contact was significantly higher for the HA-coated group compared to that in the uncoated group. Mechanical tests showed that the HA-coated group had significantly higher maximum force at the bone-implant interface compared to the uncoated specimens. MAO is a suitable coating approach for this new titanium alloy. The HA coating prepared by this approach can significantly promote bone ingrowth and the mechanical performance of the bone-implant interface. PMID:26306772

  7. Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds.

    PubMed

    Motealleh, Azadeh; Eqtesadi, Siamak; Perera, Fidel Hugo; Pajares, Antonia; Guiberteau, Fernando; Miranda, Pedro

    2016-12-01

    The effect of different dip-coating variables-solvent, deposition temperature and polymer concentration-on the mechanical performance of polycaprolactone-coated 45S5 bioglass robocast scaffolds is systematically analyzed in this work. The reproducible geometry of the scaffolds produced by this additive manufacturing technique makes them an optimal model system and facilitates the analysis. The results suggest that the mechanical performance of the hybrid scaffolds is improved monotonically with polymer concentration, but this concentration cannot be increased indefinitely if the macroporosity interconnectivity, and thus the scaffold׳s capacity to promote tissue ingrowth, are to be preserved. An optimal concentration, and therefore viscosity (~1-4Pas in the present case), exists for any given set of process variables (scaffold geometry and material, polymer, solvent and process temperature) that yields coatings with optimal reinforcement and minimal reduction of scaffold functionality. Solvent and process temperature do not directly affect the strengthening provided by the polymeric coating. However they can determine the maximum concentration at the critical viscosity, and thereby the maximum achievable mechanical performance of the resulting hybrid scaffold.

  8. Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds.

    PubMed

    Motealleh, Azadeh; Eqtesadi, Siamak; Perera, Fidel Hugo; Pajares, Antonia; Guiberteau, Fernando; Miranda, Pedro

    2016-12-01

    The effect of different dip-coating variables-solvent, deposition temperature and polymer concentration-on the mechanical performance of polycaprolactone-coated 45S5 bioglass robocast scaffolds is systematically analyzed in this work. The reproducible geometry of the scaffolds produced by this additive manufacturing technique makes them an optimal model system and facilitates the analysis. The results suggest that the mechanical performance of the hybrid scaffolds is improved monotonically with polymer concentration, but this concentration cannot be increased indefinitely if the macroporosity interconnectivity, and thus the scaffold׳s capacity to promote tissue ingrowth, are to be preserved. An optimal concentration, and therefore viscosity (~1-4Pas in the present case), exists for any given set of process variables (scaffold geometry and material, polymer, solvent and process temperature) that yields coatings with optimal reinforcement and minimal reduction of scaffold functionality. Solvent and process temperature do not directly affect the strengthening provided by the polymeric coating. However they can determine the maximum concentration at the critical viscosity, and thereby the maximum achievable mechanical performance of the resulting hybrid scaffold. PMID:27522314

  9. Stable dispersions of polymer-coated graphitic nanoplatelets

    NASA Technical Reports Server (NTRS)

    Stankovich, Sasha (Inventor); Nguyen, Sonbinh T. (Inventor); Ruoff, Rodney S. (Inventor)

    2011-01-01

    A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.

  10. On the nature of interface of carbon nanotube coated carbon fibers with different polymers

    NASA Astrophysics Data System (ADS)

    Singh Bedi, Harpreet; Padhee, Srikant S.; Agnihotri, Prabhat K.

    2016-07-01

    Experimental investigations are carried out to analyse the wetting behaviour of carbon nanotube (CNT) coated carbon fiber to determine their suitability to process carbon nanotube coated carbon fiber/polymer multiscale composites for structural applications. To overcome the problem of agglomeration, CNTs are grown directly on the surface of carbon fibers as well as fabric using thermal chemical vapour deposition (CVD) technique. The term multiscale is used because different reinforcement mechanisms operate at the scale of long fibers and CNTs which are of few micrometers in length. The load carrying capacity of these multiscale composites critically depends on the efficiency and extent of load transfer from low strength matrix to high strength fiber which in turn depends on the interfacial strength between CNT coated carbon fiber and polymer matrix. A systematic analysis of wetting behaviour of CNT coated carbon fiber with epoxy and polyester matrix is carried out in this study. It is shown that CNT coated carbon fibers as well as fabric show better wettability with epoxy matrix as compared to polyester matrix. This results in stronger interface of CNT coated carbon fiber with epoxy as compared to polyester in multiscale composite system. A similar observation is made in nanoindentation testing of single fiber multiscale composites processed with epoxy and polyester matrix. In addition, it is observed that wettability, interfacial strength and average properties of CNT coated carbon fiber/polymer composites are a function of CNT density on the surface of carbon fibers.

  11. A comparison between different fouling-release elastomer coatings containing surface-active polymers.

    PubMed

    Yasani, B R; Martinelli, E; Galli, G; Glisenti, A; Mieszkin, S; Callow, M E; Callow, J A

    2014-01-01

    Surface-active polymers derived from styrene monomers containing siloxane (S), fluoroalkyl (F) and/or ethoxylated (E) side chains were blended with an elastomer matrix, either poly(dimethyl siloxane) (PDMS) or poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), and spray-coated on top of PDMS or SEBS preformed films. By contact angle and X-ray photoelectron spectroscopy measurements, it was found that the surface-active polymer preferentially populated the outermost layers of the coating, despite its low content in the blend. However, the self-segregation process and the response to the external environment strongly depended on both the chemistry of the polymer and the type of matrix used for the blend. Additionally, mechanical testing showed that the elastic modulus of SEBS-based coatings was one order of magnitude higher than that of the corresponding PDMS-based coatings. The coatings were subjected to laboratory bioassays with the marine alga Ulva linza. PDMS-based coatings had superior fouling-release properties compared to the SEBS-based coatings.

  12. Effects of hydrophilic macropore fillings and coatings on the infiltration into water repellent porous media

    NASA Astrophysics Data System (ADS)

    Suetsugu, A.; Mori, Y.

    2012-12-01

    Macropores generate rapid flow paths in the surface soils by their high permeability under saturated/near-saturated moisture conditions. In natural soils, some macropores are filled/coated with various materials including decayed plant roots (Meek et al., 1989), exudates from plants/soil organisms (Jegou et al., 2001), iron oxides or other precipitates from preferentially-introduced solutes/colloids to the macropores (Rasmussen et al., 2001), or the surrounding soils with reduced bulk density (Ela et al., 1992). When we expect infiltration into water repellent soils through macropores or hydrophilic patches created from the macropore cementation processes, hydrophilicity of the macropore fillings/coatings should be understood. In the present study, we conducted an infiltration experiment with water repellent porous media and some macropore fillings/coatings, in order to clarify the roles of hydrophilic macropore fillings/coatings in infiltration. Ponding depth and flow distribution were monitored with a micro-focus X-ray computational tomography apparatus (SMX-90CT, Shimadzu Corp., Kyoto, Japan) at 90 kV and 110 μA. Dilute CsCl(aq) (density: 1.04 Mg m-3) was used as the contrast media to avoid density-driven alteration of the flows. Water repellency of the samples was evaluated by the water drop penetration time (WDPT, Van't Woudt, 1959). A glass beads (mean diameter: 0.46 mm, BZ-04, ASONE Corp., Osaka, Japan) was used as water repellent porous media. The glass beads sample was packed in 50-mL polypropylene centrifugation tubes at 1.55 Mg m-3 bulk density. A 2-mm hole was made at the bottom of each centrifugation tube for ventilation. The hole was covered with mesh cloth. Macroporous structure was made at the center of each tube from the surface. Each macroporous structure had 4-mm diameter and 30-mm length. Six types of macropores were prepared including 1) no macropore, 2) empty macropore, 3) an aluminum (Al) pipe (4-mm inner diameter, 5-mm outer diameter), 4) a

  13. Optimised process and formulation conditions for extended release dry polymer powder-coated pellets.

    PubMed

    Terebesi, Ildikó; Bodmeier, Roland

    2010-05-01

    The objective of this study was to improve the film formation and permeability characteristics of extended release ethylcellulose coatings prepared by dry polymer powder coating for the release of drugs of varying solubility. Ethylcellulose (7 and 10 cp viscosity grades) and Eudragit(R) RS were used for dry powder coating of pellets in a fluidised bed ball coater. Pre-plasticised ethylcellulose powder was prepared by spray-drying aqueous ethylcellulose dispersions (Surelease(R) and Aquacoat(R)) or by hot melt extrusion/cryogenic grinding of plasticised ethylcellulose. Chlorpheniramine maleate and theophylline were used as model drugs of different solubilities. The film formation process, polymeric films and coated pellets were characterised by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), scanning electron microscopy (SEM) and dissolution testing. Film formation and extended drug release was achieved with ethylcellulose, a polymer with a high glass transition temperature (T(g)) without the use of water, which is usually required in dry powder coating. DMA-measurements revealed that plasticised ethylcellulose had a modulus of elasticity (E') similar to the low T(g) Eudragit(R) RS. With increasing plasticiser concentration, the T(g) of ethylcellulose was reduced and the mechanical properties improved, thus facilitating coalescence of the polymer particles. SEM-pictures revealed the formation of a dense, homogeneous film. The lower viscosity grade ethylcellulose (7 cp) resulted in better film formation than the higher viscosity grade (10 cp) and required less stringent curing conditions. Successful extended release ethylcellulose coatings were also obtained by coating with pre-plasticised spray-dried ethylcellulose powders as an alternative to the separate application of pure ethylcellulose powder and plasticiser. The permeability of the extended release coating could be controlled by using powder blends of ethylcellulose with the

  14. Ex Situ Integration of Multifunctional Porous Polymer Monoliths into Thermoplastic Microfluidic Chips

    PubMed Central

    Kendall, Eric L.; Wienhold, Erik; Rahmanian, Omid D.; DeVoe, Don L.

    2014-01-01

    A unique method for incorporating functional porous polymer monolith elements into thermoplastic microfluidic chips is described. Monolith elements are formed in a microfabricated mold, rather than within the microchannels, and chemically functionalized off chip before insertion into solvent-softened thermoplastic microchannels during chip assembly. Because monoliths may be trimmed prior to final placement, control of their size, shape, and uniformity is greatly improved over in-situ photopolymerization methods. A characteristic trapezoidal profile facilitates rapid insertion and enables complete mechanical anchoring of the monolith periphery, eliminating the need for chemical attachment to the microchannel walls. Off-chip processing allows the parallel preparation of monoliths of differing compositions and surface chemistries in large batches. Multifunctional flow-through arrays of multiple monolith elements are demonstrated using this approach through the creation of a fluorescent immunosensor with integrated controls, and a microfluidic bubble separator comprising a combination of integrated hydrophobic and hydrophilic monolith elements. PMID:25018587

  15. Catalytic glucose isomerization by porous coordination polymers with open metal sites.

    PubMed

    Akiyama, George; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu

    2014-10-01

    Highly efficient catalytic isomerization reactions from glucose to fructose in aqueous media using porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) is reported for the first time. The catalytic activity of PCPs functionalized with -NH2, -(CH3)2, -NO2, and -SO3H groups on the pore surface is systematically tested. The catalytic activity can be tuned by the acidity of open metal sites (OMSs) by modifying the organic linkers with the functional groups. As a result, it is demonstrated that MIL-101 functionalized with -SO3H not only shows high conversion of glucose but also selectively produces fructose. Further, catalytic one-pot conversion of amylose to fructose is achieved, thanks to the high stability of the framework in an acidic solution. These results show that MOF/PCP compounds having OMSs are promising materials for various useful heterogeneous catalytic reactions, in particular in the biomass field. PMID:25080129

  16. A systematic study on the stability of porous coordination polymers against ammonia.

    PubMed

    Kajiwara, Takashi; Higuchi, Masakazu; Watanabe, Daisuke; Higashimura, Hideyuki; Yamada, Teppei; Kitagawa, Hiroshi

    2014-11-17

    To establish a strategy for designing porous coordination polymers (PCPs) for ammonia capture, the first systematic study on the stability of PCPs against ammonia was conducted. Various types of PCPs were investigated by comparing their powder XRD patterns before and after treatment with ammonia. Among the PCPs tested, ZIF-8, MIL-53(Al), Al-BTB, MOF-76(M) (M=Y or Yb), MIL-101(Cr), and MOF-74(Mg) were stable up to 350 °C under an ammonia atmosphere at ambient pressure. The origin of the stability of PCPs is discussed from the viewpoint of their components, metal cations, and organic linkers. Furthermore, adsorption isotherm measurements show that the adsorptive behavior of PCPs is independent of their stability.

  17. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure.

    PubMed

    Lu, Weigang; Yuan, Daqiang; Sculley, Julian; Zhao, Dan; Krishna, Rajamani; Zhou, Hong-Cai

    2011-11-16

    A porous polymer network (PPN) grafted with sulfonic acid (PPN-6-SO(3)H) and its lithium salt (PPN-6-SO(3)Li) exhibit significant increases in isosteric heats of CO(2) adsorption and CO(2)-uptake capacities. IAST calculations using single-component-isotherm data and a 15/85 CO(2)/N(2) ratio at 295 K and 1 bar revealed that the sulfonate-grafted PPN-6 networks show exceptionally high adsorption selectivity for CO(2) over N(2) (155 and 414 for PPN-6-SO(3)H and PPN-6-SO(3)Li, respectively). Since these PPNs also possess ultrahigh physicochemical stability, practical applications in postcombustion capture of CO(2) lie well within the realm of possibility.

  18. Synthesis of flake-like graphene from nickel-coated polyacrylonitrile polymer

    NASA Astrophysics Data System (ADS)

    Kwon, Ho-je; Ha, Jun Mok; Yoo, Sung Ho; Ali, Ghafar; Cho, Sung Oh

    2014-11-01

    Graphene can be synthesized from polyacrylonitrile (PAN) polymer through pyrolysis. A metal catalyst such as nickel (Ni) is required for the conversion of the polymer to graphene. The metal catalysts can be placed either atop or underneath the polymer precursor. We observed that spatially non-uniform and disconnected graphene was fabricated when PAN film coated with a Ni layer was pyrolyzed, resulting in flake-like graphene. Formation of the flake-like graphene is attributed to the dewetting of the Ni layer coated on the PAN film. Dewetting phenomenon can be reduced by decreasing the pyrolysis temperature, and hence, more uniform graphene could be prepared. The effects of Ni coating thickness and the pyrolysis temperature on the fabricated graphene have been experimentally analyzed.

  19. Synthesis of flake-like graphene from nickel-coated polyacrylonitrile polymer

    PubMed Central

    2014-01-01

    Graphene can be synthesized from polyacrylonitrile (PAN) polymer through pyrolysis. A metal catalyst such as nickel (Ni) is required for the conversion of the polymer to graphene. The metal catalysts can be placed either atop or underneath the polymer precursor. We observed that spatially non-uniform and disconnected graphene was fabricated when PAN film coated with a Ni layer was pyrolyzed, resulting in flake-like graphene. Formation of the flake-like graphene is attributed to the dewetting of the Ni layer coated on the PAN film. Dewetting phenomenon can be reduced by decreasing the pyrolysis temperature, and hence, more uniform graphene could be prepared. The effects of Ni coating thickness and the pyrolysis temperature on the fabricated graphene have been experimentally analyzed. PMID:25489278

  20. Synthesis of flake-like graphene from nickel-coated polyacrylonitrile polymer.

    PubMed

    Kwon, Ho-Je; Ha, Jun Mok; Yoo, Sung Ho; Ali, Ghafar; Cho, Sung Oh

    2014-01-01

    Graphene can be synthesized from polyacrylonitrile (PAN) polymer through pyrolysis. A metal catalyst such as nickel (Ni) is required for the conversion of the polymer to graphene. The metal catalysts can be placed either atop or underneath the polymer precursor. We observed that spatially non-uniform and disconnected graphene was fabricated when PAN film coated with a Ni layer was pyrolyzed, resulting in flake-like graphene. Formation of the flake-like graphene is attributed to the dewetting of the Ni layer coated on the PAN film. Dewetting phenomenon can be reduced by decreasing the pyrolysis temperature, and hence, more uniform graphene could be prepared. The effects of Ni coating thickness and the pyrolysis temperature on the fabricated graphene have been experimentally analyzed. PMID:25489278

  1. Optical absorption enhancement in 3D nanofibers coated on polymer substrate for photovoltaic devices.

    PubMed

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2015-06-01

    Recent research in the field of photovoltaics has shown that polymer solar cells have great potential to provide low-cost, lightweight and flexible electronic devices to harvest solar energy. In this paper, we propose a new method for the generation of three-dimensional nanofibers coated on polymer substrate induced by femtosecond laser pulses. In this new method, a thin layer of polymer is irradiated by megahertz femtosecond laser pulses under ambient conditions, and a thin fibrous layer is generated on top of the polymer substrate. This method is single step; no additional materials are added, and the layers of the three-dimensional (3D) polymer nanofibrous structures are grown on top of the substrate after laser irradiation. Light spectroscopy results show significant enhancement of light absorption in the generated 3D nanofibrous layers of polymer. Finally, we suggest how to maximize the light trapping and optical absorption of the generated nanofiber cells by optimizing the laser parameters. PMID:26072881

  2. Porous coordination polymers with ubiquitous and biocompatible metals and a neutral bridging ligand

    PubMed Central

    Noro, Shin-ichiro; Mizutani, Junya; Hijikata, Yuh; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu; Sugimoto, Kunihisa; Inubushi, Yasutaka; Kubo, Kazuya; Nakamura, Takayoshi

    2015-01-01

    The design of inexpensive and less toxic porous coordination polymers (PCPs) that show selective adsorption or high adsorption capacity is a critical issue in research on applicable porous materials. Although use of Group II magnesium(II) and calcium(II) ions as building blocks could provide cheaper materials and lead to enhanced biocompatibility, examples of magnesium(II) and calcium(II) PCPs are extremely limited compared with commonly used transition metal ones, because neutral bridging ligands have not been available for magnesium(II) and calcium(II) ions. Here we report a rationally designed neutral and charge-polarized bridging ligand as a new partner for magnesium(II) and calcium(II) ions. The three-dimensional magnesium(II) and calcium(II) PCPs synthesized using such a neutral ligand are stable and show selective adsorption and separation of carbon dioxide over methane at ambient temperature. This synthetic approach allows the structural diversification of Group II magnesium(II) and calcium(II) PCPs. PMID:25592677

  3. Polymer-Lipid Microbubbles for Biosensing and the Formation of Porous Structures

    PubMed Central

    Hettiarachchi, Kanaka; Lee, Abraham P.

    2010-01-01

    Polymer-lipid microbubbles (PLBs) are generated by microfluidic flow-focusing devices to form a new class of long-lasting hybrid particles. The specific PLB construct developed is an elastic gas-filled microsphere with a polydimethylsiloxane (PDMS) shell containing phospholipids conjugated to functionalized polyethyleneglycol (PEG). Digital “droplet-based” microfluidics technology enables control of particle composition, size, and polydispersity (σ < 10%). Use of PDMS as a shell component improves the functionality and stability (lifetime > 6 months) of the hybrid particles due to the thermally maneuverable solidification process. With a gas core, they serve as a template material for creating three-dimensional porous structures and surfaces, requiring no cumbersome post-processing removal steps. By adding biotinylated PEG-lipid derivatives that offer targeting capabilities, we demonstrate the immobilization of fluorescent IgG antibodies on stationary PDMS-lipid microbubbles through biotinavidin interactions and on-chip trapping for immunoassays. A PDMS-lipid composition offers several advantages such as biocompatibility and biodegradability for future in-vivo use as porous engineered scaffolds, packing materials, or delivery (i.e. therapeutic) agents with cell targeting capability. PMID:20163798

  4. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.

    PubMed

    Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin

    2015-11-01

    The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic. PMID:26449447

  5. Porous biphasic calcium phosphate ceramics coated with nano-hydroxyapatite and seeded with mesenchymal stem cells for reconstruction of radius segmental defects in rabbits.

    PubMed

    Hu, Jianzhong; Yang, Zhiming; Zhou, Yongchun; Liu, Yong; Li, Kaiyang; Lu, Hongbin

    2015-11-01

    The osteoconduction of porous biphasic calcium phosphate (BCP) ceramics has been widely reported. In a previous study, we demonstrated that applying a nano-hydroxyapatite (nHA) coating enhances the osteoinductive potential of BCP ceramics, making these scaffolds more suitable for bone tissue engineering applications. The aim of the present study was to determine the effects of reconstructing radius defects in rabbits using nHA-coated BCP ceramics seeded with mesenchymal stem cells (MSCs) and to compare the bone regeneration induced by different scaffolds. Radius defects were created in 20 New Zealand rabbits, which were divided into four groups by treatment: porous BCP ceramics (Group A), nHA-coated porous BCP ceramics (Group B), porous BCP ceramics seeded with rabbit MSCs (Group C), and nHA-coated porous BCP ceramics seeded with rabbit MSCs (Group D). After in vitro incubation, the cell/scaffold complexes were implanted into the defects. Twelve weeks after implantation, the specimens were examined macroscopically and histologically. Both the nHA coating and seeding with MSCs enhanced the formation of new bone tissue in the BCP ceramics, though the osteoinductive potential of the scaffolds with MSCs was greater than that of the nHA-coated scaffolds. Notably, the combination of nHA coating and MSCs significantly improved the bone regeneration capability of the BCP ceramics. Thus, MSCs seeded into porous BCP ceramics coated with nHA may be an effective bone substitute to reconstruct bone defects in the clinic.

  6. Accelerated cell-surface interlocking on plasma polymer-modified porous ceramics.

    PubMed

    Rebl, Henrike; Finke, Birgit; Schmidt, Jürgen; Mohamad, Heba S; Ihrke, Roland; Helm, Christiane A; Nebe, J Barbara

    2016-12-01

    Excellent osseointegration of permanent implants is crucial for the long lasting success of the implantation. To improve the osseointegrative potential, bio-inert titanium alloy surfaces (Ti6Al4V) are modified by plasma chemical oxidation (PCO®) of the titanium-oxide layer to a non-stoichiometric, amorphous calcium phosphate layer. The native titanium-oxide film measuring only a few nanometers is converted by PCO® to a thick porous calcium phosphate layer of about 10μm. In a second step the PCO surface is combined with a cell adhesive plasma-polymerized allylamine (PPAAm) nano film (5 and 50nm). Independent of the PPAAm coating homogeneity, the human osteoblast-like MG-63 cells show a remarkable increase in cell size and well-developed filopodia. Analyses of the actin cytoskeleton reveal that the cells mold to the pore shape of the PPAAm-covered PCO, thereby establishing a strong attachment to the surface. Interestingly, we could demonstrate that even though our untreated PCO shows excellent hydrophilicity, this alone is not sufficient to facilitate fast cell spreading, but the positive surface charges mediated by PPAAm. This multilayer composite material guarantees enhanced interlocking of the cells with the porous surface.

  7. Accelerated cell-surface interlocking on plasma polymer-modified porous ceramics.

    PubMed

    Rebl, Henrike; Finke, Birgit; Schmidt, Jürgen; Mohamad, Heba S; Ihrke, Roland; Helm, Christiane A; Nebe, J Barbara

    2016-12-01

    Excellent osseointegration of permanent implants is crucial for the long lasting success of the implantation. To improve the osseointegrative potential, bio-inert titanium alloy surfaces (Ti6Al4V) are modified by plasma chemical oxidation (PCO®) of the titanium-oxide layer to a non-stoichiometric, amorphous calcium phosphate layer. The native titanium-oxide film measuring only a few nanometers is converted by PCO® to a thick porous calcium phosphate layer of about 10μm. In a second step the PCO surface is combined with a cell adhesive plasma-polymerized allylamine (PPAAm) nano film (5 and 50nm). Independent of the PPAAm coating homogeneity, the human osteoblast-like MG-63 cells show a remarkable increase in cell size and well-developed filopodia. Analyses of the actin cytoskeleton reveal that the cells mold to the pore shape of the PPAAm-covered PCO, thereby establishing a strong attachment to the surface. Interestingly, we could demonstrate that even though our untreated PCO shows excellent hydrophilicity, this alone is not sufficient to facilitate fast cell spreading, but the positive surface charges mediated by PPAAm. This multilayer composite material guarantees enhanced interlocking of the cells with the porous surface. PMID:27612809

  8. Application of Flame-Sprayed Coatings as Heating Elements for Polymer-Based Composite Structures

    NASA Astrophysics Data System (ADS)

    Lopera-Valle, Adrián; McDonald, André

    2015-10-01

    Flame-sprayed nickel-chromium-aluminum-yttrium (NiCrAlY) and nickel-chromium (NiCr) coatings were deposited on fiber-reinforced polymer composites for use as heating elements of structures that were exposed to cold environments. Electrical current was applied to the coatings to increase the surface temperature by way of Joule heating. The surface temperature profiles of the coatings were measured under free and forced convection conditions at different ambient temperatures, ranging from -25 to 23 °C. It was found that at ambient air temperatures below 0 °C, the surface temperature of the coating remained above 0 °C for both the forced and free convection conditions, and there was a nearly homogeneous temperature distribution over the coating surface. This suggests that flame-sprayed coatings could be used as heating elements to mitigate ice accretion on structures, without the presence of areas of localized high temperature.

  9. Surface plasmon resonance image sensor module of spin-coated silver film with polymer layer.

    PubMed

    Son, Jung-Han; Lee, Dong Hun; Cho, Yong-Jin; Lee, Myung-Hyun

    2013-11-01

    Prism modules of 20 nm-, 40 nm-, and 60 nm-thick spin-coated silver films both without and with an upper 100 nm-thick spin-coated polymer layer were fabricated for surface plasmon resonance (SPR) image sensor applications. The prism modules were applied to an SPR image sensor system. The coefficients of determination (R2s) for the 20 nm-, 40 nm- and 60 nm-thick silver films without the polymer layer were 0.9231, 0.9901, and 0.9889, respectively, and with the polymer layer 0.9228, 0.9951, and 0.9880, respectively when standard ethanol solutions with 0.1% intervals in the range of 20.0% to 20.5% were applied. The upper polymer layer has no effect on the R2. The prism modules of the 40-nm-thick spin-coated silver films had the highest R2 value of approximately 0.99. The durability of the 40 nm-thick spin-coated silver film with the 100 nm-thick polymer layer is much better than that without the upper low-loss polymer layer. The developed SPR image sensor module of the 40 nm-thick spin-coated silver film with the upper 100 nm-thick low-loss polymer film is expected to be a very cost-effective and robust solution because the films are formed at low temperatures in a short period of time without requiring a vacuum system and are very durable.

  10. Improvement of interfacial adhesion of biodegradable polymers coated on metal surface by nanocoupling.

    PubMed

    Choi, Jiyeon; Cho, Seong Bae; Lee, Bong Soo; Joung, Yoon Ki; Park, Kwideok; Han, Dong Keun

    2011-12-01

    A method of securing the adhesion of biodegradable polymer coating was investigated for drug-eluting metal stents, using surface-initiated ring-opening polymerization (SI-ROP) of L-lactide. Introduction of oligolactide on the stainless steel (SS) surface was successful and the thickness of the oligolactide grafts remained on the nanometer scale, as determined by ellipsometry. The presence of an oligolactide graft was also identified using attenuated total reflection-Fourier transform infrared (ATR-FTIR) and electron spectroscopy for chemical analysis (ESCA). On top of the grafts, poly(D,L-lactide-co-glycolide) (PLGA) coating was carried out on different substrates such as SS control, plasma-treated SS, and lactide-grafted (referred to as a nanocoupled) SS using electrospraying. When the adhesion forces were measured with a scratch tester, the nanocoupled SS showed the strongest interfacial adhesion between polymer coating layer and metal substrate. The outcome of the peel-off test was also consistent with the result of the scratch test. When degradation behavior of the polymer coating in vitro was examined for up to 4 weeks in a continuous fluid flow, the SEM images demonstrated that polymer degradation was obvious due to hydration and swelling of the polymer matrix. Although the matrix completely disappeared after 4 weeks for SS control and plasma-treated substrates, the nanocoupled SS was persistent with some polymer matrix. In addition, the release profiles of SRL-loaded PLGA coating appeared slightly different between control and nanocoupled groups. This work suggested that the concept of nanocoupling remarkably improved the interfacial adhesion stability between metal surface and polymer layer and controlled drug release, and showed the feasibility of drug-eluting stents.

  11. The Addition of Graphene to Polymer Coatings for Improved Weathering

    DOE PAGESBeta

    Nuraje, Nurxat; Khan, Shifath I.; Misak, Heath; Asmatulu, Ramazan

    2013-01-01

    Graphene nanoflakes in different weight percentages were added to polyurethane top coatings, and the coatings were evaluated relative to exposure to two different experimental conditions: one a QUV accelerated weathering cabinet, while the other a corrosion test carried out in a salt spray chamber. After the exposure tests, the surface morphology and chemical structure of the coatings were investigated via atomic force microscopy (AFM) and Fourier transform infrared (FTIR) imaging. Our results show that the addition of graphene does in fact improve the resistance of the coatings against ultraviolet (UV) degradation and corrosion. It is believed that this process willmore » improve the properties of the polyurethane top coating used in many industries against environmental factors.« less

  12. Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating.

    PubMed

    Briggs, E P; Walpole, A R; Wilshaw, P R; Karlsson, M; Pålsgård, E

    2004-09-01

    Thin, nano-porous, highly adherent layers of anodised aluminium formed on the surface of titanium alloys are being developed as coatings for metallic surgical implants. The layers are formed by anodisation of a 1-5 microm thick layer of aluminium which has been deposited on substrate material by electron beam evaporation. The surface ceramic layer so produced is alumina with 6-8 wt % phosphate ions and contains approximately 5 x 10(8) cm(-2) pores with a approximately 160 nm average diameter, running perpendicular to the surface. Mechanical testing showed the coatings' shear and tensile strength to be at least 20 and 10 MPa, respectively. Initial cell/material studies show promising cellular response to the nano-porous alumina. A normal osteoblastic growth pattern with cell number increasing from day 1 to 21 was shown, with slightly higher proliferative activity on the nano-porous alumina compared to the Thermanox control. Scanning electron microscopy (SEM) examination of the cells on the porous alumina membrane showed normal osteoblast morphology. Flattened cells with filopodia attaching to the pores and good coverage were also observed. In addition, the pore structure produced in these ceramic coatings is expected to be suitable for loading with bioactive material to enhance further their biological properties.

  13. Effect of polymer coatings on fatigue strength of aluminum alloy 2024 box beams

    NASA Technical Reports Server (NTRS)

    Nordmark, G. E.; Kelsey, R. A.

    1972-01-01

    Previous investigators have shown that polymer coatings raise the fatigue strength of metals tested in air to about the same level as that of uncoated specimens tested in vacuum. The results are given of tests to determine if a polymer coating would improve the fatigue strength of built-up aluminum alloy members simulating aircraft construction. Aluminum alloy 2024-T4 riveted box beams were subjected to constant amplitude fatigue tests in air as well as in salt water fog. The coating did not improve the fatigue strength of beams tested in either environment. This is believed to result from the fact that most failures originated at rivet holes, which were isolated from both the coating and the environment.

  14. Electrochemical deposition of conducting polymer coatings on magnesium surfaces in ionic liquid

    PubMed Central

    Luo, Xiliang; Cui, Xinyan Tracy

    2012-01-01

    A conducting polymer based smart coating for magnesium (Mg) implants that can both improve the corrosion resistance of Mg and release drug in a controllable way is reported. As the ionic liquid is a highly conductive and stable solvent with a very wide electrochemical window, the conducting polymer coatings can be directly electrodeposited on the active metal Mg in ionic liquid at mild conditions, and Mg is considerably stable during the electrodeposition. The electrodeposited Poly(3,4-ethylenedioxythiophene) (PEDOT) coatings on Mg are uniform and can significantly improve the corrosion resistance of Mg. In addition, the PEDOT coatings can load the anti-inflammatory drug dexamethasone during the electrodeposition which can be subsequently released upon electric stimulation. PMID:20832505

  15. High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle.

    PubMed

    Huang, Yunyun; Tian, Zhuang; Sun, Li-Peng; Sun, Dandan; Li, Jie; Ran, Yang; Guan, Bai-Ou

    2015-10-19

    A sensitive bio-probe to in situ detect unlabeled single-stranded DNA targets based on optical microfiber taper interferometer coated by a high ordered pore arrays conjugated polymer has been presented. The polymer coating serves as tentacles to catch single-stranded DNA molecules by π-π conjugated interaction and varies the surface refractive index of the optical microfiber. The microfiber taper interferometer translates the refractive index information into wavelength shift of the interference fringe. The sensor exhibits DNA concentration sensitivity of 2.393 nm/log M and the lowest detection ability of 10(-10) M or even lower.

  16. High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle.

    PubMed

    Huang, Yunyun; Tian, Zhuang; Sun, Li-Peng; Sun, Dandan; Li, Jie; Ran, Yang; Guan, Bai-Ou

    2015-10-19

    A sensitive bio-probe to in situ detect unlabeled single-stranded DNA targets based on optical microfiber taper interferometer coated by a high ordered pore arrays conjugated polymer has been presented. The polymer coating serves as tentacles to catch single-stranded DNA molecules by π-π conjugated interaction and varies the surface refractive index of the optical microfiber. The microfiber taper interferometer translates the refractive index information into wavelength shift of the interference fringe. The sensor exhibits DNA concentration sensitivity of 2.393 nm/log M and the lowest detection ability of 10(-10) M or even lower. PMID:26480357

  17. Polydopamine--a nature-inspired polymer coating for biomedical science

    NASA Astrophysics Data System (ADS)

    Lynge, Martin E.; van der Westen, Rebecca; Postma, Almar; Städler, Brigitte

    2011-12-01

    Polymer coatings are of central importance for many biomedical applications. In the past few years, poly(dopamine) (PDA) has attracted considerable interest for various types of biomedical applications. This feature article outlines the basic chemistry and material science regarding PDA and discusses its successful application from coatings for interfacing with cells, to drug delivery and biosensing. Although many questions remain open, the primary aim of this feature article is to illustrate the advent of PDA on its way to become a popular polymer for bioengineering purposes.

  18. Fabricating Nanometer-Thick Simultaneously Oleophobic/Hydrophilic Polymer Coatings via a Photochemical Approach.

    PubMed

    Wang, Yongjin; Dugan, Michael; Urbaniak, Brian; Li, Lei

    2016-07-01

    The simultaneously oleophobic/hydrophilic coatings are highly desirable in antifogging, oil-water separation, and detergent-free cleaning. However, such coatings require special chemical structure, i.e., perfluorinated backbone and polar end-groups, and are too expensive for real-life application. Here, we have developed an UV-based photochemical approach to make nanometer-thick perfluoropolyethers without polar end-groups, which are not intrinsically simultaneously oleophobic/hydrophilic but cost-effective, become simultaneously oleophobic/hydrophilic. The contact angle, ellipsometry, and X-ray photoelectron spectroscopy (XPS) results indicated that the UV irradiation results in the covalent bonding between the polymer and the substrate, which renders more ordered packing of polymer chains and thus the appropriately small interchain distance. As a result, the small water molecules penetrate the polymer network while large oil molecules do not. As a result, the oil contact angle is larger than the water contact angle and the coating shows the simultaneous oleophobicity/hydrophilicity. Moreover, we also demonstrated that this nanometer-thick simultaneously oleophobic/hydrophilic coating has improved long-term antifogging performance and detergent-free cleaning capability and is mechanically robust. The photochemical approach established here potentially can be applied on many other polymers and greatly accelerate the development and application of simultaneously oleophobic/hydrophilic coatings. PMID:27249169

  19. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating.

    PubMed

    Xu, Liping; Yamamoto, Akiko

    2012-05-01

    In recent years, magnesium and its alloys have been investigated as biodegradable metallic materials in cardiovascular stents and bone implants. However, rapid corrosion rate in the early stage of the degradation process greatly influences the cytocompatibility and hinters their application. In this research, biodegradable polymer films are prepared under same coating condition by spin coating in order to improve the early corrosion resistance and cytocompatibility of Mg. The results present that uniform, nonporous, amorphous PLLA and semi-crystalline PCL films are coated on Mg. PLLA film shows better adhesion strength to Mg substrate than that of PCL film. For both PLLA and PCL, low molecular weight (LMW) film is thinner and exhibits better adhesion strength than high molecular weight (HMW) one. SaOS-2 cells show significantly good attachment and high growth on the polymer-coated Mg, demonstrating that all the polymer films can significantly improve the cytocompatibility in the 7-day incubation. The pH measurement of the immersion medium and the quantification of released Mg(2+) during the cell culture clearly indicate that the corrosion resistance of Mg substrate is improved by the polymer films to different extents. It can be concluded that both PLLA and PCL films are promising protective coatings for improving the initial corrosion resistance and cytocompatibility.

  20. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    PubMed

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization. PMID:25902736

  1. Enhanced Physical Stability of Amorphous Drug Formulations via Dry Polymer Coating.

    PubMed

    Capece, Maxx; Davé, Rajesh

    2015-06-01

    Although amorphous solid drug formulations may be advantageous for enhancing the bioavailability of poorly soluble active pharmaceutical ingredients, they exhibit poor physical stability and undergo recrystallization. To address this limitation, this study investigates stability issues associated with amorphous solids through analysis of the crystallization behavior for acetaminophen (APAP), known as a fast crystallizer, using a modified form of the Avrami equation that kinetically models both surface and bulk crystallization. It is found that surface-enhanced crystallization, occurring faster at the free surface than in the bulk, is the major impediment to the stability of amorphous APAP. It is hypothesized that a novel use of a dry-polymer-coating process referred to as mechanical-dry-polymer-coating may be used to inhibit surface crystallization and enhance stability. The proposed process, which is examined, simultaneously mills and coats amorphous solids with polymer, while avoiding solvents or solutions, which may otherwise cause stability or crystallization issues during coating. It is shown that solid dispersions of APAP (64% loading) with a small particle size (28 μm) could be prepared and coated with the polymer, carnauba wax, in a vibratory ball mill. The resulting amorphous solid was found to have excellent stability as a result of inhibition of surface crystallization.

  2. Fabricating Nanometer-Thick Simultaneously Oleophobic/Hydrophilic Polymer Coatings via a Photochemical Approach.

    PubMed

    Wang, Yongjin; Dugan, Michael; Urbaniak, Brian; Li, Lei

    2016-07-01

    The simultaneously oleophobic/hydrophilic coatings are highly desirable in antifogging, oil-water separation, and detergent-free cleaning. However, such coatings require special chemical structure, i.e., perfluorinated backbone and polar end-groups, and are too expensive for real-life application. Here, we have developed an UV-based photochemical approach to make nanometer-thick perfluoropolyethers without polar end-groups, which are not intrinsically simultaneously oleophobic/hydrophilic but cost-effective, become simultaneously oleophobic/hydrophilic. The contact angle, ellipsometry, and X-ray photoelectron spectroscopy (XPS) results indicated that the UV irradiation results in the covalent bonding between the polymer and the substrate, which renders more ordered packing of polymer chains and thus the appropriately small interchain distance. As a result, the small water molecules penetrate the polymer network while large oil molecules do not. As a result, the oil contact angle is larger than the water contact angle and the coating shows the simultaneous oleophobicity/hydrophilicity. Moreover, we also demonstrated that this nanometer-thick simultaneously oleophobic/hydrophilic coating has improved long-term antifogging performance and detergent-free cleaning capability and is mechanically robust. The photochemical approach established here potentially can be applied on many other polymers and greatly accelerate the development and application of simultaneously oleophobic/hydrophilic coatings.

  3. Facile fabrication of MIL-103(Eu) porous coordination polymer nanostructures and their sorption and sensing properties.

    PubMed

    Liu, Qing; Yang, Ji-Min; Guo, Fan; Jin, Li-Na; Sun, Wei-Yin

    2016-04-01

    Nano/microscale lanthanide porous coordination polymer MIL-103(Eu) [Eu(BTB)] (H3BTB = 4,4',4''-benzene-1,3,5-triyl-tribenzoic acid) crystals have been fabricated at room temperature by a facile, convenient and environmentally friendly method. The structures of the products were confirmed by powder X-ray diffraction, and the crystal morphologies, including microrods, nanorods and nanospheres, were characterized by scanning electron microscopy. It is found that the addition of sodium acetate and the concentration of the reactants have an important impact on the morphology and size of the MIL-103(Eu) crystals. Gas adsorption measurements reveal that the products show high specific surface areas among the rare earth based coordination polymers and the MIL-103(Eu) nanorods can selectively adsorb CO2 over N2 under ambient conditions. Furthermore, all the products exhibit red emission corresponding to the (5)D0→(7)F2 transition of the Eu(iii) ion, and MIL-103(Eu) nanorods display sensitive and selective sensing for Cu(ii) ions and acetone molecules in solution.

  4. Porous silicon-cyclodextrin based polymer composites for drug delivery applications.

    PubMed

    Hernandez-Montelongo, J; Naveas, N; Degoutin, S; Tabary, N; Chai, F; Spampinato, V; Ceccone, G; Rossi, F; Torres-Costa, V; Manso-Silvan, M; Martel, B

    2014-09-22

    One of the main applications of porous silicon (PSi) in biomedicine is drug release, either as a single material or as a part of a composite. PSi composites are attractive candidates for drug delivery systems because they can display new chemical and physical characteristics, which are not exhibited by the individual constituents alone. Since cyclodextrin-based polymers have been proven efficient materials for drug delivery, in this work β-cyclodextrin-citric acid in-situ polymerization was used to functionalize two kinds of PSi (nanoporous and macroporous). The synthesized composites were characterized by microscopy techniques (SEM and AFM), physicochemical methods (ATR-FTIR, XPS, water contact angle, TGA and TBO titration) and a preliminary biological assay was performed. Both systems were tested as drug delivery platforms with two different model drugs, namely, ciprofloxacin (an antibiotic) and prednisolone (an anti-inflammatory), in two different media: pure water and PBS solution. Results show that both kinds of PSi/β-cyclodextrin-citric acid polymer composites, nano- and macro-, provide enhanced release control for drug delivery applications than non-functionalized PSi samples.

  5. Surfactant induced aggregation behavior of Merocyanine-540 adsorbed on polymer coated positively charged gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, K.; Uppal, A.; Saini, R. K.

    2016-01-01

    Surfactant induced aggregation behavior of Merocyanine 540 adsorbed on polymer (PDD) coated gold nanoparticles (AuNP) is reported. The absorption band of the dye shifts to higher energy in the presence of free polymer and polymer coated AuNP implying aggregation. Addition of a negatively charged surfactant (SDS) induces multiple bands in the extinction spectrum of the dye adsorbed on nanoparticle surface. The highest (460 nm) and lowest (564 nm) energy bands of the dye become prominent at 10 and >50 μM SDS concentrations respectively (dye: 10 μM; AuNP: 100-200 pM). Based on earlier results the high energy band is likely to originate from dye aggregates and the low energy band is likely to originate from dye monomers. This is attributed to the interplay between polymer-surfactant and polymer-dye interactions at the AuNP surface. The extinction spectra of dye adsorbed at AuNP surface remain unaffected in the presence of a positively charged (CTAB) or a neutral surfactant (Tx-100), at low surfactant concentrations. However at higher surfactant concentrations (>60 μM) dye aggregation takes place which is attributed to dye-surfactant interactions. The fluorescence intensity of the dye quenched significantly but its lifetime increased in the presence of polymer coated AuNP. This is attributed to aggregation and reduction in the photoisomerization rate of the dye adsorbed on AuNP surface.

  6. Carbon-coated LiFePO4-porous carbon composites as cathode materials for lithium ion batteries.

    PubMed

    Ni, Haifang; Liu, Jinkun; Fan, Li-Zhen

    2013-03-01

    This work introduces a facile strategy for the synthesis of carbon-coated LiFePO(4)-porous carbon (C-LiFePO(4)-PC) composites as a cathode material for lithium ion batteries. The LiFePO(4) particles obtained are about 200 nm in size and homogeneously dispersed in porous carbon matrix. These particles are further coated with the carbon layers pyrolyzed from sucrose. The C-LiFePO(4)-PC composites display a high initial discharge capacity of 152.3 mA h g(-1) at 0.1 C, good cycling stability, as well as excellent rate capability (112 mA h g(-1) at 5 C). The likely contributing factors to the excellent electrochemical performance of the C-LiFePO(4)-PC composites could be related to the combined effects of enhancement of conductivity by the porous carbon matrix and the carbon coating layers. It is believed that further carbon coating is a facile and effective way to improve the electrochemical performance of LiFePO(4)-PC.

  7. Robust antifogging antireflective coatings on polymer substrates by hydrochloric acid vapor treatment.

    PubMed

    Li, Tong; He, Junhui; Yao, Lin; Geng, Zhi

    2015-04-15

    Antireflective coatings on polymer substrates have received significant attention for their potential applications. In this paper, robust microporous antifogging antireflective coatings on polymer substrates were prepared from acid-catalyzed silica sol followed by hydrochloric acid vapor solidification at mild temperature below glass transition temperatures of common polymers. The coatings passed 3H pencil hardness test, sand flow test and water-drop test. They had excellent antireflective and antifogging properties. The maximum transmittance of coatings on PMMA substrates reached 100.0% (the maximum transmittance wavelength could be regulated) and average transmittance reached 99.0% in 400-800 nm. The advantage and mechanism of hydrochloric acid vapor solidification and mechanical strength enhancement of coatings are discussed in contrast to ammonia vapor treatment and air vapor treatment. The hydrochloric acid vapor treatment results in a dense integrated microporous film structure. Optical properties were characterized by a UV-Vis spectrophotometer. Surface wettability was studied by a contact angle/interface system. Surface morphologies and structures of coatings were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom force microscopy (AFM).

  8. Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials.

    PubMed

    Kirschling, Teresa L; Golas, Patricia L; Unrine, Jason M; Matyjaszewski, Krzysztof; Gregory, Kelvin B; Lowry, Gregory V; Tilton, Robert D

    2011-06-15

    By controlling nanoparticle flocculation and deposition, polymer coatings strongly affect nanoparticle fate, transport, and subsequent biological impact in the environment. Biodegradation is a potential route to coating breakdown, but it is unknown whether surface-bound polymers are bioavailable. Here we demonstrate, for the first time, that polymer coatings covalently bound to nanomaterials are bioavailable. Model poly(ethylene oxide) (PEO) brush-coated nanoparticles (densely cross-linked bottle brush copolymers) with hydrophobic divinyl benzene cross-linked cores and hydrophilic PEO brush shells, having ~ 30 nm hydrodynamic radii, were synthesized to obtain a nanomaterial in which biodegradation was the only available coating breakdown mechanism. PEO-degrading enrichment cultures were supplied with either PEO homopolymer or PEO brush nanoparticles as the sole carbon source, and protein and CO₂ production were monitored as a measure of biological conversion. Protein production after 90 h corresponded to 14% and 8% of the total carbon available in the PEO homopolymer and PEO brush nanoparticle cultures, respectively, and CO₂ production corresponded to 37% and 3.8% of the carbon added to the respective system. These results indicate that the PEO in the brush is bioavailable. Brush biodegradation resulted in particle aggregation, pointing to the need to understand biologically mediated transformations of nanoparticle coatings in order to understand the fate and transport of nanoparticles in the environment. PMID:21609011

  9. Effects of rotational symmetry breaking in polymer-coated nanopores

    SciTech Connect

    Osmanović, D.; Hoogenboom, B. W.; Ford, I. J.; Kerr-Winter, M.; Eccleston, R. C.

    2015-01-21

    The statistical theory of polymers tethered around the inner surface of a cylindrical channel has traditionally employed the assumption that the equilibrium density of the polymers is independent of the azimuthal coordinate. However, simulations have shown that this rotational symmetry can be broken when there are attractive interactions between the polymers. We investigate the phases that emerge in these circumstances, and we quantify the effect of the symmetry assumption on the phase behavior of the system. In the absence of this assumption, one can observe large differences in the equilibrium densities between the rotationally symmetric case and the non-rotationally symmetric case. A simple analytical model is developed that illustrates the driving thermodynamic forces responsible for this symmetry breaking. Our results have implications for the current understanding of the behavior of polymers in cylindrical nanopores.

  10. Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion

    PubMed Central

    Krishnamurthy, Ajay; Gadhamshetty, Venkataramana; Mukherjee, Rahul; Natarajan, Bharath; Eksik, Osman; Ali Shojaee, S.; Lucca, Don A.; Ren, Wencai; Cheng, Hui-Ming; Koratkar, Nikhil

    2015-01-01

    Prevention of microbially induced corrosion (MIC) is of great significance in many environmental applications. Here, we report the use of an ultra-thin, graphene skin (Gr) as a superior anti-MIC coating over two commercial polymeric coatings, Parylene-C (PA) and Polyurethane (PU). We find that Nickel (Ni) dissolution in a corrosion cell with Gr-coated Ni is an order of magnitude lower than that of PA and PU coated electrodes. Electrochemical analysis reveals that the Gr coating offers ~10 and ~100 fold improvement in MIC resistance over PU and PA coatings respectively. This finding is remarkable considering that the Gr coating (1–2 nm) is ~25 and ~4000 times thinner than the PA (40–50 nm), and PU coatings (20–80 μm), respectively. Conventional polymer coatings are either non-conformal when deposited or degrade under the action of microbial processes, while the electro-chemically inert graphene coating is both resistant to microbial attack and is extremely conformal and defect-free. Finally, we provide a brief discussion regarding the effectiveness of as-grown vs. transferred graphene films for anti-MIC applications. While the as-grown graphene films are devoid of major defects, wet transfer of graphene is shown to introduce large scale defects that make it less suitable for the current application. PMID:26350049

  11. Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion.

    PubMed

    Krishnamurthy, Ajay; Gadhamshetty, Venkataramana; Mukherjee, Rahul; Natarajan, Bharath; Eksik, Osman; Ali Shojaee, S; Lucca, Don A; Ren, Wencai; Cheng, Hui-Ming; Koratkar, Nikhil

    2015-01-01

    Prevention of microbially induced corrosion (MIC) is of great significance in many environmental applications. Here, we report the use of an ultra-thin, graphene skin (Gr) as a superior anti-MIC coating over two commercial polymeric coatings, Parylene-C (PA) and Polyurethane (PU). We find that Nickel (Ni) dissolution in a corrosion cell with Gr-coated Ni is an order of magnitude lower than that of PA and PU coated electrodes. Electrochemical analysis reveals that the Gr coating offers ~10 and ~100 fold improvement in MIC resistance over PU and PA coatings respectively. This finding is remarkable considering that the Gr coating (1-2 nm) is ~25 and ~4000 times thinner than the PA (40-50 nm), and PU coatings (20-80 μm), respectively. Conventional polymer coatings are either non-conformal when deposited or degrade under the action of microbial processes, while the electro-chemically inert graphene coating is both resistant to microbial attack and is extremely conformal and defect-free. Finally, we provide a brief discussion regarding the effectiveness of as-grown vs. transferred graphene films for anti-MIC applications. While the as-grown graphene films are devoid of major defects, wet transfer of graphene is shown to introduce large scale defects that make it less suitable for the current application. PMID:26350049

  12. Superiority of Graphene over Polymer Coatings for Prevention of Microbially Induced Corrosion

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Ajay; Gadhamshetty, Venkataramana; Mukherjee, Rahul; Natarajan, Bharath; Eksik, Osman; Ali Shojaee, S.; Lucca, Don A.; Ren, Wencai; Cheng, Hui-Ming; Koratkar, Nikhil

    2015-09-01

    Prevention of microbially induced corrosion (MIC) is of great significance in many environmental applications. Here, we report the use of an ultra-thin, graphene skin (Gr) as a superior anti-MIC coating over two commercial polymeric coatings, Parylene-C (PA) and Polyurethane (PU). We find that Nickel (Ni) dissolution in a corrosion cell with Gr-coated Ni is an order of magnitude lower than that of PA and PU coated electrodes. Electrochemical analysis reveals that the Gr coating offers ~10 and ~100 fold improvement in MIC resistance over PU and PA coatings respectively. This finding is remarkable considering that the Gr coating (1-2 nm) is ~25 and ~4000 times thinner than the PA (40-50 nm), and PU coatings (20-80 μm), respectively. Conventional polymer coatings are either non-conformal when deposited or degrade under the action of microbial processes, while the electro-chemically inert graphene coating is both resistant to microbial attack and is extremely conformal and defect-free. Finally, we provide a brief discussion regarding the effectiveness of as-grown vs. transferred graphene films for anti-MIC applications. While the as-grown graphene films are devoid of major defects, wet transfer of graphene is shown to introduce large scale defects that make it less suitable for the current application.

  13. Quantifying the influence of EDTA on polymer nanoparticle deposition and retention in an iron-oxide-coated sand column.

    PubMed

    Yang, Xinyao; Liang, Dongxu; Deng, Shihuai

    2012-09-01

    Ethylenediaminotetraacetic acid (EDTA) occurring in groundwater aquifers complicates the prediction of nanoparticle movement in the porous medium. This paper demonstrates an approach combining Triple Pulse Experiments (TPEs) and numerical modelling to quantify the influence of EDTA on the deposition and retention of polymer nanoparticles in a water-saturated column packed with iron-oxide-coated sand. TPEs injecting three successive pulses in the order of nanoparticle, EDTA, nanoparticle permit nanoparticle deposition in the absence and the presence of EDTA to be compared. Random Sequential Adsorption (RSA) modelling of the nanoparticle breakthrough curves combining mass balance calculation allows the influence of EDTA to be quantified. TPE results demonstrate that the injected EDTA eluted the oxide coatings (favorable deposition sites) from the sand surface and the resulting decline in sites led to enhanced nanoparticle mobility in the subsequent pulse. Quantification results suggest that at the experimental time-scale and under the controlled conditions, elution of one deposition site requires injection of 2.4 × 10(11) EDTA molecules. In total, 75 gram EDTA needs to be injected to remove all the column sites.

  14. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering.

    PubMed

    Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei M; Kaasalainen, Martti H; Salonen, Jarno J; Hirvonen, Jouni T; Santos, Hélder A

    2014-08-01

    The development of a stable vehicle with low toxicity, high cellular internalization, efficient endosomal escape, and optimal drug release profile is a key bottleneck in nanomedicine. To overcome all these problems, we have developed a successful layer-by-layer method to covalently conjugate polyethyleneimine (PEI) and poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of undecylenic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs), forming a bilayer zwitterionic nanocomposite containing free positive charge groups of hyper-branched PEI disguised by the PMVE-MA polymer. The surface smoothness, charge and hydrophilicity of the developed NPs considerably improved the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the bilayer polymer-conjugated NPs, the cellular trafficking and endosomal escape were significantly increased in both MDA-MB-231 and MCF-7 breast cancer cells. Remarkably, we also showed that the conjugation of surface free amine groups of the highly toxic UnTHCPSi-PEI (Un-P) NPs to the carboxylic groups of PMVE-MA renders acceptable safety features to the system and preserves the endosomal escape properties via proton sponge mechanism of the free available amine groups located inside the hyper-branched PEI layer. Moreover, the double layer protection not only controlled the aggregation of the NPs and reduced the toxicity, but also sustained the drug release of an anticancer drug, methotrexate, with further improved cytotoxicity profile of the drug-loaded particles. These results provide a proof-of-concept evidence that such zwitterionic polymer-based PSi nanocomposites can be extensively used as a promising candidate for cytosolic drug delivery.

  15. Fabrication of Ruthenium Nanoparticles in Porous Organic Polymers: Towards Advanced Heterogeneous Catalytic Nanoreactors.

    PubMed

    Mondal, John; Kundu, Sudipta K; Hung Ng, Wilson Kwok; Singuru, Ramana; Borah, Parijat; Hirao, Hajime; Zhao, Yanli; Bhaumik, Asim

    2015-12-21

    A novel strategy has been adopted for the construction of a copolymer of benzene-benzylamine-1 (BBA-1), which is a porous organic polymer (POP) with a high BET surface area, through Friedel-Crafts alkylation of benzylamine and benzene by using formaldehyde dimethyl acetal as a cross-linker and anhydrous FeCl3 as a promoter. Ruthenium nanoparticles (Ru NPs) were successfully distributed in the interior cavities of polymers through NaBH4, ethylene glycol, and hydrothermal reduction routes, which delivered Ru-A, Ru-B, and Ru-C materials, respectively, and avoided aggregation of metal NPs. Homogeneous dispersion, the nanoconfinement effect of the polymer, and the oxidation state of Ru NPs were verified by employing TEM, energy-dispersive X-ray spectroscopy mapping, cross polarization magic-angle spinning (13)C NMR spectroscopy, and X-ray photoelectron spectroscopy analytical tools. These three new Ru-based POP materials exhibited excellent catalytic performance in the hydrogenation of nitroarenes at RT (with a reaction time of only ≈ 30 min), with high conversion, selectivity, stability, and recyclability for several catalytic cycles, compared with other traditional materials, such as Ru@C, Ru@SiO2, and Ru@TiO2, but no clear agglomeration or loss of catalytic activity was observed. The high catalytic performance of the ruthenium-based POP materials is due to the synergetic effect of nanoconfinement and electron donation offered by the 3D POP network. DFT calculations showed that hydrogenation of nitrobenzene over the Ru (0001) catalyst surface through a direct reaction pathway is more favorable than that through an indirect reaction pathway.

  16. Fabrication of Ruthenium Nanoparticles in Porous Organic Polymers: Towards Advanced Heterogeneous Catalytic Nanoreactors.

    PubMed

    Mondal, John; Kundu, Sudipta K; Hung Ng, Wilson Kwok; Singuru, Ramana; Borah, Parijat; Hirao, Hajime; Zhao, Yanli; Bhaumik, Asim

    2015-12-21

    A novel strategy has been adopted for the construction of a copolymer of benzene-benzylamine-1 (BBA-1), which is a porous organic polymer (POP) with a high BET surface area, through Friedel-Crafts alkylation of benzylamine and benzene by using formaldehyde dimethyl acetal as a cross-linker and anhydrous FeCl3 as a promoter. Ruthenium nanoparticles (Ru NPs) were successfully distributed in the interior cavities of polymers through NaBH4, ethylene glycol, and hydrothermal reduction routes, which delivered Ru-A, Ru-B, and Ru-C materials, respectively, and avoided aggregation of metal NPs. Homogeneous dispersion, the nanoconfinement effect of the polymer, and the oxidation state of Ru NPs were verified by employing TEM, energy-dispersive X-ray spectroscopy mapping, cross polarization magic-angle spinning (13)C NMR spectroscopy, and X-ray photoelectron spectroscopy analytical tools. These three new Ru-based POP materials exhibited excellent catalytic performance in the hydrogenation of nitroarenes at RT (with a reaction time of only ≈ 30 min), with high conversion, selectivity, stability, and recyclability for several catalytic cycles, compared with other traditional materials, such as Ru@C, Ru@SiO2, and Ru@TiO2, but no clear agglomeration or loss of catalytic activity was observed. The high catalytic performance of the ruthenium-based POP materials is due to the synergetic effect of nanoconfinement and electron donation offered by the 3D POP network. DFT calculations showed that hydrogenation of nitrobenzene over the Ru (0001) catalyst surface through a direct reaction pathway is more favorable than that through an indirect reaction pathway. PMID:26572500

  17. Materials: A compilation. [considering metallurgy, polymers, insulation, and coatings

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical information is provided for the properties and fabrication of metals and alloys, as well as for polymeric materials, such as lubricants, coatings, and insulation. Available patent information is included in the compilation.

  18. Preparation and characterization of PTFE coating in new polymer quartz piezoelectric crystal sensor for testing liquor products

    NASA Astrophysics Data System (ADS)

    Gu, Yu; Li, Qiang

    2015-07-01

    A new method was developed based on the electron beam vacuum dispersion (EBVD) technology to prepare the PTFE polymer coating of the new polymer quartz piezoelectric crystal sensor for testing liquor products. The new method was applied in the new EBVD equipment which we designed. A real-time system monitoring the polymer coating’s thickness was designed for the new EBVD equipment according to the quartz crystal microbalance (QCM) principle, playing an important role in preparing stable and uniform PTFE polymer coatings of the same thickness. 30 pieces of PTFE polymer coatings on the surface of the quartz crystal basis were prepared with the PTFE polymer ultrafine powder (purity ≥ 99.99%) as the starting material. We obtained 30 pieces of new PTFE polymer sensors. By using scanning electron microscopy (SEM), the structure of the PTFE polymer coating’s column clusters was studied. One sample from the 30 pieces of new PTFE polymer sensors was analysed by SEM in four scales, i.e., 400×, 1000×, 10000×, and 25000×. It was shown that under the condition of high bias voltage and low bias current, uniformly PTFE polymer coating could be achieved, which indicates that the new EBVD equipment is suitable for mass production of stable and uniform polymer coating. Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA030901).

  19. Pigments, Paints, Polymer Coatings, Lacquers, and Printing Inks

    NASA Astrophysics Data System (ADS)

    Ryntz, Rose A.

    Change is constant in the coatings market. As mergers, acquisitions, and partnerships take shape, consolidation and globalization remain prominent. The 80/20 rule (20% of the firms accounting for 80% of business) takes effect as the need for regulatory and environmental compliance continues to plague the market. In 1975, the United States alone supported about 2000 coatings companies. Today, there are less than half that many.

  20. Electrochemical Deposition of Nanostructured Conducting Polymer Coatings on Neural Prosthetic Devices

    NASA Astrophysics Data System (ADS)

    Yang, Junyan; Martin, David

    2003-03-01

    Micromachined neural prosthetic devices facilitate the functional stimulation of and recording from the central nervous system (CNS). These devices have been fabricated to consist of silicon shanks that have gold or iridium sites along their surface. Our goal is to improve the biocompatibility and long-term performance of the neural prosthetic probes when they are implanted chronically in the brain. In our most recent efforts we have established that electrochemical polymerization can be used to deposit fuzzy coatings of conducting polymers specifically on the electrode sites. For neural prosthetic devices that are intended for long term implantation, we need to develop surfaces that provide intimate contact and promote efficient signal transport at the interface of the microelectrode array and brain tissue. We have developed methods to rapidly and reliably fabricate nanostructured conducting polymer coatings on the electrode probes using templated and surfactant-mediated techniques. Conducting polymer nanomushrooms and nanohairs of polypyrrole (PPy) were electrochemically polymerized onto the functional sites of neural probes by using either nanoporous block copolymers thin films, "track-etched" polycarbonate films or anodic aluminium oxide membranes as templates. Nanofibers of conducting polymers have also been successfully obtained by polymerizations in the presence of surfactants. The influence of current density, monomer concentration, surfactant concentration, and deposition charge on the thickness and morphology of the nanostructured conducting polymer coatings has been studied by optical, scanned probe, scanning electron and transmission electron microscopy. As compared with the normal nodular morphology of polypyrrole, the nanostructured morphologies grown from the neural electrode result in fuzzy coatings with extremely high surface area. The electrical properties of the polymer coatings were studied by Impedance Spectroscopy (IS) and Cyclic Voltammetry

  1. Nanophase-separated polymer films as high-performance antireflection coatings

    PubMed

    Walheim; Schaffer; Mlynek; Steiner

    1999-01-22

    Optical surfaces coated with a thin layer to improve light transmission are ubiquitous in everyday optical applications as well as in industrial and scientific instruments. Discovered first in 1817 by Fraunhofer, the coating of lenses became standard practice in the 1930s. In spite of intensive research, broad-band antireflection coatings are still limited by the lack of materials with low refractive indices. A method based on the phase separation of a macromolecular liquid to generate nanoporous polymer films is demonstrated that creates surfaces with high optical transmission.

  2. Filling and Transcription Behavior of Molten Polymer Coating on Microstructures in Melt-Transcription-Molding Process

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Satoh, Isao; Saito, Takushi; Yakemoto, Kazutoshi

    To clarify the fabrication mechanism of molten polymer coating on microstructures such as optical display parts and bio-tip in Melt-Transcription-Molding (MTM) process, the transcription experiments between a metal stamper engraved with microstructures and a molten polymer (PC: polycarbonate and COC: cyclo-olefin copolymer) were carried out under various molding conditions (mold temperature, polymer temperature, polymer pressure and coating speed) and transcript results were evaluated from the dimensional aspect. In this study the complete transcription of the microstructures was obtained at mold temperature of 170°C for COC and 175°C for PC, respectively. However, the rim height of the microstructure was increased and its center depth was decreased, when lower mold temperatures were applied. From these experimental results, it was suggested that the adhesion force between a molten polymer filled with the microstructure and the metal mold surface plays an important role in fixing the transcript shape of the microstructure against the elastic recovery force and/or shrinkage by cooling. Furthermore, a model to explain the filling and transcription behavior of molten polymers was proposed from viscoelastic properties of each polymer, and it was confirmed that predicted microstructure geometries deduced with the model are well fitted with the transcript results which were experimentally obtained under various mold temperatures.

  3. PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT.

    SciTech Connect

    MOSKOWITZ,P.; COWGILL,M.; GRIFFITH,A.; CHERNAENKO,L.; DIASHEV,A.; NAZARIAN,A.

    2001-02-25

    The feasibility of using a polymer-based coating, Polibrid 705, to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment has been successfully demonstrated using a combination of field and laboratory testing. A mobile, self-sufficient spraying device was developed to specifications provided by the Russian Northern Navy and deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading dock. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors, exposed to the full annual Arctic weather cycle. The 12 months of field testing gave rise to little degradation of the sealant coating, except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. The field tests were accompanied by a series of laboratory qualification tests carried out at a research laboratory in St. Petersburg. The laboratory tests examined a variety of properties, including bond strength between the coating and the substrate, thermal cycling resistance, wear resistance, flammability, and ease of decontamination. The Polibrid 705 coating met all the Russian Navy qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities.

  4. PERFORMANCE OF A POLYMER SEALANT COATING IN AN ARCTIC MARINE ENVIRONMENT

    SciTech Connect

    MOSKOWITZ,P.; COWGILL,M.; GRIFFITH,A.; CHERNAENKO,L.; DIASHEV,A.; NAZARIAN,A.

    2001-02-25

    The feasibility of using a polymer-based coating, Polibrid 705, to seal concrete and steel surfaces from permanent radioactive contamination in an Arctic marine environment has been successfully demonstrated using a combination of field and laboratory testing. A mobile, self-sufficient spraying device was developed to specifications provided by the Russian Northern Navy and deployed at the RTP Atomflot site, Murmansk, Russia. Demonstration coatings were applied to concrete surfaces exposed to conditions ranging from indoor pedestrian usage to heavy vehicle passage and container handling in a loading dock. A large steel container was also coated with the polymer, filled with solid radwaste, sealed, and left out of doors, exposed to the full annual Arctic weather cycle. The 12 months of field testing gave rise to little degradation of the sealant coating, except for a few chips and gouge marks on the loading bay surface that were readily repaired. Contamination resulting from radwaste handling was easily removed and the surface was not degraded by contact with the decontamination agents. The field tests were accompanied by a series of laboratory qualification tests carried out at a research laboratory in St. Petersburg. The laboratory tests examined a variety of properties, including bond strength between the coating and the substrate, thermal cycling resistance, wear resistance, flammability, and ease of decontamination. The Polibrid 705 coating met all the Russian Navy qualification requirements with the exception of flammability. In this last instance, it was decided to restrict application of the coating to land-based facilities.

  5. Can deformation of a polymer film with a rigid coating model geophysical processes?

    PubMed

    Volynskii, A L; Bazhenov, S L

    2007-12-01

    The structural and mechanical behavior of polymer films with a thin rigid coating is analyzed. The behavior of such systems under applied stress is accompanied by the formation of a regular wavy surface relief and by regular fragmentation of the coating. The above phenomena are shown to be universal. Both phenomena (stress-induced development of a regular wavy surface relief and regular fragmentation of the coating) are provided by the specific features of mechanical stress transfer from a compliant soft support to a rigid thin coating. The above phenomena are associated with a specific structure of the system, which is referred to as "a rigid coating on a soft substratum" system (RCSS). Surface microrelief in RCSS systems is similar to the ocean floor relief in the vicinity of mid-oceanic ridges. Thus, the complex system composed of a young oceanic crust and upper Earth's mantle may be considered as typically "a solid coating on a soft substratum" system. Specific features of the ocean floor relief are analyzed in terms of the approach advanced for the description of the structural mechanical behavior of polymer films with a rigid coating. This analysis allowed to estimate the strength of an ocean floor.

  6. Fabrication of mullite-bonded porous SiC ceramics from multilayer-coated SiC particles through sol-gel and in-situ polymerization techniques

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, Omid

    second part of the project. Alumina sol was synthesized by the hydrolysis of Aluminum isopropoxide using the Yoldas method. Alumina sol was homogenous and had a needle-like shape with a thickness of 2--3 nm. Crystalline changes during the heating process of alumina sol were studied using XRD. In addition, Fourier transform infrared (FTIR) spectroscopy was performed to identify the functional groups on the alumina sol surface as a function of temperature. In the third part of the project, the feasibility of the in-situ polymerization technique was investigated to fabricate porous SiC ceramics. In this part, the mixture of SiC and calcined alumina powders were coated by polyethylene via in-situ polymerizing referred to as the polymerization compounding process in a slurry phase. The polymerization was conducted under very moderate operational conditions using the Ziegler-Natta catalyst system. Differential scanning calorimetry (DSC) and TGA analysis and morphological studies (SEM and TEM) revealed the presence of a high density of polyethylene on the surface of SiC and alumina powders. The amount of polymer was controlled by the polymerization reaction time. Most parts of particles were coated by a thin layer of polyethylene and polymer. The porous SiC ceramics, which were fabricated by these treated particles showed higher mechanical and physical properties compared to the samples made without any treatment. The relative intensity of mullite was higher compared to the samples prepared by the traditional process. The effects of the sintering temperature, forming pressure and polymer content were also studied on the physical and mechanical properties of the final product. In the last phase of this research work, the focus of the investigation was to take advantage of both the sol-gel processing and in-situ polymerization method to develop a new process to manufacture mullite-bonded porous SiC ceramic with enhanced mechanical and physical properties. Therefore, first the Si

  7. Coating of Polyaniline with an Insulating Polymer to Improve the Power Efficiency of Electrorheological Fluids

    NASA Astrophysics Data System (ADS)

    Akhavan, J.; Slack, K.; Wise, V.; Block, H.

    Currents drawn under high fields often present practical limitations to electrorheological (ER) fluids usefulness. For heavy-duty applications where large torques have to be transmitted, the power consumption of a ER fluid can be considerable, and for such uses a current density of ~100μAcm-2 is often taken as a practical upper limit. This investigation was conducted into designing a fluid which has little extraneous conductance and therefore would demand less current. Selected semi-conducting polymers provide effective substrates for ER fluids. Such polymers are soft insoluble powdery materials with densities similar to dispersing agents used in ER formulations. Polyaniline is a semi-conducting polymer and can be used as an effective ER substrate in its emeraldine base form. In order to provide an effective ER fluid which requires less current polyaniline was coated with an insulating polymer. The conditions for coating was established for lauryl and methyl methacrylate. Results from static yield measurements indicate that ER fluids containing coated polyaniline required less current than uncoated polyaniline i.e. 0.5μAcm-2. The generic type of coating was also found to be important.

  8. Tackiness of acrylic and cellulosic polymer films used in the coating of solid dosage forms.

    PubMed

    Wesseling, M; Kuppler, F; Bodmeier, R

    1999-01-01

    The objective was to determine the tackiness of acrylic and cellulosic polymer films in order to make predictions on the tackiness (agglomeration) of coated dosage forms during coating and curing. Force-displacement curves of the detachment process of two polymeric films were used as a measure of tackiness. Various polymers (cellulosic (Aquacoat and acrylics (Eudragit RS 30D, L 30D, NE 30D)), plasticizers (triacetin, triethyl citrate, tributyl citrate, acetyltributyl citrate) and anti-tacking agents (talc and glyceryl monostearate) were investigated. The order of tackiness for films prepared from the different aqueous polymer dispersions was in order of Eudragit NE 30D > RS 30D > RL 30D > Aquacoat. The tackiness increased with increasing plasticizer concentration due to the softening of the polymer. A correlation between the minimum film formation temperature and the tackiness was observed, however, no correlation between the tackiness and the lipophilicity of the plasticizer was seen. Talc and glyceryl monostearate (GMS) reduced the tackiness of the films significantly, with GMS being effective at much lower concentrations. Curing of Eudragit RS 30D-coated theophylline beads at temperatures higher than 40 degrees C in an irreversible agglomeration of the beads and damage of the coating upon separation of the beads. This resulted in a faster release than with uncured beads. Blending the beads with talc just prior to the curing step eliminated the agglomeration and therefore film damage, even at a curing temperature of 60 degrees C. PMID:10234529

  9. Tackiness of acrylic and cellulosic polymer films used in the coating of solid dosage forms.

    PubMed

    Wesseling, M; Kuppler, F; Bodmeier, R

    1999-01-01

    The objective was to determine the tackiness of acrylic and cellulosic polymer films in order to make predictions on the tackiness (agglomeration) of coated dosage forms during coating and curing. Force-displacement curves of the detachment process of two polymeric films were used as a measure of tackiness. Various polymers (cellulosic (Aquacoat and acrylics (Eudragit RS 30D, L 30D, NE 30D)), plasticizers (triacetin, triethyl citrate, tributyl citrate, acetyltributyl citrate) and anti-tacking agents (talc and glyceryl monostearate) were investigated. The order of tackiness for films prepared from the different aqueous polymer dispersions was in order of Eudragit NE 30D > RS 30D > RL 30D > Aquacoat. The tackiness increased with increasing plasticizer concentration due to the softening of the polymer. A correlation between the minimum film formation temperature and the tackiness was observed, however, no correlation between the tackiness and the lipophilicity of the plasticizer was seen. Talc and glyceryl monostearate (GMS) reduced the tackiness of the films significantly, with GMS being effective at much lower concentrations. Curing of Eudragit RS 30D-coated theophylline beads at temperatures higher than 40 degrees C in an irreversible agglomeration of the beads and damage of the coating upon separation of the beads. This resulted in a faster release than with uncured beads. Blending the beads with talc just prior to the curing step eliminated the agglomeration and therefore film damage, even at a curing temperature of 60 degrees C.

  10. Emergence of polymer-coated corn and soybean influenced by tillage and sowing date

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early establishment of crops is vital for maximizing production in the northern US Corn Belt. No tillage often delays soil warming, thus sowing too early may compromise seed viability due to prolonged exposure to cold soil. Coating seed with a temperature-activated polymer may circumvent the adverse...

  11. Macro- and micro-nutrient release characteristics of three polymer-coated fertilizers: Theory and measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of several published studies we have an incomplete understanding of the ion release mechanisms and characteristics of primary polymer-coated fertilizer (PCF) technologies. Here we extend current conceptual models describing release mechanisms and describe the critical effects of substrate m...

  12. NASA Glenn/AADC-Rolls Royce Collaborated to Measure Erosion Resistance on Coated Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Sutter, James K.; Mondry, Richard; Ma, Kong; Horan, Dick; Naik, Subhash; Cupp, Randall

    2003-01-01

    Polymer matrix composites (PMCs) are increasingly used in aerospace and automotive applications because of their light weight and high strength-to-weight ratio relative to metals. However, a major drawback of PMCs is poor abrasion resistance, which restricts their use, especially at high temperatures. Simply applying a hard coating on PMCs to improve abrasion and erosion resistance is not effective since coating durability is short lived (ref. 1). Generally, PMCs have higher coefficients of thermal expansion than metallic or ceramic coatings have, and coating adhesion suffers because of poor interfacial adhesion strength. One technique commonly used to improve coating adhesion or durability is the use of bond coats that are interleaved between a coating and a substrate with vastly different coefficients of thermal expansion. An example of this remedy is the use of bondcoats for ceramic thermal barrier coatings on metallic turbine components (ref. 2). Prior collaborative research between the NASA Glenn Research Center and the Allison Advanced Development Company (AADC) demonstrated that bond coats sandwiched between PMCs and high-quality plasma-sprayed, erosion-resistant coatings substantially improved the erosion resistance of PMCs (ref. 3). One unresolved problem in this earlier collaboration was that there was no easy, accurate way to measure the coating erosion wear scar. Coating wear was determined by both profilometry and optical microscopy. Both techniques are time consuming. Wear measurement by optical microscopy requires sample destruction and does not provide a comprehensive measure of the entire wear volume. An even more subtle, yet critical, problem is that these erosion coatings contain two or more materials with different densities. Therefore, simply measuring specimen mass loss before and after erosion will not provide an accurate gauge for coating and/or substrate volume loss. By using a noncontact technique called scanning optical interferometry

  13. Improvement of water barrier property of paperboard by coating application with biodegradable polymers.

    PubMed

    Han, Jaejoon; Salmieri, Stéphane; Le Tien, Canh; Lacroix, Monique

    2010-03-10

    Biopolymeric coatings were prepared and applied onto paperboard to improve its water barrier property. To prepare whey protein isolate (WPI)/cellulose-based films, WPI and glycerol were dissolved in water with glutaraldehyde (cross-linking agent) and cellulose xanthate. The solution was cast, dried, and insolubilized by entrapment of WPI in regenerated cellulose. Films were combined with beeswax (BW) into a bilayer coating system and then applied onto paperboard by heating compression. Another coating solution consisting of poly(vinyl butyral) (PVB)/zein was prepared by dissolving poly(vinyl alcohol) (PVA) and zein in 70% ethanol with glutaraldehyde and butyraldehyde (functionalization agent). The PVB/zein solution was applied onto paperboard after BW was sprayed. The structure of the PVB/zein-based coatings was analyzed by Fourier transform infrared spectroscopy (FTIR). The water vapor barrier property of coated paperboards was evaluated by water vapor transmission rate (WVTR) measurements. From the FTIR spectra, PVA functionalization after cross-linking and efficient acetalization into PVB were confirmed. WPI/cellulose and PVB/zein coating treatments improved the water barrier properties of paperboard by decreasing the WVTR by 77-78%. Although the BW coating was more efficient (decrease of WVTR by 89%), bilayer coatings composed of BW and polymer coatings had a stronger barrier effect with a decrease of WVTR to 92-95%, hence approaching commercial attributes required to ensure water vapor barrier in paperboard-based food containers (10 g/m(2).day). These results suggest that surface coating by biodegradable polymers may be utilized for the manufacture of paperboard containers in industrial applications.

  14. Improvement of water barrier property of paperboard by coating application with biodegradable polymers.

    PubMed

    Han, Jaejoon; Salmieri, Stéphane; Le Tien, Canh; Lacroix, Monique

    2010-03-10

    Biopolymeric coatings were prepared and applied onto paperboard to improve its water barrier property. To prepare whey protein isolate (WPI)/cellulose-based films, WPI and glycerol were dissolved in water with glutaraldehyde (cross-linking agent) and cellulose xanthate. The solution was cast, dried, and insolubilized by entrapment of WPI in regenerated cellulose. Films were combined with beeswax (BW) into a bilayer coating system and then applied onto paperboard by heating compression. Another coating solution consisting of poly(vinyl butyral) (PVB)/zein was prepared by dissolving poly(vinyl alcohol) (PVA) and zein in 70% ethanol with glutaraldehyde and butyraldehyde (functionalization agent). The PVB/zein solution was applied onto paperboard after BW was sprayed. The structure of the PVB/zein-based coatings was analyzed by Fourier transform infrared spectroscopy (FTIR). The water vapor barrier property of coated paperboards was evaluated by water vapor transmission rate (WVTR) measurements. From the FTIR spectra, PVA functionalization after cross-linking and efficient acetalization into PVB were confirmed. WPI/cellulose and PVB/zein coating treatments improved the water barrier properties of paperboard by decreasing the WVTR by 77-78%. Although the BW coating was more efficient (decrease of WVTR by 89%), bilayer coatings composed of BW and polymer coatings had a stronger barrier effect with a decrease of WVTR to 92-95%, hence approaching commercial attributes required to ensure water vapor barrier in paperboard-based food containers (10 g/m(2).day). These results suggest that surface coating by biodegradable polymers may be utilized for the manufacture of paperboard containers in industrial applications. PMID:20155911

  15. A hierarchically porous anatase TiO2 coated-WO3 2D IO bilayer film and its photochromic properties.

    PubMed

    Li, Hua; Wu, Huazhong; Xiao, Jiajia; Su, Yanli; Robichaud, Jacques; Brüning, Ralf; Djaoued, Yahia

    2016-01-18

    A hierarchically porous anatase TiO2 coated-WO3 2D inverse opal (IO) bilayer film was fabricated on ITO glass using a layer by layer route with a hierarchically porous TiO2 top layer and an ordered super-macroporous WO3 2D IO bottom layer. This novel TiO2 coated-WO3 2D IO bilayer film was evaluated for photochromic applications. PMID:26576930

  16. A hierarchically porous anatase TiO2 coated-WO3 2D IO bilayer film and its photochromic properties.

    PubMed

    Li, Hua; Wu, Huazhong; Xiao, Jiajia; Su, Yanli; Robichaud, Jacques; Brüning, Ralf; Djaoued, Yahia

    2016-01-18

    A hierarchically porous anatase TiO2 coated-WO3 2D inverse opal (IO) bilayer film was fabricated on ITO glass using a layer by layer route with a hierarchically porous TiO2 top layer and an ordered super-macroporous WO3 2D IO bottom layer. This novel TiO2 coated-WO3 2D IO bilayer film was evaluated for photochromic applications.

  17. Modular Fabrication of Polymer Brush Coated Magnetic Nanoparticles: Engineering the Interface for Targeted Cellular Imaging.

    PubMed

    Oz, Yavuz; Arslan, Mehmet; Gevrek, Tugce N; Sanyal, Rana; Sanyal, Amitav

    2016-08-01

    Development of efficient and rapid protocols for diversification of functional magnetic nanoparticles (MNPs) would enable identification of promising candidates using high-throughput protocols for applications such as diagnostics and cure through early detection and localized delivery. Polymer brush coated magnetic nanoparticles find use in many such applications. A protocol that allows modular diversification of a pool of parent polymer coated nanoparticles will lead to a library of functional materials with improved uniformity. In the present study, polymer brush coated parent magnetic nanoparticles obtained using reversible addition-fragmentation chain transfer (RAFT) polymerization are modified to obtain nanoparticles with different "clickable" groups. In this design, trithiocarbonate group terminated polymer brushes are "grafted from" MNPs using a catechol group bearing initiator. A postpolymerization radical exchange reaction allows installation of "clickable" functional groups like azides and maleimides on the chain ends of the polymers. Thus, modified MNPs can be functionalized using alkyne-containing and thiol-containing moieties like peptides and dyes using the alkyne-azide cycloaddition and the thiol-ene conjugation, respectively. Using the approach outlined here, a cell surface receptor targeting cyclic peptide and a fluorescent dye are attached onto nanoparticle surface. This multifunctional construct allows selective recognition of cancer cells that overexpress integrin receptors. Furthermore, the approach outlined here is not limited to the installation of azide and maleimide functional groups but can be expanded to a variety of "clickable" groups to allow nanoparticle modification using a broad range of chemical conjugations. PMID:27406320

  18. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings.

    PubMed

    Nowatzki, Paul J; Koepsel, Richard R; Stoodley, Paul; Min, Ke; Harper, Alan; Murata, Hironobu; Donfack, Joseph; Hortelano, Edwin R; Ehrlich, Garth D; Russell, Alan J

    2012-05-01

    Biofilm-associated infections are a major complication of implanted and indwelling medical devices like urological and venous catheters. They commonly persist even in the presence of an oral or intravenous antibiotic regimen, often resulting in chronic illness. We have developed a new approach to inhibiting biofilm growth on synthetic materials through controlled release of salicylic acid from a polymeric coating. Herein we report the synthesis and testing of a ultraviolet-cured polyurethane acrylate polymer composed, in part, of salicyl acrylate, which hydrolyzes upon exposure to aqueous conditions, releasing salicylic acid while leaving the polymer backbone intact. The salicylic acid release rate was tuned by adjusting the polymer composition. Anti-biofilm performance of the coatings was assessed under several biofilm forming conditions using a novel combination of the MBEC Assay™ biofilm multi-peg growth system and bioluminescence monitoring for live cell quantification. Films of the salicylic acid-releasing polymers were found to inhibit biofilm formation, as shown by bioluminescent and GFP reporter strains of Pseudomonas aeruginosa and Escherichia coli. Urinary catheters coated on their inner lumens with the salicylic acid-releasing polymer significantly reduced biofilm formation by E. coli for up to 5 days under conditions that simulated physiological urine flow.

  19. Dry particle coating of polymer particles for tailor-made product properties

    SciTech Connect

    Blümel, C. Schmidt, J. Dielesen, A. Sachs, M. Winzer, B. Peukert, W. Wirth, K.-E.

    2014-05-15

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  20. Dry particle coating of polymer particles for tailor-made product properties

    NASA Astrophysics Data System (ADS)

    Blümel, C.; Schmidt, J.; Dielesen, A.; Sachs, M.; Winzer, B.; Peukert, W.; Wirth, K.-E.

    2014-05-01

    Disperse polymer powders with tailor-made particle properties are of increasing interest in industrial applications such as Selective Laser Beam Melting processes (SLM). This study focuses on dry particle coating processes to improve the conductivity of the insulating polymer powder in order to assemble conductive devices. Therefore PP particles were coated with Carbon Black nanoparticles in a dry particle coating process. This process was investigated in dependence of process time and mass fraction of Carbon Black. The conductivity of the functionalized powders was measured by impedance spectroscopy. It was found that there is a dependence of process time, respectively coating ratio and conductivity. The powder shows higher conductivities with increasing number of guest particles per host particle surface area, i.e. there is a correlation between surface functionalization density and conductivity. The assembled composite particles open new possibilities for processing distinct polymers such as PP in SLM process. The fundamentals of the dry particle coating process of PP host particles with Carbon Black guest particles as well as the influence on the electrical conductivity will be discussed.

  1. Polymer Coated CaAl-Layered Double Hydroxide Nanomaterials for Potential Calcium Supplement

    PubMed Central

    Kim, Tae-Hyun; Lee, Jeong-A; Choi, Soo-Jin; Oh, Jae-Min

    2014-01-01

    We have successfully prepared layered double hydroxide (LDH) nanomaterials containing calcium and aluminum ions in the framework (CaAl-LDH). The surface of CaAl-LDH was coated with enteric polymer, Eudragit®L 100 in order to protect nanomaterials from fast dissolution under gastric condition of pH 1.2. The X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron and transmission electron microscopy revealed that the pristine LDH was well prepared having hydrocalumite structure, and that the polymer effectively coated the surface of LDH without disturbing structure. From thermal analysis, it was determined that only a small amount (less than 1%) of polymer was coated on the LDH surface. Metal dissolution from LDH nanomaterials was significantly reduced upon Eudragit®L 100 coating at pH 1.2, 6.8 and 7.4, which simulates gastric, enteric and plasma conditions, respectively, and the dissolution effect was the most suppressed at pH 1.2. The LDH nanomaterials did not exhibit any significant cytotoxicity up to 1000 μg/mL and intracellular calcium concentration significantly increased in LDH-treated human intestinal cells. Pharmacokinetic study demonstrated absorption efficiency of Eudragit®L 100 coated LDH following oral administration to rats. Moreover, the LDH nanomaterials did not cause acute toxic effect in vivo. All the results suggest the great potential of CaAl-LDH nanomaterials as a calcium supplement. PMID:25490138

  2. Influence of interface on the formation process of polymer coatings on metal

    NASA Astrophysics Data System (ADS)

    Maksimova, O. G.; Maksimov, A. V.; Moiseeva, A. I.

    2016-03-01

    The purpose of this work is in development of the model that allows to investigate the conformations of macromolecules near the interface “dielectric-metal” depending on the conditions of formation of the polymer coating. In the modified model of “sticky tape”, one part of macromolecule is anchored to the metal surface while the other can be elongated due to effective mean (molecular) field of dipolar type formed by free ends of other chains. The dynamic Monte-Carlo method for Langmuir’s model is used for calculation of adhesion force taking into account the interaction energy of monomers with the metal surface. It is shown that conformation of polymer chain is defined by temperature conditions of its formation. The obtained results are confirmed by the data of production tests on polymer coatings in JSC “Severstal”.

  3. Stabilization of 2D assemblies of silver nanoparticles by spin-coating polymers

    NASA Astrophysics Data System (ADS)

    Hu, Longyu; Pfirman, Aubrie; Chumanov, George

    2015-12-01

    Silver nanoparticles self-assembled on poly(4-vinylpyridine) modified surfaces were spin-coated with poly(methyl methacrylate), poly(butyl methacrylate) and polystyrene from anisole and toluene solutions. The polymers filled the space between the particles thereby providing stabilization of the assemblies against particle aggregation when dried or chemically modified. The polymers did not coat the top surface of the nanoparticles offering the chemical accessibility to the metal surface. This was confirmed by converting the stabilized nanoparticles into silver sulfide and gold clusters. Etching the nanoparticles resulted in crater-like polymeric structures with the cavities extending down to the underlying substrate. Electrochemical reduction of silver inside the craters was performed. The approach can be extended to other nanoparticle assemblies and polymers.

  4. Porous organic polymers with anchored aldehydes: a new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties.

    PubMed

    Guillerm, Vincent; Weseliński, Łukasz J; Alkordi, Mohamed; Mohideen, M Infas H; Belmabkhout, Youssef; Cairns, Amy J; Eddaoudi, Mohamed

    2014-02-25

    A novel porous organic polymer has been synthesized using the molecular building block approach to deliberately encompass aldehyde functionalities amenable to post functionalization. The resultant porous framework allows a facile, one-step quantitative and post-synthetic functionalization by amines, permitting enhanced CO2 sorption properties.

  5. Composite materials obtained by the ion-plasma sputtering of metal compound coatings on polymer films

    NASA Astrophysics Data System (ADS)

    Khlebnikov, Nikolai; Polyakov, Evgenii; Borisov, Sergei; Barashev, Nikolai; Biramov, Emir; Maltceva, Anastasia; Vereshchagin, Artem; Khartov, Stas; Voronin, Anton

    2016-01-01

    In this article, the principle and examples composite materials obtained by deposition of metal compound coatings on polymer film substrates by the ion-plasma sputtering method are presented. A synergistic effect is to obtain the materials with structural properties of the polymer substrate and the surface properties of the metal deposited coatings. The technology of sputtering of TiN coatings of various thicknesses on polyethylene terephthalate films is discussed. The obtained composites are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and scanning tunneling microscopy (STM) is shown. The examples of application of this method, such as receiving nanocomposite track membranes and flexible transparent electrodes, are considered.

  6. Immobilization of calcium phosphate nano-clusters into alkoxy-derived porous TiO2 coatings.

    PubMed

    Shirkhanzadeh, M; Sims, S

    1997-10-01

    Alkoxy-derived porous coatings of titanium oxide were fabricated on commercially pure titanium substrates by an electrochemical method in methanolic electrolytes. Nano-clusters of brushite (CaHPO4. 2H2O) were immobilized into the pores of the oxide network by reacting these coatings in acidic calcium phosphate solutions at 50 degrees C. The acid-base reaction between calcium phosphate solutions and the hydroxyl groups of the oxide network resulted in the formation of nano-clusters of brushite crystals immobilized inside the oxide pores. This treatment resulted in the conversion of the porous oxide network into a coherent mass with improved physical integrity. Nano-clusters of brushite crystals immobilized in the oxide matrix were converted into amorphous calcium phosphate (ACP) and poorly crystallized hydroxyapatite (HA) by further treatment of the oxide in alkaline solutions. The porous oxide coating also reacted strongly with concentrated phosphoric acid. The phosphate-modified oxide resulting from this reaction was further treated in calcium hydroxide solution to form nano-clusters of poorly crystallized HA within the oxide network.

  7. Development of Polymer-Coated Glass Slides as Optical Oligonucleotide Microarrays

    PubMed Central

    Pourjahed, Atefeh; Rabiee, Mohammad; Tahriri, Mohammadreza

    2013-01-01

    Background The microarray technology is in needed of cost-effective, low background noise and stable substrates for successful hybridization and analysis. Methods In this research, we developed a three-dimentional stable and mechanically reliable microarray substrates by coating of two polymeric layers on standard microscope glass slides. For fabrication of these substrates, a thin film of oxidized agarose was prepared on the Poly-L-Lysine (PLL) coated glass slides. Unmodified oligonucleotide probes were spotted and immobilized on these double layered thin films by adsorption on the porous structure of the agarose film. Some of the aldehyde groups of the activated agarose linked covalently to PLL amine groups; on the other side, they bound to amino groups of adsorbed tail of biomolecules. These linkages were fixed by UV irradiation at 254 nm using a CL-1000 UV. These prepared substrates were compared to only agarose-coated and PLL-coated slides Results Atomic Force Microscope (AFM) results demonstrated that agarose provided three-dimensional surface which had higher loading and bindig capacity for biomolecules than PLL-coated surface which had two-dimensional surface. The nano-indentation tests demonstrated the prepared double coating was more reliable and flexible for mechanical robotic spotting. In addition, the repeated indentation on different substrates showed uniformity of coatings. The stability of novel coating was sufficient for hybridization process. The signal-to-noise ratio in hybridization reactions performed on the agarose-PLL coated substrates increased two fold and four fold compared to agarose and PLL coated substrates, respectively. Conclusion Finally, the agarose-PLL microarrays had the highest signal (2920) and lowest background signal (205) in hybridization, suggesting that the prepared slides are suitable in analyzing wide concentration range of analytes. PMID:24285999

  8. Reactive polymer coatings: A robust platform towards sophisticated surface engineering for biotechnology

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Yeh

    Functionalized poly(p-xylylenes) or so-called reactive polymers can be synthesized via chemical vapor deposition (CVD) polymerization. The resulting ultra-thin coatings are pinhole-free and can be conformally deposited to a wide range of substrates and materials. More importantly, the equipped functional groups can served as anchoring sites for tailoring the surface properties, making these reactive coatings a robust platform that can deal with sophisticated challenges faced in biointerfaces. In this work presented herein, surface coatings presenting various functional groups were prepared by CVD process. Such surfaces include aldehyde-functionalized coating to precisely immobilize saccharide molecules onto well-defined areas and alkyne-functionalized coating to click azide-modified molecules via Huisgen 1,3-dipolar cycloaddition reaction. Moreover, CVD copolymerization has been conducted to prepare multifunctional coatings and their specific functions were demonstrated by the immobilization of biotin and NHS-ester molecules. By using a photodefinable coating, polyethylene oxides were immobilized onto a wide range of substrates through photo-immobilization. Spatially controlled protein resistant properties were characterized by selective adsorption of fibrinogen and bovine serum albumin as model systems. Alternatively, surface initiator coatings were used for polymer graftings of polyethylene glycol) methyl ether methacrylate, and the resultant protein- and cell- resistant properties were characterized by adsorption of kinesin motor proteins, fibrinogen, and murine fibroblasts (NIH3T3). Accessibility of reactive coatings within confined microgeometries was systematically studied, and the preparation of homogeneous polymer thin films within the inner surface of microchannels was demonstrated. Moreover, these advanced coatings were applied to develop a dry adhesion process for microfluidic devices. This process provides (i) excellent bonding strength, (ii) extended

  9. Plasma deposition of antimicrobial coating on organic polymer

    NASA Astrophysics Data System (ADS)

    Rżanek-Boroch, Zenobia; Dziadczyk, Paulina; Czajkowska, Danuta; Krawczyk, Krzysztof; Fabianowski, Wojciech

    2013-02-01

    Organic materials used for packing food products prevent the access of microorganisms or gases, like oxygen or water vapor. To prolong the stability of products, preservatives such as sulfur dioxide, sulfites, benzoates, nitrites and many other chemical compounds are used. To eliminate or limit the amount of preservatives added to food, so-called active packaging is sought for, which would limit the development of microorganisms. Such packaging can be achieved, among others, by plasma modification of a material to deposit on its surface substances inhibiting the growth of bacteria. In this work plasma modification was carried out in barrier discharge under atmospheric pressure. Sulfur dioxide or/and sodium oxide were used as the coating precursors. As a result of bacteriological studies it was found that sulfur containing coatings show a 16% inhibition of Salmonella bacteria growth and 8% inhibition of Staphylococcus aureus bacteria growth. Sodium containing coatings show worse (by 10%) inhibiting properties. Moreover, films with plasma deposited coatings show good sealing properties against water vapor. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  10. Phase Separation of Silicon-Containing Polymer/Polystyrene Blends in Spin-Coated Films.

    PubMed

    Li, Yang; Hu, Kai; Han, Xiao; Yang, Qinyu; Xiong, Yifeng; Bai, Yuhang; Guo, Xu; Cui, Yushuang; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2016-04-19

    In this Article, two readily available polymers that contain silicon and have different surface tensions, polydimethylsiloxane (PDMS) and polyphenylsilsequioxane (PPSQ), were used to produce polymer blends with polystyrene (PS). Spin-coated thin films of the polymer blends were treated by O2 reactive-ion etching (RIE). The PS constituent was selectively removed by O2 RIE, whereas the silicon-containing phase remained because of the high etching resistance of silicon. This selective removal of PS substantially enhanced the contrast of the phase separation morphologies for better scanning electron microscope (SEM) and atomic force microscope (AFM) measurements. We investigated the effects of the silicon-containing constituents, polymer blend composition, concentration of the polymer blend solution, surface tension of the substrate, and the spin-coating speed on the ultimate morphologies of phase separation. The average domain size, ranging from 100 nm to 10 μm, was tuned through an interplay of these factors. In addition, the polymer blend film was formed on a pure organic layer, through which the aspect ratio of the phase separation morphologies was further amplified by a selective etching process. The formed nanostructures are compatible with existing nanofabrication techniques for pattern transfer onto substrates.

  11. Phase Separation of Silicon-Containing Polymer/Polystyrene Blends in Spin-Coated Films.

    PubMed

    Li, Yang; Hu, Kai; Han, Xiao; Yang, Qinyu; Xiong, Yifeng; Bai, Yuhang; Guo, Xu; Cui, Yushuang; Yuan, Changsheng; Ge, Haixiong; Chen, Yanfeng

    2016-04-19

    In this Article, two readily available polymers that contain silicon and have different surface tensions, polydimethylsiloxane (PDMS) and polyphenylsilsequioxane (PPSQ), were used to produce polymer blends with polystyrene (PS). Spin-coated thin films of the polymer blends were treated by O2 reactive-ion etching (RIE). The PS constituent was selectively removed by O2 RIE, whereas the silicon-containing phase remained because of the high etching resistance of silicon. This selective removal of PS substantially enhanced the contrast of the phase separation morphologies for better scanning electron microscope (SEM) and atomic force microscope (AFM) measurements. We investigated the effects of the silicon-containing constituents, polymer blend composition, concentration of the polymer blend solution, surface tension of the substrate, and the spin-coating speed on the ultimate morphologies of phase separation. The average domain size, ranging from 100 nm to 10 μm, was tuned through an interplay of these factors. In addition, the polymer blend film was formed on a pure organic layer, through which the aspect ratio of the phase separation morphologies was further amplified by a selective etching process. The formed nanostructures are compatible with existing nanofabrication techniques for pattern transfer onto substrates. PMID:27052643

  12. Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy.

    PubMed

    Xu, Wujun; Thapa, Rinez; Liu, Dongfei; Nissinen, Tuomo; Granroth, Sari; Närvänen, Ale; Suvanto, Mika; Santos, Hélder A; Lehto, Vesa-Pekka

    2015-11-01

    In spite of the advances in drug delivery, the preparation of smart nanocomposites capable of precisely controlled release of multiple drugs for sequential combination therapy is still challenging. Here, a novel drug delivery nanocomposite was prepared by coating porous silicon (PSi) nanoparticles with poly(beta-amino ester) (PAE) and Pluronic F-127, respectively. Two anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately loaded into the core of PSi and the shell of F127. The nanocomposite displayed enhanced colloidal stability and good cytocompatibility. Moreover, a spatiotemporal drug release was achieved for sequential combination therapy by precisely controlling the release kinetics of the two tested drugs. The release of PTX and DOX occurred in a time-staggered manner; PTX was released much faster and earlier than DOX at pH 7.0. The grafted PAE on the external surface of PSi acted as a pH-responsive nanovalve for the site-specific release of DOX. In vitro cytotoxicity tests demonstrated that the DOX and PTX coloaded nanoparticles exhibited a better synergistic effect than the free drugs in inducing cellular apoptosis. Therefore, the present study demonstrates a promising strategy to enhance the efficiency of combination cancer therapies by precisely controlling the release kinetics of different drugs.

  13. The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems.

    PubMed

    Sarparanta, Mirkka P; Bimbo, Luis M; Mäkilä, Ermei M; Salonen, Jarno J; Laaksonen, Päivi H; Helariutta, A M Kerttuli; Linder, Markus B; Hirvonen, Jouni T; Laaksonen, Timo J; Santos, Hélder A; Airaksinen, Anu J

    2012-04-01

    Impediments to intestinal absorption, such as poor solubility and instability in the variable conditions of the gastrointestinal (GI) tract plague many of the current drugs restricting their oral bioavailability. Particulate drug delivery systems hold great promise in solving these problems, but their effectiveness might be limited by their often rapid transit through the GI tract. Here we describe a bioadhesive oral drug delivery system based on thermally-hydrocarbonized porous silicon (THCPSi) functionalized with a self-assembled amphiphilic protein coating consisting of a class II hydrophobin (HFBII) from Trichoderma reesei. The HFBII-THCPSi nanoparticles were found to be non-cytotoxic and mucoadhesive in AGS cells, prompting their use in a biodistribution study in rats after oral administration. The passage of HFBII-THCPSi nanoparticles in the rat GI tract was significantly slower than that of uncoated THCPSi, and the nanoparticles were retained in stomach by gastric mucoadhesion up to 3 h after administration. Upon entry to the small intestine, the mucoadhesive properties were lost, resulting in the rapid transit of the nanoparticles through the remainder of the GI tract. The gastroretentive drug delivery system with a dual function presented here is a viable alternative for improving drug bioavailability in the oral route.

  14. Preparation of Porous Chitosan-Siloxane Hybrids Coated with Hydroxyapatite Particles.

    PubMed

    Shirosaki, Yuki; Okamoto, Kohei; Hayakawa, Satoshi; Osaka, Akiyoshi; Asano, Takuji

    2015-01-01

    This paper describes the apatite deposition of chitosan-silicate porous hybrids derived from chitosan and γ-glycidoxypropyltrimethoxysilane (GPTMS) in alkaline phosphate solution. The preparation of porous hybrids with needle-like apatite on their surfaces is described. Following apatite deposition the porous hybrids maintained high porosity. The enzymatic degradation rate was low even after 6 months and the porous hybrids were very flexible and cut easily using surgical scissors.

  15. Efficient solar photocatalytic activity of TiO2 coated nano-porous silicon by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Sampath, Sridhar; Maydannik, Philipp; Ivanova, Tatiana; Shestakova, Marina; Homola, Tomáš; Bryukvin, Anton; Sillanpää, Mika; Nagumothu, Rameshbabu; Alagan, Viswanathan

    2016-09-01

    In the present study, TiO2 coated nano-porous silicon (TiO2/PS) was prepared by atomic layer deposition (ALD) whereas porous silicon was prepared by stain etching method for efficient solar photocatalytic activity. TiO2/PS was characterized by FESEM, AFM, XRD, XPS and DRS UV-vis spectrophotometer. Absorbance spectrum revealed that TiO2/PS absorbs complete solar light with wave length range of 300 nm-800 nm and most importantly, it absorbs stronger visible light than UV light. The reason for efficient solar light absorption of TiO2/PS is that nanostructured TiO2 layer absorbs UV light and nano-porous silicon layer absorbs visible light which is transparent to TiO2 layer. The amount of visible light absorption of TiO2/PS directly increases with increase of silicon etching time. The effect of silicon etching time of TiO2/PS on solar photocatalytic activity was investigated towards methylene blue dye degradation. Layer by layer solar absorption mechanism was used to explain the enhanced photocatalytic activity of TiO2/PS solar absorber. According to this, the photo-generated electrons of porous silicon will be effectively injected into TiO2 via hetero junction interface which leads to efficient charge separation even though porous silicon is not participating in any redox reactions in direct.

  16. Micro-nanoprobing measurement of polymer coating/film mechanical properties

    NASA Astrophysics Data System (ADS)

    Xia, Xinyun (Sherry)

    2000-10-01

    The goals of this study are (1) to demonstrate the applications of nanoindentation for mechanical properties studies of polymer coating/film systems; (2) to develop and verify viscoelastic analytical solutions for indentation on polymers; (3) to advance nanoindentation technique for better understanding of coating processes, particularly under drying conditions. To meet the project goals, several polymer coating/film systems are studied during or after drying and curing. First, the demonstration experiments were mainly conducted on near-surface structure formation of chemically imidized polyimide films. Nanoindentation method successfully explained the peel strength difference observed in industry by distinguishing variation of microstructure related modulus difference between two sides of films with different annealing temperature. Second, to verify a linear viscoelastic analytical solutions based on standard solids model developed by Cheng et al, indentation creep and relaxation tests with flat-ended punch and spherical indenter were conducted on polystyrene, photographic protecting coatings and polyvinyl alcohol coatings (PVOH). The coatings' young's modulus and viscosity obtained were similar to literature values. The application of these solutions to PVOH coatings also successfully helped to distinguish the near surface crystallinity difference formed during the drying process. Furthermore, humidity and temperature control accessories are set up for Hysitron to extend the capability of nanoindentation method on in situ coating mechanical properties study. Influence on mechanical properties of drying semicrystalline PVOH coating with different molecular weight under different humidity was studied. The work first relates the near-surface mechanical property to solvent induced surface crystallinity during process and indicates that such approaches will help to optimize drying processes and coating microstructure control. To demonstrate the application of the

  17. Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures.

    PubMed

    Mitchell, Jonathan; Lyons, Kyle; Howe, Andrew M; Clarke, Andrew

    2016-01-14

    Viscoelastic polymer solutions flowing through reservoir rocks have been found to improve oil displacement efficiency when the aqueous-phase shear-rate exceeds a critical value. A possible mechanism for this enhanced recovery is elastic turbulence that causes breakup and mobilization of trapped oil ganglia. Here, we apply nuclear magnetic resonance (NMR) pulsed field gradient (PFG) diffusion measurements in a novel way to detect increased motion of disconnected oil ganglia. The data are acquired directly from a three-dimensional (3D) opaque porous structure (sandstone) when viscoelastic fluctuations are expected to be present in the continuous phase. The measured increase in motion of trapped ganglia provides unequivocal evidence of fluctuations in the flowing phase in a fully complex 3D system. This work provides direct evidence of elastic turbulence in a realistic reservoir rock - a measurement that cannot be readily achieved by conventional laboratory methods. We support the NMR data with optical microscopy studies of fluctuating ganglia in simple two-dimensional (2D) microfluidic networks, with consistent apparent rheological behaviour of the aqueous phase, to provide conclusive evidence of elastic turbulence in the 3D structure and hence validate the proposed flow-fluctuation mechanism for enhanced oil recovery. PMID:26477403

  18. Viscoelastic polymer flows and elastic turbulence in three-dimensional porous structures.

    PubMed

    Mitchell, Jonathan; Lyons, Kyle; Howe, Andrew M; Clarke, Andrew

    2016-01-14

    Viscoelastic polymer solutions flowing through reservoir rocks have been found to improve oil displacement efficiency when the aqueous-phase shear-rate exceeds a critical value. A possible mechanism for this enhanced recovery is elastic turbulence that causes breakup and mobilization of trapped oil ganglia. Here, we apply nuclear magnetic resonance (NMR) pulsed field gradient (PFG) diffusion measurements in a novel way to detect increased motion of disconnected oil ganglia. The data are acquired directly from a three-dimensional (3D) opaque porous structure (sandstone) when viscoelastic fluctuations are expected to be present in the continuous phase. The measured increase in motion of trapped ganglia provides unequivocal evidence of fluctuations in the flowing phase in a fully complex 3D system. This work provides direct evidence of elastic turbulence in a realistic reservoir rock - a measurement that cannot be readily achieved by conventional laboratory methods. We support the NMR data with optical microscopy studies of fluctuating ganglia in simple two-dimensional (2D) microfluidic networks, with consistent apparent rheological behaviour of the aqueous phase, to provide conclusive evidence of elastic turbulence in the 3D structure and hence validate the proposed flow-fluctuation mechanism for enhanced oil recovery.

  19. Collecting peptide release from the brain using porous polymer monolith-based solid phase extraction capillaries.

    PubMed

    Iannacone, Jamie M; Ren, Shifang; Hatcher, Nathan G; Sweedler, Jonathan V

    2009-07-01

    Porous polymer monolithic (PPM) columns are employed to collect and concentrate neuronal release from invertebrate and vertebrate model systems, prior to their characterization with mass spectrometry. The monoliths are fabricated in fused-silica capillaries from lauryl methacrylate (LMA) and ethylene glycol dimethacrylate (EDMA). The binding capacities for fluorescein and for fluorescently labeled peptides are on the order of nanomoles per millimeter of length of monolith material for a capillary with an inner diameter of 200 microm. To evaluate this strategy for collecting peptides from physiological solutions, angiotensin I and insulin in artificial seawater are loaded onto, and then released from, the monoliths after a desalination rinse, resulting in femtomole limits of detection via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Positioned in the extracellular media near Aplysia californica bag cell neurons, upon electrical stimulation, these LMA-EDMA monoliths are also used to collect and concentrate peptide release, with egg-laying hormones and acidic peptide detected. In addition, the collection of several known peptides secreted from chemically stimulated mouse brain slices demonstrates their ability to collect releasates from a variety of neuronal tissues. When compared to collection approaches using individual beads placed on brain slices, the PPM capillaries offer greater binding capacity. Moreover, they maintain higher spatial resolution, compared to the larger-volume, solid-phase extraction collection strategies.

  20. Synthesis of porous molecularly imprinted polymers for selective adsorption of glutathione

    NASA Astrophysics Data System (ADS)

    Song, Renyuan; Hu, Xiaoling; Guan, Ping; Li, Ji; Qian, Liwei; Wang, Chaoli; Wang, Qiaoli

    2015-03-01

    An effective approach overcome the classical deficiencies of biomolecules molecularly imprinted polymers (MIPs), that is, low binding capacity and slow mass transfer rate, is proposed. With glutathione (GSH) as target molecule, porous imprinted layers were fabricated according to our newly developed method the introduction of a mixture of acetontrile and dimethylsulfoxide as porogen in surface-initiated polymerization systems. The resultant MIPs particles exhibited a large surface area could remarkably improve the imprinting effect in relation to a significantly increased imprinting factor and mass transfer rate, compared to the MIPs prepared by using aqueous solution as solvent. The batch static binding tests were carried out to evaluate the adsorption kinetics, adsorption isotherms and selective recognition of the MIPs particles. The binding behavior followed the pseudo-second order kinetic model, revealing that the process was chemically carried out. Two binding isotherm models were applied to analyze equilibrium data, obtaining the best description by Langmuir isotherm model. In addition, the selective of separation and extraction of GSH from a mixture of GSH and its structural analogs could be achieved on the MIPs solid-phase extraction cartridge, indicating that the possibility for the separation and enrichment of the template from complicated matrices.

  1. Highly Stable and Porous Cross-Linked Polymers for Efficient Photocatalysis

    SciTech Connect

    Xie, Zhigang; Wang, Cheng; deKrafft, Kathryn E.; Lin, Wenbin

    2011-02-23

    Porous cross-linked polymers (PCPs) with phosphorescent [Ru(bpy)₃]{sup 2+} and [Ir(ppy)₂(bpy)]{sup +} building blocks were obtained via octacarbonyldicobalt (Co₂(CO)₈)-catalyzed alkyne trimerization reactions. The resultant Ru- and Ir-PCPs exhibited high porosity with specific surface areas of 1348 and 1547 m²/g, respectively. They are thermally stable at up to 350 °C in air and do not dissolve or decompose in all solvents tested, including concentrated hydrochloric acid. The photoactive PCPs were shown to be highly effective, recyclable, and reusable heterogeneous photocatalysts for aza-Henry reactions, α-arylation of bromomalonate, and oxyamination of an aldehyde, with catalytic activities comparable to those of the homogeneous [Ru(bpy)₃]{sup 2+} and [Ir(ppy)₂(bpy)]{sup +} photocatalysts. This work highlights the potential of developing photoactive PCPs as highly stable, molecularly tunable, and recyclable and reusable heterogeneous photocatalysts for a variety of important organic transformations.

  2. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions.

    PubMed

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen

    2014-07-15

    The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu(2+)). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied.

  3. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles

    NASA Astrophysics Data System (ADS)

    Agostoni, V.; Horcajada, P.; Noiray, M.; Malanga, M.; Aykaç, A.; Jicsinszky, L.; Vargas-Berenguel, A.; Semiramoth, N.; Daoud-Mahammed, S.; Nicolas, V.; Martineau, C.; Taulelle, F.; Vigneron, J.; Etcheberry, A.; Serre, C.; Gref, R.

    2015-01-01

    Nanoparticles made of metal-organic frameworks (nanoMOFs) attract a growing interest in gas storage, separation, catalysis, sensing and more recently, biomedicine. Achieving stable, versatile coatings on highly porous nanoMOFs without altering their ability to adsorb molecules of interest represents today a major challenge. Here we bring the proof of concept that the outer surface of porous nanoMOFs can be specifically functionalized in a rapid, biofriendly and non-covalent manner, leading to stable and versatile coatings. Cyclodextrin molecules bearing strong iron complexing groups (phosphates) were firmly anchored to the nanoMOFs' surface, within only a few minutes, simply by incubation with aqueous nanoMOF suspensions. The coating procedure did not affect the nanoMOF porosity, crystallinity, adsorption and release abilities. The stable cyclodextrin-based coating was further functionalized with: i) targeting moieties to increase the nanoMOF interaction with specific receptors and ii) poly(ethylene glycol) chains to escape the immune system. These results pave the way towards the design of surface-engineered nanoMOFs of interest for applications in the field of targeted drug delivery, catalysis, separation and sensing.

  4. A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles

    PubMed Central

    Agostoni, V.; Horcajada, P.; Noiray, M.; Malanga, M.; Aykaç, A.; Jicsinszky, L.; Vargas-Berenguel, A.; Semiramoth, N.; Daoud-Mahammed, S.; Nicolas, V.; Martineau, C.; Taulelle, F.; Vigneron, J.; Etcheberry, A.; Serre, C.; Gref, R.

    2015-01-01

    Nanoparticles made of metal-organic frameworks (nanoMOFs) attract a growing interest in gas storage, separation, catalysis, sensing and more recently, biomedicine. Achieving stable, versatile coatings on highly porous nanoMOFs without altering their ability to adsorb molecules of interest represents today a major challenge. Here we bring the proof of concept that the outer surface of porous nanoMOFs can be specifically functionalized in a rapid, biofriendly and non-covalent manner, leading to stable and versatile coatings. Cyclodextrin molecules bearing strong iron complexing groups (phosphates) were firmly anchored to the nanoMOFs' surface, within only a few minutes, simply by incubation with aqueous nanoMOF suspensions. The coating procedure did not affect the nanoMOF porosity, crystallinity, adsorption and release abilities. The stable cyclodextrin-based coating was further functionalized with: i) targeting moieties to increase the nanoMOF interaction with specific receptors and ii) poly(ethylene glycol) chains to escape the immune system. These results pave the way towards the design of surface-engineered nanoMOFs of interest for applications in the field of targeted drug delivery, catalysis, separation and sensing. PMID:25603994

  5. Repair of oxidation protection coatings on carbon-carbon using preceramic polymers

    NASA Technical Reports Server (NTRS)

    Schwab, Stuart T.; Graef, Renee C.

    1991-01-01

    The paper describes a field-applicable technique for the repair of damage to SiC protective coatings on carbon/carbon composites, using commercial preceramic polymers, such as perhydropolysilazane developed by the Southwest Research Institute and several commercial polymers (NICALON, PS110, PS116, PS117, NCP-200, and PHPS were tested). After being applied on the damaged panel and oxidized at 1400 C, these polymers form either SiC or Si3N4 (or a mixture of both). It was found that impact damaged carbon/carbon specimens repaired with perhydropolysilazane exhibit substantial oxidation resistance. Many of the other tested preceramic polymer were found to be unsuitable for the purpose of repair due to either low ceramic yield, foaming, or intumescence.

  6. Biocompatibility evaluation of a novel hydroxyapatite-polymer coating for medical implants (in vitro tests).

    PubMed

    Negroiu, Gabriela; Piticescu, Roxana M; Chitanu, Gabrielle C; Mihailescu, Ion N; Zdrentu, Livia; Miroiu, Marimona

    2008-04-01

    Nanocomposites consisting of hydroxyapatite (HA) and a sodium maleate copolymer (maleic polyelectrolyte), synthesized by hydrothermal method and deposited on titanium substrates by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique were tested for the biological properties. Coating bioanalysis was carried out by triple staining of actin, microtubules and nuclei followed by immunofluorescence microscopy. Within 24 h cells that occupied the biomaterial surface displayed the morphology and cytoskeleton pattern similar to the controls. Cells grown on nanocomposite coated surfaces had a higher proliferation rate than their counterparts grown on Ti coated with HA alone, indicating that maleic polyelectrolyte improved surface bio-adhesive characteristics. The capacity to induce cell attachment, spreading and proliferation demonstrated the potential of Ti coated with HA-polymer nanocomposites to be used as scaffolds in dental or orthopedic implantology.

  7. High-temperature separation with polymer-coated fiber in packed capillary gas chromatography.

    PubMed

    Saito, Yoshihiro; Ogawa, Mitsuhiro; Imaizumi, Motohiro; Ban, Kazuhiro; Abe, Akira; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2005-06-01

    High-temperature gas chromatographic separation of several synthetic polymer mixtures with Dexsil-coated fiber-packed columns was studied. A bundle of heat-resistant filaments, Zylon, was longitudinally packed into a short metal capillary, followed by the conventional coating process with Dexsil 300 material. Prior to the packing process the metal capillary was deactivated by the formation of a silica layer. The typical size of the resulting column was 0.3-mm i.d., 0.5-mm o.d., 1-m length, and packed with about 170 filaments of the Dexsil-coated Zylon. The column temperature could be elevated up to 450 degrees C owing to the good thermal stability of the fiber, Dexsil coating, and metal capillary; furthermore, this allowed the separation of low-volatile compounds to be studied.

  8. High-temperature separation with polymer-coated fiber in packed capillary gas chromatography.

    PubMed

    Saito, Yoshihiro; Ogawa, Mitsuhiro; Imaizumi, Motohiro; Ban, Kazuhiro; Abe, Akira; Takeichi, Tsutomu; Wada, Hiroo; Jinno, Kiyokatsu

    2005-06-01

    High-temperature gas chromatographic separation of several synthetic polymer mixtures with Dexsil-coated fiber-packed columns was studied. A bundle of heat-resistant filaments, Zylon, was longitudinally packed into a short metal capillary, followed by the conventional coating process with Dexsil 300 material. Prior to the packing process the metal capillary was deactivated by the formation of a silica layer. The typical size of the resulting column was 0.3-mm i.d., 0.5-mm o.d., 1-m length, and packed with about 170 filaments of the Dexsil-coated Zylon. The column temperature could be elevated up to 450 degrees C owing to the good thermal stability of the fiber, Dexsil coating, and metal capillary; furthermore, this allowed the separation of low-volatile compounds to be studied. PMID:15933854

  9. Interactions between protein coated particles and polymer surfaces studied with the rotating particles probe.

    PubMed

    Kemper, M; Spridon, D; van IJzendoorn, L J; Prins, M W J

    2012-05-29

    Nonspecific interactions between proteins and polymer surfaces have to be minimized in order to control the performance of biosensors based on immunoassays with particle labels. In this paper we investigate these nonspecific interactions by analyzing the response of protein coated magnetic particles to a rotating magnetic field while the particles are in nanometer vicinity to a polymer surface. We use the fraction of nonrotating (bound) particles as a probe for the interaction between the particles and the surface. As a model system, we study the interaction of myoglobin coated particles with oxidized polystyrene surfaces. We measure the interaction as a function of the ionic strength of the solution, varying the oxidation time of the polystyrene and the pH of the solution. To describe the data we propose a model in which particles bind to the polymer by crossing an energy barrier. The height of this barrier depends on the ionic strength of the solution and two interaction parameters. The fraction of nonrotating particles as a function of ionic strength shows a characteristic shape that can be explained with a normal distribution of energy barrier heights. This method to determine interaction parameters paves the way for further studies to quantify the roles of protein coated particles and polymers in their mutual nonspecific interactions in different matrixes.

  10. Reduced bleaching in organic nanofibers by bilayer polymer/oxide coating

    SciTech Connect

    Tavares, L.; Kjelstrup-Hansen, J.; Rubahn, H.-G.; Sturm, H.

    2010-05-15

    Para-hexaphenylene (p-6P) molecules exhibit a characteristic photoinduced reaction (bleaching) resulting in a decrease in luminescence intensity upon UV light exposure, which could render the technological use of the nanofibers problematic. In order to investigate the photoinduced reaction in nanofibers, optical bleaching experiments have been performed by irradiating both pristine and coated nanofibers with UV light. Oxide coating materials (SiO{sub x} and Al{sub 2}O{sub 3}) were applied onto p-6P nanofibers. These treatments caused a reduction in the bleaching reaction but in addition, the nanofiber luminescence spectrum was significantly altered. It was observed that some polymer coatings [a statistical copolymer of tetrafluoroethylene and 2,2-bis-trifluoromethyl-4,5-difluoro-1,3-dioxole, P(TFE-PDD), and poly(methyl methacrylate), PMMA] do not interfere with the luminescence spectrum from the p-6P but are not effective in stopping the bleaching. Bilayer coatings with first a polymer material, which should work as a protection layer to avoid modifications of the p-6P luminescence spectrum, and second an oxide layer used as oxygen blocker were tested and it was found that a particular bilayer polymer/oxide combination results in a significant reduction in bleaching without affecting significantly the emission spectrum from the nanofibers.

  11. Reduced bleaching in organic nanofibers by bilayer polymer/oxide coating

    NASA Astrophysics Data System (ADS)

    Tavares, L.; Kjelstrup-Hansen, J.; Rubahn, H.-G.; Sturm, H.

    2010-05-01

    Para-hexaphenylene (p-6P) molecules exhibit a characteristic photoinduced reaction (bleaching) resulting in a decrease in luminescence intensity upon UV light exposure, which could render the technological use of the nanofibers problematic. In order to investigate the photoinduced reaction in nanofibers, optical bleaching experiments have been performed by irradiating both pristine and coated nanofibers with UV light. Oxide coating materials (SiOx and Al2O3) were applied onto p-6P nanofibers. These treatments caused a reduction in the bleaching reaction but in addition, the nanofiber luminescence spectrum was significantly altered. It was observed that some polymer coatings [a statistical copolymer of tetrafluoroethylene and 2,2-bis-trifluoromethyl-4,5-difluoro-1,3-dioxole, P(TFE-PDD), and poly(methyl methacrylate), PMMA] do not interfere with the luminescence spectrum from the p-6P but are not effective in stopping the bleaching. Bilayer coatings with first a polymer material, which should work as a protection layer to avoid modifications of the p-6P luminescence spectrum, and second an oxide layer used as oxygen blocker were tested and it was found that a particular bilayer polymer/oxide combination results in a significant reduction in bleaching without affecting significantly the emission spectrum from the nanofibers.

  12. Trypsin coatings on electrospun and alcohol-dispersed polymer nanofibers for trypsin digestion column

    SciTech Connect

    Jun, Seung-Hyun; Chang, Mun Seock; Kim, Byoung Chan; An, Hyo Jin; Lopez-Ferrer, Daniel; Zhao, Rui; Smith, Richard D.; Lee, Sang-Won; Kim, Jungbae

    2010-09-15

    The construction of a trypsin reactor in a chromatography column for rapid and efficient protein digestion in proteomics is described. Electrospun and alcohol-dispersed polymer nanofibers were used for the fabrication of highly stable trypsin coating, which was prepared by a two-step process of covalent attachment and enzyme crosslinking. In a comparative study with the trypsin coatings on asspun and non-dispersed nanofibers, it has been observed that a simple step of alcohol dispersion improved not only the enzyme loading but also the performance of protein digestion. In-column digestion of enolase was successfully performed in less than twenty minutes. By applying the alcohol dispersion of polymer nanofibers, the bypass of samples was reduced by filling up the column with well-dispersed nanofibers, and subsequently, interactions between the protein and the enzymes were improved yielding more complete and reproducible digestions. Regardless of alcohol-dispersion or not, trypsin coating showed better digestion performance and improved performance stability under recycled uses than covalently-attached trypsin. The combination of highly stable trypsin coating and alcoholdispersion of polymer nanofibers has opened up a new potential to develop a trypsin column for on-line and automated protein digestion.

  13. Sol-gel metal oxide and metal oxide/polymer multilayers applied by meniscus coating

    SciTech Connect

    Britten, J.A.; Thomas, I.M.

    1993-10-01

    We are developing a meniscus coating process for manufacturing large-aperture dielectric multilayer high reflectors (HR`s) at ambient conditions from liquid suspensions. Using a lab-scale coater capable of coating 150 mm square substrates, we have produced several HR`s which give 99% + reflection with 24 layers and with edge effects confined to about 10 mm. In calendar 1993 we are taking delivery of an automated meniscus coating machine capable of coating substrates up to 400 mm wide and 600 mm long. The laser-damage threshold and failure stress of sol-gel thin films can be substantially increased through the use of soluble polymers which act as binders for the metal oxide particles comprising the deposited film. Refractive index control of the film is also possible through varying the polymer/oxide ratio. Much of our present effort present is in optimizing oxide particle/binder/solvent formulations for the high-index material. Films from colloidal zirconia strengthened with polyvinylpyrollidone (PVP) have given best results to date. An increase in the laser damage threshold (LDT) for single layers has been shown to significantly increase with increased polymer loading, but as yet the LDT for multilayer stacks remains low.

  14. Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications.

    PubMed

    Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng

    2013-10-01

    Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model. PMID:23910322

  15. Microarc oxidized TiO2 based ceramic coatings combined with cefazolin sodium/chitosan composited drug film on porous titanium for biomedical applications.

    PubMed

    Wei, Daqing; Zhou, Rui; cheng, Su; Feng, Wei; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu; Guo, Haifeng

    2013-10-01

    Porous titanium was prepared by pressureless sintering of titanium beads with diameters of 100, 200, 400 and 600 μm. The results indicated that the mechanical properties of porous titanium changed significantly with different bead diameters. Plastic deformations such as necking phenomenon and dimple structure were observed on the fracture surface of porous titanium sintered by beads with diameter of 100 μm. However, it was difficult to find this phenomenon on the porous titanium with a titanium bead diameter of 600 μm. The microarc oxidized coatings were deposited on its surface to improve the bioactivity of porous titanium. Furthermore, the cefazolin sodium/chitosan composited films were fabricated on the microarc oxidized coatings for overcoming the inflammation due to implantation, showing good slow-release ability by addition of chitosan. And the release kinetic process of cefazolin sodium in composited films could be possibly fitted by a polynomial model.

  16. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion

    PubMed Central

    Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B.; Kaplan, Hilton M.; Kohn, Joachim; Shreiber, David I.; Zahn, Jeffrey D.

    2016-01-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings. PMID:25681971

  17. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.

    PubMed

    Lo, Meng-chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2015-04-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings. PMID:25681971

  18. Coating flexible probes with an ultra fast degrading polymer to aid in tissue insertion.

    PubMed

    Lo, Meng-chen; Wang, Shuwu; Singh, Sagar; Damodaran, Vinod B; Kaplan, Hilton M; Kohn, Joachim; Shreiber, David I; Zahn, Jeffrey D

    2015-04-01

    We report a fabrication process for coating neural probes with an ultrafast degrading polymer to create consistent and reproducible devices for neural tissue insertion. The rigid polymer coating acts as a probe insertion aid, but resorbs within hours post-implantation. Despite the feasibility for short term neural recordings from currently available neural prosthetic devices, most of these devices suffer from long term gliosis, which isolates the probes from adjacent neurons, increasing the recording impedance and stimulation threshold. The size and stiffness of implanted probes have been identified as critical factors that lead to this long term gliosis. Smaller, more flexible probes that match the mechanical properties of brain tissue could allow better long term integration by limiting the mechanical disruption of the surrounding tissue during and after probe insertion, while being flexible enough to deform with the tissue during brain movement. However, these small flexible probes inherently lack the mechanical strength to penetrate the brain on their own. In this work, we have developed a micromolding method for coating a non-functional miniaturized SU-8 probe with an ultrafast degrading tyrosine-derived polycarbonate (E5005(2K)). Coated, non-functionalized probes of varying dimensions were reproducibly fabricated with high yields. The polymer erosion/degradation profiles of the probes were characterized in vitro. The probes were also mechanically characterized in ex vivo brain tissue models by measuring buckling and insertion forces during probe insertion. The results demonstrate the ability to produce polymer coated probes of consistent quality for future in vivo use, for example to study the effects of different design parameters that may affect tissue response during long term chronic intra-cortical microelectrode neural recordings.

  19. Cationic polymers for DNA origami coating - examining their binding efficiency and tuning the enzymatic reaction rates

    NASA Astrophysics Data System (ADS)

    Kiviaho, Jenny K.; Linko, Veikko; Ora, Ari; Tiainen, Tony; Järvihaavisto, Erika; Mikkilä, Joona; Tenhu, Heikki; Nonappa, Affc; Kostiainen, Mauri A.

    2016-06-01

    DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The effect of the polymer structure on the binding was investigated and the toxicity of the polymer-origami complexes evaluated. The study shows that all of the analyzed polymers had a suitable binding efficiency irrespective of the block structure. It was also observed that the toxicity of polymer-origami complexes was insignificant at the biologically relevant concentration levels. Besides brick-like DNA origamis, tubular origami carriers equipped with enzymes were also coated with the polymers. By adjusting the amount of cationic polymers that cover the DNA structures, we showed that it is possible to control the enzyme kinetics of the complexes. This work gives a starting point for further development of biocompatible and effective polycation-based block copolymers that can be used in coating different DNA origami nanostructures for various bioapplications.DNA origamis are fully tailored, programmable, biocompatible and readily functionalizable nanostructures that provide an excellent foundation for the development of sophisticated drug-delivery systems. However, the DNA origami objects suffer from certain drawbacks such as low cell-transfection rates and low stability. A great deal of studies on polymer-based transfection agents, mainly focusing on polyplex formation and toxicity, exists. In this study, the electrostatic binding between a brick-like DNA origami and cationic block-copolymers was explored. The

  20. Parametric study of Al and Al 2O 3 ceramic coatings deposited by air plasma spray onto polymer substrate

    NASA Astrophysics Data System (ADS)

    Guanhong, Sun; Xiaodong, He; Jiuxing, Jiang; Yue, Sun

    2011-06-01

    Aluminum and ceramic (Al 2O 3) coatings were deposited onto the polymer substrate by air plasma spray (APS) to improve the mechanical properties of the polymer surface. The effect of spray parameters (current and spray distance in this paper) on the phase composition, microstructure and mechanical properties was investigated. Shear adhesion strength between the coatings and the substrates was also examined. The results indicate that the deposition parameters have a significant effect on the phase composition, microstructure and mechanical properties of as-spayed coatings. The maximum shear adhesion strength of the bond coats was 5.21 MPa with the current of 180 A and 190 mm spray distance.