Science.gov

Sample records for porphyrin dimer-faced self-assembled

  1. Intramolecular energy transfer within butadiyne-linked chlorophyll and porphyrin dimer-faced, self-assembled prisms.

    PubMed

    Kelley, Richard F; Lee, Suk Joong; Wilson, Thea M; Nakamura, Yasuyuki; Tiede, David M; Osuka, Atsuhiro; Hupp, Joseph T; Wasielewski, Michael R

    2008-04-02

    The synthesis and photophysical properties of butadiyne-linked chlorophyll and porphyrin dimers in toluene solution and in several self-assembled prismatic structures are described. The butadiyne linkage between the 20-positions of the macrocycles results in new electronic transitions polarized along the long axes of the dimers. These transitions greatly increase the ability of these dimers to absorb the solar spectrum over a broad wavelength range. Femtosecond transient absorption spectroscopy reveals the relative rate of rotation of the macrocycles around the butadiyne bond joining them. Following addition of 3-fold symmetric, metal-coordinating ligands, both macrocyclic dimers self-assemble into prismatic structures in which the dimers comprise the faces of the prisms. These structures were confirmed by small-angle X-ray scattering experiments in solution using a synchrotron source. Photoexcitation of the prismatic assemblies reveals that efficient, through-space energy transfer occurs between the macrocyclic dimers within the prisms. The distance dependence of energy transfer between the faces of the prisms was observed by varying the size of the prismatic assemblies through the use of 3-fold symmetric ligands having arms with different lengths. These results show that self-assembly of discrete macrocyclic prisms provides a useful new strategy for controlling singlet exciton flow in antenna systems for artificial photosynthesis and solar cell applications.

  2. Intramolecular energy transfer with butadiyne-linked chlorophyll and porphyrin dimer-faced, self-assembled prisms.

    SciTech Connect

    Kelley, R. F.; Lee, S. J.; Wilson, T. M.; Nakamura, Y.; Tiede, D. M.; Osuka, A.; Hupp, J. T.; Wasielewski, M. R.; SUF-USR; Chemical Sciences and Engineering Division; Northwestern Univ.; Kyoto Univ.

    2008-01-01

    The synthesis and photophysical properties of butadiyne-linked chlorophyll and porphyrin dimers in toluene solution and in several self-assembled prismatic structures are described. The butadiyne linkage between the 20-positions of the macrocycles results in new electronic transitions polarized along the long axes of the dimers. These transitions greatly increase the ability of these dimers to absorb the solar spectrum over a broad wavelength range. Femtosecond transient absorption spectroscopy reveals the relative rate of rotation of the macrocycles around the butadiyne bond joining them. Following addition of 3-fold symmetric, metal-coordinating ligands, both macrocyclic dimers self-assemble into prismatic structures in which the dimers comprise the faces of the prisms. These structures were confirmed by small-angle X-ray scattering experiments in solution using a synchrotron source. Photoexcitation of the prismatic assemblies reveals that efficient, through-space energy transfer occurs between the macrocyclic dimers within the prisms. The distance dependence of energy transfer between the faces of the prisms was observed by varying the size of the prismatic assemblies through the use of 3-fold symmetric ligands having arms with different lengths. These results show that self-assembly of discrete macrocyclic prisms provides a useful new strategy for controlling singlet exciton flow in antenna systems for artificial photosynthesis and solar cell applications.

  3. Photocontrol over cooperative porphyrin self-assembly with phenylazopyridine ligands.

    PubMed

    Hirose, Takashi; Helmich, Floris; Meijer, E W

    2013-01-02

    The cooperative self-assembly of chiral zinc porphyrins is regulated by a photoresponsive phenylazopyridine ligand. Porphyrin stacks depolymerize into dimers upon axial ligation and the strength of the coordination is regulated by its photoinduced isomerization, which shows more than 95 % conversion ratio for both photostationary states.

  4. Self-assembling discotic liquid crystal porphyrin into more controllable ordered nanostructure mediated by fluorophobic effect

    SciTech Connect

    Zhou, Xiaoli; Kang, Shin-Woong; Kumar, Satyendra; Li, Quan

    2009-09-02

    The novel nanoscale discotic liquid crystal porphyrin with partial chain perfluorination, which has the same basic structure as the best photoreceptor in nature (chlorophyll), shows an exceptionally enhanced tendency to self-assemble into ordered nanostructure. Defect-free homeotropically aligned fluorinated porphyrin thin films were, for the first time, fabricated and characterised. The ability to self-assemble large {pi}-conjugated discotic molecules into highly ordered nanostructure via partial chain perfluorination provides new insight for the bottom-up nanofabrication of molecular devices. The controllable ordered porphyrin nanostructure with directed molecular arrangement holds great promise for use in high-performance electronic devices.

  5. Cooperative self-assembly of porphyrins with polymers possessing bioactive functions.

    PubMed

    Zhao, Lizhi; Qu, Rui; Li, Ang; Ma, Rujiang; Shi, Linqi

    2016-11-15

    Natural porphyrin derivatives possess many interesting functions in biological systems. They are integrated into proteins that are essential for biological activities. Many efforts have been dedicated to mimic the microenvironment and augment the function of porphyrin/protein scaffolds. To achieve such goals, self-assembly has become one of the popular methods to construct porphyrin/protein-mimicking materials owing to its various choices of building blocks and a simple preparation process over chemical modification. Desirable characteristics of building blocks for protein mimicking include high molecular weight, predictable conformations in solution, and appropriate functional residuals. With these aims in mind, polymers are ideal candidates due to their multiple-level hierarchies derived from their chemical and spatial structures. In this review, design strategies for the cooperative self-assembly of porphyrins with polymers and the main efforts towards the implementation of porphyrin/polymer assembly for biomimetic composites with bioactive functions will be addressed.

  6. Electron-Triggered Metamorphism in Porphyrin-Based Self-Assembled Coordination Polymers.

    PubMed

    Kahlfuss, Christophe; Denis-Quanquin, Sandrine; Calin, Nathalie; Dumont, Elise; Garavelli, Marco; Royal, Guy; Cobo, Saioa; Saint-Aman, Eric; Bucher, Christophe

    2016-11-23

    Viologen-centered electron transfer is used to trigger a complete dissociation of a porphyrin-based supramolecular architecture. In the oxidized state, self-assembly is induced by iterative association of individual porphyrin-based tectons. Dissociation of the self-assembled species is actuated upon changing the redox state of the bipyridium units involved in the tectons from their dicationic state to their radical cation state, the driving force of the disassembling process being the formation of an intramolecularly locked conformation partly stabilized by π-dimerization of both viologen cation radicals.

  7. Photoinduced electron transfer from rail to rung within a self-assembled oligomeric porphyrin ladder

    SciTech Connect

    She, Chunxing; Lee, Suk Joong; McGarrah, James E.; Vura-Weis, Josh; Wasielewski, Michael; Chen, Hanning; Schatz, George C.; Ratner, Mark A.; Hupp, Joseph T.

    2010-01-01

    Photoinduced electron transfer in a self-assembled supramolecular ladder structure comprising oligomeric porphyrin rails and ligated dipyridyltetrazine rungs was characterized by transient absorption spectroscopy and transient direct current photoconductivity to be mainly from an oligomer (rail) to the center of a terminal tetrazine (rung), with the remaining hole being delocalized on the oligomer and subsequent charge recombination in 0.19 ns.

  8. Synthesis and photophysical studies of self-assembled multicomponent supramolecular coordination prisms bearing porphyrin faces.

    PubMed

    Shi, Yanhui; Sánchez-Molina, Irene; Cao, Changsheng; Cook, Timothy R; Stang, Peter J

    2014-07-01

    Multicomponent self-assembly, wherein two unique donor precursors are combined with a single metal acceptor instead of the more common two-component assembly, can be achieved by selecting Lewis-basic sites and metal nodes that select for heteroligated coordination spheres. Platinum(II) ions show a thermodynamic preference for mixed pyridyl/carboxylate coordination environments and are thus suitable for such designs. The use of three or more unique building blocks increases the structural complexity of supramolecules. Herein, we describe the synthesis and characterization of rectangular prismatic supramolecular coordination complexes (SCCs) with two faces occupied by porphyrin molecules, motivated by the search for new multichromophore complexes with promising light-harvesting properties. These prisms are obtained from the self-assembly of a 90° Pt(II) acceptor with a meso-substituted tetrapyridylporphyrin (TPyP) and dicarboxylate ligands. The generality of this self-assembly reaction is demonstrated using five dicarboxylate ligands, two based on a rigid central phenyl ring and three alkyl-spaced variants, to form a total of five free-base and five Zn-metallated porphyrin prisms. All 10 SCCs are characterized by (31)P and (1)H multinuclear NMR spectroscopy and electrospray ionization mass spectrometry, confirming the structure of each self-assembly and the stoichiometry of formation. The photophysical properties of the resulting SCCs were investigated revealing that the absorption and emission properties of the free-base and metallated porphyrin prisms preserve the spectral features associated with free TPyP.

  9. Biological Photothermal Nanodots Based on Self-Assembly of Peptide-Porphyrin Conjugates for Antitumor Therapy.

    PubMed

    Zou, Qianli; Abbas, Manzar; Zhao, Luyang; Li, Shukun; Shen, Guizhi; Yan, Xuehai

    2017-02-08

    Photothermal agents can harvest light energy and convert it into heat, offering a targeted and remote-controlled way to destroy carcinomatous cells and tissues. Inspired by the biological organization of polypeptides and porphyrins in living systems, here we have developed a supramolecular strategy to fabricate photothermal nanodots through peptide-modulated self-assembly of photoactive porphyrins. The self-assembling nature of porphyrins induces the formation of J-aggregates as substructures of the nanodots, and thus enables the fabrication of nanodots with totally inhibited fluorescence emission and singlet oxygen production, leading to a high light-to-heat conversion efficiency of the nanodots. The peptide moieties not only provide aqueous stability for the nanodots through hydrophilic interactions, but also provide a spatial barrier between porphyrin groups to inhibit the further growth of nanodots through the strong π-stacking interactions. Thermographic imaging reveals that the conversion of light to heat based on the nanodots is efficient in vitro and in vivo, enabling the nanodots to be applied for photothermal acoustic imaging and antitumor therapy. Antitumor therapy results show that these nanodots are highly biocompatible photothermal agents for tumor ablation, demonstrating the feasibility of using bioinspired nanostructures of self-assembling biomaterials for biomedical photoactive applications.

  10. Self-assembly of a chiral porphyrin at surfaces

    NASA Astrophysics Data System (ADS)

    Iavicoli, Patrizia; Linares, Mathieu; Pérez del Pino, Ángel; Lazzaroni, Roberto; Amabilino, David B.

    2008-10-01

    Evaporation of solutions of a new synthetic tetra meso-amidophenyl-substituted porphyrin derivative on graphite leads to different morphologies at the air-solid interface, whose nature depends on the solvent in which the molecule was dissolved. Fibres-which were shown to be a stable aggregate form of the compound by molecular modelling-are observed by AFM, although they do not seem to have the structure which was predicted. The reason for this situation appears to be the dominance of surface-molecule interactions over those between the molecules themselves. On mica surfaces, dewetting takes place, leading to relatively well-defined monolayer and bilayer domains.

  11. Tetraphenylethene-based star shaped porphyrins: synthesis, self-assembly, and optical and photophysical study.

    PubMed

    Rananaware, Anushri; Bhosale, Rajesh S; Ohkubo, Kei; Patil, Hemlata; Jones, Lathe A; Jackson, Sam L; Fukuzumi, Shunichi; Bhosale, Sidhanath V; Bhosale, Sheshanath V

    2015-04-17

    Supramolecular self-assembly and self-organization are simple and convenient ways to design and create controlled assemblies with organic molecules, and they have provoked great interest due to their potential applications in various fields, such as electronics, photonics, and light-energy conversion. Herein, we describe the synthesis of two π-conjugated porphyrin molecules bearing tetraphenylethene moieties with high fluorescence quantum yield. Photophysical and electrochemical studies were conducted to understand the physical and redox properties of these new materials, respectively. Furthermore, these derivatives were used to investigate self-assembly via the solvophobic effect. The self-assembled aggregation was performed in nonpolar and polar organic solvents and forms nanospheres and ring-like nanostructures, respectively. The solution based aggregation was studied by means of UV-vis absorption, emission, XRD, and DLS analyses. Self-assembled ring-shape structures were visualized by SEM and TEM imaging. This ring-shape morphology of nanosized macromolecules might be a good candidate for the creation of artificial light-harvesting nanodevices.

  12. Two-dimensional self-assembly of amphiphilic porphyrins on a dynamically shrinking droplet surface.

    PubMed

    Numata, Munenori; Takigami, Yusuke; Hirose, Naoya; Sakai, Ryoichiro

    2014-03-14

    Developing a new field of molecular self-assembly in the sub-micrometer regime-with precision as high as that used to make discrete nano-sized molecular architectures through molecular design-is a major challenge for supramolecular chemistry. At present, however, there is no effective strategy for controlling the assembling molecules when their quantity is greater than one thousand. Herein, we propose a potential solution by exploiting a novel supramolecular system in conjunction with dynamically shrinking oil droplets, enabling more than a thousand component molecules to organize simultaneously into the form of sub-micrometer-scale ring structures. In our developed system, amphiphilic porphyrins, having potential two-dimensional assembling ability, were compartmentalized into droplets with narrow distributions and molecular numbers. These droplets were subsequently transformed into discrete ring-like structures during the process of solvent removal from the inner organic layer, i.e., shrinking the droplets. Unique self-assembled structures, which are not accessible through conventional supramolecular strategies, can be selectively created depending on the initial stage of the droplet.

  13. Spin relaxation in graphene with self-assembled cobalt porphyrin molecules

    NASA Astrophysics Data System (ADS)

    Omar, S.; Gurram, M.; Vera-Marun, I. J.; Zhang, X.; Huisman, E. H.; Kaverzin, A.; Feringa, B. L.; van Wees, B. J.

    2015-09-01

    In graphene spintronics, interaction of localized magnetic moments with the electron spins paves a new way to explore the underlying spin-relaxation mechanism. A self-assembled layer of organic cobalt porphyrin (CoPP) molecules on graphene provides a desired platform for such studies via the magnetic moments of porphyrin-bound cobalt atoms. In this work a study of spin-transport properties of graphene spin-valve devices functionalized with such CoPP molecules as a function of temperature via nonlocal spin-valve and Hanle spin-precession measurements is reported. For the functionalized (molecular) devices, we observe a decrease in the spin-relaxation time τs even up to 50%, which could be an indication of enhanced spin-flip scattering of the electron spins in graphene in the presence of the molecular magnetic moments. The effect of the molecular layer is masked for low-quality samples (low mobility), possibly due to dominance of Elliot-Yafet-type spin relaxation mechanisms.

  14. Photoinduced processes in self-assembled porphyrin/perylene bisimide metallosupramolecular boxes.

    PubMed

    Indelli, M Teresa; Chiorboli, Claudio; Scandola, Franco; Iengo, Elisabetta; Osswald, Peter; Würthner, Frank

    2010-11-18

    Two new supramolecular boxes, (ZnMC)(2)(rPBI)(2) and (ZnMC)(2)(gPBI)(2), have been obtained by axial coordination of N,N'-dipyridyl-functionalized perylene bisimide (PBI) dyes to the zinc ion centers of two 2+2 porphyrin metallacycles (ZnMC = [trans,cis,cis-RuCl(2)(CO)(2)(Zn·4'-cis-DPyP)](2)). The two molecular boxes involve PBI pillars with different substituents at the bay area: the "red" PBI (rPBI = N,N'-di(4-pyridyl)-1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-tetracarboxylic acid bisimide) containing tert-butylphenoxy substituents and the "green" PBI (gPBI = N,N'-di(4-pyridyl)-1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-tetracarboxylic acid bisimide) bearing pyrrolidinyl substituents. Due to the rigidity of the modules and the simultaneous formation of four pyridine-zinc bonds, these discrete adducts self-assemble quantitatively and are remarkably stable in dichloromethane solution. The photophysical behavior of the new supramolecular boxes has been studied in dichloromethane by emission spectroscopy and ultrafast absorption techniques. A different photophysical behavior is observed for the two systems. In (ZnMC)(2)(rPBI)(2), efficient electron transfer quenching of both perylene bisimide and zinc porphyrin chromophores is observed, leading to a charge separated state, PBI(-)-Zn(+), in which a perylene bisimide unit is reduced and zinc porphyrin is oxidized. In the deactivation of the perylene bisimide localized excited state, an intermediate zwitterionic charge transfer state of type PBI(-)-PBI(+) seems to play a relevant role. In (ZnMC)(2)(gPBI)(2), singlet energy transfer from the Zn porphyrin chromophores to the perylene bisimide units occurs with an efficiency of 0.7. This lower than unity value is due to a competing electron transfer quenching, leading to the charge separated state PBI(-)-Zn(+). The distinct photophysical behavior of these two supramolecular boxes is interpreted in terms of energy changes occurring upon replacement of the "red" r

  15. Bottom-Up Hierarchical Self-Assembly of Chiral Porphyrins through Coordination and Hydrogen Bonds.

    PubMed

    Oliveras-González, Cristina; Di Meo, Florent; González-Campo, Arántzazu; Beljonne, David; Norman, Patrick; Simón-Sorbed, Maite; Linares, Mathieu; Amabilino, David B

    2015-12-23

    A series of chiral synthetic compounds is reported that shows intricate but specific hierarchical assembly because of varying positions of coordination and hydrogen bonds. The evolution of the aggregates (followed by absorption spectroscopy and temperature-dependent circular dichroism studies in solution) reveal the influence of the proportion of stereogenic centers in the side groups connected to the chromophore ring in their optical activity and the important role of pyridyl groups in the self-assembly of these chiral macrocycles. The optical activity spans 2 orders of magnitude depending on composition and constitution. Two of the aggregates show very high optical activity even though the isolated chromophores barely give a circular dichroism signal. Molecular modeling of the aggregates, starting from the pyridine-zinc(II) porphyrin interaction and working up, and calculation of the circular dichroism signal confirm the origin of this optical activity as the chiral supramolecular organization of the molecules. The aggregates show a broad absorption range, between approximately 390 and 475 nm for the transitions associated with the Soret region alone, that spans wavelengths far more than the isolated chromophore. The supramolecular assemblies of the metalloporphyrins in solution were deposited onto highly oriented pyrolitic graphite in order to study their hierarchy in assembly by atomic force microscopy. Zero and one-dimensional aggregates were observed, and a clear dependence on deposition temperature was shown, indicating that the hierarchical assembly took place largely in solution. Moreover, scanning electron microscopy images of porphyrins and metalloporphyrins precipitated under out-of-equilibrium conditions showed the dependence of the number and position of chiral amide groups in the formation of a fibrillar nanomaterial. The combination of coordination and hydrogen bonding in the complicated assembly of these molecules-where there is a clear hierarchy

  16. Rational syntheses of cyclic hexameric porphyrin arrays for studies of self-assembling light-harvesting systems.

    PubMed

    Yu, L; Lindsey, J S

    2001-11-02

    oxaporphyrin, have been synthesized for use as guests in the cyclic hexamers, affording self-assembled arrays for light-harvesting studies.

  17. Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems

    PubMed Central

    Li, Mao; Ishihara, Shinsuke; Ji, Qingmin; Akada, Misaho; Hill, Jonathan P; Ariga, Katsuhiko

    2012-01-01

    Current nanotechnology based on top-down nanofabrication may encounter a variety of drawbacks in the near future so that development of alternative methods, including the so-called bottom-up approach, has attracted considerable attention. However, the bottom-up strategy, which often relies on spontaneous self-assembly, might be inefficient in the development of the requisite functional materials and systems. Therefore, assembly processes controlled by external stimuli might be a plausible strategy for the development of bottom-up nanotechnology. In this review, we demonstrate a paradigm shift from self-assembly to commanded assembly by describing several examples of assemblies of typical functional molecules, i.e. porphyrins and fullerenes. In the first section, we describe recent progress in the design and study of self-assembled and co-assembled supramolecular architectures of porphyrins and fullerenes. Then, we show examples of assembly induced by external stimuli. We emphasize the paradigm shift from self-assembly to commanded assembly by describing the recently developed electrochemical-coupling layer-by-layer (ECC-LbL) methodology. PMID:27877511

  18. Photophysics of self-assembled zinc porphyrin-bidentate diamine ligand complexes.

    PubMed

    Danger, Brook R; Bedient, Krysta; Maiti, Manisankar; Burgess, Ian J; Steer, Ronald P

    2010-10-21

    The effects of complexation--by bidentate nitrogen-containing ligands such as pyrazine and 4,4'-bipyridine commonly used for porphyrin self-assembly--on the photophysics of the model metalloporphyrin, ZnTPP, are reported. Ligation to form the 5-coordinate species introduces an intramolecular charge transfer (ITC) state that, depending on the oxidation and reduction potentials of the electron donor and acceptor, can become involved in the excited state relaxation processes. For ZnTPP, ligation with pyridine has little effect on excited state relaxation following either Q-band or Soret band excitation. However, coordination of ZnTPP with pyrazine and bipyridine causes the S(2) (Soret) state of the ligated species to decay almost exclusively via an S(2)-ICT-S(1) pathway, while affecting the S(1) decay route only slightly. In these 5-coordinate species the S(2)-ICT-S(1) decay route is ultrafast and nearly quantitative. Literature redox data for other bidentate ligands such as DABCO and multidentate ligands commonly used for pophyrin assembly suggest that the ITC states introduced by them could also modify the excited state relaxation dynamics of a wide variety of multiporphyrin arrays.

  19. Self-assembly of large-scale aggregates of porphyrin from its dimers and their absorption and luminescence properties

    NASA Astrophysics Data System (ADS)

    Udal'tsov, A. V.; Kazarin, L. A.; Sweshnikov, A. A.

    2001-05-01

    Properties of aggregates of protonated meso-tetraphenylporphine (TPP) dimers have been investigated by absorption and luminescence spectroscopies and scanning electron microscopy. It was found that the absorption and fluorescence spectra obtained at a low and several times higher concentration of porphyrin differ considerably. The changes in absorption spectra of TPP in the water-THF-glycerol (84:6:10, v/v) mixture in the presence of 0.4 N HCl with time and the appearance of a green precipitate after several days indicate aggregation of the porphyrin. The near IR emission at 1000 nm, which is assigned to the fluorescence of donor-acceptor water-porphyrin dimeric complex, is revealed in the fluorescence spectra of TPP in aqueous solution of THF in the presence of 0.4 N HCl at the low concentration of porphyrin on excitation at 465 nm. In contrast, the near IR emission is not observed in the solution with several times higher concentration of porphyrin, but a shoulder at ca 800 nm is appreciable in the corresponding spectrum. The large-scale aggregates of TPP with sizes approximately from 1 μm to several micrometers are found in thin films of the protonated porphyrin. It is proposed that the aggregates are formed as a result of self-assembly from different protonated porphyrin dimers and have an ordered structure.

  20. Photoinitiated electron transfer in zinc porphyrin-perylenediimide cruciforms and their self-assembled oligomers.

    PubMed

    Conron, Sarah M Mickley; Shoer, Leah E; Smeigh, Amanda L; Ricks, Annie Butler; Wasielewski, Michael R

    2013-02-21

    Two X-shaped, cruciform electron donor(2)-acceptor-acceptor'(2) (D(2)-A-A'(2)) molecules, 1 and 2, in which D = zinc 5-phenyl-10,15,20-tripentylporphyrin (ZnTPnP) or zinc 5,10,15,20-tetraphenylporphyrin (ZnTPP), respectively, A = pyromellitimide (PI), and A' = perylene-3,4:9,10-bis(dicarboximide) (PDI), were prepared to study self-assembly motifs that promote photoinitiated charge separation followed by electron and hole transport through π-stacked donors and acceptors. PDI secondary electron acceptors were chosen because of their propensity to form self-ordered, π-stacked assemblies in solution, while the ZnTPnP and ZnTPP donors were selected to test the effect of peripheral substituent steric interactions on the π-stacking characteristics of the cruciforms. Small- and wide-angle X-ray scattering measurements in toluene solution reveal that 1 assembles into a π-stacked structure having an average of 5 ± 1 molecules, when [1] =/~ 10(-5) M, while 2 remains monomeric. Photoexcitation of the π-stacked structure of 1 results in formation of ZnTPnP(•+)-PI-PDI(•-) in τ(CS1) = 0.3 ps, which is nearly 100-fold faster than the formation of ZnTPnP(•+)-PI(•-) in a model system lacking the PDI acceptor. The data are consistent with a self-assembled structure for 1 in which the majority of the intermolecular interactions have the ZnTPnP donor of one monomer cofacially π-stacked with the PDI acceptor of a neighboring monomer in a crisscrossed fashion. In contrast, 2 remains monomeric in toluene, so that photoexcitation of ZnTPP results in the charge separation reaction sequence: (1*)ZnTPP-PI-PDI → ZnTPP(•+)-PI(•-)-PDI → ZnTPP(•+)-PI-PDI(•-), where τ(CS1) = 33 ps and τ(CS2) = 239 ps. The perpendicular orientation of ZnTPnP and ZnTPP relative to PDI in 1 and 2 is designed to decrease the porphyrin-PDI distance without greatly decreasing the overall number of bonds linking them. This serves to decrease the Coulomb energy penalty required to produce D

  1. Structure and excited state relaxation dynamics in nanoscale self-assembled arrays: multiporphyrin complexes, porphyrin-quantum dot composites

    NASA Astrophysics Data System (ADS)

    Zenkevich, E. I.; von Borczyskowski, C.

    2005-06-01

    Self-assembled nanoscale arrays of controllable geometry and composition (up to 8 tetrapyrroles) have been formed via non-covalent binding interactions of the meso-phenyl bridged Zn-octaethylporphyrin chemical dimers or trimers with di- /tetrapyridyl substituted porphyrin extra-ligands. In these complexes using steady-state and time-resolved (ps fluorescence and fs pump-probe) measurements pathways and efficiencies of the energy transfer photoinduced charge separation as well as exchange d-π effects have been studied in solutions of variable polarity at 77-293 K. The same principles of aggregation via the key-hole scheme "Zn-pyridyl" have been used also for the surface passivation of pyridylsubstituted tetrapyrroles on the coreshell semiconductor CdSe/ZnS quantum dots (QD) showing quantum confinement effects. Picosecond time-resolved and steady-state data reveal that CdSe/ZnS QD emission is multiexponential and the efficiency of its quenching by attached porphyrins (due to energy transfer and photoinduced charge separation) depends strongly on the number of anchoring groups their arrangement in the porphyrin molecule as well as on QD size and number of ZnS monolayers. The analysis of spectroscopic and kinetic findings reveals that on average only ~l/5 porphyrin molecules are assembled on the QD and a limited number of "vacancies" accessible for porphyrin attachment is available on the QD surface.

  2. Mesoscopic helical architectures via self-assembly of porphyrin-based discotic systems.

    PubMed

    Vela, Sonia; Berrocal, José Augusto; Atienza, Carmen; Meijer, E W; Martín, Nazario

    2017-04-06

    Mesoscopic super-helices with preferred helicity have been serendipitously formed from the self-assembly of electroactive extended core discotic molecules. The investigation at dilute concentrations reveals intramolecular hydrogen-bonding and π-π stacking interactions as the driving force of the chiral self-assembly at different length scales.

  3. Development and characterization of a pressure-sensitive luminescent coating based on Pt(II)-porphyrin self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Sakamura, Y.; Suzuki, T.; Kawabata, S.

    2015-06-01

    A pressure-sensitive luminescent coating (PSLC) applicable to the visualization of pressure distributions in micro-scale flow devices was developed. Pt(II)-porphyrin was synthesized and covalently attached to the surface of indium tin oxide (ITO) glass plates by a self-assembled monolayer (SAM) process. The UV-visible absorption spectrum, pressure and temperature sensitivities and photostability of the PSLC were then measured to characterize the developed PSLC. It was found that (a) the chemisorption of the porphyrin did not greatly perturb the molecular orbitals of the porphyrin responsible for its photophysics, (b) the pressure dependency of the luminescent intensity of the PSLC obeyed a power function curve and the pressure sensitivities at 273, 293, 313 and 333 K were obtained in the pressure range from 5 to 120 kPa, (c) the luminescent intensity of the PSLC almost linearly decreased with temperature and the temperature sensitivities at 5, 40, 100 and 120 kPa evaluated in the temperature range from 273 to 333 K were -0.67, -0.72, -0.75 and -0.78%/K, respectively and (d) the decrease in the luminescent intensity of the PSLC after a 30 min exposure to an excitation light was 1.23% of its initial intensity and much smaller than that of Pt(II)-porphyrin absorbed on a TLC (thin-layer chromatography) sheet.

  4. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif

    NASA Astrophysics Data System (ADS)

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K.; Anson, Christopher E.; Powell, Annie K.; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N.; Coles, Simon J.; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G.; Balaban, Teodor Silviu

    2016-09-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.

  5. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine–phenylalanine motif

    PubMed Central

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K.; Anson, Christopher E.; Powell, Annie K.; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N.; Coles, Simon J.; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G.; Balaban, Teodor Silviu

    2016-01-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence. PMID:27582363

  6. Controlled perturbation of the thermodynamic equilibrium by microfluidic separation of porphyrin-based aggregates in a multi-component self-assembling system.

    PubMed

    Helmich, Floris; Meijer, E W

    2013-03-04

    In a microfluidic H-cell, a multi-component self-assembled system is brought out-of-equilibrium by changing the bimodal composition of porphyrin stacks and pyridine-capped dimers. Driven by their different diffusivities, diffusion-controlled separation in methylcyclohexane reveals different compositions when detected in-line and off-line, which demonstrates the kinetic behaviour of this metastable system. The microfluidic technique also proves to be highly equipped to determine diffusion constants of the different assemblies.

  7. Ionic self-assembled porphyrin-graphene composite for enhanced photocurrent response and electrochemical property

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Sun, Ruirui; Tang, Mingyi; Ren, Shi

    2017-02-01

    We have synthesized cationic mesa-tetra(4-pyridyl) porphine (TPyP)-reduced graphene oxide (RGO) hybrid structures through chemical reduction and subsequent ionic self-assembly. UV-vis spectroscopy, fluorescence emission spectroscopy and scanning and transmission electron microscopies are used to analyze the structures, which indicate that TPyP covalent bonds present between the double surface of RGO sheets. A reversible on/off photo-current density of 45.89 A/cm2 has been observed when the as-formed TPyP/RGO nanocomposite is placed in the environment of pulsed white-light illumination. In addition, an ultrasensitive electrochemical aptasensor could be fabricated by the as-prepared TPyP/RGO to detect thrombin. A linear response to thrombin has been observed with the as-formed electrochemical aptasensor in the concentration range of 1-1200 nM. Besides, the limitation of detection is determined to be 0.3 nM.

  8. Facile Fabrication and Photolectrochemical Properties of Porphyrin-Fullerene Assemblies by Self-Assembly and Surface Sol-Gel Processes

    NASA Astrophysics Data System (ADS)

    Akiyama, Tsuyoshi; Matsuoka, Ken‑ichi; Arakawa, Taichi; Kakutani, Keitaro; Miyazaki, Akinobu; Yamada, Sunao

    2006-04-01

    Ultrathin photoelectric conversion films consisting of a porphyrin-fullerene photoredox pair were fabricated by the combined use of room-temperature covalent-bonding and surface sol-gel processes. First, cysteamine was self-assembled on an indium-tin-oxide (ITO) electrode. The cysteamine-modified electrode was then immersed in C60 solution, giving immobilization of C60 via bond formation between the amino group of cysteamine and C60. Next, the C60-modified electrode was dipped in 2-ethanolamine solution to implant the hydroxy group to the immobilized C60 via the bond formation between C60 and the amino group; thus, the hydroxy group was exposed as the outermost layer. Then, Ti(OBu)4 and tetracarboxyporphyrin (TCPP) were alternately assembled on the C60 layer by the surface sol-gel process, to give an assembly of TCPP, titanium oxide species [Ti(O)], and C60 on the ITO electrode. The double layering of TCPP-Ti(O) was possible. The spectral characterization of the films was carried out. In the presence of sacrificial reagents, anodic photocurrents were generated from these modified electrodes. The incorporation of the C60 layer resulted in the substantial enhancement of the photocurrents as compared with that of the TCPP layer alone, suggesting effective electron-transfer reactions between TCPP and C60 that contribute to the photocurrent increase. The photocurrents increased by the double layering of the TCPP and Ti(O) layers.

  9. Self assembled films of porphyrins with amine groups at different positions: influence of their orientation on the corrosion inhibition and the electrocatalytic activity.

    PubMed

    Lokesh, Koodlur Sannegowda; De Keersmaecker, Michel; Adriaens, Annemie

    2012-06-26

    Self-assembled molecular films of two cobalt porphyrins with amine groups at different positions-(5,10,15,20-tetrakis-(2-aminophenyl) porphyrin-cobalt(II), [Co(II) (T(o-NH(2))PP)] and (5,10,15,20-tetrakis-(4-aminophenyl) porphyrin-cobalt(II), [Co(II)(T(p-NH(2))PP)]-were formed on a gold substrate. The functionalized surfaces were characterized using Raman spectroscopy, atomic force microscopy and electrochemical methods. Both modified gold surfaces completely mask the charge transfer of a [Fe(CN)(6)](3-/4-) redox couple in solution, indicating the layer is highly resistive in behavior. Electrochemical impedance spectroscopy analyses revealed that the porphyrin film with amine groups at ortho positions shows a higher charge-transfer resistance with a better protective behavior compared to the para position modified surface. Raman, AFM and EIS data suggests that an ortho amine positioned molecule forms a more compact layer compared to the para-positioned molecule. This can be explained in terms of their orientation on the gold surface. [Co(II)(T(o-NH(2))PP)] adopted a saddle shape orientation whereas [Co(II)(T(p-NH(2))PP)] adopted a flat orientation on the gold surface. The porphyrin modified gold electrode catalyzes the oxygen reduction at lower potentials compared to the bare gold electrode. The shift in the overvoltage was higher in case of molecules with flat orientation compared to the saddle shaped oriented porphyrin molecules on the surface.

  10. Structural reconstruction and spontaneous formation of Fe polynuclears: a self-assembly of Fe-porphyrin coordination chains on Au(111) revealed by scanning tunneling microscopy.

    PubMed

    Wang, Yuxu; Zhou, Kun; Shi, Ziliang; Ma, Yu-Qiang

    2016-06-07

    A self-assembled Fe-porphyrin coordination chain structure on a Au(111) surface is investigated by scanning tunneling microscopy (STM), revealing structural reconstruction resulting from an alternative change of molecular orientations and spontaneous formation of uniformly sized Fe polynuclears. The alternation of the molecular orientations is ascribed to the cooperation of the attractive coordination and the intermolecular steric repulsion as elucidated by high-resolution STM observations. Furthermore, chemical control experiments are carried out to determine the number of atoms in an Fe polynuclear, suggesting a tentative Fe dinuclear-module that serves not only as a coordination center to link porphyrin units together but also as a "dangling" site for further functionalization by a guest terpyridine ligand. The chain structure and the Fe polynuclears are stable up to 320 K as revealed by real-time STM scanning. Annealing at higher temperatures converts the chain structure into a two-dimensional coordination structure.

  11. Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers chemosensitivity in triple-negative breast cancer.

    PubMed

    Su, Shishuai; Ding, Yanping; Li, Yiye; Wu, Yan; Nie, Guangjun

    2016-02-01

    Triple-negative breast cancer is a malignant cancer type with a high risk of early recurrence and distant metastasis. Unlike other breast cancers, triple-negative breast cancer is lack of targetable receptors and, therefore, patients largely receive systemic chemotherapy. However, inevitable adverse effects and acquired drug resistance severely constrain the therapeutic outcome. Here we tailor-designed a porphyrin-based micelle that was self-assembled from a hybrid amphiphilic polymer comprising polyethylene glycol, poly (d, l-lactide-co-glycolide) and porphyrin. The bilayer micelles can be simultaneously loaded with two chemotherapeutic drugs with synergistic cytotoxicity and distinct physiochemical properties, forming a uniform and spherical nanostructure. The drug-loaded micelles showed a tendency to accumulate in the tumor and can be internalized by tumor cells for drug release in acidic organelles. Under near-infrared laser irradiation, high density of self-quenched porphyrins in the hydrophobic layer absorbed light efficiently and converted into an excited state, leading to the release of sufficient heat for photothermal therapy. The integration of localized photothermal effect and synergistic chemotherapy conferred great chemosensitivity to cancer cells and achieved tumor regression using about 1/10 of traditional drug dosage. As a result, chemotherapy-associated adverse effects were successfully avoided. Our present study established a novel porphyrin-based nanoplatform with photothermal activity and expanded drug loading capacity, providing new opportunities for challenging conventional chemotherapy and fighting against stubborn triple-negative breast cancer.

  12. A molecular photovoltaic system based on Dawson type polyoxometalate and porphyrin formed by layer-by-layer self assembly.

    PubMed

    Ahmed, Iftikhar; Farha, Rana; Goldmann, Michel; Ruhlmann, Laurent

    2013-01-18

    Films based on electrostatic interactions between tetracationic porphyrin and Dawson type polyoxometalate are formed by the so called layer-by-layer method. Their photovoltaic performances are investigated by photocurrent transient measurements which showed significant photocurrent response.

  13. Synthesis and surface self-assembly of [3]rotaxane-porphyrin conjugates: toward the development of a supramolecular surface tweezer for C60.

    PubMed

    Marois, Jean-Sébastien; Morin, Jean-François

    2008-10-07

    Surface immobilization of pristine C60 by supramolecular interactions is an attractive way to introduce C60 on surfaces since the pi-electron network and the electronic properties of C60 remain intact. Several hosts have been developed for surface complexation of C60. With few exceptions, the hosts reported to date are "electronically inert", limiting the potential applications of pristine C60-based devices. In this study, we present the synthesis and self-assembly of a potential tweezer-like host for C60 having a light-harvesting moiety and an electron-donating unit. More precisely, an azide-containing [3]rotaxane scaffold having ferrocene moieties as blocking group and thioctic acid as anchoring group for a gold surface has been synthesized. This [3]rotaxane has been self-assembled on gold in its protonated (NH2+) (1p) and neutral (NH) (1n) forms and characterized using electrochemistry, XPS, and contact angle measurements. The SAMs were functionalized with free-base and zinc porphyrin using copper-catalyzed 1,3-dipolar cycloaddition in optimized conditions. In combination with C60, this new host is expected to form a triad that could potentially be used as active building block in the preparation of nanostructured electrodes for photoelectrochemical application.

  14. Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy.

    PubMed

    Perdomo-Ortiz, Alejandro; Widom, Julia R; Lott, Geoffrey A; Aspuru-Guzik, Alán; Marcus, Andrew H

    2012-09-06

    Two-dimensional fluorescence spectroscopy (2D FS) is applied to determine the conformation and femtosecond electronic population transfer in a dimer of magnesium meso tetraphenylporphyrin. The dimers are prepared by self-assembly of the monomer within the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. A theoretical framework to describe 2D FS experiments is presented, and a direct comparison is made between the observables of this measurement and those of 2D electronic spectroscopy (2D ES). The sensitivity of the method to varying dimer conformation is explored. A global multivariable fitting analysis of linear and 2D FS data indicates that the dimer adopts a "bent T-shaped" conformation. Moreover, the manifold of singly excited excitons undergoes rapid electronic dephasing and downhill population transfer on the time scale of ∼95 fs. The open conformation of the dimer suggests that its self-assembly is favored by an increase in entropy of the local membrane environment.

  15. Structure vs. excitonic transitions in self-assembled porphyrin nanotubes and their effect on light absorption and scattering.

    PubMed

    Arteaga, Oriol; Canillas, Adolf; El-Hachemi, Zoubir; Crusats, Joaquim; Ribó, Josep M

    2015-12-28

    The optical properties of diprotonated meso-tetrakis(4-sulphonatophenyl)porphyrin (TPPS(4)) J-aggregates of elongated thin particles (nanotubes in solution and ribbons when deposited on solid interfaces) are studied by different polarimetric techniques. The selective light extinction in these structures, which depends on the alignment of the nanoparticle with respect to the polarization of light, is contributed by excitonic absorption bands and by resonance light scattering. The optical response as a function of the polarization of light is complex because, although the quasi-one-dimensional structure confines the local fields along the nanotube axis, there are two orthogonal excitonic bands, of H- and J-character, that can work in favor of or against the field confinement. Results suggest that resonance light scattering is the dominant effect in solid state preparations, i.e. in collective groups (bundles) of ribbons but in diluted solutions, i.e. with isolated nanotubes, the absorption at the excitonic transitions remains dominant and linear dichroism spectra can be a direct probe of the exciton orientations. Therefore, by analyzing scattering and absorption data we can determine the alignment of the excitonic bands within the nanoparticle, i.e. of the orientation of the basic 2D porphyrin architecture in the nanoparticle. This is a necessary first step for understanding the directions of energy transport, charge polarization and non-linear optical properties in these materials.

  16. Cooperativity and tunable excited state deactivation: modular self-assembly of depsipeptide dendrons on a Hamilton receptor modified porphyrin platform.

    PubMed

    Gnichwitz, Jan-Frederik; Wielopolski, Mateusz; Hartnagel, Kristine; Hartnagel, Uwe; Guldi, Dirk M; Hirsch, Andreas

    2008-07-02

    A series of novel supramolecular architectures were built around a tin tetraphenyl porphyrin platform 6--functionalized by a 2-fold 1-ethyl-3-3-(3-dimethylaminopropyl)carbodiimide (EDC) promoted condensation reaction--and chiral depsipeptide dendrons of different generations 1-4. Here, implementation of a Hamilton receptor provided the necessary means to keep the constituents together via strong hydrogen bonding. Characterization of all architectures has been performed, including 4 which is the fourth generation, on the basis of NMR and photophysical methods. In particular, several titration experiments were conducted suggesting positive cooperativity, an assessment that is based on association constants that tend to be higher for the second binding step than for the first step. Importantly, molecular modeling calculations reveal a significant deaggregation of the intermolecular network of 6 during the course of the first binding step. As a consequence, an improved accessibility of the second Hamilton receptor unit in 6 emerges and, in turn, facilitates the higher association constants. The features of the equilibrium, that is, the dynamic exchange of depsipeptide dendrons 1-4 with fullerene 5, was tested in photophysical reference experiments. These steady-state and time-resolved measurements showed the tunable excited-state deactivations of these complexes upon photoexcitation.

  17. Porphyrins

    NASA Astrophysics Data System (ADS)

    Gotelli, George R.; Wall, Jeffrey H.; Kabra, Pokar M.; Marton, Laurence J.

    Historically the term porphyria has been used since it was coined in 1871 to describe a purple colored material extracted from pathological feces (1). The first case of porphyria was reported in 1874, (2, 3), but until the 1930 Nobel Prize winning work of Hans Fischer on the synthesis of protoporphyrin, there was little more than academic interest in porphyrin analysis. During the forty years between 1930 and 1970, the biosynthetic pathways leading to the formation of heme, and the details of porphyrin metabolism, were elucidated. During this time quantitative methods for porphyrins in biological fluids used complex and laborious solvent extraction techniques, requiring large sample volumes and hours to complete. We now know that these methods only partially separated the complex mixture of porphyrins found in biological fluids. These solvent extraction procedures fractionated the porphyrins into two broad groups, uroporphyrins (octacarboxylic) and coproporphyrins (tetracarboxylic). However, intermediate carboxylated porphyrin containing 2, 3, 5, 6, and 7 carboxyl groups are now known to exist in normal and pathlogical excreta, which were not differentiated, but which were included in the two broad uroporphyrin and copropophyrin groups.

  18. Star-shaped poly(L-lactide)-b-poly(lactobionamidoethyl methacrylate) with porphyrin core: synthesis, self-assembly, singlet oxygen research and recognition properties.

    PubMed

    Dai, Xiao-Hui; Wang, Zhi-Ming; Pan, Jian-Ming; Yuan, Si-Song; Yan, Yong-sheng; Liu, Dong-Ming; Sun, Lin

    2014-01-01

    Star-shaped porphyrin-cored poly(L-lactide)-b-poly(lactobionamidoethyl methacrylate) block copolymers (SPPLA-b-PLAMA) were synthesized via RAFT of unprotected Lactobionamidoethyl methacrylate (LAMA) in 1-methyl-2-pyrrolidinone (NMP) solution at 70 °C. The structure of this as-synthesized SPPLA-b-PLAMA block copolymer was thoroughly studied by nuclear magnetic resonance spectroscopy, gel permeation chromatography (GPC), and Fourier transforms infrared. Moreover, under the irradiation, such SPPLA-b-PGAMA copolymer exhibits efficient singlet oxygen generation (0.17) and indicates high fluorescence quantum yields (0.20). Notably, with UV-vis investigation, SPPLA-b-PLAMA showed a very specific recognition with RCA120 lectin. This will not only provide potentially prophyrin-cored star-shaped SPPLA-b-PLAMA block copolymers for targeted photodynamic therapy, but also improve the physical, biodegradation, biocompatibility properties of PLA-based biomaterials.

  19. Porphyrins

    DOEpatents

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.

    1996-01-01

    The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.

  20. Porphyrins

    DOEpatents

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.

    1996-11-05

    The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.

  1. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  2. Photovoltaic self-assembly.

    SciTech Connect

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  3. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  4. Synthesis of porphyrin nanostructures

    DOEpatents

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  5. Hierarchical cooperative binary ionic porphyrin nanocomposites.

    PubMed

    Tian, Yongming; Busani, Tito; Uyeda, Gregory H; Martin, Kathleen E; van Swol, Frank; Medforth, Craig J; Montaño, Gabriel A; Shelnutt, John A

    2012-05-18

    Cooperative binary ionic (CBI) solids comprise a versatile new class of opto-electronic and catalytic materials consisting of ionically self-assembled pairs of organic anions and cations. Herein, we report CBI nanocomposites formed by growing nanoparticles of one type of porphyrin CBI solid onto a second porphyrin CBI substructure with complementary functionality.

  6. Self-assembly via microfluidics.

    PubMed

    Wang, Lei; Sánchez, Samuel

    2015-12-07

    The self-assembly of amphiphilic building blocks has attracted extensive interest in myriad fields in recent years, due to their great potential in the nanoscale design of functional hybrid materials. Microfluidic techniques provide an intriguing method to control kinetic aspects of the self-assembly of molecular amphiphiles by the facile adjustment of the hydrodynamics of the fluids. Up to now, there have been several reports about one-step direct self-assembly of different building blocks with versatile and multi-shape products without templates, which demonstrated the advantages of microfluidics. These assemblies with different morphologies have great applications in various areas such as cancer therapy, micromotor fabrication, and controlled drug delivery.

  7. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    DOEpatents

    Lindsey, Jonathan S.; Chinnasamy, Muthiah; Fan, Dazhong

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  8. Self-assembling amphiphilic peptides†

    PubMed Central

    Dehsorkhi, Ashkan; Castelletto, Valeria; Hamley, Ian W

    2014-01-01

    The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined. © 2014 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons, Ltd. PMID:24729276

  9. Controlling porphyrin nanoarchitectures at solid interfaces.

    PubMed

    Hill, Jonathan P; Xie, Yongshu; Akada, Misaho; Wakayama, Yutaka; Shrestha, Lok Kumar; Ji, Qingmin; Ariga, Katsuhiko

    2013-06-18

    Two complementary examples of porphyrin nanoarchitectonics are presented. The fabrication of binary molecular monolayers using two different porphyrin molecules, tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin (1) and tetrakis(4-pyridyl)porphyrin (2), by deposition in ultrahigh vacuum was demonstrated. Two unusual heteromolecular monolayer structures were observed, with one exhibiting good separation of 1 molecules within the monolayer. Also, a synthetic nanoarchitectonic approach was used to prepare self-assembled molecular nanowires at a mica substrate. The nanowires could be observed to grow using atomic force microscopy (AFM), and the network structures of the nanowires could be influenced by manipulation using the AFM probe tip.

  10. Self-assembled magnetocapillary swimmers

    NASA Astrophysics Data System (ADS)

    Hubert, Maxime; Lumay, Geoffroy; Weyer, Floriane; Obara, Noriko; Vandewalle, Nicolas

    2013-11-01

    Capillary driven self-assembly consists of suspending small objects at a water-air interface. Due to the effects of wetting, gravity and surface tension, the interface is slightly deformed, inducing a net force between the particles. In the experiments we present, we consider the presence of a vertical magnetic field acting on soft-ferromagnetic particles. Dipole-dipole repulsion competes with capillary attraction such that 2d ordered structures are self-assembling. By adding a secondary horizontal and oscillating magnetic field, periodic deformations of the assembly are induced. Pulsating particle arrangements start to swim, either translating or rotating. The physical mechanisms and geometrical ingredients behind this cooperative locomotion are identified. Furthermore, strategies to control the swimming dynamics are proposed.

  11. Self-assembled plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Mühlig, Stefan; Cunningham, Alastair; Dintinger, José; Scharf, Toralf; Bürgi, Thomas; Lederer, Falk; Rockstuhl, Carsten

    2013-07-01

    Nowadays for the sake of convenience most plasmonic nanostructures are fabricated by top-down nanofabrication technologies. This offers great degrees of freedom to tailor the geometry with unprecedented precision. However, it often causes disadvantages as well. The structures available are usually planar and periodically arranged. Therefore, bulk plasmonic structures are difficult to fabricate and the periodic arrangement causes undesired effects, e.g., strong spatial dispersion is observed in metamaterials. These limitations can be mitigated by relying on bottom-up nanofabrication technologies. There, self-assembly methods and techniques from the field of colloidal nanochemistry are used to build complex functional unit cells in solution from an ensemble of simple building blocks, i.e., in most cases plasmonic nanoparticles. Achievable structures are characterized by a high degree of nominal order only on a short-range scale. The precise spatial arrangement across larger dimensions is not possible in most cases; leading essentially to amorphous structures. Such self-assembled nanostructures require novel analytical means to describe their properties, innovative designs of functional elements that possess a desired near- and far-field response, and entail genuine nanofabrication and characterization techniques. Eventually, novel applications have to be perceived that are adapted to the specifics of the self-assembled nanostructures. This review shall document recent progress in this field of research. Emphasis is put on bottom-up amorphous metamaterials. We document the state-of-the-art but also critically assess the problems that have to be overcome.

  12. Multifunctional self-assembled monolayers

    SciTech Connect

    Zawodzinski, T.; Bar, G.; Rubin, S.; Uribe, F.; Ferrais, J.

    1996-06-01

    This is the final report of at three year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The specific goals of this research project were threefold: to develop multifunctional self-assembled monolayers, to understand the role of monolayer structure on the functioning of such systems, and to apply this knowledge to the development of electrochemical enzyme sensors. An array of molecules that can be used to attach electrochemically active biomolecules to gold surfaces has been synthesized. Several members of a class of electroactive compounds have been characterized and the factors controlling surface modification are beginning to be characterized. Enzymes have been attached to self-assembled molecules arranged on the gold surface, a critical step toward the ultimate goal of this project. Several alternative enzyme attachment strategies to achieve robust enzyme- modified surfaces have been explored. Several means of juxtaposing enzymes and mediators, electroactive compounds through which the enzyme can exchange electrons with the electrode surface, have also been investigated. Finally, the development of sensitive biosensors based on films loaded with nanoscale-supported gold particles that have surface modified with the self-assembled enzyme and mediator have been explored.

  13. Self-Organized Porphyrinic Materials

    PubMed Central

    Drain, Charles Michael; Varotto, Alessandro; Radivojevic, Ivana

    2009-01-01

    The self-assembly and self-organization of porphyrins and related macrocycles enables the bottom-up fabrication of photonic materials for fundamental studies of the photophysics of these materials and for diverse applications. This rapidly developing field encompasses a broad range of disciplines including molecular design and synthesis, materials formation and characterization, and the design and evaluation of devices. Since the self-assembly of porphyrins by electrostatic interactions in the late 1980s to the present, there has been an ever increasing degree of sophistication in the design of porphyrins that self-assemble into discrete arrays or self-organize into polymeric systems. These strategies exploit ionic interactions, hydrogen bonding, coordination chemistry, and dispersion forces to form supramolecular systems with varying degrees of hierarchical order. This review concentrates on the methods to form supramolecular porphyrinic systems by intermolecular interactions other than coordination chemistry, the characterization and properties of these photonic materials, and the prospects for using these in devices. The review is heuristically organized by the predominant intermolecular interactions used and emphasizes how the organization affects properties and potential performance in devices. PMID:19253946

  14. Self-assembling magnetic "snakes"

    SciTech Connect

    2010-01-01

    Nickel particles float peacefully in a liquid medium until a giant snake seems to swim by and snatch several particles up, adding to its own mass. The self-assembled "snakes" act like biological systems, but they are not alive and are driven by a magnetic field. The research may someday offer some insight into the organization of life itself. Read more at Wired: http://www.wired.com/wiredscience/2009/03/snakes/ Research and video by Alex Snezhko and Igor Aronson, Argonne National Laboratory.

  15. Self-assembling RNA square

    SciTech Connect

    Dibrov, Sergey M.; McLean, Jaime; Parsons, Jerod; Hermann, Thomas

    2011-12-22

    The three-dimensional structures of noncoding RNA molecules reveal recurring architectural motifs that have been exploited for the design of artificial RNA nanomaterials. Programmed assembly of RNA nanoobjects from autonomously folding tetraloop-receptor complexes as well as junction motifs has been achieved previously through sequence-directed hybridization of complex sets of long oligonucleotides. Due to size and complexity, structural characterization of artificial RNA nanoobjects has been limited to low-resolution microscopy studies. Here we present the design, construction, and crystal structure determination at 2.2 {angstrom} of the smallest yet square-shaped nanoobject made entirely of double-stranded RNA. The RNA square is comprised of 100 residues and self-assembles from four copies each of two oligonucleotides of 10 and 15 bases length. Despite the high symmetry on the level of secondary structure, the three-dimensional architecture of the square is asymmetric, with all four corners adopting distinct folding patterns. We demonstrate the programmed self-assembly of RNA squares from complex mixtures of corner units and establish a concept to exploit the RNA square as a combinatorial nanoscale platform.

  16. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  17. Chemical reactions directed Peptide self-assembly.

    PubMed

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  18. Self-organization of self-assembled photonic materials into functional devices: Photo-switched conductors

    PubMed Central

    Drain, Charles Michael

    2002-01-01

    Linear porphyrin arrays self-assembled by either hydrogen bonding or metal ion coordination self-organize into lipid bilayer membranes. The length of the transmembrane assemblies is determined both by the thermodynamics of the intermolecular interactions in the supermolecule and by the dimension and physical chemical properties of the bilayer. Thus, the size of the porphyrin assembly can self-adjust to the thickness of the bilayer. An aqueous electron acceptor is placed on one side of the membrane and an electron donor is placed on the opposite side. When illuminated with white light, substantial photocurrents are observed. Only the assembled structures give rise to the photocurrent, as no current is observed from any of the component molecules. The fabrication of this photogated molecular electronic conductor from simple molecular components exploits several levels of self-assembly and self-organization. PMID:11943850

  19. Crystal engineering of porphyrin framework solids.

    PubMed

    Goldberg, Israel

    2005-03-14

    This article describes recent achievements made by us and other groups in targeted synthesis of porphyrin-based framework solids by various non-covalent mechanisms of molecular recognition. The self-assembly processes are effected in a tunable manner either by direct association of suitably designed porphyrin building blocks, or by their supramolecular aggregation through external linkers as metal ions and organic bi-dentate ligands. Many of these crystalline porphyrin materials exhibit open architectures and remarkable structural integrity, and their potential application for selective guest storage and molecular sieving is highlighted.

  20. Self-Assembly: How Nature Builds

    ERIC Educational Resources Information Center

    Jones, M. Gail; Falvo, Michael R.; Broadwell, Bethany; Dotger, Sharon

    2006-01-01

    Self-assembly or spontaneous assembly is a process in which materials build themselves without assistance. This process plays a central role in the construction of biological structures and materials such as cells, viruses, and bone, and also in abiotic processes like phase transitions and crystal formation. The principles of self-assembly help…

  1. Research on Self-Assembling Quantum Dots.

    DTIC Science & Technology

    1995-10-30

    0K. in a second phase of this contract we turned our efforts to the fabrication and studies of self assembled quantum dots . We first demonstrated a...method for producing InAs-GasAs self assembled quantum dots (SAD) using MBE. (AN)

  2. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  3. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  4. Molecular Self-Assembly at Metal-Electrolyte Interfaces

    PubMed Central

    Phan, Thanh Hai; Wandelt, Klaus

    2013-01-01

    The self-assembly of molecular layers has become an important strategy in modern design of functional materials. However, in particular, large organic molecules may no longer be sufficiently volatile to be deposited by vapor deposition. In this case, deposition from solution may be a promising route; in ionic form, these molecules may even be soluble in water. In this contribution, we present and discuss results on the electrochemical deposition of viologen- and porphyrin molecules as well as their co-adsorption on chloride modified Cu(100) and Cu(111) single crystal electrode surfaces from aqueous acidic solutions. Using in situ techniques like cyclic voltametry and high resolution scanning tunneling microscopy, as well as ex-situ photoelectron spectroscopy data the highly ordered self-assembled organic layers are characterized with respect to their electrochemical behavior, lateral order and inner conformation as well as phase transitions thereof as a function of their redox-state and the symmetry of the substrate. As a result, detailed structure models are derived and are discussed in terms of the prevailing interactions. PMID:23439555

  5. Integrated Nanosystems Templated by Self-assembled Virus Capsids

    NASA Astrophysics Data System (ADS)

    Stephanopoulos, Nicholas

    This dissertation presents the synthesis and modeling of multicomponent nanosystems templated by self-assembled virus capsids. The design principles, synthesis, analysis, and future directions for these capsid-based materials are presented. Chapter 1 gives an overview of the literature on the application of virus capsids in constructing nanomaterials. The uses of capsids in three main areas are considered: (1) as templates for inorganic materials or nanoparticles; (2) as vehicles for biological applications like medical imaging and treatment; and (3) as scaffolds for catalytic materials. In light of this introduction, an overview of the material in this dissertation is described. Chapters 2-4 all describe integrated nanosystems templated by bacteriophage MS2, a spherical icosahedral virus capsid. MS2 possesses an interior and exterior surface that can be modified orthogonally using bioconjugation chemistry to create multivalent, multicomponent constructs with precise localization of components attached to the capsid proteins. Chapter 2 describes the use of MS2 to synthesize a photocatalytic construct by modifying the internal surface with sensitizing chromophores and the external surface with a photocatalytic porphyrin. The chromophores absorbed energy that the porphyrin could not, and transferred it to the porphyrin via FRET through the protein shell. The porphyrin was then able to utilize the energy to carry out photocatalysis at new wavelengths. In Chapter 3, porphyrins were installed on the interior surface of MS2 and DNA aptamers specific for Jurkat leukemia T cells on the exterior surface. The dual-modified capsids were able to bind to Jurkat cells, and upon illumination the porphyrins generated singlet oxygen to kill them selectively over non-targeted cells. Chapter 4 explores integrating MS2 with DNA origami in order to arrange the capsids at larger length scales. Capsids modified with fluorescent dyes inside and single-stranded DNA outside were able to

  6. Self-Assembly Behavior of Pullulan Abietate

    NASA Astrophysics Data System (ADS)

    Gradwell, Sheila; Esker, Alan; Glasser, Wolgang; Heinze, Thomas

    2003-03-01

    Wood is one of nature's most fascinating biological composites due to its toughness and resistance to fracture properties. These properties stem from the self-assembly of cellulose microfibrils in an amorphous matrix of hemicellulose and lignin. In recent years, science has looked to nature for guidance in preparing synthetic materials with desirable physical properties. In order to study the self-assembly process in wood, a model system composed of a polysaccharide, pullulan abietate, and a biomimetic cellulose substrate prepared by the Langmuir-Blodgett technique has been developed. Interfacial tension and surface plasmon resonance measurements used to study the self-assembly process will be discussed for different pullulan derivatives.

  7. Computational design of protein self-assembly.

    PubMed

    Norn, Christoffer H; André, Ingemar

    2016-08-01

    Protein self-assembly is extensively used in nature to build functional biomolecules and provides a general approach to design molecular complexes with many intriguing applications. Although computational design of protein-protein interfaces remains difficult, much progress has recently been made in de novo design of protein assemblies with cyclic, helical, cubic, internal and lattice symmetries. Here, we discuss some of the underlying biophysical principles of self-assembly that influence the design problem and highlight methodological advances that have made self-assembly design a fruitful area of protein design.

  8. Microscale Self-Assembled Electrical Contacts

    DTIC Science & Technology

    2007-09-01

    scales. 23 References 1. Morris, C. J.; Stauth, S.A.; Parviz , B.A. Self-assembly for micro and nano scale packaging: steps toward self-packaging...IEEE Trans. Adv. Packag. 2005, 28, 600–611. 2 Stauth, S.; Parviz , B.A. Self-assembled silicon networks on plastic. Proceedings of the 13th Int...Conf. on Solid State Sens. Actuators (Transducers 󈧉), Seoul, Korea, 2005, 964–967. 3. Stauth, S. A;. Parviz , B.A. Self-assembled single

  9. Self-Assembly of Biomolecular Soft Matter

    PubMed Central

    Zha, R. Helen; Palmer, Liam C.; Cui, Honggang; Bitton, Ronit

    2014-01-01

    Self-assembly programmed by molecular structure and guided dynamically by energy dissipation is a ubiquitous phenomenon in biological systems that build functional structures from the nanoscale to macroscopic dimensions. This paper describes examples of one-dimensional self-assembly of peptide amphiphiles and the consequent biological functions that emerge in these systems. We also discuss here hierarchical self-assembly of supramolecular peptide nanostructures and polysaccharides, and some new results are reported on supramolecular crystals formed by highly charged peptide amphiphiles. Reflecting on presentations at this Faraday Discussion, the paper ends with a discussion of some of the future opportunities and challenges of the field. PMID:24611266

  10. Self-assembled Materials for Catalysis

    SciTech Connect

    Zhu, Kake; Wang, Donghai; Liu, Jun

    2009-01-01

    The purpose of this review is to highlight developments on self-assembled nanostructured materials (i.e. mesoporous and nanoparticle based materials) and their catalytic applications. Since there are some reviews available for metal-based nanoparticles as catalysts, this review will mainly focus on self-assembled oxide-based catalytic materials. The content includes: (1) Design and synthetic strategy toward self-assembled mesoporous catalysts; (2) Polyoxometalates (POMs) based nanocatalysts; (3) Dendrimers based nanocatalysts; (4) Shaped nanomaterials and catalytic applications. We show that self-assemblies of molecules, crystalline seeds, nano-building blocks into organized mesoscopic structures paved new roads for tailoring porosities of heterogeneous catalysts and catalytic active sites.

  11. Biologically-Based Self-Assembling Hydrogels

    DTIC Science & Technology

    2002-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014396 TITLE: Biologically-Based Self-Assembling Hydrogels DISTRIBUTION...Based Self-Assembling Hydrogels Brandon L. Seal and Alyssa Panitch Department of Bioengineering, Arizona State University Tempe, AZ 85287-9709, U.S.A...Factor Xllla substrate were synthesized and conjugated to methacroylated dextran or acrylated poly(ethylene glycol). Peptide-conjugated dextran was added

  12. Self Assembly and Pyroelectric Poling for Organics

    DTIC Science & Technology

    2015-07-06

    molecular phosphonic acid (PA) self-assembled monolayers (SAMs) have been developed for applications in organic field-effect transistors (OFETs) and graphene...and semiconducting molecular phosphonic acid (PA) self-assembled monolayers (SAMs) have been developed for applications in organic field-effect...appeal for organic semiconductor applications due to their low-cost processing, reduced material quantity needed compared to traditional organic thin

  13. Directed Self-Assembly of Nanodispersions

    SciTech Connect

    Furst, Eric M

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  14. From Solvolysis to Self-Assembly*

    PubMed Central

    Stang, Peter J.

    2009-01-01

    My sojourn from classical physical-organic chemistry and solvolysis to self-assembly and supramolecular chemistry, over the last forty years, is described. My contributions to unsaturated reactive intermediates, namely vinyl cations and unsaturated carbenes, along with my decade long involvement with polyvalent iodine chemistry, especially alkynyliodonium salts, as well as my more recent research with metal-ligand, coordination driven and directed self-assembly of finite supramolecular ensembles are discussed. PMID:19111062

  15. Self-assembly concepts for multicompartment nanostructures.

    PubMed

    Gröschel, André H; Müller, Axel H E

    2015-07-28

    Compartmentalization is ubiquitous to many biological and artificial systems, be it for the separate storage of incompatible matter or to isolate transport processes. Advancements in the synthesis of sequential block copolymers offer a variety of tools to replicate natural design principles with tailor-made soft matter for the precise spatial separation of functionalities on multiple length scales. Here, we review recent trends in the self-assembly of amphiphilic block copolymers to multicompartment nanostructures (MCNs) under (semi-)dilute conditions, with special emphasis on ABC triblock terpolymers. The intrinsic immiscibility of connected blocks induces short-range repulsion into discrete nano-domains stabilized by a third, soluble block or molecular additive. Polymer blocks can be synthesized from an arsenal of functional monomers directing self-assembly through packing frustration or response to various fields. The mobility in solution further allows the manipulation of self-assembly processes into specific directions by clever choice of environmental conditions. This review focuses on practical concepts that direct self-assembly into predictable nanostructures, while narrowing particle dispersity with respect to size, shape and internal morphology. The growing understanding of underlying self-assembly mechanisms expands the number of experimental concepts providing the means to target and manipulate progressively complex superstructures.

  16. Directed self-assembly of performance materials

    NASA Astrophysics Data System (ADS)

    Nealey, Paul

    Directed self-assembly (DSA) is a promising strategy for high-volume cost-effective manufacturing at the nanoscale. Over the past decades, manufacturing techniques have been developed with such remarkable efficiency that it is now possible to engineer complex systems of heterogeneous materials at the scale of a few tens of nanometers. Further evolution of these techniques, however, is faced with difficult challenges not only in feasibility of implementation at scales of 10 nm and below, but also in prohibitively high capital equipment costs. Materials that self-assemble, on the other hand, spontaneously form structures at the mesoscale, but the micrometer areas or volumes over which the materials self-assemble with adequate perfection in structure is incommensurate with the macroscopic dimensions of working devices and systems of devices of industrial relevance. Directed Self-Assembly (DSA) refers to the integration of self-assembling materials with traditional manufacturing processes. Here we will discuss DSA of block copolymers to revolutionize sub 10 nm lithography and the manufacture of integrated circuits and storage media, DSA of ex-situ synthesized nanoparticles for applications in nanophotonics, and DSA of liquid crystals for advanced optics.

  17. Self-assembly concepts for multicompartment nanostructures

    NASA Astrophysics Data System (ADS)

    Gröschel, André H.; Müller, Axel H. E.

    2015-07-01

    Compartmentalization is ubiquitous to many biological and artificial systems, be it for the separate storage of incompatible matter or to isolate transport processes. Advancements in the synthesis of sequential block copolymers offer a variety of tools to replicate natural design principles with tailor-made soft matter for the precise spatial separation of functionalities on multiple length scales. Here, we review recent trends in the self-assembly of amphiphilic block copolymers to multicompartment nanostructures (MCNs) under (semi-)dilute conditions, with special emphasis on ABC triblock terpolymers. The intrinsic immiscibility of connected blocks induces short-range repulsion into discrete nano-domains stabilized by a third, soluble block or molecular additive. Polymer blocks can be synthesized from an arsenal of functional monomers directing self-assembly through packing frustration or response to various fields. The mobility in solution further allows the manipulation of self-assembly processes into specific directions by clever choice of environmental conditions. This review focuses on practical concepts that direct self-assembly into predictable nanostructures, while narrowing particle dispersity with respect to size, shape and internal morphology. The growing understanding of underlying self-assembly mechanisms expands the number of experimental concepts providing the means to target and manipulate progressively complex superstructures.

  18. Porous one-dimensional nanostructures through confined cooperative self-assembly.

    PubMed

    Bai, Feng; Sun, Zaicheng; Wu, Huimeng; Haddad, Raid E; Coker, Eric N; Huang, Jian Yu; Rodriguez, Mark A; Fan, Hongyou

    2011-12-14

    We report a simple confined self-assembly process to synthesize nanoporous one-dimensional photoactive nanostructures. Through surfactant-assisted cooperative interactions (e.g., π-π stacking, ligand coordination, and so forth) of the macrocyclic building block, zinc meso-tetra (4-pyridyl) porphyrin (ZnTPyP), self-assembled ZnTPyP nanowires and nanorods with controlled diameters and aspect ratios are prepared. Electron microscopy characterization in combination with X-ray diffraction and gas sorption experiments indicate that these materials exhibit stable single-crystalline and high surface area nanoporous frameworks with well-defined external morphology. Optical characterizations using UV-vis spectroscopy and fluorescence imaging and spectroscopy show enhanced collective optical properties over the individual chromophores (ZnTPyP), favorable for exciton formation and transport.

  19. Palladium-catalyzed amination of meso-(bromophenyl)porphyrins with diamines and azamacrocycles.

    PubMed

    Mikhalitsyna, E A; Tyurin, V S; Khrustalev, V N; Lonin, I S; Beletskaya, I P

    2014-03-07

    Novel diamino and azamacrocycle functionalized porphyrins were efficiently synthesized by palladium-catalyzed amination of mono- and bis(meso-(bromophenyl))porphyrins. The optimization of reaction conditions allowed us to achieve high yields of products with substrates of different types. Supramolecular utility of the thus obtained aminoporphyrins was shown by investigations of processes of coordination self-assembly in solution by NMR and UV-Vis spectroscopy. The crystalline 1D-coordination polymer formed via self-assembly of N,N-dimethylethylenediamine substituted zinc porphyrin was characterized by X-ray diffraction.

  20. Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study

    NASA Astrophysics Data System (ADS)

    El Garah, M.; Santana Bonilla, A.; Ciesielski, A.; Gualandi, A.; Mengozzi, L.; Fiorani, A.; Iurlo, M.; Marcaccio, M.; Gutierrez, R.; Rapino, S.; Calvaresi, M.; Zerbetto, F.; Cuniberti, G.; Cozzi, P. G.; Paolucci, F.; Samorì, P.

    2016-07-01

    Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to control their organization at the supramolecular level. Such a tuning is particularly important when applied to sophisticated molecules combining functional units which possess specific electronic properties, such as electron/energy transfer, in order to develop multifunctional systems. Here we have synthesized two tetraferrocene-porphyrin derivatives that by design can selectively self-assemble at the graphite/liquid interface into either face-on or edge-on monolayer-thick architectures. The former supramolecular arrangement consists of two-dimensional planar networks based on hydrogen bonding among adjacent molecules whereas the latter relies on columnar assembly generated through intermolecular van der Waals interactions. Scanning Tunneling Microscopy (STM) at the solid-liquid interface has been corroborated by cyclic voltammetry measurements and assessed by theoretical calculations to gain multiscale insight into the arrangement of the molecule with respect to the basal plane of the surface. The STM analysis allowed the visualization of these assemblies with a sub-nanometer resolution, and cyclic voltammetry measurements provided direct evidence of the interactions of porphyrin and ferrocene with the graphite surface and offered also insight into the dynamics within the face-on and edge-on assemblies. The experimental findings were supported by theoretical calculations to shed light on the electronic and other physical properties of both assemblies. The capability to engineer the functional nanopatterns through self-assembly of porphyrins containing ferrocene units is a key step toward the bottom-up construction of multifunctional molecular nanostructures and nanodevices.Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to

  1. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  2. Self-assembled gelators for organic electronics.

    PubMed

    Babu, Sukumaran Santhosh; Prasanthkumar, Seelam; Ajayaghosh, Ayyappanpillai

    2012-02-20

    Nature excels at engineering materials by using the principles of chemical synthesis and molecular self-assembly with the help of noncovalent forces. Learning from these phenomena, scientists have been able to create a variety of self-assembled artificial materials of different size, shapes, and properties for wide ranging applications. An area of great interest in this regard is solvent-assisted gel formation with functional organic molecules, thus leading to one-dimensional fibers. Such fibers have improved electronic properties and are potential soft materials for organic electronic devices, particularly in bulk heterojunction solar cells. Described herein is how molecular self-assembly, which was originally proposed as a simple laboratory curiosity, has helped the evolution of a variety of soft functional materials useful for advanced electronic devices such as organic field-effect transistors and organic solar cells. Highlights on some of the recent developments are discussed.

  3. S-Layer Protein Self-Assembly

    PubMed Central

    Pum, Dietmar; Toca-Herrera, Jose Luis; Sleytr, Uwe B.

    2013-01-01

    Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports. PMID:23354479

  4. Theory of Programmable Hierarchic Self-Assembly

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei V.

    2011-06-01

    We present a theoretical analysis of the inverse problem in self-assembly. A particular scheme is proposed for building an arbitrary desired nanostructure out of self-assembled building blocks (“octopus” nanoparticles). The conditions for robust self-assembly of the target structure are identified. This includes the minimal number of “colors” needed to encode interparticle bonds, which are to be implemented as pairs of complementary DNA sequences. As a part of this analysis, it is demonstrated that a floppy network with thermal fluctuations, in a certain range of coordination numbers ⟨Z⟩, possesses entropic rigidity and can be described as a traditional elastic solid. The onset of the entropic rigidity, ⟨Z⟩=d+1, determines the minimal number of bond types per particle needed to encode the desired structure. Thermodynamic considerations give additional conditions for the implementation of this scheme.

  5. Self-assembly of lead chalcogenide nanocrystals.

    PubMed

    Quan, Zewei; Valentin-Bromberg, Loriana; Loc, Welley Siu; Fang, Jiye

    2011-05-02

    This review focuses on recent developments in the self-assembly of lead chalcogenide nanocrystals into two- and three-dimensional superstructures. Self-assembly is categorized by the shapes of building blocks, including nanospheres, nanocubes, nano-octahedra, and nanostars. In the section on nanospheres, rapid assemblies of lead chalcogenide-based multicomponent nanocrystals with additional components, such as semiconductors, noble metals, and magnetic nanocrystals, are further highlighted. In situ self-assembly of lead chalcogenide nanocrystals into one-dimensional nanostructures at elevated temperatures is also covered. Each section of this paper highlights examples extracted from recent publications. Finally, relatively novel properties and applications arising from lead chalcogenide superlattices as typical examples are also discussed.

  6. Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Wang, Yao; Xu, Yanshuang; Yan, Yun; Huang, Jianbin

    2016-08-01

    A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases.

  7. Self-assembly of chlorophenols in water

    PubMed Central

    Rogalska, Ewa; Rogalski, Marek; Gulik-Krzywicki, Tadeusz; Gulik, Annette; Chipot, Christophe

    1999-01-01

    In saturated solutions of some di- and trichlorophenols, structures with complex morphologies, consisting of thin, transparent sheets often coiling into helices and ultimately twisting into filaments, were observed under the optical microscope. Freeze-fracture electron microscopy, x-ray diffraction, phase diagrams, and molecular modeling were performed to elucidate the observed phenomena. Here, we present evidence that the chlorophenols studied, when interacting with water, self-assemble into bilayers. The fact that some chlorophenols form the same supramolecular structures as those described previously for structurally nonrelated surfactants sheds light on the mechanisms of self-assembly. PMID:10359753

  8. Self-assembling segmented coiled tubing

    DOEpatents

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  9. Remote control of self-assembled microswimmers

    NASA Astrophysics Data System (ADS)

    Grosjean, G.; Lagubeau, G.; Darras, A.; Hubert, M.; Lumay, G.; Vandewalle, N.

    2015-11-01

    Physics governing the locomotion of microorganisms and other microsystems is dominated by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when powered by an external magnetic field. More importantly, we demonstrate that trajectories can be fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary system spontaneously forms by self-assembly, allowing miniaturization and other possible applications such as cargo transport or solvent flows.

  10. Self-assembly of small peptidomimetic cyclophanes.

    PubMed

    Becerril, Jorge; Burguete, M Isabel; Escuder, Beatriu; Galindo, Francisco; Gavara, Raquel; Miravet, Juan F; Luis, Santiago V; Peris, Gabriel

    2004-08-20

    The self-assembly of a series of small peptidomimetic cyclophanes in organic solvents was studied. X-ray diffraction, NMR spectroscopy, and molecular modelling were used to understand the structural features of these self-assembling compounds both at the molecular and supramolecular level. The factors that could influence the formation of gels rather than crystals were studied and a model for the arrangement of molecules in the gel was proposed. Furthermore, scanning electron microscopy revealed that in some cases these compounds undergo a transcription of chirality when going from organogelator to helicoidal gel fibres.

  11. Remote control of self-assembled microswimmers

    PubMed Central

    Grosjean, G.; Lagubeau, G.; Darras, A.; Hubert, M.; Lumay, G.; Vandewalle, N.

    2015-01-01

    Physics governing the locomotion of microorganisms and other microsystems is dominated by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when powered by an external magnetic field. More importantly, we demonstrate that trajectories can be fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary system spontaneously forms by self-assembly, allowing miniaturization and other possible applications such as cargo transport or solvent flows. PMID:26538006

  12. Computing by molecular self-assembly.

    PubMed

    Jonoska, Nataša; Seeman, Nadrian C

    2012-08-06

    The paper reviews two computing models by DNA self-assembly whose proof of principal have recently been experimentally confirmed. The first model incorporates DNA nano-devices and triple crossover DNA molecules to algorithmically arrange non-DNA species. This is achieved by simulating a finite-state automaton with output where golden nanoparticles are assembled to read-out the result. In the second model, a complex DNA molecule representing a graph emerges as a solution of a computational problem. This supports the idea that in molecular self-assembly computing, it may be necessary to develop the notion of shape processing besides the classical approach through symbol processing.

  13. Nondeterministic self-assembly with asymmetric interactions

    NASA Astrophysics Data System (ADS)

    Tesoro, S.; Göpfrich, K.; Kartanas, T.; Keyser, U. F.; Ahnert, S. E.

    2016-08-01

    We investigate general properties of nondeterministic self-assembly with asymmetric interactions, using a computational model and DNA tile assembly experiments. By contrasting symmetric and asymmetric interactions we show that the latter can lead to self-limiting cluster growth. Furthermore, by adjusting the relative abundance of self-assembly particles in a two-particle mixture, we are able to tune the final sizes of these clusters. We show that this is a fundamental property of asymmetric interactions, which has potential applications in bioengineering, and provides insights into the study of diseases caused by protein aggregation.

  14. Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study.

    PubMed

    El Garah, M; Santana Bonilla, A; Ciesielski, A; Gualandi, A; Mengozzi, L; Fiorani, A; Iurlo, M; Marcaccio, M; Gutierrez, R; Rapino, S; Calvaresi, M; Zerbetto, F; Cuniberti, G; Cozzi, P G; Paolucci, F; Samorì, P

    2016-07-14

    Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to control their organization at the supramolecular level. Such a tuning is particularly important when applied to sophisticated molecules combining functional units which possess specific electronic properties, such as electron/energy transfer, in order to develop multifunctional systems. Here we have synthesized two tetraferrocene-porphyrin derivatives that by design can selectively self-assemble at the graphite/liquid interface into either face-on or edge-on monolayer-thick architectures. The former supramolecular arrangement consists of two-dimensional planar networks based on hydrogen bonding among adjacent molecules whereas the latter relies on columnar assembly generated through intermolecular van der Waals interactions. Scanning Tunneling Microscopy (STM) at the solid-liquid interface has been corroborated by cyclic voltammetry measurements and assessed by theoretical calculations to gain multiscale insight into the arrangement of the molecule with respect to the basal plane of the surface. The STM analysis allowed the visualization of these assemblies with a sub-nanometer resolution, and cyclic voltammetry measurements provided direct evidence of the interactions of porphyrin and ferrocene with the graphite surface and offered also insight into the dynamics within the face-on and edge-on assemblies. The experimental findings were supported by theoretical calculations to shed light on the electronic and other physical properties of both assemblies. The capability to engineer the functional nanopatterns through self-assembly of porphyrins containing ferrocene units is a key step toward the bottom-up construction of multifunctional molecular nanostructures and nanodevices.

  15. Solvent Regulated Self-assembly of Achiral Donor-Acceptor Complex in Confined Chiral Nanotubes: Chirality Transfer, Inversion and Amplification.

    PubMed

    Li, Yuangang; Duan, Pengfei; Liu, Minghua

    2017-03-24

    A chiral gelator was designed and found to form chiral nanotwist and nanotube in toluene and DMSO, respectively, which could serve as host chiral matrixes for fabricating functional soft materials. Guest achiral π-conjugated donor and acceptor were doped in the gel and a solvent regulated self-assembly was observed. Although both the DMSO and toluene gels containing three components look similar as the transparent gels, it was clarified microscopically that while achiral dopants self-assembled in the confined nanotubes in DMSO gel, they only dissolve in the liquid phase in toluene gel. The existence of the achiral donor and acceptor in different phases made their properties completely different. The chirality transfer occurred from the host chiral gel matrixes to guest achiral porphyrin in DMSO. Remarkably, the addition of C60 in the porphyrin/gelator gel could inverse and further amplify the induced chirality of porphyrin due to the formation of donor-acceptor pairs. On the other hand, no chirality transfer was observed in the toluene gel. These observations clearly unveiled the selective self-assembly of different components in distinct gel phases, which would provide a new insight into the design of chiroptical soft materials.

  16. Self-assembling materials for therapeutic delivery✩

    PubMed Central

    Branco, Monica C.; Schneider, Joel P.

    2009-01-01

    A growing number of medications must be administered through parenteral delivery, i.e., intravenous, intramuscular, or subcutaneous injection, to ensure effectiveness of the therapeutic. For some therapeutics, the use of delivery vehicles in conjunction with this delivery mechanism can improve drug efficacy and patient compliance. Macromolecular self-assembly has been exploited recently to engineer materials for the encapsulation and controlled delivery of therapeutics. Self-assembled materials offer the advantages of conventional crosslinked materials normally used for release, but also provide the ability to tailor specific bulk material properties, such as release profiles, at the molecular level via monomer design. As a result, the design of materials from the “bottom up” approach has generated a variety of supramolecular devices for biomedical applications. This review provides an overview of self-assembling molecules, their resultant structures, and their use in therapeutic delivery. It highlights the current progress in the design of polymer- and peptide-based self-assembled materials. PMID:19010748

  17. Nanopropulsion by biocatalytic self-assembly.

    PubMed

    Leckie, Joy; Hope, Alexander; Hughes, Meghan; Debnath, Sisir; Fleming, Scott; Wark, Alastair W; Ulijn, Rein V; Haw, Mark D

    2014-09-23

    A number of organisms and organelles are capable of self-propulsion at the micro- and nanoscales. Production of simple man-made mimics of biological transportation systems may prove relevant to achieving movement in artificial cells and nano/micronscale robotics that may be of biological and nanotechnological importance. We demonstrate the propulsion of particles based on catalytically controlled molecular self-assembly and fiber formation at the particle surface. Specifically, phosphatase enzymes (acting as the engine) are conjugated to a quantum dot (the vehicle), and are subsequently exposed to micellar aggregates (fuel) that upon biocatalytic dephosphorylation undergo fibrillar self-assembly, which in turn causes propulsion. The motion of individual enzyme/quantum dot conjugates is followed directly using fluorescence microscopy. While overall movement remains random, the enzyme-conjugates exhibit significantly faster transport in the presence of the fiber forming system, compared to controls without fuel, a non-self-assembling substrate, or a substrate which assembles into spherical, rather than fibrous structures upon enzymatic dephosphorylation. When increasing the concentration of the fiber-forming fuel, the speed of the conjugates increases compared to non-self-assembling substrate, although directionality remains random.

  18. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  19. Inertially assisted nanoscale self-assembly.

    PubMed

    Saeedi, E; Marcheselli, C; Shum, A; Parviz, B A

    2010-09-17

    We present a simple and versatile method for integrating submicron objects onto pre-determined locations on a substrate. The method relies on augmenting inertial forces using centrifugal motion and geometric constraints to guide the placement of submicron objects on a substrate with minimal requirements for surface engineering and binding chemistries. Here, we demonstrate the utility of the method for placing gold particles, metal nanorods and inorganic nanocrystals. The method has demonstrated high yield of self-assembly for submicron particles with a variety of shapes and sizes. We have been able to get a near-perfect yield for filling hundreds of traps with nanoparticles in only 20 min. Two hundred nanometer diameter nanorods were self-assembled into an array of 256 traps on the template with 92% yield. 1.4 microm and 300 nm sodium chloride crystals were self-assembled in arrays of 7000 and 576 traps, respectively, with near-perfect yield in filling each site. Due to its convenient set-up and high performance, inertially assisted self-assembly can be easily adopted and used for a variety of integration needs on the submicron scale.

  20. [INVITED] Self-assembled optical metamaterials

    NASA Astrophysics Data System (ADS)

    Baron, Alexandre; Aradian, Ashod; Ponsinet, Virginie; Barois, Philippe

    2016-08-01

    Self-assembled metamaterials constitute a promising platform to achieving bulk and homogenous optical materials that exhibit unusual effective medium properties. For many years now, the research community has contemplated lithographically fabricated metasurfaces, with extraordinary optical features. However, achieving large volumes at low cost is still a challenge by top-down fabrication. Bottom-up fabrication, that relies both on nanochemistry and self-assembly, is capable of building such materials while greatly reducing the energy footprint in the formulation of the metamaterial. Self-assembled metamaterials have shown that they are capable of reaching unprecedented values of bulkiness and homogeneity figures of merit. This feat is achieved by synthesizing plasmonic nanoresonators (meta-atoms in the sense of artificial polarizable units) and assembling them into a fully three-dimensional matrix through a variety of methods. Furthermore it has been shown that a wide range of material parameters can be tailored by controlling the geometry and composition of the meta-atoms as well as the volume fraction of the nano-objects in the metamaterial. Here we conduct a non-comprehensive review of some of the recent trends in self-assembled optical metamaterials and illustrate these trends with our recent work.

  1. Large branched self-assembled DNA complexes

    NASA Astrophysics Data System (ADS)

    Tosch, Paul; Wälti, Christoph; Middelberg, Anton P. J.; Davies, A. Giles

    2007-04-01

    Many biological molecules have been demonstrated to self-assemble into complex structures and networks by using their very efficient and selective molecular recognition processes. The use of biological molecules as scaffolds for the construction of functional devices by self-assembling nanoscale complexes onto the scaffolds has recently attracted significant attention and many different applications in this field have emerged. In particular DNA, owing to its inherent sophisticated self-organization and molecular recognition properties, has served widely as a scaffold for various nanotechnological self-assembly applications, with metallic and semiconducting nanoparticles, proteins, macromolecular complexes, inter alia, being assembled onto designed DNA scaffolds. Such scaffolds may typically contain multiple branch-points and comprise a number of DNA molecules selfassembled into the desired configuration. Previously, several studies have used synthetic methods to produce the constituent DNA of the scaffolds, but this typically constrains the size of the complexes. For applications that require larger self-assembling DNA complexes, several tens of nanometers or more, other techniques need to be employed. In this article, we discuss a generic technique to generate large branched DNA macromolecular complexes.

  2. Inverse Problem in Self-assembly

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei

    2012-02-01

    By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.

  3. Self-assembled nanolaminate coatings (SV)

    SciTech Connect

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV, UCAV

  4. Oxygen electro-reduction catalysts for self-assembly on supports

    NASA Astrophysics Data System (ADS)

    Dougan, Jennifer; Panton, Raquel; Cheng, Qiling; Gervasio, Don F.

    2005-01-01

    A new strategy for making low cost, catalytic electrodes is being developed for fuel-cells and electrochemical sensors. The strategy is to synthesize a macrocyclic catalyst derivatized with a functional group (like phosphate or carboxylate), which has affinity for a metal-oxide/metal surface. The purpose of the functional group is to anchor the modified catalyst to the metal surface, thereby promoting the formation of a self-assembled monolayer (SAM) of catalyst on a metal support. Syntheses are given for new ferrocene compounds and metallo porphyrins with anchor groups. The ferrocenes, which are relatively easy to synthesize, were made to learn how to form a stable SAM on a metal-oxide/metal surface. The metallo porphyrins were made for catalyzing oxygen electro-reduction with no platinum. Strategies for attaining an ideal catalytic electrode are discussed.

  5. Self-assembly between biomacromolecules and lipids

    NASA Astrophysics Data System (ADS)

    Liang, Hongjun

    Anionic DNA and cationic lipsomes can self-assemble into a multi-lamellar structure where two-dimensional (2-D) lipid sheets confine a periodic one-dimensional (1-D) lattice of parallel DNA chains, between which Cd2+ ions can condense, and be subsequently reacted with H 2S to template CdS nanorods with crystallographic control analogous to biomineralization. The strong electrostatic interactions align the templated CdS (002) polar planes parallel to the negatively charged sugar-phosphate DNA backbone, which indicates that molecular details of the DNA molecule are imprinted onto the inorganic crystal structure. The resultant nanorods have (002) planes tilted by ˜60° with respect to the rod axis, in contrast to all known II-VI semiconductor nanorods. Rational design of the biopolymer-membrane templates is possible, as demonstrated by the self-assembly between anionic M13 virus and cationic membrane. The filamentous virus has diameter ˜3x larger but similar surface charge density as DNA, the self-assembled complexes maintain the multi-lamellar structure, but pore sizes are ˜10x larger in area, which can be used to package and organize large functional molecules. Not only the counter-charged objects can self-assemble, the like-charged biopolymer and membrane can also self-assemble with the help of multivalent ions. We have investigated anionic lipid-DNA complexes induced by a range of divalent ions to show how different ion-mediated interactions are expressed in the self-assembled structures, which include two distinct lamellar phases and an inverted hexagonal phase. DNA can be selectively organized into or expelled out of the lamellar phases depending on membrane charge density and counterion concentration. For a subset of ion (Zn2+ etc.) at high enough concentration, 2-D inverted hexagonal phase can be formed where DNA strands are coated with anionic lipid tubes via interaction with Zn2+ ions. We suggest that the effect of ion binding on lipid's spontaneous

  6. Self-assembling membranes and related methods thereof

    DOEpatents

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  7. Porphyrin colorimetric indicators in molecular and nano-architectures.

    PubMed

    Xie, Yongshu; Hill, Jonathan P; Charvet, Richard; Ariga, Katsuhiko

    2007-09-01

    One of the most important outcomes of organic nanotechnologies could be development of well-integrated systems for sensing of particular chemical species. Use of color indicators is an attractive approach to guest reporting. Of the known chromophores, porphyrin and its derivatives are the most widely studied functional chromophores in a diverse range of research fields. In this review, recent developments in colorimetric indicator functions of porphyrin derivatives and related compounds in their molecular and nano-architectures are reviewed according to the classification: (i) rather simple porphyrin derivatives, (ii) porphyrin conjugates, (iii) porphyrins embedded in bulk materials, and (iv) porphyrins in organized films. Porphyrin derivatives with unusual structures, such as expanded and N-confused ones have been used for color indicators in specific cases. Electron and energy transfers in porphyrins conjugated with other functional moieties resulted in dynamic sensing systems including switch-on and switch-off actions. Immobilization of porphyrin color indicators in appropriate matrices is important for practical applications. Use of supramolecular films such as self-assembled monolayers, Langmuir-Blodgett films, and layer-by-layer assemblies as porphyrin nanoarchitectures often offers opportunities for colorimetric outputs based on control of their aggregate structures.

  8. Self-assembled Oniontype Multiferroic Nanostructures

    NASA Astrophysics Data System (ADS)

    Ren, Shenqiang; Briber, Robert M.; Wuttig, Manfred

    2009-03-01

    Spontaneously self-assembled oniontype multiferroic nanostructures based on block copolymers as templating materials are reported. Diblock copolymer containing two different magnetoelectric precursors separately segregated to the two microdomains have been shown to form well-ordered templated lamellar structures. Onion-type multilamellar ordered multiferroic (PZT/CoFe2O4) nanostructures have been induced by room temperature solvent annealing in a magnetic field oriented perpendicular to the plane of the film. The evolution of the onion-like microstructure has been characterized by AFM, MFM, and TEM. The structure retains lamellar periodicity observed at zero field. The onion structure is superparamagnetic above and antiferromagnetic below the blocking temperature. This templating process opens a route for nanometer-scale patterning of magnetic toroids by means of self-assembly on length scales that are difficult to obtain by standard lithography techniques.

  9. Controlling and imaging biomimetic self-assembly.

    PubMed

    Aliprandi, Alessandro; Mauro, Matteo; De Cola, Luisa

    2016-01-01

    The self-assembly of chemical entities represents a very attractive way to create a large variety of ordered functional structures and complex matter. Although much effort has been devoted to the preparation of supramolecular nanostructures based on different chemical building blocks, an understanding of the mechanisms at play and the ability to monitor assembly processes and, in turn, control them are often elusive, which precludes a deep and comprehensive control of the final structures. Here the complex supramolecular landscape of a platinum(II) compound is characterized fully and controlled successfully through a combination of supramolecular and photochemical approaches. The supramolecular assemblies comprise two kinetic assemblies and their thermodynamic counterpart. The monitoring of the different emission properties of the aggregates, used as a fingerprint for each species, allows the real-time visualization of the evolving self-assemblies. The control of multiple supramolecular pathways will help the design of complex systems in and out of their thermodynamic equilibrium.

  10. Controlling and imaging biomimetic self-assembly

    NASA Astrophysics Data System (ADS)

    Aliprandi, Alessandro; Mauro, Matteo; de Cola, Luisa

    2016-01-01

    The self-assembly of chemical entities represents a very attractive way to create a large variety of ordered functional structures and complex matter. Although much effort has been devoted to the preparation of supramolecular nanostructures based on different chemical building blocks, an understanding of the mechanisms at play and the ability to monitor assembly processes and, in turn, control them are often elusive, which precludes a deep and comprehensive control of the final structures. Here the complex supramolecular landscape of a platinum(II) compound is characterized fully and controlled successfully through a combination of supramolecular and photochemical approaches. The supramolecular assemblies comprise two kinetic assemblies and their thermodynamic counterpart. The monitoring of the different emission properties of the aggregates, used as a fingerprint for each species, allows the real-time visualization of the evolving self-assemblies. The control of multiple supramolecular pathways will help the design of complex systems in and out of their thermodynamic equilibrium.

  11. The dynamics of nacre self-assembly

    PubMed Central

    Cartwright, Julyan H.E; Checa, Antonio G

    2006-01-01

    We show how nacre and pearl construction in bivalve and gastropod molluscs can be understood in terms of successive processes of controlled self-assembly from the molecular- to the macro-scale. This dynamics involves the physics of the formation of both solid and liquid crystals and of membranes and fluids to produce a nanostructured hierarchically constructed biological composite of polysaccharides, proteins and mineral, whose mechanical properties far surpass those of its component parts. PMID:17251136

  12. Columnar self-assembly of colloidal nanodisks.

    PubMed

    Saunders, Aaron E; Ghezelbash, Ali; Smilgies, Detlef-M; Sigman, Michael B; Korgel, Brian A

    2006-12-01

    The self-assembly of sterically stabilized colloidal copper sulfide nanodisks, 14-20 nm in diameter and 5-7 nm thick, was studied. The nanodisks were observed by electron microscopy and small-angle X-ray scattering to form columnar arrays when evaporated as thin films from concentrated dispersions. These superstructured nanomaterials might give rise to technologically useful properties, such as anisotropic electrical transport and electrorheological and optical properties.

  13. Templated Self Assemble of Nano-Structures

    SciTech Connect

    Suo, Zhigang

    2013-04-29

    This project will identify and model mechanisms that template the self-assembly of nanostructures. We focus on a class of systems involving a two-phase monolayer of molecules adsorbed on a solid surface. At a suitably elevated temperature, the molecules diffuse on the surface to reduce the combined free energy of mixing, phase boundary, elastic field, and electrostatic field. With no template, the phases may form a pattern of stripes or disks. The feature size is on the order of 1-100 nm, selected to compromise the phase boundary energy and the long-range elastic or electrostatic interaction. Both experimental observations and our theoretical simulations have shown that the pattern resembles a periodic lattice, but has abundant imperfections. To form a perfect periodic pattern, or a designed aperiodic pattern, one must introduce a template to guide the assembly. For example, a coarse-scale pattern, lithographically defined on the substrate, will guide the assembly of the nanoscale pattern. As another example, if the molecules on the substrate surface carry strong electric dipoles, a charged object, placed in the space above the monolayer, will guide the assembly of the molecular dipoles. In particular, the charged object can be a mask with a designed nanoscale topographic pattern. A serial process (e.g., e-beam lithography) is necessary to make the mask, but the pattern transfer to the molecules on the substrate is a parallel process. The technique is potentially a high throughput, low cost process to pattern a monolayer. The monolayer pattern itself may serve as a template to fabricate a functional structure. This project will model fundamental aspects of these processes, including thermodynamics and kinetics of self-assembly, templated self-assembly, and self-assembly on unconventional substrates. It is envisioned that the theory will not only explain the available experimental observations, but also motivate new experiments.

  14. Meniscus height controlled convective self-assembly

    NASA Astrophysics Data System (ADS)

    Choudhary, Satyan; Crosby, Alfred

    Convective self-assembly techniques based on the 'coffee-ring effect' allow for the fabrication of materials with structural hierarchy and multi-functionality across a wide range of length scales. The coffee-ring effect describes deposition of non-volatiles at the edge of droplet due to capillary flow and pattern formations due to pinning and de-pinning of meniscus with the solvent evaporation. We demonstrate a novel convective self-assembly method which uses a piezo-actuated bending motion for driving the de-pinning step. In this method, a dilute solution of nanoparticles or polymers is trapped by capillary forces between a blade and substrate. As the blade oscillates with a fixed frequency and amplitude and the substrate translates at a fixed velocity, the height of the capillary meniscus oscillates. The meniscus height controls the contact angle of three phase contact line and at a critical angle de-pinning occurs. The combination of convective flux and continuously changing contact angle drives the assembly of the solute and subsequent de-pinning step, providing a direct means for producing linear assemblies. We demonstrate a new method for convective self-assembly at an accelerated rate when compared to other techniques, with control over deposit dimensions. Army Research Office (W911NF-14-1-0185).

  15. Self-Assembly of Chiral Plasmonic Nanostructures.

    PubMed

    Lan, Xiang; Wang, Qiangbin

    2016-12-01

    Plasmonic chiroptical effects have attracted significant attention for their widespread potential applications in negative-refractive-index materials, advanced light-polarization filters, and ultrasensitive sensing devices, etc. As compared to top-down fabrication methods, the bottom-up self-assembly strategy provides nanoscale resolution, parallel production, and isotropic optical response, and therefore plays an indispensable role in the fabrication of chiral plasmonic nanostructures. The optical properties of these chiral structures can be predicted based on the near-field coupling of localized surface plasmons in structural components, which offers a route to tune or enhance optical activity by selecting building blocks and designing structural configurations. To date, three main types of chiral plasmonic nanostructures, i.e., chiral "plasmonic molecules", chiral superstructures, and chiral-molecule-metal hybrid complexes, are usually assembled, in which metal nanoparticles with various sizes, shapes, and compositions, and/or chiral molecules are employed as building blocks. Here, recent achievements in the self-assembly of chiral plasmonic nanostructures are highlighted and perspectives on the future directions of chiral plasmonics integrated with bottom-up self-assembly are presented, showing three typical examples, including chiral plasmonic switches, chiral nanoparticles, and chiral metamaterials.

  16. Anisotropic Self-Assembly of Nanoparticle Amphiphiles

    NASA Astrophysics Data System (ADS)

    Kumar, Sanat

    2009-03-01

    It is easy to understand the self-assembly of particles having anisotropic shapes or interactions, such as Co nanoparticles or proteins, into highly extended structures. However, there is no experimentally established strategy for creating anisotropic structures from common spherical nanoparticles. We demonstrate that spherical nanoparticles, uniformly grafted with macromolecules, robustly self-assemble into a range of anisotropic superstructures when they are dispersed in the corresponding homopolymer matrix. This phenomenon is driven by the microphase separation between the inorganic nanoparticles and the (organic) polymeric chains grafted to their surfaces in a fashion similar to block copolymers. This microphase separation driven particle self-assembly provides a unique means of controlling the global nanoparticle dispersion state in polymer nanocomposites. The relationship between the state of particle dispersion and nanocomposite properties can thus be critically examined, and in particular we focus on the mechanical reinforcement afforded when particles are added to polymers. Grafted nanoparticles are thus versatile building blocks for creating tunable and functional particle superstructures with significant practical applications. With Pinar Akcora, Hongjun Liu, Yu Li, Brian Benicewicz, Linda Schadler, Thanos Panagiotopoulos, Jack Douglas, P. Thiyagarajan and Ralph Colby.

  17. Self-assembly of Artificial Actin Filaments

    NASA Astrophysics Data System (ADS)

    Grosenick, Christopher; Cheng, Shengfeng

    Actin Filaments are long, double-helical biopolymers that make up the cytoskeleton along with microtubules and intermediate filaments. In order to further understand the self-assembly process of these biopolymers, a model to recreate actin filament geometry was developed. A monomer in the shape of a bent rod with vertical and lateral binding sites was designed to assemble into single or double helices. With Molecular Dynamics simulations, a variety of phases were observed to form by varying the strength of the binding sites. Ignoring lateral binding sites, we have found a narrow range of binding strengths that lead to long single helices via various growth pathways. When lateral binding strength is introduced, double helices begin to form. These double helices self-assemble into substantially more stable structures than their single helix counterparts. We have found double helices to form long filaments at about half the vertical binding strength of single helices. Surprisingly, we have found that triple helices occasionally form, indicating the importance of structural regulation in the self-assembly of biopolymers.

  18. Engineered Self-Assembly of Plasmonic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Tao, Andrea

    2013-03-01

    A critical need in nanotechnology is the development of new tools and methods to organize, connect, and integrate solid-state nanocomponents. Self-assembly - where components spontaneously organize themselves - can be carried out on a massively parallel scale to construct large-scale architectures using solid-state nanocrystal building blocks. I will present our recent work on the synthesis and self-assembly of nanocrystals for plasmonics, where light is propagated, manipulated, and confined by solid-state components that are smaller than the wavelength of light itself. We show the organization of polymer-grafted metal nanocrystals into hierarchical nanojunction arrays that possess intense ``hot spots'' due to electromagnetic field localization. We also show that doped semiconductor nanocrystals can serve as a new class of plasmonic building blocks, where shape and carrier density can be actively tuned to engineer plasmon resonances. These examples demonstrate that nanocrystals possess unique electromagnetic properties that rival top-down structures, and the potential of self-assembly for fabricating designer plasmonic materials.

  19. Interparticle Forces Underlying Nanoparticle Self-Assemblies.

    PubMed

    Luo, Dan; Yan, Cong; Wang, Tie

    2015-12-02

    Studies on the self-assembly of nanoparticles have been a hot topic in nanotechnology for decades and still remain relevant for the present and future due to their tunable collective properties as well as their remarkable applications to a wide range of fields. The novel properties of nanoparticle assemblies arise from their internal interactions and assemblies with the desired architecture key to constructing novel nanodevices. Therefore, a comprehensive understanding of the interparticle forces of nanoparticle self-assemblies is a pre-requisite to the design and control of the assembly processes, so as to fabricate the ideal nanomaterial and nanoproducts. Here, different categories of interparticle forces are classified and discussed according to their origins, behaviors and functions during the assembly processes, and the induced collective properties of the corresponding nanoparticle assemblies. Common interparticle forces, such as van der Waals forces, electrostatic interactions, electromagnetic dipole-dipole interactions, hydrogen bonds, solvophonic interactions, and depletion interactions are discussed in detail. In addition, new categories of assembly principles are summarized and introduced. These are termed template-mediated interactions and shape-complementary interactions. A deep understanding of the interactions inside self-assembled nanoparticles, and a broader perspective for the future synthesis and fabrication of these promising nanomaterials is provided.

  20. Self-assembly of knots and links

    NASA Astrophysics Data System (ADS)

    Orlandini, Enzo; Polles, Guido; Marenduzzo, Davide; Micheletti, Cristian

    2017-03-01

    Guiding the self-assembly of identical building blocks towards complex three-dimensional structures with a set of desired properties is a major goal in material science, chemistry and physics. A particularly challenging problem, especially explored in synthetic chemistry, is that of self-assembling closed structures with a target topology starting by simple geometrical templates. Here we overview and revisit recent advancements, based on stochastic simulations, where the geometry of rigid helical templates with functionalised sticky ends has been designed for self-assembling efficiently and reproducibly into a wide range of three-dimensional closed structures. Notably, these include non trivial topologies of links and knots, including the 819 knot that we had predicted to be highly encodable and that has only recently been obtained experimentally. By appropriately tuning the parameters that define the template shape, we show that, for fixed concentration of templates, the assembly process can be directed towards the formation of specific knotted and linked structures such as the trefoils, pentafoil knots, Hopf and Solomon links. More exotic and unexpected knots and links are also found. Our results should be relevant to the design of new protocols that can both increase and broaden the population of synthetise molecular knots and catenanes.

  1. Self-assembled chromophores within mesoporous nanocrystalline TiO2: towards biomimetic solar cells.

    PubMed

    Marek, Peter L; Sieger, Hermann; Scherer, Torsten; Hahn, Horst; Balaban, Teodor Silviu

    2009-06-01

    Artificial light-harvesting antennas consisting of self-assembled chromophores that mimic the natural pigments of photosynthetic bacteria have been inserted into voids induced in porous titania (TiO2, anatase) in order to investigate their suitability for hybrid solar cells. Mesoporous nanocrystalline TiO2 with additional uniform macropores was treated with precursor solutions of the pigment which was then induced to self-assemble within the voids. The chromophores were tailored to combine the self-assembly characteristics of the natural bacteriochlorophylls with the robustness of artificial Zn-porphyrins being stable for prolonged periods even upon heating to over 200 degrees C. They assemble on the TiO2 surface to form nano- to micro-crystalline structures with lengths from tens of nm up to several microm and show a photosensitization effect which is supposed to be dependent on the assembly size. The natural examples of these antennas are found in green sulfur bacteria which are able to use photosynthesis in deep water regions with minute light intensities. The implementation of biomimetic antennas for light harvesting and a better photon management may lead to a rise in efficiency of dye-sensitized solar cells also under low light illumination conditions.

  2. Self-assembled biomimetic nanoreactors I: Polymeric template

    NASA Astrophysics Data System (ADS)

    McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish

    2015-09-01

    The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.

  3. Self-assembled lipid bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.

    2005-11-08

    The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.

  4. Biological Nanoplatforms for Self-Assembled Electronics

    DTIC Science & Technology

    2015-03-24

    Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV-PS-TR-2015-0024 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is...LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official... AFRL -RV-PS- AFRL -RV-PS- TR-2015-0024 TR-2015-0024 BIOLOGICAL NANOPLATFORMS FOR SELF- ASSEMBLED ELECTRONICS Stephen Jett University of New Mexico 1

  5. Self-assembly of colloidal surfactants

    NASA Astrophysics Data System (ADS)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  6. Functional membranes via nanoparticle self-assembly.

    PubMed

    Green, Erica; Fullwood, Emily; Selden, Julieann; Zharov, Ilya

    2015-05-07

    This article summarizes a recently developed approach for the preparation of membrane materials by the self-assembly of inorganic, polymeric or hybrid nanoparticles, with the focus on functional membranes possessing permselectivity. Two types of such membranes are discussed, those possessing size and charge selectivity suitable for ultra- and nanofiltration and chemoselective separation, and those possessing proton or lithium transport properties suitable for fuel cell and lithium battery applications, respectively. This article describes the preparation methods of nanoparticle membranes, as well as their mechanical, molecular, and ionic transport properties.

  7. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  8. Self-assembly of magnetic biofunctional nanoparticles

    SciTech Connect

    Sun Xiangcheng; Thode, C.J.; Mabry, J.K.; Harrell, J.W.; Nikles, D.E.; Sun, K.; Wang, L.M.

    2005-05-15

    Spherical, ferromagnetic FePt nanoparticles with a particle size of 3 nm were prepared by the simultaneous polyol reduction of Fe(acac){sub 3} and Pt(acac){sub 2} in phenyl ether in the presence of oleic acid and oleylamine. The oleic acid ligands can be replaced with 11-mercaptoundecanoic acid, giving particles that can be dispersed in water. Both x-ray diffraction and transmission electron microscopy indicated that FePt particles were not affected by ligands replacement. Dispersions of the FePt particles with 11-mercaptoundecanoic acid ligands and ammonium counter ions gave self-assembled films consisting of highly ordered hexagonal arrays of particles.

  9. Porphyrin Tests

    MedlinePlus

    ... Table adapted from: "Iron and porphyrin metabolism," Clinical Chemistry: Theory, Analysis and Correlation , courtesy of William E. ... Health Professionals ©2001 - by American Association for Clinical Chemistry • Contact Us | Terms of Use | Privacy We comply ...

  10. Self-assembled Nanofibrils for Immunomodulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fan

    This thesis has been mainly focused on applying self-assembled nanofibrils as unique depots for controlled release to modulate immune system, with two major chapters on modulation of innate immunity in chapter 2 and adaptive immunity in chapter 3, respectively. There are 5 chapters in the thesis. Chapter 1 gives a detailed review on the discovery, synthesis and application of self-assembled nanofibrils of therapeutic agents (termed as "self-delivery drugs"), including bioactive molecules; Chapter 2 demonstrates the supramolecular hydrogel of chemotactic peptides as a prolonged inflammation model through proper molecular engineering; Chapter 3 reports a suppressive antibody response achieved by encapsulation of antigens by supramolecular hydrogel of glycopeptide; Chapter 4 illustrates an example of supramolecular hydrogel formation of molecules with extremely low solubility, based on the fact that many small organic drugs have poor solubility. Chapter 5 used beta-galatosidase as a model to study glycosidase-instructed supramolecular hydrogel formation, with potential to target cancer cells due to their distinct metabolic profile.

  11. Triggered self-assembly of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-03-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  12. Directed Self-Assembly: Expectations and Achievements

    PubMed Central

    2010-01-01

    Nanotechnology has been a revolutionary thrust in recent years of development of science and technology for its broad appeal for employing a novel idea for relevant technological applications in particular and for mass-scale production and marketing as common man commodity in general. An interesting aspect of this emergent technology is that it involves scientific research community and relevant industries alike. Top–down and bottom–up approaches are two broad division of production of nanoscale materials in general. However, both the approaches have their own limits as far as large-scale production and cost involved are concerned. Therefore, novel new techniques are desired to be developed to optimize production and cost. Directed self-assembly seems to be a promising technique in this regard; which can work as a bridge between the top–down and bottom–up approaches. This article reviews how directed self-assembly as a technique has grown up and outlines its future prospects. PMID:20730077

  13. Triggered self-assembly of magnetic nanoparticles

    PubMed Central

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-01-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles. PMID:26975332

  14. Quantifying quality in DNA self-assembly

    PubMed Central

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  15. Molecular self-assembly at solid surfaces.

    PubMed

    Otero, Roberto; Gallego, José María; de Parga, Amadeo L Vázquez; Martín, Nazario; Miranda, Rodolfo

    2011-11-23

    Self-assembly, the process by which objects initially distributed at random arrange into well-defined patterns exclusively due to their local mutual interactions without external intervention, is generally accepted to be the most promising method for large-scale fabrication of functional nanostructures. In particular, the ordering of molecular building-blocks deposited at solid surfaces is relevant for the performance of many organic electronic and optoelectronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) or photovoltaic solar cells. However, the fundamental knowledge on the nature and strength of the intermolecular and molecule-substrate interactions that govern the ordering of molecular adsorbates is, in many cases, rather scarce. In most cases, the structure and morphology of the organic-metal interface is not known and it is just assumed to be the same as in the bulk, thereby implicitly neglecting the role of the surface on the assembly. However, this approximation is usually not correct, and the evidence gathered over the last decades points towards an active role of the surface in the assembly, leading to self-assembled structures that only in a few occasions can be understood by considering just intermolecular interactions in solid or gas phases. In this work we review several examples from our recent research demonstrating the apparently endless variety of ways in which the surface might affect the assembly of organic adsorbates.

  16. Triggered self-assembly of magnetic nanoparticles.

    PubMed

    Ye, L; Pearson, T; Cordeau, Y; Mefford, O T; Crawford, T M

    2016-03-15

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufacturing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  17. Comparison of directed self-assembly integrations

    NASA Astrophysics Data System (ADS)

    Somervell, Mark; Gronheid, Roel; Hooge, Joshua; Nafus, Kathleen; Rincon Delgadillo, Paulina; Thode, Chris; Younkin, Todd; Matsunaga, Koichi; Rathsack, Ben; Scheer, Steven; Nealey, Paul

    2012-03-01

    Directed Self-Assembly (DSA) is gaining momentum as a means for extending optical lithography past its current limits. There are many forms of the technology, and it can be used for creating both line/space and hole patterns.1-3 As with any new technology, adoption of DSA faces several key challenges. These include creation of a new materials infrastructure, fabrication of new processing hardware, and the development of implementable integrations. Above all else, determining the lowest possible defect density remains the industry's most critical concern. Over the past year, our team, working at IMEC, has explored various integrations for making 12-14nm half-pitch line/space arrays. Both grapho- and chemo-epitaxy implementations have been investigated in order to discern which offers the best path to high volume manufacturing. This paper will discuss the manufacturing readiness of the various implementations by comparing the process margin for different DSA processing steps and defect density for the entirety of the flow. As part of this work, we will describe our method for using programmed defectivity on reticle to elucidate the mechanisms that drive self-assembly defectivity on wafer.

  18. Peptide self-assembly: thermodynamics and kinetics.

    PubMed

    Wang, Juan; Liu, Kai; Xing, Ruirui; Yan, Xuehai

    2016-10-21

    Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.

  19. Stereochemistry in subcomponent self-assembly.

    PubMed

    Castilla, Ana M; Ramsay, William J; Nitschke, Jonathan R

    2014-07-15

    CONSPECTUS: As Pasteur noted more than 150 years ago, asymmetry exists in matter at all organization levels. Biopolymers such as proteins or DNA adopt one-handed conformations, as a result of the chirality of their constituent building blocks. Even at the level of elementary particles, asymmetry exists due to parity violation in the weak nuclear force. While the origin of homochirality in living systems remains obscure, as does the possibility of its connection with broken symmetries at larger or smaller length scales, its centrality to biomolecular structure is clear: the single-handed forms of bio(macro)molecules interlock in ways that depend upon their handednesses. Dynamic artificial systems, such as helical polymers and other supramolecular structures, have provided a means to study the mechanisms of transmission and amplification of stereochemical information, which are key processes to understand in the context of the origins and functions of biological homochirality. Control over stereochemical information transfer in self-assembled systems will also be crucial for the development of new applications in chiral recognition and separation, asymmetric catalysis, and molecular devices. In this Account, we explore different aspects of stereochemistry encountered during the use of subcomponent self-assembly, whereby complex structures are prepared through the simultaneous formation of dynamic coordinative (N → metal) and covalent (N═C) bonds. This technique provides a useful method to study stereochemical information transfer processes within metal-organic assemblies, which may contain different combinations of fixed (carbon) and labile (metal) stereocenters. We start by discussing how simple subcomponents with fixed stereogenic centers can be incorporated in the organic ligands of mononuclear coordination complexes and communicate stereochemical information to the metal center, resulting in diastereomeric enrichment. Enantiopure subcomponents were then

  20. Self-assembled Tunable Photonic Hyper-crystals

    DTIC Science & Technology

    2014-07-16

    1ITLE AND SUBTITLE 5a CONTRACTNUMBER Self - assembled tunable photonic hyper-crystals W911NF-09-l-0539 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...ABSTRACT Self - assembled tunable photonic hyper-crystals Report Title We demonstrate a novel artificial optical material, the “photonic hyper-crystal...photonic Brillouin zones. Three dimensional self - assembly of photonic hyper-crystals has been achieved by application of external magnetic field to

  1. Sequence-selective encapsulation and protection of long peptides by a self-assembled FeII8L6 cubic cage

    PubMed Central

    Mosquera, Jesús; Szyszko, Bartosz; Ho, Sarah K. Y.; Nitschke, Jonathan R.

    2017-01-01

    Self-assembly offers a general strategy for the preparation of large, hollow high-symmetry structures. Although biological capsules, such as virus capsids, are capable of selectively recognizing complex cargoes, synthetic encapsulants have lacked the capability to specifically bind large and complex biomolecules. Here we describe a cubic host obtained from the self-assembly of FeII and a zinc-porphyrin-containing ligand. This cubic cage is flexible and compatible with aqueous media. Its selectivity of encapsulation is driven by the coordination of guest functional groups to the zinc porphyrins. This new host thus specifically encapsulates guests incorporating imidazole and thiazole moieties, including drugs and peptides. Once encapsulated, the reactivity of a peptide is dramatically altered: encapsulated peptides are protected from trypsin hydrolysis, whereas physicochemically similar peptides that do not bind are cleaved. PMID:28358028

  2. Self-assembled software and method of overriding software execution

    DOEpatents

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  3. DNA tile based self-assembly: building complex nanoarchitectures.

    PubMed

    Lin, Chenxiang; Liu, Yan; Rinker, Sherri; Yan, Hao

    2006-08-11

    DNA tile based self-assembly provides an attractive route to create nanoarchitectures of programmable patterns. It also offers excellent scaffolds for directed self-assembly of nanometer-scale materials, ranging from nanoparticles to proteins, with potential applications in constructing nanoelectronic/nanophotonic devices and protein/ligand nanoarrays. This Review first summarizes the currently available DNA tile toolboxes and further emphasizes recent developments toward self-assembling DNA nanostructures with increasing complexity. Exciting progress using DNA tiles for directed self-assembly of other nanometer scale components is also discussed.

  4. Electron Transport through Porphyrin Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  5. Pseudotannins Self-assembled into Antioxidant Complexes

    PubMed Central

    Cheng, H. A.; Drinnan, C. T.; Pleshko, N.; Fisher, O. Z.

    2015-01-01

    Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated. PMID:26313262

  6. Controlling water evaporation through self-assembly

    PubMed Central

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-01-01

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation. PMID:27573848

  7. Controlling water evaporation through self-assembly.

    PubMed

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  8. Self-Assembled Magnetic Surface Swimmers

    NASA Astrophysics Data System (ADS)

    Snezhko, A.; Belkin, M.; Aranson, I. S.; Kwok, W.-K.

    2009-03-01

    We report studies of novel self-assembled magnetic surface swimmers (magnetic snakes) formed from a dispersion of magnetic microparticles at a liquid-air interface and energized by an alternating magnetic field. We show that under certain conditions the snakes spontaneously break the symmetry of surface flows and turn into self-propelled objects. Parameters of the driving magnetic field tune the propulsion velocity of these snakelike swimmers. We find that the symmetry of the surface flows can also be broken in a controlled fashion by attaching a large bead to a magnetic snake (bead-snake hybrid), transforming it into a self-locomoting entity. The observed phenomena have been successfully described by a phenomenological model based on the amplitude equation for surface waves coupled to a large-scale hydrodynamic mean flow equation.

  9. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1996-01-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  10. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1999-10-12

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  11. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, C.R.; Niemeyer, C.M.; Smith, C.L.; Sano, Takeshi; Hnatowich, D.J.; Rusckowski, M.

    1996-10-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products. 5 figs.

  12. Self Assembly and Elasticity of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2015-10-01

    While the outer crust of a neutron star is likely a solid ion lattice, the core consists of uniform nuclear matter at or above saturation density. In between, nuclei adopt exotic non-spherical geometries called ``nuclear pasta'' in order to minimize the nuclear attraction and Coulomb repulsion between protons. These structures have been well studied with both classical and quantum molecular dynamics, and their geometry can be predicted from the density, temperature, and proton fraction. Recent classical molecular dynamics simulations find evidence for a phase transition at T ~ 0 . 5 MeV, where simulations with low proton fractions undergo a solid-liquid phase transition, while simulations with high proton fractions under a glass-rubber phase transition. This is expected to have nontrivial consequences for the elastic properties of the pasta. Additionally, recent observations indicate that the structure of nuclear pasta may be related to structures observed in biophysics, specifically self assembling lipid membranes.

  13. Supramolecular self-assemblies as functional nanomaterials

    NASA Astrophysics Data System (ADS)

    Busseron, Eric; Ruff, Yves; Moulin, Emilie; Giuseppone, Nicolas

    2013-07-01

    In this review, we survey the diversity of structures and functions which are encountered in advanced self-assembled nanomaterials. We highlight their flourishing implementations in three active domains of applications: biomedical sciences, information technologies, and environmental sciences. Our main objective is to provide the reader with a concise and straightforward entry to this broad field by selecting the most recent and important research articles, supported by some more comprehensive reviews to introduce each topic. Overall, this compilation illustrates how, based on the rules of supramolecular chemistry, the bottom-up approach to design functional objects at the nanoscale is currently producing highly sophisticated materials oriented towards a growing number of applications with high societal impact.

  14. Self-assembled magnetic surface swimmers.

    SciTech Connect

    Snezhko, A.; Belkin, M.; Aranson, I. S.; Kwok, W.-K.; Materials Science Division; Illinois Inst. of Tech.

    2009-03-20

    We report studies of novel self-assembled magnetic surface swimmers (magnetic snakes) formed from a dispersion of magnetic microparticles at a liquid-air interface and energized by an alternating magnetic field. We show that under certain conditions the snakes spontaneously break the symmetry of surface flows and turn into self-propelled objects. Parameters of the driving magnetic field tune the propulsion velocity of these snakelike swimmers. We find that the symmetry of the surface flows can also be broken in a controlled fashion by attaching a large bead to a magnetic snake (bead-snake hybrid), transforming it into a self-locomoting entity. The observed phenomena have been successfully described by a phenomenological model based on the amplitude equation for surface waves coupled to a large-scale hydrodynamic mean flow equation.

  15. Self assembled structures for 3D integration

    NASA Astrophysics Data System (ADS)

    Rao, Madhav

    Three dimensional (3D) micro-scale structures attached to a silicon substrate have various applications in microelectronics. However, formation of 3D structures using conventional micro-fabrication techniques are not efficient and require precise control of processing parameters. Self assembly is a method for creating 3D structures that takes advantage of surface area minimization phenomena. Solder based self assembly (SBSA), the subject of this dissertation, uses solder as a facilitator in the formation of 3D structures from 2D patterns. Etching a sacrificial layer underneath a portion of the 2D pattern allows the solder reflow step to pull those areas out of the substrate plane resulting in a folded 3D structure. Initial studies using the SBSA method demonstrated low yields in the formation of five different polyhedra. The failures in folding were primarily attributed to nonuniform solder deposition on the underlying metal pads. The dip soldering method was analyzed and subsequently refined. A modified dip soldering process provided improved yield among the polyhedra. Solder bridging referred as joining of solder deposited on different metal patterns in an entity influenced the folding mechanism. In general, design parameters such as small gap-spacings and thick metal pads were found to favor solder bridging for all patterns studied. Two types of soldering: face and edge soldering were analyzed. Face soldering refers to the application of solder on the entire metal face. Edge soldering indicates application of solder only on the edges of the metal face. Mechanical grinding showed that face soldered SBSA structures were void free and robust in nature. In addition, the face soldered 3D structures provide a consistent heat resistant solder standoff height that serve as attachments in the integration of dissimilar electronic technologies. Face soldered 3D structures were developed on the underlying conducting channel to determine the thermo-electric reliability of

  16. Self assembly properties of primitive organic compounds

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1991-01-01

    A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic

  17. Spatiotemporal Control of Supramolecular Self-Assembly and Function.

    PubMed

    Zhan, Jie; Cai, Yanbin; Ji, Shenglu; He, Shuangshuang; Cao, Yi; Ding, Dan; Wang, Ling; Yang, Zhimou

    2017-03-09

    The enzyme-triggered self-assembly of peptides has flourished in controlling the self-assembly kinetics and producing nanostructures that are typically inaccessible by conventional self-assembly pathways. However, the diffusion and nanoscale chemical gradient of self-assembling peptides generated by the enzyme also significantly affect the outcome of self-assembly, which has not been reported yet. In this work, we demonstrated for the first time a spatiotemporal control of enzyme-triggered peptide self-assembly. By simply adjusting the temperature, we could change both the catalytic activity of the enzyme of phosphatase and their aggregation states. The strategy kinetically controls the production rate of self-assembling peptides and spatially controls their distribution in the system, leading to the formation of nanoparticles at 37 °C and nanofibers at 4 °C. The nanofibers showed ∼10 times higher cellular uptake by 3T3 cells than the nanoparticles, thanks to their higher stability and more ordered structures. Using such spatiotemporal control, we could prepare optimized nanoprobes with low background fluorescence, rapid and high cellular uptake, and high sensitivity. We postulate that this strategy would be very useful in general for preparing self-assembled nanomaterials with controllable morphology and function.

  18. Supramolecular chemistry: Unexplored territory for self-assembly

    NASA Astrophysics Data System (ADS)

    Beuerle, Florian

    2016-12-01

    Cage-like structures can self-assemble from suitable metal ions and organic linkers, but the size of the assemblies was limited. The surprise discovery of a new series of cages opens up fresh horizons for self-assembly. See Letter p.563

  19. Self-Assembling Molecular Capsules Based on α,γ-Cyclic Peptides.

    PubMed

    Ozores, Haxel Lionel; Amorín, Manuel; Granja, Juan R

    2017-01-18

    A new capsule based on a β-sheet self-assembling cyclic peptide with the ability to recognize and release several guests is described. The host structure is composed of two self-complementary α,γ-cyclic peptides bearing a Zn porphyrin cap that is used for the selective recognition of the guest. The two components are linked through two dynamic covalent bonds. The combination of binding forces, including hydrogen bonding, metal coordination, and dynamic hydrazone bonds, allows the reversible recognition of long bipyridine guests. The affinity for these ligands showed a strong dependence on the guest length. Delivery of the encapsulated ligand can be achieved by hydrolysis of hydrazones to disrupt the sandwich complex structure.

  20. Atomic force microscope characterization of self-assembly behaviors of cyclo[8] pyrrole on solid substrates

    NASA Astrophysics Data System (ADS)

    Xu, Hai; Zhao, Siqi; Xiong, Xiang; Jiang, Jinzhi; Xu, Wei; Zhu, Daoben; Zhang, Yi; Liang, Wenjie; Cai, Jianfeng

    2017-04-01

    Cyclo [8] pyrrole (CP) is a porphyrin analogue containing eight α-conjugated pyrrole units which are arranged in a nearly coplanar conformation. The π-π interactions between CP molecules lead to regular aggregations through a solution casting process. Using tapping mode atomic force microscope (AFM), we investigated the morphology of self-assembled aggregates formed by deposition of different CP solutions on different substrates. We found that in the n-butanol solution, nanofibrous structures could be formed on the silicon or mica surface. Interestingly, on the highly oriented pyrolytic graphite (HOPG) surface, or silicon and mica surface with a toluene solution, only irregular spherical structures were identified. The difference in the nanomorphology may be attributed to distinct interactions between molecule-molecule, molecule-solvent and molecule-substrate.

  1. Self-Assembly of Optical Molecules with Supramolecular Concepts

    PubMed Central

    Okamoto, Ken; Chithra, Parayalil; Richards, Gary J.; Hill, Jonathan P.; Ariga, Katsuhiko

    2009-01-01

    Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces. PMID:19564931

  2. Challenges and breakthroughs in recent research on self-assembly

    PubMed Central

    Ariga, Katsuhiko; Hill, Jonathan P; Lee, Michael V; Vinu, Ajayan; Charvet, Richard; Acharya, Somobrata

    2008-01-01

    The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. However, existing fabrication techniques suffer from several disadvantages including size-restrictions and a general paucity of applicable materials. Because of this, the development of alternative approaches based on supramolecular self-assembly processes is anticipated as a breakthrough methodology. This review article aims to comprehensively summarize the salient aspects of self-assembly through the introduction of the recent challenges and breakthroughs in three categories: (i) types of self-assembly in bulk media; (ii) types of components for self-assembly in bulk media; and (iii) self-assembly at interfaces. PMID:27877935

  3. Investigation of Supramolecular Coordination Self-Assembly and Polymerization Confined on Metal Surfaces Using Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Tao

    Organic molecules are envisioned as the building blocks for design and fabrication of functional devices in future, owing to their versatility, low cost and flexibility. Although some devices such as organic light-emitting diode (OLED) have been already applied in our daily lives, the field is still in its infancy and numerous challenges still remain. In particular, fundamental understanding of the process of organic material fabrication at a molecular level is highly desirable. This thesis focuses on the design and fabrication of supramolecular and macromolecular nanostructures on a Au(111) surface through self-assembly, polymerization and a combination of two. We used scanning tunneling microscopy (STM) as an experimental tool and Monte Carlo (MC) and kinetic Monte Carlo (KMC) simulations as theoretical tools to characterize the structures of these systems and to investigate the mechanisms of the self-assembly and polymerization processes at a single-molecular level. The results of this thesis consist of four parts as below: Part I addresses the mechanisms of two-dimensional multicomponent supramolecular self-assembly via pyridyl-Fe-terpyridyl coordination. Firstly, we studied four types of self-assembled metal-organic systems exhibiting different dimensionalities using specifically-designed molecular building blocks. We found that the two-dimensional system is under thermodynamic controls while the systems of lower dimension are under kinetic controls. Secondly, we studied the self-assembly of a series of cyclic supramolecular polygons. Our results indicate that the yield of on-surface cyclic polygon structures is very low independent of temperature and concentration and this phenomenon can be attributed to a subtle competition between kinetic and thermodynamic controls. These results shed light on thermodynamic and kinetic controls in on-surface coordination self-assembly. Part II addresses the two-dimensional supramolecular self-assembly of porphyrin

  4. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    PubMed

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces.

  5. Solvent mediated self-assembly of solids

    SciTech Connect

    De Yoreo, J.; Wilson, W.D.; Palmore, T.

    1997-12-12

    Solvent-mediated crystallization represents a robust approach to self-assembly of nanostructures and microstructures. In organic systems, the relative ease with which the structure of hydrogen- bonded molecules can be manipulated allows for generation of a wide variety of nanoscale crystal structures. In living organisms, control over the micron-to-millimeter form of inorganic crystals is achieved through introduction of bio-organic molecules. The purpose of this proposal is to understand the interplay between solution chemistry, molecular structure, surface chemistry, and the processes of nucleation and crystal growth in solvent-mediated systems, with the goal of developing the atomic and molecular basis of a solvent-mediated self-assembly technology. We will achieve this purpose by: (1) utilizing an atomic force microscopy (AFM) approach that provides in situ, real time imaging during growth from solutions, (2) by modifying kinetic Monte Carlo (KMC) models to include solution-surface kinetics, (3) by introducing quantum chemistry (QC) calculations of the potentials of the relevant chemical species and the near-surface structure of the solution, and (4) by utilizing molecular dynamics (MD) simulations to identify the minimum energy pathways to the solid state. Our work will focus on two systems chosen to address both the manometer and micron-to-millimeter length scales of assembly, the family of 2,5- diketopiperazines (X-DKPs) and the system of CaCO{sub 3} with amino acids. Using AFM, we will record the evolution of surface morphology, critical lengths, step speeds, and step-step interactions as a function of supersaturation and temperature. In the case of the X-DKPs, these measurements will be repeated as the molecular structure of the growth unit is varied. In the case of CaCO{sub 3}, they will be performed as a function of solution chemistry including pH, ionic strength, and amino acid content. In addition, we will measure nucleation rates and orientations of

  6. Fabrication and primary photoevents in self-assembled nanocomposites based on semiconductor quantum dots and tetrapyrrole chromophores

    NASA Astrophysics Data System (ADS)

    Zenkevich, Eduard I.; Shulga, A.; Blaudeck, Thomas; Cichos, F.; von Borczyskowski, Christian

    2005-11-01

    The directed surface passivation of semiconductor CdSe, 0r CdSe/ZnS quantum dots (QD) by meso-pyridyl substituted porphyrins (H IIP) has been realized via a reversible non-covalent self-assembly interaction of H IIP meso-pyridyl nitrogens with ions of the ZnS shell or Cd atoms of the CdSe core in various solvents at ambient temperature. The formation of "QD-porphyrin" nanoassemblies leads to a QD photoluminescence (PL) quenching (intensity decrease and PL decay shortening) accompanied by a H IIP fluorescence enhancement. The analysis of experimental Foerster resonance energy transfer efficiencies EFRET (FRET) found via acceptor (H IIP) sensibilization and donor (QD) PL quenching shows that EFRET values obtained from fluorescence enhancement are of the order of 6 - 8 % for most QD studied and are thus much smaller as compared to the PL quenching efficiency. With respect to QD PL quenching efficiencies, smaller values of EFRET might be due to different competing reasons: the presence of two independent quenching processes in the nanoassemblies, energy transfer QD -> H IIP and photoinduced (electron/hole) charge transfer (CT) or time-dependent QD interface dynamics leading to a noticeable QD PL quenching. The analysis of spectroscopic and kinetic findings reveals that a limited number of "vacancies" accessible for porphyrin attachment is available on the QD surface. Simultaneous presence of porphyrin triads/pentads and QDs in a solution leads to the formation of higly organzed nanoassemblies.

  7. Dissipative adaptation in driven self-assembly.

    PubMed

    England, Jeremy L

    2015-11-01

    In a collection of assembling particles that is allowed to reach thermal equilibrium, the energy of a given microscopic arrangement and the probability of observing the system in that arrangement obey a simple exponential relationship known as the Boltzmann distribution. Once the same thermally fluctuating particles are driven away from equilibrium by forces that do work on the system over time, however, it becomes significantly more challenging to relate the likelihood of a given outcome to familiar thermodynamic quantities. Nonetheless, it has long been appreciated that developing a sound and general understanding of the thermodynamics of such non-equilibrium scenarios could ultimately enable us to control and imitate the marvellous successes that living things achieve in driven self-assembly. Here, I suggest that such a theoretical understanding may at last be emerging, and trace its development from historic first steps to more recent discoveries. Focusing on these newer results, I propose that they imply a general thermodynamic mechanism for self-organization via dissipation of absorbed work that may be applicable in a broad class of driven many-body systems.

  8. Electronically Guided Self Assembly within Quantum Corrals

    NASA Astrophysics Data System (ADS)

    Cao, Rongxing; Miao, Bingfeng; Zhong, Zhangfeng; Sun, Liang; You, Biao; Zhang, Wei; Wu, Di; Hu, An; Bader, Samuel; Ding, Haifeng; Center Collaboration; Low Dimensional Magnetism Team

    2013-03-01

    A grand challenge of nanoscience is to master the control of structure and properties in order to go beyond present day functionality. The creation of nanostructures via atom manipulation by means of a scanning probe represents one of the great achievements of the nano era. Here we build on this achievement to self-assemble nanostructures within quantum corrals. We constructed circular and triangular Fe quantum corrals on Ag(111) substrate via STM manipulation and studied the quantum confinement of electronic states and the diffusion of Gd atoms inside the corrals. Statistical results reveal the motion of the Gd atoms forming several individual orbits that are closely related to the local density of states. We experimentally demonstrate that different self-organized Gd atomic structures are formed within 30-nm circular and triangular Fe quantum corrals with a step-by-step guiding process. The findings demonstrate that quantum confinement can be used to engineer atomic structures and atom diffusion. And 30-nm resolution can be reached by means of advanced lithography. Adding quantum engineering to augment it opens new possibilities for local functionality design down to the atomic scale. Work at Nanjing is supported by the State Key Program for Basic Research of China (Grant No. 2010CB923401), NSFC (Grants Nos. 10974087, 10834001, and 11023002) and PAPD.

  9. Self-assembled nanostructures via electrospraying

    NASA Astrophysics Data System (ADS)

    Jayasinghe, S. N.

    2006-07-01

    A concentrated nanoparticulate-based ethylene glycol suspension was prepared and electrosprayed at optimum and stable cone-jet mode conditions. Using laser spectroscopy, the droplets were measured and found to range within ∼0.23-3.8 μm. In parallel to spectroscopy-assisted sizing, a volume equivalence route for estimating droplet sizes was carried out by measuring contact angles and diameters of the deposits. The electrosprayed nanosuspension relics were examined using optical and transmission electron microscopy. These deposits were further characterized using energy-dispersive X-rays and selected area electron diffraction. Simultaneously deposits were formed by a controlled route through needle deposition without the presence of an electric field. The structures formed in this non-electric field driven route are compared with those formed with electric fields. Thus, elucidating electrosprays as a competing nanofabrication route for forming self-assemblies with a wide range of nanomaterials in the nanoscale for top-down based bottom-up assembly of structures.

  10. Initial condition of stochastic self-assembly

    NASA Astrophysics Data System (ADS)

    Davis, Jason K.; Sindi, Suzanne S.

    2016-02-01

    The formation of a stable protein aggregate is regarded as the rate limiting step in the establishment of prion diseases. In these systems, once aggregates reach a critical size the growth process accelerates and thus the waiting time until the appearance of the first critically sized aggregate is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation is a central step of many physical, chemical, and biological process. Previous studies have examined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the assumption that at time t =0 the system was in the all-monomer state. However, in order to compare to in vivo biological experiments where protein constituents inherited by a newly born cell likely contain intermediate aggregates, other possibilities must be considered. We consider one such possibility by conditioning the unique ergodic size distribution on subcritical aggregate sizes; this least-informed distribution is then used as an initial condition. We make the claim that this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield significantly different averaged waiting times relative to the all-monomer condition under various models of assembly.

  11. Electrostatic self-assembly of biomolecules

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica

    2015-03-01

    Charged filaments and membranes are natural structures abundant in cell media. In this talk we discuss the assembly of amphiphiles into biocompatible fibers, ribbons and membranes. We describe one- and two-dimensional assemblies that undergo re-entrant transitions in crystalline packing in response to changes in the solution pH and/or salt concentration resulting in different mesoscale morphologies and properties. In the case of one-dimensional structures, we discuss self-assembled amphiphiles into highly charged nanofibers in water that order into two-dimensional crystals. These fibers of about 6 nm cross-sectional diameter form crystalline arrays with inter-fiber spacings of up to 130 nm. Solution concentration and temperature can be adjusted to control the inter-fiber spacings. The addition of salt destroys crystal packing, indicating that electrostatic repulsions are necessary for the observed ordering. We describe the crystallization of bundles of filament networks interacting via long-range repulsions in confinement by a phenomenological model. Two distinct crystallization mechanisms in the short and large screening length regimes are discussed and the phase diagram is obtained. Simulation of large bundles predicts the existence of topological defects among bundled filaments. Crystallization processes driven by electrostatic attractions are also discussed. Funded by Center for Bio-Inspired Energy Science (CBES), which is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000989.

  12. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGES

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  13. Surfactant mediated polyelectrolyte self-assembly

    SciTech Connect

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain and surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.

  14. Stochastic self-assembly of incommensurate clusters.

    PubMed

    D'Orsogna, M R; Lakatos, G; Chou, T

    2012-02-28

    Nucleation and molecular aggregation are important processes in numerous physical and biological systems. In many applications, these processes often take place in confined spaces, involving a finite number of particles. Analogous to treatments of stochastic chemical reactions, we examine the classic problem of homogeneous nucleation and self-assembly by deriving and analyzing a fully discrete stochastic master equation. We enumerate the highest probability steady states, and derive exact analytical formulae for quenched and equilibrium mean cluster size distributions. Upon comparison with results obtained from the associated mass-action Becker-Döring equations, we find striking differences between the two corresponding equilibrium mean cluster concentrations. These differences depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass "incommensurability" arises, a single remainder particle can "emulsify" the system by significantly broadening the equilibrium mean cluster size distribution. This discreteness-induced broadening effect is periodic in the total mass of the system but arises even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. Ironically, classic mass-action equations are fairly accurate in the coarsening regime, before equilibrium is reached, despite the presence of large stochastic fluctuations found via kinetic Monte-Carlo simulations. Our findings define a new scaling regime in which results from classic mass-action theories are qualitatively inaccurate, even in the limit of large total system size.

  15. Stochastic self-assembly of incommensurate clusters

    NASA Astrophysics Data System (ADS)

    D'Orsogna, M. R.; Lakatos, G.; Chou, T.

    2012-02-01

    Nucleation and molecular aggregation are important processes in numerous physical and biological systems. In many applications, these processes often take place in confined spaces, involving a finite number of particles. Analogous to treatments of stochastic chemical reactions, we examine the classic problem of homogeneous nucleation and self-assembly by deriving and analyzing a fully discrete stochastic master equation. We enumerate the highest probability steady states, and derive exact analytical formulae for quenched and equilibrium mean cluster size distributions. Upon comparison with results obtained from the associated mass-action Becker-Döring equations, we find striking differences between the two corresponding equilibrium mean cluster concentrations. These differences depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass "incommensurability" arises, a single remainder particle can "emulsify" the system by significantly broadening the equilibrium mean cluster size distribution. This discreteness-induced broadening effect is periodic in the total mass of the system but arises even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. Ironically, classic mass-action equations are fairly accurate in the coarsening regime, before equilibrium is reached, despite the presence of large stochastic fluctuations found via kinetic Monte-Carlo simulations. Our findings define a new scaling regime in which results from classic mass-action theories are qualitatively inaccurate, even in the limit of large total system size.

  16. Stochastic self-assembly of incommensurate clusters

    NASA Astrophysics Data System (ADS)

    DÓ Rsogna, Maria; Lakatos, Greg; Chou, Tom

    2013-03-01

    We examine the classic problem of homogeneous nucleation and self-assembly by deriving and analyzing a fully discrete stochastic master equation. We enumerate the highest probability steady-states, and derive exact analytical formulae for quenched and equilibrium mean cluster size distributions. Upon comparison with results obtained from the associated the mass-action Becker-Döring (BD) equations, we find striking differences between the two corresponding equilibrium mean cluster concentrations. These differences depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass ``incommensurability'' arises, a single remainder particle can ``emulsify'' the system by significantly broadening the equilibrium mean cluster size distribution. This discreteness-induced broadening effect is periodic in the total mass of the system but arises even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. Our findings define a new scaling regime in which results from classic mass-action theories are qualitatively inaccurate, even in the limit of large total system size. This work supported by NSF DMS-1021818 and DMS-1021850

  17. What promotes derected self assembly (DSA)?

    NASA Astrophysics Data System (ADS)

    Nakagawa, S. T.

    2016-09-01

    A low-energy electron beam (EB) can create self-interstitial atoms (SIA) in a solid and can cause directed self-assembly (DSA), e.g. {3 1 1}SIA platelets in c-Si. The crystalline structure of this planar defect is known from experiment to be made up of SIAs that form well aligned <1 1 0> atomic rows on each (3 1 1) plane. To simulate the experiment we distributed Frenkel pairs (FP) randomly in bulk c-Si. Then making use of a molecular dynamic (MD) simulation, we have reproduced the experimental result, where SIAs are trapped at metastable sites in bulk. With increasing pre-doped FP concentration, the number of SIAs that participate in DSA tends to be increased but soon slightly supressed. On the other hand, when the FP concentration is less than 3%, a cooperative motion of target atoms was characterized from the long-range-order (LRO) parameter. Here we investigated the correlation between DSA and that cooperative motion, by adding a case of intrinsic c-Si. We confirmed that the cooperative motion slightly promote DSA by assisting migration of SIAs toward metastable sites as long as the FP concentration is less than 3%, however, it is essentially independent of DSA.

  18. Self-assembly programming of DNA polyominoes.

    PubMed

    Ong, Hui San; Syafiq-Rahim, Mohd; Kasim, Noor Hayaty Abu; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan

    2016-10-20

    Fabrication of functional DNA nanostructures operating at a cellular level has been accomplished through molecular programming techniques such as DNA origami and single-stranded tiles (SST). During implementation, restrictive and constraint dependent designs are enforced to ensure conformity is attainable. We propose a concept of DNA polyominoes that promotes flexibility in molecular programming. The fabrication of complex structures is achieved through self-assembly of distinct heterogeneous shapes (i.e., self-organised optimisation among competing DNA basic shapes) with total flexibility during the design and assembly phases. In this study, the plausibility of the approach is validated using the formation of multiple 3×4 DNA network fabricated from five basic DNA shapes with distinct configurations (monomino, tromino and tetrominoes). Computational tools to aid the design of compatible DNA shapes and the structure assembly assessment are presented. The formations of the desired structures were validated using Atomic Force Microscopy (AFM) imagery. Five 3×4 DNA networks were successfully constructed using combinatorics of these five distinct DNA heterogeneous shapes. Our findings revealed that the construction of DNA supra-structures could be achieved using a more natural-like orchestration as compared to the rigid and restrictive conventional approaches adopted previously.

  19. Self-assembling holographic biosensors and biocomputers.

    SciTech Connect

    Light, Yooli Kim; Bachand, George David (Sandia National Laboratories, Albuquerque, NM); Schoeniger, Joseph S.; Trent, Amanda M. (Sandia National Laboratories, Albuquerque, NM)

    2006-05-01

    We present concepts for self-assembly of diffractive optics with potential uses in biosensors and biocomputers. The simplest such optics, diffraction gratings, can potentially be made from chemically-stabilized microtubules migrating on nanopatterned tracks of the motor protein kinesin. We discuss the fabrication challenges involved in patterning sub-micron-scale structures with proteins that must be maintained in aqueous buffers to preserve their activity. A novel strategy is presented that employs dry contact printing onto glass-supported amino-silane monolayers of heterobifunctional crosslinkers, followed by solid-state reactions of these cross-linkers, to graft patterns of reactive groups onto the surface. Successive solution-phase addition of cysteine-mutant proteins and amine-reactive polyethylene glycol allows assembly of features onto the printed patterns. We present data from initial experiments showing successful micro- and nanopatterning of lines of single-cysteine mutants of kinesin interleaved with lines of polyethylene, indicating that this strategy can be employed to arrays of features with resolutions suitable for gratings.

  20. Self-assembly of smallest magnetic particles

    PubMed Central

    Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M.; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan

    2015-01-01

    The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole–dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained. PMID:26554000

  1. Functional Self-Assembled Nanofibers by Electrospinning

    NASA Astrophysics Data System (ADS)

    Greiner, A.; Wendorff, J. H.

    Electrospinning constitutes a unique technique for the production of nanofibers with diameters down to the range of a few nanometers. In strong contrast to conventional fiber producing techniques, it relies on self-assembly processes driven by the Coulomb interactions between charged elements of the fluids to be spun to nanofibers. The transition from a macroscopic fluid object such as a droplet emerging from a die to solid nanofibers is controlled by a set of complex physical instability processes. They give rise to extremely high extensional deformations and strain rates during fiber formation causing among others a high orientational order in the nanofibers as well as enhanced mechanical properties. Electrospinning is predominantly applied to polymer based materials including natural and synthetic polymers, but, more recently, its use has been extended towards the production of metal, ceramic and glass nanofibers exploiting precursor routes. The nanofibers can be functionalized during electrospinning by introducing pores, fractal surfaces, by incorporating functional elements such as catalysts, quantum dots, drugs, enzymes or even bacteria. The production of individual fibers, random nonwovens, or orientationally highly ordered nonwovens is achieved by an appropriate selection of electrode configurations. Broad areas of application exist in Material and Life Sciences for such nanofibers, including not only optoelectronics, sensorics, catalysis, textiles, high efficiency filters, fiber reinforcement but also tissue engineering, drug delivery, and wound healing. The basic electrospinning process has more recently been extended towards compound co-electrospinning and precision deposition electrospinning to further broaden accessible fiber architectures and potential areas of application.

  2. Self-assembled single-crystal silicon circuits on plastic.

    PubMed

    Stauth, Sean A; Parviz, Babak A

    2006-09-19

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-microm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems.

  3. Intrinsic defect formation in peptide self-assembly

    NASA Astrophysics Data System (ADS)

    Deng, Li; Zhao, Yurong; Xu, Hai; Wang, Yanting

    2015-07-01

    In contrast to extensively studied defects in traditional materials, we report here a systematic investigation of the formation mechanism of intrinsic defects in self-assembled peptide nanostructures. The Monte Carlo simulations with our simplified dynamic hierarchical model revealed that the symmetry breaking of layer bending mode at the two ends during morphological transformation is responsible for intrinsic defect formation, whose microscopic origin is the mismatch between layer stacking along the side-chain direction and layer growth along the hydrogen bond direction. Moreover, defect formation does not affect the chirality of the self-assembled structure, which is determined by the initial steps of the peptide self-assembly process.

  4. Magnetic manipulation of self-assembled colloidal asters.

    SciTech Connect

    Snezhko, A.; Aranson, I. S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots

  5. Magnetic manipulation of self-assembled colloidal asters

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Aranson, Igor S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots.

  6. Magnetic manipulation of self-assembled colloidal asters.

    PubMed

    Snezhko, Alexey; Aranson, Igor S

    2011-08-07

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots.

  7. Functional self-assembled lipidic systems derived from renewable resources.

    PubMed

    Silverman, Julian R; Samateh, Malick; John, George

    2016-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure-function relationship and functional smart materials that research may remain safe, economic, and efficient.

  8. Dynamic self-assembly of 'living' polymeric chains

    NASA Astrophysics Data System (ADS)

    Deng, Binghui; Shi, Yunfeng

    2017-01-01

    We report a dynamic self-assembly system of 'living' polymeric chains sustained by chemistry using reactive molecular dynamics simulations. The linear polymeric chains consist of self-assembled nanoparticles connected by metastable linker molecules. As such, the polymeric chains, once assembled, undergo spontaneous dissociation driven by thermodynamics. However, with a continuous supply of linker molecules and the stored chemical energy therein, the polymeric chains can survive and maintain a steady state averaged chain length. These dynamically self-assembled polymeric chains are analogous to biological systems that both are thermodynamically metastable, yet dynamically stable upon continuous influx of matter and energy.

  9. Colloidosome like structures: self-assembly of silica microrods

    DOE PAGES

    Datskos, P.; Polizos, G.; Bhandari, M.; ...

    2016-03-07

    Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. We demonstrate silica microrod self-assembly by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/ pentanol emulsion droplets. Moreover, rods self-assembled to make structures in the range of z10 40 mm. Smooth rods assembled better than segmented rods. Finally, the assembled structures were bonded by weak van der Waals forces.

  10. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    PubMed Central

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-01-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs. PMID:27404912

  11. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    NASA Astrophysics Data System (ADS)

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-07-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs.

  12. Self-assembly in block polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Vishnyakov, Aleksey; Neimark, Alexander V.

    2011-02-01

    The self-consistent field theory (SCFT) complemented with the Poisson-Boltzmann equation is employed to explore self-assembly of polyelectrolyte copolymers composed of charged blocks A and neutral blocks B. We have extended SCFT to dissociating triblock copolymers and demonstrated our approach on three characteristic examples: (1) diblock copolymer (AB) melt, (2) symmetric triblock copolymer (ABA) melt, (3) triblock copolymer (ABA) solution with added electrolyte. For copolymer melts, we varied the composition (that is, the total fraction of A-segments in the system) and the charge density on A blocks and calculated the phase diagram that contains ordered mesophases of lamellar, gyroid, hexagonal, and bcc symmetries, as well as the uniform disordered phase. The phase diagram of charged block copolymer melts in the charge density - system composition coordinates is similar to the classical phase diagram of neutral block copolymer melts, where the composition and the Flory mismatch interaction parameter χ _{AB} are used as variables. We found that the transitions between the polyelectrolyte mesophases with the increase of charge density occur in the same sequence, from lamellar to gyroid to hexagonal to bcc to disordered morphologies, as the mesophase transitions for neutral diblocks with the decrease of χ _{AB}. In a certain range of compositions, the phase diagram for charged triblock copolymers exhibits unexpected features, allowing for transitions from hexagonal to gyroid to lamellar mesophases as the charge density increases. Triblock polyelectrolyte solutions were studied by varying the charge density and solvent concentration at a fixed copolymer composition. Transitions from lamellar to gyroid and gyroid to hexagonal morphologies were observed at lower polymer concentrations than the respective transitions in the similar neutral copolymer, indicating a substantial influence of the charge density on phase behavior.

  13. Self assembly: An approach to terascale integration

    SciTech Connect

    Singer, S.

    1993-09-01

    Surely one of the most remarkable accomplishments of modern times has been the miniaturization of electronic components, starting with discrete transistors and leading to Very Large Scale Integrated (VLSI) Circuits which will soon contain almost 100 million components in a few square centimeters. It led to an information processing industry that fuels almost every aspect of industrial societies and that has brought manifold benefits to their citizens. Although continuation of the miniaturization process is likely to produce even greater benefits, many experts are concerned that extrapolation of traditional silicon VLSI techniques will meet with increasingly severe difficulties. Some of these are fundamental in nature, e. g., granularity and fluctuations in semiconductors and interconnects and proximity effects such as tunneling. The first major difficulty to be encountered will be a rising cost of products due to increased complexity and difficulty of manufacturing and assembly. Such difficulties are likely to be seen in about 10 years when minimum component sizes are expected to decrease below 0.15--0.2 {mu}m. If alternatives to present VLSI techniques are to be available when needed, work on them must start now. At Los Alamos, we are exploring the feasibility of ultrasmall wires and switches that self-assemble themselves into computing elements and circuits. Their operation is based on the quantum properties of nanometer scale molecular clusters. This paper will describe our efforts in the development of these components and will summarize our work in four areas: (1) the development of conducting molecular wires, (2) conducting nanoparticle wires and switches based on the Coulomb Blockade principle, (3) the development of advanced architectures that benefit from the use of such components and that significantly advance the art of high performance computing, and (4) the development of novel methods for attaining sub-Angstrom 3-D non-destructive imaging.

  14. Converting molecular information of redox coenzymes via self-assembly.

    PubMed

    Morikawa, Masa-aki; Kimizuka, Nobuo

    2012-11-21

    β-Nicotinamide adenine dinucleotide (NAD(+)) and its reduced form NADH specifically interact with a cyanine dye in aqueous media, giving distinct spectral and nanostructural characteristics to which molecular information of constituent coenzymes are converted via self-assembly.

  15. Differentially photo-crosslinked polymers enable self-assembling microfluidics

    PubMed Central

    Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.

    2012-01-01

    An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594

  16. Directed flexibility: self-assembly of a supramolecular tetrahedron.

    PubMed

    Ludlow, James M; Xie, Tingzheng; Guo, Zaihong; Guo, Kai; Saunders, Mary Jane; Moorefield, Charles N; Wesdemiotis, Chrys; Newkome, George R

    2015-03-04

    Self-assembly of a tribenzo-27-crown-9 ether functionalized with six terpyridines generated (85%) an expanded tetrahedral structure comprised of four independent triangular surfaces interlinked by crown ether vertices.

  17. Self-Assembly of Structures with Addressable Complexity.

    PubMed

    Jacobs, William M; Frenkel, Daan

    2016-03-02

    The self-assembly of structures with "addressable complexity", where every component is distinct and is programmed to occupy a specific location within a target structure, is a promising route to engineering materials with precisely defined morphologies. Because systems with many components are inherently complicated, one might assume that the chances of successful self-assembly are extraordinarily small. Yet recent advances suggest otherwise: addressable structures with hundreds of distinct building blocks have been designed and assembled with nanometer precision. Despite this remarkable success, it is often challenging to optimize a self-assembly reaction to ensure that the intended structure is kinetically accessible. In this Perspective, we focus on the prediction of kinetic pathways for self-assembly and implications for the design of robust experimental protocols. The development of general principles to predict these pathways will enable the engineering of complex materials using a much wider range of building blocks than is currently possible.

  18. Directed self-assembly of proteins into discrete radial patterns

    PubMed Central

    Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas

    2013-01-01

    Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678

  19. Ionic liquids as amphiphile self-assembly media.

    PubMed

    Greaves, Tamar L; Drummond, Calum J

    2008-08-01

    In recent years, the number of non-aqueous solvents which mediate hydrocarbon-solvent interactions and promote the self-assembly of amphiphiles has been markedly increased by the reporting of over 30 ionic liquids which possess this previously unusual solvent characteristic. This new situation allows a different exploration of the molecular "solvophobic effect" and tests the current understanding of amphiphile self-assembly. Interestingly, both protic and aprotic ionic liquids support amphiphile self-assembly, indicating that it is not required for the solvents to be able to form a hydrogen bonded network. Here, the use of ionic liquids as amphiphile self-assembly media is reviewed, including micelle and liquid crystalline mesophase formation, their use as a solvent phase in microemulsions and emulsions, and the emerging field of nanostructured inorganic materials synthesis. Surfactants, lipids and block co-polymers are the focus amphiphile classes in this critical review (174 references).

  20. Understanding emergent functions in self-assembled fibrous networks

    NASA Astrophysics Data System (ADS)

    Sinko, Robert; Keten, Sinan

    2015-09-01

    Understanding self-assembly processes of nanoscale building blocks and characterizing their properties are both imperative for designing new hierarchical, network materials for a wide range of structural, optoelectrical, and transport applications. Although the characterization and choices of these material building blocks have been well studied, our understanding of how to precisely program a specific morphology through self-assembly still must be significantly advanced. In the recent study by Xie et al (2015 Nanotechnology 26 205602), the self-assembly of end-functionalized nanofibres is investigated using a coarse-grained molecular model and offers fundamental insight into how to control the structural morphology of nanofibrous networks. Varying nanoscale networks are observed when the molecular interaction strength is changed and the findings suggest that self-assembly through the tuning of molecular interactions is a key strategy for designing nanostructured networks with specific topologies.

  1. Self-assembled peptide nanostructures for functional materials

    NASA Astrophysics Data System (ADS)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  2. Activity-assisted self-assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Mallory, S. A.; Cacciuto, A.

    2016-08-01

    We outline a basic strategy of how self-propulsion can be used to improve the yield of a typical colloidal self-assembly process. The success of this approach is predicated on the thoughtful design of the colloidal building block as well as how self-propulsion is endowed to the particle. As long as a set of criteria are satisfied, it is possible to significantly increase the rate of self-assembly, and greatly expand the window in parameter space where self-assembly can occur. In addition, we show that by tuning the relative on-off time of the self-propelling force it is possible to modulate the effective speed of the colloids allowing for further optimization of the self-assembly process.

  3. Self-assembly drugs: from micelles to nanomedicine.

    PubMed

    Messina, Paula V; Besada-Porto, Jose Miguel; Ruso, Juan M

    2014-03-01

    Self-assembly has fascinated many scientists over the past few decades. Rapid advances and widespread interest in the study of this subject has led to the synthesis of an ever-increasing number of elegant and intricate functional structures with sizes that approach nano- and mesoscopic dimensions. Today, it has grown into a mature field of modern science whose interfaces with many disciplines have provided invaluable opportunities for crossing boundaries for scientists seeking to design novel molecular materials exhibiting unusual properties, and for researchers investigating the structure and function of biomolecules. Consequently, self-assembly transcends the traditional divisional boundaries of science and represents a highly interdisciplinary field including nanotechnology and nanomedicine. Basically, self-assembly focuses on a wide range of discrete molecules or molecular assemblies and uses physical transformations to achieve its goals. In this Review, we present a comprehensive overview of the advances in the field of drug self-assembly and discuss in detail the synthesis, self-assembly behavior, and physical properties as well as applications. We refer the reader to past reviews dealing with colloidal molecules and colloidal self-assembly. In the first part, we will discuss, compare, and link the various bioinformatic procedures: Molecular Dynamics and Quantitative Structure Activity Relationship. The second section deals with the self-assembly behavior in more detail, in which we focus on several experimental techniques, selected according to the depth of knowledge obtained. The last part will review the advances in drug-protein assembly. Nature provides many examples of proteins that form their substrate binding sites by bringing together the component pieces in a process of self-assembly. We will focus in the understanding of physical properties and applications developing thereof.

  4. Self-assembled nanotubes from single fluorescent amino acid

    NASA Astrophysics Data System (ADS)

    Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2017-03-01

    Self-assembly of biomolecules has gained increasing attention as it generates various supramolecular structural assemblies having potential applications principally in biomedical sciences. Here, we show that amino acid like tryptophan or tyrosine readily aggregates as nanotubes via a simple self-assembly process. These were characterized by FTIR, scanning electron microscopy, and by fluorescence microscopy. Nanotubes prepared from tryptophan are having 200 nm inner diameter and those from tyrosine are having the same around 50 nm diameter.

  5. Self Assembled, Ultra-Hydrophobic Micro/Nano-Textured Surfaces

    DTIC Science & Technology

    2007-04-01

    Self Assembled, Ultra-Hydrophobic Micro / Nano -Textured Surfaces by Adam M. Rawlett, Joshua A. Orlicki, Nicole Zander, Afia Karikari, and...5069 ARL-TN-275 April 2007 Self Assembled, Ultra-Hydrophobic Micro / Nano -Textured Surfaces Adam M. Rawlett, Joshua A. Orlicki, and...NUMBER 5b. GRANT NUMBER 4. TITL Self A bled, Ultra-Hydrophobic Micro / Nano -Textured Surfaces 5c. PROGRAM ELEMENT NUMBER E ssem AND SUBTITLE 5d

  6. Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems

    DTIC Science & Technology

    2015-05-15

    Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems This grant studied DNA nanostructures and their applications in a variety of...MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 DNA , nanoscience, self-assembly...Title This grant studied DNA nanostructures and their applications in a variety of ways, including: (1) the development of thermo-mechanical models, (2

  7. Electronic polymers and DNA self-assembled in nanowire transistors.

    PubMed

    Hamedi, Mahiar; Elfwing, Anders; Gabrielsson, Roger; Inganäs, Olle

    2013-02-11

    Aqueous self-assembly of DNA and molecular electronic materials can lead to the creation of innumerable copies of identical devices, and inherently programmed complex nanocircuits. Here self-assembly of a water soluble and highly conducting polymer PEDOT-S with DNA in aqueous conditions is shown. Orientation and assembly of the conducting DNA/PEDOT-S complex into electrochemical DNA nanowire transistors is demonstrated.

  8. Design strategies for self-assembly of discrete targets

    SciTech Connect

    Madge, Jim; Miller, Mark A.

    2015-07-28

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority.

  9. Impregnation of tubular self-assemblies into dextran hydrogels.

    PubMed

    Sun, Guoming; Chu, Chih-Chang

    2010-02-16

    Amine groups are the building units of proteins. The incorporation of amine groups into polyethylene glycol diacrylate (PEGDA) hydrogel through dextran-allyl isocyanate-ethylamine (Dex-AE) enhances sustained protein release by introducing effective interactions. To investigate such an interaction effect and to improve protein release, we impregnated self-assembled tubular structures from dextran-bromoethylamine (Dex-BH) and dextran-chloroacetic acid (Dex-CA) into Dex-AE/PEGDA hydrogel. The morphology data obtained from scanning electron microscopy (SEM) reveal that pure PEGDA hydrogel had no effect on the distribution of the self-assembled tubules; the introduction of Dex-AE brought about the dispersion of these tubules, and an increase in Dex-AE content led to more evenly distributed structures. Moreover, the implantation of the self-assembled tubules had no distinct effect on the swelling capacity of the hybrid self-assembly embedded hydrogels. The in vitro albumin release study was carried out in a pH 7.4 buffer solution; the results show that the implantation of the self-assembly into the hydrogels reduced the burst release and prolonged the protein release time. These findings demonstrate that the impregnation of tubular self-assembly into hydrogel makes the hybrid hydrogel an excellent protein delivery system.

  10. Effect of polymerization on hierarchical self-assembly into nanosheets.

    PubMed

    Ikeda, Taichi

    2015-01-20

    The oligomers consisting of phenyl-capped bithiophene and tetra(ethylene glycol)s linked by azide-alkyne Huisgen cycloaddition were synthesized. The relationship between the degree of polymerization and self-assembling ability was investigated in o-dichlorobenzene and dimethyl sulfoxide. From the absorption spectrum, it was confirmed that the critical degree of polymerization (CDP) for thiophene unit aggregation was 4. The morphology of the aggregated product was observed by atomic force microscopy. The oligomers 4mer and 5mer could not self-assemble into well-defined structures due to the weak driving force for the self-assembly. In the cases of 6mer and 7mer, aggregates with nonwell-defined and nanosheet structures coexisted. In the cases of 8mer and 9mer, the nanosheet was the main product. The critical point between 7mer and 8mer could be confirmed by different aggregation behaviors in the cooling process of the solution (nonsigmoidal and sigmoidal). In the cases of 8mer and 9mer, polymer folding prior to intermolecular self-assembly, which was supported by sigmoidal aggregation behavior, leads to the nanosheet formation. On the contrary, shorter oligomers than 8mer experience intermolecular aggregation prior to intramolecular polymer folding, which was supported by the nonsigmoidal aggregation behavior. This is the first report to prove the existence of CDP for folded polymer nanosheet formation which requires hierarchical self-assembly, i.e., polymer folding followed by intermolecular self-assembly.

  11. DNA-based self-assembly for functional nanomaterials.

    PubMed

    Wang, Zhen-Gang; Ding, Baoquan

    2013-07-26

    The unprecedented development of DNA nanotechnology has caused DNA self-assembly to attract close attention in many disciplines. In this research news article, the employment of DNA self-assembly in the fields of materials science and nanotechnology is described. DNA self-assembly can be used to prepare bulk-scale hydrogels and 3D macroscopic crystals with nanoscale internal structures, to induce the crystallization of nanoparticles, to template the fabrication of organic conductive nanomaterials, and to act as drug delivery vehicles for therapeutic agents. The properties and functions are fully tunable because of the designability and specificity of DNA assembly. Moreover, because of the intrinsic dynamics, DNA self-assembly can act as a program switch and can efficiently control stimuli responsiveness. We highlight the power of DNA self-assembly in the preparation and function regulation of materials, aiming to motivate future multidisciplinary and interdisciplinary research. Finally, we describe some of the challenges currently faced by DNA assembly that may affect the functional evolution of such materials, and we provide our insights into the future directions of several DNA self-assembly-based nanomaterials.

  12. Albumin binds self-assembling dyes as specific polymolecular ligands.

    PubMed

    Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz

    2006-12-15

    Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.

  13. Electric Field Controlled Self-Assembly of Hierarchically Ordered Membranes

    PubMed Central

    Velichko, Yuri S.; Mantei, Jason R.; Bitton, Ronit; Carvajal, Daniel; Shull, Kenneth R.; Stupp, Samuel I.

    2012-01-01

    Self-assembly in the presence of external forces is an adaptive, directed organization of molecular components under nonequilibrium conditions. While forces may be generated as a result of spontaneous interactions among components of a system, intervention with external forces can significantly alter the final outcome of self-assembly. Superimposing these intrinsic and extrinsic forces provides greater degrees of freedom to control the structure and function of self-assembling materials. In this work we investigate the role of electric fields during the dynamic self-assembly of a negatively charged polyelectrolyte and a positively charged peptide amphiphile in water leading to the formation of an ordered membrane. In the absence of electric fields, contact between the two solutions of oppositely charged molecules triggers the growth of closed membranes with vertically oriented fibrils that encapsulate the polyelectrolyte solution. This process of self-assembly is intrinsically driven by excess osmotic pressure of counterions, and the electric field is found to modify the kinetics of membrane formation, and also its morphology and properties. Depending on the strength and orientation of the field we observe a significant increase or decrease of up to nearly 100% in membrane thickness, as well as the controlled rotation of nanofiber growth direction by 90 degrees, resulting in a significant increase in mechanical stiffness. These results suggest the possibility of using electric fields to control structure in self-assembly processes involving diffusion of oppositely charged molecules. PMID:23166533

  14. Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency

    PubMed Central

    Zhao, Qiang; Wang, Yao; Xu, Yanshuang; Yan, Yun; Huang, Jianbin

    2016-01-01

    A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases. PMID:27527403

  15. Structures Self-Assembled Through Directional Solidification

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2005-01-01

    dry plasma etch. The wet chemical etches the silicon away, exposing the TiSi2 rods, whereas plasma etching preferentially etches the Si-TiSi2 interface to form a crater. The porous architectures are applicable to fabricating microdevices or creating templates for part fabrication. The porous rod structure can serve as a platform for fabricating microplasma devices for propulsion or microheat exchangers and for fabricating microfilters for miniatured chemical reactors. Although more work is required, self-assembly from DSE can have a role in microdevice fabrication.

  16. Self-assemblies of 5'-cholesteryl-ethyl-phosphoryl zidovudine.

    PubMed

    Du, Lina; Jia, Junwei; Ge, Pingju; Jin, Yiguang

    2016-12-01

    Anti-HIV prodrugs are recently focused on due to their ability of self-assembly, macrophage targeting, and enhanced antiviral effects. Here, an amphiphilic prodrug of zidovudine, an anti-HIV nucleoside analogue, 5'-cholesteryl-ethyl-phosphoryl zidovudine (CEPZ) was synthesized. CEPZ showed some unique physicochemical properties. The solubility of CEPZ in the noncompetitive solvents chloroform and tetrahydrofuran (THF) was very high based on the hydrogen bonds between zidovudine groups, though CEPZ was sparing soluble in alcohols and almost insoluble in water. The typical amphiphilic property of CEPZ was demonstrated according to the Langmuir monolayers at the air/water interface. The LogP of CEPZ was high to 13.78, indicating the high hydrophobicity of amphiphilic CEPZ similar to phospholipids. Homogenous and stable self-assemblies were formed with the mean size of 128.7nm and the zeta potential of -35.4mV after injecting the CEPZ-in-THF solution into water. Hydrophobic interaction between the cholesteryl moieties of CEPZ could drive molecular self-assembly and lead to the formation of spherical vesicles. CEPZ self-assemblies showed strong stability even under high temperature and gravity probably due to the high surface charge. CEPZ was very slowly degraded in neutral solutions (e.g., pH 7.4), but fast in acid solutions (e.g., pH 5.0) and some tissue homogenates. CEPZ was quickly eliminated from the circulation and distributed into the mononuclear phagocyte system (MPS) including the liver, spleen and lung after bolus intravenous administration of CEPZ self-assemblies to mice. The MPS targeting effect of CEPZ self-assemblies makes them become a promising self-assembled drug delivery system to eradicate the HIV hidden in the macrophages.

  17. Self-assembled tethered bimolecular lipid membranes.

    PubMed

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules

  18. A porphyrin/β-cyclodextrin conjugated nano-system having a pan-lid molecular structure for smart drug carrier applications.

    PubMed

    Mineo, Placido

    2014-06-14

    In this study, 5,10,15-tri[p(9-methoxy-triethyleneoxy)phenyl]-20-[p-phenylisophthalate-β-cyclodextrin]porphyrin, a compound containing a porphyrin and a β-cyclodextrin unit covalently linked by means of an isophthalic bridge, was synthesized and characterized by NMR, MALDI-TOF mass spectrometry and UV-vis and circular dichroism spectroscopies. This porphyrin/β-cyclodextrin system, with the porphyrin unit connected to the lower rim (OH-2) of the cyclodextrin structure, is water-soluble and no evidence of a self-assembly arrangement between the porphyrin and cyclodextrin units appears. In this way, the β-cyclodextrin cavities remain free, retaining their potential ability of drug-delivery, with the spectroscopic advantage induced by the high absorbance of the porphyrin unit. Furthermore, the porphyrin unit, interacting with the guest and acting as a lid, could have a role in the controlled release process of the drug.

  19. Acylpyrazolones: Synthesis, self-assembly and lanthanide metal ion separation

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    The central hypothesis that nanoscale self-assemblies can provide excellent metal ion recognition has been substantiated by employing acylpyrazolones and trivalent lanthanide metal ions as model systems. Several novel acylpyrazolones and their amphiphilic analogs have been designed, synthesized, and characterized. Their lanthanide metal ion recognition efficacies have been demonstrated through baseline separations of a mixture of light, middle, and heavy lanthanide metal ions by employing them in the aqueous mobile phase of high performance liquid chromatography (HPLC) with octadecylsilanized silica (ODS) as the stationary phase. The complex separation mechanism is influenced by the structures of acylpyrazolone and amphiphilic moieties, and spontaneous self-assembly of the ligand in the aqueous and on the stationary phases. Transmission electron microscopy (TEM) studies of the ligand self-assemblies in the aqueous phase in the absence and presence of lanthanide metal ions reveal spherical, dendritic, and linear (nanofibers, nanorods, and nanotubes) nanoscale structures. Such structures have also been observed when chloromethylated acylpyrazolones are stimulated to self-assemble by a base in nonaqueous solvents and when silica nanoparticles derivatized with them spontaneously self-assemble in aqueous and nonaqueous solvents.

  20. Self-Assembly for the Synthesis of Functional Biomaterials

    PubMed Central

    Stephanopoulos, Nicholas; Ortony, Julia H.; Stupp, Samuel I.

    2012-01-01

    The use of self-assembly for the construction of functional biomaterials is a highly promising and exciting area of research, with great potential for the treatment of injury or disease. By using multiple noncovalent interactions, coded into the molecular design of the constituent components, self-assembly allows for the construction of complex, adaptable, and highly tunable materials with potent biological effects. This review describes some of the seminal advances in the use of self-assembly to make novel systems for regenerative medicine and biology. Materials based on peptides, proteins, DNA, or hybrids thereof have found application in the treatment of a wide range of injuries and diseases, and this review outlines the design principles and practical applications of these systems. Most of the examples covered focus on the synthesis of hydrogels for the scaffolding or transplantation of cells, with an emphasis on the biological, mechanical, and structural properties of the resulting materials. In addition, we will discuss the distinct advantages conferred by self-assembly (compared with traditional covalent materials), and present some of the challenges and opportunities for the next generation of self-assembled biomaterials. PMID:23457423

  1. Sequential programmable self-assembly: Role of cooperative interactions

    NASA Astrophysics Data System (ADS)

    Halverson, Jonathan D.; Tkachenko, Alexei V.

    2016-03-01

    We propose a general strategy of "sequential programmable self-assembly" that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenient platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call "DNA spider," that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a "GEOMAG" magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.

  2. Harnessing Surface Dislocation Networks for Molecular Self-Assembly

    NASA Astrophysics Data System (ADS)

    Pohl, Karsten

    2009-03-01

    The controlled fabrication of functional wafer-based nano-arrays is one of the ultimate quests in current nanotechnologies. Well-ordered misfit dislocation networks of ultrathin metal films are viable candidates for the growth of two- dimensional ordered cluster arrays in the nanometer regime. Such bottom-up processes can be very complex, involving collective effects from a large number of atoms. Unraveling the fundamental forces that drive these self-assembly processes requires detailed experimental information at the atomic level of large ensembles of hundreds to thousands of atoms. The combination of variable temperature measurements from our home-built STM correlated with 2D Frenkel-Kontorova models based on first-principle interaction parameters is used to explain how uniform arrays can form with the strain in the thin film as the driving force responsible for the surface self-assembly process. This process is generally applicable to assemble many molecular species thus opening avenues towards complex self-assembled structures based on a lock-and-key type approach. Moreover, when increasing the molecular coverage and/or decreasing the strain in the thin film the intermolecular interactions will eventually dominate the elastic effects and dictate the self-assembly process via molecular structure and functionality. We will show that controlling this delicate balance leads to a richness of structures, ranging from disperse ordered arrays of molecular clusters to patterned self-assembled monolayers (SAMs) of functionalized fullerenes and methanethiol.

  3. Synthesis and characterization of porphyrin nanotubes/rods for solar radiation harvesting and solar cells

    NASA Astrophysics Data System (ADS)

    Mongwaketsi, N.; Khamlich, S.; Klumperman, B.; Sparrow, R.; Maaza, M.

    2012-05-01

    Energy transfer and electron transfer events as they occur between well arranged light harvesting antenna molecules, the reaction center and other factors determine the function of natural photosynthesis. The overall small reorganization energy and the well-balanced electronic coupling between each component bear key characters for the unique efficiency of natural photosynthesis. Such aspects permit the design and assembly of artificial systems that efficiently process solar energy, replicating the natural processes. The rich and extensive transitions seen in porphyrin-based materials hold great expectation as light harvesting building blocks in the construction of molecular architectures, allowing an efficient use of the solar spectrum. Hence in this study porphyrin nanorods are synthesized and characterized for future application in the construction of the artificial light harvesting system. Understanding the sizes and growth mechanism of porphyrins nanorods by self-assembly and molecular recognition is essential for their successful implementation in nanodevices. Spectroscopic and microscopic studies were carried out to investigate the effect that time, concentration and solvents have on the fabrication of porphyrin nanorods by ionic self-assembly of two oppositely charged porphyrins. We investigate in details the heteroaggregate behavior formation of [H4TPPS4]2- and [SnTPyP]2+ mixture by means of the UV-vis spectroscopy and aggregates structure and morphology by transmission electron microscopy (TEM). This study demonstrates the potential for using different concentrations and solvents to influence the physical and optical properties of porphyrin based nanorods.

  4. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    SciTech Connect

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented.

  5. Self-assembly of polymeric microspheres of complex internal structures

    NASA Astrophysics Data System (ADS)

    Fialkowski, Marcin; Bitner, Agnieszka; Grzybowski, Bartosz A.

    2005-01-01

    Self-assembly can easily produce intricate structures that would be difficult to make by conventional fabrication means. Here, self-assembly is used to prepare multicomponent polymeric microspheres of arbitrary internal symmetries. Droplets of liquid prepolymers are printed onto a water-soluble hydrogel, and are allowed to spread and coalesce into composite patches. These patches are then immersed in an isodense liquid, which both compensates the force of gravity and dissolves the gel beneath the polymers. Subsequently, the patches fold into spheres whose internal structures are dictated by the arrangement of the droplets printed onto the surface. The spheres can be solidified either thermally or by ultraviolet radiation. We present a theoretical analysis of droplet spreading, coalescence and folding. Conditions for the stability of the folded microspheres are derived from linear stability analysis. The composite microbeads that we describe are likely to find uses in optics, colloidal self-assembly and controlled-delivery applications.

  6. Functional self-assembled lipidic systems derived from renewable resources

    PubMed Central

    Silverman, Julian R.; Samateh, Malick; John, George

    2015-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure–function relationship and functional smart materials that research may remain safe, economic, and efficient. PMID:26766923

  7. Guided and magnetic self-assembly of tunable magnetoceptive gels

    PubMed Central

    Tasoglu, S.; Yu, C.H.; Gungordu, H.I.; Guven, S.; Vural, T.; Demirci, U.

    2014-01-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents. PMID:25175148

  8. Equation of State for Phospholipid Self-Assembly

    PubMed Central

    Marsh, Derek

    2016-01-01

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies of transfer converge at ∼−18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle concentration at a single temperature suffices to define an effective heat capacity according to the model. Agreement with the experimental temperature dependence of the critical micelle concentration is then good. The predictive powers should extend also to amphiphile partitioning and the kinetics of lipid-monomer transfer. PMID:26745421

  9. Self-Assemblies of Acicular Hollow Fe/C Nanostructures.

    PubMed

    Li, Wangchang; Qiao, Xiaojing; Li, Mingyu; Zheng, Qiuyu; Ren, Qingguo; Zhu, Y Q; Peng, H X

    2015-08-01

    Self-assemblies of acicular hollow Fe/C structures were synthesized using D-glucose monohydrate and ferric chloride as precursors by a simple hydrothermal process followed by carbonization at 800 °C. The self-assembled structures with an overall diameter of 15~20 µm composed of radially formed hollow needles from a central core with an average diameter of ca. 1 µm and a length up to 10 µm. The end of the needles was revealed to be a awl shape with a hollow structure formed during the self-assembly process and the subsequent heat treatment. The hollow structure was probably caused by the Kirkendall effect at 800 °C. The materials exhibit ferromagnetic characteristic with saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) of 22.2 emu/g, 3 emu/g, and 151.22 Oe, respectively, with Ms much lower than that of Fe3O4.

  10. Dynamic self-assembly of coordination polymers in aqueous solution.

    PubMed

    Li, Wen; Kim, Yongju; Li, Jingfang; Lee, Myongsoo

    2014-08-07

    The construction of supramolecular polymers has been intensively pursued because the nanostructures formed through weak non-covalent interactions can be triggered by external stimuli leading to smart materials and sensors. Self-assemblies of coordination polymers consisting of metal ions and organic ligands in aqueous solution also provide particular contributions in this area. The main motivation for developing those coordination polymers originates from the value-added combination between metal ions and ligands. This review highlights the recent progress of the dynamic self-assembly of coordination polymers that result from the sophisticated molecular design, towards fabricating stimuli-responsive systems and bio-related materials. Dynamic structural changes and switchable physical properties triggered by various stimuli are summarized. Finally, the outlook for aqueous nanostructures originated from the dynamic self-assembly of coordination polymers is also presented.

  11. Equation of State for Phospholipid Self-Assembly.

    PubMed

    Marsh, Derek

    2016-01-05

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle concentration at a single temperature suffices to define an effective heat capacity according to the model. Agreement with the experimental temperature dependence of the critical micelle concentration is then good. The predictive powers should extend also to amphiphile partitioning and the kinetics of lipid-monomer transfer.

  12. Self-Assembly in Biosilicification and Biotemplated Silica Materials

    PubMed Central

    Fernandes, Francisco M.; Coradin, Thibaud; Aimé, Carole

    2014-01-01

    During evolution, living organisms have learned to design biomolecules exhibiting self-assembly properties to build-up materials with complex organizations. This is particularly evidenced by the delicate siliceous structures of diatoms and sponges. These structures have been considered as inspiration sources for the preparation of nanoscale and nanostructured silica-based materials templated by the self-assembled natural or biomimetic molecules. These templates range from short peptides to large viruses, leading to biohybrid objects with a wide variety of dimensions, shapes and organization. A more recent strategy based on the integration of biological self-assembly as the driving force of silica nanoparticles organization offers new perspectives to elaborate highly-tunable, biofunctional nanocomposites. PMID:28344249

  13. Hydrodynamic Self-Assembly of Topographical Patterns on Soft Materials

    SciTech Connect

    Kumar, Satish

    2016-01-06

    The objective of this project is to use theoretical tools to explore fundamentally new ways of creating and controlling surface topography on soft materials (e.g., polymeric liquids, gels, colloidal suspensions) that make use of principles from hydrodynamics and self-assembly. Surface topography is known to have a significant impact on the optical, adhesive, and wetting properties of materials, so improved fundamental understanding of how to create and control it will help enable the tailoring of these properties to desired specifications. Self-assembly is the spontaneous organization of an ordered structure, and hydrodynamics often plays an important role in the self-assembly of soft materials. This research supported through this project has led to the discovery of a number of novel phenomena that are described in published journal articles. In this way, the research significantly adds to the fundamental understanding of the topics investigated.

  14. Investigating collagen self-assembly with optical tweezers microrheology

    NASA Astrophysics Data System (ADS)

    Forde, Nancy; Shayegan, Marjan; Altindal, Tuba

    Collagen is the fundamental structural protein in vertebrates. Assembled from individual triple-helical proteins to make strong fibres, collagen is a beautiful example of a hierarchical self-assembling system. Using optical tweezers to perform microrheology measurements, we explore the dynamics of interactions between collagens responsible for their self-assembly and examine the development of heterogeneous mechanics during assembly into fibrillar gels. Telopeptides, short non-helical regions that flank the triple helix, have long been known to facilitate fibril self-assembly. We find that their removal not only slows down fibril nucleation but also results in a significant frequency-dependent reduction in the elastic modulus of collagens in solution. We interpret these results in terms of a model in which telopeptides facilitate transient intermolecular interactions, which enhance network connectivity in solution and lead to more rapid assembly in fibril-forming conditions. Current address: Department of Physics, McGill University.

  15. Actinide sequestration using self-assembled monolayers on mesoporous supports.

    PubMed

    Fryxell, Glen E; Lin, Yuehe; Fiskum, Sandy; Birnbaum, Jerome C; Wu, Hong; Kemner, Ken; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometalate anions, and radionuclides. Details addressing the design, synthesis, and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental cleanup necessary after 40 years of weapons-grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented.

  16. Reactivity within a confined self-assembled nanospace.

    PubMed

    Koblenz, Tehila S; Wassenaar, Jeroen; Reek, Joost N H

    2008-02-01

    Confined nanospaces in which reactions can take place, have been created by various approaches such as molecular capsules, zeolites and micelles. In this tutorial review we focus on the application of self-assembled nanocapsules with well-defined cavities as nanoreactors for organic and metal catalysed transformations. The self-assembly of nanocapsules based on noncovalent bonds such as hydrogen bonds and metal-ligand interactions is discussed to introduce the properties of the building blocks and capsules thereof. We will elaborate on the encapsulation effects that can be expected when reactions are carried out in a capsule-protected environment. Subsequently, literature examples will be described in which self-assembled nanocapsules are applied as nanoreactors, for various types of organic and metal catalysed reactions.

  17. Guided and magnetic self-assembly of tunable magnetoceptive gels

    NASA Astrophysics Data System (ADS)

    Tasoglu, S.; Yu, C. H.; Gungordu, H. I.; Guven, S.; Vural, T.; Demirci, U.

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  18. Self-Assembly of DNA-coated colloids

    NASA Astrophysics Data System (ADS)

    Pine, David

    DNA-coated particles have emerged as a powerful tool for programming the self-assembly of colloids and nanoparticles. The power of this approach lies in the highly specific molecular recognition properties of DNA and in the thermal reversibility of the interactions between DNA strands attached to different particles. These two properties taken together can, in principle, direct the bottom-up self-assembly of different materials into almost any desired structure. Here we discuss the self-assembly of single and multi-component crystals of DNA-coated colloids. This work is supported by the Army Research Office under MURI Grant Award Number W911NF-10-1-0518 and the MRSEC Program of the NSF under Award Number DMR-1420073.

  19. Guided and magnetic self-assembly of tunable magnetoceptive gels.

    PubMed

    Tasoglu, S; Yu, C H; Gungordu, H I; Guven, S; Vural, T; Demirci, U

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call 'magnetoceptive' materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  20. Self-assembled liposomal nanoparticles in photodynamic therapy

    PubMed Central

    Sadasivam, Magesh; Avci, Pinar; Gupta, Gaurav K.; Lakshmanan, Shanmugamurthy; Chandran, Rakkiyappan; Huang, Ying-Ying; Kumar, Raj; Hamblin, Michael R.

    2013-01-01

    Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT. PMID:24348377

  1. Self-assembly of tunable protein suprastructures from recombinant oleosin

    PubMed Central

    Vargo, Kevin B.; Parthasarathy, Ranganath; Hammer, Daniel A.

    2012-01-01

    Using recombinant amphiphilic proteins to self-assemble suprastructures would allow precise control over surfactant chemistry and the facile incorporation of biological functionality. We used cryo-TEM to confirm self-assembled structures from recombinantly produced mutants of the naturally occurring sunflower protein, oleosin. We studied the phase behavior of protein self-assembly as a function of solution ionic strength and protein hydrophilic fraction, observing nanometric fibers, sheets, and vesicles. Vesicle membrane thickness correlated with increasing hydrophilic fraction for a fixed hydrophobic domain length. The existence of a bilayer membrane was corroborated in giant vesicles through the localized encapsulation of hydrophobic Nile red and hydrophilic calcein. Circular dichroism revealed that changes in nanostructural morphology in this family of mutants was unrelated to changes in secondary structure. Ultimately, we envision the use of recombinant techniques to introduce novel functionality into these materials for biological applications. PMID:22753512

  2. Self-Assembled DNA Templated Nano-wires and Circuits

    NASA Astrophysics Data System (ADS)

    Braun, Erez

    2000-03-01

    The realization that conventional microelectronics is approaching its miniaturization limits has motivated the search for an alternative route based on self-assembled nanometer-scale electronics. We have recently proposed a new approach based on the hybridization of biological and electronic materials (Braun E., Eichen Y., Sivan U. and Ben-Yoseph G., Nature 391, 775 (1998)). The concept relies on a two-step self-assembly process. The inherent molecular recognition capabilities of DNA molecules are first utilized to construct a network that serves as a template for the subsequent assembly of electronic materials into a circuit. The utilization of DNA and its associated enzymatic machinery enables: (a) self-assembly of complex substrates, (b) specific molecular addresses for the localization of electronic materials (e.g., gold colloids) by standard molecular biology techniques, (c) interdevice wiring and (d) bridging the microscopic structures to the macroscopic world. The self-assembly of nanometer scale electronics relies on two complementary developments. First, the ability to convert DNA molecules into thin conductive wires and second, the self-assembly of complex extended DNA templates. Our progress in these two directions will be presented. Regarding the first issue, a physical process resulting in condensation of gold colloids onto DNA molecules enables the assembly of thin gold wires (around 100-200 A wide) having, in principle, unlimited extensions. The second issue is developed in the context of recombinant DNA which allows the self-assembly of precise molecular junctions and networks. Specifically, we use RecA protein, which is the main protein responsible for genetic recombination in E. Coli bacteria, to construct DNA junctions at pre-designed addresses (sequences) on the molecules. The integration of these processes allows advancing nanometer-scale electronics. A realistic fabrication scheme for a room-temperature single-electron transistor

  3. Interfacial and mechanical properties of self-assembling systems

    NASA Astrophysics Data System (ADS)

    Carvajal, Daniel

    Self-assembly is a fascinating phenomena where interactions between small subunits allow them to aggregate and form complex structures that can span many length scales. These self-assembled structures are especially important in biology where they are necessary for life as we know it. This dissertation is a study of three very different self-assembling systems, all of which have important connections to biology and biological systems. Drop shape analysis was used to study the interfacial assembly of amphiphilic block copolymers at the oil/water interface. When biologically functionalyzed copolymers are used, this system can serve as a model for receptor-ligand interactions that are used by cells to perform many activities, such as interact with their surroundings. The physical properties of a self-assembling membrane system were quantified using membrane inflation and swelling experiments. These types of membranes may have important applications in medicine such as drug eluting (growth factor eluting) scaffolds to aid in wound healing. The factors affecting the properties of bis(leucine) oxalamide gels were also explored. We believe that this particular system will serve as an appropriate model for biological gels that are made up of fiber-like and/or rod-like structures. During the course of the research presented in this dissertation, many new techniques were developed specifically to allow/aid the study of these distinct self-assembling systems. For example, numerical methods were used to predict drop stability for drop shape analysis experiments and the methods used to create reproducibly create self-assembling membranes were developed specifically for this purpose. The development of these new techniques is an integral part of the thesis and should aid future students who work on these projects. A number ongoing projects and interesting research directions for each one of the projects is also presented.

  4. Probing peptide amphiphile self-assembly in blood serum.

    PubMed

    Ghosh, Arijit; Buettner, Christian J; Manos, Aaron A; Wallace, Ashley J; Tweedle, Michael F; Goldberger, Joshua E

    2014-12-08

    There has been recent interest in designing smart diagnostic or therapeutic self-assembling peptide or polymeric materials that can selectively undergo morphological transitions to accumulate at a disease site in response to specific stimuli. Developing approaches to probe these self-assembly transitions in environments that accurately amalgamate the diverse plethora of proteins, biomolecules, and salts of blood is essential for creating systems that function in vivo. Here, we have developed a fluorescence anisotropy approach to probe the pH-dependent self-assembly transition of peptide amphiphile (PA) molecules that transform from spherical micelles at pH 7.4 to nanofibers under more acidic pH's in blood serum. By mixing small concentrations of a Ru(bipy)3(2+)-tagged PA with a Gd(DO3A)-tagged PA having the same lipid-peptide sequence, we showed that the pH dependence of self-assembly is minimally affected and can be monitored in mouse blood serum. These PA vehicles can be designed to transition from spherical micelles to nanofibers in the pH range 7.0-7.4 in pure serum. In contrast to the typical notion of serum albumin absorbing isolated surfactant molecules and disrupting self-assembly, our experiments showed that albumin does not bind these anionic PAs and instead promotes nanofibers due to a molecular crowding effect. Finally, we created a medium that replicates the transition pH in serum to within 0.08 pH units and allows probing self-assembly behavior using conventional spectroscopic techniques without conflicting protein signals, thus simplifying the development pathway from test tube to in vivo experimentation for stimuli-responsive materials.

  5. DNA biosensors based on self-assembled carbon nanotubes.

    PubMed

    Wang, S G; Wang, Ruili; Sellin, P J; Zhang, Qing

    2004-12-24

    DNA biosensors based on self-assembled multi-walled carbon nanotubes (MWNTs) were described in this paper, in which the probe DNA oligonucleotides were immobilized by forming covalent amide bonds between carboxyl groups at the nanotubes and amino groups at the ends of the DNA oligonucleotides. Hybridization between the probe and target DNA oligonucleotides was confirmed by the changes in the voltammetric peak of the indicator of methylene blue. Our results demonstrate that the DNA biosensors based on self-assembled MWNTs had a higher hybridization efficiency compared to those based on random MWNTs. In addition, the developed DNA biosensors also had a high selectivity of hybridization detection.

  6. Backfilled, self-assembled monolayers and methods of making same

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Addleman, R. Shane; Aardahl, Christopher L.; Zheng, Feng; Busche, Brad; Egorov, Oleg B.

    2009-06-30

    Backfilled, self-assembled monolayers and methods of making the same are disclosed. The self-assembled monolayer comprises at least one functional organosilane species and a substantially random dispersion of at least one backfilling organosilane species among the functional organosilane species, wherein the functional and backfilling organosilane species have been sequentially deposited on a substrate. The method comprises depositing sequentially a first organosilane species followed by a backfilling organosilane species, and employing a relaxation agent before or during deposition of the backfilling organosilane species, wherein the first and backfilling organosilane species are substantially randomly dispersed on a substrate.

  7. Structural simulations of nanomaterials self-assembled from ionic macrocycles.

    SciTech Connect

    van Swol, Frank B.; Medforth, Craig John

    2010-10-01

    Recent research at Sandia has discovered a new class of organic binary ionic solids with tunable optical, electronic, and photochemical properties. These nanomaterials, consisting of a novel class of organic binary ionic solids, are currently being developed at Sandia for applications in batteries, supercapacitors, and solar energy technologies. They are composed of self-assembled oligomeric arrays of very large anions and large cations, but their crucial internal arrangement is thus far unknown. This report describes (a) the development of a relevant model of nonconvex particles decorated with ions interacting through short-ranged Yukawa potentials, and (b) the results of initial Monte Carlo simulations of the self-assembly binary ionic solids.

  8. Scanning tunneling microscopy of self-assembled viral nanostructures

    NASA Astrophysics Data System (ADS)

    Anacleto, Benjamin; Steinsultz, Nat; Sharma, Prashant

    2010-03-01

    We use scanning tunneling microscopy to investigate self-assembled monolayers of M13 bacteriophages on graphite surface. The bacteriophages we use have gold binding peptide motifs on their outer protein coat (˜1μm long, ˜10 nm diameter) allowing us to self-assemble gold nanoparticles on graphite. Using scanning tunneling microscopy we are able to resolve sub-molecular structure of the protein coat of M13 bacteriophage. Scanning tunneling spectroscopy allows us to study the binding of gold nanoparticles to the peptide motif on the bacteriophage.

  9. Nano-engineering by optically directed self-assembly.

    SciTech Connect

    Furst, Eric; Dunn, Elissa; Park, Jin-Gyu; Brinker, C. Jeffrey; Sainis, Sunil; Merrill, Jason; Dufresne, Eric; Reichert, Matthew D.; Brotherton, Christopher M.; Bogart, Katherine Huderle Andersen; Molecke, Ryan A.; Koehler, Timothy P.; Bell, Nelson Simmons; Grillet, Anne Mary; Gorby, Allen D.; Singh, John; Lele, Pushkar; Mittal, Manish

    2009-09-01

    Lack of robust manufacturing capabilities have limited our ability to make tailored materials with useful optical and thermal properties. For example, traditional methods such as spontaneous self-assembly of spheres cannot generate the complex structures required to produce a full bandgap photonic crystals. The goal of this work was to develop and demonstrate novel methods of directed self-assembly of nanomaterials using optical and electric fields. To achieve this aim, our work employed laser tweezers, a technology that enables non-invasive optical manipulation of particles, from glass microspheres to gold nanoparticles. Laser tweezers were used to create ordered materials with either complex crystal structures or using aspherical building blocks.

  10. Self-assembly of colloidal pyramids in magnetic fields.

    PubMed

    Helseth, L E

    2005-08-02

    We study routes toward the construction of 2D colloidal pyramids. We find that magnetic beads may self-assemble into pyramids near a nonmagnetic 1D boundary as long as the number of beads in the pyramid does not exceed 10. We have also found that a strong magnetic field gradient could act as a boundary, thus assisting the self-assembly of magnetic colloids in water, and have observed the formation of stable microscopic pyramids within a certain magnetic field range. Our results indicate that colloidal pyramids can be formed in a number of ways by utilizing external fields.

  11. Controlled self-assembly of hydrophobic quantum dots through silanization.

    PubMed

    Yang, Ping; Ando, Masanori; Murase, Norio

    2011-09-01

    We demonstrate the formation of one-, two-, and three-dimensional nanocomposites through the self-assembly of silanized CdSe/ZnS quantum dots (QDs) by using a controlled sol-gel process. The self-assembly behavior of the QDs was created when partially hydrolyzed silicon alkoxide monomers replaced hydrophobic ligands on the QDs. We examined systematically self-assembly conditions such as solvent components and QD sizes in order to elucidate the formation mechanism of various QD nanocomposites. The QD nanocomposites were assembled in water phase or on the interface of water and oil phase in emulsions. The partially hydrolyzed silicon alkoxides act as intermolecules to assemble the QDs. The QD nanocomposites with well-defined solid or hollow spherical, fiber-like, sheet-like, and pearl-like morphologies were prepared by adjusting the experimental conditions. The high photoluminescence efficiency of the prepared QD nanocomposites suggests partially hydrolyzed silicon alkoxides reduced the surface deterioration of QDs during self-assembly. These techniques are applicable to other hydrophobic QDs for fabricating complex QD nanocomposites.

  12. pH-directed self-assembling helical peptide conformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The beta-sheet and alpha-helix peptide conformation are two of the most fundamentally ordered secondary structures found in proteins and peptides. They also give rise to self-assembling motifs that form macromolecular channels and nanostructures. Through design these conformations can yield enhance...

  13. Developmental self-assembly of a DNA tetrahedron.

    PubMed

    Sadowski, John P; Calvert, Colby R; Zhang, David Yu; Pierce, Niles A; Yin, Peng

    2014-04-22

    Kinetically controlled isothermal growth is fundamental to biological development, yet it remains challenging to rationally design molecular systems that self-assemble isothermally into complex geometries via prescribed assembly and disassembly pathways. By exploiting the programmable chemistry of base pairing, sophisticated spatial and temporal control have been demonstrated in DNA self-assembly, but largely as separate pursuits. By integrating temporal with spatial control, here we demonstrate the "developmental" self-assembly of a DNA tetrahedron, where a prescriptive molecular program orchestrates the kinetic pathways by which DNA molecules isothermally self-assemble into a well-defined three-dimensional wireframe geometry. In this reaction, nine DNA reactants initially coexist metastably, but upon catalysis by a DNA initiator molecule, navigate 24 individually characterizable intermediate states via prescribed assembly pathways, organized both in series and in parallel, to arrive at the tetrahedral final product. In contrast to previous work on dynamic DNA nanotechnology, this developmental program coordinates growth of ringed substructures into a three-dimensional wireframe superstructure, taking a step toward the goal of kinetically controlled isothermal growth of complex three-dimensional geometries.

  14. New Metal-organic Polymers Through Subcomponent Self-Assembly

    DTIC Science & Technology

    2012-07-27

    material using subcomponent self-assembly. We developed the synthesis of double helical polymeric species according to the general procedure...to use - diketones as subcomponents for polymers. She then shifted her efforts to other projects, funded by the European Research Council. Because

  15. Nano-imaging enabled via self-assembly

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2014-01-01

    SUMMARY Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles. PMID:25506387

  16. Self-assembling biomolecular catalysts for hydrogen production

    NASA Astrophysics Data System (ADS)

    Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor

    2016-02-01

    The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

  17. Molecular Recognition Directed Self-Assembly of Supramolecular Architectures

    DTIC Science & Technology

    1994-06-30

    chemistry. The ability of these supramolecular architectures to form liquid crystalline phases is determined by the shape of the self-assembled...be discussed. In the case of TMV-like supramolecular architectures a comparison between various supramolecdr (generated via H-bonding, ionic and...molecular, macromolecular and supramolecular chemistry. The ability of these supramolecular architectures to form liquid crystalline phases is determined

  18. Self-assembly from milli- to nanoscales: methods and applications

    PubMed Central

    Mastrangeli, M; Abbasi, S; Varel, C; Van Hoof, C; Celis, J-P; Böhringer, K F

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. PMID:20209016

  19. Soft self-assembled nanoparticles with temperature-dependent properties

    NASA Astrophysics Data System (ADS)

    Rovigatti, Lorenzo; Capone, Barbara; Likos, Christos N.

    2016-02-01

    The fabrication of versatile building blocks that reliably self-assemble into desired ordered and disordered phases is amongst the hottest topics in contemporary materials science. To this end, microscopic units of varying complexity, aimed at assembling the target phases, have been thought, designed, investigated and built. Such a path usually requires laborious fabrication techniques, especially when specific functionalisation of the building blocks is required. Telechelic star polymers, i.e., star polymers made of a number of f di-block copolymers consisting of solvophobic and solvophilic monomers grafted on a central anchoring point, spontaneously self-assemble into soft patchy particles featuring attractive spots (patches) on the surface. Here we show that the tunability of such a system can be widely extended by controlling the physical and chemical parameters of the solution. Indeed, under fixed external conditions the self-assembly behaviour depends only on the number of arms and on the ratio of solvophobic to solvophilic monomers. However, changes in temperature and/or solvent quality make it possible to reliably change the number and size of the attractive patches. This allows the steering of the mesoscopic self-assembly behaviour without modifying the microscopic constituents. Interestingly, we also demonstrate that diverse combinations of the parameters can generate stars with the same number of patches but different radial and angular stiffness. This mechanism could provide a neat way of further fine-tuning the elastic properties of the supramolecular network without changing its topology.

  20. Self-assembled peptide nanostructures for functional materials.

    PubMed

    Ekiz, Melis Sardan; Cinar, Goksu; Khalily, Mohammad Aref; Guler, Mustafa O

    2016-10-07

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  1. Sequential programmable self-assembly: Role of cooperative interactions

    SciTech Connect

    Jonathan D. Halverson; Tkachenko, Alexei V.

    2016-03-04

    Here, we propose a general strategy of “sequential programmable self-assembly” that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenient platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call “DNA spider,” that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a “GEOMAG” magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.

  2. Theoretical Modelling of Self-Assembly of Molecular Networks

    NASA Astrophysics Data System (ADS)

    Mura, Manuela; Martsinovich, Natalia; Kantorovich, Lev

    2008-03-01

    The phenomenon of self-assembly of atomic and molecular superstructures on crystal surfaces has attracted an increasing interest in nanotechnology. Self-organised nano-templates where the self-assembled monolayer traps other molecules with selected functional properties, can be used as building blocks for larger nanoscale structures. These superstructures can form chiral domains ranging from 1D chains to 2D monolayers. In particular, there have been many scanning tunneling microscopy (STM)studies of self-assembly of melamine, perylene tetra-carboxylic di-imide(PTCDI) or perylene tetra-carboxylic di-anhydride (PTCDA) molecules on the Au(111). STM images of these networks do not reveal the exact details of the intermolecular bonding and process of network growth. It is therefore the task of theory to determine the exact atomic structure of these networks. We present a theoretical study of self-assembly of molecular networks based on different molecules by using a systematic approach to build molecular superstructures. The energies of these structures are calculated using the density-functional theory SIESTA code. The theoretically predicted monolayer structures are in very good agreement with the results of STM measurements.

  3. Self-assembling multidomain peptide fibers with aromatic cores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Self-assembling multidomain peptides have been shown to have desirable properties, such as the ability to form hydrogels that rapidly recover following shear-thinning and the potential to be tailored by amino acid selection to vary their elasticity and encapsulate and deliver proteins and cells. Her...

  4. Structural diversity in the self-assembly of pseudopeptidic macrocycles.

    PubMed

    Alfonso, Ignacio; Bru, Miriam; Burguete, M Isabel; García-Verdugo, Eduardo; Luis, Santiago V

    2010-01-25

    The self-assembling abilities of several pseudopeptidic macrocycles have been thoroughly studied both in the solid (SEM, TEM, FTIR) and in solution (NMR, UV, CD, FTIR) states. Detailed microscopy revealed large differences in the morphology of the self-assembling micro/nanostructures depending on the macrocyclic chemical structures. Self-assembly was triggered by the presence of additional methylene groups or by changing from para to meta geometry of the aromatic phenylene backbone moiety. More interestingly, the nature of the side chain also plays a fundamental role in some of the obtained nanostructures, thus producing structures from long fibers to hollow spheres. These nanostructures were obtained in different solvents and on different surfaces, thus implying that the chemical information for the self-assembly is contained in the molecular structure. Dilution NMR studies (chemical shift and self-diffusion rates) suggest the formation of incipient aggregates in solution by a combination of hydrogen-bonding and pi-pi interactions, thus implicating amide and aryl groups, respectively. Electronic spectroscopy further supports the pi-pi interactions because the compounds that lead to fibers show large hypochromic shifts in the UV spectra. Moreover, the fiber-forming macrocycles also showed a more intense CD signature. The hydrogen-bonding interactions within the nanostructures were also characterized by attenuated total-reflectance FTIR spectroscopy, which allowed us to monitor the complete transition from the solution to the dried nanostructure. Overall, we concluded that the self-assembly of this family of pseudopeptidic macrocycles is dictated by a synergic action of hydrogen-bonding and pi-pi interactions. The feasibility and geometrical disposition of these interactions finally render a hierarchical organization, which has been rationalized with a proposal of a model. The understanding of the process at the molecular level has allowed us to prepare hybrid soft

  5. Building polyhedra by self-assembly: theory and experiment.

    PubMed

    Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind

    2014-01-01

    We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.

  6. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly

    PubMed Central

    Moore, Tyler G.; Garzon, Max H.; Deaton, Russell J.

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are “strong” assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly

  7. Bio-inspired photoresponse of porphyrin-attached gold nanoparticles on a field-effect transistor.

    PubMed

    Miyachi, Mariko; Yamanoi, Yoshinori; Nakazato, Kazuo; Nishihara, Hiroshi

    2014-09-01

    A bio-inspired photoresponse was engineered in porphyrin-attached Au nanoparticles (AuNPs) on a field-effect transistor (FET). The system mimics photosynthetic electron transfer, using porphyrin derivatives as photosensitizers and AuNPs as photoelectron counting devices. Porphyrin-protected AuNPs were immobilized onto the gate of an FET via the formation of self-assembled monolayers. Photoinduced electron transfer from the porphyrin led to single electron transfer at the Au nanoparticles, which was monitored via a changing gate voltage on the FET in the presence of organic electrolyte. The further attachment of other functional molecules to this system should enable various other potential functionalities. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.

  8. Host-Guest Chemistry in Integrated Porous Space Formed by Molecular Self-Assembly at Liquid-Solid Interfaces.

    PubMed

    Iritani, Kohei; Tahara, Kazukuni; De Feyter, Steven; Tobe, Yoshito

    2017-02-23

    Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C6 to C20. Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host

  9. Defects in the Self-Assembly of Block Copolymers and Their Relevance for Directed Self-Assembly.

    PubMed

    Li, Weihua; Müller, Marcus

    2015-01-01

    Block copolymer self-assembly provides a platform for fabricating dense, ordered nanostructures by encoding information in the chemical architecture of multicomponent macromolecules. Depending on the volume fraction of the components and chain topology, these macromolecules form a variety of spatially periodic microphases in thermodynamic equilibrium. The kinetics of self-assembly, however, often results in initial morphologies with defects, and the subsequent ordering is protracted. Different strategies have been devised to direct the self-assembly of copolymer materials by external fields to align and perfect the self-assembled nanostructures. Understanding and controlling the thermodynamics of defects, their response to external fields, and their dynamics is important because applications in microelectronics either require extremely low defect densities or aim at generating specific defects at predetermined locations to fabricate irregular device-oriented structures for integrated circuits. In this review, we discuss defect morphologies of block copolymers in the bulk and thin films, highlighting (a) analogies to and differences from defects in other crystalline materials, (b) the stability of defects and their dynamics, and (c) the influence of external fields.

  10. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains

    NASA Astrophysics Data System (ADS)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  11. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains.

    PubMed

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  12. Orthogonal self-assembly in folding block copolymers.

    PubMed

    Hosono, Nobuhiko; Gillissen, Martijn A J; Li, Yuanchao; Sheiko, Sergei S; Palmans, Anja R A; Meijer, E W

    2013-01-09

    We herein report the synthesis and characterization of ABA triblock copolymers that contain two complementary association motifs and fold into single-chain polymeric nanoparticles (SCPNs) via orthogonal self-assembly. The copolymers were prepared using atom-transfer radical polymerization (ATRP) and possess different pendant functional groups in the A and B blocks (alcohols in the A block and acetylenes in the B block). After postfunctionalization, the A block contains o-nitrobenzyl-protected 2-ureidopyrimidinone (UPy) moieties and the B block benzene-1,3,5-tricarboxamide (BTA) moieties. While the protected UPy groups dimerize after photoinduced deprotection of the o-nitrobenzyl group, the BTA moieties self-assemble into helical aggregates when temperature is reduced. In a two-step thermal/photoirradiation treatment under dilute conditions, the ABA block copolymer forms both BTA-based helical aggregates and UPy dimers intramolecularly. The sequential association of the two self-assembling motifs results in single-chain folding of the polymer, affording nanometer-sized particles with a compartmentalized interior. Variable-temperature NMR studies showed that the BTA and UPy self-assembly steps take place orthogonally (i.e., without mutual interference) in dilute solution. In addition, monitoring of the intramolecular self-assembly of BTA moieties into helical aggregates by circular dichroism spectroscopy showed that the stability of the aggregates is almost independent of UPy dimerization. Size-exclusion chromatography (SEC) and small-angle X-ray scattering analysis provided evidence of significant reductions in the hydrodynamic volume and radius of gyration, respectively, after photoinduced deprotection of the UPy groups; a 30-60% reduction in the size of the polymer chains was observed using SEC in CHCl(3). Molecular imaging by atomic force microscopy (AFM) corroborated significant contraction of individual polymer chains due to intramolecular association of the

  13. Stable doping of carbon nanotubes via molecular self assembly

    SciTech Connect

    Lee, B.; Chen, Y.; Podzorov, V.; Cook, A.; Zakhidov, A.

    2014-10-14

    We report a novel method for stable doping of carbon nanotubes (CNT) based on methods of molecular self assembly. A conformal growth of a self-assembled monolayer of fluoroalkyl trichloro-silane (FTS) at CNT surfaces results in a strong increase of the sheet conductivity of CNT electrodes by 60–300%, depending on the CNT chirality and composition. The charge carrier mobility of undoped partially aligned CNT films was independently estimated in a field-effect transistor geometry (~100 cm²V⁻¹s⁻¹). The hole density induced by the FTS monolayer in CNT sheets is estimated to be ~1.8 ×10¹⁴cm⁻². We also show that FTS doping of CNT anodes greatly improves the performance of organic solar cells. This large and stable doping effect, easily achieved in large-area samples, makes this approach very attractive for applications of CNTs in transparent and flexible electronics.

  14. Self-reproduction of nanoparticles through synergistic self-assembly.

    PubMed

    Ikeda, Keisuke; Nakano, Minoru

    2015-01-01

    We describe a self-reproduction mechanism of nanometer-sized particles (i.e., nanodiscs) through chemical ligation of the precursors and self-assembly of the building blocks. The ligation reaction was accelerated on lipid bilayer surfaces, and the products spontaneously assembled into nanodiscs with lipid molecules. With the increase in the number of nanodiscs, a rapid proliferation of the nanodiscs occurred through the spatial rearrangements of the molecules between the pre-existing nanodiscs and the unreacted materials, rather than template- or complex-enhanced ligation of the precursors. The subsequent process of surface-enhanced ligation of integrated precursors matured the nanoparticles into identical copies of the pre-existing assembly. Our study showed that the synergistic self-assembly mechanism probably underlie the self-replication principles for heterogeneous multimolecular systems.

  15. Self-assembled photonic crystals for a chemical sensing

    NASA Astrophysics Data System (ADS)

    Bourdillon, C.; Gam Derouich, S.; Daney de Marcillac, W.; Coolen, L.; Maître, A.; Mangeney, C.; Schwob, C.

    2016-03-01

    As they allow the control of light propagation, photonic crystals find many fields of application. Among them, self-assembled 3D-photonic crystals are ordered at the nanometric scale over centrimetric areas. Furthermore, self-assembly allows the design of complexes structures leading, for example, to the controlled disruption of the crystal periodicity (called defect) and the appearance of permitted optical frequency bands within the photonic bandgap. Light frequencies included in the corresponding passband are then localized in the defect allowing manipulation of nano-emitters fluorescence. We present the fabrication and the optical characterization of a heterostructure composed of a sputtered silica layer sandwiched between two silica opals. We show by photoluminescence measurements than this structure strongly modifies the transmitted fluorescence of nanocrystals.

  16. Self-assembly of double helical nanostructures inside carbon nanotubes.

    PubMed

    Lv, Cheng; Xue, Qingzhong; Shan, Meixia; Jing, Nuannuan; Ling, Cuicui; Zhou, Xiaoyan; Jiao, Zhiyong; Xing, Wei; Yan, Zifeng

    2013-05-21

    We use molecular dynamics (MD) simulations to show that a DNA-like double helix of two poly(acetylene) (PA) chains can form inside single-walled carbon nanotubes (SWNTs). The computational results indicate that SWNTs can activate and guide the self-assembly of polymer chains, allowing them to adopt a helical configuration in a SWNT through the combined action of the van der Waals potential well and the π-π stacking interaction between the polymer and the inner surface of SWNTs. Meanwhile both the SWNT size and polymer chain stiffness determine the outcome of the nanostructure. Furthermore, we also found that water clusters encourage the self-assembly of PA helical structures in the tube. This molecular model may lead to a better understanding of the formation of a double helix biological molecule inside SWNTs. Alternatively, it could form the basis of a novel nanoscale material by utilizing the 'empty' spaces of SWNTs.

  17. Protein-directed self-assembly of a fullerene crystal

    NASA Astrophysics Data System (ADS)

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B.; Acharya, Rudresh; Degrado, William F.; Kim, Yong Ho; Grigoryan, Gevorg

    2016-04-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.

  18. Protein-directed self-assembly of a fullerene crystal.

    PubMed

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B; Acharya, Rudresh; DeGrado, William F; Kim, Yong Ho; Grigoryan, Gevorg

    2016-04-26

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.

  19. Biomolecular decision-making process for self assembly.

    SciTech Connect

    Osbourn, Gordon Cecil

    2005-01-01

    The brain is often identified with decision-making processes in the biological world. In fact, single cells, single macromolecules (proteins) and populations of molecules also make simple decisions. These decision processes are essential to survival and to the biological self-assembly and self-repair processes that we seek to emulate. How do these tiny systems make effective decisions? How do they make decisions in concert with a cooperative network of other molecules or cells? How can we emulate the decision-making behaviors of small-scale biological systems to program and self-assemble microsystems? This LDRD supported research to answer these questions. Our work included modeling and simulation of protein populations to help us understand, mimic, and categorize molecular decision-making mechanisms that nonequilibrium systems can exhibit. This work is an early step towards mimicking such nanoscale and microscale biomolecular decision-making processes in inorganic systems.

  20. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  1. Self-assembly of hyperbranched polymers and its biomedical applications.

    PubMed

    Zhou, Yongfeng; Huang, Wei; Liu, Jinyao; Zhu, Xinyuan; Yan, Deyue

    2010-11-02

    Hyperbranched polymers (HBPs) are highly branched macromolecules with a three-dimensional dendritic architecture. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. In this paper, the recent developments in HBP self-assembly and their biomedical applications have been comprehensively reviewed. Many delicate supramolecular structures from zero-dimension (0D) to three-dimension (3D), such as micelles, fibers, tubes, vesicles, membranes, large compound vesicles and physical gels, have been prepared through the solution or interfacial self-assembly of amphiphilic HBPs. In addition, these supramolecular structures have shown promising applications in the biomedical areas including drug delivery, protein purification/detection/delivery, gene transfection, antibacterial/antifouling materials and cytomimetic chemistry. Such developments promote the interdiscipline researches among surpramolecular chemistry, biomedical chemistry, nano-technology and functional materials.

  2. Self-assembled Chiral Nanostructure as Scaffold for Asymmetric Reaction.

    PubMed

    Jiang, Jian; Ouyang, Guanghui; Zhang, Li; Liu, Minghua

    2017-03-25

    Asymmetric reaction is one of the most important reactions in organic synthesis. While large amount of efficient molecular catalysts have been developed and applied, supramolecular and nanostructured catalysts have been attracting recent interest. In this mini review, we focused on the self-assembled chiral nanostructures and reviewed their possibility and feasibility as the enantioselective catalyst. The design concept and the requirement of the chiral scaffold as the catalysts are discussed. Based on the chirality and catalytic performance of the building molecules and the supramolecular nanostructures, the nanocatalyst is divided into chiral nanostructure driven (CND) and chiral nanostructure enhanced (CNE) enantioselective catalysts. Then, several typical self-assembled chiral nanostructures such as nanocage, nanotube, nanorod, micelles and vesicles are selected as the chiral scaffold and their catalytic behaviors for the asymmetric reactions were demonstrated. Finally, the future development of the field is also outlooked.

  3. Self-assembling enzymes and the origins of the cytoskeleton

    PubMed Central

    Barry, Rachael; Gitai, Zemer

    2011-01-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508

  4. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    PubMed

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  5. Self-assembly of nanomaterials at fluid interfaces.

    PubMed

    Toor, Anju; Feng, Tao; Russell, Thomas P

    2016-05-01

    Recent developments in the field of the self-assembly of nanoscale materials such as nanoparticles, nanorods and nanosheets at liquid/liquid interfaces are reviewed. Self-assembly behavior of both biological and synthetic particles is discussed. For biological nanoparticles, the nanoparticle assembly at fluid interfaces provides a simple route for directing nanoparticles into 2D or 3D constructs with hierarchical ordering. The interfacial assembly of single-walled carbon nanotubes (SWCNTs) at liquid interfaces would play a key role in applications such as nanotube fractionation, flexible electronic thin-film fabrication and synthesis of porous SWCNT/polymer composites foams. Liquids can be structured by the jamming of nanoparticle surfactants at fluid interfaces. By controlling the interfacial packing of nanoparticle surfactants using external triggers, a new class of materials can be generated that combines the desirable characteristics of fluids such as rapid transport of energy carriers with the structural stability of a solid.

  6. DNA Self-assembly and Computer System Fabrication

    NASA Astrophysics Data System (ADS)

    Dwyer, Chris

    2006-11-01

    The migration of circuit fabrication technology from the microscale to the nanoscale has generated a great deal of interest in how the fundamental physical limitations of materials will change the way computer systems are engineered. The changing relationships between performance, defects, and cost have motivated research into so-called disruptive or exotic technologies and draws inspiration from systems found in biology. Advances in DNA self-assembly have demonstrated versatile and programmable methods for the synthesis of complex nanostructures suitable for logic circuitry. Several recent advances in programmable DNA self-assembly and the theory and design of DNA nanostructures for computing will be presented. The advantages of this technology go beyond the simple scaling of device feature sizes (sub-20nm) to enable new modes of computation that are otherwise impractical with conventional technologies. A brief survey of several computer architectures that take advantage of this new technology will also be presented.

  7. Chemical optimization of self-assembled carbon nanotube transistors.

    PubMed

    Auvray, Stéphane; Derycke, Vincent; Goffman, Marcelo; Filoramo, Arianna; Jost, Oliver; Bourgoin, Jean-Philippe

    2005-03-01

    We present the improvement of carbon nanotube field effects transistors (CNTFETs) performances by chemical tuning of the nanotube/substrate and nanotube/electrode interfaces. Our work is based on a method of selective placement of individual single walled carbon nanotubes (SWNTs) by patterned aminosilane monolayer and its use for the fabrication of self-assembled nanotube transistors. This method brings a relevant solution to the problem of systematic connection of self-organized nanotubes. The aminosilane monolayer reactivity can be used to improve carrier injection and doping level of the SWNT. We show that the Schottky barrier height at the nanotube/metal interface can be diminished in a continuous fashion down to an almost ohmic contact through these chemical treatments. Moreover, sensitivity to 20 ppb of triethylamine is demonstrated for self-assembled CNTFETs, thus opening new prospects for gas sensors taking advantages of the chemical functionality of the aminosilane used for assembling the CNTFETs.

  8. Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules

    PubMed Central

    Parker, Richard M; Zhang, Jing; Zheng, Yu; Coulston, Roger J; Smith, Clive A; Salmon, Andrew R; Yu, Ziyi; Scherman, Oren A; Abell, Chris

    2015-01-01

    Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules—where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core–shell microcapsules, gives access to a new generation of innovative self-assembled constructs. PMID:26213532

  9. Self-assembled containers based on extended tetrathiafulvalene.

    PubMed

    Bivaud, Sébastien; Goeb, Sébastien; Croué, Vincent; Dron, Paul I; Allain, Magali; Sallé, Marc

    2013-07-10

    Two original self-assembled containers constituted each by six electroactive subunits are described. They are synthesized from a concave tetratopic π-extended tetrathiafulvalene ligand bearing four pyridyl units and cis-M(dppf)(OTf)2 (M = Pd or Pt; dppf = 1,1'-bis(diphenylphosphino)ferrocene; OTf = trifluoromethane-sulfonate) complexes. Both fully characterized assemblies present an oblate spheroidal cavity that can incorporate one perylene molecule.

  10. Propagating waves of self-assembly in organosilane monolayers

    PubMed Central

    Douglas, Jack F.; Efimenko, Kirill; Fischer, Daniel A.; Phelan, Fredrick R.; Genzer, Jan

    2007-01-01

    Wavefronts associated with reaction–diffusion and self-assembly processes are ubiquitous in the natural world. For example, propagating fronts arise in crystallization and diverse other thermodynamic ordering processes, in polymerization fronts involved in cell movement and division, as well as in the competitive social interactions and population dynamics of animals at much larger scales. Although it is often claimed that self-sustaining or autocatalytic front propagation is well described by mean-field “reaction–diffusion” or “phase field” ordering models, it has recently become appreciated from simulations and theoretical arguments that fluctuation effects in lower spatial dimensions can lead to appreciable deviations from the classical mean-field theory (MFT) of this type of front propagation. The present work explores these fluctuation effects in a real physical system. In particular, we consider a high-resolution near-edge x-ray absorption fine structure spectroscopy (NEXAFS) study of the spontaneous frontal self-assembly of organosilane (OS) molecules into self-assembled monolayer (SAM) surface-energy gradients on oxidized silicon wafers. We find that these layers organize from the wafer edge as propagating wavefronts having well defined velocities. In accordance with two-dimensional simulations of this type of front propagation that take fluctuation effects into account, we find that the interfacial widths w(t) of these SAM self-assembly fronts exhibit a power-law broadening in time, w(t) ≈ tβ, rather than the constant width predicted by MFT. Moreover, the observed exponent values accord rather well with previous simulation and theoretical estimates. These observations have significant implications for diverse types of ordering fronts that occur under confinement conditions in biological or materials-processing contexts. PMID:17566108

  11. Molecular Recognition Directed Self-Assembly of Supramolecular Polymers

    DTIC Science & Technology

    1994-06-30

    SUPRAMOLECULAR POLYMERS by V. Percec, J. Heck, G. Johansson, D. Tomazos, M. Kawasumi and G. Ungar Published in the J. Macromol. SOi: Part A: Pure...W.asetaqIom OC JOS0l 4 TITE AN SUBITLES. FUNDING NUMBERS Molecular Recognition Directed Self-Assembly of Suprainolecular Polymers N00014-89--J-1828 6. AUTHOR(S...comparison between various supramolecular (generated via H-bonding, iions) and molecular " polymer backbones" will be made. The present limitations

  12. Lighting up cells with lanthanide self-assembled helicates

    PubMed Central

    Bünzli, Jean-Claude G.

    2013-01-01

    Lanthanide bioprobes and bioconjugates are ideal luminescent stains in view of their low propensity to photobleaching, sharp emission lines and long excited state lifetimes permitting time-resolved detection for enhanced sensitivity. We show here how the interplay between physical, chemical and biochemical properties allied to microfluidics engineering leads to self-assembled dinuclear lanthanide luminescent probes illuminating live cells and selectively detecting biomarkers expressed by cancerous human breast cells. PMID:24511387

  13. A self-assembled cyclodextrin nanocarrier for photoreactive squaraine

    PubMed Central

    Kauscher, Ulrike

    2016-01-01

    Photoreactive squaraines produce cytotoxic oxygen species under irradiation and have significant potential for photodynamic therapy. Herein we report that squaraines can be immobilized on a self-assembled nanocarrier composed of amphiphilic cyclodextrins to enhance their photochemical activity. To this end, a squaraine was equipped with two adamantane moieties that act as anchors for the cyclodextrin vesicle surface. The supramolecular immobilization was monitored by using fluorescence spectroscopy and microscopy and the photochemistry of the squaraine was investigated by using absorption spectroscopy. PMID:28144322

  14. Hyperthermal Carbon Dioxide Interactions with Self-Assembled Monolayer Surfaces

    DTIC Science & Technology

    2013-09-08

    time as well as density measurements of the thermosphere. The sensor under current development is based on the charge conversion of hyperthermal...oxygen atoms (O) to their anionic form (O−) upon collision with an organosilane/silicon self-assembled monolayer (SAM). The measured current of O− can...efficiency at charge conversion. The original goals of this project were to (1) measure the lifetimes of AFRL-provided SAMs under hyperthermal O

  15. Colloids with magnetic patches: synthesis and self-assembly

    NASA Astrophysics Data System (ADS)

    Sacanna, Stefano; Rossi, Laura; Irvine, William; Pine, David

    2011-03-01

    We developed a new class of colloidal particles that programmably and reversibly self-assemble into well-defined clusters by virtue of ``magnetic patches'' carrying a permanent magnetic dipole moment. The resulting clusters form spontaneously in a zero external field, and their geometry is entirely determined by the interplay between magnetic, steric, and electrostatic interactions. Imposing an external magnetic field enables the clusters to unbind or change their geometry allowing, in principle, to create materials with tunable structural arrangements.

  16. Sequential programmable self-assembly: Role of cooperative interactions

    DOE PAGES

    Jonathan D. Halverson; Tkachenko, Alexei V.

    2016-03-04

    Here, we propose a general strategy of “sequential programmable self-assembly” that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenientmore » platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call “DNA spider,” that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a “GEOMAG” magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.« less

  17. Equilibrium self-assembly of small RNA viruses

    NASA Astrophysics Data System (ADS)

    Bruinsma, R. F.; Comas-Garcia, M.; Garmann, R. F.; Grosberg, A. Y.

    2016-03-01

    We propose a description for the quasiequilibrium self-assembly of small, single-stranded (ss) RNA viruses whose capsid proteins (CPs) have flexible, positively charged, disordered tails that associate with the negatively charged RNA genome molecules. We describe the assembly of such viruses as the interplay between two coupled phase-transition-like events: the formation of the protein shell (the capsid) by CPs and the condensation of a large ss viral RNA molecule. Electrostatic repulsion between the CPs competes with attractive hydrophobic interactions and attractive interaction between neutralized RNA segments mediated by the tail groups. An assembly diagram is derived in terms of the strength of attractive interactions between CPs and between CPs and the RNA molecules. It is compared with the results of recent studies of viral assembly. We demonstrate that the conventional theory of self-assembly, which does describe the assembly of empty capsids, is in general not applicable to the self-assembly of RNA-encapsidating virions.

  18. Evolutionary dynamics in a simple model of self-assembly

    NASA Astrophysics Data System (ADS)

    Johnston, Iain G.; Ahnert, Sebastian E.; Doye, Jonathan P. K.; Louis, Ard A.

    2011-06-01

    We investigate the evolutionary dynamics of an idealized model for the robust self-assembly of two-dimensional structures called polyominoes. The model includes rules that encode interactions between sets of square tiles that drive the self-assembly process. The relationship between the model’s rule set and its resulting self-assembled structure can be viewed as a genotype-phenotype map and incorporated into a genetic algorithm. The rule sets evolve under selection for specified target structures. The corresponding complex fitness landscape generates rich evolutionary dynamics as a function of parameters such as the population size, search space size, mutation rate, and method of recombination. Furthermore, these systems are simple enough that in some cases the associated model genome space can be completely characterized, shedding light on how the evolutionary dynamics depends on the detailed structure of the fitness landscape. Finally, we apply the model to study the emergence of the preference for dihedral over cyclic symmetry observed for homomeric protein tetramers.

  19. Epitaxial photostriction-magnetostriction coupled self-assembled nanostructures.

    PubMed

    Liu, Heng-Jui; Chen, Long-Yi; He, Qing; Liang, Chen-Wei; Chen, Yu-Ze; Chien, Yung-Shun; Hsieh, Ying-Hui; Lin, Su-Jien; Arenholz, Elke; Luo, Chih-Wei; Chueh, Yu-Lun; Chen, Yi-Chun; Chu, Ying-Hao

    2012-08-28

    Self-assembled vertical nanostructures take advantage of high interface-to-volume ratio and can be used to design new functionalities by the choice of a proper combination of constituents. However, most of the studies to date have emphasized the functional controllability of the nanostructures using external electric or magnetic fields. In this study, to introduce light (or photons) as an external control parameter in a self-assembled nanostructure system, we have successfully synthesized oxide nanostructures with CoFe(2)O(4) nanopillars embedded in a SrRuO(3) matrix. The combination of photostrictive SrRuO(3) and magnetostrictive CoFe(2)O(4) in the intimately assembled nanostructures leads to a light-induced, ultrafast change in magnetization of the CoFe(2)O(4) nanopillars. Our work demonstrates a novel concept on oxide nanostructure design and opens an alternative pathway for the explorations of diverse functionalities in heteroepitaxial self-assembled oxide nanostructures.

  20. Self-assembly in sugar-oil complex glasses

    NASA Astrophysics Data System (ADS)

    Dave, Hiteshkumar; Gao, Feng; Lee, Jing-Huei; Liberatore, Matthew; Ho, Chia-Chi; Co, Carlos C.

    2007-04-01

    In aqueous systems, the hydrophobic effect drives the self-assembly of amphiphiles into a broad range of micellar, rod-like, bicontinuous and liquid-crystalline complex fluids. Many of these are relevant to biological matter or technological applications. However, amphiphilic self-assembly is not limited to aqueous systems. Replacement of water with supercritical carbon dioxide, for example, results in complex fluids that combine the properties of gases and liquids. Along this vein, we explore the self-assembly of surfactants in anhydrous sugars. Our study reveals that anhydrous powders of sugars and surfactants suspended in oil spontaneously form molten glasses with nanometre-size domains of sugar and liquid oil without mixing. The low cost, water solubility, low toxicity and stabilizing properties of glassy sugars make them ideal water replacements for many pharmaceutical, food and materials synthesis applications. The optical clarity and solid appearance of these glasses at room temperature belie their inclusion of more than 50% (vol.) oil, which confers liquid-like diffusivity. The unique combination of solid- and liquid-like properties may lead to applications in sensors and optical devices.

  1. Self-assembly in sugar-oil complex glasses.

    PubMed

    Dave, Hiteshkumar; Gao, Feng; Lee, Jing-Huei; Liberatore, Matthew; Ho, Chia-Chi; Co, Carlos C

    2007-04-01

    In aqueous systems, the hydrophobic effect drives the self-assembly of amphiphiles into a broad range of micellar, rod-like, bicontinuous and liquid-crystalline complex fluids. Many of these are relevant to biological matter or technological applications. However, amphiphilic self-assembly is not limited to aqueous systems. Replacement of water with supercritical carbon dioxide, for example, results in complex fluids that combine the properties of gases and liquids. Along this vein, we explore the self-assembly of surfactants in anhydrous sugars. Our study reveals that anhydrous powders of sugars and surfactants suspended in oil spontaneously form molten glasses with nanometre-size domains of sugar and liquid oil without mixing. The low cost, water solubility, low toxicity and stabilizing properties of glassy sugars make them ideal water replacements for many pharmaceutical, food and materials synthesis applications. The optical clarity and solid appearance of these glasses at room temperature belie their inclusion of more than 50% (vol.) oil, which confers liquid-like diffusivity. The unique combination of solid- and liquid-like properties may lead to applications in sensors and optical devices.

  2. Molecular pathways for defect annihilation in directed self-assembly.

    DOE PAGES

    Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; ...

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energymore » barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.« less

  3. Molecular pathways for defect annihilation in directed self-assembly.

    SciTech Connect

    Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; Khaira, Gurdaman S.; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Muller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.

  4. Capillary-based static self-assembly in higher organisms

    PubMed Central

    Voise, Jonathan; Schindler, Michael; Casas, Jérôme; Raphaël, Elie

    2011-01-01

    Organized structures produced by dynamic self-assembly are often observed in animal groups. Static self-assembly, however, has to date only been observed at the cellular and sub-cellular levels. The aim of this study was to analyse organized structures in immobile whirligig beetle groups on the water surface. We used theoretical and computational approaches to model the meniscus around whirligig beetles and to calculate the surface energy for configurations involving two beetles. Theoretical predictions were then tested using live insects and resin casts. Observations were also made for three and more casts. The meniscus of whirligig beetles had a bipolar shape with two concave parts. For two beetles, predicted configurations based on energy minima corresponded to beetles in contact by their extremities, forming lines and arrows, and agreed well with observations. Experimental results for three and more beetle casts revealed new geometrical arrangements similar to those obtained with colloids at interfaces. This study provides the first example of static self-assembly at the inter-organism level and shows the importance of capillary interactions in such formations. We identify the ecological context in which our findings are of relevance. PMID:21367777

  5. Model-driven optimization of multicomponent self-assembly processes.

    PubMed

    Korevaar, Peter A; Grenier, Christophe; Markvoort, Albert J; Schenning, Albertus P H J; de Greef, Tom F A; Meijer, E W

    2013-10-22

    Here, we report an engineering approach toward multicomponent self-assembly processes by developing a methodology to circumvent spurious, metastable assemblies. The formation of metastable aggregates often hampers self-assembly of molecular building blocks into the desired nanostructures. Strategies are explored to master the pathway complexity and avoid off-pathway aggregates by optimizing the rate of assembly along the correct pathway. We study as a model system the coassembly of two monomers, the R- and S-chiral enantiomers of a π-conjugated oligo(p-phenylene vinylene) derivative. Coassembly kinetics are analyzed by developing a kinetic model, which reveals the initial assembly of metastable structures buffering free monomers and thereby slows the formation of thermodynamically stable assemblies. These metastable assemblies exert greater influence on the thermodynamically favored self-assembly pathway if the ratio between both monomers approaches 1:1, in agreement with experimental results. Moreover, competition by metastable assemblies is highly temperature dependent and hampers the assembly of equilibrium nanostructures most effectively at intermediate temperatures. We demonstrate that the rate of the assembly process may be optimized by tuning the cooling rate. Finally, it is shown by simulation that increasing the driving force for assembly stepwise by changing the solvent composition may circumvent metastable pathways and thereby force the assembly process directly into the correct pathway.

  6. Simulation Methods for Self-Assembled Polymers and Rings

    NASA Astrophysics Data System (ADS)

    Kindt, James T.

    2003-11-01

    New off-lattice grand canonical Monte Carlo simulation methods have been developed and used to model the equilibrium structure and phase diagrams of equilibrium polymers and rings. A scheme called Polydisperse Insertion, Removal, and Resizing (PDIRR) is used to accelerate the equilibration of the size distribution of self-assembled aggregates. This method allows the insertion or removal of aggregates (e.g., chains) containing an arbitrary number of monomers in a single Monte Carlo move, or the re-sizing of an existing aggregate. For the equilibrium polymer model under semi-dilute conditions, a several-fold increase in equilibration rate compared with single-monomer moves is observed, facilitating the study of the isotropic-nematic transition of semiflexible, self-assembled chains. Combined with the pivot-coupled GCMC method for ring simulation, the PDIRR approach also allows the phenomenological simulation of a polydisperse equilibrium phase of rings, 2-dimensional fluid domains, or flat self-assembled disks in three dimensions.

  7. Molecular Motions in Functional Self-Assembled Nanostructures

    PubMed Central

    Dhotel, Alexandre; Chen, Ziguang; Delbreilh, Laurent; Youssef, Boulos; Saiter, Jean-Marc; Tan, Li

    2013-01-01

    The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted. PMID:23348927

  8. Three dimensional self-assembly at the nanoscale

    NASA Astrophysics Data System (ADS)

    Gracias, D. H.

    2013-05-01

    At the nanoscale, three dimensional manipulation and assembly becomes extremely challenging and also cost prohibitive. Self-assembly provides an attractive and possibly the only highly parallel methodology to structure truly three dimensional patterned materials and devices at this size scale for applications in electronics, optics, robotics and medicine. This is a concise review along with a perspective of an important and exciting field in nanotechnology and is related to a Nanoengineering Pioneer Award that I received at this SPIE symposium for my contributions to the 3D selfassembly of nanostructures. I detail a historical account of 3D self-assembly and outline important developments in this area which is put into context with the larger research areas of 3D nanofabrication, assembly and nanomanufacturing. A focus in this review is on our work as it relates to the self-assembly with lithographically patterned units; this approach provides a means for heterogeneous integration of periodic, curved and angled nanostructures with precisely defined three dimensional patterns.

  9. Multilayer block copolymer meshes by orthogonal self-assembly

    PubMed Central

    Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2016-01-01

    Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218

  10. Algorithmic Self-Assembly of DNA Sierpinski Triangles

    PubMed Central

    Rothemund, Paul W. K; Papadakis, Nick

    2004-01-01

    Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern—a Sierpinski triangle—as it grows. To achieve this, abstract tiles were translated into DNA tiles based on double-crossover motifs. Serving as input for the computation, long single-stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. For both of two independent molecular realizations, atomic force microscopy revealed recognizable Sierpinski triangles containing 100–200 correct tiles. Error rates during assembly appear to range from 1% to 10%. Although imperfect, the growth of Sierpinski triangles demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata. This shows that engineered DNA self-assembly can be treated as a Turing-universal biomolecular system, capable of implementing any desired algorithm for computation or construction tasks. PMID:15583715

  11. Spectroscopic critical dimension technology (SCD) for directed self assembly

    NASA Astrophysics Data System (ADS)

    Nishibe, Senichi; Dziura, Thaddeus; Nagaswami, Venkat; Gronheid, Roel

    2014-04-01

    Directed self-assembly (DSA) is being actively investigated as a potential patterning solution for future generation devices. While SEM based CD measurement is currently used in research and development, scatterometry-based techniques like spectroscopic CD (SCD) are preferred for high volume manufacturing. SCD can offer information about sub-surface features that are not available from CD-SEM measurement. Besides, SCD is a non-destructive, high throughput technique already adopted in HVM in several advanced nodes. The directed self assembly CD measurement can be challenging because of small dimensions and extremely thin layers in the DSA stack. In this study, the SCD technology was investigated for a 14 nm resolution PS-b-PMMA chemical epitaxy UW process optimized by imec. The DSA stack involves new materials such as cross-linkable polysterene (XPS) of thickness approximately 5 nm, ArF immersion resist (subsequently removed), -OH terminated neutral brush layer, and BCP material (Polystyrene-blockmethyl methacrylate of thickness roughly 20 to 30 nm). The mask contains a large CD and pitch matrix, for studying the quality of self-assembly as a function of the guide pattern dimensions. We report on the ability of SCD to characterize the dimensional variation in these targets and hence provide a viable process control solution.

  12. Nanostructures formed by cyclodextrin covered aminobenzophenones through supramolecular self assembly

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Sankaranarayanan, R. K.; Saravanan, J.

    2014-06-01

    Cyclodextrin (α and β) based nanostructures formed with 2-aminobenzophenone, 3-aminobenzophenone through the supramolecular self assembly are studied by absorption, fluorescence, time-resolved fluorescence, SEM, TEM, FT-IR, DSC, PXRD and 1H NMR. The unequal layer by layer nanosheets and nanoribbons are formed through self assembly of 3ABP/CD inclusion complexes. 2ABP/α-CD complex nanostructures show the self assembly hierarchical thread structure and β-CD complexes displays a nanobrick structure. The formation of nanostructures are prearranged to Hsbnd O⋯H, NH2⋯O and H2N⋯H intermolecular hydrogen bond between individual complexes. The absorption and fluorescence spectral changes explicit formation of 1:1 inclusion complexes and solvent study demonstrate the ESIPT and TICT present in both molecules. The thermodynamic parameters (ΔH, ΔG and ΔS) of 2ABP and 3ABP molecule and the inclusion complexes were determined from semiempirical PM3 calculations.

  13. Controlling RNA self-assembly to form filaments.

    PubMed

    Nasalean, Lorena; Baudrey, Stéphanie; Leontis, Neocles B; Jaeger, Luc

    2006-01-01

    Fundamental control over supra-molecular self-assembly for organization of matter on the nano-scale is a major objective of nanoscience and nanotechnology. 'RNA tectonics' is the design of modular RNA units, called tectoRNAs, that can be programmed to self-assemble into novel nano- and meso-scopic architectures of desired size and shape. We report the three-dimensional design of tectoRNAs incorporating modular 4-way junction (4WJ) motifs, hairpin loops and their cognate loop-receptors to create extended, programmable interaction interfaces. Specific and directional RNA-RNA interactions at these interfaces enable conformational, topological and orientational control of tectoRNA self-assembly. The interacting motifs are precisely positioned within the helical arms of the 4WJ to program assembly from only one helical stacking conformation of the 4WJ. TectoRNAs programmed to assemble with orientational compensation produce micrometer-scale RNA filaments through supra-molecular equilibrium polymerization. As visualized by transmission electron microscopy, these RNA filaments resemble actin filaments from the protein world. This work emphasizes the potential of RNA as a scaffold for designing and engineering new controllable biomaterials mimicking modern cytoskeletal proteins.

  14. Highly conductive self-assembled nanoribbons of coordination polymers.

    PubMed

    Welte, Lorena; Calzolari, Arrigo; Di Felice, Rosa; Zamora, Felix; Gómez-Herrero, Julio

    2010-02-01

    Organic molecules can self-assemble into well-ordered structures, but the conductance of these structures is limited, which is a disadvantage for applications in molecular electronics. Conductivity can be improved by using coordination polymers-in which metal centres are incorporated into a molecular backbone-and such structures have been used as molecular wires by self-assembling them into ordered films on metal surfaces. Here, we report electrically conductive nanoribbons of the coordination polymer [Pt(2)I(S(2)CCH(3))(4)](n) self-assembled on an insulating substrate by direct sublimation of polymer crystals. Conductance atomic force microscopy is used to probe the electrical characteristics of a few polymer chains ( approximately 10) within the nanoribbons. The observed currents exceed those previously sustained in organic and metal-organic molecules assembled on surfaces by several orders of magnitude and over much longer distances. These results, and the results of theoretical calculations based on density functional theory, confirm coordination polymers as candidate materials for applications in molecular electronics.

  15. Molecular pathways for defect annihilation in directed self-assembly.

    PubMed

    Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A; Li, Weihua; Müller, Marcus; Nealey, Paul F; de Pablo, Juan J

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm(2). In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales-a handful of nanometers-and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.

  16. Foams stabilized by multilamellar polyglycerol ester self-assemblies.

    PubMed

    Curschellas, Corina; Kohlbrecher, Joachim; Geue, Thomas; Fischer, Peter; Schmitt, Bertrand; Rouvet, Martine; Windhab, Erich J; Limbach, Hans Jörg

    2013-01-08

    The importance of surfactant self-assemblies in foam stabilization is well-known. The aim of the current study was to investigate the self-assemblies of the nonionic surfactant polyglycerol ester (PGE) in bulk solutions, at the interface and within foams, using a combined approach of small-angle neutron scattering, neutron reflectivity, and electron microscopy. PGE bulk solutions contain vesicles as well as open lamellar structures. Upon heating of the solutions the lamellar spacing increases, with significant differences in the presence of NaCl or CaCl(2) as compared to the standard solution. The adsorption of the multilamellar structures present in the bulk solutions lead to a multilayered film at the air-water interface. The ordering within this film was increased as a result of a 20% area compression mimicking a coalescence event. Finally, PGE foams were shown to be stabilized not only by strong interfacial films but also by agglomerated self-assemblies within the interstitial areas of the foams.

  17. Engineering hierarchical nanostructures by elastocapillary self-assembly.

    PubMed

    De Volder, Michaël; Hart, A John

    2013-02-25

    Surfaces coated with nanoscale filaments such as silicon nanowires and carbon nanotubes are potentially compelling for high-performance battery and capacitor electrodes, photovoltaics, electrical interconnects, substrates for engineered cell growth, dry adhesives, and other smart materials. However, many of these applications require a wet environment or involve wet processing during their synthesis. The capillary forces introduced by these wet environments can lead to undesirable aggregation of nanoscale filaments, but control of capillary forces can enable manipulation of the filaments into discrete aggregates and novel hierarchical structures. Recent studies suggest that the elastocapillary self-assembly of nanofilaments can be a versatile and scalable means to build complex and robust surface architectures. To enable a wider understanding and use of elastocapillary self-assembly as a fabrication technology, we give an overview of the underlying fundamentals and classify typical implementations and surface designs for nanowires, nanotubes, and nanopillars made from a wide variety of materials. Finally, we discuss exemplary applications and future opportunities to realize new engineered surfaces by the elastocapillary self-assembly of nanofilaments.

  18. Polymer adsorption-driven self-assembly of nanostructures.

    PubMed

    Chakraborty, A K; Golumbfskie, A J

    2001-01-01

    Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context.

  19. Towards biologically active self-assemblies: model nucleotide chimeras.

    PubMed

    Vebert-Nardin, Corinne

    2011-01-01

    With this article, we wish to give an overview of our main research activities assessing the potential of a suitable polymer modification of DNA fragments to self-assemble biologically active nanostructures. Specifically, the grafting of a hydrophobic polymer segment on DNA fragments results in amphiphilic nucleotide-based macromolecules, which, owing to both chemical and physical incompatibility, organize in self-assembled structures either on surfaces or in aqueous solution. Through the combination of the existing know-how in polymer chemistry with modern analytical techniques, we are currently focusing on establishing the mechanism of self-assembly of the polymer-modified nucleotide sequences in solution and on surfaces prior to the assessment of their hybridization capacity once involved in the ensemble. With the evaluation of the potential of the functional nanostructures to undergo biological-like adhesion through hybridization one can eventually foresee that the optimal functionality of these bio-inspired systems could be fine-tuned for biological applications such as drug delivery, gene therapy, tissue engineering and the design of either biomedical devices or biosensors.

  20. Dynamic self-assembly and control of microfluidic particle crystals

    PubMed Central

    Lee, Wonhee; Amini, Hamed; Stone, Howard A.; Di Carlo, Dino

    2010-01-01

    Engineered two-phase microfluidic systems have recently shown promise for computation, encryption, and biological processing. For many of these systems, complex control of dispersed-phase frequency and switching is enabled by nonlinearities associated with interfacial stresses. Introducing nonlinearity associated with fluid inertia has recently been identified as an easy to implement strategy to control two-phase (solid-liquid) microscale flows. By taking advantage of inertial effects we demonstrate controllable self-assembling particle systems, uncover dynamics suggesting a unique mechanism of dynamic self-assembly, and establish a framework for engineering microfluidic structures with the possibility of spatial frequency filtering. Focusing on the dynamics of the particle–particle interactions reveals a mechanism for the dynamic self-assembly process; inertial lift forces and a parabolic flow field act together to stabilize interparticle spacings that otherwise would diverge to infinity due to viscous disturbance flows. The interplay of the repulsive viscous interaction and inertial lift also allow us to design and implement microfluidic structures that irreversibly change interparticle spacing, similar to a low-pass filter. Although often not considered at the microscale, nonlinearity due to inertia can provide a platform for high-throughput passive control of particle positions in all directions, which will be useful for applications in flow cytometry, tissue engineering, and metamaterial synthesis. PMID:21149674

  1. Nanoparticle-directed self-assembly of amphiphilic block copolymers.

    PubMed

    Kamps, Amanda C; Sanchez-Gaytan, Brenda L; Hickey, Robert J; Clarke, Nigel; Fryd, Michael; Park, So-Jung

    2010-09-07

    Nanoparticles can form unique cavity-like structures in core-shell type assemblies of block copolymers through the cooperative self-assembly of nanoparticles and block copolymers. We show that the self-assembly behavior is general for common as-synthesized alkyl-terminated nanoparticles for a range of nanoparticle sizes. We examined various self-assembly conditions such as solvent compositions, nanoparticle coordinating ligands, volume fraction of nanoparticles, and nanoparticle sizes in order to elucidate the mechanism of the radial assembly formation. These experiments along with strong segregation theory calculations indicated that both the enthalpic interaction and the polymer stretching energy are important factors in the coassembly formation. The slightly unfavorable interaction between the hydrophobic segment of polymers and alkyl-terminated nanoparticles causes the accumulation of nanoparticles at the interface between the polymer core and the shell, forming the unique cavity-like structure. The coassemblies were stabilized for a limited range of nanoparticle volume fractions within which the inclusion of nanoparticle layers reduces the polymer stretching. The volume fraction range yielding the well-defined radial coassembly structure was mapped out with varying nanoparticle sizes. The experimental and theoretical phase map provides the guideline for the coassembly formation of as-synthesized alkyl-terminated nanoparticles and amphiphilic block copolymers.

  2. Self-assembled amyloid fibrils with controllable conformational heterogeneity

    NASA Astrophysics Data System (ADS)

    Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Lee, Chang Young; Eom, Kilho; Kwon, Taeyun

    2015-11-01

    Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of β-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlled.

  3. Self-assembly, redox activity, and charge transport of functional surface nano-architectures by molecular design

    NASA Astrophysics Data System (ADS)

    Skomski, Daniel

    Surface-assisted molecular self-assembly is a promising strategy to program the structure and chemical state of atoms and molecules in nano-architectures to achieve a specific function. The experiments described in this thesis demonstrate that the design and programming of basic organic components leads to desired characteristics by self-assembly. The fabrication of uniform single-site metal centers at surfaces, important for high selectivity in next-generation catalysts, was accomplished by coordination to redox non-innocent phenanthroline and tetrazine-based ligands. These examples were the first demonstrating tuning of the metal oxidation state in surface coordination architectures through rational ligand design. The molecular-scale coordination architectures were the first formed from chromium and vanadium, and the first from platinum in a non-porphyrin system. The first mixed valence metal-ligand surface structure was fabricated that attained the same ligand coordination number for all metal sites. A new surface reaction method was demonstrated between an inexpensive sodium chloride reagent and carboxylate ligands. High-temperature, molecular-resolution microscopy and spectroscopy of the ordered metal-organic structures demonstrated thermal stability up to 300 °C, the highest molecular-level thermal stability in organic surface nanostructures yet achieved, making such systems potential candidates for moderate-temperature catalytic reactions. Molecular self-assembly was expanded into organic semiconductor thin films. In a two-component, bi-layered system, hydrogen bonding between carboxylates and carboxylic acid-substituted thiophenes was utilized, yielding the first real-space images of phenyl-thiophene stacking. In a one-component system, multiple donor-acceptor pi-pi contacts between phenyltriazole building blocks accomplished assembly of flat-lying molecules from a surface with molecular-scale precision through more than twenty molecular layers. Sufficient

  4. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    NASA Astrophysics Data System (ADS)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  5. Self-Assembly of Plasmonic Nanoclusters for Optical Metauids

    NASA Astrophysics Data System (ADS)

    Schade, Nicholas Benjamin

    I discuss experimental progress towards developing a material with an isotropic, negative index of refraction at optical frequencies. The simplest way to make such a material is to create a metafluid, or a disordered collection of subwavelength, isotropic electromagnetic resonators. Small clusters of metal particles, such as tetrahedra, serve as these constituents. What is needed are methods for manufacturing these structures with high precision and in sufficient yield that their resonances are identical. Jonathan Fan et al. [Science, 328 (5982), 1135-1138, 2010] demonstrated that colloidal self-assembly is a means of preparing electromagnetic resonators from metal nanoparticles. However, the resonances are sensitive to the separation gaps between particles. Standard synthesis routes for metal nanoparticles yield crystals or nanoshells that are inadequate for metafluids due to polydispersity, faceting, and thermal instabilities. To ensure that the separation gaps and resonances are uniform, more monodisperse spherical particles are needed. An additional challenge is the self-assembly of tetrahedral clusters in high yield from these particles. In self-assembly approaches that others have examined previously, the yield of any particular type of cluster is low. In this dissertation I present solutions to several of these problems, developed in collaboration with my research group and others. We demonstrate that slow chemical etching can transform octahedral gold crystals into ultrasmooth, monodisperse nanospheres. The particles can serve as seeds for the growth of larger octahedra which can in turn be etched. The size of the gold nanospheres can therefore be adjusted as desired. We further show that in colloidal mixtures of two sphere species that strongly bind to one another, the sphere size ratio determines the size distribution of self-assembled clusters. At a critical size ratio, tetrahedral clusters assemble in high yield. We explain the experimentally observed

  6. Supramolecular ssDNA templated porphyrin and metalloporphyrin nanoassemblies with tunable helicity.

    PubMed

    Sargsyan, Gevorg; Leonard, Brian M; Kubelka, Jan; Balaz, Milan

    2014-02-10

    Free-base and nickel porphyrin-diaminopurine conjugates were formed by hydrogen-bond directed assembly on single-stranded oligothymidine templates of different lengths into helical multiporphyrin nanoassemblies with highly modular structural and chiroptical properties. Large red-shifts of the Soret band in the UV/Vis spectroscopy confirmed strong electronic coupling among assembled porphyrin-diaminopurine units. Slow annealing rates yielded preferentially right-handed nanostructures, whereas fast annealing yielded left-handed nanostructures. Time-dependent DFT simulations of UV/Vis and CD spectra for model porphyrin clusters templated on the canonical B-DNA and its enantiomeric form, were employed to confirm the origin of observed chiroptical properties and to assign the helicity of porphyrin nanoassemblies. Molar CD and CD anisotropy g factors of dialyzed templated porphyrin nanoassemblies showed very high chiroptical anisotropy. The DNA-templated porphyrin nanoassemblies displayed high thermal and pH stability. The structure and handedness of all assemblies was preserved at temperatures up to +85 °C and pH between 3 and 12. High-resolution transition electron microscopy confirmed formation of DNA-templated nickel(II) porphyrin nanoassemblies and their self-assembly into helical fibrils with micrometer lengths.

  7. Cellular membrane enrichment of self-assembling D-peptides for cell surface engineering.

    PubMed

    Wang, Huaimin; Wang, Youzhi; Han, Aitian; Cai, Yanbin; Xiao, Nannan; Wang, Ling; Ding, Dan; Yang, Zhimou

    2014-06-25

    We occasionally found that several self-assembling peptides containing D-amino acids would be preferentially enriched in cellular membranes at self-assembled stages while distributed evenly in the cytoplasma of cells at unassembled stages. Self-assembling peptides containing only Lamino acids distributed evenly in cytoplasma of cells at both self-assembled and unassembled stages. The self-assembling peptides containing D-amino acids could therefore be applied for engineering cell surface with peptides. More importantly, by integrating a protein binding peptide (a PDZ domain binding hexapeptide of WRESAI) with the self-assembling peptide containing D-amino acids, protein could also be introduced to the cell surface. This study not only provided a novel approach to engineer cell surface, but also highlighted the unusual properties and potential applications of self-assembling peptides containing D-amino acids in regenerative medicine, drug delivery, and tissue engineering.

  8. Combustion and self-assembly of nanoenergetic materials

    NASA Astrophysics Data System (ADS)

    Malchi, Jonathan Yaniv

    The recent worldwide interest in nanotechnology spans a wide variety of scientific fields such as electronics, biology, materials science and medicine. Because of their extremely small dimensions, nanoparticles demonstrate properties different from matter at larger scales. Understanding these unusual properties and utilizing them for macroscale devices is an overall goal for nanotechnology. Moreover, manipulating these small particles into organized structures is crucial for taking full advantage of what nanotechnology has to offer, however it has proven to be a difficult task. Recent work utilizing electrostatic forces shows great potential for the self-assembly of nanoparticles into organized two-dimensional and three-dimensional structures. Overall, this work examines how nanotechnology and self-assembly can benefit the field of energetic materials. Because of aluminum's high energy density and low cost, it has been used in the field of energetic materials for several decades. In order to achieve sufficient energy release rates, aluminum is typically manufactured as a powder having spherical particles with diameters on the micron scale. It is well-known that decreasing the original particle diameter of a fuel particle will increase the burning time and, thus, energy release rate. Therefore, aluminum particles have recently been made to have diameters on the nanoscale, and shown to be advantageous for several applications. The combustion of nanoaluminum (nAl) in various systems is the primary focus of this study. A progression of experiments is used to analyze the combustion of nAl: (1) a fully heterogeneous flame spread system, (2) a semi-homogeneous sonicated thermite system and (3) a quasi-homogeneous self-assembled thermite system. The flame spread experiment physically separates the nAl from the gaseous oxidizer allowing for a well-understood convective, diffusive, reactive system to be analyzed. Because of the simplicity of the experimental setup, variables

  9. Investigation of Porphyrin and Lipid Supramolecular Assemblies for Cancer Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Ng, Kenneth Ka-Seng

    Aerobic life on earth is made possible through the functions of the porphyrin. These colorful and ubiquitous chromophores are efficient at concentrating and converting sunlight into chemical energetic potential which sustain biological life. Humans have had a longstanding fascination with these molecules, especially for their applications in photodynamic therapy. The photophysical properties of porphyrins are highly influenced by their surrounding environment. Intermolecular interactions between these pigments can lead to excited state quenching, energy transfer and large changes to their absorption and fluorescence spectra. This thesis is focused on utilizing molecular self-assembly strategies to develop nanoscale porphyrin and phospholipid structures. The rationale being that intermolecular interactions between porphyrins in these nanostructures can induce changes which can be exploited in novel biomedical imaging and therapeutic applications. Four lipid-based structural platforms are studied including: nanoemulsions, bilayer discs and nanovesicles. In Chapter 1, I provide a background on the photophysics of porphyrins and the effect of intermolecular porphyrin interactions on photophysical properties. I also discuss phospholipids and their self-assembly process. Lastly I review current biomedical photonics techniques and discuss how these strategies can be used in conjugation with porphyrin and lipid supramolecular assemblies. In Chapter 2, I investigate the influence that loading a novel bacteriochlorin photosensitizer into a protein-stabilized lipid emulsion has on its spectral properties. I discovered that while the dye can be incorporated into the lipid emulsion, no changes were observed in its spectral properties. In Chapter 3, an amphipathic alpha-helical protein is used to stabilize and organize porphyrin-lipid molecules into bilayer discs. Close packing between porphyrin molecules causes quenching, which can be reversed by structural degradation of the

  10. Self-assembly of amphiphilic molecules in organic liquids

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Huang

    2007-12-01

    Amphiphilic molecules are well-known for their ability to self-assemble in water to form structures such as micelles and vesicles. In comparison, much less is known about amphiphilic self-assembly in nonpolar organic liquids. Such "reverse" self assembly can produce many of the counterparts to structures found in water. In this dissertation, we focus on the formation and dynamics of such reverse structures. We seek to obtain fundamental insight into the driving forces for reverse self-assembly processes. Three specific types of reverse structures are studied: (a) reverse wormlike micelles, i.e., long, flexible micellar chains; (b) reverse vesicles, i.e., hollow containers enclosed by reverse bilayers; and (c) organogel networks. While our focus is on the fundamentals, we note that reverse structures can be useful in a variety of applications ranging from drug delivery, controlled release, hosts for enzymatic reactions, and templates for nanomaterials synthesis. In the first part of this study, we describe a new route for forming reverse wormlike micelles in nonpolar organic liquids. This route involves the addition of trace amounts of a bile salt to solutions of the phospholipid, lecithin. We show that bile salts, due to their unique "facially amphiphilic" structure, can promote the aggregation of lecithin molecules into these reverse micellar chains. The resulting samples are viscoelastic and show interesting rheological properties. Unusual trends are seen in the temperature dependence of their rheology, which indicates the importance of hydrogen-bonding interactions in the formation of these micelles. Another remarkable feature of their rheology is the presence of strain-stiffening, where the material becomes stiffer at high deformations. Strain-stiffening has been seen before for elastic gels of biopolymers; here, we demonstrate the same properties for viscoelastic micellar solutions. The second reverse aggregate we deal with is the reverse vesicle. We present a

  11. Anisotropic Self-Assembly of Hairy Inorganic Nanoparticles.

    PubMed

    Yi, Chenglin; Zhang, Shaoyi; Webb, Kyle Thomas; Nie, Zhihong

    2017-01-17

    Current interest in functional assemblies of inorganic nanoparticles (NPs) stems from their collective properties and diverse applications ranging from nanomedicines to optically active metamaterials. Coating the surface of NPs with polymers allows for tailoring of the interactions between NPs to assemble them into hybrid nanocomposites with targeted architectures. This class of building blocks is termed "hairy" inorganic NPs (HINPs). Regiospecific attachment of polymers has been used to achieve directional interactions for HINP assembly. However, to date anisotropic surface functionalization of NPs still remains a challenge. This Account provides a review of the recent progress in the self-assembly of isotropically functionalized HINPs in both the condensed state and aqueous solution as well as the applications of assembled structures in such areas as biomedical imaging and therapy. It aims to provide fundamental mechanistic insights into the correlation between structural characteristics and self-assembly behaviors of HINPs, with an emphasis on HINPs made from NPs grafted with linear block copolymer (BCP) brushes. The key to the anisotropic self-assembly of these HINPs is the generation of directional interactions between HINPs by designing the surrounding medium (e.g., polymer matrix) or engineering the surface chemistry of the HINPs. First, HINPs can self-assemble into a variety of 1D, 2D, or 3D nanostructures with a nonisotropic local arrangement of NPs in films. Although a template is not always required, a polymer matrix (BCPs or supramolecules) can be used to assist the assembly of HINPs to form hybrid architectures. The interactions between brushes of neighboring HINPs or between HINPs and the polymer matrix can be modulated by varying the grafting density and length of one or multiple types of polymers on the surface of the NPs. Second, the rational design of deformable brushes of BCP or mixed homopolymer tethers on HINPs enables the anisotropic assembly

  12. Self-Assembled Materials Made from Functional Recombinant Proteins.

    PubMed

    Jang, Yeongseon; Champion, Julie A

    2016-10-18

    Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on

  13. Platelets self-assemble into porous nacre during freeze casting.

    PubMed

    Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K

    2013-03-01

    Nacre possesses a remarkable combination of mechanical properties. Its high stiffness, strength and toughness are attributed to a highly aligned structure of aragonite platelets "glued" together by a small fraction (∼5vol%) of polymer; theoretically it can be described by a shear-lag model of staggered tensile elements between which loads are transferred via shear. Despite extensive research, it has not been possible yet to manufacture this aligned structure as a bulk material of considerable volume with a fast and easy production process. Particularly porous materials would benefit from enhanced wall material properties to compensate for performance loss due to their high porosity. An important application for such porous materials are tissue scaffolds for bone substitution. Bone, like nacre, exhibits excellent mechanical properties, particularly an exceptionally high toughness, because of its composite structure of hydroxyapatite platelets aligned in a ∼35vol% polymer matrix. Through the freeze casting process, which results in a fast and straightforward self-assembly of platelet-shaped particles during directional solidification, highly porous bulk materials with nacre-like cell walls can now be created. This porous nacre outperforms by a factor of 1.5-4 in terms of stiffness, strength and toughness materials that have the same amount of porosity but do not exhibit the nacre-like microarchitecture. The self-assembly process presented in this study thus has tremendous potential for the creation of highly porous, yet mechanically strong tissue scaffolds for low or medium load bearing bone substitute materials. Due to the versatility of the freeze casting process, materials with a self-assembled cell wall structure can be created from high-aspect ratio particles of all material classes. This enables material optimization for a great variety of applications such as impact protection, filtration, catalysis, energy generation and storage, in addition to those with

  14. Bacterial expression of self-assembling peptide hydrogelators

    NASA Astrophysics Data System (ADS)

    Sonmez, Cem

    For tissue regeneration and drug delivery applications, various architectures are explored to serve as biomaterial tools. Via de novo design, functional peptide hydrogel materials have been developed as scaffolds for biomedical applications. The objective of this study is to investigate bacterial expression as an alternative method to chemical synthesis for the recombinant production of self-assembling peptides that can form rigid hydrogels under physiological conditions. The Schneider and Pochan Labs have designed and characterized a 20 amino acid beta-hairpin forming amphiphilic peptide containing a D-residue in its turn region (MAX1). As a result, this peptide must be prepared chemically. Peptide engineering, using the sequence of MAX1 as a template, afforded a small family of peptides for expression (EX peptides) that have different turn sequences consisting of natural amino acids and amenable to bacterial expression. Each sequence was initially chemically synthesized to quickly assess the material properties of its corresponding gel. One model peptide EX1, was chosen to start the bacterial expression studies. DNA constructs facilitating the expression of EX1 were designed in such that the peptide could be expressed with different fusion partners and subsequently cleaved by enzymatic or chemical means to afford the free peptide. Optimization studies were performed to increase the yield of pure peptide that ultimately allowed 50 mg of pure peptide to be harvested from one liter of culture, providing an alternate means to produce this hydrogel-forming peptide. Recombinant production of other self-assembling hairpins with different turn sequences was also successful using this optimized protocol. The studies demonstrate that new beta-hairpin self-assembling peptides that are amenable to bacterial production and form rigid hydrogels at physiological conditions can be designed and produced by fermentation in good yield at significantly reduced cost when compared to

  15. Biomimetic synthetic self-assembled hydrogels for cell transplantation.

    PubMed

    Barros, Daniela; Amaral, Isabel Freitas; Pêgo, Ana Paula

    2015-01-01

    The development of three-dimensional matrices capable of recapitulating the main features of native extracellular matrix and contribute for the establishment of a favorable microenvironment for cell behavior and fate is expected to circumvent some of the main limitations of cell-based therapies. In this context, self-assembly has emerged as a promising strategy to engineer cell-compatible hydrogels. A wide number of synthetically-derived biopolymers, such as proteins, peptides and DNA/RNA, with intrinsic ability to self-assemble into well-defined nanofibrous structures, are being explored. The resulting hydrogels, in addition to closely resembling the architecture of native cellular microenvironments, present a versatile and dynamic behavior that allows them to be designed to undergo sol-to-gel transition in response to exogenous stimulus. This review presents an overview on the state-of-the-art of the different strategies being explored for the development of injectable synthetic self-assembled hydrogels for cell transplantation and/or recruitment of endogenous cells, with an emphasis on their biological performance, both in vitro and in vivo. Systems based on peptides are the most widely explored and have already generated promising results in pre-clinical in vivo studies involving different repair/regenerative scenarios, including cartilage, bone, nerve and heart. On the other hand, systems based on DNA and hybrid hydrogels are now emerging for application in the biomedical field with high potential. Finally, the main challenges hampering the translation of these systems to the clinic and the issues that need to be addressed for these to progress from bench-to-bedside are discussed.

  16. Self-assembling behavior of glycerol monoundecenoate in water.

    PubMed

    Nyame Mendendy Boussambe, Gildas; Valentin, Romain; Fabre, Jean-François; Navailles, Laurence; Nallet, Frédéric; Gaillard, Cedric; Mouloungui, Zephirin

    2017-03-14

    Self-assembling properties of glycerol esters in water are well known. Still, few data on glyc-erol monoesters of undecylenic acid are available. The aim of this study was to highlight the behavior of the glycerol monoundecenoate (GM-C11:1) in different, diluted and concentrated states. Self-assembling properties in water and upon solid inorganic surfaces were investigated in diluted state with surface tension experiments, AFM and Cryo-TEM studies. In concen-trated state, the gelling properties in presence of water were investigated by polarized light microscopy, DSC and SAXS experiments. GM-C11:1 at 100 mg/L self-assembles at the liq-uid/air interfaces as aggregates of about 20 nm in diameter, organized into concentric forms. These aggregates were spherical globules composed of several molecules of GM-C11:1. At higher concentrations (1000 mg/L and 104 mg/L), GM-C11:1 was able to coat uniformly liq-uid/air and liquid/solid interfaces. In bulk GM-C11:1 form spontaneously aggregates and ves-icles. In more concentrated state, GM-C11:1 assembles into lamellar Lβ and Lα form in water. By cross-referencing SAXS and DSC findings, we were able to distinguish between interla-mellar water molecules strongly bound to GM-C11:1 and other molecules remaining unbound and considered as "mobile" water. The percentage of water strongly bound was proportional to the percentage of GM-C11:1 in the system. In this case, GM-C11:1 appears to be an effec-tive molecule for surface treatments for which water retention is important.

  17. Particle self-assembly at ionic liquid-based interfaces.

    PubMed

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  18. Self-assembly of amorphous biophotonic nanostructures by phase separation

    SciTech Connect

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Cao, Hui; Prum, Richard O.

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important roles in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.

  19. Electrochemically controlled self-assembly of block copolymer nanostructures

    NASA Astrophysics Data System (ADS)

    Eitouni, Hany Basam

    Organometallic block copolymers, wherein one block is composed of alternating ferrocene and dialkylsilane units in the main chain, undergo self-assembly to form microphase-separated ordered structures similarly to typical organic block copolymers. The 1,1'-dimethylsilylferrocenophane monomer was synthesized and polymerized anionically with other monomers to make a variety of different organometallic block copolymers. The phase behavior and thermodynamic interactions of anionically synthesized poly(styrene-block-ferrocenyldimethylsilane) (SF) and poly(isoprene-block-ferrocenyldimethylsilane) (IF) copolymers were examined using depolarized light scattering, small angle x-ray and neutron scattering (SAXS and SANS), and transmission electron microscopy. The temperature-dependence of the Flory-Huggins parameter, chi, and the statistical segment lengths of SF and IF copolymers were determined by SAXS and SANS using the random phase approximation. The thermodynamic interactions in poly(ferrocenyldimethylsilane) diblock copolymers were systematically adjusted by oxidizing the ferrocene moieties with silver salts and examined using SAXS and depolarized light scattering. The polymers retained microphase separated ordered structures upon oxidation and showed systematic changes in the location of the order-disorder transition as a function of extent of oxidation. By controlling the redox properties of the ferrocene moiety in the backbone of the polymer, we present a method for controlling the self-assembled microstructure and hence bulk material properties. Using electrochemical techniques, a novel means of controlling the order-disorder transition of block copolymers was discovered. By applying very small electrical potentials to disordered solutions of organometallic block copolymers, oriented ordered grains were formed near one electrode, the result of electrochemical reactions. After reversing the electrical bias on the system, the ordered grains disappeared and new

  20. Bottlebrush Polymers: Synthesis, Rheology, and Self-Assembly

    NASA Astrophysics Data System (ADS)

    Dalsin, Samuel J.

    Bottlebrush polymers are comb-like molecules with a high density of side chains grafted along a central backbone. Due to their unique conformational properties, bottlebrush polymers have become attractive candidates for developing new photonic bandgap materials, nanotubes and nanowires, or drug delivery vehicles, to name a few. This dissertation primarily investigates the rheological properties and self-assembly behavior of bottlebrush polymer molecules made using a variety of different polymerization routes. A considerable portion of the work is directed towards the linear rheology of model, polyolefin-based bottlebrush polymers with independently varied branch and backbone lengths. These studies demonstrate how the tight spacing between branch points effectively precludes backbone entanglement in the polymer melts, but it does not inhibit the formation of entanglements among the branched side chains. Furthermore, the relaxation profiles reveal transient scaling behavior in which the dynamics transition from Zimm-like to Rouse-like at increasing relaxation times. These results highlight the distinct conformational character of bottlebrushes at different length scales. The latter parts of this work report on the self-assembly behavior of bottlebrush diblock polymers composed of atactic polypropylene and polystyrene side chains. The diblock samples are analyzed using small-angle X-ray scattering and atomic force microscopy. Nearly all of the samples display strong segregation between the two blocks, owing to the large molar mass of typical bottlebrush polymers. Consequently, only one experimental sample displays an accessible order-disorder transition temperature. The strong segregation is also shown to affect the ability of large bottlebrush diblocks to readily achieve well-ordered nanostructures by self-assembly. Finally, results of the most symmetric (by volume fraction) diblock samples are compared with predictions of a newly developed self-consistent field

  1. Rapid Self-Assembly of Uranyl Polyhedra into Crown Clusters

    SciTech Connect

    Sigmon, Ginger E.; Burns, Peter C.

    2011-06-22

    Clusters built from 32 uranyl peroxide polyhedra self-assemble and crystallize within 15 min after combining uranyl nitrate, ammonium hydroxide, and hydrogen peroxide in aqueous solution under ambient conditions. These novel crown-shaped clusters are remarkable in that they form so quickly, have extraordinarily low aqueous solubility, form with at least two distinct peroxide to hydroxyl ratios, and form in very high yield. The clusters, which have outer diameters of 23 Å, topologically consist of eight pentagons and four hexagons. Their rapid formation and low solubility in aqueous systems may be useful properties at various stages in an advanced nuclear energy system.

  2. Out of the cleanroom, self-assembled magnetic artificial cilia.

    PubMed

    Wang, Ye; Gao, Yang; Wyss, Hans; Anderson, Patrick; den Toonder, Jaap

    2013-09-07

    Micro-sized hair-like structures, such as cilia, are abundant in nature and have various functionalities. Many efforts have been made to mimic the fluid pumping function of cilia, but most of the fabrication processes for these "artificial cilia" are tedious and expensive, hindering their practical application. In this paper a cost-effective in situ fabrication technique for artificial cilia is demonstrated. The cilia are constructed by self-assembly of micron sized magnetic beads and encapsulated with soft polymer coatings. Actuation of the cilia induces an effective fluid flow, and the cilia lengths and distribution can be adjusted by varying the magnetic bead concentration and fabrication parameters.

  3. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  4. Electronic instabilities in self-assembled atom wires

    SciTech Connect

    Snijders, Paul C; Weitering, Harm H

    2010-01-01

    Low dimensional systems have fascinated physicists for a long time due to their unusual properties such as charge fractionalization, semionic statistics, and Luttinger liquid behavior among others. In nature, however, low dimensional systems often suffer from thermal fluctuations that can make these systems structurally unstable. Human beings, however, can trick nature by producing artificial structures which are not naturally produced. This Colloquium reviews the problem of self-assembled atomic wires on solid surfaces from an experimental and theoretical point of view. These materials represent a class of one-dimensional systems with very unusual properties that can open doors to the study of exotic physics that cannot be studied otherwise.

  5. Passivation effects in B doped self-assembled Si nanocrystals

    SciTech Connect

    Puthen Veettil, B. Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Zhang, Tian; Yang, Terry; Johnson, Craig; Conibeer, Gavin; Perez-Würfl, Ivan; McCamey, Dane

    2014-12-01

    Doping of semiconductor nanocrystals has enabled their widespread technological application in optoelectronics and micro/nano-electronics. In this work, boron-doped self-assembled silicon nanocrystal samples have been grown and characterised using Electron Spin Resonance and photoluminescence spectroscopy. The passivation effects of boron on the interface dangling bonds have been investigated. Addition of boron dopants is found to compensate the active dangling bonds at the interface, and this is confirmed by an increase in photoluminescence intensity. Further addition of dopants is found to reduce the photoluminescence intensity by decreasing the minority carrier lifetime as a result of the increased number of non-radiative processes.

  6. Energy levels in self-assembled quantum arbitrarily shaped dots.

    PubMed

    Tablero, C

    2005-02-08

    A model to determine the electronic structure of self-assembled quantum arbitrarily shaped dots is applied. This model is based principally on constant effective mass and constant potentials of the barrier and quantum dot material. An analysis of the different parameters of this model is done and compared with those which take into account the variation of confining potentials, bands, and effective masses due to strain. The results are compared with several spectra reported in literature. By considering the symmetry, the computational cost is reduced with respect to other methods in literature. In addition, this model is not limited by the geometry of the quantum dot.

  7. Buckling Instability of Self-Assembled Colloidal Columns

    NASA Astrophysics Data System (ADS)

    Swan, James W.; Vasquez, Paula A.; Furst, Eric M.

    2014-09-01

    Suspended, slender self-assembled domains of magnetically responsive colloids are observed to buckle in microgravity. Upon cessation of the magnetic field that drives their assembly, these columns expand axially and buckle laterally. This phenomenon resembles the buckling of long beams due to thermal expansion; however, linear stability analysis predicts that the colloidal columns are inherently susceptible to buckling because they are freely suspended in a Newtonian fluid. The dominant buckling wavelength increases linearly with column thickness and is quantitatively described using an elastohydrodynamic model and the suspension thermodynamic equation of state.

  8. Self-assembling peptide amphiphile nanostructures for cancer therapy

    NASA Astrophysics Data System (ADS)

    Soukasene, Stephen

    The application of nanotechnology to cancer therapy shows great promise for reducing the burden of the disease. By virtue of their size, nanoscale objects preferentially accumulate in tumor tissue through an enhanced permeability and retention (EPR) effect. However, to fully overcome the issues that limit current cancer treatments, viable nanostructures must also impart multifunctionality and be fully compatible with their biological surrounds. The self-assembling peptide amphiphile (PA) materials studied extensively in the Stupp Research Group form very biocompatible high aspect ratio nanostructures that meet these criteria. This thesis investigates the development of PA nanostructures designed to treat cancer. We first look to use the PA as a drug delivery vehicle by entrapping a small hydrophobic anti-cancer drug, camptothecin, in the core of the nanostructures. Using a solvent evaporation technique to load the drug into the PA nanofibers, we are able to improve the aqueous solubility of the molecule by nearly 30-fold. TEM and AFM studies show that entrapment of drug molecules does not disrupt the self-assembled morphology of the nanofiber. In vitro and in vivo studies are also conducted to demonstrate the bioactivity of the drug after its entrapment. As a potential platform for novel therapeutics, we next develop techniques for using light irradiation to trigger self-assembly inside the confined space of liposomes. We encapsulate PA monomers that assemble under acidic conditions along with a photoacid generator inside liposomes. Upon exposure to 254 nm light, the PA monomers self assemble inside the liposome to form nanostructures, which we observe through a quick freeze/deep etch technique that allows us to look inside the liposomes by SEM and TEM. Last of all, the development and discovery of epitopes for targeting PA nanostructures to tumors are explored. Using phage display technology we generate two groups of peptide sequences, one of which can potentially

  9. Nitrogen Substituted Phenothiazine Derivatives: Modelling of Molecular Self-Assembling

    PubMed Central

    Bende, Attila; Turcu, Ioan

    2011-01-01

    The study aims to present a detailed theoretical investigation of noncovalent intermolecular interactions between different π–π stacking nitrogen substituted phenothiazine derivatives by applying second-order Møller-Plesset perturbation (MP2), density functional (DFT) and semiempirical theories. The conformational stability of these molecular systems is mainly given by the dispersion-type electron correlation effects. The density functional tight-binding (DFTB) method applied for dimer structures are compared with the results obtained by the higher level theoretical methods. Additionally, the optimal configuration of the investigated supramolecular systems and their self-assembling properties are discussed. PMID:21686172

  10. Purification of ethanol for highly sensitive self-assembly experiments

    PubMed Central

    Barbe, Kathrin; Kind, Martin; Pfeiffer, Christian

    2014-01-01

    Summary Ethanol is the preferred solvent for the formation of self-assembled monolayers (SAMs) of thiolates on gold. By applying a thin film sensor system, we could demonstrate that even the best commercial qualities of ethanol contain surface-active contaminants, which can compete with the desired thiolates for surface sites. Here we present that gold nanoparticles deposited onto zeolite X can be used to remove these contaminants by chemisorption. This nanoparticle-impregnated zeolite does not only show high capacities for surface-active contaminants, such as thiols, but can be fully regenerated via a simple pyrolysis protocol. PMID:25161861

  11. Preface: Special Topic on Supramolecular Self-Assembly at Surfaces

    NASA Astrophysics Data System (ADS)

    Bartels, Ludwig; Ernst, Karl-Heinz; Gao, Hong-Jun; Thiel, Patricia A.

    2015-03-01

    Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.

  12. Model for dynamic self-assembled magnetic surface structures.

    SciTech Connect

    Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.; Materials Science Division; Northwestern Univ.

    2010-07-07

    We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.

  13. Guided Self-Assembly of Nano-Precipitates into Mesocrystals

    PubMed Central

    Liu, H.; Gao, Y.; Xu, Z.; Zhu, Y.M.; Wang, Y.; Nie, J.F.

    2015-01-01

    We show by a combination of computer simulation and experimental characterization guided self-assembly of coherent nano-precipitates into a mesocrystal having a honeycomb structure in bulk materials. The structure consists of different orientation variants of a product phase precipitated out of the parent phase by heterogeneous nucleation on a hexagonal dislocation network. The predicted honeycomb mesocrystal has been confirmed by experimental observations in an Mg-Y-Nd alloy. The structure and lattice parameters of the mesocrystal and the size of the nano-precipitates are readily tuneable, offering ample opportunities to tailor its properties for a wide range of technological applications. PMID:26559002

  14. Color and chirality: carotenoid self-assemblies in flower petals.

    PubMed

    Zsila, F; Deli, J; Simonyi, M

    2001-10-01

    As a novel phenomenon, optical activity--often very strong--has been detected by circular dichroism (CD) spectroscopy in carotenoid-containing living flowers of several species belonging to different families. Using natural pure xanthophyll esters, very similar CD spectra were obtained in vitro, proving the ability of these molecules to form chiral self-assemblies. The relationship between the ultrastructure of the chromoplast, its chemical composition and the optical activity is discussed. The applicability of CD spectroscopy for studying intact plant tissue is emphasized.

  15. The art and science of self-assembling molecular machines

    NASA Astrophysics Data System (ADS)

    Gómez-López, Marcos; Preece, Jon A.; Fraser Stoddart, J.

    1996-09-01

    In this review, we show how noncovalent bonding interactions between 0957-4484/7/3/004/img1-electron rich aromatic ring systems (e.g. hydroquinone) and the 0957-4484/7/3/004/img1-electron deficient tetracationic cyclophane, cyclobis(paraquat-p-phenylene) can be used to self-assemble novel molecular architectures which are not only interesting to us, because of their fascinating topologies, but also because they have the potential to be developed into molecular structures with switchable properties on the nanometre scale. The high efficiency observed in the self-assembly of a [2]catenane, and its dynamic properties in solution, represent the first step in the design and self-assembly of other molecular assemblies better suited for the study of molecular switching processes. Therefore, a series of [2]rotaxanes, mechanically-interlocked molecular compounds, consisting of a linear 0957-4484/7/3/004/img1-electron rich dumbbell-shaped component and the 0957-4484/7/3/004/img1-electron deficient tetracationic cyclophane as the cyclic component, have been self-assembled and evaluated. All of the so-called molecular shuttles show translational isomerism and one of them, comprising benzidine and biphenol recognition sites as the non-degenerate 0957-4484/7/3/004/img1-electron rich sites, shows molecular switching properties when it is perturbed by external stimuli, such as electrons and protons. The versatility of our approach to nanoscale molecular switches is proven by the description of a series of molecular assemblies and supramolecular arrays, consisting of 0957-4484/7/3/004/img1-electron rich and 0957-4484/7/3/004/img1-electron deficient components, which display molecular switching properties when they are influenced by external stimuli that are photochemical, electrochemical and/or chemical in nature. However, the molecular switching phenomena take place in the solution state. Therefore, finally we describe how simple molecular structures can be ordered on to a solid

  16. Self-assembled GaN hexagonal micropyramid and microdisk

    SciTech Connect

    Lo Ikai; Hsieh, C.-H.; Hsu, Y.-C.; Pang, W.-Y.; Chou, M.-C.

    2009-02-09

    The self-assembled GaN hexagonal micropyramid and microdisk were grown on LiAlO{sub 2} by plasma-assisted molecular-beam epitaxy. It was found that the (0001) disk was established with the capture of N atoms by most-outside Ga atoms as the (1x1) surface was constructing, while the pyramid was obtained due to the missing of most-outside N atoms. The intensity of cathode luminescence excited from the microdisk was one order of amplitude greater than that from M-plane GaN.

  17. Guided Self-Assembly of Nano-Precipitates into Mesocrystals

    NASA Astrophysics Data System (ADS)

    Liu, H.; Gao, Y.; Xu, Z.; Zhu, Y. M.; Wang, Y.; Nie, J. F.

    2015-11-01

    We show by a combination of computer simulation and experimental characterization guided self-assembly of coherent nano-precipitates into a mesocrystal having a honeycomb structure in bulk materials. The structure consists of different orientation variants of a product phase precipitated out of the parent phase by heterogeneous nucleation on a hexagonal dislocation network. The predicted honeycomb mesocrystal has been confirmed by experimental observations in an Mg-Y-Nd alloy. The structure and lattice parameters of the mesocrystal and the size of the nano-precipitates are readily tuneable, offering ample opportunities to tailor its properties for a wide range of technological applications.

  18. De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls

    SciTech Connect

    Mass, Olga; Pandithavidana, Dinesh R.; Ptaszek, Marcin; Santiago, Koraliz; Springer, Joseph W.; Jiao, Jieying; Tang, Qun; Kirmaier, Christine; Bocian, David F.; Holten, Dewey; Lindsey, Jonathan S.

    2011-01-01

    Natural photosynthetic pigments bacteriochlorophyllsc, d and e in green bacteria undergo self-assembly to create an organized antenna system known as the chlorosome, which collects photons and funnels the resulting excitation energy toward the reaction centers. Mimicry of chlorosome function is a central problem in supramolecular chemistry and artificial photosynthesis, and may have relevance for the design of photosynthesis-inspired solar cells. The main challenge in preparing artificial chlorosomes remains the synthesis of the appropriate pigment (chlorin) equipped with a set of functional groups suitable to direct the assembly and assure efficient energy transfer. Prior approaches have entailed derivatization of porphyrins or semisynthesis beginning with chlorophylls. This paper reports a third approach, the de novo synthesis of macrocycles that contain the same hydrocarbon skeleton as chlorosomal bacteriochlorophylls. The synthesis here of Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines (the aryl group consists of phenyl, mesityl, or pentafluorophenyl) entails selective bromination of a 3,13-diacetyl-10-arylchlorin, palladium-catalyzed 13¹-oxophorbine formation, and selective reduction of the 3-acetyl group using BH₃·tBuNH₂. Each macrocycle contains a geminal dimethyl group in the pyrroline ring to provide stability toward adventitious dehydrogenation. A Zn(II) 7-(1-hydroxyethyl)-10-phenyl-17-oxochlorin also has been prepared. Altogether, 30 new hydroporphyrins were synthesized. The UV-Vis absorption spectra of the new chlorosomal bacteriochlorophyll mimics reveal a bathochromic shift of [similar]1800 cm-1 of the Qy band in nonpolar solvent, indicating extensive assembly in solution. The Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines differ in the propensity to form assemblies based on the 10-substituent in the following order: mesityl

  19. Amphiphilic Janus gold nanoparticles prepared by interface-directed self-assembly: synthesis and self-assembly.

    PubMed

    Liu, Guannan; Tian, Jia; Zhang, Xu; Zhao, Hanying

    2014-09-01

    Materials with Janus structures are attractive for wide applications in materials science. Although extensive efforts in the synthesis of Janus particles have been reported, the synthesis of sub-10 nm Janus nanoparticles is still challenging. Herein, the synthesis of Janus gold nanoparticles (AuNPs) based on interface-directed self-assembly is reported. Polystyrene (PS) colloidal particles with AuNPs on the surface were prepared by interface-directed self-assembly, and the colloidal particles were used as templates for the synthesis of Janus AuNPs. To prepare colloidal particles, thiol-terminated polystyrene (PS-SH) was dissolved in toluene and citrate-stabilized AuNPs were dispersed in aqueous solution. Upon mixing the two solutions, PS-SH chains were grafted to the surface of AuNPs and amphiphilic AuNPs were formed at the liquid-liquid interface. PS colloidal particles decorated with AuNPs on the surfaces were prepared by adding the emulsion to excess methanol. On the surface, AuNPs were partially embedded in the colloidal particles. The outer regions of the AuNPs were exposed to the solution and were functionalized through the grafting of atom-transfer radical polymerization (ATRP) initiator. Poly[2-(dimethamino)ethyl methacrylate] (PDMAEMA) on AuNPs were prepared by surface-initiated ATRP. After centrifugation and dissolving the colloidal particles in tetrahydrofuran (THF), Janus AuNPs with PS and PDMAEMA on two hemispheres were obtained. In acidic pH, Janus AuNPs are amphiphilic and are able to emulsify oil droplets in water; in basic pH, the Janus AuNPs are hydrophobic. In mixtures of THF/methanol at a volume ratio of 1:5, the Janus AuNPs self-assemble into bilayer structures with collapsed PS in the interiors and solvated PDMAEMA at the exteriors of the structures.

  20. Silver nanoprisms self-assembly on differently functionalized silica surface

    NASA Astrophysics Data System (ADS)

    Pilipavicius, J.; Chodosovskaja, A.; Beganskiene, A.; Kareiva, A.

    2015-03-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs.

  1. Functional self-assembled DNA nanostructures for molecular recognition

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojuan; Yadavalli, Vamsi K.

    2012-03-01

    Nucleic acids present a wonderful toolkit of structural motifs for nanoconstruction. Functional DNA nanostructures can enable protein recognition by the use of aptamers attached to a basic core shape formed by DNA self-assembly. Here, we present a facile, programmable strategy for the assembly of discrete aptamer-tagged DNA shapes and nanostructures that can function for molecular recognition and binding in an aqueous environment. These nanostructures, presented here to bind two different protein targets, are easily synthesized in large numbers, and are portable and stable over long periods of time. This construction modality can facilitate on-demand production of libraries of diverse shapes to recognize and bind proteins or catalyze reactions via functional nucleic acid tags.Nucleic acids present a wonderful toolkit of structural motifs for nanoconstruction. Functional DNA nanostructures can enable protein recognition by the use of aptamers attached to a basic core shape formed by DNA self-assembly. Here, we present a facile, programmable strategy for the assembly of discrete aptamer-tagged DNA shapes and nanostructures that can function for molecular recognition and binding in an aqueous environment. These nanostructures, presented here to bind two different protein targets, are easily synthesized in large numbers, and are portable and stable over long periods of time. This construction modality can facilitate on-demand production of libraries of diverse shapes to recognize and bind proteins or catalyze reactions via functional nucleic acid tags. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11711h

  2. Simulation of self-assembly of polyzwitterions into vesicles

    NASA Astrophysics Data System (ADS)

    Mahalik, J. P.; Muthukumar, M.

    2016-08-01

    Using the Langevin dynamics method and a coarse-grained model, we have studied the formation of vesicles by hydrophobic polymers consisting of periodically placed zwitterion side groups in dilute salt-free aqueous solutions. The zwitterions, being permanent charge dipoles, provide long-range electrostatic correlations which are interfered by the conformational entropy of the polymer. Our simulations are geared towards gaining conceptual understanding in these correlated dipolar systems, where theoretical calculations are at present formidable. A competition between hydrophobic interactions and dipole-dipole interactions leads to a series of self-assembled structures. As the spacing d between the successive zwitterion side groups decreases, single chains undergo globule → disk → worm-like structures. We have calculated the Flory-Huggins χ parameter for these systems in terms of d and monitored the radius of gyration, hydrodynamic radius, spatial correlations among hydrophobic and dipole monomers, and dipole-dipole orientational correlation functions. During the subsequent stages of self-assembly, these structures lead to larger globules and vesicles as d is decreased up to a threshold value, below which no large scale morphology forms. The vesicles form via a polynucleation mechanism whereby disk-like structures form first, followed by their subsequent merger.

  3. Synthesis and simultaneous self-assembly of novel antibacterial polyurethanes

    NASA Astrophysics Data System (ADS)

    Duan, J. H.; Yin, F.; Jiang, G. C.

    2016-07-01

    Novel physically crosslinked polyurethane (PUII) based on isophorone diisocyanates (IPDI) was prepared by a conventional two step method. The chemical structures of the PUII were characterized by fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC) and scanning electron microscopy (SEM). The PUII hydrogels were subjected to solvent-induced self-assembly in THF + water to construct a variety of morphologies. The self-assembly morphology of the PUII was observed by scanning electron microscopy (SEM). Different amounts (0.2%, 0.4%, 0.6%, 0.8%, 1.0%) of 1,3,5-Tris(2-hydroxyethyl)hexahydro-1,3,5-triazine (TNO) was added as antibacterial agent to the polyurethane prepolymers. The inhibiting capacity of the antibacterial films to the Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Gray mold has been studied. The inhibiting capacity of films for each strain effect became obvious with the increase of content of antibacterial agent and the sensitive degree to all kind of bacterial species was different.

  4. Free surface BCP self-assembly process characterization with CDSEM

    NASA Astrophysics Data System (ADS)

    Levi, Shimon; Weinberg, Yakov; Adan, Ofer; Klinov, Michael; Argoud, Maxime; Claveau, Guillaume; Tiron, Raluca

    2016-03-01

    A simple and common practice to evaluate Block copolymers (BCP) self-assembly performances, is on a free surface wafer. With no guiding pattern the BCP designed to form line space pattern for example, spontaneously rearranges to form a random fingerprint type of a pattern. The nature of the rearrangement is dictated by the physical properties of the BCP moieties, wafer surface treatment and the self-assembly process parameters. Traditional CDSEM metrology algorithms are designed to measure pattern with predefined structure, like linespace or oval via holes. Measurement of pattern with expected geometry can reduce measurement uncertainty. Fingerprint type of structure explored in this dissertation, poses a challenge for CD-SEM measurement uncertainty and offers an opportunity to explore 2D metrology capabilities. To measure this fingerprints we developed a new metrology approach that combines image segmentation and edge detection to measure 2D pattern with arbitrary rearrangement. The segmentation approach enabled to quantify the quality of the BCP material and process, detecting 2D attributes such as: CD and CDU at one axis, and number of intersections, length and number of PS fragments, etched PMMA spaces and donut shapes numbers on the second axis. In this paper we propose a 2D metrology to measure arbitrary BCP pattern on a free surface wafer. We demonstrate experimental results demonstrating precision data, and characterization of PS-b-PMMA BCP, intrinsic period L0 = 38nm (Arkema), processed at different bake time and temperatures.

  5. Self assembled monolayers on silicon for molecular electronics.

    PubMed

    Aswal, D K; Lenfant, S; Guerin, D; Yakhmi, J V; Vuillaume, D

    2006-05-24

    We present an overview of various aspects of the self-assembly of organic monolayers on silicon substrates for molecular electronics applications. Different chemical strategies employed for grafting the self-assembled monolayers (SAMs) of alkanes having different chain lengths on native oxide of Si or on bare Si have been reviewed. The utility of different characterization techniques in determination of the thickness, molecular ordering and orientation, surface coverage, growth kinetics and chemical composition of the SAMs has been discussed by choosing appropriate examples. The metal counterelectrodes are an integral part of SAMs for measuring their electrical properties as well as using them for molecular electronic devices. A brief discussion on the variety of options available for the deposition of metal counterelectrodes, that is, soft metal contacts, vapor deposition and soft lithography, has been presented. Various theoretical models, namely, tunneling (direct and Fowler-Nordheim), thermionic emission, Poole-Frenkel emission and hopping conduction, used for explaining the electronic transport in dielectric SAMs have been outlined and, some experimental data on alkane SAMs have been analyzed using these models. It has been found that short alkyl chains show excellent agreement with tunneling models; while more experimental data on long alkyl chains are required to understand their transport mechanism(s). Finally, the concepts and realization of various molecular electronic components, that is, diodes, resonant tunnel diodes, memories and transistors, based on appropriate architecture of SAMs comprising of alkyl chains (sigma- molecule) and conjugated molecules (pi-molecule) have been presented.

  6. Conformational flexibility facilitates self-assembly of complex DNA nanostructures.

    PubMed

    Zhang, Chuan; Su, Min; He, Yu; Zhao, Xin; Fang, Ping-an; Ribbe, Alexander E; Jiang, Wen; Mao, Chengde

    2008-08-05

    Molecular self-assembly is a promising approach to the preparation of nanostructures. DNA, in particular, shows great potential to be a superb molecular system. Synthetic DNA molecules have been programmed to assemble into a wide range of nanostructures. It is generally believed that rigidities of DNA nanomotifs (tiles) are essential for programmable self-assembly of well defined nanostructures. Recently, we have shown that adequate conformational flexibility could be exploited for assembling 3D objects, including tetrahedra, dodecahedra, and buckyballs, out of DNA three-point star motifs. In the current study, we have integrated tensegrity principle into this concept to assemble well defined, complex nanostructures in both 2D and 3D. A symmetric five-point-star motif (tile) has been designed to assemble into icosahedra or large nanocages depending on the concentration and flexibility of the DNA tiles. In both cases, the DNA tiles exhibit significant flexibilities and undergo substantial conformational changes, either symmetrically bending out of the plane or asymmetrically bending in the plane. In contrast to the complicated natures of the assembled structures, the approach presented here is simple and only requires three different component DNA strands. These results demonstrate that conformational flexibility could be explored to generate complex DNA nanostructures. The basic concept might be further extended to other biomacromolecular systems, such as RNA and proteins.

  7. Interplay of directional and isotropic interactions in self-assembly

    NASA Astrophysics Data System (ADS)

    Audus, Debra; Starr, Francis; Douglas, Jack

    Patchy particle models, composed of hard spheres with decorated with attractive patches, have been introduced as models of micron-sized particles with anisotropic interactions, as well as solutions of globular proteins. Here, we extend the canonical model of the patchy particles to include a short-ranged isotropic interaction in order to probe of the coupling of the directional and isotropic interactions on the self-assembly process. In particular, we evaluate basic properties characterizing self-assembly including average cluster mass and the fraction of particles in the clustered state using both Monte Carlo simulation and analytic Wertheim theory. This combination allows for validation of the theory and for insight into analyzing experimental data. We also find that Flory-Stockmayer theory describes the cluster size distribution data found in our simulations remarkably well, despite its erroneous mass-scaling exponent. This result, coupled with Wertheim theory, predicts both a master curve for the average cluster mass and a method to parameterize patchy particle models using experimental data.

  8. Physical principles of filamentous protein self-assembly kinetics

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  9. Using lateral capillary forces to compute by self-assembly.

    PubMed

    Rothemund, P W

    2000-02-01

    Investigations of DNA computing have highlighted a fundamental connection between self-assembly (SA) and computation: in principle, any computation can be performed by a suitable self-assembling system. In practice, exploration of this connection is limited by our ability to control the geometry and specificity of binding interactions. Recently, a system has been developed that uses surface tension to assemble plastic tiles according to shape complementarity and likeness of wetting [Bowden, N., Terfort, A., Carbeck, J. & Whitesides, G. M. (1997) Science 276, 233-235]. Here the capacity of this system to compute by SA is explored. Tiles were prepared to test the system's ability to generate three structures of increasing complexity: a periodic checkerboard tiling, an aperiodic Penrose tiling, and a computational tiling that simulates a one-dimensional cellular automaton. Matching rules for these tilings were enforced by coating tiles with patterns of hydrophobic and hydrophilic patches or wetting codes. Energetic, kinetic, and mechanistic details of SA explain differences between experimental structures and mathematically ideal ones. In particular, the growth mechanism observed appears incompatible with computations that make use of a chosen input.

  10. Self-assembled Nano-layering at the Adhesive interface.

    PubMed

    Yoshida, Y; Yoshihara, K; Nagaoka, N; Hayakawa, S; Torii, Y; Ogawa, T; Osaka, A; Meerbeek, B Van

    2012-04-01

    According to the 'Adhesion-Decalcification' concept, specific functional monomers within dental adhesives can ionically interact with hydroxyapatite (HAp). Such ionic bonding has been demonstrated for 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to manifest in the form of self-assembled 'nano-layering'. However, it remained to be explored if such nano-layering also occurs on tooth tissue when commercial MDP-containing adhesives (Clearfil SE Bond, Kuraray; Scotchbond Universal, 3M ESPE) were applied following common clinical application protocols. We therefore characterized adhesive-dentin interfaces chemically, using x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDS), and ultrastructurally, using (scanning) transmission electron microscopy (TEM/STEM). Both adhesives revealed nano-layering at the adhesive interface, not only within the hybrid layer but also, particularly for Clearfil SE Bond (Kuraray), extending into the adhesive layer. Since such self-assembled nano-layering of two 10-MDP molecules, joined by stable MDP-Ca salt formation, must make the adhesive interface more resistant to biodegradation, it may well explain the documented favorable clinical longevity of bonds produced by 10-MDP-based adhesives.

  11. Protein-directed self-assembly of a fullerene crystal

    PubMed Central

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B.; Acharya, Rudresh; DeGrado, William F.; Kim, Yong Ho; Grigoryan, Gevorg

    2016-01-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design. PMID:27113637

  12. Patterning of conducting polymers using charged self-assembled monolayers.

    PubMed

    Jung, Mi-Hee; Lee, Hyoyoung

    2008-09-02

    We introduce a new approach to pattern conducting polymers by combining oppositely charged conducting polymers on charged self-assembled monolayers (SAMs). The polymer resist pattern behaves as a physical barrier, preventing the formation of SAMs. The patterning processes were carried out using commercially available conducting polymers: a negatively charged PEDOT/PSS (poly(3,4-ethylene-dioxythiophene)/poly(4-stylenesulphonic acid)) and a positively charged polypyrrole (PPy). A bifunctional NH 2 (positively charged) or COOH (negatively charged) terminated alkane thiol or silane was directly self-assembled on a substrate (Au or SiO 2). A suspension of the conducting polymers (PEDOT/PSS and PPy) was then spin-coated on the top surface of the SAMs and allowed to adsorb on the oppositely charged SAMs via an electrostatic driving force. After lift-off of the polymer resist, i.e., poly(methyl methacrylate, PMMA), using acetone, the conducting polymers remained on the charged SAMs surface. Optical microscopy, Auger electron spectroscopy, and atomic force microscopy reveal that the prepared nanolines have low line edge roughness and high line width resolution. Thus, conducting polymer patterns with high resolution could be produced by simply employing charged bifunctional SAMs. It is anticipated that this versatile new method can be applied to device fabrication processes of various nano- and microelectronics.

  13. Aerosol-Assisted Self-Assembly of Mesostructured Spherical Nanoparticles

    SciTech Connect

    Brinker, C.J.; Fan,; H.; Lu, Y.; Rieker, T.; Stump, A.; Ward, T.L.

    1999-03-23

    Nanostructured particles exhibiting well-defined pore sizes and pore connectivities (1-, 2-, or 3-dimensional) are of interest for catalysis, chromatography, controlled release, low dielectric constant fillers, and custom-designed pigments and optical hosts. During the last several years considerable progress has been made on controlling the macroscopic forms of mesoporous silicas prepared by surfactant and block copolymer liquid crystalline templating procedures. Typically interfacial phenomena are used to control the macroscopic form (particles, fibers, or films), while self-assembly of amphiphilic surfactants or polymers is used to control the mesostructure. To date, although a variety of spherical or nearly-spherical particles have been prepared, their extent of order is limited as is the range of attainable mesostructures. They report a rapid, aerosol process that results in solid, completely ordered spherical particles with stable hexagonal, cubic, or vesicular mesostructures. The process relies on evaporation-induced interfacial self-assembly (EISA) confined to a spherical aerosol droplet. The process is simple and generalizable to a variety of materials combinations. Additionally, it can be modified to provide the first aerosol route to the formation of ordered mesostructured films.

  14. The multiple faces of self-assembled lipidic systems

    PubMed Central

    Tresset, Guillaume

    2009-01-01

    Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled. PACS Codes: 87.14.Cc, 82.70.Uv PMID:19374753

  15. A coarse-grained model of microtubule self-assembly

    NASA Astrophysics Data System (ADS)

    Regmi, Chola; Cheng, Shengfeng

    Microtubules play critical roles in cell structures and functions. They also serve as a model system to stimulate the next-generation smart, dynamic materials. A deep understanding of their self-assembly process and biomechanical properties will not only help elucidate how microtubules perform biological functions, but also lead to exciting insight on how microtubule dynamics can be altered or even controlled for specific purposes such as suppressing the division of cancer cells. Combining all-atom molecular dynamics (MD) simulations and the essential dynamics coarse-graining method, we construct a coarse-grained (CG) model of the tubulin protein, which is the building block of microtubules. In the CG model a tubulin dimer is represented as an elastic network of CG sites, the locations of which are determined by examining the protein dynamics of the tubulin and identifying the essential dynamic domains. Atomistic MD modeling is employed to directly compute the tubulin bond energies in the surface lattice of a microtubule, which are used to parameterize the interactions between CG building blocks. The CG model is then used to study the self-assembly pathways, kinetics, dynamics, and nanomechanics of microtubules.

  16. Effect of Self-Assembled Monolayer Film Order on Nanofriction

    SciTech Connect

    Sambasivan,S.; Shieh, S.; Fischer, D.; Hsu, S.

    2006-01-01

    Self-assembled monolayers have increasingly been explored as potential protective films in devices against friction and adhesion. However, detailed characterization of the monolayer film structure is difficult. This article utilizes a combination of near edge x-ray absorption fine structure (NEXAFS) spectroscopy and Fourier transform infrared (FTIR) spectroscopy to determine the film structure in order to explain the observed nanofriction measurement results. A series of n-alkyltrichlorosilane self-assembled monolayer films with various chain lengths (C5-C30) was prepared on silicon (100) surfaces. Nanofriction measurements were conducted using an atomic force microscope. Results showed that the lowest friction was obtained with a C12 film with higher friction values observed for C5 and C30 films. To explain these observations, the x-ray absorption technique NEXAFS was used to quantitatively measure the surface molecular orientation (order) of these films. It was observed that C12, C16, and C18 films were highly ordered with a molecular orientation of the carbon backbone nearly perpendicular to the surface. C5 and C30 films were less oriented and C10 film showed partial orientation. FTIR spectra suggested that these films possessed different degrees of order. This combination of molecular orientation and order supports and confirms that nanofriction results were heavily influenced by the order and structure of these films.

  17. Stochastic lag time in nucleated linear self-assembly

    NASA Astrophysics Data System (ADS)

    Tiwari, Nitin S.; van der Schoot, Paul

    2016-06-01

    Protein aggregation is of great importance in biology, e.g., in amyloid fibrillation. The aggregation processes that occur at the cellular scale must be highly stochastic in nature because of the statistical number fluctuations that arise on account of the small system size at the cellular scale. We study the nucleated reversible self-assembly of monomeric building blocks into polymer-like aggregates using the method of kinetic Monte Carlo. Kinetic Monte Carlo, being inherently stochastic, allows us to study the impact of fluctuations on the polymerization reactions. One of the most important characteristic features in this kind of problem is the existence of a lag phase before self-assembly takes off, which is what we focus attention on. We study the associated lag time as a function of system size and kinetic pathway. We find that the leading order stochastic contribution to the lag time before polymerization commences is inversely proportional to the system volume for large-enough system size for all nine reaction pathways tested. Finite-size corrections to this do depend on the kinetic pathway.

  18. Aqueous Two Phase System Assisted Self-Assembled PLGA Microparticles

    NASA Astrophysics Data System (ADS)

    Yeredla, Nitish; Kojima, Taisuke; Yang, Yi; Takayama, Shuichi; Kanapathipillai, Mathumai

    2016-06-01

    Here, we produce poly(lactide-co-glycolide) (PLGA) based microparticles with varying morphologies, and temperature responsive properties utilizing a Pluronic F127/dextran aqueous two-phase system (ATPS) assisted self-assembly. The PLGA polymer, when emulsified in Pluronic F127/dextran ATPS, forms unique microparticle structures due to ATPS guided-self assembly. Depending on the PLGA concentration, the particles either formed a core-shell or a composite microparticle structure. The microparticles facilitate the simultaneous incorporation of both hydrophobic and hydrophilic molecules, due to their amphiphilic macromolecule composition. Further, due to the lower critical solution temperature (LCST) properties of Pluronic F127, the particles exhibit temperature responsiveness. The ATPS based microparticle formation demonstrated in this study, serves as a novel platform for PLGA/polymer based tunable micro/nano particle and polymersome development. The unique properties may be useful in applications such as theranostics, synthesis of complex structure particles, bioreaction/mineralization at the two-phase interface, and bioseparations.

  19. Precise hierarchical self-assembly of multicompartment micelles.

    PubMed

    Gröschel, André H; Schacher, Felix H; Schmalz, Holger; Borisov, Oleg V; Zhulina, Ekaterina B; Walther, Andreas; Müller, Axel H E

    2012-02-28

    Hierarchical self-assembly offers elegant and energy-efficient bottom-up strategies for the structuring of complex materials. For block copolymers, the last decade witnessed great progress in diversifying the structural complexity of solution-based assemblies into multicompartment micelles. However, a general understanding of what governs multicompartment micelle morphologies and polydispersity, and how to manipulate their hierarchical superstructures using straightforward concepts and readily accessible polymers remains unreached. Here we demonstrate how to create homogeneous multicompartment micelles with unprecedented structural control via the intermediate pre-assembly of subunits. This directed self-assembly leads to a step-wise reduction of the degree of conformational freedom and dynamics and avoids undesirable kinetic obstacles during the structure build-up. It yields a general concept for homogeneous populations of well-defined multicompartment micelles with precisely tunable patchiness, while using simple linear ABC triblock terpolymers. We further demonstrate control over the hierarchical step-growth polymerization of multicompartment micelles into micron-scale segmented supracolloidal polymers as an example of programmable mesoscale colloidal hierarchies via well-defined patchy nanoobjects.

  20. Simulation of self-assembly of polyzwitterions into vesicles

    DOE PAGES

    Mahalik, Jyoti P.; Muthukumar, Murugappan

    2016-08-19

    Using the Langevin dynamics method and a coarse-grained model, we have researched the formation of vesicles by hydrophobic polymers consisting of periodically placed zwitterion side groups in dilute salt-free aqueous solutions. The zwitterions, being permanent charge dipoles, provide long-range electrostatic correlations which are interfered by the conformational entropy of the polymer. Our simulations are geared towards gaining conceptual understanding in these correlated dipolar systems, where theoretical calculations are at present formidable. A competition between hydrophobic interactions and dipole-dipole interactions leads to a series of self-assembled structures. As the spacing d between the successive zwitterion side groups decreases, single chains undergomore » globule → disk → worm-like structures. We have calculated the Flory-Huggins χ parameter for these systems in terms of d and monitored the radius of gyration, hydrodynamic radius, spatial correlations among hydrophobic and dipole monomers, and dipole-dipole orientational correlation functions. During the subsequent stages of self-assembly, these structures lead to larger globules and vesicles as d is decreased up to a threshold value, below which no large scale morphology forms. Finally the vesicles form via a polynucleation mechanism whereby disk-like structures form first, followed by their subsequent merger.« less

  1. Simulation of self-assembly of polyzwitterions into vesicles

    SciTech Connect

    Mahalik, Jyoti P.; Muthukumar, Murugappan

    2016-08-19

    Using the Langevin dynamics method and a coarse-grained model, we have researched the formation of vesicles by hydrophobic polymers consisting of periodically placed zwitterion side groups in dilute salt-free aqueous solutions. The zwitterions, being permanent charge dipoles, provide long-range electrostatic correlations which are interfered by the conformational entropy of the polymer. Our simulations are geared towards gaining conceptual understanding in these correlated dipolar systems, where theoretical calculations are at present formidable. A competition between hydrophobic interactions and dipole-dipole interactions leads to a series of self-assembled structures. As the spacing d between the successive zwitterion side groups decreases, single chains undergo globule → disk → worm-like structures. We have calculated the Flory-Huggins χ parameter for these systems in terms of d and monitored the radius of gyration, hydrodynamic radius, spatial correlations among hydrophobic and dipole monomers, and dipole-dipole orientational correlation functions. During the subsequent stages of self-assembly, these structures lead to larger globules and vesicles as d is decreased up to a threshold value, below which no large scale morphology forms. Finally the vesicles form via a polynucleation mechanism whereby disk-like structures form first, followed by their subsequent merger.

  2. Self-assembled dummy patterns for lithography process margin enhancement

    NASA Astrophysics Data System (ADS)

    Moon, James; Nam, Byoung-Sub; Jeong, Joo-Hong; Nam, Byung-Ho; Yim, Dong Gyu

    2007-03-01

    Over the last couple of years, Design For Manufacturability (DFM) has progressed from concept to practice. What we thought then is actually applied to the design step to meet the high demand placed upon very high tech devices we make today. One of the DFM procedures that benefit the lithography process margin is generation of dummy patterns. Dummy pattern generated at design step enables stable yet high lithography process margin for many of the high technology device. But actual generation of the dummy pattern is very complex and risky for many of the layer used for memory devices. Dummy generation for simple pattern layers such as Poly or Isolation layer is not so difficult since pattern composed for these layers are usually 1 dimensional or very simple 2 dimensional patterns. But for interconnection layers that compose of complex 2 dimensional patterns, dummy pattern generation is very risky and requires lots of time and effort to safely place the dummy patterns. In this study, we propose simple self assembled dummy (SAD) generation algorithm to place dummy pattern for the complex 2 dimensional interconnection layers. This algorithm automatically self assembles dummy pattern based on the original design layout, therefore insuring the safety and simplicity of the generated dummy to the original design. Also we will evaluate SAD on interconnection layer using commercial Model Based Verification (MBV) tool to verify its applicability for both litho process margin and DFM perspective.

  3. Glycosylated Self-Assembled Monolayers for Arrays and Surface Analysis

    PubMed Central

    Cheng, Fang; Ratner, Daniel M.

    2013-01-01

    Over the past few decades, carbohydrates (glycans) have received growing attention for their many roles in biological systems, including pathogenesis, receptor-ligand interactions, and cell signaling. To unravel the biology of this important category of biomolecules, a host of new tools have been developed for glycomics investigation. At the forefront is the carbohydrate microarray, developed to immobilize functional glycans on a solid substrate to rapidly screen a variety of potential binding partners (carbohydrates, proteins, nucleic acids, cells, and viruses). The essential role played by surface modification on glycan microarray performance requires new methods to rigorously characterize glycan surface chemistries. Due to their highly reproducible nature and well-studied properties, self-assembled monolayers (SAMs) on gold are powerful models for presenting glycans on a solid substrate, engineering biomimetic microenvironments and exploring the bioactivity of immobilized carbohydrates via surface plasmon resonance (SPR). However, it can be challenging to prepare high quality glycosylated SAMs (glyco-SAMs) that retain their biological function following surface immobilization. Herein, a selection of versatile methods for the preparation of glyco-SAMs using natural and chemically modified glycans is described. This chapter will highlight the following three immobilization techniques: (1) direct self assembly using thiolated glycosides onto gold, (2) tethering aminated glycosides onto amine-reactive SAMs, and (3) conjugating natural glycan onto divinyl sulfone-activated SAMs. PMID:22057519

  4. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    Catalytically active colloids maintain non-equilibrium conditions in which they produce and deplete chemicals at their surface. While individual colloids that are symmetrically coated do not exhibit dynamical activity, the concentration fields resulting from their chemical activity decay as 1/r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a non-equilibrium analogue of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. In dilute conditions these active colloids join up to form molecules via generalized ionic bonds. Colloids are found to join up to form self-assembled molecules that could be inert or have spontaneous activity in the form of net translational velocity and spin depending on their symmetry properties and their constituents. As the interactions do not satisfy detailed-balance, it is possible to achieve structures with time dependent functionality. We study a molecule that adopts spontaneous oscillations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that posses dynamical functionalities.

  5. Compositional Inheritance: Comparison of Self-assembly and Catalysis

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Higgs, Paul G.

    2008-10-01

    Genetic inheritance in modern cells is due to template-directed replication of nucleic acids. However, the difficulty of prebiotic synthesis of long information-carrying polymers like RNA raises the question of whether some other form of heredity is possible without polymers. As an alternative, the lipid world theory has been proposed, which considers non-covalent assemblies of lipids, such as micelles and vesicles. Assemblies store information in the form of a non-random molecular composition, and this information is passed on when the assemblies divide, i.e . the assemblies show compositional inheritance. Here, we vary several important assumptions of previous lipid world models and show that compositional inheritance is relevant more generally than the context in which it was originally proposed. Our models assume that interaction occurs between nearest neighbour molecules only, and account for spatial segregation of molecules of different types within the assembly. We also draw a distinction between a self-assembly model, in which the composition is determined by mutually favourable interaction energies between the molecules, and a catalytic model, in which the composition is determined by mutually favourable catalysis. We show that compositional inheritance occurs in both models, although the self-assembly case seems more relevant if the molecules are simple lipids. In the case where the assemblies are composed of just two types of molecules, there is a strong analogy with the classic two-allele Moran model from population genetics. This highlights the parallel between compositional inheritance and genetic inheritance.

  6. Structural Diversity of Self-Assembled Iridescent Arthropod Biophotonic Nanostructures

    NASA Astrophysics Data System (ADS)

    Saranathan, Vinod Kumar; Prum, Richard O.

    2015-03-01

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, we lack precise structural knowledge of many biophotonic nanostructures and mechanisms controlling their development, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multi-functional materials. Here, we use synchrotron small angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 iridescent integumentary scales and setae from 127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply-periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered sponge-like morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.

  7. Delivery of therapeutics and molecules using self-assembled peptides.

    PubMed

    Sundar, S; Chen, Y; Tong, Y W

    2014-01-01

    The use of nanobiotechnology in the formulation of drug carriers has been gaining popularity in recent years. Peptide self-assembly technology is a particularly attractive option due to its simplicity and programmability. Selfassembling peptide amphiphiles are surfactant-like molecules that are capable of spontaneous organization into a variety of nanostructures. The structural and functional features of these nanostructures can be designed through alterations to the peptide sequence. With a keen understanding of the supramolecular principles governing the non-covalent interactions involved, drug loading strategies can be customised. Hydrophobic drugs can be hidden within the core via aromatic interactions while gene-based therapeutics can be complexed with a cationic region of lysine residues. This review article focuses on the application of self-assembling peptide amphiphiles to drug delivery in the area of anti-cancer therapeutics, protein- and peptide-based therapeutics and nucleic acid-based therapeutics. Specific examples are used to discuss the various systems available and emphasis is given to the encapsulation and release mechanism.

  8. Sequence dependent proton conduction in self-assembled peptide nanostructures.

    PubMed

    Lerner Yardeni, Jenny; Amit, Moran; Ashkenasy, Gonen; Ashkenasy, Nurit

    2016-01-28

    The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature, unprecedentedly promote proton conduction under both high and low relative humidity conditions for d,l α-cyclic peptide nanotubes. For dehydrated networks long-range order of the assemblies, induced by the aromatic side chains, is shown to be a dominating factor for promoting conductivity. However, for hydrated networks this order of effect is less significant and conductivity can be improved by the introduction of proton donating carboxylic acid peptide side chains in addition to the aromatic side chains despite the lower order of the assemblies. Based on these observations, a novel cyclic peptide that incorporates non-natural naphthyl side chains was designed. Self-assembled nanotubes of this peptide show greatly improved dehydrated conductivity, while maintaining high conductivity under hydrated conditions. We envision that the demonstrated modularity and versatility of these bio inspired nanostructures will make them extremely attractive building blocks for the fabrication of devices for energy conversion and storage applications, as well as other applications that involve proton transport, whether dry or wet conductivity is desired.

  9. Amination of surfaces via self-assembly of dopamine.

    PubMed

    Liu, Ying; Yu, Bo; Hao, Jingcheng; Zhou, Feng

    2011-10-01

    Catechols can strongly bind to a variety of substrates so as to functionalize the target surfaces by forming self-assembled monolayer. However, catecholic amine might self-oxidize and polymerize at high pH since the amine is susceptible to nucleophilic addition reaction that results in polymerized oligomers on surfaces. Therefore, the availability of amines for further derivation reaction would be restricted to a large extent. Herein, by controlling pH values to avoid self-oxidative polymerization, dopamine (DA) forms thin and surface-adherent monolayers onto a wide range of inorganic and organic materials, including mica, silica, and Au surface, allowing amination of the surfaces that resemble commercially used aminosilanization. The self-assembly process was traced by surface topography and elemental composition analysis using atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), and electrochemical characterization (electrochemical impedance spectroscopy and cyclic voltammetry measurements). Then, the aminated surfaces were used for secondary derivation reactions to create a variety of ad-layers, including patterned streptavidin through specific binding interaction with biotin and ferrocene surface via amidation reaction. The surface and interface properties of the obtained surfaces were tested by electrochemical measurements.

  10. Molecular and electronic structure of electroactive self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Méndez De Leo, Lucila P.; de la Llave, Ezequiel; Scherlis, Damián; Williams, Federico J.

    2013-03-01

    Self-assembled monolayers (SAMs) containing electroactive functional groups are excellent model systems for the formation of electronic devices by self-assembly. In particular ferrocene-terminated alkanethiol SAMs have been extensively studied in the past. However, there are still open questions related with their electronic structure including the influence of the ferrocene group in the SAM-induced work function changes of the underlying metal. We have thus carried out a thorough experimental and theoretical investigation in order to determine the molecular and electronic structure of ferrocene-terminated alkanethiol SAMs on Au surfaces. In agreement with previous studies we found that the Fc-containing alkanethiol molecules adsorb forming a thiolate bond with the Au surface with a molecular geometry 30° tilted with respect to the surface normal. Measured surface coverages indicate the formation of a compact monolayer. We found for the first time that the ferrocene group has little influence on the observed work function decrease which is largely determined by the alkanethiol. Furthermore, the ferrocene moiety lies 14 Å above the metal surface covalently bonded to the alkanethiol SAM and its HOMO is located at -1.6 eV below the Fermi level. Our results provide new valuable insight into the molecular and electronic structure of electroactive SAMs which are of fundamental importance in the field of molecular electronics.

  11. Molecular and electronic structure of electroactive self-assembled monolayers.

    PubMed

    Méndez De Leo, Lucila P; de la Llave, Ezequiel; Scherlis, Damián; Williams, Federico J

    2013-03-21

    Self-assembled monolayers (SAMs) containing electroactive functional groups are excellent model systems for the formation of electronic devices by self-assembly. In particular ferrocene-terminated alkanethiol SAMs have been extensively studied in the past. However, there are still open questions related with their electronic structure including the influence of the ferrocene group in the SAM-induced work function changes of the underlying metal. We have thus carried out a thorough experimental and theoretical investigation in order to determine the molecular and electronic structure of ferrocene-terminated alkanethiol SAMs on Au surfaces. In agreement with previous studies we found that the Fc-containing alkanethiol molecules adsorb forming a thiolate bond with the Au surface with a molecular geometry 30° tilted with respect to the surface normal. Measured surface coverages indicate the formation of a compact monolayer. We found for the first time that the ferrocene group has little influence on the observed work function decrease which is largely determined by the alkanethiol. Furthermore, the ferrocene moiety lies 14 Å above the metal surface covalently bonded to the alkanethiol SAM and its HOMO is located at -1.6 eV below the Fermi level. Our results provide new valuable insight into the molecular and electronic structure of electroactive SAMs which are of fundamental importance in the field of molecular electronics.

  12. Self-assembly processes in the prebiotic environment.

    PubMed

    Deamer, David; Singaram, Sara; Rajamani, Sudha; Kompanichenko, Vladimir; Guggenheim, Stephen

    2006-10-29

    An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals.

  13. Physical principles of filamentous protein self-assembly kinetics.

    PubMed

    Michaels, Thomas; Liu, Xiaoxuan; Meisl, Georg; Knowles, Tuomas P J

    2017-02-07

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer's and Parkinson's diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  14. Performance Enhancement of Electronic and Energy Devices via Block Copolymer Self-Assembly.

    PubMed

    Yoo, Hyeon Gyun; Byun, Myunghwan; Jeong, Chang Kyu; Lee, Keon Jae

    2015-07-15

    The use of self-assembled block copolymers (BCPs) for the fabrication of electronic and energy devices has received a tremendous amount of attention as a non-traditional approach to patterning integrated circuit elements at nanometer dimensions and densities inaccessible to traditional lithography techniques. The exquisite control over the dimensional features of the self-assembled nanostructures (i.e., shape, size, and periodicity) is one of the most attractive properties of BCP self-assembly. Harmonic spatial arrangement of the self-assembled nanoelements at desired positions on the chip may offer a new strategy for the fabrication of electronic and energy devices. Several recent reports show the great promise in using BCP self-assembly for practical applications of electronic and energy devices, leading to substantial enhancements of the device performance. Recent progress is summarized here, with regard to the performance enhancements of non-volatile memory, electrical sensor, and energy devices enabled by directed BCP self-assembly.

  15. Formation of mixed and patterned self-assembled films of alkylphosphonates on commercially pure titanium surfaces

    NASA Astrophysics Data System (ADS)

    Rudzka, Katarzyna; Sanchez Treviño, Alda Y.; Rodríguez-Valverde, Miguel A.; Cabrerizo-Vílchez, Miguel A.

    2016-12-01

    Titanium is extensively employed in biomedical devices, in particular as implant. The self-assembly of alkylphosphonates on titanium surfaces enable the specific adsorption of biomolecules to adapt the implant response against external stimuli. In this work, chemically-tailored cpTi surfaces were prepared by self-assembly of alkylphosphonate molecules. By bringing together attributes of two grafting molecules, aqueous mixtures of two alkylphosphonates were used to obtain mixed self-assembled films. Single self-assembled films were also altered by laser abrasion to produce chemically patterned cpTi surfaces. Both mixed and patterned self-assembled films were confirmed by AFM, ESEM and X-ray photoelectron spectroscopy. Water contact angle measurements also revealed the composition of the self-assembly films. Chemical functionalization with two grafting phosphonate molecules and laser surface engineering may be combined to guide the bone-like formation on cpTi, and the future biological response in the host.

  16. Biocompatible or biodegradable hyperbranched polymers: from self-assembly to cytomimetic applications.

    PubMed

    Jin, Haibao; Huang, Wei; Zhu, Xinyuan; Zhou, Yongfeng; Yan, Deyue

    2012-09-21

    Self-assembly of amphiphilic hyperbranched polymers (HBPs) is a newly emerging research area and has attracted increasing attention due to the great advantages in biomedical applications. This tutorial review focuses on the self-assembly of biocompatible or biodegradable amphiphilic HBPs and their cytomimetic applications, and specialities or advantages therein owing to the hyperbranched structure have also been summarized. As shown here, various supramolecular structures including micelles, vesicles, tubes, fibers and films have been prepared through the primary self-assembly processes. The primary self-assemblies can be further assembled into more complex structures through hierachical self-assembly processes. Besides, the hyperbranched polymer vesicles have demonstrated great potential to be used as model membranes to mimic cellular behaviors, such as fusion, fission and cell aggregation. Other biomedical applications of HBPs as well as their self-assemblies are also briefly summarized.

  17. Self-Assembled Peptide- and Protein-Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy.

    PubMed

    Abbas, Manzar; Zou, Qianli; Li, Shukun; Yan, Xuehai

    2017-03-01

    Tremendous interest in self-assembly of peptides and proteins towards functional nanomaterials has been inspired by naturally evolving self-assembly in biological construction of multiple and sophisticated protein architectures in organisms. Self-assembled peptide and protein nanoarchitectures are excellent promising candidates for facilitating biomedical applications due to their advantages of structural, mechanical, and functional diversity and high biocompability and biodegradability. Here, this review focuses on the self-assembly of peptides and proteins for fabrication of phototherapeutic nanomaterials for antitumor photodynamic and photothermal therapy, with emphasis on building blocks, non-covalent interactions, strategies, and the nanoarchitectures of self-assembly. The exciting antitumor activities achieved by these phototherapeutic nanomaterials are also discussed in-depth, along with the relationships between their specific nanoarchitectures and their unique properties, providing an increased understanding of the role of peptide and protein self-assembly in improving the efficiency of photodynamic and photothermal therapy.

  18. Anisotropic Self-Assembly of Citrate-Coated Gold Nanoparticles on Fluidic Liposomes.

    PubMed

    Sugikawa, Kouta; Kadota, Tatsuya; Yasuhara, Kazuma; Ikeda, Atsushi

    2016-03-14

    The behavior of self-assembly processes of nanoscale particles on plasma membranes can reveal mechanisms of important biofunctions and/or intractable diseases. Self-assembly of citrate-coated gold nanoparticles (cAuNPs) on liposomes was investigated. The adsorbed cAuNPs were initially fixed on the liposome surfaces and did not self-assemble below the phospholipid phase transition temperature (Tm ). In contrast, anisotropic cAuNP self-assembly was observed upon heating of the composite above the Tm, where the phospholipids became fluid. The number of self-assembled NPs is conveniently controlled by the initial mixing ratio of cAuNPs and liposomes. Gold nanoparticle protecting agents strongly affected the self-assembly process on the fluidic membrane.

  19. Ionic self-assembly for functional hierarchical nanostructured materials.

    PubMed

    Faul, Charl F J

    2014-12-16

    CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons

  20. Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures

    DTIC Science & Technology

    1991-12-01

    AD-A243 530iV1111I I II 11111 I I(/• MOLECULAR SELF-ASSEMBLY AND NANOCHEMISTRY : A CHEMICAL STRATEGY FOR THE SYNTHESIS OF NANOSTRUCTURES George M...Classfication) "Molecular Self-Assembly and Nanochemistry : A Chemistry Strategy for the Synthesis of Nanostructures." 12, PERSONAL AUTHOR(S) G.M...8217. .. .... ......... Molecular Self-Assembly and Nanochemistry : A Chemical Strategy for the Synthesis of Nanostructures George M. Whitesides, John P. Mathias

  1. Self-Assembled, Ultra-Hydrophobic Micro/Nano-Textured Surfaces

    DTIC Science & Technology

    2005-08-01

    Self-Assembled, Ultra-Hydrophobic Micro / Nano -Textured Surfaces by Adam M. Rawlett, Joshua A. Orlicki, Afia Karikari, and Tim Long ARL-TR...3547 August 2005 Self-Assembled, Ultra-Hydrophobic Micro / Nano -Textured Surfaces Adam M. Rawlett and Joshua A. Orlicki, Weapons and...AND SUBTITLE Self-Assembled, Ultra-Hydrophobic Micro / Nano -Textured Surfaces 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER AH84 5e. TASK NUMBER

  2. Self-assembly of patterned nanoparticles on cellular membranes: effect of charge distribution.

    PubMed

    Li, Ye; Zhang, Xianren; Cao, Dapeng

    2013-06-06

    Nanoparticle-assisted drug delivery has been emerging as an active research area. Achieving high drug loading is only one facet of drug delivery issues; it is also important to investigate the effect of surface charge distribution on self-assembly of nanoparticles on cellular membranes. By considering the electrostatic distribution of patterned nanoparticles, we used dissipative particle dynamics simulations to investigate the self-assembly of pattern charged nanoparticles with five different surface charged patterns. It is found that both surface charged pattern and nanoparticle size significantly affect the self-assembly of nanoparticles on cellular membranes. Results indicate that 1/2 pattern charged small nanoparticles can self-assemble into dendritic structures, while those with a 1/4 pattern self-assemble into clusters. As the nanoparticle size increases, 1/2 pattern charged medium nanoparticles can self-assemble into linear structures, while those with a 1/4 pattern self-assemble into clusters. For very large nanoparticles, both 1/2 pattern and 1/4 pattern charged nanoparticles self-assemble into flaky structures with different connections. By considering the effects of surface charged pattern and nanoparticle size on self-assembly, we found that nanoparticle self-assembly requires a minimum effective charged area. When the local charged area of nanoparticles is less than the threshold, surface charge cannot induce nanoparticle self-assembly; that is, the surface charged pattern of a nanoparticle would determine effectively the self-assembly structure. It is expected that this work will provide guidance for nanoparticle-assisted drug delivery.

  3. Real time monitoring of superparamagnetic nanoparticle self-assembly on surfaces of magnetic recording media

    SciTech Connect

    Ye, L.; Pearson, T.; Crawford, T. M.; Qi, B.; Cordeau, Y.; Mefford, O. T.

    2014-05-07

    Nanoparticle self-assembly dynamics are monitored in real-time by detecting optical diffraction from an all-nanoparticle grating as it self-assembles on a grating pattern recorded on a magnetic medium. The diffraction efficiency strongly depends on concentration, pH, and colloidal stability of nanoparticle suspensions, demonstrating the nanoparticle self-assembly process is highly tunable. This metrology could provide an alternative for detecting nanoparticle properties such as colloidal stability.

  4. Molecular dynamics simulations and electronic excited state properties of a self-assembled peptide amphiphile nanofiber with metalloporphyrin arrays.

    PubMed

    Yu, Tao; Lee, One-Sun; Schatz, George C

    2014-09-18

    We have employed molecular dynamics simulations and quantum chemistry methods to study the structures and electronic absorption properties of a novel type of photonic nanowire gel constructed by the self-assembly of peptide amphiphiles (PAs) and the chromophore-(PPIX)Zn molecules. Using molecular dynamics simulations, structures of the self-assembled fiber were determined with atomistic detail, including the distribution of chromophores along the nanofiber and the relative distances and orientations of pairs of chromophores. In addition, quantum chemistry calculations were used to determine the electronic structure and absorption properties of the chromophores in the fiber, so as to assess the capabilities of the nanofiber for photonics applications. The calculations show that the PA nanofiber provides an effective scaffold for the chromophores in which the chromophores form several clusters in which nearest neighbor chromophores are separated by less than 20 Å. The calculations also indicate that the chromophores can be in both the hydrophilic shell and hydrophobic core portions of the fiber. There are only small spectral shifts to the B-band of the porphyrins arising from the inhomogeneous microelectronic environment provided by the fiber. However, there are much stronger electronic interactions between nearby pairs of chromophores, leading to a more significant red shift of the B-band that is similar to what is found in the experiments and to significant excitonic coupling that is seen in circular dichroism spectra. This electronic interaction between chromophores associated with the PA nanofiber structure is crucial to future applications of these fibers for light-harvesting applications.

  5. Folding and self-assembly of aromatic and aliphatic urea oligomers: towards connecting structure and function.

    PubMed

    Fischer, Lucile; Guichard, Gilles

    2010-07-21

    Folding and self-assembly of biomacromolecules has inspired the development of discrete, non-natural oligomers that fold and/or self-assemble in a controlled manner. Though aromatic and aliphatic oligoamides remain unmatched for structural diversity and synthetic versatility, oligomers based on amide bond surrogates, such as urea backbones, also demonstrated a propensity for folding and self-assembly. In this Perspective, we review the advances in the design of oligomeric aromatic and aliphatic urea sequences (essentially N,N'-linked) that fold and/or self-assemble. Whenever applicable, the relationship between structure and function will be highlighted.

  6. Surface Induced nanofiber growth by self-assembly of a silk-elastin-like protein polymer.

    PubMed

    Hwang, Wonseok; Kim, Bo-Hyun; Dandu, Ramesh; Cappello, Joseph; Ghandehari, Hamidreza; Seog, Joonil

    2009-11-03

    Many synthetic and natural peptides are known to self-assemble to form various nanostructures. During the self-assembling process, environmental conditions such as salt concentration, pH, temperature, and surface characteristics play a critical role by influencing intermolecular interactions, and hence the process of self-assembly. Here we studied the self-assembly of a genetically engineered protein polymer composed of silk-like and elastin-like repeats on a mica surface. Silk-elastin-like protein polymers (SELPs) consist of tandem repeats of Gly-Ala-Gly-Ala-Gly-Ser from Bombyx mori (silkworm) and Gly-Val-Gly-Val-Pro from mammalian elastin. At a very low polymer concentration of 1 mug/mL, SELPs self-assembled into nanofibrous structures on a mica surface. Examination using atomic force microscopy (AFM) and dynamic light scattering techniques showed that SELPs self-assembled into nanofibers in the presence of the mica surface but not in the bulk state. Ionic strength had a significant influence on nanofiber growth, indicating the importance of electrostatic interactions between the polymer and the mica surface. At low ionic strength, the kinetics of nanofiber growth showed that the mica surface effectively removed a lag phase by providing nucleating sites, facilitating nanofiber self-assembly of SELPs. Furthermore, self-assembly on additional substrates such as silicon and a hydrophobic pyrolytic carbon surface revealed that the charged hydrophilic surface provides the optimal surface to facilitate self-assembly of SELPs.

  7. Functionalized expanded porphyrins

    DOEpatents

    Sessler, Jonathan L; Pantos, Patricia J

    2013-11-12

    Disclosed are functionalized expanded porphyrins that can be used as spectrometric sensors for high-valent actinide cations. The disclosed functionalized expanded porphyrins have the advantage over unfunctionalized systems in that they can be immobilized via covalent attachment to a solid support comprising an inorganic or organic polymer or other common substrates. Substrates comprising the disclosed functionalized expanded porphyrins are also disclosed. Further, disclosed are methods of making the disclosed compounds (immobilized and free), methods of using them as sensors to detect high valent actinides, devices that comprise the disclosed compounds, and kits.

  8. Soluble porphyrin polymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  9. Applications of molecular self-assembly in tissue engineering

    NASA Astrophysics Data System (ADS)

    Harrington, Daniel Anton

    This thesis studied the application of three self-assembling molecular systems, as potential biomaterials for tissue engineering applications. Cholesteryl-(L-lactic acid)n molecules form thermotropic liquid crystals, which could be coated onto the inner and outer pores of biodegradable PLLA scaffolds, while retaining the lamellar order of the neat material. Primary bovine chondrocytes were cultured on these structures, demonstrating improved attachment and extended retention of phenotype on the C-LA-coated scaffolds. No difference in fibronectin adsorption to C-LA and PLLA surfaces was observed, suggesting a strong role for cholesterol in influencing cell phenotype. A family of peptide-amphiphiles, bearing the "RGD" adhesion sequence from fibronectin, was also assessed in the contexts of cartilage and bladder repair. These molecules self-assemble into one-dimensional fibers, with diameters of 6--8 nm, and lengths of 500 nm or greater. Chondrocytes were seeded and cultured on covalently-crosslinked PA gels and embedded within calcium-triggered PA gels. Cells became dormant over time, but remained viable, suggesting an inappropriate display of the adhesion sequence to cells. A family of "branched" PA molecules with lysine dendron headgroups was designed, in an effort to increase the spatial separation between molecules in the assembled state, and to theoretically improve epitope accessibility. These molecules coated reliably onto PGA fiber scaffolds, and dramatically increased the attachment of human bladder smooth muscle cells, possibly through better epitope display or electrostatic attraction. They also formed strong gels with several negatively-charged biologically-relevant macromolecules. In a third system, amphiphilic segmented dendrimers based on phenylene vinylene and L-lysine entered cells through an endocytic pathway with no discernible toxic effect on cell proliferation or morphology. These amphiphiles formed complex aggregates in aqueous solution, likely

  10. Molecular engineering and characterization of self-assembled biorecognition surfaces

    NASA Astrophysics Data System (ADS)

    Pan, Sheng

    The development of molecular engineering techniques for the fabrication of biomaterial surfaces is of importance in the field of biomaterials. It offers opportunities for better understanding of biological processes on material surfaces and rational design of contemporary biomaterials. Our work in this area aims to develop novel engineering strategies to design biorecognition surfaces via self-assembly and surface derivatization. Fundamental issues regarding self-assembled monolayer (SAM) structure, formation kinetics, and chemical derivatization were investigated systematically using electron spectroscopy for chemical analysis (ESCA), time-of-flight secondary ion mass spectrometry (TOF-SIMS), infrared reflection absorption spectroscopy (IRAS), atomic force microscopy (AFM), and contact angle measurements. Novel engineering concepts based on multifunctionality and statistical pattern matching were introduced and applied to develop biomimetic surfaces. Our study illustrated that molecules underwent structural transition and orientation development during self-assembly formation, from a disordered, low-density, more liquid-like structure to a highly ordered, closed-packed crystalline-like structure. Surface properties, such as wettability and the reactivity of outermost functional groups can be related to film structure, packing density, as well as molecular orientation. Given the order and organization of SAMs, the accessibility and reactivity of the outermost functional groups, reaction kinetics, stoichiometry, and SAMs stability were studied systematically by surface derivatization of trifluoroacetic anhydride (TFAA). The TFAA derivatization reactions exhibited rapid kinetics on the hydroxyl-terminated SAMs. The data from complementary surface analytical techniques consistently indicated a nearly complete surface reaction. Biomimetic surfaces were made by random immobilization of amino acid of arginine (R), glycine (G), and aspartic acid (D) on well-defined SAMs

  11. Crops: a green approach toward self-assembled soft materials.

    PubMed

    Vemula, Praveen Kumar; John, George

    2008-06-01

    To date, a wide range of industrial materials such as solvents, fuels, synthetic fibers, and chemical products are being manufactured from petroleum resources. However, rapid depletion of fossil and petroleum resources is encouraging current and future chemists to orient their research toward designing safer chemicals, products, and processes from renewable feedstock with an increased awareness of environmental and industrial impact. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally known as the biorefinery concept. The swift integration of crop-based materials synthesis and biorefinery manufacturing technologies offers the potential for new advances in sustainable energy alternatives and biomaterials that will lead to a new manufacturing paradigm. This Account presents a novel and emerging concept of generating various forms of soft materials from crops (an alternate feedstock). In future research, developing biobased soft materials will be a fascinating yet demanding practice, which will have direct impact on industrial applications as an economically viable alternative. Here we discuss some remarkable examples of glycolipids generated from industrial byproducts such as cashew nut shell liquid, which upon self-assembly produced soft nanoarchitectures including lipid nanotubes, twisted/helical nanofibers, low-molecular-weight gels, and liquid crystals. Synthetic methods applied to a "chiral pool" of carbohydrates using the selectivity of enzyme catalysis yield amphiphilic products derived from biobased feedstock including amygdalin, trehalose, and vitamin C. This has been achieved with a lipase-mediated regioselective synthetic procedure to obtain such amphiphiles in quantitative yields. Amygdalin amphiphiles showed unique gelation behavior in a broad range of solvents such as nonpolar hexanes to polar aqueous solutions

  12. Electrochemical Properties of Organosilane Self Assembled Monolayers on Aluminum 2024

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Calle, Luz Marina

    2004-01-01

    Self assembled monolayers are commonly used to modify surfaces. Within the last 15 years, self assembled monolayers have been investigated as a way to protect from corrosion[1,2] or biofouling.[3] In this study, self assembled monolayers of decitriethoxysilane (C10H21Si(OC2H5)3) and octadecyltriethoxysilane (C18H37Si(OC2H5)3) were formed on aluminum 2024-T3. The modified surfaces and bare Al 2024 were characterized by dynamic water contact angle measurements, x-ray photoelectron spectroscopy (XIPS) and infrared spectroscopy. Electrochemical impedance spectroscopy (EIS) in 0.5 M NaCl was used to characterize the monolayers and evaluate their corrosion protection properties. The advancing water contact angle and infrared measurements show that the mono layers form a surface where the hydrocarbon chains are packed and oriented away from the surface, consistent with what is found in similar systems. The contact angle hysteresis measured in these systems is relatively large, perhaps indicating that the hydrocarbon chains are not as well packed as monolayers formed on other substrates. The results of the EIS measurements were modeled using a Randle's circuit modified by changing the capacitor to a constant phase element. The constant phase element values were found to characterize the monolayer. The capacitance of the monolayer modified surface starts lower than the bare Al 2024, but approaches values similar to the bare Al 2024 within 24 hours as the monolayer is degraded. The n values found for bare Al 2024 quickly approach the value of a true capacitor and are greater than 0.9 within hours after the start of exposure. For the monolayer modified structure, n can stay lower than 0.9 for a longer period of time. In fact, n for the monolayer modified surfaces is different from the bare surface even after the capacitance values have converged. This indicates that the deviation from ideal capacitance is the most sensitive indicator of the presence of the monolayer.

  13. From self-assembly fundamental knowledge to nanomedicine developments.

    PubMed

    Monduzzi, Maura; Lampis, Sandrina; Murgia, Sergio; Salis, Andrea

    2014-03-01

    This review highlights the key role of NMR techniques in demonstrating the molecular aspects of the self-assembly of surfactant molecules that nowadays constitute the basic knowledge which modern nanoscience relies on. The aim is to provide a tutorial overview. The story of a rigorous scientific approach to understand self-assembly in surfactant systems and biological membranes starts in the early seventies when the progresses of SAXRD and NMR technological facilities allowed to demonstrate the existence of ordered soft matter, and the validity of Tanford approach concerning self-assembly at a molecular level. Particularly, NMR quadrupolar splittings, NMR chemical shift anisotropy, and NMR relaxation of dipolar and quadrupolar nuclei in micellar solutions, microemulsions, and liquid crystals proved the existence of an ordered polar-apolar interface, on the NMR time scale. NMR data, rationalized in terms of the two-step model of relaxation, allowed to quantify the dynamic aspects of the supramolecular aggregates in different soft matter systems. In addition, NMR techniques allowed to obtain important information on counterion binding as well as on size of the aggregate through molecular self-diffusion. Indeed NMR self-diffusion proved without any doubt the existence of bicontinuous microemulsions and bicontinuous cubic liquid crystals, suggested by pioneering and brilliant interpretation of SAXRD investigations. Moreover, NMR self-diffusion played a fundamental role in the understanding of microemulsion and emulsion nanostructures, phase transitions in phase diagrams, and particularly percolation phenomena in microemulsions. Since the nineties, globalization of the knowledge along with many other technical facilities such as electron microscopy, particularly cryo-EM, produced huge progresses in surfactant and colloid science. Actually we refer to nanoscience: bottom up/top down strategies allow to build nanodevices with applications spanning from ICT to food

  14. Controlled self-assembly in homopolymer and diblock copolymer

    NASA Astrophysics Data System (ADS)

    Zhuang, Lei

    This thesis work studies the process, mechanism and control of self-assembly in homopolymers and diblock copolymers. These studies are aimed at finding novel patterning methods that can lead to low cost lithography technologies capable of creating micrometer to nanometer patterns over a large area. We first present a new phenomenon called Lithographically-Induced Self-Assembly (LISA) that can create ordered arrays of pillars in a homopolymer film with a mask placed close to its surface. We demonstrate that the shape, size and morphology of the ordered pillar arrays can be controlled with a patterned mask. A model is developed based on the instability in a fluidic film induced by the Coulomb force from charge accumulation in the polymer film and the mask. Experimental results are shown to support the model. We also investigate the behavior of defects that destroy the ordering of the LISA array and propose ways to prevent them. This self-assembly phenomenon is used as a patterning technique to define the active area of an organic light emitting diode (OLED). The device shows significantly improved lifetime due to the restriction of defect growth. Another patterning technology that is closely related to LISA, Lithographically-Induced Self-Construction (LISC), is also introduced. LISC can form mesas of polymer from the initial thin film and they inherit the shape and size of the mask patterns. A model based on the dynamics of LISA pillar formation and mass conservation is presented and provides a guideline for choosing LISC process parameters. In the final part of the thesis, we study a technique to control the orientation of diblock copolymer phase separation in a thin film by applying a pressure on the film through a flat mask. The result is a well-ordered grating pattern of the phase separation with a period of tens of nanometers. The effect of pressure and film thickness on the final pattern is investigated by experiments. We suggest that the increased ordering is

  15. Multichromophoric dye-sensitized solar cells based on supramolecular zinc-porphyrin···perylene-imide dyads.

    PubMed

    Panda, Dillip K; Goodson, Flynt S; Ray, Shuvasree; Lowell, Rachel; Saha, Sourav

    2012-09-11

    Multichromophoric dye-sensitized solar cells (DSCs) based on self-assembled zinc-porphyrin···peryleneimide dyads on TiO(2) films display more efficient light-to-electrical energy conversion than DSCs based on individual dyes. Higher efficiency of multichromophoric dyes can be attributed to co-sensitization as well as vectorial electron transfer that lead to better electron-hole separation in the device.

  16. Supramolecular amplification of amyloid self-assembly by iodination

    NASA Astrophysics Data System (ADS)

    Bertolani, Arianna; Pirrie, Lisa; Stefan, Loic; Houbenov, Nikolay; Haataja, Johannes S.; Catalano, Luca; Terraneo, Giancarlo; Giancane, Gabriele; Valli, Ludovico; Milani, Roberto; Ikkala, Olli; Resnati, Giuseppe; Metrangolo, Pierangelo

    2015-06-01

    Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure together. On the other hand, the halogen bond has never been used purposefully to achieve control over amyloid self-assembly. Here we show that single atom replacement of hydrogen with iodine, a halogen-bond donor, in the human calcitonin-derived amyloidogenic fragment DFNKF results in a super-gelator peptide, which forms a strong and shape-persistent hydrogel at 30-fold lower concentration than the wild-type pentapeptide. This is remarkable for such a modest perturbation in structure. Iodination of aromatic amino acids may thus develop as a general strategy for the design of new hydrogels from unprotected peptides and without using organic solvents.

  17. Entropic control of particle sizes during viral self-assembly

    NASA Astrophysics Data System (ADS)

    Castelnovo, M.; Muriaux, D.; Faivre-Moskalenko, C.

    2013-03-01

    Morphologic diversity is observed across all families of viruses. However, these supra-molecular assemblies are produced most of the time in a spontaneous way through complex molecular self-assembly scenarios. The modeling of these phenomena remains a challenging problem within the emerging field of physical virology. We present in this work a theoretical analysis aiming at highlighting the particular role of configuration entropy in the control of viral particle size distribution. Specializing this model to retroviruses such as HIV-1, we predict a new mechanism of entropic control of both RNA uptake into the viral particle and of the particle's size distribution. Evidence of this peculiar behavior has recently been reported experimentally.

  18. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher

  19. Self-assembled tunable photonic hyper-crystals.

    PubMed

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  20. Self-assembly of Ionic Chromonic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Sidky, Hythem; Whitmer, Jonathan K.

    Chromonic liquid crystals exhibit a unique self-assembly process which is of both theoretical and practical interest. A characteristic feature of chromonics is the occurrence of molecular association through stacking at extremely low concentrations. Experimental evidence has suggested that this process is approximately isodesmic across a broad concentration range. To date, only a handful of computational studies have managed to reproduce crucial aspects of chromonic phases, using expensive atomistic simulations. Here, we present a minimal model capable of capturing key features of the lyotropic chromonic phase. Molecular simulations of coarse-grained mesogens are used to map out the phase behavior and explore how structural and energetic anisotropies influence their ordering and response.

  1. Self-assembled hydrogels utilizing polymer-nanoparticle interactions

    NASA Astrophysics Data System (ADS)

    Appel, Eric A.; Tibbitt, Mark W.; Webber, Matthew J.; Mattix, Bradley A.; Veiseh, Omid; Langer, Robert

    2015-02-01

    Mouldable hydrogels that flow on applied stress and rapidly self-heal are increasingly utilized as they afford minimally invasive delivery and conformal application. Here we report a new paradigm for the fabrication of self-assembled hydrogels with shear-thinning and self-healing properties employing rationally engineered polymer-nanoparticle (NP) interactions. Biopolymer derivatives are linked together by selective adsorption to NPs. The transient and reversible interactions between biopolymers and NPs enable flow under applied shear stress, followed by rapid self-healing when the stress is relaxed. We develop a physical description of polymer-NP gel formation that is utilized to design biocompatible gels for drug delivery. Owing to the hierarchical structure of the gel, both hydrophilic and hydrophobic drugs can be entrapped and delivered with differential release profiles, both in vitro and in vivo. The work introduces a facile and generalizable class of mouldable hydrogels amenable to a range of biomedical and industrial applications.

  2. Self-Assembled PbSe Nanowire:Perovskite Hybrids.

    PubMed

    Yang, Zhenyu; Yassitepe, Emre; Voznyy, Oleksandr; Janmohamed, Alyf; Lan, Xinzheng; Levina, Larissa; Comin, Riccardo; Sargent, Edward H

    2015-12-02

    Inorganic semiconductor nanowires are of interest in nano- and microscale photonic and electronic applications. Here we report the formation of PbSe nanowires based on directional quantum dot alignment and fusion regulated by hybrid organic-inorganic perovskite surface ligands. All material synthesis is carried out at mild temperatures. Passivation of PbSe quantum dots was achieved via a new perovskite ligand exchange. Subsequent in situ ammonium/amine substitution by butylamine enables quantum dots to be capped by butylammonium lead iodide, and this further drives the formation of a PbSe nanowire superlattice in a two-dimensional (2D) perovskite matrix. The average spacing between two adjacent nanowires agrees well with the thickness of single atomic layer of 2D perovskite, consistent with the formation of a new self-assembled semiconductor nanowire:perovskite heterocrystal hybrid.

  3. Folding and self-assembly of a small protein complex

    PubMed Central

    Sieradzan, Adam K.; Liwo, Adam; Hansmann, Ulrich H.E.

    2012-01-01

    The synthetic homotetrameric ββα (BBAT1) protein possesses a stable quaternary structure with a ββα fold. Because of its small size (a total of 84 residues), the homotetramer is an excellent model system with which to study the self-assembly and protein-protein interactions. We find from replica exchange molecular dynamics simulations with the coarse-grain UNRES force field that the folding and association pathway consists of three well-separated steps, where that association to a tetramer precedes and facilitates folding of the four chains. At room temperature the tetramer exists in an ensemble of diverse structures. The crystal structure becomes energetically favored only when the molecule is put in a dense and crystal-like environment. The observed picture of folding promoted by association may mirror the mechanism according to which intrinsically unfolded proteins assume their functional structure. PMID:24039552

  4. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    PubMed Central

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-01-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10−15 cm2 s−1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value. PMID:26227342

  5. Controlling the photoconductivity: Graphene oxide and polyaniline self assembled intercalation

    SciTech Connect

    Vempati, Sesha; Ozcan, Sefika; Uyar, Tamer

    2015-02-02

    We report on controlling the optoelectronic properties of self-assembled intercalating compound of graphene oxide (GO) and HCl doped polyaniline (PANI). Optical emission and X-ray diffraction studies revealed a secondary doping phenomenon of PANI with –OH and –COOH groups of GO, which essentially arbitrate the intercalation. A control on the polarity and the magnitude of the photoresponse (PR) is harnessed by manipulating the weight ratios of PANI to GO (viz., 1:1.5 and 1:2.2 are abbreviated as PG1.5 and PG2.2, respectively), where ±PR = 100(R{sub Dark} – R{sub UV-Vis})/R{sub Dark} and R corresponds to the resistance of the device in dark or UV-Vis illumination. To be precise, the PR from GO, PANI, PG1.5, and PG2.2 are +34%, −111%, −51%, and +58%, respectively.

  6. A self assembled monolayer based microfluidic sensor for urea detection

    NASA Astrophysics Data System (ADS)

    Srivastava, Saurabh; Solanki, Pratima R.; Kaushik, Ajeet; Ali, Md. Azahar; Srivastava, Anchal; Malhotra, B. D.

    2011-07-01

    Urease (Urs) and glutamate dehydrogenase (GLDH) have been covalently co-immobilized onto a self-assembled monolayer (SAM) comprising of 10-carboxy-1-decanthiol (CDT) via EDC-NHS chemistry deposited onto one of the two patterned gold (Au) electrodes for estimation of urea using poly(dimethylsiloxane) based microfluidic channels (2 cm × 200 μm × 200 μm). The CDT/Au and Urs-GLDH/CDT/Au electrodes have been characterized using Fourier transform infrared (FTIR) spectroscopy, contact angle (CA), atomic force microscopy (AFM) and electrochemical cyclic voltammetry (CV) techniques. The electrochemical response measurement of a Urs-GLDH/CDT/Au bioelectrode obtained as a function of urea concentration using CV yield linearity as 10 to 100 mg dl-1, detection limit as 9 mg dl-1 and high sensitivity as 7.5 μA mM-1 cm-2.

  7. Self-assembled fibre optoelectronics with discrete translational symmetry

    PubMed Central

    Rein, Michael; Levy, Etgar; Gumennik, Alexander; Abouraddy, Ayman F.; Joannopoulos, John; Fink, Yoel

    2016-01-01

    Fibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ∼104 self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout. PMID:27698454

  8. Engineering self-assembled bioreactors from protein microcompartments

    SciTech Connect

    Savage, David

    2016-10-12

    The goals of this research are to understand how organisms such as bacteria segregate certain metabolic processes inside of specific structures, or “microcompartments,” in the cell and apply this knowledge to develop novel engineered microcompartments for use in nanotechnology and metabolic engineering. For example, in some bacteria, self-assembling protein microcompartments called carboxysomes encapsulate the enzymes involved in carbon fixation, enabling the cell to utilize carbon dioxide more effectively than if the enzymes were free in the cell. The proposed research will determine how structures such as carboxysomes assemble and function in bacteria and develop a means for creating novel, synthetic microcompartments for optimizing production of specific energy-rich compounds.

  9. Multistep kinetic self-assembly of DNA-coated colloids

    NASA Astrophysics Data System (ADS)

    di Michele, Lorenzo; Varrato, Francesco; Kotar, Jurij; Nathan, Simon H.; Foffi, Giuseppe; Eiser, Erika

    2013-06-01

    Equilibrium self-assembly relies on the relaxation of disordered mixtures of building blocks towards an ordered ground state. The main drawback of this traditional approach lies in the kinetic traps that often interrupt the progression of the system towards equilibrium and lead to the formation of arrested phases. The latest techniques to control colloidal interactions open up the possibility of exploiting the tendency to dynamically arrest in order to construct amorphous materials with a specific morphology and local separation between multiple components. Here we propose strategies to direct the gelation of two-component colloidal mixtures by sequentially activating selective interactions. We investigate morphological changes in the structure of the arrested phases both by means of molecular dynamics simulations and experimentally by using DNA-coated colloids. Our approach can be exploited to assemble multicomponent mesoporous materials with possible applications in hybrid photovoltaics, photonics and drug delivery.

  10. A self-assembling lanthanide molecular nanoparticle for optical imaging†

    PubMed Central

    Brown, Katherine A.; Yang, Xiaoping; Schipper, Desmond; Hall, Justin W.; DePue, Lauren J.; Gnanam, Annie J.; Arambula, Jonathan F.; Jones, Jessica N.; Swaminathan, Jagannath; Dieye, Yakhya; Vadivelu, Jamuna; Chandler, Don J.; Marcotte, Edward M.; Sessler, Jonathan L.; Ehrlich, Lauren I. R.; Jones, Richard A.

    2015-01-01

    Chromophores that incorporate f-block elements have considerable potential for use in bioimaging applications because of their advantageous photophysical properties compared to organic dye, which are currently widely used. We are developing new classes of lanthanide-based self-assembling molecular nanoparticles as reporters for imaging and as multi-functional nanoprobes or nanosensors for use with biological samples. One class of these materials, which we call lanthanide “nano-drums”, are homogeneous 4d–4f clusters approximately 25 to 30 Å in diameter. These are capable of emitting from the visible to near-infrared wavelengths. Here, we present the synthesis, crystal structure, photophysical properties and comparative cytotoxicity data for a 32 metal Eu-Cd nano-drum [Eu8Cd24L12(OAc)48] (1). We also explored the imaging capabilities of this nano-drum using epifluorescence, TIRF, and two-photon microscopy platforms. PMID:25512085

  11. Sculpting sandcastles grain by grain: self-assembled sand towers.

    PubMed

    Pacheco-Vázquez, F; Moreau, F; Vandewalle, N; Dorbolo, S

    2012-11-01

    We study the spontaneous formation of granular towers produced when dry sand is poured on a wet sand bed. When the liquid content of the bed exceeds a threshold value W*, the impacting grains have a nonzero probability to stick on the wet grains due to instantaneous liquid bridges created during the impact. The trapped grains become wet by the capillary ascension of water and the process continues, giving rise to stable narrow towers. The growth velocity is determined by the surface liquid content which decreases exponentially as the tower height augments. This self-assembly mechanism (only observed in the funicular and capillary regimes) could theoretically last while the capillary rise of water is possible; however, the structure collapses before reaching this limit. The collapse occurs when the weight of the tower surpasses the cohesive stress at its base. The cohesive stress increases as the liquid content of the bed is reduced. Consequently, the highest towers are found just above W*.

  12. Controlled doping by self-assembled dendrimer-like macromolecules

    PubMed Central

    Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping

    2017-01-01

    Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm−3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon. PMID:28145485

  13. A self-assembled metamaterial for Lamb waves

    NASA Astrophysics Data System (ADS)

    Khanolkar, A.; Wallen, S.; Abi Ghanem, M.; Jenks, J.; Vogel, N.; Boechler, N.

    2015-08-01

    We report the design and characterization of a self-assembled, locally resonant acoustic metamaterial for Lamb waves, composed of a monolayer of 1.02 μm polystyrene microspheres adhered to a 1.27 μm thick free-standing silicon membrane. A laser-induced transient grating technique is used to generate Lamb waves in the metamaterial and to measure its acoustic response. The measurements reveal a microsphere contact resonance and the lowest frequency spheroidal microsphere resonance. The measured dispersion curves show hybridization of flexural Lamb waves with the microsphere contact resonance. We compare the measured dispersion with an analytical model using the contact resonance frequency as a single fitting parameter, and find that it well describes the observed hybridization. This study may lead to an improved understanding of microscale contact mechanics and to the design of new types of acoustic metamaterials.

  14. Controlled doping by self-assembled dendrimer-like macromolecules

    NASA Astrophysics Data System (ADS)

    Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping

    2017-02-01

    Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 1017 cm‑3. Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.

  15. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers

    NASA Astrophysics Data System (ADS)

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-01

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10-15 cm2 s-1, 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  16. Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers.

    PubMed

    Guan, Bin; Siampour, Hamidreza; Fan, Zhao; Wang, Shun; Kong, Xiang Yang; Mesli, Abdelmadjid; Zhang, Jian; Dan, Yaping

    2015-07-31

    This Report presents a nitrogen-doping method by chemically forming self-assembled monolayers on silicon. Van der Pauw technique, secondary-ion mass spectroscopy and low temperature Hall effect measurements are employed to characterize the nitrogen dopants. The experimental data show that the diffusion coefficient of nitrogen dopants is 3.66 × 10(-15) cm(2) s(-1), 2 orders magnitude lower than that of phosphorus dopants in silicon. It is found that less than 1% of nitrogen dopants exhibit electrical activity. The analysis of Hall effect data at low temperatures indicates that the donor energy level for nitrogen dopants is located at 189 meV below the conduction band, consistent with the literature value.

  17. Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides

    DOE PAGES

    Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; ...

    2014-06-19

    Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the designmore » and utility of functional materials based on peptides.« less

  18. Self-assembled fibre optoelectronics with discrete translational symmetry.

    PubMed

    Rein, Michael; Levy, Etgar; Gumennik, Alexander; Abouraddy, Ayman F; Joannopoulos, John; Fink, Yoel

    2016-10-04

    Fibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ∼10(4) self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout.

  19. Self-assembly of beta-casein and lysozyme.

    PubMed

    Pan, Xiaoyun; Yu, Shaoyong; Yao, Ping; Shao, Zhengzhong

    2007-12-15

    The self-assembly of beta-casein and lysozyme, a linear and a globular protein with isoelectric point of pH 5.0 and 10.7, respectively, was studied. Polydisperse electrostatic complex micelles formed when mixing beta-casein and lysozyme aqueous solutions. After the micelle solution was heated, lysozyme gelated and beta-casein was trapped in the gel, producing narrowly dispersed nanoparticles. The nanoparticles were characterized with laser light scattering, zeta-potential, steady state fluorescence, atomic force microscopy, and transmission electron microscopy. The nanoparticles have spherical shape and their sizes depend on the pH of the heat treatment and the molar ratio of beta-casein to lysozyme. The nanoparticles display amphoteric property and are relatively hydrophobic at pH around 5 and around 10. The net charges on the surface stabilize the nanoparticles in the solution.

  20. Three-Dimensional Structures Self-Assembled from DNA Bricks

    NASA Astrophysics Data System (ADS)

    Ke, Yonggang; Ong, Luvena L.; Shih, William M.; Yin, Peng

    2012-11-01

    We describe a simple and robust method to construct complex three-dimensional (3D) structures by using short synthetic DNA strands that we call “DNA bricks.” In one-step annealing reactions, bricks with hundreds of distinct sequences self-assemble into prescribed 3D shapes. Each 32-nucleotide brick is a modular component; it binds to four local neighbors and can be removed or added independently. Each 8-base pair interaction between bricks defines a voxel with dimensions of 2.5 by 2.5 by 2.7 nanometers, and a master brick collection defines a “molecular canvas” with dimensions of 10 by 10 by 10 voxels. By selecting subsets of bricks from this canvas, we constructed a panel of 102 distinct shapes exhibiting sophisticated surface features, as well as intricate interior cavities and tunnels.

  1. Smart drug delivery nanocarriers with self-assembled DNA nanostructures.

    PubMed

    Li, Jiang; Fan, Chunhai; Pei, Hao; Shi, Jiye; Huang, Qing

    2013-08-27

    Self-assembled DNA nanostructures have emerged as a type of nano-biomaterials with precise structures, versatile functions and numerous applications. One particularly promising application of these DNA nanostructures is to develop universal nanocarriers for smart and targeted drug delivery. DNA is the genetic material in nature, and inherently biocompatible. Nevertheless, cell membranes are barely permeable to naked DNA molecules, either single- or double- stranded; transport across the cell membrane is only possible with the assistance of transfection agents. Interestingly, recent studies revealed that many DNA nanostructures could readily go into cells with high cell uptake efficiency. In this Progress Report, we will review recent advances on using various DNA nanostructures, e.g., DNA nanotubes, DNA tetrahedra, and DNA origami nanorobot, as drug delivery nanocarriers, and demonstrate several examples aiming at therapeutic applications with CpG-based immunostimulatory and siRNA-based gene silencing oligonucleotides.

  2. Using Markov state models to study self-assembly

    PubMed Central

    Perkett, Matthew R.; Hagan, Michael F.

    2014-01-01

    Markov state models (MSMs) have been demonstrated to be a powerful method for computationally studying intramolecular processes such as protein folding and macromolecular conformational changes. In this article, we present a new approach to construct MSMs that is applicable to modeling a broad class of multi-molecular assembly reactions. Distinct structures formed during assembly are distinguished by their undirected graphs, which are defined by strong subunit interactions. Spatial inhomogeneities of free subunits are accounted for using a recently developed Gaussian-based signature. Simplifications to this state identification are also investigated. The feasibility of this approach is demonstrated on two different coarse-grained models for virus self-assembly. We find good agreement between the dynamics predicted by the MSMs and long, unbiased simulations, and that the MSMs can reduce overall simulation time by orders of magnitude. PMID:24907984

  3. Self-assembled fibre optoelectronics with discrete translational symmetry

    NASA Astrophysics Data System (ADS)

    Rein, Michael; Levy, Etgar; Gumennik, Alexander; Abouraddy, Ayman F.; Joannopoulos, John; Fink, Yoel

    2016-10-01

    Fibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ~104 self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout.

  4. Poly(ethylene glycol) self-assembled monolayer island growth.

    PubMed

    Rundqvist, Jonas; Hoh, Jan H; Haviland, David B

    2005-03-29

    Here, we report a study of the morphology and growth dynamics of a self-assembled monolayer (SAM) of the amide containing poly(ethylene glycol) (PEG) thiol (CH3O(CH2CH2O)17NHCO(CH2)2SH) on atomically flat Au(111) surfaces. SAM growth from a 20 muM ethanolic solution reveals island growth through three distinct steps: island nucleation, island growth, and coalescence. The coalescence-step, filling voids in the SAM, is by far slowest. The fine structure study reveals dendritic island formation, an observation which can be explained by attractive intermolecular interactions and surface diffusion-limited aggregation. We have also observed a change in the island height, which peaks during the island growth phase. This height change can be associated with a molecular conformational transition.

  5. Guided self-assembly of integrated hollow Bragg waveguides

    NASA Astrophysics Data System (ADS)

    Decorby, R. G.; Ponnampalam, N.; Nguyen, H. T.; Pai, M. M.; Clement, T. J.

    2007-04-01

    We describe the fabrication of integrated hollow waveguides through guided self-assembly of straight-sided, thin film delamination buckles within a multilayer system of chalcogenide glass and polymer. The process is based on silver photodoping, which was used to control both the stress and adhesion of the chalcogenide glass films. Straight, curved, crossing, and tapered microchannels were realized in parallel. The channels are cladded by omnidirectional dielectric reflectors designed for low-loss, air-core guiding of light in the 1550-1700 nm wavelength range. Loss as low as ~15 dB/cm was measured for channels of height ~2.5 μm, in good agreement with both an analytical ray optics model and finite difference numerical simulations. The loss is determined mainly by the reflectivity of the cladding mirrors, which is ~0.995 for the as-fabricated devices.

  6. Protein machines and self assembly in muscle organization

    NASA Technical Reports Server (NTRS)

    Barral, J. M.; Epstein, H. F.

    1999-01-01

    The remarkable order of striated muscle is the result of a complex series of protein interactions at different levels of organization. Within muscle, the thick filament and its major protein myosin are classical examples of functioning protein machines. Our understanding of the structure and assembly of thick filaments and their organization into the regular arrays of the A-band has recently been enhanced by the application of biochemical, genetic, and structural approaches. Detailed studies of the thick filament backbone have shown that the myosins are organized into a tubular structure. Additional protein machines and specific myosin rod sequences have been identified that play significant roles in thick filament structure, assembly, and organization. These include intrinsic filament components, cross-linking molecules of the M-band and constituents of the membrane-cytoskeleton system. Muscle organization is directed by the multistep actions of protein machines that take advantage of well-established self-assembly relationships. Copyright 1999 John Wiley & Sons, Inc.

  7. Magnetism induced by the organization of self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Carmeli, I.; Leitus, G.; Naaman, R.; Reich, S.; Vager, Z.

    2003-06-01

    Unique occurrence of magnetism is shown, in which magnetism appears ex nihilo, when organic molecules are self-assembled as monolayers on gold substrate. The molecules as well as the substrate, when they stand alone, are diamagnetic. Using a superconducting quantum interference device type magnetometer we obtained direct evidence that close-packed organized thio-organic films adsorbed on gold substrates possess magnetic properties at room temperature. The films studied show very high specific magnetization, up to many tens Bohr magnetons per adsorbed molecule, with a very small hysteresis. It is highly anisotropic and shows almost no temperature dependence. The magnetism observed is related to charge transfer between the organic layer and the metal substrate. Yet, the uniqueness here is that many spins are polarized per adsorbed molecules. The magnetic effect is related to the two dimensional organization of the organic molecules on the metal substrate which might explain the high anisotropy.

  8. Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides

    SciTech Connect

    Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; Spoerke, Erik D.

    2014-06-19

    Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the design and utility of functional materials based on peptides.

  9. Peptide Self-Assembly for Crafting Functional Biological Materials

    PubMed Central

    Matson, John B.; Zha, R. Helen; Stupp, Samuel I.

    2011-01-01

    Self-assembling, peptide-based scaffolds are frontrunners in the search for biomaterials with widespread impact in regenerative medicine. The inherent biocompatibility and cell signaling capabilities of peptides, in combination with control of secondary structure, has led to the development of a broad range of functional materials with potential for many novel therapies. More recently, membranes formed through complexation of peptide nanostructures with natural biopolymers have led to the development of hierarchically-structured constructs with potentially far-reaching applications in biology and medicine. In this review, we highlight recent advances in peptide-based gels and membranes, including work from our group and others. Specifically, we discuss the application of peptide-based materials in the regeneration of bone and enamel, cartilage, and the central nervous system, as well as the transplantation of islets, wound-healing, cardiovascular therapies, and treatment of erectile dysfunction after prostatectomy PMID:22125413

  10. Mechanism for Rapid Self-Assembly of Block Copolymer Nanoparticles

    NASA Astrophysics Data System (ADS)

    Johnson, Brian K.; Prud'Homme, Robert K.

    2003-09-01

    Amphiphilic block copolymers in solution spontaneously self-assemble when the solvent quality for one block is selectively decreased. We demonstrate that, for supersaturation ratio changes [d(S)/dt] over 105 per second from equilibrium, nanoparticles are obtained with a formation mechanism and size dependent on the jumping rate and magnitude. The threshold rate for homogeneous precipitation is determined by the induction time of a particle, equivalent to the diffusion limited fusion of copolymer chains to form a corona of overlapping soluble brushes. Via determination of the induction time with a novel confined impinging jets mixer and use of a scaling relation, the interfacial free energy of a block copolymer nanoparticle was measured for the first time.

  11. Self-assembled ultrathin nanotubes on diamond (100) surface.

    PubMed

    Lu, Shaohua; Wang, Yanchao; Liu, Hanyu; Miao, Mao-sheng; Ma, Yanming

    2014-04-16

    Surfaces of semiconductors are crucially important for electronics, especially when the devices are reduced to the nanoscale. However, surface structures are often elusive, impeding greatly the engineering of devices. Here we develop an efficient method that can automatically explore the surface structures using structure swarm intelligence. Its application to a simple diamond (100) surface reveals an unexpected surface reconstruction featuring self-assembled carbon nanotubes arrays. Such a surface is energetically competitive with the known dimer structure under normal conditions, but it becomes more favourable under a small compressive strain or at high temperatures. The intriguing covalent bonding between neighbouring tubes creates a unique feature of carrier kinetics (that is, one dimensionality of hole states, while two dimensionality of electron states) that could lead to novel design of superior electronics. Our findings highlight that the surface plays vital roles in the fabrication of nanodevices by being a functional part of them.

  12. A self-assembly pathway to aligned monodomain gels

    SciTech Connect

    Zhang, Shuming; Greenfield, Megan A.; Mata, Alvaro; Palmer, Liam C.; Bitton, Ronit; Mantei, Jason R.; Aparicio, Conrado; Olvera de la Cruz, Monica; Stupp, Samuel I.

    2010-09-27

    Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications.

  13. A self-assembly pathway to aligned monodomain gels

    SciTech Connect

    Zhang, Shuming; Greenfield, Megan A.; Mata, Alvaro; Palmer, Liam C.; Bitton, Ronit; Mantei, Jason R.; Aparicio, Conrado; Olvera de la Cruz, Monica; Stupp, Samuel I.

    2010-06-13

    Aggregates of charged amphiphilic molecules have been found to access a structure at elevated temperature that templates alignment of supramolecular fibrils over macroscopic scales. The thermal pathway leads to a lamellar plaque structure with fibrous texture that breaks on cooling into large arrays of aligned nanoscale fibres and forms a strongly birefringent liquid. By manually dragging this liquid crystal from a pipette onto salty media, it is possible to extend this alignment over centimetres in noodle-shaped viscoelastic strings. Using this approach, the solution of supramolecular filaments can be mixed with cells at physiological temperatures to form monodomain gels of aligned cells and filaments. The nature of the self-assembly process and its biocompatibility would allow formation of cellular wires in situ that have any length and customized peptide compositions for use in biological applications.

  14. Femtosecond light-induced macromolecular self-assembly

    NASA Astrophysics Data System (ADS)

    Rebane, Aleksander; Mikhaylov, Alexander

    2016-09-01

    We report femtosecond light-induced macromolecular self-assembly (FLIMSA), which is observed when a high peak intensity femtosecond laser beam propagates through aqueous solution of pseudoisocyanine iodide (PIC) J-aggregates and induces the formation of 0.1 - 1.0 mm-size tube-like structure surrounding the laser beam, while at the same time allowing the beam to continue propagating without obstruction or scattering. The FLIMSA material is morphologically heterogeneous and gel-like and is formed at the margins rather than at the center of the beam. As a potential explanation of this effect we assume that the FLIMSA is induced by the high photon flux gradient characteristic of the femtosecond laser beam periphery. This hypothesis is corroborated by control experiments, where J-aggregate samples were illuminated with nanosecond laser sources with a varying pulse duration, power- and beam shape characteristics, but where no FLIMSA formation was observed.

  15. Self-assembled tunable photonic hyper-crystals

    PubMed Central

    Smolyaninova, Vera N.; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E.; Smolyaninov, Igor I.

    2014-01-01

    We demonstrate a novel artificial optical material, the “photonic hyper-crystal”, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947

  16. Aqueous Gemini Surfactant Self-Assembly into Complex Lyotropic Phases

    NASA Astrophysics Data System (ADS)

    Mahanthappa, Mahesh; Sorenson, Gregory

    2012-02-01

    In spite of the potentially wide-ranging applications of aqueous bicontinuous lyotropic liquid crystals (LLCs), the discovery of amphiphiles that reliably form these non-constant mean curvature morphologies over large phase windows remains largely serendipitous. Recent work has established that cationic gemini surfactants exhibit a pronounced tendency to form bicontinuous cubic (e.g. gyroid) phases as compared to their parent single-tail amphiphiles. The universality of this phenomenon in other surfactant systems remains untested. In this paper, we will report the aqueous LLC phase behavior of a new class of anionic gemini surfactants derived from long chain carboxylic acids. Our studies show that these new surfactants favor the formation of non-constant mean curvature gyroid and primitive (``Plumber's Nightmare'') structures over amphiphile concentration windows up to 20 wt% wide. Based on these observations, we will discuss insights gained into the delicate force balance governing the self-assembly of these surfactants into aqueous bicontinuous LLCs.

  17. Controlled doping by self-assembled dendrimer-like macromolecules.

    PubMed

    Wu, Haigang; Guan, Bin; Sun, Yingri; Zhu, Yiping; Dan, Yaping

    2017-02-01

    Doping via self-assembled macromolecules might offer a solution for developing single atom electronics by precisely placing individual dopants at arbitrary location to meet the requirement for circuit design. Here we synthesize dendrimer-like polyglycerol macromolecules with each carrying one phosphorus atom in the core. The macromolecules are immobilized by the coupling reagent onto silicon surfaces that are pre-modified with a monolayer of undecylenic acid. Nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) are employed to characterize the synthesized macromolecules and the modified silicon surfaces, respectively. After rapid thermal annealing, the phosphorus atoms carried by the macromolecules diffuse into the silicon substrate, forming dopants at a concentration of 10(17) cm(-3). Low-temperature Hall effect measurements reveal that the ionization process is rather complicated. Unlike the widely reported simple ionization of phosphorus dopants, nitrogen and carbon are also involved in the electronic activities in the monolayer doped silicon.

  18. Self-Assembled Biomolecular Materials Confined on Lithographic Surfaces

    NASA Astrophysics Data System (ADS)

    Pfohl, Thomas; Kim, Joon Heon; Case, Ryan; Li, Youli; Safinya, Cyrus R.

    2000-03-01

    Lithographically patterned Si-surfaces with different geometries (linear and circular channels) are used for confining and orienting assemblies of biomacromolecules. In order to direct the self assembly, the surfaces are coated with thin organic layers to change the hydrophobicity and surface charge. Droplet casting, spin coating and microinjection are used to fill the channels with biomaterials. In particular, the use of the microinjection technique allows us to control the formation of biomolecular assemblies for highly oriented x-ray samples as well as to fill single channels (width < 5μm) with dilute solutions for single molecule investigations. Biomaterials based on tubulin are our primary interest. We use fluorescence, confocal, and polarization microscopy to observe the polymerization of microtubules from tubulin and the formation of tubulin-cationic lipid complexes. Supported by NSF DMR-9972246, University of California Biotech Research, and Education Program Training Grant 99-14, DFG Pf 375/1-1.

  19. Supramolecular self-assembly of conjugated diblock copolymers.

    SciTech Connect

    Wang, H.; You, W.; Jiang, P.; Yu, L.; Wang, H. H.; Univ. of Chicago

    2004-02-20

    This paper describes the synthesis and characterization of a novel series of copolymers with different lengths of oligo(phenylene vinylene) (OPV) as the rod block, and poly(propylene oxide) as the coil block. Detailed characterization by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and small-angle neutron scattering (SANS) revealed the strong tendency of these copolymers to self-assemble into cylindrical micelles in solution and as-casted films on a nanometer scale. These micelles have a cylindrical OPV core surrounded by a poly(propylene glycol) (PPG) corona and readily align with each other to form parallel packed structures when mica is used as the substrate. A packing model has been proposed for these cylindrical micelles.

  20. Molecular wires self-assembled on a graphite surface.

    PubMed

    Riemann, Andreas; Nelson, Brittany

    2009-04-21

    We report a scanning tunneling microscopy study of the amino acid l-methionine on highly ordered pyrolytic graphite deposited under ambient conditions. Our experiments demonstrate the ability of l-methionine to form highly regular structures on the surface of the graphite template. By means of self-assembly, the amino acid arranges itself into an array of molecular wires, i.e., well-ordered stripes of uniform width and separation. The spacing of these wires can be controlled with the deposition amount of the amino acid, whereas the width stays constant. The width of the wires is determined by two methionine molecules arranged with their carboxyl group facing each other. The regular separation of individual wires suggest a long-range interaction among them. Molecular mechanics calculations are used to compare the experimental results with a basic model for the methionine configuration on the surface. A model for the adsorption geometry of methionine on graphite is presented.

  1. Self-Assembled Enzyme Nanoparticles for Carbon Dioxide Capture.

    PubMed

    Shanbhag, Bhuvana Kamath; Liu, Boyin; Fu, Jing; Haritos, Victoria S; He, Lizhong

    2016-05-11

    Enzyme-based processes have shown promise as a sustainable alternative to amine-based processes for carbon dioxide capture. In this work, we have engineered carbonic anhydrase nanoparticles that retain 98% of hydratase activity in comparison to their free counterparts. Carbonic anhydrase was fused with a self-assembling peptide that facilitates the noncovalent assembly of the particle and together were recombinantly expressed from a single gene construct in Escherichia coli. The purified enzymes, when subjected to a reduced pH, form 50-200 nm nanoparticles. The CO2 capture capability of enzyme nanoparticles was demonstrated at ambient (22 ± 2 °C) and higher (50 °C) temperatures, under which the nanoparticles maintain their assembled state. The carrier-free enzymatic nanoparticles demonstrated here offer a new approach to stabilize and reuse enzymes in a simple and cost-effective manner.

  2. Self-assembly of tetrahedral plasmonic nanoclusters for optical metafluids

    NASA Astrophysics Data System (ADS)

    Schade, Nicholas; Manoharan, Vinothan

    2015-03-01

    We direct the assembly of clusters of gold nanospheres that behave as nanoscale electromagnetic resonators. We use spherical gold nanoparticles that are exceptionally smooth, monocrystalline, and monodisperse. These particles exhibit highly reproducible scattering spectra compared with gold colloids that are available commercially. We mix these positively charged particles with negatively charged dielectric particles. The gold particles stick to the dielectric particles permanently and randomly in a process that can be modeled mathematically as ``random parking,'' a type of non-equilibrium self-assembly. By controlling the particles' sizes, stoichiometry, and interactions, we maximize the yield of tetrahedral clusters, the ideal structures for isotropic metamaterials. We measure the optical properties of these structures with dark-field spectroscopy to characterize their suitability as building blocks for a bulk, isotropic, optical metafluid.

  3. Supramolecular amplification of amyloid self-assembly by iodination

    PubMed Central

    Bertolani, Arianna; Pirrie, Lisa; Stefan, Loic; Houbenov, Nikolay; Haataja, Johannes S.; Catalano, Luca; Terraneo, Giancarlo; Giancane, Gabriele; Valli, Ludovico; Milani, Roberto; Ikkala, Olli; Resnati, Giuseppe; Metrangolo, Pierangelo

    2015-01-01

    Amyloid supramolecular assemblies have found widespread exploitation as ordered nanomaterials in a range of applications from materials science to biotechnology. New strategies are, however, required for understanding and promoting mature fibril formation from simple monomer motifs through easy and scalable processes. Noncovalent interactions are key to forming and holding the amyloid structure together. On the other hand, the halogen bond has never been used purposefully to achieve control over amyloid self-assembly. Here we show that single atom replacement of hydrogen with iodine, a halogen-bond donor, in the human calcitonin-derived amyloidogenic fragment DFNKF results in a super-gelator peptide, which forms a strong and shape-persistent hydrogel at 30-fold lower concentration than the wild-type pentapeptide. This is remarkable for such a modest perturbation in structure. Iodination of aromatic amino acids may thus develop as a general strategy for the design of new hydrogels from unprotected peptides and without using organic solvents. PMID:26123690

  4. Sequence dependent proton conduction in self-assembled peptide nanostructures

    NASA Astrophysics Data System (ADS)

    Lerner Yardeni, Jenny; Amit, Moran; Ashkenasy, Gonen; Ashkenasy, Nurit

    2016-01-01

    The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature, unprecedentedly promote proton conduction under both high and low relative humidity conditions for d,l α-cyclic peptide nanotubes. For dehydrated networks long-range order of the assemblies, induced by the aromatic side chains, is shown to be a dominating factor for promoting conductivity. However, for hydrated networks this order of effect is less significant and conductivity can be improved by the introduction of proton donating carboxylic acid peptide side chains in addition to the aromatic side chains despite the lower order of the assemblies. Based on these observations, a novel cyclic peptide that incorporates non-natural naphthyl side chains was designed. Self-assembled nanotubes of this peptide show greatly improved dehydrated conductivity, while maintaining high conductivity under hydrated conditions. We envision that the demonstrated modularity and versatility of these bio inspired nanostructures will make them extremely attractive building blocks for the fabrication of devices for energy conversion and storage applications, as well as other applications that involve proton transport, whether dry or wet conductivity is desired.The advancement of diverse electrochemistry technologies depends on the development of novel proton conducting polymers. Inspired by the efficacy of proton transport through proteins, we show in this work that self-assembling peptide nanostructures may be a promising alternative for such organic proton conducting materials. We demonstrate that aromatic amino acids, which participate in charge transport in nature

  5. Fulleropeptide esters as potential self-assembled antioxidants

    PubMed Central

    Kop, Tatjana J; Đorđević, Jelena

    2015-01-01

    Summary The potential use of amphiphilic fullerene derivatives as a bionanomaterial was investigated by cyclic voltammetry (CV), scanning electron microscopy (SEM), and the ferrous ion oxidation–xylenol orange (FOX) method. Despite the disrupted delocalization of the π-electronic system over the C60 sphere, its antioxidant capacity remained high for all twelve derivatives. The compounds expressed up to two-fold and 5–12-fold better peroxide quenching capacity as compared to pristine C60 and standard antioxidant vitamin C, respectively. During precipitation and slow evaporation of the solvent, all compounds underwent spontaneous self-assembly giving ordered structures. The size and morphology of the resulting particles depend primarily on the sample concentration, and somewhat on the side chain structure. PMID:26171283

  6. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.; McClendon, Mark; Koltonow, Andrew R.; Samuel, Amanda P. S.; Kiebala, Derek J.; Wasielewski, Michael R.; Stupp, Samuel I.

    2014-11-01

    Integration into a soft material of all the molecular components necessary to generate storable fuels is an interesting target in supramolecular chemistry. The concept is inspired by the internal structure of photosynthetic organelles, such as plant chloroplasts, which colocalize molecules involved in light absorption, charge transport and catalysis to create chemical bonds using light energy. We report here on the light-driven production of hydrogen inside a hydrogel scaffold built by the supramolecular self-assembly of a perylene monoimide amphiphile. The charged ribbons formed can electrostatically attract a nickel-based catalyst, and electrolyte screening promotes gelation. We found the emergent phenomenon that screening by the catalyst or the electrolytes led to two-dimensional crystallization of the chromophore assemblies and enhanced the electronic coupling among the molecules. Photocatalytic production of hydrogen is observed in the three-dimensional environment of the hydrogel scaffold and the material is easily placed on surfaces or in the pores of solid supports.

  7. Self-assembled ultrathin nanotubes on diamond (100) surface

    NASA Astrophysics Data System (ADS)

    Lu, Shaohua; Wang, Yanchao; Liu, Hanyu; Miao, Mao-Sheng; Ma, Yanming

    2014-04-01

    Surfaces of semiconductors are crucially important for electronics, especially when the devices are reduced to the nanoscale. However, surface structures are often elusive, impeding greatly the engineering of devices. Here we develop an efficient method that can automatically explore the surface structures using structure swarm intelligence. Its application to a simple diamond (100) surface reveals an unexpected surface reconstruction featuring self-assembled carbon nanotubes arrays. Such a surface is energetically competitive with the known dimer structure under normal conditions, but it becomes more favourable under a small compressive strain or at high temperatures. The intriguing covalent bonding between neighbouring tubes creates a unique feature of carrier kinetics (that is, one dimensionality of hole states, while two dimensionality of electron states) that could lead to novel design of superior electronics. Our findings highlight that the surface plays vital roles in the fabrication of nanodevices by being a functional part of them.

  8. Synergistic self-assembly of RNA and DNA molecules

    NASA Astrophysics Data System (ADS)

    Ko, Seung Hyeon; Su, Min; Zhang, Chuan; Ribbe, Alexander E.; Jiang, Wen; Mao, Chengde

    2010-12-01

    DNA has recently been used as a programmable 'smart' building block for the assembly of a wide range of nanostructures. It remains difficult, however, to construct DNA assemblies that are also functional. Incorporating RNA is a promising strategy to circumvent this issue as RNA is structurally related to DNA but exhibits rich chemical, structural and functional diversities. However, only a few examples of rationally designed RNA structures have been reported. Herein, we describe a simple, general strategy for the de novo design of nanostructures in which the self-assembly of RNA strands is programmed by DNA strands. To demonstrate the versatility of this approach, we have designed and constructed three different RNA-DNA hybrid branched nanomotifs (tiles), which readily assemble into one-dimensional nanofibres, extended two-dimensional arrays and a discrete three-dimensional object. The current strategy could enable the integration of the precise programmability of DNA with the rich functionality of RNA.

  9. Self assembled silicon nanowire Schottky junction assisted by collagen

    NASA Astrophysics Data System (ADS)

    Stievenard, Didier; Sahli, Billel; Coffinier, Yannick; Boukherroub, Rabah; Melnyk, Oleg

    2008-03-01

    We present results on self assembled silicon nanowire Schottky junction assisted by collagen fibrous. The collagen is the principle protein of connective human tissues. It presents the double interest to be a low cost biological material with the possibility to be combed as the DNA molecule. First, the collagen was combed on OTS modified surface with gold electrodes. Second, silicon nanowires were grown on silicon substrate by CVD of silane gas (SiH4) at high temperature (500 C) using a vapor-liquid-solid (VLS) process and gold particles as catalysts. In order to increase electrostatic interaction between the collagen and the nanowires, these latters were chemically modified by mercaptopropylmethoxysilane (MPTS), then chemically oxidized. Therefore, the nanowires were transferred from their substrate into water and a drop of it deposited on the surface. Nanowires are only bound to collagen and in particular, in electrode gaps. The formation of spontaneous Schotkty junction is demonstrated by current-voltage characteristics.

  10. Construction of energy transfer pathways self-assembled from DNA-templated stacks of anthracene.

    PubMed

    Iwaura, Rika; Yui, Hiroharu; Someya, Yuu; Ohnishi-Kameyama, Mayumi

    2014-01-05

    We describe optical properties of anthracene stacks formed from single-component self-assembly of thymidylic acid-appended anthracene 2,6-bis[5-(3'-thymidylic acid)pentyloxy] anthracene (TACT) and the binary self-assembly of TACT and complementary 20-meric oligoadenylic acid (TACT/dA20) in an aqueous buffer. UV-Vis and emission spectra for the single-component self-assembly of TACT and the binary self-assembly of TACT/dA20 were very consistent with stacked acene moieties in both self-assemblies. Interestingly, time-resolved fluorescence spectra from anthracene stacks exhibited very different features of the single-component and binary self-assemblies. In the single-component self-assembly of TACT, a dynamic Stokes shift (DSS) and relatively short fluorescence lifetime (τ=0.35ns) observed at around 450nm suggested that the anthracene moieties were flexible. Moreover, a broad emission at 530nm suggested the formation of an excited dimer (excimer). In the binary self-assembly of TACT/dA20, we detected a broad, red-shifted emission component at 534nm with a lifetime (τ=0.4ns) shorter than that observed in the TACT single-component self-assembly. Combining these results with the emission spectrum of the binary self-assembly of TACT/5'-HEX dA20, we concluded that the energy transfer pathway was constructed by columnar anthracene stacks formed from the DNA-templated self-assembly of TACT.

  11. Initiation of Chondrocyte Self-Assembly Requires an Intact Cytoskeletal Network

    PubMed Central

    Lee, Jennifer K.; Hu, Jerry C.Y.

    2016-01-01

    Self-assembly and self-organization have recently emerged as robust scaffold-free tissue engineering methodologies that can be used to generate various tissues, including cartilage, vessel, and liver. Self-assembly, in particular, is a scaffold-free platform for tissue engineering that does not require the input of exogenous energy to the system. Although self-assembly can generate functional tissues, most notably neocartilage, the mechanisms of self-assembly remain unclear. To study the self-assembling process, we used articular chondrocytes as a model to identify parameters that can affect this process. Specifically, the roles of cell–cell and cell–matrix adhesion molecules, surface-bound collagen, and the actin cytoskeletal network were investigated. Using time-lapse imaging, we analyzed the early stages of chondrocyte self-assembly. Within hours, chondrocytes rapidly coalesced into cell clusters before compacting to form tight cellular structures. Chondrocyte self-assembly was found to depend primarily on integrin function and secondarily on cadherin function. In addition, actin or myosin II inhibitors prevented chondrocyte self-assembly, suggesting that cell adhesion alone is not sufficient, but rather the active contractile actin cytoskeleton is essential for proper chondrocyte self-assembly and the formation of neocartilage. Better understanding of the self-assembly mechanisms allows for the rational modulation of this process toward generating neocartilages with improved properties. These findings are germane to understanding self-assembly, an emerging platform for tissue engineering of a plethora of tissues, especially as these neotissues are poised for translation. PMID:26729374

  12. Computationally designed peptides for self-assembly of nanostructured lattices

    PubMed Central

    Zhang, Huixi Violet; Polzer, Frank; Haider, Michael J.; Tian, Yu; Villegas, Jose A.; Kiick, Kristi L.; Pochan, Darrin J.; Saven, Jeffery G.

    2016-01-01

    Folded peptides present complex exterior surfaces specified by their amino acid sequences, and the control of these surfaces offers high-precision routes to self-assembling materials. The complexity of peptide structure and the subtlety of noncovalent interactions make the design of predetermined nanostructures difficult. Computational methods can facilitate this design and are used here to determine 29-residue peptides that form tetrahelical bundles that, in turn, serve as building blocks for lattice-forming materials. Four distinct assemblies were engineered. Peptide bundle exterior amino acids were designed in the context of three different interbundle lattices in addition to one design to produce bundles isolated in solution. Solution assembly produced three different types of lattice-forming materials that exhibited varying degrees of agreement with the chosen lattices used in the design of each sequence. Transmission electron microscopy revealed the nanostructure of the sheetlike nanomaterials. In contrast, the peptide sequence designed to form isolated, soluble, tetrameric bundles remained dispersed and did not form any higher-order assembled nanostructure. Small-angle neutron scattering confirmed the formation of soluble bundles with the designed size. In the lattice-forming nanostructures, the solution assembly process is robust with respect to variation of solution conditions (pH and temperature) and covalent modification of the computationally designed peptides. Solution conditions can be used to control micrometer-scale morphology of the assemblies. The findings illustrate that, with careful control of molecular structure and solution conditions, a single peptide motif can be versatile enough to yield a wide range of self-assembled lattice morphologies across many length scales (1 to 1000 nm). PMID:27626071

  13. Self-assembled ordered carbon-nanotube arrays and membranes.

    SciTech Connect

    Overmyer, Donald L.; Siegal, Michael P.; Yelton, William Graham

    2004-11-01

    Imagine free-standing flexible membranes with highly-aligned arrays of carbon nanotubes (CNTs) running through their thickness. Perhaps with both ends of the CNTs open for highly controlled nanofiltration? Or CNTs at heights uniformly above a polymer membrane for a flexible array of nanoelectrodes or field-emitters? How about CNT films with incredible amounts of accessible surface area for analyte adsorption? These self-assembled crystalline nanotubes consist of multiple layers of graphene sheets rolled into concentric cylinders. Tube diameters (3-300 nm), inner-bore diameters (2-15 nm), and lengths (nanometers - microns) are controlled to tailor physical, mechanical, and chemical properties. We proposed to explore growth and characterize nanotube arrays to help determine their exciting functionality for Sandia applications. Thermal chemical vapor deposition growth in a furnace nucleates from a metal catalyst. Ordered arrays grow using templates from self-assembled hexagonal arrays of nanopores in anodized-aluminum oxide. Polymeric-binders can mechanically hold the CNTs in place for polishing, lift-off, and membrane formation. The stiffness, electrical and thermal conductivities of CNTs make them ideally suited for a wide-variety of possible applications. Large-area, highly-accessible gas-adsorbing carbon surfaces, superb cold-cathode field-emission, and unique nanoscale geometries can lead to advanced microsensors using analyte adsorption, arrays of functionalized nanoelectrodes for enhanced electrochemical detection of biological/explosive compounds, or mass-ionizers for gas-phase detection. Materials studies involving membrane formation may lead to exciting breakthroughs in nanofiltration/nanochromatography for the separation of chemical and biological agents. With controlled nanofilter sizes, ultrafiltration will be viable to separate and preconcentrate viruses and many strains of bacteria for 'down-stream' analysis.

  14. Dynamic self-assembly in living systems as computation.

    SciTech Connect

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    2004-06-01

    Biochemical reactions taking place in living systems that map different inputs to specific outputs are intuitively recognized as performing information processing. Conventional wisdom distinguishes such proteins, whose primary function is to transfer and process information, from proteins that perform the vast majority of the construction, maintenance, and actuation tasks of the cell (assembling and disassembling macromolecular structures, producing movement, and synthesizing and degrading molecules). In this paper, we examine the computing capabilities of biological processes in the context of the formal model of computing known as the random access machine (RAM) [Dewdney AK (1993) The New Turing Omnibus. Computer Science Press, New York], which is equivalent to a Turing machine [Minsky ML (1967) Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, NJ]. When viewed from the RAM perspective, we observe that many of these dynamic self-assembly processes - synthesis, degradation, assembly, movement - do carry out computational operations. We also show that the same computing model is applicable at other hierarchical levels of biological systems (e.g., cellular or organism networks as well as molecular networks). We present stochastic simulations of idealized protein networks designed explicitly to carry out a numeric calculation. We explore the reliability of such computations and discuss error-correction strategies (algorithms) employed by living systems. Finally, we discuss some real examples of dynamic self-assembly processes that occur in living systems, and describe the RAM computer programs they implement. Thus, by viewing the processes of living systems from the RAM perspective, a far greater fraction of these processes can be understood as computing than has been previously recognized.

  15. Plasmonic and Superconducting Self-Assembled MBE Grown Indium Islands

    NASA Astrophysics Data System (ADS)

    Gibson, Ricky Dean, Jr.

    Molecular beam epitaxy (MBE) grown metal has been a renewed area of interest recently in order to achieve high quality metal films or nanostructures for plasmonics. Recently MBE grown silver films have been shown to possess optical constants closer to that of intrinsic silver leading to lower losses and thus allowing for higher quality plasmonics. MBE has also been used to grow silver nanocrystals and indium droplets, or islands, for plasmonics. These self-assembled nanostructures can be grown in close proximity to quantum confined structures such as InAs/GaAs quantum dots or InGaAs/GaAs quantum wells in a single process, without post-processing and fabrication, allowing for increased plasmonic enhancement due to the improved interface between the semiconductor and plasmonic structures. In this dissertation, widely tunable plasmonic resonances of indium islands will be discussed and plasmonic enhancement results will be presented and compared to those of nanoantennas constructed from standard fabrication processes. The coupling between near-surface quantum confined structures, both fabricated and self-assembled, will be compared to the coupling in typical dielectric cavities, such as photonic crystal nanobeams. Beyond the plasmonic possibilities of indium islands, indium becomes superconducting at 3.4 K. With the proximity effect allowing for electrons in materials in contact with a superconductor to occupy a superconducting like state, allowing for the possibility for a hybrid superconductor/semiconductor optical source. The observation of superconductivity in indium islands will be presented and considerations for a superconductor/semiconductor source will be discussed.

  16. Origami Inspired Self-assembly of Patterned and Reconfigurable Particles

    PubMed Central

    Pandey, Shivendra; Gultepe, Evin; Gracias, David H.

    2013-01-01

    There are numerous techniques such as photolithography, electron-beam lithography and soft-lithography that can be used to precisely pattern two dimensional (2D) structures. These technologies are mature, offer high precision and many of them can be implemented in a high-throughput manner. We leverage the advantages of planar lithography and combine them with self-folding methods1-20 wherein physical forces derived from surface tension or residual stress, are used to curve or fold planar structures into three dimensional (3D) structures. In doing so, we make it possible to mass produce precisely patterned static and reconfigurable particles that are challenging to synthesize. In this paper, we detail visualized experimental protocols to create patterned particles, notably, (a) permanently bonded, hollow, polyhedra that self-assemble and self-seal due to the minimization of surface energy of liquefied hinges21-23 and (b) grippers that self-fold due to residual stress powered hinges24,25. The specific protocol described can be used to create particles with overall sizes ranging from the micrometer to the centimeter length scales. Further, arbitrary patterns can be defined on the surfaces of the particles of importance in colloidal science, electronics, optics and medicine. More generally, the concept of self-assembling mechanically rigid particles with self-sealing hinges is applicable, with some process modifications, to the creation of particles at even smaller, 100 nm length scales22, 26 and with a range of materials including metals21, semiconductors9 and polymers27. With respect to residual stress powered actuation of reconfigurable grasping devices, our specific protocol utilizes chromium hinges of relevance to devices with sizes ranging from 100 μm to 2.5 mm. However, more generally, the concept of such tether-free residual stress powered actuation can be used with alternate high-stress materials such as heteroepitaxially deposited semiconductor films5,7 to

  17. Guided self-assembly of nanostructured titanium oxide

    NASA Astrophysics Data System (ADS)

    Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D.; Yu, Yingda

    2012-02-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiOx nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiOx nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiOx nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiOx nanorods with rough surfaces are formed by the self-assembly of TiOx nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiOx nanorods shows stronger ER properties than that of the other nanostructured TiOx particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.

  18. Thermodynamics and structure of self-assembled networks

    NASA Astrophysics Data System (ADS)

    Zilman, A. G.; Safran, S. A.

    2002-11-01

    We study a generic model of self-assembling chains that can branch and form networks with branching points (junctions) of arbitrary functionality. The physical realizations include physical gels, wormlike micelles, dipolar fluids, and microemulsions. The model maps the partition function of a solution of branched, self-assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin components. As for the calculation of thermodynamic properties as well as the scattering structure factor, the mapping rigorously accounts for all possible cluster configurations, except for closed rings. The model is solved in the mean-field approximation. It is found that despite the absence of any specific interaction between the chains, the presence of the junctions induces an effective attraction between the monomers, which in the case of threefold junctions leads to a first-order reentrant phase separation between a dilute phase consisting mainly of single chains, and a dense network, or two network phases. The model is then modified to predict the structural properties at the mean-field level. Independent of the phase separation, we predict a percolation (connectivity) transition at which an infinite network is formed. The percolation transition partially overlaps with the first-order transition, and is a continuous, nonthermodynamic transition that describes a change in the topology of the system. Our treatment that predicts both the thermodynamic phase equilibria as well as the spatial correlations in the system allows us to treat both the phase separation and the percolation threshold within the same framework. The density-density correlation has the usual Ornstein-Zernicke form at low monomer densities. At higher densities, a peak emerges in the structure factor, signifying the onset of medium-range order in the system. Implications of the results for different physical systems are discussed.

  19. Self-assembled platinum nanochains based on octreotide acetate

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoning; Gao, Dawei; Gao, Faming; Li, Na; Zhou, Jing; Hao, Jikui

    2013-09-01

    Biological scaffolds are used for the synthesis of inorganic materials due to their ability to self-assemble and nucleate crystal formation. We reported a facile method for preparing self-assembled Pt nanochains by using octreotide acetate (AOC) as bio-template in aqueous environment. The influence of solution pH was examined to define the optimal conditions for the formation of the AOC bio-templated Pt nanoparticles (PtNPs) arrays, the AOC has diameter about 55 nm at pH 2.0, for comparison, at pH 9.0, the diameter of AOC is about 25 nm. After 24-h incubation of AOC (pH 2.0) with PtCl4 and chemical reduction with borane-dimethyl-amine, uniform platinum nanoparticles (mean diameter 2.5 ± 0.5 nm) directed by AOC were formed. Preliminary characterizations of the synthesized PtNPs were performed using transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and selected area of electron diffraction. The cytotoxicity of Pt/octreotide acetate complexes (PtNPs-AOC) and AOC was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The results indicated that the antiproliferative effect of PtNPs-AOC is as high as AOC. In addition, the nano-design architecture of the Pt particles plays a crucial role in a strong enhancement of the biological efficiency of radiations, making PtNPs-AOC a promising material for anticancer drug delivery in the future.

  20. Self-assembly of Janus cylinders into hierarchical superstructures.

    PubMed

    Walther, Andreas; Drechsler, Markus; Rosenfeldt, Sabine; Harnau, Ludger; Ballauff, Matthias; Abetz, Volker; Müller, Axel H E

    2009-04-08

    We present in-depth studies of the size tunability and the self-assembly behavior of Janus cylinders possessing a phase segregation into two hemicylinders. The cylinders are prepared by cross-linking the lamella-cylinder morphology of a polystyrene-block-polybutadiene-block-poly(methyl methacrylate) block terpolymer. The length of the Janus cylinders can be adjusted by both the amplitude and the duration of a sonication treatment from the micro- to the nanometer length. The corona segregation into a biphasic particle is evidenced by selective staining of the PS domains with RuO(4) and subsequent imaging. The self-assembly behavior of these facial amphiphiles on different length scales is investigated combining dynamic light scattering (DLS), small-angle neutron scattering (SANS), and imaging procedures. Cryogenic transmission electron microscopy images of the Janus cylinders in THF, which is a good solvent for both blocks, exhibit unimolecularly dissolved Janus cylinders with a core-corona structure. These results are corroborated by SANS measurements. Supramolecular aggregation takes place in acetone, which is a nonsolvent for polystyrene, leading to the observation of fiber-like aggregates. The length of these fibers depends on the concentration of the solution. A critical aggregation concentration is found, under which unimolecularly dissolved Janus cylinders exist. The fibers are composed of 2-4 Janus cylinders, shielding the inner insoluble polystyrene hemicylinder against the solvent. Herein, the SANS data reveal a core-shell structure of the aggregates. Upon deposition of the Janus cylinders from more concentrated solution, a second type of superstructure is formed on a significantly larger length scale. The Janus cylinders form fibrillar networks, in which the pore size depends on the concentration and deposition time of the sample.

  1. Self-assembling hybrid diamond-biological quantum devices

    NASA Astrophysics Data System (ADS)

    Albrecht, A.; Koplovitz, G.; Retzker, A.; Jelezko, F.; Yochelis, S.; Porath, D.; Nevo, Y.; Shoseyov, O.; Paltiel, Y.; Plenio, M. B.

    2014-09-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio-nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications.

  2. Adsorption of Amelogenin onto Self-Assembled and Fluoroapatite Surfaces

    SciTech Connect

    Tarasevich, Barbara J.; Lea, Alan S.; Bernt, William; Engelhard, Mark H.; Shaw, Wendy J.

    2009-02-19

    Abstract. The interactions of proteins at surfaces are of great importance to biomineralizaton processes and to the development and function of biomaterials. Amelogenin is a unique biomineralization protein because it self-assembles to form supramolecular structures called “nanospheres,” spherical aggregates of monomers that are 20-60 nm in diameter. Although the nanosphere quaternary structure has been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is also of great interest because the surface structure is critical to its function. We report studies of the adsorption of the amelogenin onto self-assembled monolayers (SAMs) with COOH and CH3 end group functionality and single crystal fluoroapatite (FAP). Dynamic light scattering (DLS) experiments showed that the solutions contained nanospheres and aggregates of nanospheres. Protein adsorption onto the various substrates was evidenced by null ellipsometry, x-ray photoelectron spectroscopy (XPS), and external reflectance Fourier transform infrared spectroscopy (ERFTIR). Although only nanospheres were observed in solution, ellipsometry and atomic force microscopy (AFM) indicated that the protein adsorbates were much smaller structures than the original nanospheres, from monomers to small oligomers in size. Monomer adsorption was promoted onto the CH3 surfaces and small oligomer adsorption was promoted onto the COOH and FAP substrates. In some cases, remnants of the original nanospheres adsorbed as multilayers on top of the underlying subnanosphere layers. This work suggests that amelogenin can adsorb by the “shedding” or disassembling of substructures from the nanospheres onto substrates and indicates that amelogenin may have a range of possible quaternary structures depending on whether it is in solution or interacting with surfaces.

  3. Soft materials design via self assembly of functionalized icosahedral particles

    NASA Astrophysics Data System (ADS)

    Muthukumar, Vidyalakshmi Chockalingam

    In this work we simulate self assembly of icosahedral building blocks using a coarse grained model of the icosahedral capsid of virus 1m1c. With significant advancements in site-directed functionalization of these macromolecules [1], we propose possible application of such self-assembled materials for drug delivery. While there have been some reports on organization of viral particles in solution through functionalization, exploiting this behaviour for obtaining well-ordered stoichiometric structures has not yet been explored. Our work is in well agreement with the earlier simulation studies of icosahedral gold nanocrystals, giving chain like patterns [5] and also broadly in agreement with the wet lab works of Finn, M.G. et al., who have shown small predominantly chain-like aggregates with mannose-decorated Cowpea Mosaic Virus (CPMV) [22] and small two dimensional aggregates with oligonucleotide functionalization on the CPMV capsid [1]. To quantify the results of our Coarse Grained Molecular Dynamics Simulations I developed analysis routines in MATLAB using which we found the most preferable nearest neighbour distances (from the radial distribution function (RDF) calculations) for different lengths of the functional groups and under different implicit solvent conditions, and the most frequent coordination number for a virus particle (histogram plots further using the information from RDF). Visual inspection suggests that our results most likely span the low temperature limits explored in the works of Finn, M.G. et al., and show a good degree of agreement with the experimental results in [1] at an annealing temperature of 4°C. Our work also reveals the possibility of novel stoichiometric N-mer type aggregates which could be synthesized using these capsids with appropriate functionalization and solvent conditions.

  4. Synthetic Porphyrins and Metalloporphyrins

    DTIC Science & Technology

    1976-12-10

    last type of complexes to be considered are the sterically hindered macrocycles . Examples of this class of complexes exe the capped" or "crow henhe...group IV metalloporphyrins, phthalocyanines and correspond- log Ru"l and Reol complexes induce smaller shifts than the lanthanides (about 8 ppm vs 25...ROLE W1r ROLE wTr ROLE Wt * ~Synthe tic Porphyrins Synthetic lMetalloporphyrinsj tetrapyrrole macrocycles "Inatural" porphyrins * j meso

  5. Monolithically self-assembled organic active materials integrated with thermoelectric for large spectrum solar harvesting system (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Busani, Tito L.; Lavrova, Olga; Erdman, Matthew; Martinez, Julio; Dawson, Noel M.

    2015-10-01

    We designed and studied a radial junction composed by a photovoltaic and thermoelectric array based on ZnO and CdTe nanowires surrounded by an absorbing organic self assembled in order to efficiently convert UV-visible and IR energy into electricity. The hot anode of n-type ZnO nanowires was fabricated using a thermal process on pre-seeded layer and results to be crystalline with a transmittance up to 92 % and a bandgap of ~ 3.32 eV. Conductivity measurements reveal diode-like behavior for the ZnO nanowires. The organic layer was deposited between the anode and cathode at room temperature The organic layer is composed of oppositely charged porphyrin metal (Zn(II) and Sn(IV)(OH)2) derivatives that are separately water soluble, but when combined form a virtually insoluble solid. The electron donor/acceptor properties (energy levels, band gaps) of the solid can be controlled by the choice of metals and the nature of the peripheral substituent groups of the porphyrin ring. A defect free sub nanometer deposition was achieved using a layer-by-layer deposition onto both ZnO and Bi2Te3 nanowires. The highly thermoelectric structure, which acts as a cold cathode, is composed of p-type Bi2Te3 nanowires with a thermoelectric efficiency (ZT) between ~0.7 to 1, values that are twice that expected for bulk Bi2Te3. Optoelectronic and structural properties shows that with 6 nm of organic layer it is possible to form a 3% efficient solar device with an enhanced thermo electric effected with a temperature gradient of 300 C.

  6. Optical Gas Sensing of Ammonia and Amines Based on Protonated Porphyrin/TiO₂ Composite Thin Films.

    PubMed

    Castillero, Pedro; Roales, Javier; Lopes-Costa, Tânia; Sánchez-Valencia, Juan R; Barranco, Angel; González-Elipe, Agustín R; Pedrosa, José M

    2016-12-23

    Open porous and transparent microcolumnar structures of TiO₂ prepared by physical vapour deposition in glancing angle configuration (GLAD-PVD) have been used as host matrices for two different fluorescent cationic porphyrins, 5-(N-methyl 4-pyridyl)-10,15,20-triphenyl porphine chloride (MMPyP) and meso-tetra (N-methyl 4-pyridyl) porphine tetrachloride (TMPyP). The porphyrins have been anchored by electrostatic interactions to the microcolumns by self-assembly through the dip-coating method. These porphyrin/TiO₂ composites have been used as gas sensors for ammonia and amines through previous protonation of the porphyrin with HCl followed by subsequent exposure to the basic analyte. UV-vis absorption, emission, and time-resolved spectroscopies have been used to confirm the protonation-deprotonation of the two porphyrins and to follow their spectral changes in the presence of the analytes. The monocationic porphyrin has been found to be more sensible (up to 10 times) than its tetracationic counterpart. This result has been attributed to the different anchoring arrangements of the two porphyrins to the TiO₂ surface and their different states of aggregation within the film. Finally, there was an observed decrease of the emission fluorescence intensity in consecutive cycles of exposure and recovery due to the formation of ammonium chloride inside the film.

  7. Optical Gas Sensing of Ammonia and Amines Based on Protonated Porphyrin/TiO2 Composite Thin Films

    PubMed Central

    Castillero, Pedro; Roales, Javier; Lopes-Costa, Tânia; Sánchez-Valencia, Juan R.; Barranco, Angel; González-Elipe, Agustín R.; Pedrosa, José M.

    2016-01-01

    Open porous and transparent microcolumnar structures of TiO2 prepared by physical vapour deposition in glancing angle configuration (GLAD-PVD) have been used as host matrices for two different fluorescent cationic porphyrins, 5-(N-methyl 4-pyridyl)-10,15,20-triphenyl porphine chloride (MMPyP) and meso-tetra (N-methyl 4-pyridyl) porphine tetrachloride (TMPyP). The porphyrins have been anchored by electrostatic interactions to the microcolumns by self-assembly through the dip-coating method. These porphyrin/TiO2 composites have been used as gas sensors for ammonia and amines through previous protonation of the porphyrin with HCl followed by subsequent exposure to the basic analyte. UV–vis absorption, emission, and time-resolved spectroscopies have been used to confirm the protonation–deprotonation of the two porphyrins and to follow their spectral changes in the presence of the analytes. The monocationic porphyrin has been found to be more sensible (up to 10 times) than its tetracationic counterpart. This result has been attributed to the different anchoring arrangements of the two porphyrins to the TiO2 surface and their different states of aggregation within the film. Finally, there was an observed decrease of the emission fluorescence intensity in consecutive cycles of exposure and recovery due to the formation of ammonium chloride inside the film. PMID:28025570

  8. Molecular self-assembly of amphiphilic cyclic phosphoryl gemcitabine with different N-fatty acyl tails and enhanced anticancer effects of the self-assembled nanostructures.

    PubMed

    Jin, Yiguang; Wang, Shan; Yao, Weishang; Du, Lina

    2015-09-01

    Molecular self-assembly of nucleosides is important, and the self-assembled nanostructures may be used for drug delivery and targeting. Gemcitabine (GEM) is an important anticancer nucleoside analog though deactivation and multi-drug resistance frequently happen. Four N-fatty acyl derivatives of cyclic phosphoryl GEM were prepared based on the theory of self-assembled drug delivery systems and the HepDirect prodrug technique wherein the prodrug could be degraded by the cytochrome P450 isozymes in hepatocytes to release active drugs. They are cyclic phosphoryl N-octyl gemcitabine (CPOG), cyclic phosphoryl N-dodecanoyl gemcitabine (CPDG), cyclic phosphoryl N-hexadecanoyl gemcitabine (CPHG), and cyclic phosphoryl N-octadecanoyl gemcitabine (CPODG). Their amphiphilicity and self-assembling property were explored. The self-assembled nanostructures of them were prepared and simulated. The in vitro anticancer activities of the nanostructures were investigated. The derivatives formed the Langmuir monolayers at the air/water interface, though their surface pressure-molecular area isotherms were different with dependency of the length of lipid chains. The derivatives self-assembled into the vesicular or rice-like nanostructures based on the hydrophobic interaction between lipid chains when injected into water, in accordance with the results of computer simulation. The nanostructures showed higher anticancer effects on HepG2 cells than GEM. The nanostructures are promising anticancer nanomedicines.

  9. From self-organization to self-assembly: a new materialism?

    PubMed

    Vincent, Bernadette Bensaude

    2016-09-01

    While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant's Critique of Judgement, the term 'self-assembly' has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices.

  10. The Self-Assembly Properties of a Benzene-1,3,5-tricarboxamide Derivative

    ERIC Educational Resources Information Center

    Stals, Patrick J. M.; Haveman, Jan F.; Palmans, Anja R. A.; Schenning, Albertus P. H. J.

    2009-01-01

    A series of experiments involving the synthesis and characterization of a benzene-1,3,5-tricarboxamide derivative and its self-assembly properties are reported. These laboratory experiments combine organic synthesis, self-assembly, and physical characterization and are designed for upper-level undergraduate students to introduce the topic of…

  11. Elucidating dominant pathways of the nano-particle self-assembly process.

    PubMed

    Zeng, Xiangze; Li, Bin; Qiao, Qin; Zhu, Lizhe; Lu, Zhong-Yuan; Huang, Xuhui

    2016-09-14

    Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging. Here, based on mass flow, we developed a new method for the construction of kinetic network models and applied it to identify the dominant kinetic pathways for the self-assembly of star-like block copolymers. We found that the dominant pathways are controlled by two competing kinetic parameters: the encounter time Te, characterizing the frequency of collision and the transition time Tt for the aggregate morphology change from rod to sphere. Interestingly, two distinct self-assembly mechanisms, diffusion of an individual copolymer into the aggregate core and membrane closure, both appear at different stages (with different values of Tt) of a single self-assembly process. In particular, the diffusion mechanism dominates the middle-sized semi-vesicle formation stage (with large Tt), while the membrane closure mechanism dominates the large-sized vesicle formation stage (with small Tt). Through the rational design of the hydrophibicity of the copolymer, we successfully tuned the transition time Tt and altered the dominant self-assembly pathways.

  12. Investigating the effects of peptoid substitutions in self-assembly of Fmoc-diphenylalanine derivatives.

    PubMed

    Rajbhandary, Annada; Nilsson, Bradley L

    2017-03-01

    Low molecular weight agents that undergo self-assembly into fibril networks with hydrogel properties are promising biomaterials. Most low molecular weight hydrogelators are discovered empirically or serendipitously due to imperfect understanding of the mechanisms of self-assembly, the packing structure of self-assembled materials, and how the self-assembly process corresponds to emergent hydrogelation. Herein, the mechanisms of self-assembly and hydrogelation of N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-PhePhe), a well-studied low molecular weight hydrogelator, is probed by systematic comparison with derivatives in which Phe residues are replaced by corresponding N-benzyl glycine peptoid (Nphe) analogs. Peptoids are peptidomimetics that shift display of side chain functionality from the α-carbon to the terminal nitrogen. This alters the hydrogen bonding capacity, the side chain presentation geometry, amide cis/trans isomerization equilibrium, and β-sheet potential of the peptoid relative to the corresponding amino acid in the context of peptidic polymers. It was found that amino acid/peptoid hybrids Fmoc-Phe-Nphe and Fmoc-Nphe-Phe have altered fibril self-assembly propensity and reduced hydrogelation capacity relative to the parent dipeptide, and that fibril self-assembly of the dipeptoid, Fmoc-Nphe-Nphe, is completely curtailed. These findings provide insight into the potential of low molecular weight peptoids and peptide/peptoid hybrids as hydrogelation agents and illuminate the importance of hydrogen bonding and π-π interaction geometry in facilitating self-assembly of Fmoc-Phe-Phe.

  13. Student Learning about Biomolecular Self-Assembly Using Two Different External Representations

    ERIC Educational Resources Information Center

    Host, Gunnar E.; Larsson, Caroline; Olson, Arthur; Tibell, Lena A. E.

    2013-01-01

    Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning…

  14. Prodrugs as self-assembled hydrogels: a new paradigm for biomaterials.

    PubMed

    Vemula, Praveen Kumar; Wiradharma, Nikken; Ankrum, James A; Miranda, Oscar R; John, George; Karp, Jeffrey M

    2013-12-01

    Prodrug-based self-assembled hydrogels represent a new class of active biomaterials that can be harnessed for medical applications, in particular the design of stimuli responsive drug delivery devices. In this approach, a promoiety is chemically conjugated to a known-drug to generate an amphiphilic prodrug that is capable of forming self-assembled hydrogels. Prodrug-based self-assembled hydrogels are advantageous as they alter the solubility of the drug, enhance drug loading, and eliminate the use of harmful excipients. In addition, self-assembled prodrug hydrogels can be designed to undergo controlled drug release or tailored degradation in response to biological cues. Herein we review the development of prodrug-based self-assembled hydrogels as an emerging class of biomaterials that overcome several common limitations encountered in conventional drug delivery.

  15. Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls

    PubMed Central

    Sun, Linlin; Zheng, Chunli; Webster, Thomas J

    2017-01-01

    Over the last several decades, a great number of advances have been made in the area of self-assembled supramolecules for regenerative medicine. Such advances have involved the design, preparation, and characterization of brand new self-assembled peptide nanomaterials for a variety of applications. Among all biomolecules considered for self-assembly applications, peptides have attracted a great deal of attention as building blocks for bottom-up fabrication, due to their versatility, ease of manufacturing, low costs, tunable structures, and versatile properties. Herein, some of the more exciting new designs of self-assembled peptides and their associated unique features are reviewed and several promising applications of how self-assembled peptides are advancing drug delivery, tissue engineering, antibacterial therapy, and biosensor device applications are highlighted. PMID:28053525

  16. Self-assembled peptide nanomaterials for biomedical applications: promises and pitfalls.

    PubMed

    Sun, Linlin; Zheng, Chunli; Webster, Thomas J

    Over the last several decades, a great number of advances have been made in the area of self-assembled supramolecules for regenerative medicine. Such advances have involved the design, preparation, and characterization of brand new self-assembled peptide nanomaterials for a variety of applications. Among all biomolecules considered for self-assembly applications, peptides have attracted a great deal of attention as building blocks for bottom-up fabrication, due to their versatility, ease of manufacturing, low costs, tunable structures, and versatile properties. Herein, some of the more exciting new designs of self-assembled peptides and their associated unique features are reviewed and several promising applications of how self-assembled peptides are advancing drug delivery, tissue engineering, antibacterial therapy, and biosensor device applications are highlighted.

  17. 3D DNA Origami Cuboids as Monodisperse Patchy Nanoparticles for Switchable Hierarchical Self-Assembly.

    PubMed

    Tigges, Thomas; Heuser, Thomas; Tiwari, Rahul; Walther, Andreas

    2016-12-14

    The rational design of anisotropic interaction patterns is a key step for programming colloid and nanoparticle self-assembly and emergent functions. Herein, we demonstrate a concept for harnessing the capabilities of 3D DNA origami for extensive supracolloidal self-assembly and showcase its use for making truly monodisperse, patchy, divalent nanocuboids that can self-assemble into supracolloidal fibrils via programmable DNA hybridization. A change in the number of connector duplexes at the patches reveals that multivalency and cooperativity play crucial roles to enhance superstructure formation. We further show thermal and chemical switching of the superstructures as the first steps toward reconfigurable self-assemblies. This concept lays the groundwork for merging monodisperse 3D DNA origami, featuring programmable patchiness and interactions, with nanoparticle self-assembly.

  18. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability.

    PubMed

    Mahata, Denial; Mandal, Santi M; Bharti, Rashmi; Gupta, Vinay Krishna; Mandal, Mahitosh; Nag, Ahindra; Nando, Golok B

    2014-08-01

    Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16μg/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs.

  19. Orthogonal light-induced self-assembly of nanoparticles using differently substituted azobenzenes.

    PubMed

    Manna, Debasish; Udayabhaskararao, Thumu; Zhao, Hui; Klajn, Rafal

    2015-10-12

    Precise control of the self-assembly of selected components within complex mixtures is a challenging goal whose realization is important for fabricating novel nanomaterials. Herein we show that by decorating the surfaces of metallic nanoparticles with differently substituted azobenzenes, it is possible to modulate the wavelength of light at which the self-assembly of these nanoparticles is induced. Exposing a mixture of two types of nanoparticles, each functionalized with a different azobenzene, to UV or blue light induces the selective self-assembly of only one type of nanoparticles. Irradiation with the other wavelength triggers the disassembly of the aggregates, and the simultaneous self-assembly of nanoparticles of the other type. By placing both types of azobenzenes on the same nanoparticles, we created unique materials ("frustrated" nanoparticles) whose self-assembly is induced irrespective of the wavelength of the incident light.

  20. Liquid Cell Electron Microscopy of Nanoparticle Self-Assembly Driven by Solvent Drying.

    PubMed

    Lee, Won Chul; Kim, Byung Hyo; Choi, Sun; Takeuchi, Shoji; Park, Jungwon

    2017-02-02

    Drying a colloidal solution of nanoparticles is a versatile method to construct self-assembled structures of nanoparticles. However, mechanistic understanding has mostly relied on empirical knowledge obtained from the final structures of self-assembly as relevant processes during solvent drying are likely kinetic and far from equilibrium. Here, we present in situ TEM studies of nanoparticle self-assembly under various conditions, including the concentrations of the initial solution and the types of nanoparticles and substrates. The capability of tracking trajectories of individual nanoparticles enables us to understand the mechanisms of drying-mediated self-assembly at the single-nanoparticle level. Our results consistently show that a solvent boundary primarily affects nanoparticle motions and the resulting self-assembly processes regardless of different conditions. The solvent boundary drives nanoparticles to form two-dimensional assembly mainly through two pathways, transporting scattered nanoparticles by lateral dragging and flattening aggregated nanoparticles by vertical pressing.