Science.gov

Sample records for porphyrin dimer-faced self-assembled

  1. Intramolecular energy transfer within butadiyne-linked chlorophyll and porphyrin dimer-faced, self-assembled prisms.

    PubMed

    Kelley, Richard F; Lee, Suk Joong; Wilson, Thea M; Nakamura, Yasuyuki; Tiede, David M; Osuka, Atsuhiro; Hupp, Joseph T; Wasielewski, Michael R

    2008-04-02

    The synthesis and photophysical properties of butadiyne-linked chlorophyll and porphyrin dimers in toluene solution and in several self-assembled prismatic structures are described. The butadiyne linkage between the 20-positions of the macrocycles results in new electronic transitions polarized along the long axes of the dimers. These transitions greatly increase the ability of these dimers to absorb the solar spectrum over a broad wavelength range. Femtosecond transient absorption spectroscopy reveals the relative rate of rotation of the macrocycles around the butadiyne bond joining them. Following addition of 3-fold symmetric, metal-coordinating ligands, both macrocyclic dimers self-assemble into prismatic structures in which the dimers comprise the faces of the prisms. These structures were confirmed by small-angle X-ray scattering experiments in solution using a synchrotron source. Photoexcitation of the prismatic assemblies reveals that efficient, through-space energy transfer occurs between the macrocyclic dimers within the prisms. The distance dependence of energy transfer between the faces of the prisms was observed by varying the size of the prismatic assemblies through the use of 3-fold symmetric ligands having arms with different lengths. These results show that self-assembly of discrete macrocyclic prisms provides a useful new strategy for controlling singlet exciton flow in antenna systems for artificial photosynthesis and solar cell applications.

  2. Intramolecular energy transfer with butadiyne-linked chlorophyll and porphyrin dimer-faced, self-assembled prisms.

    SciTech Connect

    Kelley, R. F.; Lee, S. J.; Wilson, T. M.; Nakamura, Y.; Tiede, D. M.; Osuka, A.; Hupp, J. T.; Wasielewski, M. R.; SUF-USR; Chemical Sciences and Engineering Division; Northwestern Univ.; Kyoto Univ.

    2008-01-01

    The synthesis and photophysical properties of butadiyne-linked chlorophyll and porphyrin dimers in toluene solution and in several self-assembled prismatic structures are described. The butadiyne linkage between the 20-positions of the macrocycles results in new electronic transitions polarized along the long axes of the dimers. These transitions greatly increase the ability of these dimers to absorb the solar spectrum over a broad wavelength range. Femtosecond transient absorption spectroscopy reveals the relative rate of rotation of the macrocycles around the butadiyne bond joining them. Following addition of 3-fold symmetric, metal-coordinating ligands, both macrocyclic dimers self-assemble into prismatic structures in which the dimers comprise the faces of the prisms. These structures were confirmed by small-angle X-ray scattering experiments in solution using a synchrotron source. Photoexcitation of the prismatic assemblies reveals that efficient, through-space energy transfer occurs between the macrocyclic dimers within the prisms. The distance dependence of energy transfer between the faces of the prisms was observed by varying the size of the prismatic assemblies through the use of 3-fold symmetric ligands having arms with different lengths. These results show that self-assembly of discrete macrocyclic prisms provides a useful new strategy for controlling singlet exciton flow in antenna systems for artificial photosynthesis and solar cell applications.

  3. Photocontrol over cooperative porphyrin self-assembly with phenylazopyridine ligands.

    PubMed

    Hirose, Takashi; Helmich, Floris; Meijer, E W

    2013-01-02

    The cooperative self-assembly of chiral zinc porphyrins is regulated by a photoresponsive phenylazopyridine ligand. Porphyrin stacks depolymerize into dimers upon axial ligation and the strength of the coordination is regulated by its photoinduced isomerization, which shows more than 95 % conversion ratio for both photostationary states.

  4. Chemical sensitivity of self-assembled porphyrin nano-aggregates.

    PubMed

    Dini, Francesca; Martinelli, Eugenio; Pomarico, Giuseppe; Paolesse, Roberto; Monti, Donato; Filippini, Daniel; D'Amico, Arnaldo; Lundström, Ingemar; Di Natale, Corrado

    2009-02-04

    Nanostructured molecular assemblies may provide additional sensing properties not found in other arrangements of the same basic constituents. Among three-dimensional structures, nanotubes are particularly appealing for applications as chemical sensors, because of the potential inclusion of different guests inside the cavity or the induced modification of the skeletal interaction after analyte binding. Porphyrins are a class of compounds characterized by brilliant sensing properties, appearing also in non-ordered solid-state aggregates. In recent years, it was reported that aggregation of oppositely charged porphyrins led to the formation of self-assembled nanotubes and in this paper their sensing properties, both in solution and in the solid state, have been investigated. The interactions of porphyrin nanotubes with guest molecules have been monitored by following the changes in their UV-vis spectra. The results obtained have been exploited to build up a sensing platform based on a computer screen as a light source and a digital camera as detector. Porphyrin nanostructures exhibited an enhanced sensitivity to different compounds with respect to those shown by single porphyrin subunits. The reason for the increased sensitivity may be likely found in an additional sensing mechanism related to the modulation of the strength of the forces that keep the supramolecular ensemble together.

  5. Self-assembling discotic liquid crystal porphyrin into more controllable ordered nanostructure mediated by fluorophobic effect

    SciTech Connect

    Zhou, Xiaoli; Kang, Shin-Woong; Kumar, Satyendra; Li, Quan

    2009-09-02

    The novel nanoscale discotic liquid crystal porphyrin with partial chain perfluorination, which has the same basic structure as the best photoreceptor in nature (chlorophyll), shows an exceptionally enhanced tendency to self-assemble into ordered nanostructure. Defect-free homeotropically aligned fluorinated porphyrin thin films were, for the first time, fabricated and characterised. The ability to self-assemble large {pi}-conjugated discotic molecules into highly ordered nanostructure via partial chain perfluorination provides new insight for the bottom-up nanofabrication of molecular devices. The controllable ordered porphyrin nanostructure with directed molecular arrangement holds great promise for use in high-performance electronic devices.

  6. Cooperative self-assembly of porphyrins with polymers possessing bioactive functions.

    PubMed

    Zhao, Lizhi; Qu, Rui; Li, Ang; Ma, Rujiang; Shi, Linqi

    2016-11-15

    Natural porphyrin derivatives possess many interesting functions in biological systems. They are integrated into proteins that are essential for biological activities. Many efforts have been dedicated to mimic the microenvironment and augment the function of porphyrin/protein scaffolds. To achieve such goals, self-assembly has become one of the popular methods to construct porphyrin/protein-mimicking materials owing to its various choices of building blocks and a simple preparation process over chemical modification. Desirable characteristics of building blocks for protein mimicking include high molecular weight, predictable conformations in solution, and appropriate functional residuals. With these aims in mind, polymers are ideal candidates due to their multiple-level hierarchies derived from their chemical and spatial structures. In this review, design strategies for the cooperative self-assembly of porphyrins with polymers and the main efforts towards the implementation of porphyrin/polymer assembly for biomimetic composites with bioactive functions will be addressed.

  7. Electron-Triggered Metamorphism in Porphyrin-Based Self-Assembled Coordination Polymers.

    PubMed

    Kahlfuss, Christophe; Denis-Quanquin, Sandrine; Calin, Nathalie; Dumont, Elise; Garavelli, Marco; Royal, Guy; Cobo, Saioa; Saint-Aman, Eric; Bucher, Christophe

    2016-11-23

    Viologen-centered electron transfer is used to trigger a complete dissociation of a porphyrin-based supramolecular architecture. In the oxidized state, self-assembly is induced by iterative association of individual porphyrin-based tectons. Dissociation of the self-assembled species is actuated upon changing the redox state of the bipyridium units involved in the tectons from their dicationic state to their radical cation state, the driving force of the disassembling process being the formation of an intramolecularly locked conformation partly stabilized by π-dimerization of both viologen cation radicals.

  8. Photoinduced electron transfer from rail to rung within a self-assembled oligomeric porphyrin ladder

    SciTech Connect

    She, Chunxing; Lee, Suk Joong; McGarrah, James E.; Vura-Weis, Josh; Wasielewski, Michael; Chen, Hanning; Schatz, George C.; Ratner, Mark A.; Hupp, Joseph T.

    2010-01-01

    Photoinduced electron transfer in a self-assembled supramolecular ladder structure comprising oligomeric porphyrin rails and ligated dipyridyltetrazine rungs was characterized by transient absorption spectroscopy and transient direct current photoconductivity to be mainly from an oligomer (rail) to the center of a terminal tetrazine (rung), with the remaining hole being delocalized on the oligomer and subsequent charge recombination in 0.19 ns.

  9. Synthesis and photophysical studies of self-assembled multicomponent supramolecular coordination prisms bearing porphyrin faces.

    PubMed

    Shi, Yanhui; Sánchez-Molina, Irene; Cao, Changsheng; Cook, Timothy R; Stang, Peter J

    2014-07-01

    Multicomponent self-assembly, wherein two unique donor precursors are combined with a single metal acceptor instead of the more common two-component assembly, can be achieved by selecting Lewis-basic sites and metal nodes that select for heteroligated coordination spheres. Platinum(II) ions show a thermodynamic preference for mixed pyridyl/carboxylate coordination environments and are thus suitable for such designs. The use of three or more unique building blocks increases the structural complexity of supramolecules. Herein, we describe the synthesis and characterization of rectangular prismatic supramolecular coordination complexes (SCCs) with two faces occupied by porphyrin molecules, motivated by the search for new multichromophore complexes with promising light-harvesting properties. These prisms are obtained from the self-assembly of a 90° Pt(II) acceptor with a meso-substituted tetrapyridylporphyrin (TPyP) and dicarboxylate ligands. The generality of this self-assembly reaction is demonstrated using five dicarboxylate ligands, two based on a rigid central phenyl ring and three alkyl-spaced variants, to form a total of five free-base and five Zn-metallated porphyrin prisms. All 10 SCCs are characterized by (31)P and (1)H multinuclear NMR spectroscopy and electrospray ionization mass spectrometry, confirming the structure of each self-assembly and the stoichiometry of formation. The photophysical properties of the resulting SCCs were investigated revealing that the absorption and emission properties of the free-base and metallated porphyrin prisms preserve the spectral features associated with free TPyP.

  10. Self-assembly of DNA-porphyrin hybrid molecules for the creation of antimicrobial nanonetwork.

    PubMed

    Kumari, Rina; Khan, Mohd Imran; Bhowmick, Sourav; Sinha, Kislay K; Das, Neeladri; Das, Prolay

    2017-07-01

    DNA derived well-controlled arrangement of porphyrins has emerged as promising hybrid nanostructures. Exceptional biocompatibility and DNA-directed surface addressability coupled with rich symmetry features of the porphyrin have made these hybrid nanostructures attractive candidates for potential biomedical and biotechnological applications. However, the noteworthy photophysical properties of porphyrin and related molecules when present in DNA based nanostructures are yet to be explored fully and should be a matter of intense research that may unearth a plethora of interesting applications of these nanostructures. Herein, we demonstrate the construction of novel self-assembled DNA-porphyrin hybrid nanonetworks that utilize the porphyrin core for antibacterial applications. Porphyrin derivative with four pendant NH2 groups was synthesized and conjugated with the 5'-PO4 of ss-DNA by solution phase phosphoramidation coupling reaction. The conjugation was followed by DNA hybridization mediated self-assembly to form DNA-porphyrin hybrid nanonetwork. The enhanced antimicrobial property of the nanonetwork was envisioned following light irradiation at relevant wavelength. In line with this, comparative antimicrobial activities against gram-negative (Escherichia coli BL-21) and gram-positive bacteria (Staphylococcus aureus) have been studied. Interestingly, DNA-porphyrin nanonetwork afforded highly efficient and coherent photoinduced reactive oxygen species (ROS) generation to display antimicrobial activity against Staphylococcus aureus. The escalated and coherent ROS generation from the nanonetworks was attributed to the ordered placement of the porphyrins that inhibits self-quenching. Our work points out to a good alternative for antibiotic free strategies for preservation of biological materials and other applications. Copyright © 2017. Published by Elsevier B.V.

  11. Biological Photothermal Nanodots Based on Self-Assembly of Peptide-Porphyrin Conjugates for Antitumor Therapy.

    PubMed

    Zou, Qianli; Abbas, Manzar; Zhao, Luyang; Li, Shukun; Shen, Guizhi; Yan, Xuehai

    2017-02-08

    Photothermal agents can harvest light energy and convert it into heat, offering a targeted and remote-controlled way to destroy carcinomatous cells and tissues. Inspired by the biological organization of polypeptides and porphyrins in living systems, here we have developed a supramolecular strategy to fabricate photothermal nanodots through peptide-modulated self-assembly of photoactive porphyrins. The self-assembling nature of porphyrins induces the formation of J-aggregates as substructures of the nanodots, and thus enables the fabrication of nanodots with totally inhibited fluorescence emission and singlet oxygen production, leading to a high light-to-heat conversion efficiency of the nanodots. The peptide moieties not only provide aqueous stability for the nanodots through hydrophilic interactions, but also provide a spatial barrier between porphyrin groups to inhibit the further growth of nanodots through the strong π-stacking interactions. Thermographic imaging reveals that the conversion of light to heat based on the nanodots is efficient in vitro and in vivo, enabling the nanodots to be applied for photothermal acoustic imaging and antitumor therapy. Antitumor therapy results show that these nanodots are highly biocompatible photothermal agents for tumor ablation, demonstrating the feasibility of using bioinspired nanostructures of self-assembling biomaterials for biomedical photoactive applications.

  12. Controlled metalation of self-assembled porphyrin nanoarrays in two dimensions.

    PubMed

    Auwärter, Willi; Weber-Bargioni, Alexander; Brink, Susan; Riemann, Andreas; Schiffrin, Agustin; Ruben, Mario; Barth, Johannes V

    2007-02-02

    We report a bottom-up approach for the fabrication of metallo-porphyrin compounds and nanoarchitectures in two dimensions. Scanning tunneling microscopy and tunneling spectroscopy observations elucidate the interaction of highly regular porphyrin layers self-assembled on a Ag(111) surface with iron monomers supplied by an atomic beam. The Fe is shown to be incorporated selectively in the porphyrin macrocycle whereby the template structure is strictly preserved. The immobilization of the molecular reactants allows the identification of single metalation events in a novel reaction scheme. Because the template layers provide extended arrays of reaction sites, superlattices of coordinatively unsaturated and magnetically active metal centers are obtained. This approach offers novel pathways to realize metallo-porphyrin compounds, low-dimensional metal-organic architectures and patterned surfaces which cannot be achieved by conventional means.

  13. Self-assembly of a chiral porphyrin at surfaces

    NASA Astrophysics Data System (ADS)

    Iavicoli, Patrizia; Linares, Mathieu; Pérez del Pino, Ángel; Lazzaroni, Roberto; Amabilino, David B.

    2008-10-01

    Evaporation of solutions of a new synthetic tetra meso-amidophenyl-substituted porphyrin derivative on graphite leads to different morphologies at the air-solid interface, whose nature depends on the solvent in which the molecule was dissolved. Fibres-which were shown to be a stable aggregate form of the compound by molecular modelling-are observed by AFM, although they do not seem to have the structure which was predicted. The reason for this situation appears to be the dominance of surface-molecule interactions over those between the molecules themselves. On mica surfaces, dewetting takes place, leading to relatively well-defined monolayer and bilayer domains.

  14. Synthesis and photophysical studies of self-assembled multicomponent supramolecular coordination prisms bearing porphyrin faces

    PubMed Central

    Shi, Yanhui; Sánchez-Molina, Irene; Cao, Changsheng; Cook, Timothy R.; Stang, Peter J.

    2014-01-01

    Multicomponent self-assembly, wherein two unique donor precursors are combined with a single metal acceptor instead of the more common two-component assembly, can be achieved by selecting Lewis-basic sites and metal nodes that select for heteroligated coordination spheres. Platinum(II) ions show a thermodynamic preference for mixed pyridyl/carboxylate coordination environments and are thus suitable for such designs. The use of three or more unique building blocks increases the structural complexity of supramolecules. Herein, we describe the synthesis and characterization of rectangular prismatic supramolecular coordination complexes (SCCs) with two faces occupied by porphyrin molecules, motivated by the search for new multichromophore complexes with promising light-harvesting properties. These prisms are obtained from the self-assembly of a 90° Pt(II) acceptor with a meso-substituted tetrapyridylporphyrin (TPyP) and dicarboxylate ligands. The generality of this self-assembly reaction is demonstrated using five dicarboxylate ligands, two based on a rigid central phenyl ring and three alkyl-spaced variants, to form a total of five free-base and five Zn-metallated porphyrin prisms. All 10 SCCs are characterized by 31P and 1H multinuclear NMR spectroscopy and electrospray ionization mass spectrometry, confirming the structure of each self-assembly and the stoichiometry of formation. The photophysical properties of the resulting SCCs were investigated revealing that the absorption and emission properties of the free-base and metallated porphyrin prisms preserve the spectral features associated with free TPyP. PMID:24979805

  15. Tetraphenylethene-based star shaped porphyrins: synthesis, self-assembly, and optical and photophysical study.

    PubMed

    Rananaware, Anushri; Bhosale, Rajesh S; Ohkubo, Kei; Patil, Hemlata; Jones, Lathe A; Jackson, Sam L; Fukuzumi, Shunichi; Bhosale, Sidhanath V; Bhosale, Sheshanath V

    2015-04-17

    Supramolecular self-assembly and self-organization are simple and convenient ways to design and create controlled assemblies with organic molecules, and they have provoked great interest due to their potential applications in various fields, such as electronics, photonics, and light-energy conversion. Herein, we describe the synthesis of two π-conjugated porphyrin molecules bearing tetraphenylethene moieties with high fluorescence quantum yield. Photophysical and electrochemical studies were conducted to understand the physical and redox properties of these new materials, respectively. Furthermore, these derivatives were used to investigate self-assembly via the solvophobic effect. The self-assembled aggregation was performed in nonpolar and polar organic solvents and forms nanospheres and ring-like nanostructures, respectively. The solution based aggregation was studied by means of UV-vis absorption, emission, XRD, and DLS analyses. Self-assembled ring-shape structures were visualized by SEM and TEM imaging. This ring-shape morphology of nanosized macromolecules might be a good candidate for the creation of artificial light-harvesting nanodevices.

  16. Self-assembly and conformation of tetrapyridyl-porphyrin molecules on Ag(111).

    PubMed

    Auwärter, W; Weber-Bargioni, A; Riemann, A; Schiffrin, A; Gröning, O; Fasel, R; Barth, J V

    2006-05-21

    We present a low-temperature scanning tunneling microscopy (STM) study on the supramolecular ordering of tetrapyridyl-porphyrin (TPyP) molecules on Ag(111). Vapor deposition in a wide substrate temperature range reveals that TPyP molecules easily diffuse and self-assemble into large, highly ordered chiral domains. We identify two mirror-symmetric unit cells, each containing two differently oriented molecules. From an analysis of the respective arrangement it is concluded that lateral intermolecular interactions control the packing of the layer, while its orientation is induced by the coupling to the substrate. This finding is corroborated by molecular mechanics calculations. High-resolution STM images recorded at 15 K allow a direct identification of intramolecular features. This makes it possible to determine the molecular conformation of TPyP on Ag(111). The pyridyl groups are alternately rotated out of the porphyrin plane by an angle of 60 degrees.

  17. Kinetic and Thermodynamic Control in Porphyrin and Phthalocyanine Self-Assembled Monolayers.

    PubMed

    Hipps, K W; Mazur, Ursula

    2017-09-20

    Porphyrins and phthalocyanines are ubiquitous in modern science and technology. Their stability, redox properties, and photoresponse make them candidates for numerous applications. Many of these applications rely on thin films, and these are critically dependent on the first monolayer. In this article, we focus on noncovalently bound self-assembled monolayers of porphyrins and phthalocyanines at the solution-solid interface with special emphasis on the kinetic and thermodynamic processes that define the films and their reaction chemistry. We first discuss the difference between film-formation kinetics and desorption kinetics from fully formed films. We then present evidence that many of these monolayers are controlled by adsorption kinetics and are not in thermodynamic equilibrium. Measurement of the solution-solid interface desorption energy by scanning tunneling microscopy is discussed, and data is presented for cobalt, nickel, and free base octaethylporphyrin. The activation energy for the desorption of these compounds into phenyloctane is about half of the computed desorption energy in vacuum, and this is discussed in terms of the role of the solvent. Preexponential factors are very low compared to desorption into vacuum, and this is attributed to a reduction in the entropy of activation due to the participation of solvent in the transition state. An example of the use of relative desorption kinetics to create a new binary surface structure is given. It is suggested that this is a synthesis route that may have been missed because of the large difference in solution concentrations required to drive binary film formation. Attention then turns to the axial reaction chemistry of metalloporphyrins and metallophthalocyanines supported on conducting surfaces. We show several examples of chemistry unique to the supported complexes: cases where the metal binds ligands more readily and cases where the substrate induces ligand loss. Understanding this new axial

  18. Two-dimensional self-assembly of amphiphilic porphyrins on a dynamically shrinking droplet surface.

    PubMed

    Numata, Munenori; Takigami, Yusuke; Hirose, Naoya; Sakai, Ryoichiro

    2014-03-14

    Developing a new field of molecular self-assembly in the sub-micrometer regime-with precision as high as that used to make discrete nano-sized molecular architectures through molecular design-is a major challenge for supramolecular chemistry. At present, however, there is no effective strategy for controlling the assembling molecules when their quantity is greater than one thousand. Herein, we propose a potential solution by exploiting a novel supramolecular system in conjunction with dynamically shrinking oil droplets, enabling more than a thousand component molecules to organize simultaneously into the form of sub-micrometer-scale ring structures. In our developed system, amphiphilic porphyrins, having potential two-dimensional assembling ability, were compartmentalized into droplets with narrow distributions and molecular numbers. These droplets were subsequently transformed into discrete ring-like structures during the process of solvent removal from the inner organic layer, i.e., shrinking the droplets. Unique self-assembled structures, which are not accessible through conventional supramolecular strategies, can be selectively created depending on the initial stage of the droplet.

  19. Spin relaxation in graphene with self-assembled cobalt porphyrin molecules

    NASA Astrophysics Data System (ADS)

    Omar, S.; Gurram, M.; Vera-Marun, I. J.; Zhang, X.; Huisman, E. H.; Kaverzin, A.; Feringa, B. L.; van Wees, B. J.

    2015-09-01

    In graphene spintronics, interaction of localized magnetic moments with the electron spins paves a new way to explore the underlying spin-relaxation mechanism. A self-assembled layer of organic cobalt porphyrin (CoPP) molecules on graphene provides a desired platform for such studies via the magnetic moments of porphyrin-bound cobalt atoms. In this work a study of spin-transport properties of graphene spin-valve devices functionalized with such CoPP molecules as a function of temperature via nonlocal spin-valve and Hanle spin-precession measurements is reported. For the functionalized (molecular) devices, we observe a decrease in the spin-relaxation time τs even up to 50%, which could be an indication of enhanced spin-flip scattering of the electron spins in graphene in the presence of the molecular magnetic moments. The effect of the molecular layer is masked for low-quality samples (low mobility), possibly due to dominance of Elliot-Yafet-type spin relaxation mechanisms.

  20. Long-Range Orientational Self-Assembly, Spatially Controlled Deprotonation, and Off-Centered Metalation of an Expanded Porphyrin.

    PubMed

    Cirera, Borja; Trukhina, Olga; Björk, Jonas; Bottari, Giovanni; Rodríguez-Fernández, Jonathan; Martin-Jimenez, Alberto; Islyaikin, Mikhail K; Otero, Roberto; Gallego, José M; Miranda, Rodolfo; Torres, Tomás; Ecija, David

    2017-09-27

    Expanded porphyrins are large-cavity macrocycles with enormous potential in coordination chemistry, anion sensing, photodynamic therapy, and optoelectronics. In the last two decades, the surface science community has assessed the physicochemical properties of tetrapyrrolic-like macrocycles. However, to date, the sublimation, self-assembly and atomistic insights of expanded porphyrins on surfaces have remained elusive. Here, we show the self-assembly on Au(111) of an expanded aza-porphyrin, namely, an "expanded hemiporphyrazine", through a unique growth mechanism based on long-range orientational self-assembly. Furthermore, a spatially controlled "writing" protocol on such self-assembled architecture is presented based on the STM tip-induced deprotonation of the inner protons of individual macrocycles. Finally, the capability of these surface-confined macrocycles to host lanthanide elements is assessed, introducing a novel off-centered coordination motif. The presented findings represent a milestone in the fields of porphyrinoid chemistry and surface science, revealing a great potential for novel surface patterning, opening new avenues for molecular level information storage, and boosting the emerging field of surface-confined coordination chemistry involving f-block elements.

  1. Photoinduced processes in self-assembled porphyrin/perylene bisimide metallosupramolecular boxes.

    PubMed

    Indelli, M Teresa; Chiorboli, Claudio; Scandola, Franco; Iengo, Elisabetta; Osswald, Peter; Würthner, Frank

    2010-11-18

    Two new supramolecular boxes, (ZnMC)(2)(rPBI)(2) and (ZnMC)(2)(gPBI)(2), have been obtained by axial coordination of N,N'-dipyridyl-functionalized perylene bisimide (PBI) dyes to the zinc ion centers of two 2+2 porphyrin metallacycles (ZnMC = [trans,cis,cis-RuCl(2)(CO)(2)(Zn·4'-cis-DPyP)](2)). The two molecular boxes involve PBI pillars with different substituents at the bay area: the "red" PBI (rPBI = N,N'-di(4-pyridyl)-1,6,7,12-tetra(4-tert-butylphenoxy)perylene-3,4:9,10-tetracarboxylic acid bisimide) containing tert-butylphenoxy substituents and the "green" PBI (gPBI = N,N'-di(4-pyridyl)-1,7-bis(pyrrolidin-1-yl)perylene-3,4:9,10-tetracarboxylic acid bisimide) bearing pyrrolidinyl substituents. Due to the rigidity of the modules and the simultaneous formation of four pyridine-zinc bonds, these discrete adducts self-assemble quantitatively and are remarkably stable in dichloromethane solution. The photophysical behavior of the new supramolecular boxes has been studied in dichloromethane by emission spectroscopy and ultrafast absorption techniques. A different photophysical behavior is observed for the two systems. In (ZnMC)(2)(rPBI)(2), efficient electron transfer quenching of both perylene bisimide and zinc porphyrin chromophores is observed, leading to a charge separated state, PBI(-)-Zn(+), in which a perylene bisimide unit is reduced and zinc porphyrin is oxidized. In the deactivation of the perylene bisimide localized excited state, an intermediate zwitterionic charge transfer state of type PBI(-)-PBI(+) seems to play a relevant role. In (ZnMC)(2)(gPBI)(2), singlet energy transfer from the Zn porphyrin chromophores to the perylene bisimide units occurs with an efficiency of 0.7. This lower than unity value is due to a competing electron transfer quenching, leading to the charge separated state PBI(-)-Zn(+). The distinct photophysical behavior of these two supramolecular boxes is interpreted in terms of energy changes occurring upon replacement of the "red" r

  2. Bottom-Up Hierarchical Self-Assembly of Chiral Porphyrins through Coordination and Hydrogen Bonds.

    PubMed

    Oliveras-González, Cristina; Di Meo, Florent; González-Campo, Arántzazu; Beljonne, David; Norman, Patrick; Simón-Sorbed, Maite; Linares, Mathieu; Amabilino, David B

    2015-12-23

    A series of chiral synthetic compounds is reported that shows intricate but specific hierarchical assembly because of varying positions of coordination and hydrogen bonds. The evolution of the aggregates (followed by absorption spectroscopy and temperature-dependent circular dichroism studies in solution) reveal the influence of the proportion of stereogenic centers in the side groups connected to the chromophore ring in their optical activity and the important role of pyridyl groups in the self-assembly of these chiral macrocycles. The optical activity spans 2 orders of magnitude depending on composition and constitution. Two of the aggregates show very high optical activity even though the isolated chromophores barely give a circular dichroism signal. Molecular modeling of the aggregates, starting from the pyridine-zinc(II) porphyrin interaction and working up, and calculation of the circular dichroism signal confirm the origin of this optical activity as the chiral supramolecular organization of the molecules. The aggregates show a broad absorption range, between approximately 390 and 475 nm for the transitions associated with the Soret region alone, that spans wavelengths far more than the isolated chromophore. The supramolecular assemblies of the metalloporphyrins in solution were deposited onto highly oriented pyrolitic graphite in order to study their hierarchy in assembly by atomic force microscopy. Zero and one-dimensional aggregates were observed, and a clear dependence on deposition temperature was shown, indicating that the hierarchical assembly took place largely in solution. Moreover, scanning electron microscopy images of porphyrins and metalloporphyrins precipitated under out-of-equilibrium conditions showed the dependence of the number and position of chiral amide groups in the formation of a fibrillar nanomaterial. The combination of coordination and hydrogen bonding in the complicated assembly of these molecules-where there is a clear hierarchy

  3. Rational syntheses of cyclic hexameric porphyrin arrays for studies of self-assembling light-harvesting systems.

    PubMed

    Yu, L; Lindsey, J S

    2001-11-02

    oxaporphyrin, have been synthesized for use as guests in the cyclic hexamers, affording self-assembled arrays for light-harvesting studies.

  4. Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems

    PubMed Central

    Li, Mao; Ishihara, Shinsuke; Ji, Qingmin; Akada, Misaho; Hill, Jonathan P; Ariga, Katsuhiko

    2012-01-01

    Current nanotechnology based on top-down nanofabrication may encounter a variety of drawbacks in the near future so that development of alternative methods, including the so-called bottom-up approach, has attracted considerable attention. However, the bottom-up strategy, which often relies on spontaneous self-assembly, might be inefficient in the development of the requisite functional materials and systems. Therefore, assembly processes controlled by external stimuli might be a plausible strategy for the development of bottom-up nanotechnology. In this review, we demonstrate a paradigm shift from self-assembly to commanded assembly by describing several examples of assemblies of typical functional molecules, i.e. porphyrins and fullerenes. In the first section, we describe recent progress in the design and study of self-assembled and co-assembled supramolecular architectures of porphyrins and fullerenes. Then, we show examples of assembly induced by external stimuli. We emphasize the paradigm shift from self-assembly to commanded assembly by describing the recently developed electrochemical-coupling layer-by-layer (ECC-LbL) methodology. PMID:27877511

  5. Self-assembly of large-scale aggregates of porphyrin from its dimers and their absorption and luminescence properties

    NASA Astrophysics Data System (ADS)

    Udal'tsov, A. V.; Kazarin, L. A.; Sweshnikov, A. A.

    2001-05-01

    Properties of aggregates of protonated meso-tetraphenylporphine (TPP) dimers have been investigated by absorption and luminescence spectroscopies and scanning electron microscopy. It was found that the absorption and fluorescence spectra obtained at a low and several times higher concentration of porphyrin differ considerably. The changes in absorption spectra of TPP in the water-THF-glycerol (84:6:10, v/v) mixture in the presence of 0.4 N HCl with time and the appearance of a green precipitate after several days indicate aggregation of the porphyrin. The near IR emission at 1000 nm, which is assigned to the fluorescence of donor-acceptor water-porphyrin dimeric complex, is revealed in the fluorescence spectra of TPP in aqueous solution of THF in the presence of 0.4 N HCl at the low concentration of porphyrin on excitation at 465 nm. In contrast, the near IR emission is not observed in the solution with several times higher concentration of porphyrin, but a shoulder at ca 800 nm is appreciable in the corresponding spectrum. The large-scale aggregates of TPP with sizes approximately from 1 μm to several micrometers are found in thin films of the protonated porphyrin. It is proposed that the aggregates are formed as a result of self-assembly from different protonated porphyrin dimers and have an ordered structure.

  6. Photophysics of self-assembled zinc porphyrin-bidentate diamine ligand complexes.

    PubMed

    Danger, Brook R; Bedient, Krysta; Maiti, Manisankar; Burgess, Ian J; Steer, Ronald P

    2010-10-21

    The effects of complexation--by bidentate nitrogen-containing ligands such as pyrazine and 4,4'-bipyridine commonly used for porphyrin self-assembly--on the photophysics of the model metalloporphyrin, ZnTPP, are reported. Ligation to form the 5-coordinate species introduces an intramolecular charge transfer (ITC) state that, depending on the oxidation and reduction potentials of the electron donor and acceptor, can become involved in the excited state relaxation processes. For ZnTPP, ligation with pyridine has little effect on excited state relaxation following either Q-band or Soret band excitation. However, coordination of ZnTPP with pyrazine and bipyridine causes the S(2) (Soret) state of the ligated species to decay almost exclusively via an S(2)-ICT-S(1) pathway, while affecting the S(1) decay route only slightly. In these 5-coordinate species the S(2)-ICT-S(1) decay route is ultrafast and nearly quantitative. Literature redox data for other bidentate ligands such as DABCO and multidentate ligands commonly used for pophyrin assembly suggest that the ITC states introduced by them could also modify the excited state relaxation dynamics of a wide variety of multiporphyrin arrays.

  7. [60]Fullerene-porphyrin [n]pseudorotaxanes: self-assembly, photophysics and third-order NLO response.

    PubMed

    Đorđević, L; Marangoni, T; De Leo, F; Papagiannouli, I; Aloukos, P; Couris, S; Pavoni, E; Monti, F; Armaroli, N; Prato, M; Bonifazi, D

    2016-04-28

    By means of different spectroscopic techniques, we investigate a novel series of porphyrin derivatives (H2TPP), connected to dibenzo-24-crown-8 (DB24C8) moieties, which undergo self-assembly with different methano[60]fullerene units bearing dibenzylammonium (DBA) cations. The formation of both [2] and [3]pseudorotaxanes was proved by means of NMR, UV-Vis-NIR absorption and emission spectroscopies. With the support of molecular modelling studies, spectroscopic investigations showed the presence of a secondary interaction between the porphyrin and the C60 chromophores leading to the formation of different types of "face-to-face" assemblies. Remarkably, investigations of the non-linear optical response of these supramolecular systems showed that individual porphyrin and fullerene derivatives exhibit significantly lower second hyperpolarizability values when compared to their pseudorotaxanes functionalised counterparts. This proves that this class of supramolecular materials possesses relevant NLO response, which strongly depends on the structural arrangement of the chromophores in solution.

  8. Photoinitiated electron transfer in zinc porphyrin-perylenediimide cruciforms and their self-assembled oligomers.

    PubMed

    Conron, Sarah M Mickley; Shoer, Leah E; Smeigh, Amanda L; Ricks, Annie Butler; Wasielewski, Michael R

    2013-02-21

    Two X-shaped, cruciform electron donor(2)-acceptor-acceptor'(2) (D(2)-A-A'(2)) molecules, 1 and 2, in which D = zinc 5-phenyl-10,15,20-tripentylporphyrin (ZnTPnP) or zinc 5,10,15,20-tetraphenylporphyrin (ZnTPP), respectively, A = pyromellitimide (PI), and A' = perylene-3,4:9,10-bis(dicarboximide) (PDI), were prepared to study self-assembly motifs that promote photoinitiated charge separation followed by electron and hole transport through π-stacked donors and acceptors. PDI secondary electron acceptors were chosen because of their propensity to form self-ordered, π-stacked assemblies in solution, while the ZnTPnP and ZnTPP donors were selected to test the effect of peripheral substituent steric interactions on the π-stacking characteristics of the cruciforms. Small- and wide-angle X-ray scattering measurements in toluene solution reveal that 1 assembles into a π-stacked structure having an average of 5 ± 1 molecules, when [1] =/~ 10(-5) M, while 2 remains monomeric. Photoexcitation of the π-stacked structure of 1 results in formation of ZnTPnP(•+)-PI-PDI(•-) in τ(CS1) = 0.3 ps, which is nearly 100-fold faster than the formation of ZnTPnP(•+)-PI(•-) in a model system lacking the PDI acceptor. The data are consistent with a self-assembled structure for 1 in which the majority of the intermolecular interactions have the ZnTPnP donor of one monomer cofacially π-stacked with the PDI acceptor of a neighboring monomer in a crisscrossed fashion. In contrast, 2 remains monomeric in toluene, so that photoexcitation of ZnTPP results in the charge separation reaction sequence: (1*)ZnTPP-PI-PDI → ZnTPP(•+)-PI(•-)-PDI → ZnTPP(•+)-PI-PDI(•-), where τ(CS1) = 33 ps and τ(CS2) = 239 ps. The perpendicular orientation of ZnTPnP and ZnTPP relative to PDI in 1 and 2 is designed to decrease the porphyrin-PDI distance without greatly decreasing the overall number of bonds linking them. This serves to decrease the Coulomb energy penalty required to produce D

  9. Structure and excited state relaxation dynamics in nanoscale self-assembled arrays: multiporphyrin complexes, porphyrin-quantum dot composites

    NASA Astrophysics Data System (ADS)

    Zenkevich, E. I.; von Borczyskowski, C.

    2005-06-01

    Self-assembled nanoscale arrays of controllable geometry and composition (up to 8 tetrapyrroles) have been formed via non-covalent binding interactions of the meso-phenyl bridged Zn-octaethylporphyrin chemical dimers or trimers with di- /tetrapyridyl substituted porphyrin extra-ligands. In these complexes using steady-state and time-resolved (ps fluorescence and fs pump-probe) measurements pathways and efficiencies of the energy transfer photoinduced charge separation as well as exchange d-π effects have been studied in solutions of variable polarity at 77-293 K. The same principles of aggregation via the key-hole scheme "Zn-pyridyl" have been used also for the surface passivation of pyridylsubstituted tetrapyrroles on the coreshell semiconductor CdSe/ZnS quantum dots (QD) showing quantum confinement effects. Picosecond time-resolved and steady-state data reveal that CdSe/ZnS QD emission is multiexponential and the efficiency of its quenching by attached porphyrins (due to energy transfer and photoinduced charge separation) depends strongly on the number of anchoring groups their arrangement in the porphyrin molecule as well as on QD size and number of ZnS monolayers. The analysis of spectroscopic and kinetic findings reveals that on average only ~l/5 porphyrin molecules are assembled on the QD and a limited number of "vacancies" accessible for porphyrin attachment is available on the QD surface.

  10. Anisotropic organization and microscopic manipulation of self-assembling synthetic porphyrin microrods that mimic chlorosomes: bacterial light-harvesting systems.

    PubMed

    Chappaz-Gillot, Cyril; Marek, Peter L; Blaive, Bruno J; Canard, Gabriel; Bürck, Jochen; Garab, Gyozo; Hahn, Horst; Jávorfi, Tamás; Kelemen, Loránd; Krupke, Ralph; Mössinger, Dennis; Ormos, Pál; Reddy, Chilla Malla; Roussel, Christian; Steinbach, Gábor; Szabó, Milán; Ulrich, Anne S; Vanthuyne, Nicolas; Vijayaraghavan, Aravind; Zupcanova, Anita; Balaban, Teodor Silviu

    2012-01-18

    Being able to control in time and space the positioning, orientation, movement, and sense of rotation of nano- to microscale objects is currently an active research area in nanoscience, having diverse nanotechnological applications. In this paper, we demonstrate unprecedented control and maneuvering of rod-shaped or tubular nanostructures with high aspect ratios which are formed by self-assembling synthetic porphyrins. The self-assembly algorithm, encoded by appended chemical-recognition groups on the periphery of these porphyrins, is the same as the one operating for chlorosomal bacteriochlorophylls (BChl's). Chlorosomes, rod-shaped organelles with relatively long-range molecular order, are the most efficient naturally occurring light-harvesting systems. They are used by green photosynthetic bacteria to trap visible and infrared light of minute intensities even at great depths, e.g., 100 m below water surface or in volcanic vents in the absence of solar radiation. In contrast to most other natural light-harvesting systems, the chlorosomal antennae are devoid of a protein scaffold to orient the BChl's; thus, they are an attractive goal for mimicry by synthetic chemists, who are able to engineer more robust chromophores to self-assemble. Functional devices with environmentally friendly chromophores-which should be able to act as photosensitizers within hybrid solar cells, leading to high photon-to-current conversion efficiencies even under low illumination conditions-have yet to be fabricated. The orderly manner in which the BChl's and their synthetic counterparts self-assemble imparts strong diamagnetic and optical anisotropies and flow/shear characteristics to their nanostructured assemblies, allowing them to be manipulated by electrical, magnetic, or tribomechanical forces. © 2011 American Chemical Society

  11. Mesoscopic helical architectures via self-assembly of porphyrin-based discotic systems.

    PubMed

    Vela, Sonia; Berrocal, José Augusto; Atienza, Carmen; Meijer, E W; Martín, Nazario

    2017-04-06

    Mesoscopic super-helices with preferred helicity have been serendipitously formed from the self-assembly of electroactive extended core discotic molecules. The investigation at dilute concentrations reveals intramolecular hydrogen-bonding and π-π stacking interactions as the driving force of the chiral self-assembly at different length scales.

  12. Hydrodynamic Effects in Soft-matter Self-assembly: The Case of J-Aggregates of Amphiphilic Porphyrins.

    PubMed

    Ribo, Josep M; El-Hachemi, Zoubir; Arteaga, Oriol; Canillas, Adolf; Crusats, Joaquim

    2017-07-01

    Chiral J-aggregates of achiral amphiphilic porphyrins (4-sulfonatophenyl and aryl meso-substituted porphyrins) show several effects under the hydrodynamic forces of common stirring. These effects can be classified as pure mechanic (e. g. elasticity, plasticity and breaking of the self-assembly non-covalent bonding) and chemically selective as detected in the formation/growth of the nanoparticles. Diastereoselective, enantioselective and, depending on the sign of chiral shear forces, even enantiospecific selections have been described. Some types of these effects have been reported in other type of J-aggregates. Reversible and irreversible structural effects have been studied by atomic force imaging. The determination of the optical polarization properties (linear and circular) of their solutions is best done using Mueller matrix polarimetry methods. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development and characterization of a pressure-sensitive luminescent coating based on Pt(II)-porphyrin self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Sakamura, Y.; Suzuki, T.; Kawabata, S.

    2015-06-01

    A pressure-sensitive luminescent coating (PSLC) applicable to the visualization of pressure distributions in micro-scale flow devices was developed. Pt(II)-porphyrin was synthesized and covalently attached to the surface of indium tin oxide (ITO) glass plates by a self-assembled monolayer (SAM) process. The UV-visible absorption spectrum, pressure and temperature sensitivities and photostability of the PSLC were then measured to characterize the developed PSLC. It was found that (a) the chemisorption of the porphyrin did not greatly perturb the molecular orbitals of the porphyrin responsible for its photophysics, (b) the pressure dependency of the luminescent intensity of the PSLC obeyed a power function curve and the pressure sensitivities at 273, 293, 313 and 333 K were obtained in the pressure range from 5 to 120 kPa, (c) the luminescent intensity of the PSLC almost linearly decreased with temperature and the temperature sensitivities at 5, 40, 100 and 120 kPa evaluated in the temperature range from 273 to 333 K were -0.67, -0.72, -0.75 and -0.78%/K, respectively and (d) the decrease in the luminescent intensity of the PSLC after a 30 min exposure to an excitation light was 1.23% of its initial intensity and much smaller than that of Pt(II)-porphyrin absorbed on a TLC (thin-layer chromatography) sheet.

  14. Multilayer nanostructured porphyrin arrays constructed by layer-by-layer self-assembly.

    PubMed

    Smith, Arthur R G; Ruggles, Jeremy L; Yu, Aimin; Gentle, Ian R

    2009-09-01

    UV-vis absorption, atomic force microscopy (AFM), contact angle, and X-ray reflectivity experiments were performed on thin films deposited on crystalline silicon substrates as alternating layers of a porphyrin with anionic functionality, tetra-5,10,15,20-(4-sulfonatophenyl)porphine (TSPP) or the metalated version, Cu(II)TSPP, and the cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDDA). The films were made by dipping in alternating aqueous solutions containing film components (layer-by-layer deposition). Modeling of the X-ray reflectivity data revealed differences in the films' thickness depending on the method of film deposition. An unusual decrease in film thickness after each polyelectrolyte dip was also observed for films using TSSP. UV-vis measurements revealed that a similar amount of TSSP was included within films despite the method of formation. UV-vis measurements also revealed the presence of free-base, H-aggregate, and J-aggregate forms of the porphyrin after TSPP dipping, and the subsequent disappearance of the J-aggregate after dipping in the PDDA solution. A model of film formation was proposed on the basis of the concept of two different types of porphyrin aggregates being present after dipping in porphyrin solution. A layer of porphyrin molecules initially attach to the Si surface such that the planar molecules are arranged side by side as H-aggregates with an excess of J-aggregated material on top. The J-aggregate is then removed and replaced by a layer of PDDA. A change in contact angle of 14 degrees was observed between porphyrin and polyelectrolyte layers due to the more hydrophobic nature of the polymer. The presence of the J-aggregate was confirmed in AFM images obtained from the porphyrin layer. Exposure of the films to solutions of alternating pHs of 10 and 1.8 resulted in reproducible switching of the UV-vis spectra, indicating a possible sensing application.

  15. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine–phenylalanine motif

    PubMed Central

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K.; Anson, Christopher E.; Powell, Annie K.; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N.; Coles, Simon J.; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G.; Balaban, Teodor Silviu

    2016-01-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence. PMID:27582363

  16. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif.

    PubMed

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K; Anson, Christopher E; Powell, Annie K; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N; Coles, Simon J; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G; Balaban, Teodor Silviu

    2016-09-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.

  17. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif

    NASA Astrophysics Data System (ADS)

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K.; Anson, Christopher E.; Powell, Annie K.; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N.; Coles, Simon J.; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G.; Balaban, Teodor Silviu

    2016-09-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.

  18. Controlled perturbation of the thermodynamic equilibrium by microfluidic separation of porphyrin-based aggregates in a multi-component self-assembling system.

    PubMed

    Helmich, Floris; Meijer, E W

    2013-03-04

    In a microfluidic H-cell, a multi-component self-assembled system is brought out-of-equilibrium by changing the bimodal composition of porphyrin stacks and pyridine-capped dimers. Driven by their different diffusivities, diffusion-controlled separation in methylcyclohexane reveals different compositions when detected in-line and off-line, which demonstrates the kinetic behaviour of this metastable system. The microfluidic technique also proves to be highly equipped to determine diffusion constants of the different assemblies.

  19. Ionic self-assembled porphyrin-graphene composite for enhanced photocurrent response and electrochemical property

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Sun, Ruirui; Tang, Mingyi; Ren, Shi

    2017-02-01

    We have synthesized cationic mesa-tetra(4-pyridyl) porphine (TPyP)-reduced graphene oxide (RGO) hybrid structures through chemical reduction and subsequent ionic self-assembly. UV-vis spectroscopy, fluorescence emission spectroscopy and scanning and transmission electron microscopies are used to analyze the structures, which indicate that TPyP covalent bonds present between the double surface of RGO sheets. A reversible on/off photo-current density of 45.89 A/cm2 has been observed when the as-formed TPyP/RGO nanocomposite is placed in the environment of pulsed white-light illumination. In addition, an ultrasensitive electrochemical aptasensor could be fabricated by the as-prepared TPyP/RGO to detect thrombin. A linear response to thrombin has been observed with the as-formed electrochemical aptasensor in the concentration range of 1-1200 nM. Besides, the limitation of detection is determined to be 0.3 nM.

  20. Facile Fabrication and Photolectrochemical Properties of Porphyrin-Fullerene Assemblies by Self-Assembly and Surface Sol-Gel Processes

    NASA Astrophysics Data System (ADS)

    Akiyama, Tsuyoshi; Matsuoka, Ken‑ichi; Arakawa, Taichi; Kakutani, Keitaro; Miyazaki, Akinobu; Yamada, Sunao

    2006-04-01

    Ultrathin photoelectric conversion films consisting of a porphyrin-fullerene photoredox pair were fabricated by the combined use of room-temperature covalent-bonding and surface sol-gel processes. First, cysteamine was self-assembled on an indium-tin-oxide (ITO) electrode. The cysteamine-modified electrode was then immersed in C60 solution, giving immobilization of C60 via bond formation between the amino group of cysteamine and C60. Next, the C60-modified electrode was dipped in 2-ethanolamine solution to implant the hydroxy group to the immobilized C60 via the bond formation between C60 and the amino group; thus, the hydroxy group was exposed as the outermost layer. Then, Ti(OBu)4 and tetracarboxyporphyrin (TCPP) were alternately assembled on the C60 layer by the surface sol-gel process, to give an assembly of TCPP, titanium oxide species [Ti(O)], and C60 on the ITO electrode. The double layering of TCPP-Ti(O) was possible. The spectral characterization of the films was carried out. In the presence of sacrificial reagents, anodic photocurrents were generated from these modified electrodes. The incorporation of the C60 layer resulted in the substantial enhancement of the photocurrents as compared with that of the TCPP layer alone, suggesting effective electron-transfer reactions between TCPP and C60 that contribute to the photocurrent increase. The photocurrents increased by the double layering of the TCPP and Ti(O) layers.

  1. Construction of giant porphyrin macrorings self-assembled from thiophenylene-linked bisporphyrins for light-harvesting antennae.

    PubMed

    Fujisawa, Kaori; Satake, Akiharu; Hirota, Shun; Kobuke, Yoshiaki

    2008-01-01

    As a model of bacterial photosynthetic light-harvesting antenna, a large number of porphyrin units were organized into barrel-shaped macrorings. Two imidazolylporphyrinatozinc(II) molecules were linked through either unsubstituted thiophenes or 3,4-dioctylthiophenes 1 a and 1 b, respectively. These structures were spontaneously organized by complementary coordination of the imidazolyl to zinc and produced a series of self-assembled fluorescent polygonal macrorings under high dilution conditions. The ring size increased compared with previous m-phenylene examples. The size distribution was also controlled by the presence of octyl substituents. A wide distribution of macrorings from 7- to >15-mer was obtained from 1 a, whereas macrorings ranging from 7- to 11-mer with a maximum population focused at the 8-mer were formed with 1 b. The size distribution was governed by competition between entropy-favored, smaller-ring formation and the enthalpy-favored, less-strained larger macroring. The UV/Vis spectra showed a gradual redshift for the larger rings reflecting an increase in the transition dipole interactions.

  2. Self assembled films of porphyrins with amine groups at different positions: influence of their orientation on the corrosion inhibition and the electrocatalytic activity.

    PubMed

    Lokesh, Koodlur Sannegowda; De Keersmaecker, Michel; Adriaens, Annemie

    2012-06-26

    Self-assembled molecular films of two cobalt porphyrins with amine groups at different positions-(5,10,15,20-tetrakis-(2-aminophenyl) porphyrin-cobalt(II), [Co(II) (T(o-NH(2))PP)] and (5,10,15,20-tetrakis-(4-aminophenyl) porphyrin-cobalt(II), [Co(II)(T(p-NH(2))PP)]-were formed on a gold substrate. The functionalized surfaces were characterized using Raman spectroscopy, atomic force microscopy and electrochemical methods. Both modified gold surfaces completely mask the charge transfer of a [Fe(CN)(6)](3-/4-) redox couple in solution, indicating the layer is highly resistive in behavior. Electrochemical impedance spectroscopy analyses revealed that the porphyrin film with amine groups at ortho positions shows a higher charge-transfer resistance with a better protective behavior compared to the para position modified surface. Raman, AFM and EIS data suggests that an ortho amine positioned molecule forms a more compact layer compared to the para-positioned molecule. This can be explained in terms of their orientation on the gold surface. [Co(II)(T(o-NH(2))PP)] adopted a saddle shape orientation whereas [Co(II)(T(p-NH(2))PP)] adopted a flat orientation on the gold surface. The porphyrin modified gold electrode catalyzes the oxygen reduction at lower potentials compared to the bare gold electrode. The shift in the overvoltage was higher in case of molecules with flat orientation compared to the saddle shaped oriented porphyrin molecules on the surface.

  3. Structural reconstruction and spontaneous formation of Fe polynuclears: a self-assembly of Fe-porphyrin coordination chains on Au(111) revealed by scanning tunneling microscopy.

    PubMed

    Wang, Yuxu; Zhou, Kun; Shi, Ziliang; Ma, Yu-Qiang

    2016-06-07

    A self-assembled Fe-porphyrin coordination chain structure on a Au(111) surface is investigated by scanning tunneling microscopy (STM), revealing structural reconstruction resulting from an alternative change of molecular orientations and spontaneous formation of uniformly sized Fe polynuclears. The alternation of the molecular orientations is ascribed to the cooperation of the attractive coordination and the intermolecular steric repulsion as elucidated by high-resolution STM observations. Furthermore, chemical control experiments are carried out to determine the number of atoms in an Fe polynuclear, suggesting a tentative Fe dinuclear-module that serves not only as a coordination center to link porphyrin units together but also as a "dangling" site for further functionalization by a guest terpyridine ligand. The chain structure and the Fe polynuclears are stable up to 320 K as revealed by real-time STM scanning. Annealing at higher temperatures converts the chain structure into a two-dimensional coordination structure.

  4. Integration of photothermal therapy and synergistic chemotherapy by a porphyrin self-assembled micelle confers chemosensitivity in triple-negative breast cancer.

    PubMed

    Su, Shishuai; Ding, Yanping; Li, Yiye; Wu, Yan; Nie, Guangjun

    2016-02-01

    Triple-negative breast cancer is a malignant cancer type with a high risk of early recurrence and distant metastasis. Unlike other breast cancers, triple-negative breast cancer is lack of targetable receptors and, therefore, patients largely receive systemic chemotherapy. However, inevitable adverse effects and acquired drug resistance severely constrain the therapeutic outcome. Here we tailor-designed a porphyrin-based micelle that was self-assembled from a hybrid amphiphilic polymer comprising polyethylene glycol, poly (d, l-lactide-co-glycolide) and porphyrin. The bilayer micelles can be simultaneously loaded with two chemotherapeutic drugs with synergistic cytotoxicity and distinct physiochemical properties, forming a uniform and spherical nanostructure. The drug-loaded micelles showed a tendency to accumulate in the tumor and can be internalized by tumor cells for drug release in acidic organelles. Under near-infrared laser irradiation, high density of self-quenched porphyrins in the hydrophobic layer absorbed light efficiently and converted into an excited state, leading to the release of sufficient heat for photothermal therapy. The integration of localized photothermal effect and synergistic chemotherapy conferred great chemosensitivity to cancer cells and achieved tumor regression using about 1/10 of traditional drug dosage. As a result, chemotherapy-associated adverse effects were successfully avoided. Our present study established a novel porphyrin-based nanoplatform with photothermal activity and expanded drug loading capacity, providing new opportunities for challenging conventional chemotherapy and fighting against stubborn triple-negative breast cancer.

  5. A molecular photovoltaic system based on Dawson type polyoxometalate and porphyrin formed by layer-by-layer self assembly.

    PubMed

    Ahmed, Iftikhar; Farha, Rana; Goldmann, Michel; Ruhlmann, Laurent

    2013-01-18

    Films based on electrostatic interactions between tetracationic porphyrin and Dawson type polyoxometalate are formed by the so called layer-by-layer method. Their photovoltaic performances are investigated by photocurrent transient measurements which showed significant photocurrent response.

  6. Synthesis and surface self-assembly of [3]rotaxane-porphyrin conjugates: toward the development of a supramolecular surface tweezer for C60.

    PubMed

    Marois, Jean-Sébastien; Morin, Jean-François

    2008-10-07

    Surface immobilization of pristine C60 by supramolecular interactions is an attractive way to introduce C60 on surfaces since the pi-electron network and the electronic properties of C60 remain intact. Several hosts have been developed for surface complexation of C60. With few exceptions, the hosts reported to date are "electronically inert", limiting the potential applications of pristine C60-based devices. In this study, we present the synthesis and self-assembly of a potential tweezer-like host for C60 having a light-harvesting moiety and an electron-donating unit. More precisely, an azide-containing [3]rotaxane scaffold having ferrocene moieties as blocking group and thioctic acid as anchoring group for a gold surface has been synthesized. This [3]rotaxane has been self-assembled on gold in its protonated (NH2+) (1p) and neutral (NH) (1n) forms and characterized using electrochemistry, XPS, and contact angle measurements. The SAMs were functionalized with free-base and zinc porphyrin using copper-catalyzed 1,3-dipolar cycloaddition in optimized conditions. In combination with C60, this new host is expected to form a triad that could potentially be used as active building block in the preparation of nanostructured electrodes for photoelectrochemical application.

  7. Characterization of the self-assembly of meso-tetra(4-sulfonatophenyl)porphyrin (H(2)TPPS(4-)) in aqueous solutions.

    PubMed

    Hollingsworth, Javoris V; Richard, Allison J; Vicente, M Graça H; Russo, Paul S

    2012-01-09

    The aggregation of meso-tetra(4-sulfonatophenyl)porphyrin (H(2)TPPS(4-)) in phosphate solutions was investigated as a function of pH, concentration, time, ionic strength, and solution preparation (either from dilution of a freshly prepared 2 mM stock or by direct preparation of μM solution concentrations) using a combination of complementary analytical techniques. UV-vis and fluorescence spectroscopy indicated the formation of staggered, side-by-side (J-type) assemblies. Their size and self-associative behavior were determined using analytical ultracentrifugation and small-angle X-ray scattering. Our results indicate that in neutral and basic solutions of H(2)TPPS(4-), porphyrin dimers and trimers are formed at micromolar concentrations and in the absence of NaCl to screen any ionic interactions. At these low concentrations and pH 4, the protonated H(4)TPPS(2-) species self-assembles, leading to the formation of particularly stable aggregates bearing 25 ± 3 macrocycles. At higher concentrations, these structures further organize or reorganize into tubular, rod-like shapes of various lengths, which were imaged by cryogenic and freeze-fracture transmission electron microscopy. Micron-scale fibrillar aggregates were obtained even at micromolar concentrations at pH 4 when prepared from dilution of a 2 mM stock solution, upon addition of NaCl, or both.

  8. Conformation and electronic population transfer in membrane-supported self-assembled porphyrin dimers by 2D fluorescence spectroscopy.

    PubMed

    Perdomo-Ortiz, Alejandro; Widom, Julia R; Lott, Geoffrey A; Aspuru-Guzik, Alán; Marcus, Andrew H

    2012-09-06

    Two-dimensional fluorescence spectroscopy (2D FS) is applied to determine the conformation and femtosecond electronic population transfer in a dimer of magnesium meso tetraphenylporphyrin. The dimers are prepared by self-assembly of the monomer within the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. A theoretical framework to describe 2D FS experiments is presented, and a direct comparison is made between the observables of this measurement and those of 2D electronic spectroscopy (2D ES). The sensitivity of the method to varying dimer conformation is explored. A global multivariable fitting analysis of linear and 2D FS data indicates that the dimer adopts a "bent T-shaped" conformation. Moreover, the manifold of singly excited excitons undergoes rapid electronic dephasing and downhill population transfer on the time scale of ∼95 fs. The open conformation of the dimer suggests that its self-assembly is favored by an increase in entropy of the local membrane environment.

  9. Structure vs. excitonic transitions in self-assembled porphyrin nanotubes and their effect on light absorption and scattering.

    PubMed

    Arteaga, Oriol; Canillas, Adolf; El-Hachemi, Zoubir; Crusats, Joaquim; Ribó, Josep M

    2015-12-28

    The optical properties of diprotonated meso-tetrakis(4-sulphonatophenyl)porphyrin (TPPS(4)) J-aggregates of elongated thin particles (nanotubes in solution and ribbons when deposited on solid interfaces) are studied by different polarimetric techniques. The selective light extinction in these structures, which depends on the alignment of the nanoparticle with respect to the polarization of light, is contributed by excitonic absorption bands and by resonance light scattering. The optical response as a function of the polarization of light is complex because, although the quasi-one-dimensional structure confines the local fields along the nanotube axis, there are two orthogonal excitonic bands, of H- and J-character, that can work in favor of or against the field confinement. Results suggest that resonance light scattering is the dominant effect in solid state preparations, i.e. in collective groups (bundles) of ribbons but in diluted solutions, i.e. with isolated nanotubes, the absorption at the excitonic transitions remains dominant and linear dichroism spectra can be a direct probe of the exciton orientations. Therefore, by analyzing scattering and absorption data we can determine the alignment of the excitonic bands within the nanoparticle, i.e. of the orientation of the basic 2D porphyrin architecture in the nanoparticle. This is a necessary first step for understanding the directions of energy transport, charge polarization and non-linear optical properties in these materials.

  10. Cooperativity and tunable excited state deactivation: modular self-assembly of depsipeptide dendrons on a Hamilton receptor modified porphyrin platform.

    PubMed

    Gnichwitz, Jan-Frederik; Wielopolski, Mateusz; Hartnagel, Kristine; Hartnagel, Uwe; Guldi, Dirk M; Hirsch, Andreas

    2008-07-02

    A series of novel supramolecular architectures were built around a tin tetraphenyl porphyrin platform 6--functionalized by a 2-fold 1-ethyl-3-3-(3-dimethylaminopropyl)carbodiimide (EDC) promoted condensation reaction--and chiral depsipeptide dendrons of different generations 1-4. Here, implementation of a Hamilton receptor provided the necessary means to keep the constituents together via strong hydrogen bonding. Characterization of all architectures has been performed, including 4 which is the fourth generation, on the basis of NMR and photophysical methods. In particular, several titration experiments were conducted suggesting positive cooperativity, an assessment that is based on association constants that tend to be higher for the second binding step than for the first step. Importantly, molecular modeling calculations reveal a significant deaggregation of the intermolecular network of 6 during the course of the first binding step. As a consequence, an improved accessibility of the second Hamilton receptor unit in 6 emerges and, in turn, facilitates the higher association constants. The features of the equilibrium, that is, the dynamic exchange of depsipeptide dendrons 1-4 with fullerene 5, was tested in photophysical reference experiments. These steady-state and time-resolved measurements showed the tunable excited-state deactivations of these complexes upon photoexcitation.

  11. Morphology-controlled self-assembled nanostructures of 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction.

    PubMed

    Gao, Yingning; Zhang, Xiaomei; Ma, Changqin; Li, Xiyou; Jiang, Jianzhuang

    2008-12-17

    Novel metal-free 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin H2[DP(CH3COSC5H10O)2P] (1) and its zinc congener Zn[DP(CH3COSC5H10O)2P] (2) were designed and synthesized. Single-crystal X-ray diffraction (XRD) analysis confirmed the tetrapyrrole nature of these two compounds, revealing the existence of metal-ligand coordination bond between the carbonyl oxygen in the aryloxy side chain of meso-attached phenyl group in the porphyrin molecule with the zinc center of neighboring porphyrin molecule in the crystal structure of 2. This intermolecular Zn-O coordination bond induces the formation of a supramolecular chain structure in which the porphyrinato zinc moieties are arranged in a "head-to-tail" mode (J-aggregate), which is in contrast to a "face-to-face" stacking mode (H-aggregate) in the supramolecular structure formed depending on the C-H...pi interaction in the crystal of 1. Their self-assembling properties in MeOH and n-hexane were comparatively investigated by scanning electronic microscopy and XRD technique. Intermolecular pi-pi interaction of metal-free porphyrin 1 leads to the formation of hollow nanospheres and nanoribbons in MeOH and n-hexane, respectively. In contrast, introduction of additional Zn-O coordination bond for porphyrinato zinc complex 2 induces competition with intermolecular pi-pi interaction, resulting in nanostructures with nanorod and hollow nanosphere morphology in MeOH and n-hexane. The IR and XRD results clearly reveal the presence and absence of such metal-ligand coordination bond in the nanostructures formed from porphyrinato zinc complex 2 and metal-free porphyrin 1, respectively, which is further unambiguously confirmed by the single-crystal XRD analysis result for both compounds. Electronic absorption spectroscopic data on the self-assembled nanostructures reveal the H-aggregate nature in the hollow nanospheres and nanoribbons formed from metal-free porphyrin 1 due to the pi-pi intermolecular interaction between porphyrin

  12. Fluorescence-Lifetime Imaging and Super-Resolution Microscopies Shed Light on the Directed- and Self-Assembly of Functional Porphyrins onto Carbon Nanotubes and Flat Surfaces.

    PubMed

    Mao, Boyang; Calatayud, David G; Mirabello, Vincenzo; Kuganathan, Navaratnarajah; Ge, Haobo; Jacobs, Robert M J; Shepherd, Ashley M; Ribeiro Martins, José A; Bernardino De La Serna, Jorge; Hodges, Benjamin J; Botchway, Stanley W; Pascu, Sofia I

    2017-07-21

    Functional porphyrins have attracted intense attention due to their remarkably high extinction coefficients in the visible region and potential for optical and energy-related applications. Two new routes to functionalised SWNTs have been established using a bulky Zn(II) -porphyrin featuring thiolate groups at the periphery. We probed the optical properties of this zinc(II)-substituted, bulky aryl porphyrin and those of the corresponding new nano-composites with single walled carbon nanotube (SWNTs) and coronene, as a model for graphene. We report hereby on: i) the supramolecular interactions between the pristine SWNTs and Zn(II) -porphyrin by virtue of π-π stacking, and ii) a novel covalent binding strategy based on the Bingel reaction. The functional porphyrins used acted as dispersing agent for the SWNTs and the resulting nanohybrids showed improved dispersibility in common organic solvents. The synthesized hybrid materials were probed by various characterisation techniques, leading to the prediction that supramolecular polymerisation and host-guest functionalities control the fluorescence emission intensity and fluorescence lifetime properties. For the first time, XPS studies highlighted the differences in covalent versus non-covalent attachments of functional metalloporphyrins to SWNTs. Gas-phase DFT calculations indicated that the Zn(II) -porphyrin interacts non-covalently with SWNTs to form a donor-acceptor complex. The covalent attachment of the porphyrin chromophore to the surface of SWNTs affects the absorption and emission properties of the hybrid system to a greater extent than in the case of the supramolecular functionalisation of the SWNTs. This represents a synthetic challenge as well as an opportunity in the design of functional nanohybrids for future sensing and optoelectronic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Porphyrins

    NASA Astrophysics Data System (ADS)

    Gotelli, George R.; Wall, Jeffrey H.; Kabra, Pokar M.; Marton, Laurence J.

    Historically the term porphyria has been used since it was coined in 1871 to describe a purple colored material extracted from pathological feces (1). The first case of porphyria was reported in 1874, (2, 3), but until the 1930 Nobel Prize winning work of Hans Fischer on the synthesis of protoporphyrin, there was little more than academic interest in porphyrin analysis. During the forty years between 1930 and 1970, the biosynthetic pathways leading to the formation of heme, and the details of porphyrin metabolism, were elucidated. During this time quantitative methods for porphyrins in biological fluids used complex and laborious solvent extraction techniques, requiring large sample volumes and hours to complete. We now know that these methods only partially separated the complex mixture of porphyrins found in biological fluids. These solvent extraction procedures fractionated the porphyrins into two broad groups, uroporphyrins (octacarboxylic) and coproporphyrins (tetracarboxylic). However, intermediate carboxylated porphyrin containing 2, 3, 5, 6, and 7 carboxyl groups are now known to exist in normal and pathlogical excreta, which were not differentiated, but which were included in the two broad uroporphyrin and copropophyrin groups.

  14. Star-shaped poly(L-lactide)-b-poly(lactobionamidoethyl methacrylate) with porphyrin core: synthesis, self-assembly, singlet oxygen research and recognition properties.

    PubMed

    Dai, Xiao-Hui; Wang, Zhi-Ming; Pan, Jian-Ming; Yuan, Si-Song; Yan, Yong-sheng; Liu, Dong-Ming; Sun, Lin

    2014-01-01

    Star-shaped porphyrin-cored poly(L-lactide)-b-poly(lactobionamidoethyl methacrylate) block copolymers (SPPLA-b-PLAMA) were synthesized via RAFT of unprotected Lactobionamidoethyl methacrylate (LAMA) in 1-methyl-2-pyrrolidinone (NMP) solution at 70 °C. The structure of this as-synthesized SPPLA-b-PLAMA block copolymer was thoroughly studied by nuclear magnetic resonance spectroscopy, gel permeation chromatography (GPC), and Fourier transforms infrared. Moreover, under the irradiation, such SPPLA-b-PGAMA copolymer exhibits efficient singlet oxygen generation (0.17) and indicates high fluorescence quantum yields (0.20). Notably, with UV-vis investigation, SPPLA-b-PLAMA showed a very specific recognition with RCA120 lectin. This will not only provide potentially prophyrin-cored star-shaped SPPLA-b-PLAMA block copolymers for targeted photodynamic therapy, but also improve the physical, biodegradation, biocompatibility properties of PLA-based biomaterials.

  15. Interplay of hydrogen bonding and molecule-substrate interaction in self-assembled adlayer structures of a hydroxyphenyl-substituted porphyrin

    NASA Astrophysics Data System (ADS)

    Smykalla, Lars; Shukrynau, Pavel; Mende, Carola; Rüffer, Tobias; Lang, Heinrich; Hietschold, Michael

    2014-10-01

    The formation of hydrogen-bonded organic nano-structures and the role of the substrate lattice thereby were investigated by scanning tunneling microscopy. The self-organization of 5,10,15,20-tetra(p-hydroxyphenyl)porphyrin (H2THPP) molecules leads to two molecular arrangements on Au(111). One of these is characterized by pair-wise hydrogen bonding between hydroxyl groups and a low packing density which enables a rotation of individual molecules in the structure. A different interaction with stronger chain-like hydrogen bonding and additional interactions of phenyl groups was observed for the second structure. The influence of the substrate on the epitaxial behavior is demonstrated by the adsorption of H2THPP on the highly anisotropic Ag(110) substrate. There, several balances between the occupation of favorable adsorption positions and the number of hydrogen bonds per molecule were found. The molecules form molecular chains on Ag(110) and also assemble into two-dimensional periodic arrangements of differently sized close-packed blocks similar to the second type of supramolecular ordering found on Au(111). Dispersion corrected Density Functional Theory calculations were applied to understand the adsorption and complex epitaxy of these molecules. It is shown that the azimuthal orientation of the saddle-shape deformed molecule plays an important role not only for the intermolecular but also for the molecule-substrate interaction.

  16. Porphyrins

    DOEpatents

    Wijesekera, Tilak; Lyons, James E.; Ellis, Jr., Paul E.

    1996-01-01

    The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.

  17. Porphyrins

    DOEpatents

    Wijesekera, T.; Lyons, J.E.; Ellis, P.E. Jr.

    1996-11-05

    The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided. The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.

  18. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  19. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  20. Photovoltaic self-assembly.

    SciTech Connect

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  1. Synthesis of porphyrin nanostructures

    DOEpatents

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  2. Hierarchical cooperative binary ionic porphyrin nanocomposites.

    PubMed

    Tian, Yongming; Busani, Tito; Uyeda, Gregory H; Martin, Kathleen E; van Swol, Frank; Medforth, Craig J; Montaño, Gabriel A; Shelnutt, John A

    2012-05-18

    Cooperative binary ionic (CBI) solids comprise a versatile new class of opto-electronic and catalytic materials consisting of ionically self-assembled pairs of organic anions and cations. Herein, we report CBI nanocomposites formed by growing nanoparticles of one type of porphyrin CBI solid onto a second porphyrin CBI substructure with complementary functionality.

  3. Self-assembled photosynthesis-inspired light harvesting material and solar cells containing the same

    DOEpatents

    Lindsey, Jonathan S.; Chinnasamy, Muthiah; Fan, Dazhong

    2009-12-15

    A solar cell is described that comprises: (a) a semiconductor charge separation material; (b) at least one electrode connected to the charge separation material; and (c) a light-harvesting film on the charge separation material, the light-harvesting film comprising non-covalently coupled, self-assembled units of porphyrinic macrocycles. The porphyrinic macrocycles preferably comprise: (i) an intramolecularly coordinated metal; (ii) a first coordinating substituent; and (iii) a second coordinating substituent opposite the first coordinating substituent. The porphyrinic macrocycles can be assembled by repeating intermolecular coordination complexes of the metal, the first coordinating substituent and the second coordinating substituent.

  4. Self-assembly via microfluidics.

    PubMed

    Wang, Lei; Sánchez, Samuel

    2015-12-07

    The self-assembly of amphiphilic building blocks has attracted extensive interest in myriad fields in recent years, due to their great potential in the nanoscale design of functional hybrid materials. Microfluidic techniques provide an intriguing method to control kinetic aspects of the self-assembly of molecular amphiphiles by the facile adjustment of the hydrodynamics of the fluids. Up to now, there have been several reports about one-step direct self-assembly of different building blocks with versatile and multi-shape products without templates, which demonstrated the advantages of microfluidics. These assemblies with different morphologies have great applications in various areas such as cancer therapy, micromotor fabrication, and controlled drug delivery.

  5. Self-assembling amphiphilic peptides†

    PubMed Central

    Dehsorkhi, Ashkan; Castelletto, Valeria; Hamley, Ian W

    2014-01-01

    The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined. © 2014 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons, Ltd. PMID:24729276

  6. Controlling porphyrin nanoarchitectures at solid interfaces.

    PubMed

    Hill, Jonathan P; Xie, Yongshu; Akada, Misaho; Wakayama, Yutaka; Shrestha, Lok Kumar; Ji, Qingmin; Ariga, Katsuhiko

    2013-06-18

    Two complementary examples of porphyrin nanoarchitectonics are presented. The fabrication of binary molecular monolayers using two different porphyrin molecules, tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)porphyrin (1) and tetrakis(4-pyridyl)porphyrin (2), by deposition in ultrahigh vacuum was demonstrated. Two unusual heteromolecular monolayer structures were observed, with one exhibiting good separation of 1 molecules within the monolayer. Also, a synthetic nanoarchitectonic approach was used to prepare self-assembled molecular nanowires at a mica substrate. The nanowires could be observed to grow using atomic force microscopy (AFM), and the network structures of the nanowires could be influenced by manipulation using the AFM probe tip.

  7. Self-assembled magnetocapillary swimmers

    NASA Astrophysics Data System (ADS)

    Hubert, Maxime; Lumay, Geoffroy; Weyer, Floriane; Obara, Noriko; Vandewalle, Nicolas

    2013-11-01

    Capillary driven self-assembly consists of suspending small objects at a water-air interface. Due to the effects of wetting, gravity and surface tension, the interface is slightly deformed, inducing a net force between the particles. In the experiments we present, we consider the presence of a vertical magnetic field acting on soft-ferromagnetic particles. Dipole-dipole repulsion competes with capillary attraction such that 2d ordered structures are self-assembling. By adding a secondary horizontal and oscillating magnetic field, periodic deformations of the assembly are induced. Pulsating particle arrangements start to swim, either translating or rotating. The physical mechanisms and geometrical ingredients behind this cooperative locomotion are identified. Furthermore, strategies to control the swimming dynamics are proposed.

  8. Multifunctional self-assembled monolayers

    SciTech Connect

    Zawodzinski, T.; Bar, G.; Rubin, S.; Uribe, F.; Ferrais, J.

    1996-06-01

    This is the final report of at three year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The specific goals of this research project were threefold: to develop multifunctional self-assembled monolayers, to understand the role of monolayer structure on the functioning of such systems, and to apply this knowledge to the development of electrochemical enzyme sensors. An array of molecules that can be used to attach electrochemically active biomolecules to gold surfaces has been synthesized. Several members of a class of electroactive compounds have been characterized and the factors controlling surface modification are beginning to be characterized. Enzymes have been attached to self-assembled molecules arranged on the gold surface, a critical step toward the ultimate goal of this project. Several alternative enzyme attachment strategies to achieve robust enzyme- modified surfaces have been explored. Several means of juxtaposing enzymes and mediators, electroactive compounds through which the enzyme can exchange electrons with the electrode surface, have also been investigated. Finally, the development of sensitive biosensors based on films loaded with nanoscale-supported gold particles that have surface modified with the self-assembled enzyme and mediator have been explored.

  9. Self-assembled plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Mühlig, Stefan; Cunningham, Alastair; Dintinger, José; Scharf, Toralf; Bürgi, Thomas; Lederer, Falk; Rockstuhl, Carsten

    2013-07-01

    Nowadays for the sake of convenience most plasmonic nanostructures are fabricated by top-down nanofabrication technologies. This offers great degrees of freedom to tailor the geometry with unprecedented precision. However, it often causes disadvantages as well. The structures available are usually planar and periodically arranged. Therefore, bulk plasmonic structures are difficult to fabricate and the periodic arrangement causes undesired effects, e.g., strong spatial dispersion is observed in metamaterials. These limitations can be mitigated by relying on bottom-up nanofabrication technologies. There, self-assembly methods and techniques from the field of colloidal nanochemistry are used to build complex functional unit cells in solution from an ensemble of simple building blocks, i.e., in most cases plasmonic nanoparticles. Achievable structures are characterized by a high degree of nominal order only on a short-range scale. The precise spatial arrangement across larger dimensions is not possible in most cases; leading essentially to amorphous structures. Such self-assembled nanostructures require novel analytical means to describe their properties, innovative designs of functional elements that possess a desired near- and far-field response, and entail genuine nanofabrication and characterization techniques. Eventually, novel applications have to be perceived that are adapted to the specifics of the self-assembled nanostructures. This review shall document recent progress in this field of research. Emphasis is put on bottom-up amorphous metamaterials. We document the state-of-the-art but also critically assess the problems that have to be overcome.

  10. Self-Organized Porphyrinic Materials

    PubMed Central

    Drain, Charles Michael; Varotto, Alessandro; Radivojevic, Ivana

    2009-01-01

    The self-assembly and self-organization of porphyrins and related macrocycles enables the bottom-up fabrication of photonic materials for fundamental studies of the photophysics of these materials and for diverse applications. This rapidly developing field encompasses a broad range of disciplines including molecular design and synthesis, materials formation and characterization, and the design and evaluation of devices. Since the self-assembly of porphyrins by electrostatic interactions in the late 1980s to the present, there has been an ever increasing degree of sophistication in the design of porphyrins that self-assemble into discrete arrays or self-organize into polymeric systems. These strategies exploit ionic interactions, hydrogen bonding, coordination chemistry, and dispersion forces to form supramolecular systems with varying degrees of hierarchical order. This review concentrates on the methods to form supramolecular porphyrinic systems by intermolecular interactions other than coordination chemistry, the characterization and properties of these photonic materials, and the prospects for using these in devices. The review is heuristically organized by the predominant intermolecular interactions used and emphasizes how the organization affects properties and potential performance in devices. PMID:19253946

  11. Controlling guest-host interactions in self-assembled materials

    NASA Astrophysics Data System (ADS)

    Steinbeck, Christian Alexander

    Aqueous solutions of self-assembling macromolecules can be found in many industrial formulations, as well as in many living organisms. Regardless of the specific system, the self-assembling macromolecules are rarely found in the absence of other solutes or guest species. Such components may include fragrance molecules incorporated into block-copolymer micelles for use in detergents, dyes included in micellar precursor solutions for the synthesis of mesostructured silica-block copolymer composites, or specifically designed additives for controlling protein folding and activity. A detailed understanding of the structures and dynamic molecular interactions among the various species in solution and their influences on macromolecule aggregation and phase behaviors is of paramount importance for designing systems with improved properties and performance. Unambiguous measurements of the loci of interaction and solubilization of small molecule species (e.g., dyes or surfactants) within self-assembling block-copolymer species or proteins in aqueous solutions have been established. This has been achieved by exploiting powerful correlative multidimensional nuclear magnetic resonance (NMR) spectroscopy techniques, including pulsed-field-gradient diffusion measurements, which provide detailed molecular insights into a variety of heterogeneous self-assembled systems. Furthermore, these insights and measurements enable the solution conditions to be established that permit the control and release of such guest molecules from association with macromolecular carrier species into the surrounding solution. Specifically, the use of temperature to control the distribution of porphyrin guest-species in a block-copolymer host and the light-dependent folding and unfolding of bovine serum albumin through varying interactions with an azo-benzene functionalized surfactant are demonstrated. In the absence of long-range order in these complex systems, advanced NMR spectroscopy methods provide

  12. Self-assembling magnetic "snakes"

    SciTech Connect

    2010-01-01

    Nickel particles float peacefully in a liquid medium until a giant snake seems to swim by and snatch several particles up, adding to its own mass. The self-assembled "snakes" act like biological systems, but they are not alive and are driven by a magnetic field. The research may someday offer some insight into the organization of life itself. Read more at Wired: http://www.wired.com/wiredscience/2009/03/snakes/ Research and video by Alex Snezhko and Igor Aronson, Argonne National Laboratory.

  13. Self-assembled nanostructured metamaterials

    NASA Astrophysics Data System (ADS)

    Ponsinet, Virginie; Baron, Alexandre; Pouget, Emilie; Okazaki, Yutaka; Oda, Reiko; Barois, Philippe

    2017-07-01

    The concept of metamaterials emerged in the years 2000 with the achievement of artificial structures enabling nonconventional propagation of electromagnetic waves, such as negative phase velocity or negative refraction. The electromagnetic response of metamaterials is generally based on the presence of optically resonant elements —or meta-atoms— of sub-wavelength size and well-designed morphology so as to provide the desired electric and magnetic optical properties. Top-down technologies based on lithography techniques have been intensively used to fabricate a variety of efficient electric and magnetic resonators operating from microwave to visible light frequencies. However, the technological limits of the top-down approach are reached in visible light where a huge number of nanometre-sized elements is required. We show here that the bottom-up fabrication route based on the combination of nanochemistry and the self-assembly methods of colloidal physics provide an excellent alternative for the large-scale synthesis of complex meta-atoms, as well as for the fabrication of 2D and 3D samples exhibiting meta-properties in visible light. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  14. Self-assembling RNA square

    SciTech Connect

    Dibrov, Sergey M.; McLean, Jaime; Parsons, Jerod; Hermann, Thomas

    2011-12-22

    The three-dimensional structures of noncoding RNA molecules reveal recurring architectural motifs that have been exploited for the design of artificial RNA nanomaterials. Programmed assembly of RNA nanoobjects from autonomously folding tetraloop-receptor complexes as well as junction motifs has been achieved previously through sequence-directed hybridization of complex sets of long oligonucleotides. Due to size and complexity, structural characterization of artificial RNA nanoobjects has been limited to low-resolution microscopy studies. Here we present the design, construction, and crystal structure determination at 2.2 {angstrom} of the smallest yet square-shaped nanoobject made entirely of double-stranded RNA. The RNA square is comprised of 100 residues and self-assembles from four copies each of two oligonucleotides of 10 and 15 bases length. Despite the high symmetry on the level of secondary structure, the three-dimensional architecture of the square is asymmetric, with all four corners adopting distinct folding patterns. We demonstrate the programmed self-assembly of RNA squares from complex mixtures of corner units and establish a concept to exploit the RNA square as a combinatorial nanoscale platform.

  15. Self-assembled controllable microswimmers

    NASA Astrophysics Data System (ADS)

    Grosjean, Galien; Lagubeau, Guillaume; Darras, Alexis; Lumay, Geoffroy; Hubert, Maxime; Vandewalle, Nicolas

    2015-11-01

    Because they cause a deformation of the interface, floating particles interact. In particular, identical particles attract each other. To counter this attraction, particles possessing a large magnetic moment m-> are used. When m-> is perpendicular to the surface, dipole-dipole interaction is repulsive. This competition of forces can lead to the spontaneous formation of organized structures. By using submillimetric steel spheres for which m-> ~ B-> , interdistances in the system can be precisely tuned. Here, we deform these self-assemblies by adding a horizontal contribution m-> to the magnetic moment. Time reversal symmetry is broken in the system, leading to locomotion at low Reynolds number. Moreover, swimming direction depends on the orientation of field, meaning that swimming trajectories can be finely controlled. A model allows to understand the breaking of symmetry, while a study of the vibration modes gives further informations on the dynamics of this sytem. Because this system forms by self-assembly, it allows miniaturization with applications such as cargo transport or solvent flows. It is highly versatile, being composed of simple passive particles and controlled by magnetic fields.

  16. Chemical reactions directed Peptide self-assembly.

    PubMed

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  17. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  18. Self-organization of self-assembled photonic materials into functional devices: Photo-switched conductors

    PubMed Central

    Drain, Charles Michael

    2002-01-01

    Linear porphyrin arrays self-assembled by either hydrogen bonding or metal ion coordination self-organize into lipid bilayer membranes. The length of the transmembrane assemblies is determined both by the thermodynamics of the intermolecular interactions in the supermolecule and by the dimension and physical chemical properties of the bilayer. Thus, the size of the porphyrin assembly can self-adjust to the thickness of the bilayer. An aqueous electron acceptor is placed on one side of the membrane and an electron donor is placed on the opposite side. When illuminated with white light, substantial photocurrents are observed. Only the assembled structures give rise to the photocurrent, as no current is observed from any of the component molecules. The fabrication of this photogated molecular electronic conductor from simple molecular components exploits several levels of self-assembly and self-organization. PMID:11943850

  19. Crystal engineering of porphyrin framework solids.

    PubMed

    Goldberg, Israel

    2005-03-14

    This article describes recent achievements made by us and other groups in targeted synthesis of porphyrin-based framework solids by various non-covalent mechanisms of molecular recognition. The self-assembly processes are effected in a tunable manner either by direct association of suitably designed porphyrin building blocks, or by their supramolecular aggregation through external linkers as metal ions and organic bi-dentate ligands. Many of these crystalline porphyrin materials exhibit open architectures and remarkable structural integrity, and their potential application for selective guest storage and molecular sieving is highlighted.

  20. Self-Assembly: How Nature Builds

    ERIC Educational Resources Information Center

    Jones, M. Gail; Falvo, Michael R.; Broadwell, Bethany; Dotger, Sharon

    2006-01-01

    Self-assembly or spontaneous assembly is a process in which materials build themselves without assistance. This process plays a central role in the construction of biological structures and materials such as cells, viruses, and bone, and also in abiotic processes like phase transitions and crystal formation. The principles of self-assembly help…

  1. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  2. Self-Assembly: How Nature Builds

    ERIC Educational Resources Information Center

    Jones, M. Gail; Falvo, Michael R.; Broadwell, Bethany; Dotger, Sharon

    2006-01-01

    Self-assembly or spontaneous assembly is a process in which materials build themselves without assistance. This process plays a central role in the construction of biological structures and materials such as cells, viruses, and bone, and also in abiotic processes like phase transitions and crystal formation. The principles of self-assembly help…

  3. Research on Self-Assembling Quantum Dots.

    DTIC Science & Technology

    1995-10-30

    0K. in a second phase of this contract we turned our efforts to the fabrication and studies of self assembled quantum dots . We first demonstrated a...method for producing InAs-GasAs self assembled quantum dots (SAD) using MBE. (AN)

  4. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  5. Integrated Nanosystems Templated by Self-assembled Virus Capsids

    NASA Astrophysics Data System (ADS)

    Stephanopoulos, Nicholas

    This dissertation presents the synthesis and modeling of multicomponent nanosystems templated by self-assembled virus capsids. The design principles, synthesis, analysis, and future directions for these capsid-based materials are presented. Chapter 1 gives an overview of the literature on the application of virus capsids in constructing nanomaterials. The uses of capsids in three main areas are considered: (1) as templates for inorganic materials or nanoparticles; (2) as vehicles for biological applications like medical imaging and treatment; and (3) as scaffolds for catalytic materials. In light of this introduction, an overview of the material in this dissertation is described. Chapters 2-4 all describe integrated nanosystems templated by bacteriophage MS2, a spherical icosahedral virus capsid. MS2 possesses an interior and exterior surface that can be modified orthogonally using bioconjugation chemistry to create multivalent, multicomponent constructs with precise localization of components attached to the capsid proteins. Chapter 2 describes the use of MS2 to synthesize a photocatalytic construct by modifying the internal surface with sensitizing chromophores and the external surface with a photocatalytic porphyrin. The chromophores absorbed energy that the porphyrin could not, and transferred it to the porphyrin via FRET through the protein shell. The porphyrin was then able to utilize the energy to carry out photocatalysis at new wavelengths. In Chapter 3, porphyrins were installed on the interior surface of MS2 and DNA aptamers specific for Jurkat leukemia T cells on the exterior surface. The dual-modified capsids were able to bind to Jurkat cells, and upon illumination the porphyrins generated singlet oxygen to kill them selectively over non-targeted cells. Chapter 4 explores integrating MS2 with DNA origami in order to arrange the capsids at larger length scales. Capsids modified with fluorescent dyes inside and single-stranded DNA outside were able to

  6. Molecular Self-Assembly at Metal-Electrolyte Interfaces

    PubMed Central

    Phan, Thanh Hai; Wandelt, Klaus

    2013-01-01

    The self-assembly of molecular layers has become an important strategy in modern design of functional materials. However, in particular, large organic molecules may no longer be sufficiently volatile to be deposited by vapor deposition. In this case, deposition from solution may be a promising route; in ionic form, these molecules may even be soluble in water. In this contribution, we present and discuss results on the electrochemical deposition of viologen- and porphyrin molecules as well as their co-adsorption on chloride modified Cu(100) and Cu(111) single crystal electrode surfaces from aqueous acidic solutions. Using in situ techniques like cyclic voltametry and high resolution scanning tunneling microscopy, as well as ex-situ photoelectron spectroscopy data the highly ordered self-assembled organic layers are characterized with respect to their electrochemical behavior, lateral order and inner conformation as well as phase transitions thereof as a function of their redox-state and the symmetry of the substrate. As a result, detailed structure models are derived and are discussed in terms of the prevailing interactions. PMID:23439555

  7. Protein self-assembly via supramolecular strategies.

    PubMed

    Bai, Yushi; Luo, Quan; Liu, Junqiu

    2016-05-21

    Proteins, as the elemental basis of living organisms, mostly execute their biological tasks in the form of supramolecular self-assemblies with subtle architectures, dynamic interactions and versatile functionalities. Inspired by the structural harmony and functional beauty of natural protein self-assemblies to fabricate sophisticated yet highly ordered protein superstructures represents an adventure in the pursuit of nature's supreme wisdom. In this review, we focus on building protein self-assembly systems based on supramolecular strategies and classify recent progress by the types of utilized supramolecular driving forces. Especially, the design strategy, structure control and the thermodynamic/kinetic regulation of the self-assemblies, which will in turn provide insights into the natural biological self-assembly mechanism, are highlighted. In addition, recently, this research field is starting to extend its interest beyond constructing complex morphologies towards the potential applications of the self-assembly systems; several attempts to design functional protein complexes are also discussed. As such, we hope that this review will provide a panoramic sketch of the field and draw a roadmap towards the ultimate construction of advanced protein self-assemblies that even can serve as analogues of their natural counterparts.

  8. Self-Assembly of Biomolecular Soft Matter

    PubMed Central

    Zha, R. Helen; Palmer, Liam C.; Cui, Honggang; Bitton, Ronit

    2014-01-01

    Self-assembly programmed by molecular structure and guided dynamically by energy dissipation is a ubiquitous phenomenon in biological systems that build functional structures from the nanoscale to macroscopic dimensions. This paper describes examples of one-dimensional self-assembly of peptide amphiphiles and the consequent biological functions that emerge in these systems. We also discuss here hierarchical self-assembly of supramolecular peptide nanostructures and polysaccharides, and some new results are reported on supramolecular crystals formed by highly charged peptide amphiphiles. Reflecting on presentations at this Faraday Discussion, the paper ends with a discussion of some of the future opportunities and challenges of the field. PMID:24611266

  9. Self-Assembly Behavior of Pullulan Abietate

    NASA Astrophysics Data System (ADS)

    Gradwell, Sheila; Esker, Alan; Glasser, Wolgang; Heinze, Thomas

    2003-03-01

    Wood is one of nature's most fascinating biological composites due to its toughness and resistance to fracture properties. These properties stem from the self-assembly of cellulose microfibrils in an amorphous matrix of hemicellulose and lignin. In recent years, science has looked to nature for guidance in preparing synthetic materials with desirable physical properties. In order to study the self-assembly process in wood, a model system composed of a polysaccharide, pullulan abietate, and a biomimetic cellulose substrate prepared by the Langmuir-Blodgett technique has been developed. Interfacial tension and surface plasmon resonance measurements used to study the self-assembly process will be discussed for different pullulan derivatives.

  10. Self-assembling nanoparticles into holographic nanopatterns

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Heon; Diana, Frédéric S.; Badolato, Antonio; Petroff, Pierre M.; Kramer, Edward J.

    2004-05-01

    We demonstrate a method to self-assemble metal nanoparticles into two-dimensional lattices. Monodisperse cobalt nanoparticles were synthesized within inverse micelles of polystyrene-block-poly(2-vinylpyridine) copolymer in toluene. A periodic hole pattern of photoresist (PR) was fabricated on a GaAs substrate by holographic lithography. The nanoparticles as prepared above were self-assembled onto the PR nanopatterns by dip or spin casting. They were selectively positioned in the holes due to the capillary forces related to the pattern geometry. Our study reveals that self-assembled nanoparticles in two-dimensional lattices can be obtained with a controllable number of particles per lattice point.

  11. Computational design of protein self-assembly.

    PubMed

    Norn, Christoffer H; André, Ingemar

    2016-08-01

    Protein self-assembly is extensively used in nature to build functional biomolecules and provides a general approach to design molecular complexes with many intriguing applications. Although computational design of protein-protein interfaces remains difficult, much progress has recently been made in de novo design of protein assemblies with cyclic, helical, cubic, internal and lattice symmetries. Here, we discuss some of the underlying biophysical principles of self-assembly that influence the design problem and highlight methodological advances that have made self-assembly design a fruitful area of protein design.

  12. Characterization of mesoscale coiled-coil peptide-porphyrin complexes.

    PubMed

    Pepe-Mooney, Brian J; Kokona, Bashkim; Fairman, Robert

    2011-12-12

    Photoelectronically conductive self-assembling peptide-porphyrin assemblies have great potential in their use as biomaterials, owing largely to their environmentally responsive properties. We have successfully designed a coiled-coil peptide that can self-assemble to form mesoscale filaments and serve as a scaffold for porphyrin interaction. In our earlier work, peptide-porphyrin-based biomaterials were formed at neutral pH, but the structures were irregular at the nano- to microscale size range, as judged by atomic force microscopy. We identified a pH in which mesoscale fibrils were formed, taking advantage of the types of porphyrin interactions that are present in well-characterized J-aggregates. We used UV-visible spectroscopy, circular dichroism spectropolarimetry, fluorescence spectroscopy, and atomic force microscopy to characterize these self-assembling biomaterials. We propose a new assembly paradigm that arises from a set of unique porphyrin-porphyrin and porphyrin-peptide interactions whose structure may be readily modulated by changes in pH or peptide concentration.

  13. Self-assembled Materials for Catalysis

    SciTech Connect

    Zhu, Kake; Wang, Donghai; Liu, Jun

    2009-01-01

    The purpose of this review is to highlight developments on self-assembled nanostructured materials (i.e. mesoporous and nanoparticle based materials) and their catalytic applications. Since there are some reviews available for metal-based nanoparticles as catalysts, this review will mainly focus on self-assembled oxide-based catalytic materials. The content includes: (1) Design and synthetic strategy toward self-assembled mesoporous catalysts; (2) Polyoxometalates (POMs) based nanocatalysts; (3) Dendrimers based nanocatalysts; (4) Shaped nanomaterials and catalytic applications. We show that self-assemblies of molecules, crystalline seeds, nano-building blocks into organized mesoscopic structures paved new roads for tailoring porosities of heterogeneous catalysts and catalytic active sites.

  14. Directed Self-Assembly of Nanodispersions

    SciTech Connect

    Furst, Eric M

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  15. From Solvolysis to Self-Assembly*

    PubMed Central

    Stang, Peter J.

    2009-01-01

    My sojourn from classical physical-organic chemistry and solvolysis to self-assembly and supramolecular chemistry, over the last forty years, is described. My contributions to unsaturated reactive intermediates, namely vinyl cations and unsaturated carbenes, along with my decade long involvement with polyvalent iodine chemistry, especially alkynyliodonium salts, as well as my more recent research with metal-ligand, coordination driven and directed self-assembly of finite supramolecular ensembles are discussed. PMID:19111062

  16. Palladium-catalyzed amination of meso-(bromophenyl)porphyrins with diamines and azamacrocycles.

    PubMed

    Mikhalitsyna, E A; Tyurin, V S; Khrustalev, V N; Lonin, I S; Beletskaya, I P

    2014-03-07

    Novel diamino and azamacrocycle functionalized porphyrins were efficiently synthesized by palladium-catalyzed amination of mono- and bis(meso-(bromophenyl))porphyrins. The optimization of reaction conditions allowed us to achieve high yields of products with substrates of different types. Supramolecular utility of the thus obtained aminoporphyrins was shown by investigations of processes of coordination self-assembly in solution by NMR and UV-Vis spectroscopy. The crystalline 1D-coordination polymer formed via self-assembly of N,N-dimethylethylenediamine substituted zinc porphyrin was characterized by X-ray diffraction.

  17. Self-assembly concepts for multicompartment nanostructures.

    PubMed

    Gröschel, André H; Müller, Axel H E

    2015-07-28

    Compartmentalization is ubiquitous to many biological and artificial systems, be it for the separate storage of incompatible matter or to isolate transport processes. Advancements in the synthesis of sequential block copolymers offer a variety of tools to replicate natural design principles with tailor-made soft matter for the precise spatial separation of functionalities on multiple length scales. Here, we review recent trends in the self-assembly of amphiphilic block copolymers to multicompartment nanostructures (MCNs) under (semi-)dilute conditions, with special emphasis on ABC triblock terpolymers. The intrinsic immiscibility of connected blocks induces short-range repulsion into discrete nano-domains stabilized by a third, soluble block or molecular additive. Polymer blocks can be synthesized from an arsenal of functional monomers directing self-assembly through packing frustration or response to various fields. The mobility in solution further allows the manipulation of self-assembly processes into specific directions by clever choice of environmental conditions. This review focuses on practical concepts that direct self-assembly into predictable nanostructures, while narrowing particle dispersity with respect to size, shape and internal morphology. The growing understanding of underlying self-assembly mechanisms expands the number of experimental concepts providing the means to target and manipulate progressively complex superstructures.

  18. Self-assembly concepts for multicompartment nanostructures

    NASA Astrophysics Data System (ADS)

    Gröschel, André H.; Müller, Axel H. E.

    2015-07-01

    Compartmentalization is ubiquitous to many biological and artificial systems, be it for the separate storage of incompatible matter or to isolate transport processes. Advancements in the synthesis of sequential block copolymers offer a variety of tools to replicate natural design principles with tailor-made soft matter for the precise spatial separation of functionalities on multiple length scales. Here, we review recent trends in the self-assembly of amphiphilic block copolymers to multicompartment nanostructures (MCNs) under (semi-)dilute conditions, with special emphasis on ABC triblock terpolymers. The intrinsic immiscibility of connected blocks induces short-range repulsion into discrete nano-domains stabilized by a third, soluble block or molecular additive. Polymer blocks can be synthesized from an arsenal of functional monomers directing self-assembly through packing frustration or response to various fields. The mobility in solution further allows the manipulation of self-assembly processes into specific directions by clever choice of environmental conditions. This review focuses on practical concepts that direct self-assembly into predictable nanostructures, while narrowing particle dispersity with respect to size, shape and internal morphology. The growing understanding of underlying self-assembly mechanisms expands the number of experimental concepts providing the means to target and manipulate progressively complex superstructures.

  19. Directed self-assembly of performance materials

    NASA Astrophysics Data System (ADS)

    Nealey, Paul

    Directed self-assembly (DSA) is a promising strategy for high-volume cost-effective manufacturing at the nanoscale. Over the past decades, manufacturing techniques have been developed with such remarkable efficiency that it is now possible to engineer complex systems of heterogeneous materials at the scale of a few tens of nanometers. Further evolution of these techniques, however, is faced with difficult challenges not only in feasibility of implementation at scales of 10 nm and below, but also in prohibitively high capital equipment costs. Materials that self-assemble, on the other hand, spontaneously form structures at the mesoscale, but the micrometer areas or volumes over which the materials self-assemble with adequate perfection in structure is incommensurate with the macroscopic dimensions of working devices and systems of devices of industrial relevance. Directed Self-Assembly (DSA) refers to the integration of self-assembling materials with traditional manufacturing processes. Here we will discuss DSA of block copolymers to revolutionize sub 10 nm lithography and the manufacture of integrated circuits and storage media, DSA of ex-situ synthesized nanoparticles for applications in nanophotonics, and DSA of liquid crystals for advanced optics.

  20. Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Wang, Yao; Xu, Yanshuang; Yan, Yun; Huang, Jianbin

    2016-08-01

    A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases.

  1. Porous one-dimensional nanostructures through confined cooperative self-assembly.

    PubMed

    Bai, Feng; Sun, Zaicheng; Wu, Huimeng; Haddad, Raid E; Coker, Eric N; Huang, Jian Yu; Rodriguez, Mark A; Fan, Hongyou

    2011-12-14

    We report a simple confined self-assembly process to synthesize nanoporous one-dimensional photoactive nanostructures. Through surfactant-assisted cooperative interactions (e.g., π-π stacking, ligand coordination, and so forth) of the macrocyclic building block, zinc meso-tetra (4-pyridyl) porphyrin (ZnTPyP), self-assembled ZnTPyP nanowires and nanorods with controlled diameters and aspect ratios are prepared. Electron microscopy characterization in combination with X-ray diffraction and gas sorption experiments indicate that these materials exhibit stable single-crystalline and high surface area nanoporous frameworks with well-defined external morphology. Optical characterizations using UV-vis spectroscopy and fluorescence imaging and spectroscopy show enhanced collective optical properties over the individual chromophores (ZnTPyP), favorable for exciton formation and transport.

  2. Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study

    NASA Astrophysics Data System (ADS)

    El Garah, M.; Santana Bonilla, A.; Ciesielski, A.; Gualandi, A.; Mengozzi, L.; Fiorani, A.; Iurlo, M.; Marcaccio, M.; Gutierrez, R.; Rapino, S.; Calvaresi, M.; Zerbetto, F.; Cuniberti, G.; Cozzi, P. G.; Paolucci, F.; Samorì, P.

    2016-07-01

    Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to control their organization at the supramolecular level. Such a tuning is particularly important when applied to sophisticated molecules combining functional units which possess specific electronic properties, such as electron/energy transfer, in order to develop multifunctional systems. Here we have synthesized two tetraferrocene-porphyrin derivatives that by design can selectively self-assemble at the graphite/liquid interface into either face-on or edge-on monolayer-thick architectures. The former supramolecular arrangement consists of two-dimensional planar networks based on hydrogen bonding among adjacent molecules whereas the latter relies on columnar assembly generated through intermolecular van der Waals interactions. Scanning Tunneling Microscopy (STM) at the solid-liquid interface has been corroborated by cyclic voltammetry measurements and assessed by theoretical calculations to gain multiscale insight into the arrangement of the molecule with respect to the basal plane of the surface. The STM analysis allowed the visualization of these assemblies with a sub-nanometer resolution, and cyclic voltammetry measurements provided direct evidence of the interactions of porphyrin and ferrocene with the graphite surface and offered also insight into the dynamics within the face-on and edge-on assemblies. The experimental findings were supported by theoretical calculations to shed light on the electronic and other physical properties of both assemblies. The capability to engineer the functional nanopatterns through self-assembly of porphyrins containing ferrocene units is a key step toward the bottom-up construction of multifunctional molecular nanostructures and nanodevices.Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to

  3. S-Layer Protein Self-Assembly

    PubMed Central

    Pum, Dietmar; Toca-Herrera, Jose Luis; Sleytr, Uwe B.

    2013-01-01

    Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports. PMID:23354479

  4. Self-assembled gelators for organic electronics.

    PubMed

    Babu, Sukumaran Santhosh; Prasanthkumar, Seelam; Ajayaghosh, Ayyappanpillai

    2012-02-20

    Nature excels at engineering materials by using the principles of chemical synthesis and molecular self-assembly with the help of noncovalent forces. Learning from these phenomena, scientists have been able to create a variety of self-assembled artificial materials of different size, shapes, and properties for wide ranging applications. An area of great interest in this regard is solvent-assisted gel formation with functional organic molecules, thus leading to one-dimensional fibers. Such fibers have improved electronic properties and are potential soft materials for organic electronic devices, particularly in bulk heterojunction solar cells. Described herein is how molecular self-assembly, which was originally proposed as a simple laboratory curiosity, has helped the evolution of a variety of soft functional materials useful for advanced electronic devices such as organic field-effect transistors and organic solar cells. Highlights on some of the recent developments are discussed.

  5. Theory of Programmable Hierarchic Self-Assembly

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei V.

    2011-06-01

    We present a theoretical analysis of the inverse problem in self-assembly. A particular scheme is proposed for building an arbitrary desired nanostructure out of self-assembled building blocks (“octopus” nanoparticles). The conditions for robust self-assembly of the target structure are identified. This includes the minimal number of “colors” needed to encode interparticle bonds, which are to be implemented as pairs of complementary DNA sequences. As a part of this analysis, it is demonstrated that a floppy network with thermal fluctuations, in a certain range of coordination numbers ⟨Z⟩, possesses entropic rigidity and can be described as a traditional elastic solid. The onset of the entropic rigidity, ⟨Z⟩=d+1, determines the minimal number of bond types per particle needed to encode the desired structure. Thermodynamic considerations give additional conditions for the implementation of this scheme.

  6. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  7. Self-Assembly of Peptides to Nanostructures

    PubMed Central

    Mandal, Dindyal; Shirazi, Amir Nasrolahi; Parang, Keykavous

    2014-01-01

    The formation of well-ordered nanostructures through self-assembly of diverse organic and inorganic building blocks has drawn much attention owing to their potential applications in biology and chemistry. Among all organic building blocks, peptides are one of the most promising platforms due to their biocompatibility, chemical diversity, and resemblance with proteins. Inspired from the protein assembly in biological systems, various self-assembled peptide structures have been constructed using several amino acids and sequences. This review focuses on this emerging area, the recent advances in peptide self-assembly, and formation of different nanostructures, such as tubular, fibers, vesicles, spherical, and rod coil structures. While different peptide nanostructures are discovered, potential applications will be explored in drug delivery, tissue engineering, wound healing, and surfactants. PMID:24756480

  8. Self-assembly of lead chalcogenide nanocrystals.

    PubMed

    Quan, Zewei; Valentin-Bromberg, Loriana; Loc, Welley Siu; Fang, Jiye

    2011-05-02

    This review focuses on recent developments in the self-assembly of lead chalcogenide nanocrystals into two- and three-dimensional superstructures. Self-assembly is categorized by the shapes of building blocks, including nanospheres, nanocubes, nano-octahedra, and nanostars. In the section on nanospheres, rapid assemblies of lead chalcogenide-based multicomponent nanocrystals with additional components, such as semiconductors, noble metals, and magnetic nanocrystals, are further highlighted. In situ self-assembly of lead chalcogenide nanocrystals into one-dimensional nanostructures at elevated temperatures is also covered. Each section of this paper highlights examples extracted from recent publications. Finally, relatively novel properties and applications arising from lead chalcogenide superlattices as typical examples are also discussed.

  9. Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study.

    PubMed

    El Garah, M; Santana Bonilla, A; Ciesielski, A; Gualandi, A; Mengozzi, L; Fiorani, A; Iurlo, M; Marcaccio, M; Gutierrez, R; Rapino, S; Calvaresi, M; Zerbetto, F; Cuniberti, G; Cozzi, P G; Paolucci, F; Samorì, P

    2016-07-14

    Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to control their organization at the supramolecular level. Such a tuning is particularly important when applied to sophisticated molecules combining functional units which possess specific electronic properties, such as electron/energy transfer, in order to develop multifunctional systems. Here we have synthesized two tetraferrocene-porphyrin derivatives that by design can selectively self-assemble at the graphite/liquid interface into either face-on or edge-on monolayer-thick architectures. The former supramolecular arrangement consists of two-dimensional planar networks based on hydrogen bonding among adjacent molecules whereas the latter relies on columnar assembly generated through intermolecular van der Waals interactions. Scanning Tunneling Microscopy (STM) at the solid-liquid interface has been corroborated by cyclic voltammetry measurements and assessed by theoretical calculations to gain multiscale insight into the arrangement of the molecule with respect to the basal plane of the surface. The STM analysis allowed the visualization of these assemblies with a sub-nanometer resolution, and cyclic voltammetry measurements provided direct evidence of the interactions of porphyrin and ferrocene with the graphite surface and offered also insight into the dynamics within the face-on and edge-on assemblies. The experimental findings were supported by theoretical calculations to shed light on the electronic and other physical properties of both assemblies. The capability to engineer the functional nanopatterns through self-assembly of porphyrins containing ferrocene units is a key step toward the bottom-up construction of multifunctional molecular nanostructures and nanodevices.

  10. Self-assembly of small peptidomimetic cyclophanes.

    PubMed

    Becerril, Jorge; Burguete, M Isabel; Escuder, Beatriu; Galindo, Francisco; Gavara, Raquel; Miravet, Juan F; Luis, Santiago V; Peris, Gabriel

    2004-08-20

    The self-assembly of a series of small peptidomimetic cyclophanes in organic solvents was studied. X-ray diffraction, NMR spectroscopy, and molecular modelling were used to understand the structural features of these self-assembling compounds both at the molecular and supramolecular level. The factors that could influence the formation of gels rather than crystals were studied and a model for the arrangement of molecules in the gel was proposed. Furthermore, scanning electron microscopy revealed that in some cases these compounds undergo a transcription of chirality when going from organogelator to helicoidal gel fibres.

  11. Computing by molecular self-assembly.

    PubMed

    Jonoska, Nataša; Seeman, Nadrian C

    2012-08-06

    The paper reviews two computing models by DNA self-assembly whose proof of principal have recently been experimentally confirmed. The first model incorporates DNA nano-devices and triple crossover DNA molecules to algorithmically arrange non-DNA species. This is achieved by simulating a finite-state automaton with output where golden nanoparticles are assembled to read-out the result. In the second model, a complex DNA molecule representing a graph emerges as a solution of a computational problem. This supports the idea that in molecular self-assembly computing, it may be necessary to develop the notion of shape processing besides the classical approach through symbol processing.

  12. Self-assembly of chlorophenols in water

    PubMed Central

    Rogalska, Ewa; Rogalski, Marek; Gulik-Krzywicki, Tadeusz; Gulik, Annette; Chipot, Christophe

    1999-01-01

    In saturated solutions of some di- and trichlorophenols, structures with complex morphologies, consisting of thin, transparent sheets often coiling into helices and ultimately twisting into filaments, were observed under the optical microscope. Freeze-fracture electron microscopy, x-ray diffraction, phase diagrams, and molecular modeling were performed to elucidate the observed phenomena. Here, we present evidence that the chlorophenols studied, when interacting with water, self-assemble into bilayers. The fact that some chlorophenols form the same supramolecular structures as those described previously for structurally nonrelated surfactants sheds light on the mechanisms of self-assembly. PMID:10359753

  13. Remote control of self-assembled microswimmers

    PubMed Central

    Grosjean, G.; Lagubeau, G.; Darras, A.; Hubert, M.; Lumay, G.; Vandewalle, N.

    2015-01-01

    Physics governing the locomotion of microorganisms and other microsystems is dominated by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when powered by an external magnetic field. More importantly, we demonstrate that trajectories can be fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary system spontaneously forms by self-assembly, allowing miniaturization and other possible applications such as cargo transport or solvent flows. PMID:26538006

  14. Remote control of self-assembled microswimmers

    NASA Astrophysics Data System (ADS)

    Grosjean, G.; Lagubeau, G.; Darras, A.; Hubert, M.; Lumay, G.; Vandewalle, N.

    2015-11-01

    Physics governing the locomotion of microorganisms and other microsystems is dominated by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when powered by an external magnetic field. More importantly, we demonstrate that trajectories can be fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary system spontaneously forms by self-assembly, allowing miniaturization and other possible applications such as cargo transport or solvent flows.

  15. Self-assembling segmented coiled tubing

    SciTech Connect

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  16. Nondeterministic self-assembly with asymmetric interactions

    NASA Astrophysics Data System (ADS)

    Tesoro, S.; Göpfrich, K.; Kartanas, T.; Keyser, U. F.; Ahnert, S. E.

    2016-08-01

    We investigate general properties of nondeterministic self-assembly with asymmetric interactions, using a computational model and DNA tile assembly experiments. By contrasting symmetric and asymmetric interactions we show that the latter can lead to self-limiting cluster growth. Furthermore, by adjusting the relative abundance of self-assembly particles in a two-particle mixture, we are able to tune the final sizes of these clusters. We show that this is a fundamental property of asymmetric interactions, which has potential applications in bioengineering, and provides insights into the study of diseases caused by protein aggregation.

  17. Solvent Regulated Self-assembly of Achiral Donor-Acceptor Complex in Confined Chiral Nanotubes: Chirality Transfer, Inversion and Amplification.

    PubMed

    Li, Yuangang; Duan, Pengfei; Liu, Minghua

    2017-03-24

    A chiral gelator was designed and found to form chiral nanotwist and nanotube in toluene and DMSO, respectively, which could serve as host chiral matrixes for fabricating functional soft materials. Guest achiral π-conjugated donor and acceptor were doped in the gel and a solvent regulated self-assembly was observed. Although both the DMSO and toluene gels containing three components look similar as the transparent gels, it was clarified microscopically that while achiral dopants self-assembled in the confined nanotubes in DMSO gel, they only dissolve in the liquid phase in toluene gel. The existence of the achiral donor and acceptor in different phases made their properties completely different. The chirality transfer occurred from the host chiral gel matrixes to guest achiral porphyrin in DMSO. Remarkably, the addition of C60 in the porphyrin/gelator gel could inverse and further amplify the induced chirality of porphyrin due to the formation of donor-acceptor pairs. On the other hand, no chirality transfer was observed in the toluene gel. These observations clearly unveiled the selective self-assembly of different components in distinct gel phases, which would provide a new insight into the design of chiroptical soft materials.

  18. Oxygen electro-reduction catalysts for self-assembly on supports

    NASA Astrophysics Data System (ADS)

    Dougan, Jennifer; Panton, Raquel; Cheng, Qiling; Gervasio, Don F.

    2005-01-01

    A new strategy for making low cost, catalytic electrodes is being developed for fuel-cells and electrochemical sensors. The strategy is to synthesize a macrocyclic catalyst derivatized with a functional group (like phosphate or carboxylate), which has affinity for a metal-oxide/metal surface. The purpose of the functional group is to anchor the modified catalyst to the metal surface, thereby promoting the formation of a self-assembled monolayer (SAM) of catalyst on a metal support. Syntheses are given for new ferrocene compounds and metallo porphyrins with anchor groups. The ferrocenes, which are relatively easy to synthesize, were made to learn how to form a stable SAM on a metal-oxide/metal surface. The metallo porphyrins were made for catalyzing oxygen electro-reduction with no platinum. Strategies for attaining an ideal catalytic electrode are discussed.

  19. Large branched self-assembled DNA complexes

    NASA Astrophysics Data System (ADS)

    Tosch, Paul; Wälti, Christoph; Middelberg, Anton P. J.; Davies, A. Giles

    2007-04-01

    Many biological molecules have been demonstrated to self-assemble into complex structures and networks by using their very efficient and selective molecular recognition processes. The use of biological molecules as scaffolds for the construction of functional devices by self-assembling nanoscale complexes onto the scaffolds has recently attracted significant attention and many different applications in this field have emerged. In particular DNA, owing to its inherent sophisticated self-organization and molecular recognition properties, has served widely as a scaffold for various nanotechnological self-assembly applications, with metallic and semiconducting nanoparticles, proteins, macromolecular complexes, inter alia, being assembled onto designed DNA scaffolds. Such scaffolds may typically contain multiple branch-points and comprise a number of DNA molecules selfassembled into the desired configuration. Previously, several studies have used synthetic methods to produce the constituent DNA of the scaffolds, but this typically constrains the size of the complexes. For applications that require larger self-assembling DNA complexes, several tens of nanometers or more, other techniques need to be employed. In this article, we discuss a generic technique to generate large branched DNA macromolecular complexes.

  20. Inverse Problem in Self-assembly

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei

    2012-02-01

    By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.

  1. Self-assembled thin film chemical sensors

    SciTech Connect

    Swanson, B.; Li, DeQuan

    1996-11-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Current chemical sensors suffer from poor molecular specificity, sensitivity, and stability and seldom have the recovery properties needed for real-time monitoring applications. We have employed self-assembly techniques to covalently bond species- selective reagents directly to the surface of the transducer so that analyte/reagent chemistry occurs at the interface between the transducer and the media to be monitored. The use of self-assembling monolayer and -multilayer (SAM) techniques results in stable sensing elements with optimal specificity built in through the use of reagents that have been designed for molecular recognition. Moreover, self-assembly chemistry applied to oxide surfaces allows flexible means of transduction spanning optical, electrochemical, mass-loading, and conduction methods. The work conducted on this project focused on demonstration of the methodology and the application to selected organic vapors (aromatic compounds and halogenated hydrocarbons). We have been able to develop a series of surface acoustic wave (SAW) sensors that are specific for aromatic compounds and halogenated hydrocarbons based on self-assembled thin films of cyclodextrins and calixarenes. Monolayers of seven different cyclodextrins and clixarenes have been attached to SAW transducers and their response to several organic molecules in the vapor phase have been measured. This preliminary data confirms the efficacy of this approach for real- time monitoring of hydrocarbons.

  2. Self-assembling materials for therapeutic delivery✩

    PubMed Central

    Branco, Monica C.; Schneider, Joel P.

    2009-01-01

    A growing number of medications must be administered through parenteral delivery, i.e., intravenous, intramuscular, or subcutaneous injection, to ensure effectiveness of the therapeutic. For some therapeutics, the use of delivery vehicles in conjunction with this delivery mechanism can improve drug efficacy and patient compliance. Macromolecular self-assembly has been exploited recently to engineer materials for the encapsulation and controlled delivery of therapeutics. Self-assembled materials offer the advantages of conventional crosslinked materials normally used for release, but also provide the ability to tailor specific bulk material properties, such as release profiles, at the molecular level via monomer design. As a result, the design of materials from the “bottom up” approach has generated a variety of supramolecular devices for biomedical applications. This review provides an overview of self-assembling molecules, their resultant structures, and their use in therapeutic delivery. It highlights the current progress in the design of polymer- and peptide-based self-assembled materials. PMID:19010748

  3. [INVITED] Self-assembled optical metamaterials

    NASA Astrophysics Data System (ADS)

    Baron, Alexandre; Aradian, Ashod; Ponsinet, Virginie; Barois, Philippe

    2016-08-01

    Self-assembled metamaterials constitute a promising platform to achieving bulk and homogenous optical materials that exhibit unusual effective medium properties. For many years now, the research community has contemplated lithographically fabricated metasurfaces, with extraordinary optical features. However, achieving large volumes at low cost is still a challenge by top-down fabrication. Bottom-up fabrication, that relies both on nanochemistry and self-assembly, is capable of building such materials while greatly reducing the energy footprint in the formulation of the metamaterial. Self-assembled metamaterials have shown that they are capable of reaching unprecedented values of bulkiness and homogeneity figures of merit. This feat is achieved by synthesizing plasmonic nanoresonators (meta-atoms in the sense of artificial polarizable units) and assembling them into a fully three-dimensional matrix through a variety of methods. Furthermore it has been shown that a wide range of material parameters can be tailored by controlling the geometry and composition of the meta-atoms as well as the volume fraction of the nano-objects in the metamaterial. Here we conduct a non-comprehensive review of some of the recent trends in self-assembled optical metamaterials and illustrate these trends with our recent work.

  4. Inertially assisted nanoscale self-assembly.

    PubMed

    Saeedi, E; Marcheselli, C; Shum, A; Parviz, B A

    2010-09-17

    We present a simple and versatile method for integrating submicron objects onto pre-determined locations on a substrate. The method relies on augmenting inertial forces using centrifugal motion and geometric constraints to guide the placement of submicron objects on a substrate with minimal requirements for surface engineering and binding chemistries. Here, we demonstrate the utility of the method for placing gold particles, metal nanorods and inorganic nanocrystals. The method has demonstrated high yield of self-assembly for submicron particles with a variety of shapes and sizes. We have been able to get a near-perfect yield for filling hundreds of traps with nanoparticles in only 20 min. Two hundred nanometer diameter nanorods were self-assembled into an array of 256 traps on the template with 92% yield. 1.4 microm and 300 nm sodium chloride crystals were self-assembled in arrays of 7000 and 576 traps, respectively, with near-perfect yield in filling each site. Due to its convenient set-up and high performance, inertially assisted self-assembly can be easily adopted and used for a variety of integration needs on the submicron scale.

  5. Nanopropulsion by biocatalytic self-assembly.

    PubMed

    Leckie, Joy; Hope, Alexander; Hughes, Meghan; Debnath, Sisir; Fleming, Scott; Wark, Alastair W; Ulijn, Rein V; Haw, Mark D

    2014-09-23

    A number of organisms and organelles are capable of self-propulsion at the micro- and nanoscales. Production of simple man-made mimics of biological transportation systems may prove relevant to achieving movement in artificial cells and nano/micronscale robotics that may be of biological and nanotechnological importance. We demonstrate the propulsion of particles based on catalytically controlled molecular self-assembly and fiber formation at the particle surface. Specifically, phosphatase enzymes (acting as the engine) are conjugated to a quantum dot (the vehicle), and are subsequently exposed to micellar aggregates (fuel) that upon biocatalytic dephosphorylation undergo fibrillar self-assembly, which in turn causes propulsion. The motion of individual enzyme/quantum dot conjugates is followed directly using fluorescence microscopy. While overall movement remains random, the enzyme-conjugates exhibit significantly faster transport in the presence of the fiber forming system, compared to controls without fuel, a non-self-assembling substrate, or a substrate which assembles into spherical, rather than fibrous structures upon enzymatic dephosphorylation. When increasing the concentration of the fiber-forming fuel, the speed of the conjugates increases compared to non-self-assembling substrate, although directionality remains random.

  6. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  7. Self-assembled nanolaminate coatings (SV)

    SciTech Connect

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV, UCAV

  8. Solvation Effects in Self-Assembled Systems

    SciTech Connect

    Frink, L.J.D.

    1998-11-10

    Many types of self-assembly can be found in nature. They include crystallization, the formation of micelles, and the folding of proteins. Recently there has been much interest in pursuing nano-to-microscopically engineered materials by way of self-assembly on imprinted or templated surfaces. In all of these diverse cases, wetting plays a critical role in the assembly process. Wetting involves the interactions of the substrate or amphiphilic molecule or macromolecule with a solvent. In many self-assembled systems we find that the critical feature of the system is a substrate! or macromolecule with a both hydrophilic and hydrophobic nature. In this paper we discuss the wetting properties of a striped surface where the stripes represent alternating chemical characteristics. We show how the chemical heterogeneity affects the wetting properties of the surface (e.g. the static contact angle), and discuss the length limitations on the soft lithography approach. In this paper, the wetting of a chemically heterogeneous surface is studied using a nonlocal Density Functional Theory (DFT). The results for the heterogeneous surface model we discuss have immediate implications for soft-lithography by self-assembly. It also lends fundamental insight into the mechanisms controlling self-assembly of macromolecules. We present the results of nonlocal 2D DFT calculations on the wetting properties of chemically heterogeneous surfaces. These calculations showed complex density distributions and phase behavior as a result of the heterogeneity. The location of the wetting transition are found to be strongly dependent on the extent and strength of the heterogeneity, and complete wetting was suppressed altogether if the hydrophobic parts of the surface were large enough. In these cases, the condensed nanophase may crystallize if the hydrophilic surface-fluid interactions are strong enough. By exploring the phase space including strength of hydrophilic interactions and extent of chemical

  9. Porphyrin colorimetric indicators in molecular and nano-architectures.

    PubMed

    Xie, Yongshu; Hill, Jonathan P; Charvet, Richard; Ariga, Katsuhiko

    2007-09-01

    One of the most important outcomes of organic nanotechnologies could be development of well-integrated systems for sensing of particular chemical species. Use of color indicators is an attractive approach to guest reporting. Of the known chromophores, porphyrin and its derivatives are the most widely studied functional chromophores in a diverse range of research fields. In this review, recent developments in colorimetric indicator functions of porphyrin derivatives and related compounds in their molecular and nano-architectures are reviewed according to the classification: (i) rather simple porphyrin derivatives, (ii) porphyrin conjugates, (iii) porphyrins embedded in bulk materials, and (iv) porphyrins in organized films. Porphyrin derivatives with unusual structures, such as expanded and N-confused ones have been used for color indicators in specific cases. Electron and energy transfers in porphyrins conjugated with other functional moieties resulted in dynamic sensing systems including switch-on and switch-off actions. Immobilization of porphyrin color indicators in appropriate matrices is important for practical applications. Use of supramolecular films such as self-assembled monolayers, Langmuir-Blodgett films, and layer-by-layer assemblies as porphyrin nanoarchitectures often offers opportunities for colorimetric outputs based on control of their aggregate structures.

  10. Self-assembly between biomacromolecules and lipids

    NASA Astrophysics Data System (ADS)

    Liang, Hongjun

    Anionic DNA and cationic lipsomes can self-assemble into a multi-lamellar structure where two-dimensional (2-D) lipid sheets confine a periodic one-dimensional (1-D) lattice of parallel DNA chains, between which Cd2+ ions can condense, and be subsequently reacted with H 2S to template CdS nanorods with crystallographic control analogous to biomineralization. The strong electrostatic interactions align the templated CdS (002) polar planes parallel to the negatively charged sugar-phosphate DNA backbone, which indicates that molecular details of the DNA molecule are imprinted onto the inorganic crystal structure. The resultant nanorods have (002) planes tilted by ˜60° with respect to the rod axis, in contrast to all known II-VI semiconductor nanorods. Rational design of the biopolymer-membrane templates is possible, as demonstrated by the self-assembly between anionic M13 virus and cationic membrane. The filamentous virus has diameter ˜3x larger but similar surface charge density as DNA, the self-assembled complexes maintain the multi-lamellar structure, but pore sizes are ˜10x larger in area, which can be used to package and organize large functional molecules. Not only the counter-charged objects can self-assemble, the like-charged biopolymer and membrane can also self-assemble with the help of multivalent ions. We have investigated anionic lipid-DNA complexes induced by a range of divalent ions to show how different ion-mediated interactions are expressed in the self-assembled structures, which include two distinct lamellar phases and an inverted hexagonal phase. DNA can be selectively organized into or expelled out of the lamellar phases depending on membrane charge density and counterion concentration. For a subset of ion (Zn2+ etc.) at high enough concentration, 2-D inverted hexagonal phase can be formed where DNA strands are coated with anionic lipid tubes via interaction with Zn2+ ions. We suggest that the effect of ion binding on lipid's spontaneous

  11. Self-assembling membranes and related methods thereof

    DOEpatents

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  12. Controlling and imaging biomimetic self-assembly

    NASA Astrophysics Data System (ADS)

    Aliprandi, Alessandro; Mauro, Matteo; de Cola, Luisa

    2016-01-01

    The self-assembly of chemical entities represents a very attractive way to create a large variety of ordered functional structures and complex matter. Although much effort has been devoted to the preparation of supramolecular nanostructures based on different chemical building blocks, an understanding of the mechanisms at play and the ability to monitor assembly processes and, in turn, control them are often elusive, which precludes a deep and comprehensive control of the final structures. Here the complex supramolecular landscape of a platinum(II) compound is characterized fully and controlled successfully through a combination of supramolecular and photochemical approaches. The supramolecular assemblies comprise two kinetic assemblies and their thermodynamic counterpart. The monitoring of the different emission properties of the aggregates, used as a fingerprint for each species, allows the real-time visualization of the evolving self-assemblies. The control of multiple supramolecular pathways will help the design of complex systems in and out of their thermodynamic equilibrium.

  13. Controlling and imaging biomimetic self-assembly.

    PubMed

    Aliprandi, Alessandro; Mauro, Matteo; De Cola, Luisa

    2016-01-01

    The self-assembly of chemical entities represents a very attractive way to create a large variety of ordered functional structures and complex matter. Although much effort has been devoted to the preparation of supramolecular nanostructures based on different chemical building blocks, an understanding of the mechanisms at play and the ability to monitor assembly processes and, in turn, control them are often elusive, which precludes a deep and comprehensive control of the final structures. Here the complex supramolecular landscape of a platinum(II) compound is characterized fully and controlled successfully through a combination of supramolecular and photochemical approaches. The supramolecular assemblies comprise two kinetic assemblies and their thermodynamic counterpart. The monitoring of the different emission properties of the aggregates, used as a fingerprint for each species, allows the real-time visualization of the evolving self-assemblies. The control of multiple supramolecular pathways will help the design of complex systems in and out of their thermodynamic equilibrium.

  14. Dissipative self-assembly of vesicular nanoreactors.

    PubMed

    Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Scrimin, Paolo; Prins, Leonard J

    2016-07-01

    Dissipative self-assembly is exploited by nature to control important biological functions, such as cell division, motility and signal transduction. The ability to construct synthetic supramolecular assemblies that require the continuous consumption of energy to remain in the functional state is an essential premise for the design of synthetic systems with lifelike properties. Here, we show a new strategy for the dissipative self-assembly of functional supramolecular structures with high structural complexity. It relies on the transient stabilization of vesicles through noncovalent interactions between the surfactants and adenosine triphosphate (ATP), which acts as the chemical fuel. It is shown that the lifetime of the vesicles can be regulated by controlling the hydrolysis rate of ATP. The vesicles sustain a chemical reaction but only as long as chemical fuel is present to keep the system in the out-of-equilibrium state. The lifetime of the vesicles determines the amount of reaction product produced by the system.

  15. Self-assembled Oniontype Multiferroic Nanostructures

    NASA Astrophysics Data System (ADS)

    Ren, Shenqiang; Briber, Robert M.; Wuttig, Manfred

    2009-03-01

    Spontaneously self-assembled oniontype multiferroic nanostructures based on block copolymers as templating materials are reported. Diblock copolymer containing two different magnetoelectric precursors separately segregated to the two microdomains have been shown to form well-ordered templated lamellar structures. Onion-type multilamellar ordered multiferroic (PZT/CoFe2O4) nanostructures have been induced by room temperature solvent annealing in a magnetic field oriented perpendicular to the plane of the film. The evolution of the onion-like microstructure has been characterized by AFM, MFM, and TEM. The structure retains lamellar periodicity observed at zero field. The onion structure is superparamagnetic above and antiferromagnetic below the blocking temperature. This templating process opens a route for nanometer-scale patterning of magnetic toroids by means of self-assembly on length scales that are difficult to obtain by standard lithography techniques.

  16. Biologically-Based Self-Assembling Hydrogels

    DTIC Science & Technology

    2002-04-01

    Based Self-Assembling Hydrogels Brandon L. Seal and Alyssa Panitch Department of Bioengineering, Arizona State University Tempe, AZ 85287-9709, U.S.A...the ligand from the a- chain of human fibrinogen as well as substrates for factor Xlla (Fa XllIa) (Table f) were synthesized using solid- state Fmoc...chemistry in the Arizona State University Protein Chemistry Laboratory. All peptides were purified with a C4 reverse phase preparatory column on an

  17. Columnar self-assembly of colloidal nanodisks.

    PubMed

    Saunders, Aaron E; Ghezelbash, Ali; Smilgies, Detlef-M; Sigman, Michael B; Korgel, Brian A

    2006-12-01

    The self-assembly of sterically stabilized colloidal copper sulfide nanodisks, 14-20 nm in diameter and 5-7 nm thick, was studied. The nanodisks were observed by electron microscopy and small-angle X-ray scattering to form columnar arrays when evaporated as thin films from concentrated dispersions. These superstructured nanomaterials might give rise to technologically useful properties, such as anisotropic electrical transport and electrorheological and optical properties.

  18. Self-assembled Nanomaterials for Chemotherapeutic Applications

    NASA Astrophysics Data System (ADS)

    Shieh, Aileen

    The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display

  19. Templated Self Assemble of Nano-Structures

    SciTech Connect

    Suo, Zhigang

    2013-04-29

    This project will identify and model mechanisms that template the self-assembly of nanostructures. We focus on a class of systems involving a two-phase monolayer of molecules adsorbed on a solid surface. At a suitably elevated temperature, the molecules diffuse on the surface to reduce the combined free energy of mixing, phase boundary, elastic field, and electrostatic field. With no template, the phases may form a pattern of stripes or disks. The feature size is on the order of 1-100 nm, selected to compromise the phase boundary energy and the long-range elastic or electrostatic interaction. Both experimental observations and our theoretical simulations have shown that the pattern resembles a periodic lattice, but has abundant imperfections. To form a perfect periodic pattern, or a designed aperiodic pattern, one must introduce a template to guide the assembly. For example, a coarse-scale pattern, lithographically defined on the substrate, will guide the assembly of the nanoscale pattern. As another example, if the molecules on the substrate surface carry strong electric dipoles, a charged object, placed in the space above the monolayer, will guide the assembly of the molecular dipoles. In particular, the charged object can be a mask with a designed nanoscale topographic pattern. A serial process (e.g., e-beam lithography) is necessary to make the mask, but the pattern transfer to the molecules on the substrate is a parallel process. The technique is potentially a high throughput, low cost process to pattern a monolayer. The monolayer pattern itself may serve as a template to fabricate a functional structure. This project will model fundamental aspects of these processes, including thermodynamics and kinetics of self-assembly, templated self-assembly, and self-assembly on unconventional substrates. It is envisioned that the theory will not only explain the available experimental observations, but also motivate new experiments.

  20. The dynamics of nacre self-assembly

    PubMed Central

    Cartwright, Julyan H.E; Checa, Antonio G

    2006-01-01

    We show how nacre and pearl construction in bivalve and gastropod molluscs can be understood in terms of successive processes of controlled self-assembly from the molecular- to the macro-scale. This dynamics involves the physics of the formation of both solid and liquid crystals and of membranes and fluids to produce a nanostructured hierarchically constructed biological composite of polysaccharides, proteins and mineral, whose mechanical properties far surpass those of its component parts. PMID:17251136

  1. Dynamics of self-assembled droplet etching

    NASA Astrophysics Data System (ADS)

    Heyn, Ch.; Stemmann, A.; Hansen, W.

    2009-10-01

    We study the self-assembled local droplet etching of nanoholes in AlGaAs surfaces with Ga droplets. The data establish an unexpected delay of both the hole drilling process as well as the removal of the liquid material after etching. Furthermore, coarsening by Ostwald ripening is found to reduce the droplet density before drilling. Basing on these findings, we propose a growth, coarsening, drilling, and removal mechanism for the droplet etching process.

  2. Self-Assembly of Chiral Plasmonic Nanostructures.

    PubMed

    Lan, Xiang; Wang, Qiangbin

    2016-12-01

    Plasmonic chiroptical effects have attracted significant attention for their widespread potential applications in negative-refractive-index materials, advanced light-polarization filters, and ultrasensitive sensing devices, etc. As compared to top-down fabrication methods, the bottom-up self-assembly strategy provides nanoscale resolution, parallel production, and isotropic optical response, and therefore plays an indispensable role in the fabrication of chiral plasmonic nanostructures. The optical properties of these chiral structures can be predicted based on the near-field coupling of localized surface plasmons in structural components, which offers a route to tune or enhance optical activity by selecting building blocks and designing structural configurations. To date, three main types of chiral plasmonic nanostructures, i.e., chiral "plasmonic molecules", chiral superstructures, and chiral-molecule-metal hybrid complexes, are usually assembled, in which metal nanoparticles with various sizes, shapes, and compositions, and/or chiral molecules are employed as building blocks. Here, recent achievements in the self-assembly of chiral plasmonic nanostructures are highlighted and perspectives on the future directions of chiral plasmonics integrated with bottom-up self-assembly are presented, showing three typical examples, including chiral plasmonic switches, chiral nanoparticles, and chiral metamaterials.

  3. Self-assembly of Artificial Actin Filaments

    NASA Astrophysics Data System (ADS)

    Grosenick, Christopher; Cheng, Shengfeng

    Actin Filaments are long, double-helical biopolymers that make up the cytoskeleton along with microtubules and intermediate filaments. In order to further understand the self-assembly process of these biopolymers, a model to recreate actin filament geometry was developed. A monomer in the shape of a bent rod with vertical and lateral binding sites was designed to assemble into single or double helices. With Molecular Dynamics simulations, a variety of phases were observed to form by varying the strength of the binding sites. Ignoring lateral binding sites, we have found a narrow range of binding strengths that lead to long single helices via various growth pathways. When lateral binding strength is introduced, double helices begin to form. These double helices self-assemble into substantially more stable structures than their single helix counterparts. We have found double helices to form long filaments at about half the vertical binding strength of single helices. Surprisingly, we have found that triple helices occasionally form, indicating the importance of structural regulation in the self-assembly of biopolymers.

  4. Self-assembly of knots and links

    NASA Astrophysics Data System (ADS)

    Orlandini, Enzo; Polles, Guido; Marenduzzo, Davide; Micheletti, Cristian

    2017-03-01

    Guiding the self-assembly of identical building blocks towards complex three-dimensional structures with a set of desired properties is a major goal in material science, chemistry and physics. A particularly challenging problem, especially explored in synthetic chemistry, is that of self-assembling closed structures with a target topology starting by simple geometrical templates. Here we overview and revisit recent advancements, based on stochastic simulations, where the geometry of rigid helical templates with functionalised sticky ends has been designed for self-assembling efficiently and reproducibly into a wide range of three-dimensional closed structures. Notably, these include non trivial topologies of links and knots, including the 819 knot that we had predicted to be highly encodable and that has only recently been obtained experimentally. By appropriately tuning the parameters that define the template shape, we show that, for fixed concentration of templates, the assembly process can be directed towards the formation of specific knotted and linked structures such as the trefoils, pentafoil knots, Hopf and Solomon links. More exotic and unexpected knots and links are also found. Our results should be relevant to the design of new protocols that can both increase and broaden the population of synthetise molecular knots and catenanes.

  5. Self-assembly of polar food lipids.

    PubMed

    Leser, Martin E; Sagalowicz, Laurent; Michel, Martin; Watzke, Heribert J

    2006-11-16

    Polar lipids, such as monoglycerides and phospholipids, are amphiphilic molecules commonly used as processing and stabilization aids in the manufacturing of food products. As all amphiphilic molecules (surfactants, emulsifiers) they show self-assembly phenomena when added into water above a certain concentration (the critical aggregation concentration). The variety of self-assembly structures that can be formed by polar food lipids is as rich as it is for synthetic surfactants: micelles (normal and reverse micelles), microemulsions, and liquid crystalline phases can be formulated using food-grade ingredients. In the present work we will first discuss microemulsion and liquid crystalline phase formation from ingredients commonly used in food industry. In the last section we will focus on three different potential application fields, namely (i) solubilization of poorly water soluble ingredients, (ii) controlled release, and (iii) chemical reactivity. We will show how the interfacial area present in self-assembly structures can be used for (i) the delivery of functional molecules, (ii) controlling the release of functional molecules, and (iii) modulating the chemical reactivity between reactive molecules, such as aromas.

  6. Anisotropic Self-Assembly of Nanoparticle Amphiphiles

    NASA Astrophysics Data System (ADS)

    Kumar, Sanat

    2009-03-01

    It is easy to understand the self-assembly of particles having anisotropic shapes or interactions, such as Co nanoparticles or proteins, into highly extended structures. However, there is no experimentally established strategy for creating anisotropic structures from common spherical nanoparticles. We demonstrate that spherical nanoparticles, uniformly grafted with macromolecules, robustly self-assemble into a range of anisotropic superstructures when they are dispersed in the corresponding homopolymer matrix. This phenomenon is driven by the microphase separation between the inorganic nanoparticles and the (organic) polymeric chains grafted to their surfaces in a fashion similar to block copolymers. This microphase separation driven particle self-assembly provides a unique means of controlling the global nanoparticle dispersion state in polymer nanocomposites. The relationship between the state of particle dispersion and nanocomposite properties can thus be critically examined, and in particular we focus on the mechanical reinforcement afforded when particles are added to polymers. Grafted nanoparticles are thus versatile building blocks for creating tunable and functional particle superstructures with significant practical applications. With Pinar Akcora, Hongjun Liu, Yu Li, Brian Benicewicz, Linda Schadler, Thanos Panagiotopoulos, Jack Douglas, P. Thiyagarajan and Ralph Colby.

  7. Meniscus height controlled convective self-assembly

    NASA Astrophysics Data System (ADS)

    Choudhary, Satyan; Crosby, Alfred

    Convective self-assembly techniques based on the 'coffee-ring effect' allow for the fabrication of materials with structural hierarchy and multi-functionality across a wide range of length scales. The coffee-ring effect describes deposition of non-volatiles at the edge of droplet due to capillary flow and pattern formations due to pinning and de-pinning of meniscus with the solvent evaporation. We demonstrate a novel convective self-assembly method which uses a piezo-actuated bending motion for driving the de-pinning step. In this method, a dilute solution of nanoparticles or polymers is trapped by capillary forces between a blade and substrate. As the blade oscillates with a fixed frequency and amplitude and the substrate translates at a fixed velocity, the height of the capillary meniscus oscillates. The meniscus height controls the contact angle of three phase contact line and at a critical angle de-pinning occurs. The combination of convective flux and continuously changing contact angle drives the assembly of the solute and subsequent de-pinning step, providing a direct means for producing linear assemblies. We demonstrate a new method for convective self-assembly at an accelerated rate when compared to other techniques, with control over deposit dimensions. Army Research Office (W911NF-14-1-0185).

  8. Interparticle Forces Underlying Nanoparticle Self-Assemblies.

    PubMed

    Luo, Dan; Yan, Cong; Wang, Tie

    2015-12-02

    Studies on the self-assembly of nanoparticles have been a hot topic in nanotechnology for decades and still remain relevant for the present and future due to their tunable collective properties as well as their remarkable applications to a wide range of fields. The novel properties of nanoparticle assemblies arise from their internal interactions and assemblies with the desired architecture key to constructing novel nanodevices. Therefore, a comprehensive understanding of the interparticle forces of nanoparticle self-assemblies is a pre-requisite to the design and control of the assembly processes, so as to fabricate the ideal nanomaterial and nanoproducts. Here, different categories of interparticle forces are classified and discussed according to their origins, behaviors and functions during the assembly processes, and the induced collective properties of the corresponding nanoparticle assemblies. Common interparticle forces, such as van der Waals forces, electrostatic interactions, electromagnetic dipole-dipole interactions, hydrogen bonds, solvophonic interactions, and depletion interactions are discussed in detail. In addition, new categories of assembly principles are summarized and introduced. These are termed template-mediated interactions and shape-complementary interactions. A deep understanding of the interactions inside self-assembled nanoparticles, and a broader perspective for the future synthesis and fabrication of these promising nanomaterials is provided.

  9. Symmetry, Equivalence and Self-Assembly

    NASA Astrophysics Data System (ADS)

    Douglas, Jack

    2006-03-01

    Molecular self-assembly at equilibrium is central to the formation of many biological structures and the emulation of this process through the creation of synthetic counterparts offers great promise for nanofabrication. The central problems in this field are an understanding of how the symmetry of the interacting particles encodes the geometrical structure of the organized structure and the nature of the thermodynamic transitions involved. Our approach is inspired by the self-assembly of actin, tubulin and icosahedral structures of plant and animal viruses. We observe chain, membrane,`nanotube' and hollow icosahedron structures using `equivalent' particles exhibiting an interplay between directional (dipolar and multi-polar) interactions and short-range (van der Waals) interactions. Specifically, a dipolar potential (continuous rotational symmetry) gives rise to chain formation, while potentials having discrete rotational symmetries (e.g., square quadrupole or triangular ring of dipoles) led to the self-organization of nanotube and icosahedral structures with some resemblance to tubulin and icosahedral viruses. The simulations are compared to theoretical models of molecular self-assembly, especially in the case of dipolar fluids where the corresponding analytic theory of equilibrium polymerization is well developed. These computations give insights into the design elements required for the development of synthetic systems exhibiting this type of organization.

  10. Engineered Self-Assembly of Plasmonic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Tao, Andrea

    2013-03-01

    A critical need in nanotechnology is the development of new tools and methods to organize, connect, and integrate solid-state nanocomponents. Self-assembly - where components spontaneously organize themselves - can be carried out on a massively parallel scale to construct large-scale architectures using solid-state nanocrystal building blocks. I will present our recent work on the synthesis and self-assembly of nanocrystals for plasmonics, where light is propagated, manipulated, and confined by solid-state components that are smaller than the wavelength of light itself. We show the organization of polymer-grafted metal nanocrystals into hierarchical nanojunction arrays that possess intense ``hot spots'' due to electromagnetic field localization. We also show that doped semiconductor nanocrystals can serve as a new class of plasmonic building blocks, where shape and carrier density can be actively tuned to engineer plasmon resonances. These examples demonstrate that nanocrystals possess unique electromagnetic properties that rival top-down structures, and the potential of self-assembly for fabricating designer plasmonic materials.

  11. Self-assembled chromophores within mesoporous nanocrystalline TiO2: towards biomimetic solar cells.

    PubMed

    Marek, Peter L; Sieger, Hermann; Scherer, Torsten; Hahn, Horst; Balaban, Teodor Silviu

    2009-06-01

    Artificial light-harvesting antennas consisting of self-assembled chromophores that mimic the natural pigments of photosynthetic bacteria have been inserted into voids induced in porous titania (TiO2, anatase) in order to investigate their suitability for hybrid solar cells. Mesoporous nanocrystalline TiO2 with additional uniform macropores was treated with precursor solutions of the pigment which was then induced to self-assemble within the voids. The chromophores were tailored to combine the self-assembly characteristics of the natural bacteriochlorophylls with the robustness of artificial Zn-porphyrins being stable for prolonged periods even upon heating to over 200 degrees C. They assemble on the TiO2 surface to form nano- to micro-crystalline structures with lengths from tens of nm up to several microm and show a photosensitization effect which is supposed to be dependent on the assembly size. The natural examples of these antennas are found in green sulfur bacteria which are able to use photosynthesis in deep water regions with minute light intensities. The implementation of biomimetic antennas for light harvesting and a better photon management may lead to a rise in efficiency of dye-sensitized solar cells also under low light illumination conditions.

  12. Self-assembled biomimetic nanoreactors I: Polymeric template

    NASA Astrophysics Data System (ADS)

    McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish

    2015-09-01

    The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.

  13. Self-Assembly of Large Amyloid Fibers

    NASA Astrophysics Data System (ADS)

    Ridgley, Devin M.

    Functional amyloids found throughout nature have demonstrated that amyloid fibers are potential industrial biomaterials. This work introduces a new "template plus adder" cooperative mechanism for the spontaneous self-assembly of micrometer sized amyloid fibers. A short hydrophobic template peptide induces a conformation change within a highly alpha-helical adder protein to form beta-sheets that continue to assemble into micrometer sized amyloid fibers. This study utilizes a variety of proteins that have template or adder characteristics which suggests that this mechanism may be employed throughout nature. Depending on the amino acid composition of the proteins used the mixtures form amyloid fibers of a cylindrical ( 10 mum diameter, 2 GPa Young's modulus) or tape (5- 10 mum height, 10-20 mum width and 100-200 MPa Young's modulus) morphology. Processing conditions are altered to manipulate the morphology and structural characteristics of the fibers. Spectroscopy is utilized to identify certain amino acid groups that contribute to the self-assembly process. Aliphatic amino acids (A, I, V and L) are responsible for initiating conformation change of the adder proteins to assemble into amyloid tapes. Additional polyglutamine segments (Q-blocks) within the protein mixtures will form Q hydrogen bonds to reinforce the amyloid structure and form a cylindrical fiber of higher modulus. Atomic force microscopy is utilized to delineate the self-assembly of amyloid tapes and cylindrical fibers from protofibrils (15-30 nm width) to fibers (10-20 mum width) spanning three orders of magnitude. The aliphatic amino acid content of the adder proteins' alpha-helices is a good predictor of high density beta-sheet formation within the protein mixture. Thus, it is possible to predict the propensity of a protein to undergo conformation change into amyloid structures. Finally, Escherichia coli is genetically engineered to express a template protein which self-assembles into large amyloid

  14. Porphyrin Tests

    MedlinePlus

    ... Table adapted from: "Iron and porphyrin metabolism," Clinical Chemistry: Theory, Analysis and Correlation , courtesy of William E. ... Health Professionals ©2001 - by American Association for Clinical Chemistry • Contact Us | Terms of Use | Privacy We comply ...

  15. Functional membranes via nanoparticle self-assembly.

    PubMed

    Green, Erica; Fullwood, Emily; Selden, Julieann; Zharov, Ilya

    2015-05-07

    This article summarizes a recently developed approach for the preparation of membrane materials by the self-assembly of inorganic, polymeric or hybrid nanoparticles, with the focus on functional membranes possessing permselectivity. Two types of such membranes are discussed, those possessing size and charge selectivity suitable for ultra- and nanofiltration and chemoselective separation, and those possessing proton or lithium transport properties suitable for fuel cell and lithium battery applications, respectively. This article describes the preparation methods of nanoparticle membranes, as well as their mechanical, molecular, and ionic transport properties.

  16. Self-assembly of Random Copolymers

    PubMed Central

    Li, Longyu; Raghupathi, Kishore; Song, Cunfeng; Prasad, Priyaa; Thayumanavan, S.

    2014-01-01

    Self-assembly of random copolymers has attracted considerable attention recently. In this feature article, we highlight the use of random copolymers to prepare nanostructures with different morphologies and to prepare nanomaterials that are responsive to single or multiple stimuli. The synthesis of single-chain nanoparticles and their potential applications from random copolymers are also discussed in some detail. We aim to draw more attention to these easily accessible copolymers, which are likely to play an important role in translational polymer research. PMID:25036552

  17. Self-assembled lipid bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.

    2005-11-08

    The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.

  18. Microscale Self-Assembled Electrical Contacts

    DTIC Science & Technology

    2007-09-01

    Capillary forces from a molten alloy can be used to both bond microscale components and make electrical connections between them in a self...melting point, with Sn being the primary component to corrode and react with the underlying base metal. Using a eutectic Sn-Bi alloy and glycerol at...on this Sn-Bi-glycerol system was measured at 1.9 /mΩ-cm2. 15. SUBJECT TERMS Self-assembly, capillary forces, eutectic Bi-Sn solder, packaging 16

  19. Self-assembly of colloidal surfactants

    NASA Astrophysics Data System (ADS)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  20. Nanoscale spirals by directed self-assembly

    NASA Astrophysics Data System (ADS)

    Choi, Hong Kyoon; Chang, Jae-Byum; Hannon, Adam F.; Yang, Joel K. W.; Berggren, Karl K.; Alexander-Katz, Alfredo; Ross, Caroline A.

    2017-06-01

    Archimedean spiral patterns are formed by the directed self-assembly of diblock copolymer thin films within a circular template. The presence of a notch in the template promotes the formation of a spiral compared to concentric rings, and the notch shape determines the chirality of the spiral. Double spirals occur when the notch width is increased or when there are two notches. The spiral followed an Archimedean form with exponent ≈0.9. Self-consistent field theory reproduces the experimentally observed morphologies and demonstrates the templating of spirals in cylindrical-morphology block copolymer films.

  1. Self-assembly of magnetic biofunctional nanoparticles

    SciTech Connect

    Sun Xiangcheng; Thode, C.J.; Mabry, J.K.; Harrell, J.W.; Nikles, D.E.; Sun, K.; Wang, L.M.

    2005-05-15

    Spherical, ferromagnetic FePt nanoparticles with a particle size of 3 nm were prepared by the simultaneous polyol reduction of Fe(acac){sub 3} and Pt(acac){sub 2} in phenyl ether in the presence of oleic acid and oleylamine. The oleic acid ligands can be replaced with 11-mercaptoundecanoic acid, giving particles that can be dispersed in water. Both x-ray diffraction and transmission electron microscopy indicated that FePt particles were not affected by ligands replacement. Dispersions of the FePt particles with 11-mercaptoundecanoic acid ligands and ammonium counter ions gave self-assembled films consisting of highly ordered hexagonal arrays of particles.

  2. Hydrogen-Bonded Polymer-Porphyrin Assemblies in Water: Supramolecular Structures for Light Energy Conversion.

    PubMed

    Kutz, Anne; Alex, Wiebke; Krieger, Anja; Gröhn, Franziska

    2017-09-01

    In this study, a new type of functional, self-assembled nanostructure formed from porphyrins and polyamidoamine dendrimers based on hydrogen bonding in an aqueous solution is presented. As the aggregates formed are promising candidates for solar-energy conversion, their photocatalytic activity is tested using the model reaction of methyl viologen reduction. The self-assembled structures show significantly increased activity as compared to unassociated porphyrins. Details of interaction forces driving the supramolecular structure formation and regulating catalytic efficiency are fundamentally discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electron Transport through Porphyrin Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Qi

    The goal of this work is to study the properties that would affect the electron transport through a porphyrin molecular junction. This work contributes to the field of electron transport in molecular junctions in the following 3 aspects. First of all, by carrying out experiments comparing the conductance of the iron (III) porphyrin (protected) and the free base porphyrin (protected), it is confirmed that the molecular energy level broadening and shifting occurs for porphyrin molecules when coupled with the metal electrodes, and this level broadening and shifting plays an important role in the electron transport through molecular junctions. Secondly, by carrying out an in-situ deprotection of the acetyl-protected free base porphyrin molecules, it is found out that the presence of acetyl groups reduces the conductance. Thirdly, by incorporating the Matrix-assisted laser desorption/ionization (MALDI) spectrum and the in-situ deprotection prior to formation of molecular junctions, it allows a more precise understanding of the molecules involved in the formation of molecular junctions, and therefore allows an accurate analysis of the conductance histogram. The molecules are prepared by self-assembly and the junctions are formed using a Scanning Tunneling Microscopy (STM) molecular break junction technique. The porphyrin molecules are characterized by MALDI in solution before self-assembly to a gold/mica substrate. The self-assembled monolayers (SAMs) of porphyrins on gold are characterized by Ultraviolet-visible (UV-Vis) reflection spectroscopy to confirm that the molecules are attached to the substrate. The SAMs are then characterized by Angle-Resolved X-ray photoelectron spectroscopy (ARXPS) to determine the thickness and the average molecular orientation of the molecular layer. The electron transport is measured by conductance-displacement (G-S) experiments under a given bias (-0.4V). The conductance value of a single molecule is identified by a statistical analysis

  4. Quantifying quality in DNA self-assembly

    PubMed Central

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  5. Comparison of directed self-assembly integrations

    NASA Astrophysics Data System (ADS)

    Somervell, Mark; Gronheid, Roel; Hooge, Joshua; Nafus, Kathleen; Rincon Delgadillo, Paulina; Thode, Chris; Younkin, Todd; Matsunaga, Koichi; Rathsack, Ben; Scheer, Steven; Nealey, Paul

    2012-03-01

    Directed Self-Assembly (DSA) is gaining momentum as a means for extending optical lithography past its current limits. There are many forms of the technology, and it can be used for creating both line/space and hole patterns.1-3 As with any new technology, adoption of DSA faces several key challenges. These include creation of a new materials infrastructure, fabrication of new processing hardware, and the development of implementable integrations. Above all else, determining the lowest possible defect density remains the industry's most critical concern. Over the past year, our team, working at IMEC, has explored various integrations for making 12-14nm half-pitch line/space arrays. Both grapho- and chemo-epitaxy implementations have been investigated in order to discern which offers the best path to high volume manufacturing. This paper will discuss the manufacturing readiness of the various implementations by comparing the process margin for different DSA processing steps and defect density for the entirety of the flow. As part of this work, we will describe our method for using programmed defectivity on reticle to elucidate the mechanisms that drive self-assembly defectivity on wafer.

  6. Peptide self-assembly: thermodynamics and kinetics.

    PubMed

    Wang, Juan; Liu, Kai; Xing, Ruirui; Yan, Xuehai

    2016-10-21

    Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.

  7. Molecular self-assembly at solid surfaces.

    PubMed

    Otero, Roberto; Gallego, José María; de Parga, Amadeo L Vázquez; Martín, Nazario; Miranda, Rodolfo

    2011-11-23

    Self-assembly, the process by which objects initially distributed at random arrange into well-defined patterns exclusively due to their local mutual interactions without external intervention, is generally accepted to be the most promising method for large-scale fabrication of functional nanostructures. In particular, the ordering of molecular building-blocks deposited at solid surfaces is relevant for the performance of many organic electronic and optoelectronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) or photovoltaic solar cells. However, the fundamental knowledge on the nature and strength of the intermolecular and molecule-substrate interactions that govern the ordering of molecular adsorbates is, in many cases, rather scarce. In most cases, the structure and morphology of the organic-metal interface is not known and it is just assumed to be the same as in the bulk, thereby implicitly neglecting the role of the surface on the assembly. However, this approximation is usually not correct, and the evidence gathered over the last decades points towards an active role of the surface in the assembly, leading to self-assembled structures that only in a few occasions can be understood by considering just intermolecular interactions in solid or gas phases. In this work we review several examples from our recent research demonstrating the apparently endless variety of ways in which the surface might affect the assembly of organic adsorbates.

  8. Triggered self-assembly of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-03-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  9. Triggered self-assembly of magnetic nanoparticles.

    PubMed

    Ye, L; Pearson, T; Cordeau, Y; Mefford, O T; Crawford, T M

    2016-03-15

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufacturing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  10. Geometry and universality in self-assembly

    NASA Astrophysics Data System (ADS)

    Bowick, Mark

    2007-03-01

    I will discuss the use of ideas from geometry and topology in combination with the statistical mechanics of self-assembly to classify the possible types of mesoatoms that can constitute a library of raw materials for making mesomolecules and bulk materials. I will concentrate on mesoatoms made up of an ordered two-dimensional monolayer of particles on the surface of a liquid droplet. Both the shape and the topology of the two-dimensional surface can be varied as well as the architecture of the ordering particles. The topology of the surface and the symmetries of the two-dimensional order severely restrict the possible defect structure of the mesoatom, which in turn fixes its valency. Defective regions are natural places for biological activity, chemical linking, unusual elastic response and aggregation of disorder. Specific examples include crystalline and hexatic order of point particles on the sphere, paraboloid, torus and Gaussian bump, nematic order of nematogens on the sphere and torus, and vector order of polar units on the sphere. The Gaussian curvature of the underlying surface may also lead to new features in the ground state, such as extended defect arrays of various kinds and curvature-driven defect unbinding, all of which may be exploited via engineered or spontaneous self-assembly.

  11. Quantifying quality in DNA self-assembly

    NASA Astrophysics Data System (ADS)

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-04-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids.

  12. Triggered self-assembly of magnetic nanoparticles

    PubMed Central

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-01-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles. PMID:26975332

  13. Self-Assemblies of novel molecules, VECAR

    NASA Astrophysics Data System (ADS)

    Shrestha, Bijay; Kim, Hye-Young; Lee, Soojin; Novak, Brian; Moldovan, Dorel

    2015-03-01

    VECAR is a newly synthesized molecule, which is an amphiphilic antioxidant molecule that consists of two molecular groups, vitamin-E and Carnosine, linked by a hydrocarbon chain. The hydrocarbon chain is hydrophobic and both vitamin-E and Carnosine ends are hydrophilic. In the synthesis process, the length of the hydrophobic chain of VECAR molecules can vary from the shortest (n =0) to the longest (n =18), where n indicates the number of carbon atoms in the chain. We conducted MD simulation studies of self-assembly of VECAR molecules in water using GROMACS on LONI HPC resources. Our study shows that there is a strong correlation between the shape and atomistic structure of the self-assembled nano-structures (SANs) and the chain-length (n) of VECAR molecules. We will report the results of data analyses including the atomistic structure of each SANs and the dynamic and energetic mechanisms of their formation as function of time. In summary, both VECAR molecules of chain-length n =18 and 9 form worm-like micelles, which may be used as a drug delivery system. This research is supported by the Louisiana Board of Regents-RCS Grant (LEQSF(2012-15)-RD-A-19).

  14. Self-assembled Nanofibrils for Immunomodulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fan

    This thesis has been mainly focused on applying self-assembled nanofibrils as unique depots for controlled release to modulate immune system, with two major chapters on modulation of innate immunity in chapter 2 and adaptive immunity in chapter 3, respectively. There are 5 chapters in the thesis. Chapter 1 gives a detailed review on the discovery, synthesis and application of self-assembled nanofibrils of therapeutic agents (termed as "self-delivery drugs"), including bioactive molecules; Chapter 2 demonstrates the supramolecular hydrogel of chemotactic peptides as a prolonged inflammation model through proper molecular engineering; Chapter 3 reports a suppressive antibody response achieved by encapsulation of antigens by supramolecular hydrogel of glycopeptide; Chapter 4 illustrates an example of supramolecular hydrogel formation of molecules with extremely low solubility, based on the fact that many small organic drugs have poor solubility. Chapter 5 used beta-galatosidase as a model to study glycosidase-instructed supramolecular hydrogel formation, with potential to target cancer cells due to their distinct metabolic profile.

  15. Self-assembled virus-membrane complexes

    NASA Astrophysics Data System (ADS)

    Yang, Lihua; Liang, Hongjun; Angelini, Thomas E.; Butler, John; Coridan, Robert; Tang, Jay X.; Wong, Gerard C. L.

    2004-09-01

    Anionic polyelectrolytes and cationic lipid membranes can self-assemble into lamellar structures ranging from alternating layers of membranes and polyelectrolytes to 'missing layer' superlattice structures. We show that these structural differences can be understood in terms of the surface-charge-density mismatch between the polyelectrolyte and membrane components by examining complexes between cationic membranes and highly charged M13 viruses, a system that allowed us to vary the polyelectrolyte diameter independently of the charge density. Such virus-membrane complexes have pore sizes that are about ten times larger in area than DNA-membrane complexes, and can be used to package and organize large functional molecules; correlated arrays of Ru(bpy)32+ macroionic dyes have been directly observed within the virus-membrane complexes using an electron-density reconstruction. These observations elucidate fundamental design rules for rational control of self-assembled polyelectrolyte-membrane structures, which have applications ranging from non-viral gene therapy to biomolecular templates for nanofabrication.

  16. Self-assembled virus-membrane complexes

    SciTech Connect

    Yang, Lihua; Liang, Hongjun; Angelini, Thomas; Butler, John; Coridan, Robert; Tang, Jay; Wong, Gerard

    2010-11-16

    Anionic polyelectrolytes and cationic lipid membranes can self-assemble into lamellar structures ranging from alternating layers of membranes and polyelectrolytes to 'missing layer' superlattice structures. We show that these structural differences can be understood in terms of the surface-charge-density mismatch between the polyelectrolyte and membrane components by examining complexes between cationic membranes and highly charged M13 viruses, a system that allowed us to vary the polyelectrolyte diameter independently of the charge density. Such virus-membrane complexes have pore sizes that are about ten times larger in area than DNA-membrane complexes, and can be used to package and organize large functional molecules; correlated arrays of Ru(bpy){sub 3}{sup 2+} macroionic dyes have been directly observed within the virus-membrane complexes using an electron-density reconstruction. These observations elucidate fundamental design rules for rational control of self-assembled polyelectrolyte-membrane structures, which have applications ranging from non-viral gene therapy to biomolecular templates for nanofabrication.

  17. Directed Self-Assembly: Expectations and Achievements

    PubMed Central

    2010-01-01

    Nanotechnology has been a revolutionary thrust in recent years of development of science and technology for its broad appeal for employing a novel idea for relevant technological applications in particular and for mass-scale production and marketing as common man commodity in general. An interesting aspect of this emergent technology is that it involves scientific research community and relevant industries alike. Top–down and bottom–up approaches are two broad division of production of nanoscale materials in general. However, both the approaches have their own limits as far as large-scale production and cost involved are concerned. Therefore, novel new techniques are desired to be developed to optimize production and cost. Directed self-assembly seems to be a promising technique in this regard; which can work as a bridge between the top–down and bottom–up approaches. This article reviews how directed self-assembly as a technique has grown up and outlines its future prospects. PMID:20730077

  18. Micropatterning of bioactive self-assembling gels†

    PubMed Central

    Mata, Alvaro; Hsu, Lorraine; Capito, Ramille; Aparicio, Conrado; Henrikson, Karl

    2009-01-01

    Microscale topographical features have been known to affect cell behavior. An important target in this area is to integrate top down techniques with bottom up self-assembly to create three-dimensional (3D) patterned bioactive mimics of extracellular matrices. We report a novel approach toward this goal and demonstrate its use to study the behavior of human mesenchymal stem cells (hMSCs). By incorporating polymerizable acetylene groups in the hydrophobic segment of peptide amphiphiles (PAs), we were able to micro-pattern nanofiber gels of these bioactive materials. PAs containing the cell adhesive epitope arginine–glycine–aspartic acid–serine (RGDS) were allowed to self-assemble within microfabricated molds to create networks of either randomly oriented or aligned ~30 nm diameter nanofiber bundles that were shaped into topographical patterns containing holes, posts, or channels up to 8 μm in height and down to 5 μm in lateral dimensions. When topographical patterns contained nanofibers aligned through flow prior to gelation, the majority of hMSCs aligned in the direction of the nanofibers even in the presence of hole microtextures and more than a third of them maintained this alignment when encountering perpendicular channel microtextures. Interestingly, in topographical patterns with randomly oriented nanofibers, osteoblastic differentiation was enhanced on hole microtextures compared to all other surfaces. PMID:20047022

  19. Stereochemistry in subcomponent self-assembly.

    PubMed

    Castilla, Ana M; Ramsay, William J; Nitschke, Jonathan R

    2014-07-15

    CONSPECTUS: As Pasteur noted more than 150 years ago, asymmetry exists in matter at all organization levels. Biopolymers such as proteins or DNA adopt one-handed conformations, as a result of the chirality of their constituent building blocks. Even at the level of elementary particles, asymmetry exists due to parity violation in the weak nuclear force. While the origin of homochirality in living systems remains obscure, as does the possibility of its connection with broken symmetries at larger or smaller length scales, its centrality to biomolecular structure is clear: the single-handed forms of bio(macro)molecules interlock in ways that depend upon their handednesses. Dynamic artificial systems, such as helical polymers and other supramolecular structures, have provided a means to study the mechanisms of transmission and amplification of stereochemical information, which are key processes to understand in the context of the origins and functions of biological homochirality. Control over stereochemical information transfer in self-assembled systems will also be crucial for the development of new applications in chiral recognition and separation, asymmetric catalysis, and molecular devices. In this Account, we explore different aspects of stereochemistry encountered during the use of subcomponent self-assembly, whereby complex structures are prepared through the simultaneous formation of dynamic coordinative (N → metal) and covalent (N═C) bonds. This technique provides a useful method to study stereochemical information transfer processes within metal-organic assemblies, which may contain different combinations of fixed (carbon) and labile (metal) stereocenters. We start by discussing how simple subcomponents with fixed stereogenic centers can be incorporated in the organic ligands of mononuclear coordination complexes and communicate stereochemical information to the metal center, resulting in diastereomeric enrichment. Enantiopure subcomponents were then

  20. Amphiphilic self-assembly of semiconductor nanocrystals with heterogeneous compositions

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yuki; Takishita, Takao; Kobayashi, Yusei; Arai, Noriyoshi; Kawai, Tsuyoshi; Nakashima, Takuya

    2017-06-01

    We describe herein that amphiphilic semiconductor nanocrystals (NCs) self-assembled into network structures with heterogeneous compositions. The semiconductor nanorods and tetrapods were subjected to ligand exchange with short-chained water-soluble thiolates, giving an amphiphilic surface pattern with a hydrophilic wall and hydrophobic tips. The amphiphilic NCs self-assembled through hydrophobic effects between tip-surfaces in water. The hydrophobic effect-facilitated self-assembly of NCs was well reproduced by a dissipative particle dynamics simulation. The amphiphilic self-assembly of NCs was demonstrated regardless of NC-shapes and compositions to give semiconductor NC-network structures with heterogeneous compositions. The tandem connection of luminescent core/shell nanorods demonstrated energy transfer between the nanorods in the self-assembly. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  1. Sequence-selective encapsulation and protection of long peptides by a self-assembled FeII8L6 cubic cage

    PubMed Central

    Mosquera, Jesús; Szyszko, Bartosz; Ho, Sarah K. Y.; Nitschke, Jonathan R.

    2017-01-01

    Self-assembly offers a general strategy for the preparation of large, hollow high-symmetry structures. Although biological capsules, such as virus capsids, are capable of selectively recognizing complex cargoes, synthetic encapsulants have lacked the capability to specifically bind large and complex biomolecules. Here we describe a cubic host obtained from the self-assembly of FeII and a zinc-porphyrin-containing ligand. This cubic cage is flexible and compatible with aqueous media. Its selectivity of encapsulation is driven by the coordination of guest functional groups to the zinc porphyrins. This new host thus specifically encapsulates guests incorporating imidazole and thiazole moieties, including drugs and peptides. Once encapsulated, the reactivity of a peptide is dramatically altered: encapsulated peptides are protected from trypsin hydrolysis, whereas physicochemically similar peptides that do not bind are cleaved. PMID:28358028

  2. Sequence-selective encapsulation and protection of long peptides by a self-assembled FeII8L6 cubic cage

    NASA Astrophysics Data System (ADS)

    Mosquera, Jesús; Szyszko, Bartosz; Ho, Sarah K. Y.; Nitschke, Jonathan R.

    2017-03-01

    Self-assembly offers a general strategy for the preparation of large, hollow high-symmetry structures. Although biological capsules, such as virus capsids, are capable of selectively recognizing complex cargoes, synthetic encapsulants have lacked the capability to specifically bind large and complex biomolecules. Here we describe a cubic host obtained from the self-assembly of FeII and a zinc-porphyrin-containing ligand. This cubic cage is flexible and compatible with aqueous media. Its selectivity of encapsulation is driven by the coordination of guest functional groups to the zinc porphyrins. This new host thus specifically encapsulates guests incorporating imidazole and thiazole moieties, including drugs and peptides. Once encapsulated, the reactivity of a peptide is dramatically altered: encapsulated peptides are protected from trypsin hydrolysis, whereas physicochemically similar peptides that do not bind are cleaved.

  3. Sequence-selective encapsulation and protection of long peptides by a self-assembled Fe(II)8L6 cubic cage.

    PubMed

    Mosquera, Jesús; Szyszko, Bartosz; Ho, Sarah K Y; Nitschke, Jonathan R

    2017-03-30

    Self-assembly offers a general strategy for the preparation of large, hollow high-symmetry structures. Although biological capsules, such as virus capsids, are capable of selectively recognizing complex cargoes, synthetic encapsulants have lacked the capability to specifically bind large and complex biomolecules. Here we describe a cubic host obtained from the self-assembly of Fe(II) and a zinc-porphyrin-containing ligand. This cubic cage is flexible and compatible with aqueous media. Its selectivity of encapsulation is driven by the coordination of guest functional groups to the zinc porphyrins. This new host thus specifically encapsulates guests incorporating imidazole and thiazole moieties, including drugs and peptides. Once encapsulated, the reactivity of a peptide is dramatically altered: encapsulated peptides are protected from trypsin hydrolysis, whereas physicochemically similar peptides that do not bind are cleaved.

  4. Self-assembled software and method of overriding software execution

    DOEpatents

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  5. DNA tile based self-assembly: building complex nanoarchitectures.

    PubMed

    Lin, Chenxiang; Liu, Yan; Rinker, Sherri; Yan, Hao

    2006-08-11

    DNA tile based self-assembly provides an attractive route to create nanoarchitectures of programmable patterns. It also offers excellent scaffolds for directed self-assembly of nanometer-scale materials, ranging from nanoparticles to proteins, with potential applications in constructing nanoelectronic/nanophotonic devices and protein/ligand nanoarrays. This Review first summarizes the currently available DNA tile toolboxes and further emphasizes recent developments toward self-assembling DNA nanostructures with increasing complexity. Exciting progress using DNA tiles for directed self-assembly of other nanometer scale components is also discussed.

  6. Metal-Directed Protein Self Assembly

    PubMed Central

    SALGADO, ERIC N.; RADFORD, ROBERT J.

    2010-01-01

    CONSPECTUS Proteins are Nature’s premier building blocks for constructing sophisticated nanoscale architectures that carry out complex tasks and chemical transformations. It is estimated that 70–80% of all proteins are permanently oligomeric, that is, they are composed of multiple proteins that are held together in precise spatial organization through non-covalent interactions. While it is of great fundamental interest to understand the physicochemical basis of protein self-assembly, the mastery of protein-protein interactions (PPIs) would also allow access to novel biomaterials using Nature’s favorite and most versatile building block. With this possibility in mind, we have developed a new approach, Metal Directed Protein Self-Assembly (MDPSA), which utilizes the strength, directionality and selectivity of metal-ligand interactions to control PPIs. At its core, MDPSA is inspired by supramolecular coordination chemistry which exploits metal coordination for the self-assembly of small molecules into discrete, more-or-less predictable higher-order structures. Proteins, however, are not exactly small molecules or simple metal ligands: they feature extensive, heterogeneous surfaces that can interact with each other and with metal ions in unpredictable ways. We will start this Account by first describing the challenges of using entire proteins as molecular building blocks. This will be followed by our work on a model protein (cytochrome cb562) to both highlight and overcome those challenges toward establishing some ground rules for MDPSA. Proteins are also Nature’s metal ligands of choice. In MDPSA, once metal ions guide proteins into forming large assemblies, they are by definition embedded within extensive interfaces formed between protein surfaces. These complex surfaces make an inorganic chemist’s life somewhat difficult, yet they also provide a wide platform to modulate the metal coordination environment through distant, non-covalent interactions

  7. Capillary self-assembly of floating bodies

    NASA Astrophysics Data System (ADS)

    Jung, Sunghwan; Thompson, Paul; Bush, John

    2007-11-01

    We study the self-assembly of bodies supported on the water surface by surface tension. Attractive and repulsive capillary forces exist between menisci of, respectively, the same and opposite signs. In nature, floating objects (e.g. mosquito larvae) thus interact through capillary forces to form coherent packings on the water surface. We here present the results of an experimental investigation of such capillary pattern formation. Thin elliptical metal sheets were designed to have variable shape, flexibility and mass distribution. On the water surface, mono-, bi-, or tri-polar menisci could thus be achieved. The influence of the form of the menisci on the packings arising from the interaction of multiple floaters is explored. Biological applications are discussed.

  8. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1996-01-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  9. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, Charles R.; Niemeyer, Christof M.; Smith, Cassandra L.; Sano, Takeshi; Hnatowich, Donald J.; Rusckowski, Mary

    1999-10-12

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  10. Electrical characterization of self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Wang, Wenyong

    Electrical characterization of alkanethiol self-assembled monolayers (SAMs) has been performed using a nanometer-scale device structure. Temperature-variable current-voltage measurement is carried out to distinguish between different conduction mechanisms and temperature-independent transport characteristics are observed, revealing that tunneling is the dominant conduction mechanism of alkanethiols. Electronic transport through alkanethiol SAMs is further investigated with the technique of inelastic electron tunneling spectroscopy (IETS). The obtained IETS spectra exhibit characteristic vibrational signatures of the alkane molecules that are used, presenting direct evidence of the presence of molecular species in the device structure. Further investigation on the modulation broadening and thermal broadening of the spectral peaks yield intrinsic linewidths of different vibrational modes, which may give insight into molecular conformation and may prove to be a powerful tool in future molecular transport characterization.

  11. Self Assembly and Elasticity of Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2015-10-01

    While the outer crust of a neutron star is likely a solid ion lattice, the core consists of uniform nuclear matter at or above saturation density. In between, nuclei adopt exotic non-spherical geometries called ``nuclear pasta'' in order to minimize the nuclear attraction and Coulomb repulsion between protons. These structures have been well studied with both classical and quantum molecular dynamics, and their geometry can be predicted from the density, temperature, and proton fraction. Recent classical molecular dynamics simulations find evidence for a phase transition at T ~ 0 . 5 MeV, where simulations with low proton fractions undergo a solid-liquid phase transition, while simulations with high proton fractions under a glass-rubber phase transition. This is expected to have nontrivial consequences for the elastic properties of the pasta. Additionally, recent observations indicate that the structure of nuclear pasta may be related to structures observed in biophysics, specifically self assembling lipid membranes.

  12. Controlling water evaporation through self-assembly

    PubMed Central

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-01-01

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation. PMID:27573848

  13. Controlling water evaporation through self-assembly.

    PubMed

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  14. Supramolecular self-assemblies as functional nanomaterials

    NASA Astrophysics Data System (ADS)

    Busseron, Eric; Ruff, Yves; Moulin, Emilie; Giuseppone, Nicolas

    2013-07-01

    In this review, we survey the diversity of structures and functions which are encountered in advanced self-assembled nanomaterials. We highlight their flourishing implementations in three active domains of applications: biomedical sciences, information technologies, and environmental sciences. Our main objective is to provide the reader with a concise and straightforward entry to this broad field by selecting the most recent and important research articles, supported by some more comprehensive reviews to introduce each topic. Overall, this compilation illustrates how, based on the rules of supramolecular chemistry, the bottom-up approach to design functional objects at the nanoscale is currently producing highly sophisticated materials oriented towards a growing number of applications with high societal impact.

  15. Pseudotannins self-assembled into antioxidant complexes.

    PubMed

    Cheng, H A; Drinnan, C T; Pleshko, N; Fisher, O Z

    2015-10-21

    Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated.

  16. Pseudotannins Self-assembled into Antioxidant Complexes

    PubMed Central

    Cheng, H. A.; Drinnan, C. T.; Pleshko, N.; Fisher, O. Z.

    2015-01-01

    Natural tannins are attractive as building blocks for biomaterials due to their antioxidant properties and ability to form interpolymer complexes (IPCs) with other macromolecules. One of the major challenges to tannin usage in biomedical applications is their instability at physiological conditions and a lack of control over the purity and reactivity. Herein, we report the synthesis and characterization of tannin-like polymers with controlled architecture, reactivity, and size. These pseudotannins were synthesized by substituting linear dextran chains with gallic, resorcylic, and protocatechuic pendant groups to mimic the structure of natural hydrolysable tannins. We demonstrate that these novel materials can self-assemble to form reductive and colloidally stable nanoscale and microscale particles. Specifically, the synthesis, turbidity, particle size, antioxidant power, and cell uptake of IPCs derived from pseudotannins and poly(ethylene glycol) was evaluated. PMID:26313262

  17. Self-assembled magnetic surface swimmers.

    SciTech Connect

    Snezhko, A.; Belkin, M.; Aranson, I. S.; Kwok, W.-K.; Materials Science Division; Illinois Inst. of Tech.

    2009-03-20

    We report studies of novel self-assembled magnetic surface swimmers (magnetic snakes) formed from a dispersion of magnetic microparticles at a liquid-air interface and energized by an alternating magnetic field. We show that under certain conditions the snakes spontaneously break the symmetry of surface flows and turn into self-propelled objects. Parameters of the driving magnetic field tune the propulsion velocity of these snakelike swimmers. We find that the symmetry of the surface flows can also be broken in a controlled fashion by attaching a large bead to a magnetic snake (bead-snake hybrid), transforming it into a self-locomoting entity. The observed phenomena have been successfully described by a phenomenological model based on the amplitude equation for surface waves coupled to a large-scale hydrodynamic mean flow equation.

  18. Self-assembling multimeric nucleic acid constructs

    DOEpatents

    Cantor, C.R.; Niemeyer, C.M.; Smith, C.L.; Sano, Takeshi; Hnatowich, D.J.; Rusckowski, M.

    1996-10-01

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products. 5 figs.

  19. Self-Assembled Magnetic Surface Swimmers

    NASA Astrophysics Data System (ADS)

    Snezhko, A.; Belkin, M.; Aranson, I. S.; Kwok, W.-K.

    2009-03-01

    We report studies of novel self-assembled magnetic surface swimmers (magnetic snakes) formed from a dispersion of magnetic microparticles at a liquid-air interface and energized by an alternating magnetic field. We show that under certain conditions the snakes spontaneously break the symmetry of surface flows and turn into self-propelled objects. Parameters of the driving magnetic field tune the propulsion velocity of these snakelike swimmers. We find that the symmetry of the surface flows can also be broken in a controlled fashion by attaching a large bead to a magnetic snake (bead-snake hybrid), transforming it into a self-locomoting entity. The observed phenomena have been successfully described by a phenomenological model based on the amplitude equation for surface waves coupled to a large-scale hydrodynamic mean flow equation.

  20. Self assembly properties of primitive organic compounds

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1991-01-01

    A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic

  1. Self assembled structures for 3D integration

    NASA Astrophysics Data System (ADS)

    Rao, Madhav

    Three dimensional (3D) micro-scale structures attached to a silicon substrate have various applications in microelectronics. However, formation of 3D structures using conventional micro-fabrication techniques are not efficient and require precise control of processing parameters. Self assembly is a method for creating 3D structures that takes advantage of surface area minimization phenomena. Solder based self assembly (SBSA), the subject of this dissertation, uses solder as a facilitator in the formation of 3D structures from 2D patterns. Etching a sacrificial layer underneath a portion of the 2D pattern allows the solder reflow step to pull those areas out of the substrate plane resulting in a folded 3D structure. Initial studies using the SBSA method demonstrated low yields in the formation of five different polyhedra. The failures in folding were primarily attributed to nonuniform solder deposition on the underlying metal pads. The dip soldering method was analyzed and subsequently refined. A modified dip soldering process provided improved yield among the polyhedra. Solder bridging referred as joining of solder deposited on different metal patterns in an entity influenced the folding mechanism. In general, design parameters such as small gap-spacings and thick metal pads were found to favor solder bridging for all patterns studied. Two types of soldering: face and edge soldering were analyzed. Face soldering refers to the application of solder on the entire metal face. Edge soldering indicates application of solder only on the edges of the metal face. Mechanical grinding showed that face soldered SBSA structures were void free and robust in nature. In addition, the face soldered 3D structures provide a consistent heat resistant solder standoff height that serve as attachments in the integration of dissimilar electronic technologies. Face soldered 3D structures were developed on the underlying conducting channel to determine the thermo-electric reliability of

  2. Atomic force microscope characterization of self-assembly behaviors of cyclo[8] pyrrole on solid substrates

    NASA Astrophysics Data System (ADS)

    Xu, Hai; Zhao, Siqi; Xiong, Xiang; Jiang, Jinzhi; Xu, Wei; Zhu, Daoben; Zhang, Yi; Liang, Wenjie; Cai, Jianfeng

    2017-04-01

    Cyclo [8] pyrrole (CP) is a porphyrin analogue containing eight α-conjugated pyrrole units which are arranged in a nearly coplanar conformation. The π-π interactions between CP molecules lead to regular aggregations through a solution casting process. Using tapping mode atomic force microscope (AFM), we investigated the morphology of self-assembled aggregates formed by deposition of different CP solutions on different substrates. We found that in the n-butanol solution, nanofibrous structures could be formed on the silicon or mica surface. Interestingly, on the highly oriented pyrolytic graphite (HOPG) surface, or silicon and mica surface with a toluene solution, only irregular spherical structures were identified. The difference in the nanomorphology may be attributed to distinct interactions between molecule-molecule, molecule-solvent and molecule-substrate.

  3. Effects of Immersion Solvent on Photovoltaic and Photophysical Properties of Porphyrin-Sensitized Solar Cells.

    PubMed

    Hayashi, Hironobu; Higashino, Tomohiro; Kinjo, Yuriko; Fujimori, Yamato; Kurotobi, Kei; Chabera, Pavel; Sundström, Villy; Isoda, Seiji; Imahori, Hiroshi

    2015-08-26

    Memory effects in self-assembled monolayers (SAMs) of zinc porphyrin carboxylic acid on TiO2 electrodes have been demonstrated for the first time by evaluating the photovoltaic and electron transfer properties of porphyrin-sensitized solar cells prepared by using different immersion solvents sequentially. The structure of the SAM of the porphyrin on the TiO2 was maintained even after treating the porphyrin monolayer with different neat immersion solvents (memory effect), whereas it was altered by treatment with solutions containing different porphyrins (inverse memory effect). Infrared spectroscopy shows that the porphyrins in the SAM on the TiO2 could be exchanged with the same or analogous porphyrin, leading to a change in the structure of the porphyrin SAM. The memory and inverse memory effects are well correlated with a change in porphyrin geometry, mainly the tilt angle of the porphyrin along the long molecular axis from the surface normal on the TiO2, as well as with kinetics of electron transfer between the porphyrin and TiO2. Such a new structure-function relationship for DSSCs will be very useful for the rational design and optimization of photoelectrochemical and photovoltaic properties of molecular assemblies on semiconductor surfaces.

  4. Supramolecular chemistry: Unexplored territory for self-assembly

    NASA Astrophysics Data System (ADS)

    Beuerle, Florian

    2016-12-01

    Cage-like structures can self-assemble from suitable metal ions and organic linkers, but the size of the assemblies was limited. The surprise discovery of a new series of cages opens up fresh horizons for self-assembly. See Letter p.563

  5. Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems

    DTIC Science & Technology

    2015-05-15

    Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems This grant studied DNA nanostructures and their applications in a variety of...Number of Papers published in non peer-reviewed journals: Final Report: Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems Report

  6. Spatiotemporal Control of Supramolecular Self-Assembly and Function.

    PubMed

    Zhan, Jie; Cai, Yanbin; Ji, Shenglu; He, Shuangshuang; Cao, Yi; Ding, Dan; Wang, Ling; Yang, Zhimou

    2017-03-09

    The enzyme-triggered self-assembly of peptides has flourished in controlling the self-assembly kinetics and producing nanostructures that are typically inaccessible by conventional self-assembly pathways. However, the diffusion and nanoscale chemical gradient of self-assembling peptides generated by the enzyme also significantly affect the outcome of self-assembly, which has not been reported yet. In this work, we demonstrated for the first time a spatiotemporal control of enzyme-triggered peptide self-assembly. By simply adjusting the temperature, we could change both the catalytic activity of the enzyme of phosphatase and their aggregation states. The strategy kinetically controls the production rate of self-assembling peptides and spatially controls their distribution in the system, leading to the formation of nanoparticles at 37 °C and nanofibers at 4 °C. The nanofibers showed ∼10 times higher cellular uptake by 3T3 cells than the nanoparticles, thanks to their higher stability and more ordered structures. Using such spatiotemporal control, we could prepare optimized nanoprobes with low background fluorescence, rapid and high cellular uptake, and high sensitivity. We postulate that this strategy would be very useful in general for preparing self-assembled nanomaterials with controllable morphology and function.

  7. Multilayer self-assemblies as electronic and optical materials

    SciTech Connect

    Li, D.; Luett, M.; Shi, X.; Fitzsimmons, M.R.

    1997-12-31

    The layer-by-layer growth of film structures consisting of sequential depositions of oppositely charged polymers and macrocycles (ring-shaped molecules) have been constructed using molecular self-assembly techniques. These self-assembled thin films were characterized with X-ray reflectometry, which yielded (1) the average electron density, (2) the average thicknesses, and (3) the roughness of the growth surface of the self-assembled multilayer of macrocycles and polymers. These observations suggest that inorganic-organic interactions play an important role during the initial stages of thin-film growth, but less so as the thin film becomes thicker. Optical absorption techniques were also used to characterize the self-assembled multilayers. Phorphyrin and phthalocyanine derivatives were chosen as one of the building blocks of the self-assembled multilayers because of their interesting optical properties.

  8. Self-Assembly of Optical Molecules with Supramolecular Concepts

    PubMed Central

    Okamoto, Ken; Chithra, Parayalil; Richards, Gary J.; Hill, Jonathan P.; Ariga, Katsuhiko

    2009-01-01

    Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces. PMID:19564931

  9. Challenges and breakthroughs in recent research on self-assembly

    PubMed Central

    Ariga, Katsuhiko; Hill, Jonathan P; Lee, Michael V; Vinu, Ajayan; Charvet, Richard; Acharya, Somobrata

    2008-01-01

    The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. However, existing fabrication techniques suffer from several disadvantages including size-restrictions and a general paucity of applicable materials. Because of this, the development of alternative approaches based on supramolecular self-assembly processes is anticipated as a breakthrough methodology. This review article aims to comprehensively summarize the salient aspects of self-assembly through the introduction of the recent challenges and breakthroughs in three categories: (i) types of self-assembly in bulk media; (ii) types of components for self-assembly in bulk media; and (iii) self-assembly at interfaces. PMID:27877935

  10. Investigation of Supramolecular Coordination Self-Assembly and Polymerization Confined on Metal Surfaces Using Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Tao

    Organic molecules are envisioned as the building blocks for design and fabrication of functional devices in future, owing to their versatility, low cost and flexibility. Although some devices such as organic light-emitting diode (OLED) have been already applied in our daily lives, the field is still in its infancy and numerous challenges still remain. In particular, fundamental understanding of the process of organic material fabrication at a molecular level is highly desirable. This thesis focuses on the design and fabrication of supramolecular and macromolecular nanostructures on a Au(111) surface through self-assembly, polymerization and a combination of two. We used scanning tunneling microscopy (STM) as an experimental tool and Monte Carlo (MC) and kinetic Monte Carlo (KMC) simulations as theoretical tools to characterize the structures of these systems and to investigate the mechanisms of the self-assembly and polymerization processes at a single-molecular level. The results of this thesis consist of four parts as below: Part I addresses the mechanisms of two-dimensional multicomponent supramolecular self-assembly via pyridyl-Fe-terpyridyl coordination. Firstly, we studied four types of self-assembled metal-organic systems exhibiting different dimensionalities using specifically-designed molecular building blocks. We found that the two-dimensional system is under thermodynamic controls while the systems of lower dimension are under kinetic controls. Secondly, we studied the self-assembly of a series of cyclic supramolecular polygons. Our results indicate that the yield of on-surface cyclic polygon structures is very low independent of temperature and concentration and this phenomenon can be attributed to a subtle competition between kinetic and thermodynamic controls. These results shed light on thermodynamic and kinetic controls in on-surface coordination self-assembly. Part II addresses the two-dimensional supramolecular self-assembly of porphyrin

  11. Differing HOMO and LUMO mediated conduction in a porphyrin nanorod.

    PubMed

    Friesen, Benjamin A; Wiggins, Bryan; McHale, Jeanne L; Mazur, Ursula; Hipps, K W

    2010-06-30

    In this communication we provide the first UHV-STM images and STM-based current-voltage (I-V) and orbital mediated tunneling spectroscopy (OMTS) data on a self-assembled porphyrin nanostructure at the single structure level. We will show that transverse conductivity over distances less than 10 nm can occur by barrier type tunneling but that long distance conduction solely occurs through the LUMO band. These nanorods are very highly rectifying.

  12. RNA self-assembly and RNA nanotechnology.

    PubMed

    Grabow, Wade W; Jaeger, Luc

    2014-06-17

    CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such

  13. Solvent mediated self-assembly of solids

    SciTech Connect

    De Yoreo, J.; Wilson, W.D.; Palmore, T.

    1997-12-12

    Solvent-mediated crystallization represents a robust approach to self-assembly of nanostructures and microstructures. In organic systems, the relative ease with which the structure of hydrogen- bonded molecules can be manipulated allows for generation of a wide variety of nanoscale crystal structures. In living organisms, control over the micron-to-millimeter form of inorganic crystals is achieved through introduction of bio-organic molecules. The purpose of this proposal is to understand the interplay between solution chemistry, molecular structure, surface chemistry, and the processes of nucleation and crystal growth in solvent-mediated systems, with the goal of developing the atomic and molecular basis of a solvent-mediated self-assembly technology. We will achieve this purpose by: (1) utilizing an atomic force microscopy (AFM) approach that provides in situ, real time imaging during growth from solutions, (2) by modifying kinetic Monte Carlo (KMC) models to include solution-surface kinetics, (3) by introducing quantum chemistry (QC) calculations of the potentials of the relevant chemical species and the near-surface structure of the solution, and (4) by utilizing molecular dynamics (MD) simulations to identify the minimum energy pathways to the solid state. Our work will focus on two systems chosen to address both the manometer and micron-to-millimeter length scales of assembly, the family of 2,5- diketopiperazines (X-DKPs) and the system of CaCO{sub 3} with amino acids. Using AFM, we will record the evolution of surface morphology, critical lengths, step speeds, and step-step interactions as a function of supersaturation and temperature. In the case of the X-DKPs, these measurements will be repeated as the molecular structure of the growth unit is varied. In the case of CaCO{sub 3}, they will be performed as a function of solution chemistry including pH, ionic strength, and amino acid content. In addition, we will measure nucleation rates and orientations of

  14. Excitation energy migration processes in various multi-porphyrin assemblies.

    PubMed

    Yang, Jaesung; Kim, Dongho

    2012-08-13

    The electronic interactions and excitation energy transfer (EET) processes of a variety of multi-porphyrin arrays with linear, cyclic and box architectures have been explored. Directly meso-meso linked linear arrays (Z(N)) exhibit strong excitonic coupling with an exciton coherence length of approximately 6 porphyrin units, while fused linear arrays (T(N)) exhibit extensive π-conjugation over the whole array. The excitonic coherence length in directly linked cyclic porphyrin rings (CZ(N)) was determined to be approximately 2.7 porphyrin units by simultaneous analysis of fluorescence intensities and lifetimes at the single-molecule level. By performing transient absorption (TA) and TA anisotropy decay measurements, the EET rates in m-phenylene linked cyclic porphyrin wheels C12ZA and C24ZB were determined to be 4 and 36 ps(-1), respectively. With increasing the size of C(N)ZA, the EET efficiencies decrease owing to the structural distortions that produce considerable non-radiative decay pathways. Finally, the EET rates of self-assembled porphyrin boxes consisting of directly linked diporphyrins, B1A, B2A and B3A, are 48, 98 and 361 ps(-1), respectively. The EET rates of porphyrin boxes consisting of alkynylene-bridged diporphyrins, B2B and B4B, depend on the conformation of building blocks (planar or orthogonal) rather than the length of alkynylene linkers.

  15. Fabrication and primary photoevents in self-assembled nanocomposites based on semiconductor quantum dots and tetrapyrrole chromophores

    NASA Astrophysics Data System (ADS)

    Zenkevich, Eduard I.; Shulga, A.; Blaudeck, Thomas; Cichos, F.; von Borczyskowski, Christian

    2005-11-01

    The directed surface passivation of semiconductor CdSe, 0r CdSe/ZnS quantum dots (QD) by meso-pyridyl substituted porphyrins (H IIP) has been realized via a reversible non-covalent self-assembly interaction of H IIP meso-pyridyl nitrogens with ions of the ZnS shell or Cd atoms of the CdSe core in various solvents at ambient temperature. The formation of "QD-porphyrin" nanoassemblies leads to a QD photoluminescence (PL) quenching (intensity decrease and PL decay shortening) accompanied by a H IIP fluorescence enhancement. The analysis of experimental Foerster resonance energy transfer efficiencies EFRET (FRET) found via acceptor (H IIP) sensibilization and donor (QD) PL quenching shows that EFRET values obtained from fluorescence enhancement are of the order of 6 - 8 % for most QD studied and are thus much smaller as compared to the PL quenching efficiency. With respect to QD PL quenching efficiencies, smaller values of EFRET might be due to different competing reasons: the presence of two independent quenching processes in the nanoassemblies, energy transfer QD -> H IIP and photoinduced (electron/hole) charge transfer (CT) or time-dependent QD interface dynamics leading to a noticeable QD PL quenching. The analysis of spectroscopic and kinetic findings reveals that a limited number of "vacancies" accessible for porphyrin attachment is available on the QD surface. Simultaneous presence of porphyrin triads/pentads and QDs in a solution leads to the formation of higly organzed nanoassemblies.

  16. Self-assembling holographic biosensors and biocomputers.

    SciTech Connect

    Light, Yooli Kim; Bachand, George David (Sandia National Laboratories, Albuquerque, NM); Schoeniger, Joseph S.; Trent, Amanda M. (Sandia National Laboratories, Albuquerque, NM)

    2006-05-01

    We present concepts for self-assembly of diffractive optics with potential uses in biosensors and biocomputers. The simplest such optics, diffraction gratings, can potentially be made from chemically-stabilized microtubules migrating on nanopatterned tracks of the motor protein kinesin. We discuss the fabrication challenges involved in patterning sub-micron-scale structures with proteins that must be maintained in aqueous buffers to preserve their activity. A novel strategy is presented that employs dry contact printing onto glass-supported amino-silane monolayers of heterobifunctional crosslinkers, followed by solid-state reactions of these cross-linkers, to graft patterns of reactive groups onto the surface. Successive solution-phase addition of cysteine-mutant proteins and amine-reactive polyethylene glycol allows assembly of features onto the printed patterns. We present data from initial experiments showing successful micro- and nanopatterning of lines of single-cysteine mutants of kinesin interleaved with lines of polyethylene, indicating that this strategy can be employed to arrays of features with resolutions suitable for gratings.

  17. Self-assembly models for lipid mixtures

    NASA Astrophysics Data System (ADS)

    Singh, Divya; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula

    2006-03-01

    Solutions of mixed long and short (detergent-like) phospholipids referred to as ``bicelle'' mixtures in the literature, are known to form a variety of different morphologies based on their total lipid composition and temperature in a complex phase diagram. Some of these morphologies have been found to orient in a magnetic field, and consequently bicelle mixtures are widely used to study the structure of soluble as well as membrane embedded proteins using NMR. In this work, we report on the low temperature phase of the DMPC and DHPC bicelle mixture, where there is agreement on the discoid structures but where molecular packing models are still being contested. The most widely accepted packing arrangement, first proposed by Vold and Prosser had the lipids completely segregated in the disk: DHPC in the rim and DMPC in the disk. Using data from small angle neutron scattering (SANS) experiments, we show how radius of the planar domain of the disks is governed by the effective molar ratio qeff of lipids in aggregate and not the molar ratio q (q = [DMPC]/[DHPC] ) as has been understood previously. We propose a new quantitative (packing) model and show that in this self assembly scheme, qeff is the real determinant of disk sizes. Based on qeff , a master equation can then scale the radii of disks from mixtures with varying q and total lipid concentration.

  18. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    PubMed

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Surfactant mediated polyelectrolyte self-assembly

    SciTech Connect

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; Sumpter, Bobby G.

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain and surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.

  20. Self-Assembled Monolayers with Molecular Gradients

    NASA Astrophysics Data System (ADS)

    Schäferling, Michael; Riepl, Michael; Liedberg, Bo

    In recent years, biosensors and sensor arrays have developed into very important analytical tools, which found applications in many fields such as pharmaceutical (high-throughput) screening, medical diagnosis, or industrial process control. One of the major challenges for material research is the preparation of appropriate sensor surfaces, providing an interface with a high sensitivity and selectivity toward a given analyte. This chapter discusses some straightforward and flexible approaches to study structure and/or composition-function relationships and response characteristics of polymeric and molecular sensor materials. The controlled continuous deposition of self-assembled monolayers (SAMs), e.g. of substituted thiols or silanes, paves the way for the generation of molecular gradients on solid surfaces. These are useful for the preparation of interfaces with spatially controlled chemical composition and/ or physical properties. These tools can help to improve the selectivity and specificity of surfaces for biosensors and biochips. They can also be utilized for the study of fundamental protein adsorption and exchange phenomena.

  1. Surfactant mediated polyelectrolyte self-assembly

    DOE PAGES

    Goswami, Monojoy; Borreguero Calvo, Jose M.; Pincus, Phillip A.; ...

    2015-11-25

    Self-assembly and dynamics of polyelectrolyte (PE) surfactant complex (PES) is investigated using molecular dynamics simulations. The complexation is systematically studied for five different PE backbone charge densities. At a fixed surfactant concentration the PES complexation exhibits pearl-necklace to agglomerated double spherical structures with a PE chain decorating the surfactant micelles. The counterions do not condense on the complex, but are released in the medium with a random distribution. The relaxation dynamics for three different length scales, polymer chain, segmental and monomer, show distinct features of the charge and neutral species; the counterions are fastest followed by the PE chain andmore » surfactants. The surfactant heads and tails have the slowest relaxation due to their restricted movement inside the agglomerated structure. At the shortest length scale, all the charge and neutral species show similar relaxation dynamics confirming Rouse behavior at monomer length scales. Overall, the present study highlights the structure-property relationship for polymer-surfactant complexation. These results will help improve the understanding of PES complex and should aid in the design of better materials for future applications.« less

  2. Self-assembled nanostructures via electrospraying

    NASA Astrophysics Data System (ADS)

    Jayasinghe, S. N.

    2006-07-01

    A concentrated nanoparticulate-based ethylene glycol suspension was prepared and electrosprayed at optimum and stable cone-jet mode conditions. Using laser spectroscopy, the droplets were measured and found to range within ∼0.23-3.8 μm. In parallel to spectroscopy-assisted sizing, a volume equivalence route for estimating droplet sizes was carried out by measuring contact angles and diameters of the deposits. The electrosprayed nanosuspension relics were examined using optical and transmission electron microscopy. These deposits were further characterized using energy-dispersive X-rays and selected area electron diffraction. Simultaneously deposits were formed by a controlled route through needle deposition without the presence of an electric field. The structures formed in this non-electric field driven route are compared with those formed with electric fields. Thus, elucidating electrosprays as a competing nanofabrication route for forming self-assemblies with a wide range of nanomaterials in the nanoscale for top-down based bottom-up assembly of structures.

  3. Electronically Guided Self Assembly within Quantum Corrals

    NASA Astrophysics Data System (ADS)

    Cao, Rongxing; Miao, Bingfeng; Zhong, Zhangfeng; Sun, Liang; You, Biao; Zhang, Wei; Wu, Di; Hu, An; Bader, Samuel; Ding, Haifeng; Center Collaboration; Low Dimensional Magnetism Team

    2013-03-01

    A grand challenge of nanoscience is to master the control of structure and properties in order to go beyond present day functionality. The creation of nanostructures via atom manipulation by means of a scanning probe represents one of the great achievements of the nano era. Here we build on this achievement to self-assemble nanostructures within quantum corrals. We constructed circular and triangular Fe quantum corrals on Ag(111) substrate via STM manipulation and studied the quantum confinement of electronic states and the diffusion of Gd atoms inside the corrals. Statistical results reveal the motion of the Gd atoms forming several individual orbits that are closely related to the local density of states. We experimentally demonstrate that different self-organized Gd atomic structures are formed within 30-nm circular and triangular Fe quantum corrals with a step-by-step guiding process. The findings demonstrate that quantum confinement can be used to engineer atomic structures and atom diffusion. And 30-nm resolution can be reached by means of advanced lithography. Adding quantum engineering to augment it opens new possibilities for local functionality design down to the atomic scale. Work at Nanjing is supported by the State Key Program for Basic Research of China (Grant No. 2010CB923401), NSFC (Grants Nos. 10974087, 10834001, and 11023002) and PAPD.

  4. Dissipative adaptation in driven self-assembly.

    PubMed

    England, Jeremy L

    2015-11-01

    In a collection of assembling particles that is allowed to reach thermal equilibrium, the energy of a given microscopic arrangement and the probability of observing the system in that arrangement obey a simple exponential relationship known as the Boltzmann distribution. Once the same thermally fluctuating particles are driven away from equilibrium by forces that do work on the system over time, however, it becomes significantly more challenging to relate the likelihood of a given outcome to familiar thermodynamic quantities. Nonetheless, it has long been appreciated that developing a sound and general understanding of the thermodynamics of such non-equilibrium scenarios could ultimately enable us to control and imitate the marvellous successes that living things achieve in driven self-assembly. Here, I suggest that such a theoretical understanding may at last be emerging, and trace its development from historic first steps to more recent discoveries. Focusing on these newer results, I propose that they imply a general thermodynamic mechanism for self-organization via dissipation of absorbed work that may be applicable in a broad class of driven many-body systems.

  5. Self-assembly programming of DNA polyominoes.

    PubMed

    Ong, Hui San; Syafiq-Rahim, Mohd; Kasim, Noor Hayaty Abu; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan

    2016-10-20

    Fabrication of functional DNA nanostructures operating at a cellular level has been accomplished through molecular programming techniques such as DNA origami and single-stranded tiles (SST). During implementation, restrictive and constraint dependent designs are enforced to ensure conformity is attainable. We propose a concept of DNA polyominoes that promotes flexibility in molecular programming. The fabrication of complex structures is achieved through self-assembly of distinct heterogeneous shapes (i.e., self-organised optimisation among competing DNA basic shapes) with total flexibility during the design and assembly phases. In this study, the plausibility of the approach is validated using the formation of multiple 3×4 DNA network fabricated from five basic DNA shapes with distinct configurations (monomino, tromino and tetrominoes). Computational tools to aid the design of compatible DNA shapes and the structure assembly assessment are presented. The formations of the desired structures were validated using Atomic Force Microscopy (AFM) imagery. Five 3×4 DNA networks were successfully constructed using combinatorics of these five distinct DNA heterogeneous shapes. Our findings revealed that the construction of DNA supra-structures could be achieved using a more natural-like orchestration as compared to the rigid and restrictive conventional approaches adopted previously. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Stochastic self-assembly of incommensurate clusters.

    PubMed

    D'Orsogna, M R; Lakatos, G; Chou, T

    2012-02-28

    Nucleation and molecular aggregation are important processes in numerous physical and biological systems. In many applications, these processes often take place in confined spaces, involving a finite number of particles. Analogous to treatments of stochastic chemical reactions, we examine the classic problem of homogeneous nucleation and self-assembly by deriving and analyzing a fully discrete stochastic master equation. We enumerate the highest probability steady states, and derive exact analytical formulae for quenched and equilibrium mean cluster size distributions. Upon comparison with results obtained from the associated mass-action Becker-Döring equations, we find striking differences between the two corresponding equilibrium mean cluster concentrations. These differences depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass "incommensurability" arises, a single remainder particle can "emulsify" the system by significantly broadening the equilibrium mean cluster size distribution. This discreteness-induced broadening effect is periodic in the total mass of the system but arises even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. Ironically, classic mass-action equations are fairly accurate in the coarsening regime, before equilibrium is reached, despite the presence of large stochastic fluctuations found via kinetic Monte-Carlo simulations. Our findings define a new scaling regime in which results from classic mass-action theories are qualitatively inaccurate, even in the limit of large total system size.

  7. Initial condition of stochastic self-assembly

    NASA Astrophysics Data System (ADS)

    Davis, Jason K.; Sindi, Suzanne S.

    2016-02-01

    The formation of a stable protein aggregate is regarded as the rate limiting step in the establishment of prion diseases. In these systems, once aggregates reach a critical size the growth process accelerates and thus the waiting time until the appearance of the first critically sized aggregate is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation is a central step of many physical, chemical, and biological process. Previous studies have examined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the assumption that at time t =0 the system was in the all-monomer state. However, in order to compare to in vivo biological experiments where protein constituents inherited by a newly born cell likely contain intermediate aggregates, other possibilities must be considered. We consider one such possibility by conditioning the unique ergodic size distribution on subcritical aggregate sizes; this least-informed distribution is then used as an initial condition. We make the claim that this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield significantly different averaged waiting times relative to the all-monomer condition under various models of assembly.

  8. Self-Assembly of Tetraphenylalanine Peptides.

    PubMed

    Mayans, Enric; Ballano, Gema; Casanovas, Jordi; Díaz, Angélica; Pérez-Madrigal, Maria M; Estrany, Francesc; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos

    2015-11-16

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists of three FFFF molecules defining a ring through head-to-tail NH3(+)⋅⋅⋅(-)OOC interactions, which in turn stack to produce deformed channels with internal diameters between 12 and 16 Å. Depending on the experimental conditions used for the peptide incubation, N-fluorenylmethoxycarbonyl (Fmoc) protected FFFF self-assembles into a variety of polymorphs: ultra-thin nanoplates, fibrils, and star-like submicrometric aggregates. DFT calculations indicate that Fmoc-FFFF prefers a parallel rather than an antiparallel β-sheet assembly. Finally, coexisting multiple assemblies (up to three) were observed for Fmoc-FFFF-OBzl (OBzl = benzyl ester), which incorporates aromatic protecting groups at the two peptide terminals. This unusual and noticeable feature is attributed to the fact that the assemblies obtained by combining the Fmoc and OBzl groups contained in the peptide are isoenergetic. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. What promotes derected self assembly (DSA)?

    NASA Astrophysics Data System (ADS)

    Nakagawa, S. T.

    2016-09-01

    A low-energy electron beam (EB) can create self-interstitial atoms (SIA) in a solid and can cause directed self-assembly (DSA), e.g. {3 1 1}SIA platelets in c-Si. The crystalline structure of this planar defect is known from experiment to be made up of SIAs that form well aligned <1 1 0> atomic rows on each (3 1 1) plane. To simulate the experiment we distributed Frenkel pairs (FP) randomly in bulk c-Si. Then making use of a molecular dynamic (MD) simulation, we have reproduced the experimental result, where SIAs are trapped at metastable sites in bulk. With increasing pre-doped FP concentration, the number of SIAs that participate in DSA tends to be increased but soon slightly supressed. On the other hand, when the FP concentration is less than 3%, a cooperative motion of target atoms was characterized from the long-range-order (LRO) parameter. Here we investigated the correlation between DSA and that cooperative motion, by adding a case of intrinsic c-Si. We confirmed that the cooperative motion slightly promote DSA by assisting migration of SIAs toward metastable sites as long as the FP concentration is less than 3%, however, it is essentially independent of DSA.

  10. Electrostatic self-assembly of biomolecules

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica

    2015-03-01

    Charged filaments and membranes are natural structures abundant in cell media. In this talk we discuss the assembly of amphiphiles into biocompatible fibers, ribbons and membranes. We describe one- and two-dimensional assemblies that undergo re-entrant transitions in crystalline packing in response to changes in the solution pH and/or salt concentration resulting in different mesoscale morphologies and properties. In the case of one-dimensional structures, we discuss self-assembled amphiphiles into highly charged nanofibers in water that order into two-dimensional crystals. These fibers of about 6 nm cross-sectional diameter form crystalline arrays with inter-fiber spacings of up to 130 nm. Solution concentration and temperature can be adjusted to control the inter-fiber spacings. The addition of salt destroys crystal packing, indicating that electrostatic repulsions are necessary for the observed ordering. We describe the crystallization of bundles of filament networks interacting via long-range repulsions in confinement by a phenomenological model. Two distinct crystallization mechanisms in the short and large screening length regimes are discussed and the phase diagram is obtained. Simulation of large bundles predicts the existence of topological defects among bundled filaments. Crystallization processes driven by electrostatic attractions are also discussed. Funded by Center for Bio-Inspired Energy Science (CBES), which is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0000989.

  11. Functional Self-Assembled Nanofibers by Electrospinning

    NASA Astrophysics Data System (ADS)

    Greiner, A.; Wendorff, J. H.

    Electrospinning constitutes a unique technique for the production of nanofibers with diameters down to the range of a few nanometers. In strong contrast to conventional fiber producing techniques, it relies on self-assembly processes driven by the Coulomb interactions between charged elements of the fluids to be spun to nanofibers. The transition from a macroscopic fluid object such as a droplet emerging from a die to solid nanofibers is controlled by a set of complex physical instability processes. They give rise to extremely high extensional deformations and strain rates during fiber formation causing among others a high orientational order in the nanofibers as well as enhanced mechanical properties. Electrospinning is predominantly applied to polymer based materials including natural and synthetic polymers, but, more recently, its use has been extended towards the production of metal, ceramic and glass nanofibers exploiting precursor routes. The nanofibers can be functionalized during electrospinning by introducing pores, fractal surfaces, by incorporating functional elements such as catalysts, quantum dots, drugs, enzymes or even bacteria. The production of individual fibers, random nonwovens, or orientationally highly ordered nonwovens is achieved by an appropriate selection of electrode configurations. Broad areas of application exist in Material and Life Sciences for such nanofibers, including not only optoelectronics, sensorics, catalysis, textiles, high efficiency filters, fiber reinforcement but also tissue engineering, drug delivery, and wound healing. The basic electrospinning process has more recently been extended towards compound co-electrospinning and precision deposition electrospinning to further broaden accessible fiber architectures and potential areas of application.

  12. Stochastic self-assembly of incommensurate clusters

    NASA Astrophysics Data System (ADS)

    DÓ Rsogna, Maria; Lakatos, Greg; Chou, Tom

    2013-03-01

    We examine the classic problem of homogeneous nucleation and self-assembly by deriving and analyzing a fully discrete stochastic master equation. We enumerate the highest probability steady-states, and derive exact analytical formulae for quenched and equilibrium mean cluster size distributions. Upon comparison with results obtained from the associated the mass-action Becker-Döring (BD) equations, we find striking differences between the two corresponding equilibrium mean cluster concentrations. These differences depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass ``incommensurability'' arises, a single remainder particle can ``emulsify'' the system by significantly broadening the equilibrium mean cluster size distribution. This discreteness-induced broadening effect is periodic in the total mass of the system but arises even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. Our findings define a new scaling regime in which results from classic mass-action theories are qualitatively inaccurate, even in the limit of large total system size. This work supported by NSF DMS-1021818 and DMS-1021850

  13. Stochastic self-assembly of incommensurate clusters

    NASA Astrophysics Data System (ADS)

    D'Orsogna, M. R.; Lakatos, G.; Chou, T.

    2012-02-01

    Nucleation and molecular aggregation are important processes in numerous physical and biological systems. In many applications, these processes often take place in confined spaces, involving a finite number of particles. Analogous to treatments of stochastic chemical reactions, we examine the classic problem of homogeneous nucleation and self-assembly by deriving and analyzing a fully discrete stochastic master equation. We enumerate the highest probability steady states, and derive exact analytical formulae for quenched and equilibrium mean cluster size distributions. Upon comparison with results obtained from the associated mass-action Becker-Döring equations, we find striking differences between the two corresponding equilibrium mean cluster concentrations. These differences depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass "incommensurability" arises, a single remainder particle can "emulsify" the system by significantly broadening the equilibrium mean cluster size distribution. This discreteness-induced broadening effect is periodic in the total mass of the system but arises even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. Ironically, classic mass-action equations are fairly accurate in the coarsening regime, before equilibrium is reached, despite the presence of large stochastic fluctuations found via kinetic Monte-Carlo simulations. Our findings define a new scaling regime in which results from classic mass-action theories are qualitatively inaccurate, even in the limit of large total system size.

  14. Self-assembly of smallest magnetic particles

    PubMed Central

    Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M.; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan

    2015-01-01

    The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole–dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained. PMID:26554000

  15. Enzyme-assisted self-assembly under thermodynamic control

    NASA Astrophysics Data System (ADS)

    Williams, Richard J.; Smith, Andrew M.; Collins, Richard; Hodson, Nigel; Das, Apurba K.; Ulijn, Rein V.

    2009-01-01

    The production of functional molecular architectures through self-assembly is commonplace in biology, but despite advances, it is still a major challenge to achieve similar complexity in the laboratory. Self-assembled structures that are reproducible and virtually defect free are of interest for applications in three-dimensional cell culture, templating, biosensing and supramolecular electronics. Here, we report the use of reversible enzyme-catalysed reactions to drive self-assembly. In this approach, the self-assembly of aromatic short peptide derivatives provides a driving force that enables a protease enzyme to produce building blocks in a reversible and spatially confined manner. We demonstrate that this system combines three features: (i) self-correction-fully reversible self-assembly under thermodynamic control; (ii) component-selection-the ability to amplify the most stable molecular self-assembly structures in dynamic combinatorial libraries; and (iii) spatiotemporal confinement of nucleation and structure growth. Enzyme-assisted self-assembly therefore provides control in bottom-up fabrication of nanomaterials that could ultimately lead to functional nanostructures with enhanced complexities and fewer defects.

  16. Self-assembled single-crystal silicon circuits on plastic.

    PubMed

    Stauth, Sean A; Parviz, Babak A

    2006-09-19

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-microm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems.

  17. Intrinsic defect formation in peptide self-assembly

    NASA Astrophysics Data System (ADS)

    Deng, Li; Zhao, Yurong; Xu, Hai; Wang, Yanting

    2015-07-01

    In contrast to extensively studied defects in traditional materials, we report here a systematic investigation of the formation mechanism of intrinsic defects in self-assembled peptide nanostructures. The Monte Carlo simulations with our simplified dynamic hierarchical model revealed that the symmetry breaking of layer bending mode at the two ends during morphological transformation is responsible for intrinsic defect formation, whose microscopic origin is the mismatch between layer stacking along the side-chain direction and layer growth along the hydrogen bond direction. Moreover, defect formation does not affect the chirality of the self-assembled structure, which is determined by the initial steps of the peptide self-assembly process.

  18. Colloidosome like structures: self-assembly of silica microrods

    SciTech Connect

    Datskos, P.; Polizos, G.; Bhandari, M.; Cullen, D. A.; Sharma, J.

    2016-03-07

    Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. We demonstrate silica microrod self-assembly by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/ pentanol emulsion droplets. Moreover, rods self-assembled to make structures in the range of z10 40 mm. Smooth rods assembled better than segmented rods. Finally, the assembled structures were bonded by weak van der Waals forces.

  19. Functional self-assembled lipidic systems derived from renewable resources.

    PubMed

    Silverman, Julian R; Samateh, Malick; John, George

    2016-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure-function relationship and functional smart materials that research may remain safe, economic, and efficient.

  20. Magnetic manipulation of self-assembled colloidal asters.

    SciTech Connect

    Snezhko, A.; Aranson, I. S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots

  1. Magnetic manipulation of self-assembled colloidal asters

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Aranson, Igor S.

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots.

  2. Colloidosome like structures: self-assembly of silica microrods

    DOE PAGES

    Datskos, P.; Polizos, G.; Bhandari, M.; ...

    2016-03-07

    Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. We demonstrate silica microrod self-assembly by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/ pentanol emulsion droplets. Moreover, rods self-assembled to make structures in the range of z10 40 mm. Smooth rods assembled better than segmented rods. Finally, the assembled structures were bonded by weak van der Waals forces.

  3. Magnetic manipulation of self-assembled colloidal asters.

    PubMed

    Snezhko, Alexey; Aranson, Igor S

    2011-08-07

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots.

  4. Dynamic self-assembly of 'living' polymeric chains

    NASA Astrophysics Data System (ADS)

    Deng, Binghui; Shi, Yunfeng

    2017-01-01

    We report a dynamic self-assembly system of 'living' polymeric chains sustained by chemistry using reactive molecular dynamics simulations. The linear polymeric chains consist of self-assembled nanoparticles connected by metastable linker molecules. As such, the polymeric chains, once assembled, undergo spontaneous dissociation driven by thermodynamics. However, with a continuous supply of linker molecules and the stored chemical energy therein, the polymeric chains can survive and maintain a steady state averaged chain length. These dynamically self-assembled polymeric chains are analogous to biological systems that both are thermodynamically metastable, yet dynamically stable upon continuous influx of matter and energy.

  5. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    PubMed Central

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-01-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs. PMID:27404912

  6. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    NASA Astrophysics Data System (ADS)

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-07-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs.

  7. Self-assembly in block polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Yang, Shuang; Vishnyakov, Aleksey; Neimark, Alexander V.

    2011-02-01

    The self-consistent field theory (SCFT) complemented with the Poisson-Boltzmann equation is employed to explore self-assembly of polyelectrolyte copolymers composed of charged blocks A and neutral blocks B. We have extended SCFT to dissociating triblock copolymers and demonstrated our approach on three characteristic examples: (1) diblock copolymer (AB) melt, (2) symmetric triblock copolymer (ABA) melt, (3) triblock copolymer (ABA) solution with added electrolyte. For copolymer melts, we varied the composition (that is, the total fraction of A-segments in the system) and the charge density on A blocks and calculated the phase diagram that contains ordered mesophases of lamellar, gyroid, hexagonal, and bcc symmetries, as well as the uniform disordered phase. The phase diagram of charged block copolymer melts in the charge density - system composition coordinates is similar to the classical phase diagram of neutral block copolymer melts, where the composition and the Flory mismatch interaction parameter χ _{AB} are used as variables. We found that the transitions between the polyelectrolyte mesophases with the increase of charge density occur in the same sequence, from lamellar to gyroid to hexagonal to bcc to disordered morphologies, as the mesophase transitions for neutral diblocks with the decrease of χ _{AB}. In a certain range of compositions, the phase diagram for charged triblock copolymers exhibits unexpected features, allowing for transitions from hexagonal to gyroid to lamellar mesophases as the charge density increases. Triblock polyelectrolyte solutions were studied by varying the charge density and solvent concentration at a fixed copolymer composition. Transitions from lamellar to gyroid and gyroid to hexagonal morphologies were observed at lower polymer concentrations than the respective transitions in the similar neutral copolymer, indicating a substantial influence of the charge density on phase behavior.

  8. Functionalized fullerenes in self-assembled monolayers.

    PubMed

    Gimenez-Lopez, Maria del Carmen; Räisänen, Minna T; Chamberlain, Thomas W; Weber, Uli; Lebedeva, Maria; Rance, Graham A; Briggs, G Andrew D; Pettifor, David; Burlakov, Victor; Buck, Manfred; Khlobystov, Andrei N

    2011-09-06

    Anisotropy of intermolecular and molecule-substrate interactions holds the key to controlling the arrangement of fullerenes into 2D self-assembled monolayers (SAMs). The chemical reactivity of fullerenes allows functionalization of the carbon cages with sulfur-containing groups, thiols and thioethers, which facilitates the reliable adsorption of these molecules on gold substrates. A series of structurally related molecules, eight of which are new fullerene compounds, allows systematic investigation of the structural and functional parameters defining the geometry of fullerene SAMs. Scanning tunnelling microscopy (STM) measurements reveal that the chemical nature of the anchoring group appears to be crucial for the long-range order in fullerenes: the assembly of thiol-functionalized fullerenes is governed by strong molecule-surface interactions, which prohibit formation of ordered molecular arrays, while thioether-functionalized fullerenes, which have a weaker interaction with the surface than the thiols, form a variety of ordered 2D molecular arrays owing to noncovalent intermolecular interactions. A linear row of fullerene molecules is a recurring structural feature of the ordered SAMs, but the relative alignment and the spacing between the fullerene rows is strongly dependent on the size and shape of the spacer group linking the fullerene cage and the anchoring group. Careful control of the chemical functionality on the carbon cages enables positioning of fullerenes into at least four different packing arrangements, none of which have been observed before. Our new strategy for the controlled arrangement of fullerenes on surfaces at the molecular level will advance the development of practical applications for these nanomaterials. © 2011 American Chemical Society

  9. Self assembly: An approach to terascale integration

    SciTech Connect

    Singer, S.

    1993-09-01

    Surely one of the most remarkable accomplishments of modern times has been the miniaturization of electronic components, starting with discrete transistors and leading to Very Large Scale Integrated (VLSI) Circuits which will soon contain almost 100 million components in a few square centimeters. It led to an information processing industry that fuels almost every aspect of industrial societies and that has brought manifold benefits to their citizens. Although continuation of the miniaturization process is likely to produce even greater benefits, many experts are concerned that extrapolation of traditional silicon VLSI techniques will meet with increasingly severe difficulties. Some of these are fundamental in nature, e. g., granularity and fluctuations in semiconductors and interconnects and proximity effects such as tunneling. The first major difficulty to be encountered will be a rising cost of products due to increased complexity and difficulty of manufacturing and assembly. Such difficulties are likely to be seen in about 10 years when minimum component sizes are expected to decrease below 0.15--0.2 {mu}m. If alternatives to present VLSI techniques are to be available when needed, work on them must start now. At Los Alamos, we are exploring the feasibility of ultrasmall wires and switches that self-assemble themselves into computing elements and circuits. Their operation is based on the quantum properties of nanometer scale molecular clusters. This paper will describe our efforts in the development of these components and will summarize our work in four areas: (1) the development of conducting molecular wires, (2) conducting nanoparticle wires and switches based on the Coulomb Blockade principle, (3) the development of advanced architectures that benefit from the use of such components and that significantly advance the art of high performance computing, and (4) the development of novel methods for attaining sub-Angstrom 3-D non-destructive imaging.

  10. Self-assembled peptide nanostructures for functional materials

    NASA Astrophysics Data System (ADS)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  11. Understanding emergent functions in self-assembled fibrous networks

    NASA Astrophysics Data System (ADS)

    Sinko, Robert; Keten, Sinan

    2015-09-01

    Understanding self-assembly processes of nanoscale building blocks and characterizing their properties are both imperative for designing new hierarchical, network materials for a wide range of structural, optoelectrical, and transport applications. Although the characterization and choices of these material building blocks have been well studied, our understanding of how to precisely program a specific morphology through self-assembly still must be significantly advanced. In the recent study by Xie et al (2015 Nanotechnology 26 205602), the self-assembly of end-functionalized nanofibres is investigated using a coarse-grained molecular model and offers fundamental insight into how to control the structural morphology of nanofibrous networks. Varying nanoscale networks are observed when the molecular interaction strength is changed and the findings suggest that self-assembly through the tuning of molecular interactions is a key strategy for designing nanostructured networks with specific topologies.

  12. Directed self-assembly of proteins into discrete radial patterns

    PubMed Central

    Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas

    2013-01-01

    Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678

  13. Ionic liquids as amphiphile self-assembly media.

    PubMed

    Greaves, Tamar L; Drummond, Calum J

    2008-08-01

    In recent years, the number of non-aqueous solvents which mediate hydrocarbon-solvent interactions and promote the self-assembly of amphiphiles has been markedly increased by the reporting of over 30 ionic liquids which possess this previously unusual solvent characteristic. This new situation allows a different exploration of the molecular "solvophobic effect" and tests the current understanding of amphiphile self-assembly. Interestingly, both protic and aprotic ionic liquids support amphiphile self-assembly, indicating that it is not required for the solvents to be able to form a hydrogen bonded network. Here, the use of ionic liquids as amphiphile self-assembly media is reviewed, including micelle and liquid crystalline mesophase formation, their use as a solvent phase in microemulsions and emulsions, and the emerging field of nanostructured inorganic materials synthesis. Surfactants, lipids and block co-polymers are the focus amphiphile classes in this critical review (174 references).

  14. Directed flexibility: self-assembly of a supramolecular tetrahedron.

    PubMed

    Ludlow, James M; Xie, Tingzheng; Guo, Zaihong; Guo, Kai; Saunders, Mary Jane; Moorefield, Charles N; Wesdemiotis, Chrys; Newkome, George R

    2015-03-04

    Self-assembly of a tribenzo-27-crown-9 ether functionalized with six terpyridines generated (85%) an expanded tetrahedral structure comprised of four independent triangular surfaces interlinked by crown ether vertices.

  15. Differentially photo-crosslinked polymers enable self-assembling microfluidics

    PubMed Central

    Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.

    2012-01-01

    An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594

  16. Predicting self-assembled patterns on spheres with multicomponent coatings.

    PubMed

    Edlund, Erik; Lindgren, Oskar; Jacobi, Martin Nilsson

    2014-05-07

    Patchy colloids are promising candidates for building blocks in directed self-assembly, but large scale synthesis of colloids with controlled surface patterns remains challenging. One potential fabrication method is to self-assemble the surface patterns themselves, allowing complex morphologies to organize spontaneously. For this approach to be competitive, prediction and control of the pattern formation process are necessary. However, structure formation in many-body systems is fundamentally hard to understand, and new theoretical methods are needed. Here we present a theory for self-assembling pattern formation in multi-component systems on the surfaces of colloidal particles, formulated as an analytic technique that predicts morphologies directly from the interactions in an effective model. As a demonstration we formulate an isotropic model of alkanethiols on gold, a suggested system for directed self-assembly, and predict its morphologies and transitions as a function of the interaction parameters.

  17. Modeling the Kinetics of Open Self-Assembly.

    PubMed

    Verdier, Timothée; Foret, Lionel; Castelnovo, Martin

    2016-07-07

    In this work, we explore theoretically the kinetics of molecular self-assembly in the presence of constant monomer flux as an input, and a maximal size. The proposed model is supposed to reproduce the dynamics of viral self-assembly for enveloped virus. It turns out that the kinetics of open self-assembly is rather quantitatively different from the kinetics of similar closed assembly. In particular, our results show that the convergence toward the stationary state is reached through assembly waves. Interestingly, we show that the production of complete clusters is much more efficient in the presence of a constant input flux, rather than providing all monomers at the beginning of the self-assembly.

  18. Converting molecular information of redox coenzymes via self-assembly.

    PubMed

    Morikawa, Masa-aki; Kimizuka, Nobuo

    2012-11-21

    β-Nicotinamide adenine dinucleotide (NAD(+)) and its reduced form NADH specifically interact with a cyanine dye in aqueous media, giving distinct spectral and nanostructural characteristics to which molecular information of constituent coenzymes are converted via self-assembly.

  19. Self-assembly of biofunctional polymer on graphene nanoribbons.

    PubMed

    Reuven, Darkeyah G; Suggs, Kelvin; Williams, Michael D; Wang, Xiao-Qian

    2012-02-28

    Graphene's adhesive properties owing to inherent van der Waals interactions become increasingly relevant in the nanoscale regime. Polymer self-assembly via graphene-mediated noncovalent interactions offers a powerful tool for the creation of anisotropic nanopatterned systems. Here, we report the supramolecular self-assembly of biofunctional-modified poly(2-methoxystyrene) on graphene nanoribbons prepared by unzipping multiwalled carbon nanotubes. This approach promotes the glycol-modified polymer to self-assemble into structured nanopatterns with preserved bioactivity. The self-assembly is attributed to enhanced van der Waals interactions and the associated charge transfer from polymer to graphene. These findings demonstrate that the assembly yields a prospective route to novel nanomaterial systems.

  20. Self-Assembly of Structures with Addressable Complexity.

    PubMed

    Jacobs, William M; Frenkel, Daan

    2016-03-02

    The self-assembly of structures with "addressable complexity", where every component is distinct and is programmed to occupy a specific location within a target structure, is a promising route to engineering materials with precisely defined morphologies. Because systems with many components are inherently complicated, one might assume that the chances of successful self-assembly are extraordinarily small. Yet recent advances suggest otherwise: addressable structures with hundreds of distinct building blocks have been designed and assembled with nanometer precision. Despite this remarkable success, it is often challenging to optimize a self-assembly reaction to ensure that the intended structure is kinetically accessible. In this Perspective, we focus on the prediction of kinetic pathways for self-assembly and implications for the design of robust experimental protocols. The development of general principles to predict these pathways will enable the engineering of complex materials using a much wider range of building blocks than is currently possible.

  1. Activity-assisted self-assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Mallory, S. A.; Cacciuto, A.

    2016-08-01

    We outline a basic strategy of how self-propulsion can be used to improve the yield of a typical colloidal self-assembly process. The success of this approach is predicated on the thoughtful design of the colloidal building block as well as how self-propulsion is endowed to the particle. As long as a set of criteria are satisfied, it is possible to significantly increase the rate of self-assembly, and greatly expand the window in parameter space where self-assembly can occur. In addition, we show that by tuning the relative on-off time of the self-propelling force it is possible to modulate the effective speed of the colloids allowing for further optimization of the self-assembly process.

  2. Out-of-Plane Coordinated Porphyrin Nanotubes with Enhanced Singlet Oxygen Generation Efficiency

    PubMed Central

    Zhao, Qiang; Wang, Yao; Xu, Yanshuang; Yan, Yun; Huang, Jianbin

    2016-01-01

    A supramolecular porphyrin nanotube displaying J-aggregation feature was constructed by out-of-plane coordinated bismuth-porphyrin. Significantly, compared to traditional J-aggregated porphyrin suffering from fluorescence and singlet oxygen quenching, the nanotube exhibits excellent bio-imaging ability and enhanced production efficiency of singlet oxygen. The out-of-plane structure of bismuth to porphyrin makes the aggregation an appropriate material for theranostics. Furthermore, it is also a potential radio-therapeutic drug owing to the presence of radio-active bismuth. Thus, the self-assembly of out-of-plane coordinated porphyrin can be a facile approach toward effective therapy of tumors and other diseases. PMID:27527403

  3. Self Assembled, Ultra-Hydrophobic Micro/Nano-Textured Surfaces

    DTIC Science & Technology

    2007-04-01

    Self Assembled, Ultra-Hydrophobic Micro / Nano -Textured Surfaces by Adam M. Rawlett, Joshua A. Orlicki, Nicole Zander, Afia Karikari, and...5069 ARL-TN-275 April 2007 Self Assembled, Ultra-Hydrophobic Micro / Nano -Textured Surfaces Adam M. Rawlett, Joshua A. Orlicki, and...NUMBER 5b. GRANT NUMBER 4. TITL Self A bled, Ultra-Hydrophobic Micro / Nano -Textured Surfaces 5c. PROGRAM ELEMENT NUMBER E ssem AND SUBTITLE 5d

  4. Self-assembly drugs: from micelles to nanomedicine.

    PubMed

    Messina, Paula V; Besada-Porto, Jose Miguel; Ruso, Juan M

    2014-03-01

    Self-assembly has fascinated many scientists over the past few decades. Rapid advances and widespread interest in the study of this subject has led to the synthesis of an ever-increasing number of elegant and intricate functional structures with sizes that approach nano- and mesoscopic dimensions. Today, it has grown into a mature field of modern science whose interfaces with many disciplines have provided invaluable opportunities for crossing boundaries for scientists seeking to design novel molecular materials exhibiting unusual properties, and for researchers investigating the structure and function of biomolecules. Consequently, self-assembly transcends the traditional divisional boundaries of science and represents a highly interdisciplinary field including nanotechnology and nanomedicine. Basically, self-assembly focuses on a wide range of discrete molecules or molecular assemblies and uses physical transformations to achieve its goals. In this Review, we present a comprehensive overview of the advances in the field of drug self-assembly and discuss in detail the synthesis, self-assembly behavior, and physical properties as well as applications. We refer the reader to past reviews dealing with colloidal molecules and colloidal self-assembly. In the first part, we will discuss, compare, and link the various bioinformatic procedures: Molecular Dynamics and Quantitative Structure Activity Relationship. The second section deals with the self-assembly behavior in more detail, in which we focus on several experimental techniques, selected according to the depth of knowledge obtained. The last part will review the advances in drug-protein assembly. Nature provides many examples of proteins that form their substrate binding sites by bringing together the component pieces in a process of self-assembly. We will focus in the understanding of physical properties and applications developing thereof.

  5. Self-assembled tunable networks of sticky colloidal particles

    DOEpatents

    Demortiere, Arnaud; Snezhko, Oleksiy Alexey; Sapozhnikov, Maksim; Becker, Nicholas G.; Proslier, Thomas; Aronson, Igor S.

    2017-07-18

    Self-assembled tunable networks of microscopic polymer fibers ranging from wavy colloidal "fur" to highly interconnected networks are created from polymer systems and an applied electric field. The networks emerge via dynamic self-assembly in an alternating (ac) electric field from a non-aqueous suspension of "sticky" polymeric colloidal particles with a controlled degree of polymerization. The resulting architectures are tuned by the frequency and amplitude of the electric field and surface properties of the particles.

  6. Self-assembled nanotubes from single fluorescent amino acid

    NASA Astrophysics Data System (ADS)

    Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2017-03-01

    Self-assembly of biomolecules has gained increasing attention as it generates various supramolecular structural assemblies having potential applications principally in biomedical sciences. Here, we show that amino acid like tryptophan or tyrosine readily aggregates as nanotubes via a simple self-assembly process. These were characterized by FTIR, scanning electron microscopy, and by fluorescence microscopy. Nanotubes prepared from tryptophan are having 200 nm inner diameter and those from tyrosine are having the same around 50 nm diameter.

  7. Optimal control of electrostatic self-assembly of binary monolayers

    NASA Astrophysics Data System (ADS)

    Shestopalov, N. V.; Henkelman, G.; Powell, C. T.; Rodin, G. J.

    2009-05-01

    A simple macroscopic model is used to determine an optimal annealing schedule for self-assembly of binary monolayers of spherical particles. The model assumes that a single rate-controlling mechanism is responsible for the formation of spatially ordered structures and that its rate follows an Arrhenius form. The optimal schedule is derived in an analytical form using classical optimization methods. Molecular dynamics simulations of the self-assembly demonstrate that the proposed schedule outperforms other schedules commonly used for simulated annealing.

  8. Electronic polymers and DNA self-assembled in nanowire transistors.

    PubMed

    Hamedi, Mahiar; Elfwing, Anders; Gabrielsson, Roger; Inganäs, Olle

    2013-02-11

    Aqueous self-assembly of DNA and molecular electronic materials can lead to the creation of innumerable copies of identical devices, and inherently programmed complex nanocircuits. Here self-assembly of a water soluble and highly conducting polymer PEDOT-S with DNA in aqueous conditions is shown. Orientation and assembly of the conducting DNA/PEDOT-S complex into electrochemical DNA nanowire transistors is demonstrated.

  9. Electric Field Controlled Self-Assembly of Hierarchically Ordered Membranes

    PubMed Central

    Velichko, Yuri S.; Mantei, Jason R.; Bitton, Ronit; Carvajal, Daniel; Shull, Kenneth R.; Stupp, Samuel I.

    2012-01-01

    Self-assembly in the presence of external forces is an adaptive, directed organization of molecular components under nonequilibrium conditions. While forces may be generated as a result of spontaneous interactions among components of a system, intervention with external forces can significantly alter the final outcome of self-assembly. Superimposing these intrinsic and extrinsic forces provides greater degrees of freedom to control the structure and function of self-assembling materials. In this work we investigate the role of electric fields during the dynamic self-assembly of a negatively charged polyelectrolyte and a positively charged peptide amphiphile in water leading to the formation of an ordered membrane. In the absence of electric fields, contact between the two solutions of oppositely charged molecules triggers the growth of closed membranes with vertically oriented fibrils that encapsulate the polyelectrolyte solution. This process of self-assembly is intrinsically driven by excess osmotic pressure of counterions, and the electric field is found to modify the kinetics of membrane formation, and also its morphology and properties. Depending on the strength and orientation of the field we observe a significant increase or decrease of up to nearly 100% in membrane thickness, as well as the controlled rotation of nanofiber growth direction by 90 degrees, resulting in a significant increase in mechanical stiffness. These results suggest the possibility of using electric fields to control structure in self-assembly processes involving diffusion of oppositely charged molecules. PMID:23166533

  10. Effect of polymerization on hierarchical self-assembly into nanosheets.

    PubMed

    Ikeda, Taichi

    2015-01-20

    The oligomers consisting of phenyl-capped bithiophene and tetra(ethylene glycol)s linked by azide-alkyne Huisgen cycloaddition were synthesized. The relationship between the degree of polymerization and self-assembling ability was investigated in o-dichlorobenzene and dimethyl sulfoxide. From the absorption spectrum, it was confirmed that the critical degree of polymerization (CDP) for thiophene unit aggregation was 4. The morphology of the aggregated product was observed by atomic force microscopy. The oligomers 4mer and 5mer could not self-assemble into well-defined structures due to the weak driving force for the self-assembly. In the cases of 6mer and 7mer, aggregates with nonwell-defined and nanosheet structures coexisted. In the cases of 8mer and 9mer, the nanosheet was the main product. The critical point between 7mer and 8mer could be confirmed by different aggregation behaviors in the cooling process of the solution (nonsigmoidal and sigmoidal). In the cases of 8mer and 9mer, polymer folding prior to intermolecular self-assembly, which was supported by sigmoidal aggregation behavior, leads to the nanosheet formation. On the contrary, shorter oligomers than 8mer experience intermolecular aggregation prior to intramolecular polymer folding, which was supported by the nonsigmoidal aggregation behavior. This is the first report to prove the existence of CDP for folded polymer nanosheet formation which requires hierarchical self-assembly, i.e., polymer folding followed by intermolecular self-assembly.

  11. DNA-based self-assembly for functional nanomaterials.

    PubMed

    Wang, Zhen-Gang; Ding, Baoquan

    2013-07-26

    The unprecedented development of DNA nanotechnology has caused DNA self-assembly to attract close attention in many disciplines. In this research news article, the employment of DNA self-assembly in the fields of materials science and nanotechnology is described. DNA self-assembly can be used to prepare bulk-scale hydrogels and 3D macroscopic crystals with nanoscale internal structures, to induce the crystallization of nanoparticles, to template the fabrication of organic conductive nanomaterials, and to act as drug delivery vehicles for therapeutic agents. The properties and functions are fully tunable because of the designability and specificity of DNA assembly. Moreover, because of the intrinsic dynamics, DNA self-assembly can act as a program switch and can efficiently control stimuli responsiveness. We highlight the power of DNA self-assembly in the preparation and function regulation of materials, aiming to motivate future multidisciplinary and interdisciplinary research. Finally, we describe some of the challenges currently faced by DNA assembly that may affect the functional evolution of such materials, and we provide our insights into the future directions of several DNA self-assembly-based nanomaterials.

  12. Albumin binds self-assembling dyes as specific polymolecular ligands.

    PubMed

    Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz

    2006-12-15

    Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.

  13. Impregnation of tubular self-assemblies into dextran hydrogels.

    PubMed

    Sun, Guoming; Chu, Chih-Chang

    2010-02-16

    Amine groups are the building units of proteins. The incorporation of amine groups into polyethylene glycol diacrylate (PEGDA) hydrogel through dextran-allyl isocyanate-ethylamine (Dex-AE) enhances sustained protein release by introducing effective interactions. To investigate such an interaction effect and to improve protein release, we impregnated self-assembled tubular structures from dextran-bromoethylamine (Dex-BH) and dextran-chloroacetic acid (Dex-CA) into Dex-AE/PEGDA hydrogel. The morphology data obtained from scanning electron microscopy (SEM) reveal that pure PEGDA hydrogel had no effect on the distribution of the self-assembled tubules; the introduction of Dex-AE brought about the dispersion of these tubules, and an increase in Dex-AE content led to more evenly distributed structures. Moreover, the implantation of the self-assembled tubules had no distinct effect on the swelling capacity of the hybrid self-assembly embedded hydrogels. The in vitro albumin release study was carried out in a pH 7.4 buffer solution; the results show that the implantation of the self-assembly into the hydrogels reduced the burst release and prolonged the protein release time. These findings demonstrate that the impregnation of tubular self-assembly into hydrogel makes the hybrid hydrogel an excellent protein delivery system.

  14. Design strategies for self-assembly of discrete targets

    SciTech Connect

    Madge, Jim; Miller, Mark A.

    2015-07-28

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority.

  15. Structures Self-Assembled Through Directional Solidification

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2005-01-01

    dry plasma etch. The wet chemical etches the silicon away, exposing the TiSi2 rods, whereas plasma etching preferentially etches the Si-TiSi2 interface to form a crater. The porous architectures are applicable to fabricating microdevices or creating templates for part fabrication. The porous rod structure can serve as a platform for fabricating microplasma devices for propulsion or microheat exchangers and for fabricating microfilters for miniatured chemical reactors. Although more work is required, self-assembly from DSE can have a role in microdevice fabrication.

  16. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.

    PubMed

    Ensslen, Philipp; Wagenknecht, Hans-Achim

    2015-10-20

    modifications in a row. A logical alternative approach is to leave out the phosphodiester bridges between the chromophores and let chromophore-nucleoside conjugates self-assemble specifically along single stranded DNA as template. The self-organization of chromophores along the DNA template based on canonical base pairing would be advantageous because sequence selective base pairing could provide a structural basis for programmed complexity within the chromophore assembly. The self-assembly is governed by two interactions. The chromophore-nucleoside conjugates as guest molecules are recognized via hydrogen bonds to the corresponding counter bases in the single stranded DNA template. Moreover, the π-π interactions between the stacked chromophores stabilize these self-assembled constructs with increasing length. Longer DNA templates are more attractive for self-assembled antenna. The helicity in the stack of porphyrins as guest molecules assembled on the DNA template can be switched by environmental changes, such as pH variations. DNA-templated stacks of ethynyl pyrene and nile red exhibit left-handed chirality, which stands in contrast to similar covalent multichromophore-DNA conjugates with enforced right-handed helicity. With ethynyl nile red, it is possible to occupy every available binding site on the templates. Mixed assemblies of ethynyl pyrene and nile red show energy transfer and thereby provide a proof-of-principle that simple light-harvesting antennae can be obtained in a noncovalent and self-assembled fashion. With respect to the next important step, chemical storage of the absorbed light energy, future research has to focus on the coupling of sophisticated DNA-based light-harvesting antenna to reaction centers.

  17. A porphyrin/β-cyclodextrin conjugated nano-system having a pan-lid molecular structure for smart drug carrier applications.

    PubMed

    Mineo, Placido

    2014-06-14

    In this study, 5,10,15-tri[p(9-methoxy-triethyleneoxy)phenyl]-20-[p-phenylisophthalate-β-cyclodextrin]porphyrin, a compound containing a porphyrin and a β-cyclodextrin unit covalently linked by means of an isophthalic bridge, was synthesized and characterized by NMR, MALDI-TOF mass spectrometry and UV-vis and circular dichroism spectroscopies. This porphyrin/β-cyclodextrin system, with the porphyrin unit connected to the lower rim (OH-2) of the cyclodextrin structure, is water-soluble and no evidence of a self-assembly arrangement between the porphyrin and cyclodextrin units appears. In this way, the β-cyclodextrin cavities remain free, retaining their potential ability of drug-delivery, with the spectroscopic advantage induced by the high absorbance of the porphyrin unit. Furthermore, the porphyrin unit, interacting with the guest and acting as a lid, could have a role in the controlled release process of the drug.

  18. Self-assemblies of 5'-cholesteryl-ethyl-phosphoryl zidovudine.

    PubMed

    Du, Lina; Jia, Junwei; Ge, Pingju; Jin, Yiguang

    2016-12-01

    Anti-HIV prodrugs are recently focused on due to their ability of self-assembly, macrophage targeting, and enhanced antiviral effects. Here, an amphiphilic prodrug of zidovudine, an anti-HIV nucleoside analogue, 5'-cholesteryl-ethyl-phosphoryl zidovudine (CEPZ) was synthesized. CEPZ showed some unique physicochemical properties. The solubility of CEPZ in the noncompetitive solvents chloroform and tetrahydrofuran (THF) was very high based on the hydrogen bonds between zidovudine groups, though CEPZ was sparing soluble in alcohols and almost insoluble in water. The typical amphiphilic property of CEPZ was demonstrated according to the Langmuir monolayers at the air/water interface. The LogP of CEPZ was high to 13.78, indicating the high hydrophobicity of amphiphilic CEPZ similar to phospholipids. Homogenous and stable self-assemblies were formed with the mean size of 128.7nm and the zeta potential of -35.4mV after injecting the CEPZ-in-THF solution into water. Hydrophobic interaction between the cholesteryl moieties of CEPZ could drive molecular self-assembly and lead to the formation of spherical vesicles. CEPZ self-assemblies showed strong stability even under high temperature and gravity probably due to the high surface charge. CEPZ was very slowly degraded in neutral solutions (e.g., pH 7.4), but fast in acid solutions (e.g., pH 5.0) and some tissue homogenates. CEPZ was quickly eliminated from the circulation and distributed into the mononuclear phagocyte system (MPS) including the liver, spleen and lung after bolus intravenous administration of CEPZ self-assemblies to mice. The MPS targeting effect of CEPZ self-assemblies makes them become a promising self-assembled drug delivery system to eradicate the HIV hidden in the macrophages.

  19. Self-assembled tethered bimolecular lipid membranes.

    PubMed

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules

  20. Synthesis and characterization of porphyrin nanotubes/rods for solar radiation harvesting and solar cells

    NASA Astrophysics Data System (ADS)

    Mongwaketsi, N.; Khamlich, S.; Klumperman, B.; Sparrow, R.; Maaza, M.

    2012-05-01

    Energy transfer and electron transfer events as they occur between well arranged light harvesting antenna molecules, the reaction center and other factors determine the function of natural photosynthesis. The overall small reorganization energy and the well-balanced electronic coupling between each component bear key characters for the unique efficiency of natural photosynthesis. Such aspects permit the design and assembly of artificial systems that efficiently process solar energy, replicating the natural processes. The rich and extensive transitions seen in porphyrin-based materials hold great expectation as light harvesting building blocks in the construction of molecular architectures, allowing an efficient use of the solar spectrum. Hence in this study porphyrin nanorods are synthesized and characterized for future application in the construction of the artificial light harvesting system. Understanding the sizes and growth mechanism of porphyrins nanorods by self-assembly and molecular recognition is essential for their successful implementation in nanodevices. Spectroscopic and microscopic studies were carried out to investigate the effect that time, concentration and solvents have on the fabrication of porphyrin nanorods by ionic self-assembly of two oppositely charged porphyrins. We investigate in details the heteroaggregate behavior formation of [H4TPPS4]2- and [SnTPyP]2+ mixture by means of the UV-vis spectroscopy and aggregates structure and morphology by transmission electron microscopy (TEM). This study demonstrates the potential for using different concentrations and solvents to influence the physical and optical properties of porphyrin based nanorods.

  1. Supracolloidal reconfigurable polyhedra via hierarchical self-assembly.

    PubMed

    Morphew, Daniel; Chakrabarti, Dwaipayan

    2016-12-06

    Enclosed three-dimensional structures with hollow interiors have been attractive targets for the self-assembly of building blocks across different length scales. Colloidal self-assembly, in particular, has enormous potential as a bottom-up means of structure fabrication exploiting a priori designed building blocks because of the scope for tuning interparticle interactions. Here we use computer simulation study to demonstrate the self-assembly of designer charge-stabilised colloidal magnetic particles into a series of supracolloidal polyhedra, each displaying a remarkable two-level structural hierarchy. The parameter space for design supports thermodynamically stable polyhedra of very different morphologies, namely tubular and hollow spheroidal structures, involving the formation of subunits of four-fold and three-fold rotational symmetry, respectively. The spheroidal polyhedra are chiral, despite having a high degree of rotational symmetry. The dominant pathways for self-assembly into these polyhedra reveal two distinct mechanisms - a growth mechanism via sequential attachment of the subunits for a tubular structure and a staged or hierarchical pathway for a spheroidal polyhedron. These supracolloidal architectures open up in response to an external magnetic field. Our results suggest design rules for synthetic reconfigurable containers at the microscale exploiting a hierarchical self-assembly scheme.

  2. Self-Assembly for the Synthesis of Functional Biomaterials

    PubMed Central

    Stephanopoulos, Nicholas; Ortony, Julia H.; Stupp, Samuel I.

    2012-01-01

    The use of self-assembly for the construction of functional biomaterials is a highly promising and exciting area of research, with great potential for the treatment of injury or disease. By using multiple noncovalent interactions, coded into the molecular design of the constituent components, self-assembly allows for the construction of complex, adaptable, and highly tunable materials with potent biological effects. This review describes some of the seminal advances in the use of self-assembly to make novel systems for regenerative medicine and biology. Materials based on peptides, proteins, DNA, or hybrids thereof have found application in the treatment of a wide range of injuries and diseases, and this review outlines the design principles and practical applications of these systems. Most of the examples covered focus on the synthesis of hydrogels for the scaffolding or transplantation of cells, with an emphasis on the biological, mechanical, and structural properties of the resulting materials. In addition, we will discuss the distinct advantages conferred by self-assembly (compared with traditional covalent materials), and present some of the challenges and opportunities for the next generation of self-assembled biomaterials. PMID:23457423

  3. Acylpyrazolones: Synthesis, self-assembly and lanthanide metal ion separation

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    The central hypothesis that nanoscale self-assemblies can provide excellent metal ion recognition has been substantiated by employing acylpyrazolones and trivalent lanthanide metal ions as model systems. Several novel acylpyrazolones and their amphiphilic analogs have been designed, synthesized, and characterized. Their lanthanide metal ion recognition efficacies have been demonstrated through baseline separations of a mixture of light, middle, and heavy lanthanide metal ions by employing them in the aqueous mobile phase of high performance liquid chromatography (HPLC) with octadecylsilanized silica (ODS) as the stationary phase. The complex separation mechanism is influenced by the structures of acylpyrazolone and amphiphilic moieties, and spontaneous self-assembly of the ligand in the aqueous and on the stationary phases. Transmission electron microscopy (TEM) studies of the ligand self-assemblies in the aqueous phase in the absence and presence of lanthanide metal ions reveal spherical, dendritic, and linear (nanofibers, nanorods, and nanotubes) nanoscale structures. Such structures have also been observed when chloromethylated acylpyrazolones are stimulated to self-assemble by a base in nonaqueous solvents and when silica nanoparticles derivatized with them spontaneously self-assemble in aqueous and nonaqueous solvents.

  4. Sequential programmable self-assembly: Role of cooperative interactions

    NASA Astrophysics Data System (ADS)

    Halverson, Jonathan D.; Tkachenko, Alexei V.

    2016-03-01

    We propose a general strategy of "sequential programmable self-assembly" that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenient platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call "DNA spider," that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a "GEOMAG" magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.

  5. Harnessing Surface Dislocation Networks for Molecular Self-Assembly

    NASA Astrophysics Data System (ADS)

    Pohl, Karsten

    2009-03-01

    The controlled fabrication of functional wafer-based nano-arrays is one of the ultimate quests in current nanotechnologies. Well-ordered misfit dislocation networks of ultrathin metal films are viable candidates for the growth of two- dimensional ordered cluster arrays in the nanometer regime. Such bottom-up processes can be very complex, involving collective effects from a large number of atoms. Unraveling the fundamental forces that drive these self-assembly processes requires detailed experimental information at the atomic level of large ensembles of hundreds to thousands of atoms. The combination of variable temperature measurements from our home-built STM correlated with 2D Frenkel-Kontorova models based on first-principle interaction parameters is used to explain how uniform arrays can form with the strain in the thin film as the driving force responsible for the surface self-assembly process. This process is generally applicable to assemble many molecular species thus opening avenues towards complex self-assembled structures based on a lock-and-key type approach. Moreover, when increasing the molecular coverage and/or decreasing the strain in the thin film the intermolecular interactions will eventually dominate the elastic effects and dictate the self-assembly process via molecular structure and functionality. We will show that controlling this delicate balance leads to a richness of structures, ranging from disperse ordered arrays of molecular clusters to patterned self-assembled monolayers (SAMs) of functionalized fullerenes and methanethiol.

  6. Guided and magnetic self-assembly of tunable magnetoceptive gels

    NASA Astrophysics Data System (ADS)

    Tasoglu, S.; Yu, C. H.; Gungordu, H. I.; Guven, S.; Vural, T.; Demirci, U.

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  7. Dynamic self-assembly of microscale rotors and swimmers

    NASA Astrophysics Data System (ADS)

    Davies Wykes, Megan; Palacci, Jeremie; Adachi, Takuji; Ristroph, Leif; Liu, Yanpeng; Zhong, Xiao; Zhang, Jun; Ward, Michael; Shelley, Michael

    2015-11-01

    Self-assembly is a process found throughout nature and is often dynamic, requiring fuel to occur. Artificial examples are valuable both as aids to understanding biological systems and for developing manufacturing techniques for micron-scale machines. We will describe the behaviour of micron-scale rods, constructed of three equal length segments of gold, platinum and gold (Au-Pt-Au). When placed in a solution of hydrogen peroxide fuel, these are expected to create an extensile-like flow in the surrounding fluid. These immotile rods self-assemble into structures that exhibit the two fundamental types of motion: rotation and translation, in the form of steadily rotating stacks and T-shaped swimmers. This is a rare example of an artificial system where dynamic and reversible self-assembly results in ordered structures which exhibit emergent motility.

  8. Self-assembly of polymeric microspheres of complex internal structures

    NASA Astrophysics Data System (ADS)

    Fialkowski, Marcin; Bitner, Agnieszka; Grzybowski, Bartosz A.

    2005-01-01

    Self-assembly can easily produce intricate structures that would be difficult to make by conventional fabrication means. Here, self-assembly is used to prepare multicomponent polymeric microspheres of arbitrary internal symmetries. Droplets of liquid prepolymers are printed onto a water-soluble hydrogel, and are allowed to spread and coalesce into composite patches. These patches are then immersed in an isodense liquid, which both compensates the force of gravity and dissolves the gel beneath the polymers. Subsequently, the patches fold into spheres whose internal structures are dictated by the arrangement of the droplets printed onto the surface. The spheres can be solidified either thermally or by ultraviolet radiation. We present a theoretical analysis of droplet spreading, coalescence and folding. Conditions for the stability of the folded microspheres are derived from linear stability analysis. The composite microbeads that we describe are likely to find uses in optics, colloidal self-assembly and controlled-delivery applications.

  9. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    SciTech Connect

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented.

  10. Production of self-assembling biomaterials for tissue engineering

    PubMed Central

    Kyle, Stuart; Aggeli, Amalia; Ingham, Eileen; McPherson, Michael J.

    2009-01-01

    Self-assembling peptide-based biomaterials are being developed for use as 3D tissue engineering scaffolds and for therapeutic drug-release applications. Chemical synthesis provides custom-made peptides in small quantities, but production approaches based upon transgenic organisms might be more cost-effective for large-scale peptide production. Long lead times for developing appropriate animal clones or plant lines and potential negative public opinion are obstacles to these routes. Microbes, particularly safe organisms used in the food industry, offer a more rapid route to the large-scale production of recombinant self-assembling biomaterials. In this review, recent advances and challenges in the recombinant production of collagen, elastin and de novo designed self-assembling peptides are discussed. PMID:19497631

  11. Production of self-assembling biomaterials for tissue engineering.

    PubMed

    Kyle, Stuart; Aggeli, Amalia; Ingham, Eileen; McPherson, Michael J

    2009-07-01

    Self-assembling peptide-based biomaterials are being developed for use as 3D tissue engineering scaffolds and for therapeutic drug-release applications. Chemical synthesis provides custom-made peptides in small quantities, but production approaches based upon transgenic organisms might be more cost-effective for large-scale peptide production. Long lead times for developing appropriate animal clones or plant lines and potential negative public opinion are obstacles to these routes. Microbes, particularly safe organisms used in the food industry, offer a more rapid route to the large-scale production of recombinant self-assembling biomaterials. In this review, recent advances and challenges in the recombinant production of collagen, elastin and de novo designed self-assembling peptides are discussed.

  12. Guided and magnetic self-assembly of tunable magnetoceptive gels.

    PubMed

    Tasoglu, S; Yu, C H; Gungordu, H I; Guven, S; Vural, T; Demirci, U

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call 'magnetoceptive' materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  13. Self-assembled liposomal nanoparticles in photodynamic therapy

    PubMed Central

    Sadasivam, Magesh; Avci, Pinar; Gupta, Gaurav K.; Lakshmanan, Shanmugamurthy; Chandran, Rakkiyappan; Huang, Ying-Ying; Kumar, Raj; Hamblin, Michael R.

    2013-01-01

    Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT. PMID:24348377

  14. Self-assembly of tunable protein suprastructures from recombinant oleosin

    PubMed Central

    Vargo, Kevin B.; Parthasarathy, Ranganath; Hammer, Daniel A.

    2012-01-01

    Using recombinant amphiphilic proteins to self-assemble suprastructures would allow precise control over surfactant chemistry and the facile incorporation of biological functionality. We used cryo-TEM to confirm self-assembled structures from recombinantly produced mutants of the naturally occurring sunflower protein, oleosin. We studied the phase behavior of protein self-assembly as a function of solution ionic strength and protein hydrophilic fraction, observing nanometric fibers, sheets, and vesicles. Vesicle membrane thickness correlated with increasing hydrophilic fraction for a fixed hydrophobic domain length. The existence of a bilayer membrane was corroborated in giant vesicles through the localized encapsulation of hydrophobic Nile red and hydrophilic calcein. Circular dichroism revealed that changes in nanostructural morphology in this family of mutants was unrelated to changes in secondary structure. Ultimately, we envision the use of recombinant techniques to introduce novel functionality into these materials for biological applications. PMID:22753512

  15. Guided and magnetic self-assembly of tunable magnetoceptive gels

    PubMed Central

    Tasoglu, S.; Yu, C.H.; Gungordu, H.I.; Guven, S.; Vural, T.; Demirci, U.

    2014-01-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents. PMID:25175148

  16. Dynamic self-assembly of coordination polymers in aqueous solution.

    PubMed

    Li, Wen; Kim, Yongju; Li, Jingfang; Lee, Myongsoo

    2014-08-07

    The construction of supramolecular polymers has been intensively pursued because the nanostructures formed through weak non-covalent interactions can be triggered by external stimuli leading to smart materials and sensors. Self-assemblies of coordination polymers consisting of metal ions and organic ligands in aqueous solution also provide particular contributions in this area. The main motivation for developing those coordination polymers originates from the value-added combination between metal ions and ligands. This review highlights the recent progress of the dynamic self-assembly of coordination polymers that result from the sophisticated molecular design, towards fabricating stimuli-responsive systems and bio-related materials. Dynamic structural changes and switchable physical properties triggered by various stimuli are summarized. Finally, the outlook for aqueous nanostructures originated from the dynamic self-assembly of coordination polymers is also presented.

  17. Self-Assemblies of Acicular Hollow Fe/C Nanostructures.

    PubMed

    Li, Wangchang; Qiao, Xiaojing; Li, Mingyu; Zheng, Qiuyu; Ren, Qingguo; Zhu, Y Q; Peng, H X

    2015-08-01

    Self-assemblies of acicular hollow Fe/C structures were synthesized using D-glucose monohydrate and ferric chloride as precursors by a simple hydrothermal process followed by carbonization at 800 °C. The self-assembled structures with an overall diameter of 15~20 µm composed of radially formed hollow needles from a central core with an average diameter of ca. 1 µm and a length up to 10 µm. The end of the needles was revealed to be a awl shape with a hollow structure formed during the self-assembly process and the subsequent heat treatment. The hollow structure was probably caused by the Kirkendall effect at 800 °C. The materials exhibit ferromagnetic characteristic with saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) of 22.2 emu/g, 3 emu/g, and 151.22 Oe, respectively, with Ms much lower than that of Fe3O4.

  18. Self-Assembly of DNA-coated colloids

    NASA Astrophysics Data System (ADS)

    Pine, David

    DNA-coated particles have emerged as a powerful tool for programming the self-assembly of colloids and nanoparticles. The power of this approach lies in the highly specific molecular recognition properties of DNA and in the thermal reversibility of the interactions between DNA strands attached to different particles. These two properties taken together can, in principle, direct the bottom-up self-assembly of different materials into almost any desired structure. Here we discuss the self-assembly of single and multi-component crystals of DNA-coated colloids. This work is supported by the Army Research Office under MURI Grant Award Number W911NF-10-1-0518 and the MRSEC Program of the NSF under Award Number DMR-1420073.

  19. Functional self-assembled lipidic systems derived from renewable resources

    PubMed Central

    Silverman, Julian R.; Samateh, Malick; John, George

    2015-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure–function relationship and functional smart materials that research may remain safe, economic, and efficient. PMID:26766923

  20. Self-Assembly in Biosilicification and Biotemplated Silica Materials

    PubMed Central

    Fernandes, Francisco M.; Coradin, Thibaud; Aimé, Carole

    2014-01-01

    During evolution, living organisms have learned to design biomolecules exhibiting self-assembly properties to build-up materials with complex organizations. This is particularly evidenced by the delicate siliceous structures of diatoms and sponges. These structures have been considered as inspiration sources for the preparation of nanoscale and nanostructured silica-based materials templated by the self-assembled natural or biomimetic molecules. These templates range from short peptides to large viruses, leading to biohybrid objects with a wide variety of dimensions, shapes and organization. A more recent strategy based on the integration of biological self-assembly as the driving force of silica nanoparticles organization offers new perspectives to elaborate highly-tunable, biofunctional nanocomposites. PMID:28344249

  1. Equation of State for Phospholipid Self-Assembly.

    PubMed

    Marsh, Derek

    2016-01-05

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle concentration at a single temperature suffices to define an effective heat capacity according to the model. Agreement with the experimental temperature dependence of the critical micelle concentration is then good. The predictive powers should extend also to amphiphile partitioning and the kinetics of lipid-monomer transfer.

  2. Investigating collagen self-assembly with optical tweezers microrheology

    NASA Astrophysics Data System (ADS)

    Forde, Nancy; Shayegan, Marjan; Altindal, Tuba

    Collagen is the fundamental structural protein in vertebrates. Assembled from individual triple-helical proteins to make strong fibres, collagen is a beautiful example of a hierarchical self-assembling system. Using optical tweezers to perform microrheology measurements, we explore the dynamics of interactions between collagens responsible for their self-assembly and examine the development of heterogeneous mechanics during assembly into fibrillar gels. Telopeptides, short non-helical regions that flank the triple helix, have long been known to facilitate fibril self-assembly. We find that their removal not only slows down fibril nucleation but also results in a significant frequency-dependent reduction in the elastic modulus of collagens in solution. We interpret these results in terms of a model in which telopeptides facilitate transient intermolecular interactions, which enhance network connectivity in solution and lead to more rapid assembly in fibril-forming conditions. Current address: Department of Physics, McGill University.

  3. Nanoscale forces and their uses in self-assembly.

    PubMed

    Bishop, Kyle J M; Wilmer, Christopher E; Soh, Siowling; Grzybowski, Bartosz A

    2009-07-01

    The ability to assemble nanoscopic components into larger structures and materials depends crucially on the ability to understand in quantitative detail and subsequently "engineer" the interparticle interactions. This Review provides a critical examination of the various interparticle forces (van der Waals, electrostatic, magnetic, molecular, and entropic) that can be used in nanoscale self-assembly. For each type of interaction, the magnitude and the length scale are discussed, as well as the scaling with particle size and interparticle distance. In all cases, the discussion emphasizes characteristics unique to the nanoscale. These theoretical considerations are accompanied by examples of recent experimental systems, in which specific interaction types were used to drive nanoscopic self-assembly. Overall, this Review aims to provide a comprehensive yet easily accessible resource of nanoscale-specific interparticle forces that can be implemented in models or simulations of self-assembly processes at this scale.

  4. Self-Assembly in Biosilicification and Biotemplated Silica Materials.

    PubMed

    Fernandes, Francisco M; Coradin, Thibaud; Aimé, Carole

    2014-09-04

    During evolution, living organisms have learned to design biomolecules exhibiting self-assembly properties to build-up materials with complex organizations. This is particularly evidenced by the delicate siliceous structures of diatoms and sponges. These structures have been considered as inspiration sources for the preparation of nanoscale and nanostructured silica-based materials templated by the self-assembled natural or biomimetic molecules. These templates range from short peptides to large viruses, leading to biohybrid objects with a wide variety of dimensions, shapes and organization. A more recent strategy based on the integration of biological self-assembly as the driving force of silica nanoparticles organization offers new perspectives to elaborate highly-tunable, biofunctional nanocomposites.

  5. Equation of State for Phospholipid Self-Assembly

    PubMed Central

    Marsh, Derek

    2016-01-01

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies of transfer converge at ∼−18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle concentration at a single temperature suffices to define an effective heat capacity according to the model. Agreement with the experimental temperature dependence of the critical micelle concentration is then good. The predictive powers should extend also to amphiphile partitioning and the kinetics of lipid-monomer transfer. PMID:26745421

  6. Associative Pattern Recognition Through Macro-molecular Self-Assembly

    NASA Astrophysics Data System (ADS)

    Zhong, Weishun; Schwab, David J.; Murugan, Arvind

    2017-05-01

    We show that macro-molecular self-assembly can recognize and classify high-dimensional patterns in the concentrations of N distinct molecular species. Similar to associative neural networks, the recognition here leverages dynamical attractors to recognize and reconstruct partially corrupted patterns. Traditional parameters of pattern recognition theory, such as sparsity, fidelity, and capacity are related to physical parameters, such as nucleation barriers, interaction range, and non-equilibrium assembly forces. Notably, we find that self-assembly bears greater similarity to continuous attractor neural networks, such as place cell networks that store spatial memories, rather than discrete memory networks. This relationship suggests that features and trade-offs seen here are not tied to details of self-assembly or neural network models but are instead intrinsic to associative pattern recognition carried out through short-ranged interactions.

  7. Self-assembled tunable networks of sticky colloidal particles

    NASA Astrophysics Data System (ADS)

    Demortière, Arnaud; Snezhko, Alexey; Sapozhnikov, Maksim V.; Becker, Nicholas; Proslier, Thomas; Aranson, Igor S.

    2014-01-01

    Surfaces decorated with dense arrays of microscopic fibres exhibit unique materials properties, including superhydrophobicity and low friction. Nature relies on ‘hairy’ surfaces to protect blood capillaries from wear and infection (endothelial glycocalyx). Here we report on the discovery of self-assembled tunable networks of microscopic polymer fibres ranging from wavy colloidal ‘fur’ to highly interconnected networks. The networks emerge via dynamic self-assembly in an alternating electric field from a non-aqueous suspension of ‘sticky’ polymeric colloidal particles with a controlled degree of polymerization. The resulting architectures are tuned by the frequency and amplitude of the electric field and surface properties of the particles. We demonstrate, using atomic layer deposition, that the networks can serve as a template for a transparent conductor. These self-assembled tunable materials are promising candidates for large surface area electrodes in batteries and organic photovoltaic cells, as well as for microfluidic sensors and filters.

  8. Actinide sequestration using self-assembled monolayers on mesoporous supports.

    PubMed

    Fryxell, Glen E; Lin, Yuehe; Fiskum, Sandy; Birnbaum, Jerome C; Wu, Hong; Kemner, Ken; Kelly, Shelley

    2005-03-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometalate anions, and radionuclides. Details addressing the design, synthesis, and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental cleanup necessary after 40 years of weapons-grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented.

  9. Hydrodynamic Self-Assembly of Topographical Patterns on Soft Materials

    SciTech Connect

    Kumar, Satish

    2016-01-06

    The objective of this project is to use theoretical tools to explore fundamentally new ways of creating and controlling surface topography on soft materials (e.g., polymeric liquids, gels, colloidal suspensions) that make use of principles from hydrodynamics and self-assembly. Surface topography is known to have a significant impact on the optical, adhesive, and wetting properties of materials, so improved fundamental understanding of how to create and control it will help enable the tailoring of these properties to desired specifications. Self-assembly is the spontaneous organization of an ordered structure, and hydrodynamics often plays an important role in the self-assembly of soft materials. This research supported through this project has led to the discovery of a number of novel phenomena that are described in published journal articles. In this way, the research significantly adds to the fundamental understanding of the topics investigated.

  10. Intercalators as molecular chaperones in DNA self-assembly.

    PubMed

    Greschner, Andrea A; Bujold, Katherine E; Sleiman, Hanadi F

    2013-07-31

    DNA intercalation has found many diagnostic and therapeutic applications. Here, we propose the use of simple DNA intercalators, such as ethidium bromide, as tools to facilitate the error-free self-assembly of DNA nanostructures. We show that ethidium bromide can influence DNA self-assembly, decrease the formation of oligomeric side products, and cause libraries of multiple equilibrating structures to converge into a single product. Using a variety of 2D- and 3D-DNA systems, we demonstrate that intercalators present a powerful alternative for the adjustment of strand-end alignment, favor the formation of fully duplexed "closed" structures, and create an environment where the smallest, most stable structure is formed. A new 3D-DNA motif, the ninja star, was self-assembled in quantitative yield with this method. Moreover, ethidium bromide can be readily removed using isoamyl alcohol extractions combined with intercalator-specific spin columns, thereby yielding the desired ready-to-use DNA structure.

  11. Emerin self-assembly mechanism: role of the LEM domain.

    PubMed

    Samson, Camille; Celli, Florian; Hendriks, Kitty; Zinke, Maximilian; Essawy, Nada; Herrada, Isaline; Arteni, Ana-Andreea; Theillet, François-Xavier; Alpha-Bazin, Béatrice; Armengaud, Jean; Coirault, Catherine; Lange, Adam; Zinn-Justin, Sophie

    2017-01-01

    At the nuclear envelope, the inner nuclear membrane protein emerin contributes to the interface between the nucleoskeleton and the chromatin. Emerin is an essential actor of the nuclear response to a mechanical signal. Genetic defects in emerin cause Emery-Dreifuss muscular dystrophy. It was proposed that emerin oligomerization regulates nucleoskeleton binding, and impaired oligomerization contributes to the loss of function of emerin disease-causing mutants. We here report the first structural characterization of emerin oligomers. We identified an N-terminal emerin region from amino acid 1 to amino acid 132 that is necessary and sufficient for formation of long curvilinear filaments. In emerin monomer, this region contains a globular LEM domain and a fragment that is intrinsically disordered. Solid-state nuclear magnetic resonance analysis identifies the LEM β-fragment as part of the oligomeric structural core. However, the LEM domain alone does not self-assemble into filaments. Additional residues forming a β-structure are observed within the filaments that could correspond to the unstructured region in emerin monomer. We show that the delK37 mutation causing muscular dystrophy triggers LEM domain unfolding and increases emerin self-assembly rate. Similarly, inserting a disulfide bridge that stabilizes the LEM folded state impairs emerin N-terminal region self-assembly, whereas reducing this disulfide bridge triggers self-assembly. We conclude that the LEM domain, responsible for binding to the chromatin protein BAF, undergoes a conformational change during self-assembly of emerin N-terminal region. The consequences of these structural rearrangement and self-assembly events on emerin binding properties are discussed. © 2016 The Authors Journal compilation © 2016 FEBS.

  12. Recombinant self-assembling peptides as biomaterials for tissue engineering

    PubMed Central

    Kyle, Stuart; Aggeli, Amalia; Ingham, Eileen; McPherson, Michael J.

    2010-01-01

    Synthetic nanostructures based on self-assembling systems that aim to mimic natural extracellular matrix are now being used as substrates in tissue engineering applications. Peptides are excellent starting materials for the self-assembly process as they can be readily synthesised both chemically and biologically. P11-4 is an 11 amino acid peptide that undergoes triggered self-assembly to form a self-supporting hydrogel. It exists as unimers of random coil conformations in water above pH 7.5 but at low pH adopts an antiparallel β-sheet conformation. It also self-assembles under physiological conditions in a concentration-dependent manner. Here we describe an unimer P11-4 production system and the use of a simple site-directed mutagenesis approach to generate a series of other P11-family peptide expression vectors. We have developed an efficient purification strategy for these peptide biomaterials using a simple procedure involving chemical cleavage with cyanogen bromide then repeated filtration, lyophilisation and wash steps. We report peptide-fusion protein yields of ca. 4.64 g/L and we believe the highest reported recovery of a recombinant self-assembling peptide at 203 mg/L of pure recombinant P11-4. This peptide forms a self-supporting hydrogel under physiological conditions with essentially identical physico-chemical properties to the chemically synthesised peptide. Critically it also displays excellent cytocompatibility when tested with primary human dermal fibroblasts. This study demonstrates that high levels of a series of recombinant self-assembling peptides can be purified using a simple process for applications as scaffolds in tissue engineering. PMID:20932572

  13. Probing peptide amphiphile self-assembly in blood serum.

    PubMed

    Ghosh, Arijit; Buettner, Christian J; Manos, Aaron A; Wallace, Ashley J; Tweedle, Michael F; Goldberger, Joshua E

    2014-12-08

    There has been recent interest in designing smart diagnostic or therapeutic self-assembling peptide or polymeric materials that can selectively undergo morphological transitions to accumulate at a disease site in response to specific stimuli. Developing approaches to probe these self-assembly transitions in environments that accurately amalgamate the diverse plethora of proteins, biomolecules, and salts of blood is essential for creating systems that function in vivo. Here, we have developed a fluorescence anisotropy approach to probe the pH-dependent self-assembly transition of peptide amphiphile (PA) molecules that transform from spherical micelles at pH 7.4 to nanofibers under more acidic pH's in blood serum. By mixing small concentrations of a Ru(bipy)3(2+)-tagged PA with a Gd(DO3A)-tagged PA having the same lipid-peptide sequence, we showed that the pH dependence of self-assembly is minimally affected and can be monitored in mouse blood serum. These PA vehicles can be designed to transition from spherical micelles to nanofibers in the pH range 7.0-7.4 in pure serum. In contrast to the typical notion of serum albumin absorbing isolated surfactant molecules and disrupting self-assembly, our experiments showed that albumin does not bind these anionic PAs and instead promotes nanofibers due to a molecular crowding effect. Finally, we created a medium that replicates the transition pH in serum to within 0.08 pH units and allows probing self-assembly behavior using conventional spectroscopic techniques without conflicting protein signals, thus simplifying the development pathway from test tube to in vivo experimentation for stimuli-responsive materials.

  14. Interfacial and mechanical properties of self-assembling systems

    NASA Astrophysics Data System (ADS)

    Carvajal, Daniel

    Self-assembly is a fascinating phenomena where interactions between small subunits allow them to aggregate and form complex structures that can span many length scales. These self-assembled structures are especially important in biology where they are necessary for life as we know it. This dissertation is a study of three very different self-assembling systems, all of which have important connections to biology and biological systems. Drop shape analysis was used to study the interfacial assembly of amphiphilic block copolymers at the oil/water interface. When biologically functionalyzed copolymers are used, this system can serve as a model for receptor-ligand interactions that are used by cells to perform many activities, such as interact with their surroundings. The physical properties of a self-assembling membrane system were quantified using membrane inflation and swelling experiments. These types of membranes may have important applications in medicine such as drug eluting (growth factor eluting) scaffolds to aid in wound healing. The factors affecting the properties of bis(leucine) oxalamide gels were also explored. We believe that this particular system will serve as an appropriate model for biological gels that are made up of fiber-like and/or rod-like structures. During the course of the research presented in this dissertation, many new techniques were developed specifically to allow/aid the study of these distinct self-assembling systems. For example, numerical methods were used to predict drop stability for drop shape analysis experiments and the methods used to create reproducibly create self-assembling membranes were developed specifically for this purpose. The development of these new techniques is an integral part of the thesis and should aid future students who work on these projects. A number ongoing projects and interesting research directions for each one of the projects is also presented.

  15. Biomimetic Remineralization of Carious Lesions by Self-Assembling Peptide.

    PubMed

    Kind, L; Stevanovic, S; Wuttig, S; Wimberger, S; Hofer, J; Müller, B; Pieles, U

    2017-07-01

    Caries is the most common disease in the world. Great efforts have been undertaken for prevention and to identify a regenerative treatment solution for dental caries. Self-assembling β-sheet forming peptides have previously shown to form 3-dimensional fiber networks supporting tissue regeneration. In particular, the self-assembling peptide P11-4 has shown potential in the treatment and prevention of dental caries. It has previously been shown that application of monomeric P11-4 solution to early carious lesions can increase net mineral gain by forming de novo hydroxyapatite crystals. The hypothesis for the mode of action was that monomeric self-assembling peptide P11-4 diffuses into the subsurface lesion body and assembles therein into higher order fibrils, facilitating mineralization of the subsurface volume by mimicking the natural biomineralization of the tooth enamel, and it remains within the lesion body as a scaffold built-in by the newly formed hydroxyapatite. The aim of the present study was to investigate the mechanism of action of the self-assembling peptide P11-4 supporting mineralization of carious enamel. By various analytical methods, it could be shown that the self-assembling peptide P11-4 diffuses into the subsurface lesion, assembles into higher formed aggregates throughout the whole volume of the lesion, and supports nucleation of de novo hydroxyapatite nanocrystals and consequently results in increased mineral density within the subsurface carious lesion. The results showed that the application of self-assembling peptide P11-4 can facilitate the subsurface regeneration of the enamel lesion by supporting de novo mineralization in a similar mode of action as has been shown for the natural formation of dental enamel.

  16. Self-Assembled DNA Templated Nano-wires and Circuits

    NASA Astrophysics Data System (ADS)

    Braun, Erez

    2000-03-01

    The realization that conventional microelectronics is approaching its miniaturization limits has motivated the search for an alternative route based on self-assembled nanometer-scale electronics. We have recently proposed a new approach based on the hybridization of biological and electronic materials (Braun E., Eichen Y., Sivan U. and Ben-Yoseph G., Nature 391, 775 (1998)). The concept relies on a two-step self-assembly process. The inherent molecular recognition capabilities of DNA molecules are first utilized to construct a network that serves as a template for the subsequent assembly of electronic materials into a circuit. The utilization of DNA and its associated enzymatic machinery enables: (a) self-assembly of complex substrates, (b) specific molecular addresses for the localization of electronic materials (e.g., gold colloids) by standard molecular biology techniques, (c) interdevice wiring and (d) bridging the microscopic structures to the macroscopic world. The self-assembly of nanometer scale electronics relies on two complementary developments. First, the ability to convert DNA molecules into thin conductive wires and second, the self-assembly of complex extended DNA templates. Our progress in these two directions will be presented. Regarding the first issue, a physical process resulting in condensation of gold colloids onto DNA molecules enables the assembly of thin gold wires (around 100-200 A wide) having, in principle, unlimited extensions. The second issue is developed in the context of recombinant DNA which allows the self-assembly of precise molecular junctions and networks. Specifically, we use RecA protein, which is the main protein responsible for genetic recombination in E. Coli bacteria, to construct DNA junctions at pre-designed addresses (sequences) on the molecules. The integration of these processes allows advancing nanometer-scale electronics. A realistic fabrication scheme for a room-temperature single-electron transistor

  17. Structural simulations of nanomaterials self-assembled from ionic macrocycles.

    SciTech Connect

    van Swol, Frank B.; Medforth, Craig John

    2010-10-01

    Recent research at Sandia has discovered a new class of organic binary ionic solids with tunable optical, electronic, and photochemical properties. These nanomaterials, consisting of a novel class of organic binary ionic solids, are currently being developed at Sandia for applications in batteries, supercapacitors, and solar energy technologies. They are composed of self-assembled oligomeric arrays of very large anions and large cations, but their crucial internal arrangement is thus far unknown. This report describes (a) the development of a relevant model of nonconvex particles decorated with ions interacting through short-ranged Yukawa potentials, and (b) the results of initial Monte Carlo simulations of the self-assembly binary ionic solids.

  18. Self-assembled hollow nanospheres strongly enhance photoluminescence.

    PubMed

    Ke, Damei; Zhan, Chuanlang; Xu, Shuangping; Ding, Xunlei; Peng, Aidong; Sun, Jin; He, Shenggui; Li, Alexander D Q; Yao, Jiannian

    2011-07-27

    We report that two molecular building blocks differ only by two protons, yet they form totally different nanostructures. The protonated one self-organized into hollow nanospheres (~200 nm), whereas the one without the protons self-assembled into rectangular plates. Consequently, the geometrically defined nanoassemblies exhibit radically different properties. As self-assembly directing units, protons impart ion-pairing and hydrogen-bonding probabilities. The plate-forming nanosystem fluoresces weakly, probably due to energy transfer among chromophores (Φ < 0.2), but the nanospheres emit strong yellow fluorescence (Φ ≈ 0.58-0.85).

  19. Dynamic Self-assembly of Non-Brownian Spheres.

    NASA Astrophysics Data System (ADS)

    Salazar, J. Marcos; Simon, J. Marc; Ruiz-Suárez, J. Carlos; Peñuñuri, Francisco; Carvente, Osvaldo

    2017-06-01

    Granular self-assembly of confined non-Brownian spheres under gravity is studied by Molecular Dynamics simulations. Starting from a disordered phase, dry or cohesive spheres organize, by vibrational annealing into BCT or FCC structures, respectively. During the self-assembling process, isothermal and isodense points are observed. The existence of such points indicates that both granular temperature and packing fraction undergo an inversion process. Around the isothermal point, a sudden growth of beads having the maximum coordination number takes place. We show by a density fluctuation analysis that a transition form a disordered phase to a crystalline structure may be associated to a first-order transition.

  20. Self-assembly of colloidal pyramids in magnetic fields.

    PubMed

    Helseth, L E

    2005-08-02

    We study routes toward the construction of 2D colloidal pyramids. We find that magnetic beads may self-assemble into pyramids near a nonmagnetic 1D boundary as long as the number of beads in the pyramid does not exceed 10. We have also found that a strong magnetic field gradient could act as a boundary, thus assisting the self-assembly of magnetic colloids in water, and have observed the formation of stable microscopic pyramids within a certain magnetic field range. Our results indicate that colloidal pyramids can be formed in a number of ways by utilizing external fields.

  1. Scanning tunneling microscopy of self-assembled viral nanostructures

    NASA Astrophysics Data System (ADS)

    Anacleto, Benjamin; Steinsultz, Nat; Sharma, Prashant

    2010-03-01

    We use scanning tunneling microscopy to investigate self-assembled monolayers of M13 bacteriophages on graphite surface. The bacteriophages we use have gold binding peptide motifs on their outer protein coat (˜1μm long, ˜10 nm diameter) allowing us to self-assemble gold nanoparticles on graphite. Using scanning tunneling microscopy we are able to resolve sub-molecular structure of the protein coat of M13 bacteriophage. Scanning tunneling spectroscopy allows us to study the binding of gold nanoparticles to the peptide motif on the bacteriophage.

  2. Nano-engineering by optically directed self-assembly.

    SciTech Connect

    Furst, Eric; Dunn, Elissa; Park, Jin-Gyu; Brinker, C. Jeffrey; Sainis, Sunil; Merrill, Jason; Dufresne, Eric; Reichert, Matthew D.; Brotherton, Christopher M.; Bogart, Katherine Huderle Andersen; Molecke, Ryan A.; Koehler, Timothy P.; Bell, Nelson Simmons; Grillet, Anne Mary; Gorby, Allen D.; Singh, John; Lele, Pushkar; Mittal, Manish

    2009-09-01

    Lack of robust manufacturing capabilities have limited our ability to make tailored materials with useful optical and thermal properties. For example, traditional methods such as spontaneous self-assembly of spheres cannot generate the complex structures required to produce a full bandgap photonic crystals. The goal of this work was to develop and demonstrate novel methods of directed self-assembly of nanomaterials using optical and electric fields. To achieve this aim, our work employed laser tweezers, a technology that enables non-invasive optical manipulation of particles, from glass microspheres to gold nanoparticles. Laser tweezers were used to create ordered materials with either complex crystal structures or using aspherical building blocks.

  3. Designing isotropic interactions for self-assembly of complex lattices.

    PubMed

    Edlund, E; Lindgren, O; Jacobi, M Nilsson

    2011-08-19

    We present a direct method for solving the inverse problem of designing isotropic potentials that cause self-assembly into target lattices. Each potential is constructed by matching its energy spectrum to the reciprocal representation of the lattice to guarantee that the desired structure is a ground state. We use the method to self-assemble complex lattices not previously achieved with isotropic potentials, such as a snub square tiling and the kagome lattice. The latter is especially interesting because it provides the crucial geometric frustration in several proposed spin liquids. © 2011 American Physical Society

  4. Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications

    PubMed Central

    Gonçalves, Catarina; Pereira, Paula; Gama, Miguel

    2010-01-01

    Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described.

  5. Leveraging symmetry to predict self-assembly of multiple polymers

    NASA Astrophysics Data System (ADS)

    Lin, Milo M.

    2017-09-01

    Protein self-assembly is fundamental to biological function and disease. Experimentally, the atomic-level structure is difficult to obtain and the assembly mechanism is poorly understood. The large number of possible states accessible to such systems limits computational prediction. Here, I introduce a new computational approach that enforces conformational symmetry, whereby all chains in the system adopt the same conformation. Using this approach on a 2D lattice, a designed multi-chain conformation is found more than four orders of magnitude faster than existing approaches. Furthermore, the free energy landscape can be efficiently computed, showing potential for enabling atomistic prediction of protein self-assembly.

  6. DNA biosensors based on self-assembled carbon nanotubes.

    PubMed

    Wang, S G; Wang, Ruili; Sellin, P J; Zhang, Qing

    2004-12-24

    DNA biosensors based on self-assembled multi-walled carbon nanotubes (MWNTs) were described in this paper, in which the probe DNA oligonucleotides were immobilized by forming covalent amide bonds between carboxyl groups at the nanotubes and amino groups at the ends of the DNA oligonucleotides. Hybridization between the probe and target DNA oligonucleotides was confirmed by the changes in the voltammetric peak of the indicator of methylene blue. Our results demonstrate that the DNA biosensors based on self-assembled MWNTs had a higher hybridization efficiency compared to those based on random MWNTs. In addition, the developed DNA biosensors also had a high selectivity of hybridization detection.

  7. Thermally triggered self-assembly of folded proteins into vesicles.

    PubMed

    Park, Won Min; Champion, Julie A

    2014-12-31

    We report thermally triggered self-assembly of folded proteins into vesicles that incorporates globular proteins as building blocks. Leucine zipper coiled coils were combined with either globular proteins or elastin-like polypeptides as recombinant fusion proteins, which form "rod-coil" and "globule-rod-coil" protein complex amphiphiles. In aqueous solution, they self-assembled into hollow vesicles via temperature-responsive inverse phase transition. The characteristic of the protein vesicle membranes enables preferential encapsulation of simultaneously formed protein coacervate. Furthermore, the type of encapsulated cargo extends to small molecules and nanoparticles. Our approach offers a versatile strategy to create protein vesicles as vehicles with biological functionality.

  8. Self-assembly patterning of organic molecules on a surface

    DOEpatents

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  9. Backfilled, self-assembled monolayers and methods of making same

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Addleman, R Shane [Benton City, WA; Aardahl, Christopher L [Sequim, WA; Zheng, Feng [Richland, WA; Busche, Brad [Raleigh, NC; Egorov, Oleg B [West Richland, WA

    2009-06-30

    Backfilled, self-assembled monolayers and methods of making the same are disclosed. The self-assembled monolayer comprises at least one functional organosilane species and a substantially random dispersion of at least one backfilling organosilane species among the functional organosilane species, wherein the functional and backfilling organosilane species have been sequentially deposited on a substrate. The method comprises depositing sequentially a first organosilane species followed by a backfilling organosilane species, and employing a relaxation agent before or during deposition of the backfilling organosilane species, wherein the first and backfilling organosilane species are substantially randomly dispersed on a substrate.

  10. Bio-inspired photoresponse of porphyrin-attached gold nanoparticles on a field-effect transistor.

    PubMed

    Miyachi, Mariko; Yamanoi, Yoshinori; Nakazato, Kazuo; Nishihara, Hiroshi

    2014-09-01

    A bio-inspired photoresponse was engineered in porphyrin-attached Au nanoparticles (AuNPs) on a field-effect transistor (FET). The system mimics photosynthetic electron transfer, using porphyrin derivatives as photosensitizers and AuNPs as photoelectron counting devices. Porphyrin-protected AuNPs were immobilized onto the gate of an FET via the formation of self-assembled monolayers. Photoinduced electron transfer from the porphyrin led to single electron transfer at the Au nanoparticles, which was monitored via a changing gate voltage on the FET in the presence of organic electrolyte. The further attachment of other functional molecules to this system should enable various other potential functionalities. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Self-assembly from milli- to nanoscales: methods and applications

    PubMed Central

    Mastrangeli, M; Abbasi, S; Varel, C; Van Hoof, C; Celis, J-P; Böhringer, K F

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. PMID:20209016

  12. Sequential programmable self-assembly: Role of cooperative interactions

    SciTech Connect

    Jonathan D. Halverson; Tkachenko, Alexei V.

    2016-03-04

    Here, we propose a general strategy of “sequential programmable self-assembly” that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenient platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call “DNA spider,” that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a “GEOMAG” magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.

  13. Theoretical Modelling of Self-Assembly of Molecular Networks

    NASA Astrophysics Data System (ADS)

    Mura, Manuela; Martsinovich, Natalia; Kantorovich, Lev

    2008-03-01

    The phenomenon of self-assembly of atomic and molecular superstructures on crystal surfaces has attracted an increasing interest in nanotechnology. Self-organised nano-templates where the self-assembled monolayer traps other molecules with selected functional properties, can be used as building blocks for larger nanoscale structures. These superstructures can form chiral domains ranging from 1D chains to 2D monolayers. In particular, there have been many scanning tunneling microscopy (STM)studies of self-assembly of melamine, perylene tetra-carboxylic di-imide(PTCDI) or perylene tetra-carboxylic di-anhydride (PTCDA) molecules on the Au(111). STM images of these networks do not reveal the exact details of the intermolecular bonding and process of network growth. It is therefore the task of theory to determine the exact atomic structure of these networks. We present a theoretical study of self-assembly of molecular networks based on different molecules by using a systematic approach to build molecular superstructures. The energies of these structures are calculated using the density-functional theory SIESTA code. The theoretically predicted monolayer structures are in very good agreement with the results of STM measurements.

  14. Self-assembling biomolecular catalysts for hydrogen production

    NASA Astrophysics Data System (ADS)

    Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor

    2016-02-01

    The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

  15. Entropy-driven self-assembly of dimers

    NASA Astrophysics Data System (ADS)

    Nakamura, Issei; Shi, An-Chang

    2008-03-01

    Supramolecular self-assembly is an important phenomenon with applications ranging from chemical synthesis to biological systems. Although the driving force of assembly is the weak non-covalent intermolecular interaction such as hydrogen bonding and dispersion force, the self-assembly is a result from balancing the enthalpic and entropic contributions. In general, the disassembled/disordered phase is expected as temperature is raised because of the entropic gain from the components of the aggregate. However, it has been observed that the self-assembled/ordered phase can be promoted with increasing temperature. This implies that the self-assembly is driven by entropy. In order to provide a better understanding of this entropy-driven transition, we have studied a statistical mechanical model for the aggregation of macromolecular dimers immersed in solvents. The model demonstrates that solvent molecules absorbed on the surface of the solute are released with increasing temperature, leading to an increase of the total entropy of the system. Consequently, the cooperative stability of the dimeric state is induced. The thermodynamic features of this transition are analyzed.

  16. Soft self-assembled nanoparticles with temperature-dependent properties

    NASA Astrophysics Data System (ADS)

    Rovigatti, Lorenzo; Capone, Barbara; Likos, Christos N.

    2016-02-01

    The fabrication of versatile building blocks that reliably self-assemble into desired ordered and disordered phases is amongst the hottest topics in contemporary materials science. To this end, microscopic units of varying complexity, aimed at assembling the target phases, have been thought, designed, investigated and built. Such a path usually requires laborious fabrication techniques, especially when specific functionalisation of the building blocks is required. Telechelic star polymers, i.e., star polymers made of a number of f di-block copolymers consisting of solvophobic and solvophilic monomers grafted on a central anchoring point, spontaneously self-assemble into soft patchy particles featuring attractive spots (patches) on the surface. Here we show that the tunability of such a system can be widely extended by controlling the physical and chemical parameters of the solution. Indeed, under fixed external conditions the self-assembly behaviour depends only on the number of arms and on the ratio of solvophobic to solvophilic monomers. However, changes in temperature and/or solvent quality make it possible to reliably change the number and size of the attractive patches. This allows the steering of the mesoscopic self-assembly behaviour without modifying the microscopic constituents. Interestingly, we also demonstrate that diverse combinations of the parameters can generate stars with the same number of patches but different radial and angular stiffness. This mechanism could provide a neat way of further fine-tuning the elastic properties of the supramolecular network without changing its topology.

  17. Molecular Recognition Directed Self-Assembly of Supramolecular Architectures

    DTIC Science & Technology

    1994-06-30

    chemistry. The ability of these supramolecular architectures to form liquid crystalline phases is determined by the shape of the self-assembled...be discussed. In the case of TMV-like supramolecular architectures a comparison between various supramolecdr (generated via H-bonding, ionic and...molecular, macromolecular and supramolecular chemistry. The ability of these supramolecular architectures to form liquid crystalline phases is determined

  18. Developmental self-assembly of a DNA tetrahedron.

    PubMed

    Sadowski, John P; Calvert, Colby R; Zhang, David Yu; Pierce, Niles A; Yin, Peng

    2014-04-22

    Kinetically controlled isothermal growth is fundamental to biological development, yet it remains challenging to rationally design molecular systems that self-assemble isothermally into complex geometries via prescribed assembly and disassembly pathways. By exploiting the programmable chemistry of base pairing, sophisticated spatial and temporal control have been demonstrated in DNA self-assembly, but largely as separate pursuits. By integrating temporal with spatial control, here we demonstrate the "developmental" self-assembly of a DNA tetrahedron, where a prescriptive molecular program orchestrates the kinetic pathways by which DNA molecules isothermally self-assemble into a well-defined three-dimensional wireframe geometry. In this reaction, nine DNA reactants initially coexist metastably, but upon catalysis by a DNA initiator molecule, navigate 24 individually characterizable intermediate states via prescribed assembly pathways, organized both in series and in parallel, to arrive at the tetrahedral final product. In contrast to previous work on dynamic DNA nanotechnology, this developmental program coordinates growth of ringed substructures into a three-dimensional wireframe superstructure, taking a step toward the goal of kinetically controlled isothermal growth of complex three-dimensional geometries.

  19. Controlled self-assembly of hydrophobic quantum dots through silanization.

    PubMed

    Yang, Ping; Ando, Masanori; Murase, Norio

    2011-09-01

    We demonstrate the formation of one-, two-, and three-dimensional nanocomposites through the self-assembly of silanized CdSe/ZnS quantum dots (QDs) by using a controlled sol-gel process. The self-assembly behavior of the QDs was created when partially hydrolyzed silicon alkoxide monomers replaced hydrophobic ligands on the QDs. We examined systematically self-assembly conditions such as solvent components and QD sizes in order to elucidate the formation mechanism of various QD nanocomposites. The QD nanocomposites were assembled in water phase or on the interface of water and oil phase in emulsions. The partially hydrolyzed silicon alkoxides act as intermolecules to assemble the QDs. The QD nanocomposites with well-defined solid or hollow spherical, fiber-like, sheet-like, and pearl-like morphologies were prepared by adjusting the experimental conditions. The high photoluminescence efficiency of the prepared QD nanocomposites suggests partially hydrolyzed silicon alkoxides reduced the surface deterioration of QDs during self-assembly. These techniques are applicable to other hydrophobic QDs for fabricating complex QD nanocomposites.

  20. pH-directed self-assembling helical peptide conformation

    USDA-ARS?s Scientific Manuscript database

    The beta-sheet and alpha-helix peptide conformation are two of the most fundamentally ordered secondary structures found in proteins and peptides. They also give rise to self-assembling motifs that form macromolecular channels and nanostructures. Through design these conformations can yield enhance...

  1. Self-Assembly of Globular Protein-Polymer Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Thomas, C. S.; Olsen, B. D.

    2011-03-01

    The self-assembly of globular protein-polymer diblock copolymers into nanostructured phases is demonstrated as an elegant and simple method for structural control in biocatalysis or bioelectronics. In order to fundamentally investigate self-assembly in these complex block copolymer systems, a red fluorescent protein was expressed in E. coli and site-specifically conjugated to a low polydispersity poly(N-isopropyl acrylamide) (PNIPAM) block using thiol-maleimide coupling to form a well-defined model globular protein-polymer diblock. Functional protein materials are obtained by solvent evaporation and solvent annealing above and below the lower critical solution temperature of PNIPAM in order to access different pathways toward self-assembly. Small angle x-ray scattering and microscopy are used to show that the diblock forms lamellar nanostructures and to explore dependence of nanostructure formation on processing conditions. Circular dichroism and UV-vis show that a large fraction of the protein remains in its folded state after conjugation, and wide angle x-ray scattering demonstrates that diblock copolymer self-assembly changes the protein packing symmetry.

  2. Nano-imaging enabled via self-assembly

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2014-01-01

    SUMMARY Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles. PMID:25506387

  3. Self-assembled domain structures: From micro- to nanoscale

    NASA Astrophysics Data System (ADS)

    Shur, Vladimir; Akhmatkhanov, Andrey; Lobov, Alexey; Turygin, Anton

    2015-06-01

    The recent achievements in studying the self-assembled evolution of micro- and nanoscale domain structures in uniaxial single crystalline ferroelectrics lithium niobate and lithium tantalate have been reviewed. The results obtained by visualization of static domain patterns and kinetics of the domain structure by different methods from common optical microscopy to more sophisticated scanning probe microscopy, scanning electron microscopy and confocal Raman microscopy, have been discussed. The kinetic approach based on various nucleation processes similar to the first-order phase transition was used for explanation of the domain structure evolution scenarios. The main mechanisms of self-assembling for nonequilibrium switching conditions caused by screening ineffectiveness including correlated nucleation, domain growth anisotropy, and domain-domain interaction have been considered. The formation of variety of self-assembled domain patterns such as fractal-type, finger and web structures, broad domain boundaries, and dendrites have been revealed at each of all five stages of domain structure evolution during polarization reversal. The possible applications of self-assembling for micro- and nanodomain engineering were reviewed briefly. The review covers mostly the results published by our research group.

  4. Self-assembling multidomain peptide fibers with aromatic cores

    USDA-ARS?s Scientific Manuscript database

    Self-assembling multidomain peptides have been shown to have desirable properties, such as the ability to form hydrogels that rapidly recover following shear-thinning and the potential to be tailored by amino acid selection to vary their elasticity and encapsulate and deliver proteins and cells. Her...

  5. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly

    PubMed Central

    Moore, Tyler G.; Garzon, Max H.; Deaton, Russell J.

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are “strong” assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly

  6. Building polyhedra by self-assembly: theory and experiment.

    PubMed

    Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind

    2014-01-01

    We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.

  7. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly.

    PubMed

    Moore, Tyler G; Garzon, Max H; Deaton, Russell J

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are "strong" assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly systems

  8. Host-Guest Chemistry in Integrated Porous Space Formed by Molecular Self-Assembly at Liquid-Solid Interfaces.

    PubMed

    Iritani, Kohei; Tahara, Kazukuni; De Feyter, Steven; Tobe, Yoshito

    2017-02-23

    Host-guest chemistry in two-dimensional (2D) space, that is, physisorbed monolayers of a single atom or a single molecular thickness on surfaces, has become a subject of intense current interest because of perspectives for various applications in molecular-scale electronics, selective sensors, and tailored catalysis. Scanning tunneling microscopy has been used as a powerful tool for the visualization of molecules in real space on a conducting substrate surface. For more than a decade, we have been investigating the self-assembly of a series of triangle-shaped phenylene-ethynylene macrocycles called dehydrobenzo[12]annulenes (DBAs). These molecules are substituted with six alkyl chains and are capable of forming hexagonal porous 2D molecular networks via van der Waals interactions between interdigitated alkyl chains at the interface of organic solvents and graphite. The dimension of the nanoporous space or nanowell formed by the self-assembly of DBAs can be controlled from 1.6 to 4.7 nm by simply changing the alkyl chain length from C6 to C20. Single molecules as well as homoclusters and heteroclusters are capable of coadsorbing within the host matrix using shape- and size-complementarity principles. Moreover, on the basis of the versatility of the DBA molecules that allows chemical modification of the alkyl chain terminals, we were able to decorate the interior space of the nanoporous networks with functional groups such as azobenzenedicarboxylic acid for photoresponsive guest adsorption/desorption or fluoroalkanes and tetraethylene glycol groups for selective guest binding by electrostatic interactions and zinc-porphyrin units for complexation with a guest by charge-transfer interactions. In this Feature Article, we describe the general aspects of molecular self-assembly at liquid/solid interfaces, followed by the formation of programmed porous molecular networks using rationally designed molecular building blocks. We focus on our own work involving host

  9. Defects in the Self-Assembly of Block Copolymers and Their Relevance for Directed Self-Assembly.

    PubMed

    Li, Weihua; Müller, Marcus

    2015-01-01

    Block copolymer self-assembly provides a platform for fabricating dense, ordered nanostructures by encoding information in the chemical architecture of multicomponent macromolecules. Depending on the volume fraction of the components and chain topology, these macromolecules form a variety of spatially periodic microphases in thermodynamic equilibrium. The kinetics of self-assembly, however, often results in initial morphologies with defects, and the subsequent ordering is protracted. Different strategies have been devised to direct the self-assembly of copolymer materials by external fields to align and perfect the self-assembled nanostructures. Understanding and controlling the thermodynamics of defects, their response to external fields, and their dynamics is important because applications in microelectronics either require extremely low defect densities or aim at generating specific defects at predetermined locations to fabricate irregular device-oriented structures for integrated circuits. In this review, we discuss defect morphologies of block copolymers in the bulk and thin films, highlighting (a) analogies to and differences from defects in other crystalline materials, (b) the stability of defects and their dynamics, and (c) the influence of external fields.

  10. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains

    NASA Astrophysics Data System (ADS)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  11. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains.

    PubMed

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  12. A Case Study of the Likes and Dislikes of DNA and RNA in Self-Assembly.

    PubMed

    Zuo, Hua; Wu, Siyu; Li, Mo; Li, Yulin; Jiang, Wen; Mao, Chengde

    2015-12-07

    Programmed self-assembly of nucleic acids (DNA and RNA) is an active research area as it promises a general approach for nanoconstruction. Whereas DNA self-assembly has been extensively studied, RNA self-assembly lags much behind. One strategy to boost RNA self-assembly is to adapt the methods of DNA self-assembly for RNA self-assembly because of the chemical and structural similarities of DNA and RNA. However, these two types of molecules are still significantly different. To enable the rational design of RNA self-assembly, a thorough examination of their likes and dislikes in programmed self-assembly is needed. The current work begins to address this task. It was found that similar, two-stranded motifs of RNA and DNA lead to similar, but clearly different nanostructures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Self-organization in coordination-driven self-assembly.

    PubMed

    Northrop, Brian H; Zheng, Yao-Rong; Chi, Ki-Whan; Stang, Peter J

    2009-10-20

    Self-assembly allows for the preparation of highly complex molecular and supramolecular systems from relatively simple starting materials. Typically, self-assembled supramolecules are constructed by combining complementary pairs of two highly symmetric molecular components, thus limiting the chances of forming unwanted side products. Combining asymmetric molecular components or multiple complementary sets of molecules in one complex mixture can produce myriad different ordered and disordered supramolecular assemblies. Alternatively, spontaneous self-organization phenomena can promote the formation of specific product(s) out of a collection of multiple possibilities. Self-organization processes are common throughout much of nature and are especially common in biological systems. Recently, researchers have studied self-organized self-assembly in purely synthetic systems. This Account describes our investigations of self-organization in the coordination-driven self-assembly of platinum(II)-based metallosupramolecules. The modularity of the coordination-driven approach to self-assembly has allowed us to systematically study a wide variety of different factors that can control the extent of supramolecular self-organization. In particular, we have evaluated the effects of the symmetry and polarity of ambidentate donor subunits, differences in geometrical parameters (e.g., the size, angularity, and dimensionality) of Pt(II)-based acceptors and organic donors, the influence of temperature and solvent, and the effects of intermolecular steric interactions and hydrophobic interactions on self-organization. Our studies have shown that the extent of self-organization in the coordination-driven self-assembly of both 2D polygons and 3D polyhedra ranges from no organization (a statistical mixture of multiple products) to amplified organization (wherein a particular product or products are favored over others) and all the way to the absolute self-organization of discrete

  14. Self-Organization in Coordination-Driven Self-Assembly

    PubMed Central

    Northrop, Brian H.; Zheng, Yao-Rong; Chi, Ki-Whan; Stang, Peter J.

    2009-01-01

    Conspectus Self-assembly allows for the preparation of highly complex molecular and supramolecular systems from relatively simple starting materials. Typically, self-assembled supramolecules are constructed by combining complementary pairs of two highly symmetric molecular components, thus limiting the chances of forming unwanted side products. Combining asymmetric molecular components or multiple complementary sets of molecules in one complex mixture can produce myriad different ordered and disordered supramolecular assemblies. Alternatively, spontaneous self-organization phenomena can promote the formation of specific product(s) out of a collection of multiple possibilities. Self-organization processes are common throughout much of nature and are especially common in biological systems. Recently, researchers have studied self-organized self-assembly in purely synthetic systems. This Account describes our investigations of self-organization in the coordination-driven self-assembly of platinum(II)-based metallosupramolecules. The modularity of the coordination-driven approach to self-assembly has allowed us to systematically study a wide variety of different factors that can control the extent of supramolecular self-organization. In particular, we have evaluated the effects of the symmetry and polarity of ambidentate donor subunits, differences in geometrical parameters (e.g. the size, angularity, and dimensionality) of Pt(II)-based acceptors and organic donors, the influence of temperature and solvent, and the effects of intermolecular steric interactions and hydrophobic interactions on self-organization. Our studies have shown that the extent of self-organization in the coordination-driven self-assembly of both 2D polygons and 3D polyhedra ranges from no organization (a statistical mixture of multiple products), to amplified organization (wherein a particular product or products are favored over others), and all the way to the absolute self-organization of

  15. Orthogonal self-assembly in folding block copolymers.

    PubMed

    Hosono, Nobuhiko; Gillissen, Martijn A J; Li, Yuanchao; Sheiko, Sergei S; Palmans, Anja R A; Meijer, E W

    2013-01-09

    We herein report the synthesis and characterization of ABA triblock copolymers that contain two complementary association motifs and fold into single-chain polymeric nanoparticles (SCPNs) via orthogonal self-assembly. The copolymers were prepared using atom-transfer radical polymerization (ATRP) and possess different pendant functional groups in the A and B blocks (alcohols in the A block and acetylenes in the B block). After postfunctionalization, the A block contains o-nitrobenzyl-protected 2-ureidopyrimidinone (UPy) moieties and the B block benzene-1,3,5-tricarboxamide (BTA) moieties. While the protected UPy groups dimerize after photoinduced deprotection of the o-nitrobenzyl group, the BTA moieties self-assemble into helical aggregates when temperature is reduced. In a two-step thermal/photoirradiation treatment under dilute conditions, the ABA block copolymer forms both BTA-based helical aggregates and UPy dimers intramolecularly. The sequential association of the two self-assembling motifs results in single-chain folding of the polymer, affording nanometer-sized particles with a compartmentalized interior. Variable-temperature NMR studies showed that the BTA and UPy self-assembly steps take place orthogonally (i.e., without mutual interference) in dilute solution. In addition, monitoring of the intramolecular self-assembly of BTA moieties into helical aggregates by circular dichroism spectroscopy showed that the stability of the aggregates is almost independent of UPy dimerization. Size-exclusion chromatography (SEC) and small-angle X-ray scattering analysis provided evidence of significant reductions in the hydrodynamic volume and radius of gyration, respectively, after photoinduced deprotection of the UPy groups; a 30-60% reduction in the size of the polymer chains was observed using SEC in CHCl(3). Molecular imaging by atomic force microscopy (AFM) corroborated significant contraction of individual polymer chains due to intramolecular association of the

  16. Predicting supramolecular self-assembly on reconstructed metal surfaces

    NASA Astrophysics Data System (ADS)

    Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi

    2014-06-01

    The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule

  17. (Metallo)porphyrins for potential materials science applications.

    PubMed

    Smykalla, Lars; Mende, Carola; Fronk, Michael; Siles, Pablo F; Hietschold, Michael; Salvan, Georgeta; Zahn, Dietrich R T; Schmidt, Oliver G; Rüffer, Tobias; Lang, Heinrich

    2017-01-01

    The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed.

  18. (Metallo)porphyrins for potential materials science applications

    PubMed Central

    Smykalla, Lars; Mende, Carola; Fronk, Michael; Siles, Pablo F; Hietschold, Michael; Salvan, Georgeta; Zahn, Dietrich R T; Schmidt, Oliver G

    2017-01-01

    The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device further, but also to benefit from advanced functionalities of deposited molecules. Furthermore, the molecules itself can be tailored to allow via their self-assembly the potential fabrication of devices with an application potential, which is still unforeseeable at this time. Herein, we review efforts to use discrete (metallo)porphyrins for the formation of (sub)monolayers by surface-confined polymerization, of monolayers formed by supramolecular recognition and of thin films formed by sublimation techniques. Selected physical properties of these systems are reported as well. The application potential of those ensembles of (metallo)porphyrins in materials science is discussed. PMID:28904840

  19. Stoichiometric Control of DNA-Grafted Colloid Self-Assembly

    NASA Astrophysics Data System (ADS)

    Vo, Thi; Venkatasubramanian, Venkat; Kumar, Sanat; Srinivasan, Babji; Pal, Suchetan; Zhang, Yugang; Gang, Oleg

    There have been recent surges of interest in understanding the self-assembly of DNA-grafted colloids into different crystallographic lattices, namely CsCl, AlB2, Cr3Si, and Cs6C60. Conventional approaches view the number of grafted linkers and effective size of each colloid as the major governing design parameters. It is generally assumed that the mixed stoichiometries need to match those defined by the target structures in order to obtain the desired lattice. Thus, contributions from stoichiometry are considered secondary and its exact effects on lattice formation remains an open question. Theoretical extensions to the popular complementary contact model show that the equilibrium lattice structure can be tuned through direct control of stoichiometry. Our results are also validated through experimental observations of the equilibrium crystal morphologies at differing stoichiometric ratios. These findings strongly suggest that stoichiometry is a new handle that can be used to control DNA-grafted colloidal self-assembly.

  20. Self-assembling enzymes and the origins of the cytoskeleton.

    PubMed

    Barry, Rachael M; Gitai, Zemer

    2011-12-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal roles. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Chemical optimization of self-assembled carbon nanotube transistors.

    PubMed

    Auvray, Stéphane; Derycke, Vincent; Goffman, Marcelo; Filoramo, Arianna; Jost, Oliver; Bourgoin, Jean-Philippe

    2005-03-01

    We present the improvement of carbon nanotube field effects transistors (CNTFETs) performances by chemical tuning of the nanotube/substrate and nanotube/electrode interfaces. Our work is based on a method of selective placement of individual single walled carbon nanotubes (SWNTs) by patterned aminosilane monolayer and its use for the fabrication of self-assembled nanotube transistors. This method brings a relevant solution to the problem of systematic connection of self-organized nanotubes. The aminosilane monolayer reactivity can be used to improve carrier injection and doping level of the SWNT. We show that the Schottky barrier height at the nanotube/metal interface can be diminished in a continuous fashion down to an almost ohmic contact through these chemical treatments. Moreover, sensitivity to 20 ppb of triethylamine is demonstrated for self-assembled CNTFETs, thus opening new prospects for gas sensors taking advantages of the chemical functionality of the aminosilane used for assembling the CNTFETs.

  2. Self-assembly of hyperbranched polymers and its biomedical applications.

    PubMed

    Zhou, Yongfeng; Huang, Wei; Liu, Jinyao; Zhu, Xinyuan; Yan, Deyue

    2010-11-02

    Hyperbranched polymers (HBPs) are highly branched macromolecules with a three-dimensional dendritic architecture. Due to their unique topological structure and interesting physical/chemical properties, HBPs have attracted wide attention from both academia and industry. In this paper, the recent developments in HBP self-assembly and their biomedical applications have been comprehensively reviewed. Many delicate supramolecular structures from zero-dimension (0D) to three-dimension (3D), such as micelles, fibers, tubes, vesicles, membranes, large compound vesicles and physical gels, have been prepared through the solution or interfacial self-assembly of amphiphilic HBPs. In addition, these supramolecular structures have shown promising applications in the biomedical areas including drug delivery, protein purification/detection/delivery, gene transfection, antibacterial/antifouling materials and cytomimetic chemistry. Such developments promote the interdiscipline researches among surpramolecular chemistry, biomedical chemistry, nano-technology and functional materials.

  3. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  4. Self-assembled potential bio nanocarriers for drug delivery.

    PubMed

    Akter, Nasima; Radiman, Shahidan; Mohamed, Faizal; Reza, Mohammad Imam Hasan

    2013-07-01

    Self-assembled nanocarriers attract increasing attention due to their wide application in various practical fields; among them, one of the most focused fields is drug delivery. Appropriate selection of surfactant is the basis for preparing a successful nanocarrier. Until now, from phospholipid to synthetic surfactants, many surfactants have been used to explore a suitable drug delivery vehicle for the complex in-vivo environment. Among all, bio surfactants are found to be more suitable due to their bio-origin, less-toxicity, biodegradability, cheaper rate and above all, their versatile molecular structures. This molecular property enables them to self assemble into fascinating structures. Moreover, binding DNA, enhancing pH sensitivity and stability allows novelty over their synthetic counterparts and phospholipid. This review paper focuses on the properties and applications of bio-nano-carriers for drug delivery. Micelle, microemulsion, and vesicle are the three nanocarriers which are discussed herein.

  5. Biomolecular decision-making process for self assembly.

    SciTech Connect

    Osbourn, Gordon Cecil

    2005-01-01

    The brain is often identified with decision-making processes in the biological world. In fact, single cells, single macromolecules (proteins) and populations of molecules also make simple decisions. These decision processes are essential to survival and to the biological self-assembly and self-repair processes that we seek to emulate. How do these tiny systems make effective decisions? How do they make decisions in concert with a cooperative network of other molecules or cells? How can we emulate the decision-making behaviors of small-scale biological systems to program and self-assemble microsystems? This LDRD supported research to answer these questions. Our work included modeling and simulation of protein populations to help us understand, mimic, and categorize molecular decision-making mechanisms that nonequilibrium systems can exhibit. This work is an early step towards mimicking such nanoscale and microscale biomolecular decision-making processes in inorganic systems.

  6. Protein-directed self-assembly of a fullerene crystal

    NASA Astrophysics Data System (ADS)

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B.; Acharya, Rudresh; Degrado, William F.; Kim, Yong Ho; Grigoryan, Gevorg

    2016-04-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.

  7. Protein-directed self-assembly of a fullerene crystal.

    PubMed

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B; Acharya, Rudresh; DeGrado, William F; Kim, Yong Ho; Grigoryan, Gevorg

    2016-04-26

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.

  8. DNA Self-assembly and Computer System Fabrication

    NASA Astrophysics Data System (ADS)

    Dwyer, Chris

    2006-11-01

    The migration of circuit fabrication technology from the microscale to the nanoscale has generated a great deal of interest in how the fundamental physical limitations of materials will change the way computer systems are engineered. The changing relationships between performance, defects, and cost have motivated research into so-called disruptive or exotic technologies and draws inspiration from systems found in biology. Advances in DNA self-assembly have demonstrated versatile and programmable methods for the synthesis of complex nanostructures suitable for logic circuitry. Several recent advances in programmable DNA self-assembly and the theory and design of DNA nanostructures for computing will be presented. The advantages of this technology go beyond the simple scaling of device feature sizes (sub-20nm) to enable new modes of computation that are otherwise impractical with conventional technologies. A brief survey of several computer architectures that take advantage of this new technology will also be presented.

  9. Self-assembly of amorphous calcium carbonate microlens arrays.

    PubMed

    Lee, Kyubock; Wagermaier, Wolfgang; Masic, Admir; Kommareddy, Krishna P; Bennet, Mathieu; Manjubala, Inderchand; Lee, Seung-Woo; Park, Seung B; Cölfen, Helmut; Fratzl, Peter

    2012-03-06

    Biological materials are often based on simple constituents and grown by the principle of self-assembly under ambient conditions. In particular, biomineralization approaches exploit efficient pathways of inorganic material synthesis. There is still a large gap between the complexity of natural systems and the practical utilization of bioinspired formation mechanisms. Here we describe a simple self-assembly route leading to a CaCO(3) microlens array, somewhat reminiscent of the brittlestars' microlenses, with uniform size and focal length, by using a minimum number of components and equipment at ambient conditions. The formation mechanism of the amorphous CaCO(3) microlens arrays was elucidated by confocal Raman spectroscopic imaging to be a two-step growth process mediated by the organic surfactant. CaCO(3) microlens arrays are easy to fabricate, biocompatible and functional in amorphous or more stable crystalline forms. This shows that advanced optical materials can be generated by a simple mineral precipitation.

  10. Self assembled nanoparticle aggregates from line focused femtosecond laser ablation.

    PubMed

    Zuhlke, Craig A; Alexander, Dennis R; Bruce, John C; Ianno, Natale J; Kamler, Chad A; Yang, Weiqing

    2010-03-01

    In this paper we present the use of a line focused femtosecond laser beam that is rastered across a 2024 T3 aluminum surface to produce nanoparticles that self assemble into 5-60 micron diameter domed and in some cases sphere-shaped aggregate structures. Each time the laser is rastered over initial aggregates their diameter increases as new layers of nanoparticles self assemble on the surface. The aggregates are thus composed of layers of particles forming discrete layered shells inside of them. When micron size aggregates are removed, using an ultrasonic bath, rings are revealed that have been permanently formed in the sample surface. These rings appear underneath, and extend beyond the physical boundary of the aggregates. The surface is blackened by the formation of these structures and exhibits high light absorption.

  11. Self-assembled Chiral Nanostructure as Scaffold for Asymmetric Reaction.

    PubMed

    Jiang, Jian; Ouyang, Guanghui; Zhang, Li; Liu, Minghua

    2017-03-25

    Asymmetric reaction is one of the most important reactions in organic synthesis. While large amount of efficient molecular catalysts have been developed and applied, supramolecular and nanostructured catalysts have been attracting recent interest. In this mini review, we focused on the self-assembled chiral nanostructures and reviewed their possibility and feasibility as the enantioselective catalyst. The design concept and the requirement of the chiral scaffold as the catalysts are discussed. Based on the chirality and catalytic performance of the building molecules and the supramolecular nanostructures, the nanocatalyst is divided into chiral nanostructure driven (CND) and chiral nanostructure enhanced (CNE) enantioselective catalysts. Then, several typical self-assembled chiral nanostructures such as nanocage, nanotube, nanorod, micelles and vesicles are selected as the chiral scaffold and their catalytic behaviors for the asymmetric reactions were demonstrated. Finally, the future development of the field is also outlooked.

  12. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    PubMed

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  13. Thermomechanical Response of Self-Assembled Nanoparticle Membranes.

    PubMed

    Wang, Yifan; Chan, Henry; Narayanan, Badri; McBride, Sean P; Sankaranarayanan, Subramanian K R S; Lin, Xiao-Min; Jaeger, Heinrich M

    2017-08-22

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiments and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating-cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self-assembly process and can be controlled by changing the ligand coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.

  14. Self-assembly of double helical nanostructures inside carbon nanotubes.

    PubMed

    Lv, Cheng; Xue, Qingzhong; Shan, Meixia; Jing, Nuannuan; Ling, Cuicui; Zhou, Xiaoyan; Jiao, Zhiyong; Xing, Wei; Yan, Zifeng

    2013-05-21

    We use molecular dynamics (MD) simulations to show that a DNA-like double helix of two poly(acetylene) (PA) chains can form inside single-walled carbon nanotubes (SWNTs). The computational results indicate that SWNTs can activate and guide the self-assembly of polymer chains, allowing them to adopt a helical configuration in a SWNT through the combined action of the van der Waals potential well and the π-π stacking interaction between the polymer and the inner surface of SWNTs. Meanwhile both the SWNT size and polymer chain stiffness determine the outcome of the nanostructure. Furthermore, we also found that water clusters encourage the self-assembly of PA helical structures in the tube. This molecular model may lead to a better understanding of the formation of a double helix biological molecule inside SWNTs. Alternatively, it could form the basis of a novel nanoscale material by utilizing the 'empty' spaces of SWNTs.

  15. Self-assembly of nanomaterials at fluid interfaces.

    PubMed

    Toor, Anju; Feng, Tao; Russell, Thomas P

    2016-05-01

    Recent developments in the field of the self-assembly of nanoscale materials such as nanoparticles, nanorods and nanosheets at liquid/liquid interfaces are reviewed. Self-assembly behavior of both biological and synthetic particles is discussed. For biological nanoparticles, the nanoparticle assembly at fluid interfaces provides a simple route for directing nanoparticles into 2D or 3D constructs with hierarchical ordering. The interfacial assembly of single-walled carbon nanotubes (SWCNTs) at liquid interfaces would play a key role in applications such as nanotube fractionation, flexible electronic thin-film fabrication and synthesis of porous SWCNT/polymer composites foams. Liquids can be structured by the jamming of nanoparticle surfactants at fluid interfaces. By controlling the interfacial packing of nanoparticle surfactants using external triggers, a new class of materials can be generated that combines the desirable characteristics of fluids such as rapid transport of energy carriers with the structural stability of a solid.

  16. Design of Self-Assembling Protein-Polymer Conjugates.

    PubMed

    Carter, Nathan A; Geng, Xi; Grove, Tijana Z

    Protein-polymer conjugates are of particular interest for nanobiotechnology applications because of the various and complementary roles that each component may play in composite hybrid-materials. This chapter focuses on the design principles and applications of self-assembling protein-polymer conjugate materials. We address the general design methodology, from both synthetic and genetic perspective, conjugation strategies, protein vs. polymer driven self-assembly and finally, emerging applications for conjugate materials. By marrying proteins and polymers into conjugated bio-hybrid materials, materials scientists, chemists, and biologists alike, have at their fingertips a vast toolkit for material design. These inherently hierarchical structures give rise to useful patterning, mechanical and transport properties that may help realize new, more efficient materials for energy generation, catalysis, nanorobots, etc.

  17. Self-assembly of flagellin on Au(111) surfaces.

    PubMed

    González Orive, Alejandro; Pissinis, Diego E; Diaz, Carolina; Miñán, Alejandro; Benítez, Guillermo A; Rubert, Aldo; Daza Millone, Antonieta; Rumbo, Martin; Hernández Creus, Alberto; Salvarezza, Roberto C; Schilardi, Patricia L

    2014-11-01

    The adsorption of flagellin monomers from Pseudomonas fluorescens on Au(111) has been studied by Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), X-ray Photoelectron Spectroscopy (XPS), Surface Plasmon Resonance (SPR), and electrochemical techniques. Results show that flagellin monomers spontaneously self-assemble forming a monolayer thick protein film bounded to the Au surface by the more hydrophobic subunit and exposed to the environment the hydrophilic subunit. The films are conductive and allow allocation of electrochemically active cytochrome C. The self-assembled films could be used as biological platforms to build 3D complex molecular structures on planar metal surfaces and to functionalize metal nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Stable doping of carbon nanotubes via molecular self assembly

    SciTech Connect

    Lee, B.; Chen, Y.; Podzorov, V.; Cook, A.; Zakhidov, A.

    2014-10-14

    We report a novel method for stable doping of carbon nanotubes (CNT) based on methods of molecular self assembly. A conformal growth of a self-assembled monolayer of fluoroalkyl trichloro-silane (FTS) at CNT surfaces results in a strong increase of the sheet conductivity of CNT electrodes by 60–300%, depending on the CNT chirality and composition. The charge carrier mobility of undoped partially aligned CNT films was independently estimated in a field-effect transistor geometry (~100 cm²V⁻¹s⁻¹). The hole density induced by the FTS monolayer in CNT sheets is estimated to be ~1.8 ×10¹⁴cm⁻². We also show that FTS doping of CNT anodes greatly improves the performance of organic solar cells. This large and stable doping effect, easily achieved in large-area samples, makes this approach very attractive for applications of CNTs in transparent and flexible electronics.

  19. Sequential self-assembly of DNA functionalized droplets

    DOE PAGES

    Zhang, Yin; McMullen, Angus; Pontani, Lea-Laetitia; ...

    2017-06-16

    Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Though biology relies on such schemes, they have not been available in materials science. We demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activatesmore » the next droplet in the sequence, akin to living polymerization. This strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.« less

  20. Self-assembling enzymes and the origins of the cytoskeleton

    PubMed Central

    Barry, Rachael; Gitai, Zemer

    2011-01-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508

  1. Self-assembled architectures from biohybrid triblock copolymers.

    PubMed

    Reynhout, Irene C; Cornelissen, Jeroen J L M; Nolte, Roeland J M

    2007-02-28

    The synthesis and self-assembly behavior of biohybrid ABC triblock copolymers consisting of a synthetic diblock, polystyrene-b-polyethylene glycol (PSm-b-PEG113), where m is varied, and a hemeprotein, myoglobin (Mb) or horse radish peroxidase (HRP), is described. The synthetic diblock copolymer is first functionalized with the heme cofactor and subsequently reconstituted with the apoprotein or the apoenzyme to yield the protein-containing ABC triblock copolymer. The obtained amphiphilic block copolymers self-assemble in aqueous solution into a large variety of aggregate structures. Depending on the protein and the polystyrene block length, micellar rods, vesicles, toroids, figure eight structures, octopus structures, and spheres with a lamellar surface are formed.

  2. Self-assembled photonic crystals for a chemical sensing

    NASA Astrophysics Data System (ADS)

    Bourdillon, C.; Gam Derouich, S.; Daney de Marcillac, W.; Coolen, L.; Maître, A.; Mangeney, C.; Schwob, C.

    2016-03-01

    As they allow the control of light propagation, photonic crystals find many fields of application. Among them, self-assembled 3D-photonic crystals are ordered at the nanometric scale over centrimetric areas. Furthermore, self-assembly allows the design of complexes structures leading, for example, to the controlled disruption of the crystal periodicity (called defect) and the appearance of permitted optical frequency bands within the photonic bandgap. Light frequencies included in the corresponding passband are then localized in the defect allowing manipulation of nano-emitters fluorescence. We present the fabrication and the optical characterization of a heterostructure composed of a sputtered silica layer sandwiched between two silica opals. We show by photoluminescence measurements than this structure strongly modifies the transmitted fluorescence of nanocrystals.

  3. Self-reproduction of nanoparticles through synergistic self-assembly.

    PubMed

    Ikeda, Keisuke; Nakano, Minoru

    2015-01-01

    We describe a self-reproduction mechanism of nanometer-sized particles (i.e., nanodiscs) through chemical ligation of the precursors and self-assembly of the building blocks. The ligation reaction was accelerated on lipid bilayer surfaces, and the products spontaneously assembled into nanodiscs with lipid molecules. With the increase in the number of nanodiscs, a rapid proliferation of the nanodiscs occurred through the spatial rearrangements of the molecules between the pre-existing nanodiscs and the unreacted materials, rather than template- or complex-enhanced ligation of the precursors. The subsequent process of surface-enhanced ligation of integrated precursors matured the nanoparticles into identical copies of the pre-existing assembly. Our study showed that the synergistic self-assembly mechanism probably underlie the self-replication principles for heterogeneous multimolecular systems.

  4. Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules

    PubMed Central

    Parker, Richard M; Zhang, Jing; Zheng, Yu; Coulston, Roger J; Smith, Clive A; Salmon, Andrew R; Yu, Ziyi; Scherman, Oren A; Abell, Chris

    2015-01-01

    Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules—where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core–shell microcapsules, gives access to a new generation of innovative self-assembled constructs. PMID:26213532

  5. Supramolecular ssDNA templated porphyrin and metalloporphyrin nanoassemblies with tunable helicity.

    PubMed

    Sargsyan, Gevorg; Leonard, Brian M; Kubelka, Jan; Balaz, Milan

    2014-02-10

    Free-base and nickel porphyrin-diaminopurine conjugates were formed by hydrogen-bond directed assembly on single-stranded oligothymidine templates of different lengths into helical multiporphyrin nanoassemblies with highly modular structural and chiroptical properties. Large red-shifts of the Soret band in the UV/Vis spectroscopy confirmed strong electronic coupling among assembled porphyrin-diaminopurine units. Slow annealing rates yielded preferentially right-handed nanostructures, whereas fast annealing yielded left-handed nanostructures. Time-dependent DFT simulations of UV/Vis and CD spectra for model porphyrin clusters templated on the canonical B-DNA and its enantiomeric form, were employed to confirm the origin of observed chiroptical properties and to assign the helicity of porphyrin nanoassemblies. Molar CD and CD anisotropy g factors of dialyzed templated porphyrin nanoassemblies showed very high chiroptical anisotropy. The DNA-templated porphyrin nanoassemblies displayed high thermal and pH stability. The structure and handedness of all assemblies was preserved at temperatures up to +85 °C and pH between 3 and 12. High-resolution transition electron microscopy confirmed formation of DNA-templated nickel(II) porphyrin nanoassemblies and their self-assembly into helical fibrils with micrometer lengths.

  6. Porphyrin-based Nanostructure-Dependent Photodynamic and Photothermal Therapies

    NASA Astrophysics Data System (ADS)

    Jin, Cheng S.

    This thesis presents the investigation of nanostructure-dependent phototherapy. We reviewed the liposomal structures for delivery of photosensitizers, and introduced a novel class of phototransducing liposomes called "porphysomes". Porphysomes are self-assembled from high packing density of pyropheophorbide alpha-conjugated phospholipids, resulting in extreme self-quenching of porphyrin fluorescence and comparable optical absorption to gold nanoparticles for high photothermal efficiency. We demonstrated this self-assembly of porphyrin-lipid conjugates converts a singlet oxygen generating mechanism (photodynamic therapy PDT activity) of porphyrin to photothermal mechanism (photothermal therapy PTT activity). The efficacy of porphysome-enhanced PTT was then evaluated on two pre-clinical animal models. We validated porphysome-enabled focal PTT to treat orthotopic prostate cancer using MRI-guided focal laser placement to closely mimic the current clinic procedure. Furthermore, porphysome-enabled fluorescence-guided transbronchial PTT of lung cancer was demonstrated in rabbit orthotopic lung cancer models, which led to the development of an ultra-minimally invasive therapy for early-stage peripheral lung cancer. On the other hand, the nanostructure-mediated conversion of PDT to PTT can be switched back by nanoparticle dissociation. By incorporating folate-conjugated phospholipids into the formulation, porphysomes were internalized into cells rapidly via folate receptor-mediated endocytosis and resulted in efficient disruption of nanostructures, which turned back on the photodynamic activity of densely packed porphyrins, making a closed loop of conversion between PDT and PTT. The multimodal imaging and therapeutic features of porphysome make it ideal for future personalized cancer treatments.

  7. Sequential programmable self-assembly: Role of cooperative interactions

    DOE PAGES

    Jonathan D. Halverson; Tkachenko, Alexei V.

    2016-03-04

    Here, we propose a general strategy of “sequential programmable self-assembly” that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenientmore » platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call “DNA spider,” that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a “GEOMAG” magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.« less

  8. Self-Assembling Protein Materials for Metal Nanoparticle Templation

    DTIC Science & Technology

    2015-05-01

    form nanoporous , durable frameworks upon which cells can be conditioned to grow.8,99,100 The remarkable feature of synthetic protein materials is... Materials for Metal Nanoparticle Templation The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued...Polytechnic Institute of New York University Brooklyn, NY 11201 -3840 ABSTRACT Self-assembling Protein Materials for Metal Nanoparticle Templation Report Title

  9. Molecular Recognition Directed Self-Assembly of Supramolecular Polymers

    DTIC Science & Technology

    1994-06-30

    SUPRAMOLECULAR POLYMERS by V. Percec, J. Heck, G. Johansson, D. Tomazos, M. Kawasumi and G. Ungar Published in the J. Macromol. SOi: Part A: Pure...W.asetaqIom OC JOS0l 4 TITE AN SUBITLES. FUNDING NUMBERS Molecular Recognition Directed Self-Assembly of Suprainolecular Polymers N00014-89--J-1828 6. AUTHOR(S...comparison between various supramolecular (generated via H-bonding, iions) and molecular " polymer backbones" will be made. The present limitations

  10. Colloids with magnetic patches: synthesis and self-assembly

    NASA Astrophysics Data System (ADS)

    Sacanna, Stefano; Rossi, Laura; Irvine, William; Pine, David

    2011-03-01

    We developed a new class of colloidal particles that programmably and reversibly self-assemble into well-defined clusters by virtue of ``magnetic patches'' carrying a permanent magnetic dipole moment. The resulting clusters form spontaneously in a zero external field, and their geometry is entirely determined by the interplay between magnetic, steric, and electrostatic interactions. Imposing an external magnetic field enables the clusters to unbind or change their geometry allowing, in principle, to create materials with tunable structural arrangements.

  11. New Metal-organic Polymers Through Subcomponent Self-Assembly

    DTIC Science & Technology

    2012-07-27

    EW REPORT DOCUMENTATION PAGE b. ABSTRACT UU c . THIS PAGE UU 2. REPORT TYPE Final Report 17. LIMITATION OF ABSTRACT UU 15. NUMBER OF PAGES 5d...assemble to express a desired function. This approach is detailed in the attached late draft manuscript, soon to be submitted to J . Am. Chem. Soc... Clegg , Jonathan R. Nitschke, Wenjing Meng. Transformative Binding and Release of Gold Guests from a Self-Assembled Cu8L4 Tube, Angewandte Chemie

  12. Lighting up cells with lanthanide self-assembled helicates

    PubMed Central

    Bünzli, Jean-Claude G.

    2013-01-01

    Lanthanide bioprobes and bioconjugates are ideal luminescent stains in view of their low propensity to photobleaching, sharp emission lines and long excited state lifetimes permitting time-resolved detection for enhanced sensitivity. We show here how the interplay between physical, chemical and biochemical properties allied to microfluidics engineering leads to self-assembled dinuclear lanthanide luminescent probes illuminating live cells and selectively detecting biomarkers expressed by cancerous human breast cells. PMID:24511387

  13. A self-assembled cyclodextrin nanocarrier for photoreactive squaraine

    PubMed Central

    Kauscher, Ulrike

    2016-01-01

    Photoreactive squaraines produce cytotoxic oxygen species under irradiation and have significant potential for photodynamic therapy. Herein we report that squaraines can be immobilized on a self-assembled nanocarrier composed of amphiphilic cyclodextrins to enhance their photochemical activity. To this end, a squaraine was equipped with two adamantane moieties that act as anchors for the cyclodextrin vesicle surface. The supramolecular immobilization was monitored by using fluorescence spectroscopy and microscopy and the photochemistry of the squaraine was investigated by using absorption spectroscopy. PMID:28144322

  14. Propagating waves of self-assembly in organosilane monolayers

    PubMed Central

    Douglas, Jack F.; Efimenko, Kirill; Fischer, Daniel A.; Phelan, Fredrick R.; Genzer, Jan

    2007-01-01

    Wavefronts associated with reaction–diffusion and self-assembly processes are ubiquitous in the natural world. For example, propagating fronts arise in crystallization and diverse other thermodynamic ordering processes, in polymerization fronts involved in cell movement and division, as well as in the competitive social interactions and population dynamics of animals at much larger scales. Although it is often claimed that self-sustaining or autocatalytic front propagation is well described by mean-field “reaction–diffusion” or “phase field” ordering models, it has recently become appreciated from simulations and theoretical arguments that fluctuation effects in lower spatial dimensions can lead to appreciable deviations from the classical mean-field theory (MFT) of this type of front propagation. The present work explores these fluctuation effects in a real physical system. In particular, we consider a high-resolution near-edge x-ray absorption fine structure spectroscopy (NEXAFS) study of the spontaneous frontal self-assembly of organosilane (OS) molecules into self-assembled monolayer (SAM) surface-energy gradients on oxidized silicon wafers. We find that these layers organize from the wafer edge as propagating wavefronts having well defined velocities. In accordance with two-dimensional simulations of this type of front propagation that take fluctuation effects into account, we find that the interfacial widths w(t) of these SAM self-assembly fronts exhibit a power-law broadening in time, w(t) ≈ tβ, rather than the constant width predicted by MFT. Moreover, the observed exponent values accord rather well with previous simulation and theoretical estimates. These observations have significant implications for diverse types of ordering fronts that occur under confinement conditions in biological or materials-processing contexts. PMID:17566108

  15. Rational molecular design of complementary self-assembling peptide hydrogels.

    PubMed

    Kyle, Stuart; Felton, Susan H; McPherson, Michael J; Aggeli, Amalia; Ingham, Eileen

    2012-09-01

    Rational molecular design of self- assembling peptide-based materials that spontaneously form self-supporting hydrogels shows potential in many healthcare applications. Binary peptides based on complementary charged sequences are developed, and the use of biophysical analysis and cell-based studies highlights that the charged interactions can influence the properties of peptide materials and ultimately affect biomaterial applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene.

    PubMed

    Xia, Guanglin; Tan, Yingbin; Chen, Xiaowei; Sun, Dalin; Guo, Zaiping; Liu, Huakun; Ouyang, Liuzhang; Zhu, Min; Yu, Xuebin

    2015-10-21

    Monodisperse MgH2 nanoparticles with homogeneous distribution and a high loading percent are developed through hydrogenation-induced self-assembly under the structure-directing role of graphene. Graphene acts not only as a structural support, but also as a space barrier to prevent the growth of MgH2 nanoparticles and as a thermally conductive pathway, leading to outstanding performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Self-assembled containers based on extended tetrathiafulvalene.

    PubMed

    Bivaud, Sébastien; Goeb, Sébastien; Croué, Vincent; Dron, Paul I; Allain, Magali; Sallé, Marc

    2013-07-10

    Two original self-assembled containers constituted each by six electroactive subunits are described. They are synthesized from a concave tetratopic π-extended tetrathiafulvalene ligand bearing four pyridyl units and cis-M(dppf)(OTf)2 (M = Pd or Pt; dppf = 1,1'-bis(diphenylphosphino)ferrocene; OTf = trifluoromethane-sulfonate) complexes. Both fully characterized assemblies present an oblate spheroidal cavity that can incorporate one perylene molecule.

  18. Cyclic peptide-polymer complexes and their self-assembly.

    PubMed

    Bélanger, Dominique; Tong, Xia; Soumaré, Sadia; Dory, Yves L; Zhao, Yue

    2009-01-01

    The efficient synthesis of novel chiral cyclic peptides cyclo[NHCHX-CH=CHCH(2)CO(NHCH(2)CH=CHCH(2)CO)(2)] designed to develop hydrogen-bonding interactions with suitable polymers is described. Complexation of a carboxylic acid derivatized cyclic peptide 2 (X = CH(2)OCOCH(2)CH(2)CO(2)H) capable of self-assembling as "endless" tubes, with poly(vinyl alcohol) (PVA) led to a vast weak-interaction network, in which the cyclopeptide developed extensive hydrogen-bonding interactions with the hydroxyl groups of PVA through not only the carboxylic acid, but also its ester carbonyl and amide groups. In aqueous solution, the peptide/PVA complexes self-assemble into long-grain ricelike aggregates compatible with the stacking of cyclic peptides through intercycle hydrogen bonds. Upon casting on silicon wafer, the anisotropic aggregates can coalesce to form filaments tens of micrometers long. The study demonstrates that complexing functionalized cyclic peptides with polymers through hydrogen bonding is a useful approach for using polymers to mediate the self-assembly and self-organization of cyclic peptides.

  19. Materials self-assembly and fabrication in confined spaces

    SciTech Connect

    Ramanathan, Nathan Muruganathan; Kilbey, II, S Michael; Ji, Dr. Qingmin; Hill, Dr. Jonathan P; Ariga, Katsuhiko

    2012-01-01

    Molecular assemblies have been mainly researched in open spaces for long time. However, recent researches have revealed that there are many interesting aspects remained in self-assemblies in confined spaces. Molecular association within nanospaces such as mesoporous materials provide unusual phenomena based on highly restricted molecular motions. Current research endeavors in materials science and technology are focused on developing either new class of materials or materials with novel/multiple functionalities which is often achived via molecular assembly in confined spaces. Template synthesis and guided assemblies are distinguishable examples for molecular assembly in confined spaces. So far, different aspects of molecular confinements are discussed separately. In this review, the focus is specifically to bring some potential developments in various aspects of confined spaces for molecular self-assembly under one roof. We arrange the sections in this review based on the nature of the confinements; accordingly the topological/geometrical confinements, chemical and biological confinements, and confinements within thin film, respectively. Following these sections, molecular confinements for practical applications are shortly described in order to show connections of these scientific aspects with possible practical uses. One of the most important facts is that the self-assembly in confined spaces stands at meeting points of top-down and bottom-up fabrications, which would be an ultimate key to push the limits of nanotechnology and nanoscience.

  20. Molecular pathways for defect annihilation in directed self-assembly.

    DOE PAGES

    Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; ...

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energymore » barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.« less

  1. Highly conductive self-assembled nanoribbons of coordination polymers.

    PubMed

    Welte, Lorena; Calzolari, Arrigo; Di Felice, Rosa; Zamora, Felix; Gómez-Herrero, Julio

    2010-02-01

    Organic molecules can self-assemble into well-ordered structures, but the conductance of these structures is limited, which is a disadvantage for applications in molecular electronics. Conductivity can be improved by using coordination polymers-in which metal centres are incorporated into a molecular backbone-and such structures have been used as molecular wires by self-assembling them into ordered films on metal surfaces. Here, we report electrically conductive nanoribbons of the coordination polymer [Pt(2)I(S(2)CCH(3))(4)](n) self-assembled on an insulating substrate by direct sublimation of polymer crystals. Conductance atomic force microscopy is used to probe the electrical characteristics of a few polymer chains ( approximately 10) within the nanoribbons. The observed currents exceed those previously sustained in organic and metal-organic molecules assembled on surfaces by several orders of magnitude and over much longer distances. These results, and the results of theoretical calculations based on density functional theory, confirm coordination polymers as candidate materials for applications in molecular electronics.

  2. Model-driven optimization of multicomponent self-assembly processes.

    PubMed

    Korevaar, Peter A; Grenier, Christophe; Markvoort, Albert J; Schenning, Albertus P H J; de Greef, Tom F A; Meijer, E W

    2013-10-22

    Here, we report an engineering approach toward multicomponent self-assembly processes by developing a methodology to circumvent spurious, metastable assemblies. The formation of metastable aggregates often hampers self-assembly of molecular building blocks into the desired nanostructures. Strategies are explored to master the pathway complexity and avoid off-pathway aggregates by optimizing the rate of assembly along the correct pathway. We study as a model system the coassembly of two monomers, the R- and S-chiral enantiomers of a π-conjugated oligo(p-phenylene vinylene) derivative. Coassembly kinetics are analyzed by developing a kinetic model, which reveals the initial assembly of metastable structures buffering free monomers and thereby slows the formation of thermodynamically stable assemblies. These metastable assemblies exert greater influence on the thermodynamically favored self-assembly pathway if the ratio between both monomers approaches 1:1, in agreement with experimental results. Moreover, competition by metastable assemblies is highly temperature dependent and hampers the assembly of equilibrium nanostructures most effectively at intermediate temperatures. We demonstrate that the rate of the assembly process may be optimized by tuning the cooling rate. Finally, it is shown by simulation that increasing the driving force for assembly stepwise by changing the solvent composition may circumvent metastable pathways and thereby force the assembly process directly into the correct pathway.

  3. Simulation Methods for Self-Assembled Polymers and Rings

    NASA Astrophysics Data System (ADS)

    Kindt, James T.

    2003-11-01

    New off-lattice grand canonical Monte Carlo simulation methods have been developed and used to model the equilibrium structure and phase diagrams of equilibrium polymers and rings. A scheme called Polydisperse Insertion, Removal, and Resizing (PDIRR) is used to accelerate the equilibration of the size distribution of self-assembled aggregates. This method allows the insertion or removal of aggregates (e.g., chains) containing an arbitrary number of monomers in a single Monte Carlo move, or the re-sizing of an existing aggregate. For the equilibrium polymer model under semi-dilute conditions, a several-fold increase in equilibration rate compared with single-monomer moves is observed, facilitating the study of the isotropic-nematic transition of semiflexible, self-assembled chains. Combined with the pivot-coupled GCMC method for ring simulation, the PDIRR approach also allows the phenomenological simulation of a polydisperse equilibrium phase of rings, 2-dimensional fluid domains, or flat self-assembled disks in three dimensions.

  4. Controlling RNA self-assembly to form filaments.

    PubMed

    Nasalean, Lorena; Baudrey, Stéphanie; Leontis, Neocles B; Jaeger, Luc

    2006-01-01

    Fundamental control over supra-molecular self-assembly for organization of matter on the nano-scale is a major objective of nanoscience and nanotechnology. 'RNA tectonics' is the design of modular RNA units, called tectoRNAs, that can be programmed to self-assemble into novel nano- and meso-scopic architectures of desired size and shape. We report the three-dimensional design of tectoRNAs incorporating modular 4-way junction (4WJ) motifs, hairpin loops and their cognate loop-receptors to create extended, programmable interaction interfaces. Specific and directional RNA-RNA interactions at these interfaces enable conformational, topological and orientational control of tectoRNA self-assembly. The interacting motifs are precisely positioned within the helical arms of the 4WJ to program assembly from only one helical stacking conformation of the 4WJ. TectoRNAs programmed to assemble with orientational compensation produce micrometer-scale RNA filaments through supra-molecular equilibrium polymerization. As visualized by transmission electron microscopy, these RNA filaments resemble actin filaments from the protein world. This work emphasizes the potential of RNA as a scaffold for designing and engineering new controllable biomaterials mimicking modern cytoskeletal proteins.

  5. Self-assembly in sugar-oil complex glasses.

    PubMed

    Dave, Hiteshkumar; Gao, Feng; Lee, Jing-Huei; Liberatore, Matthew; Ho, Chia-Chi; Co, Carlos C

    2007-04-01

    In aqueous systems, the hydrophobic effect drives the self-assembly of amphiphiles into a broad range of micellar, rod-like, bicontinuous and liquid-crystalline complex fluids. Many of these are relevant to biological matter or technological applications. However, amphiphilic self-assembly is not limited to aqueous systems. Replacement of water with supercritical carbon dioxide, for example, results in complex fluids that combine the properties of gases and liquids. Along this vein, we explore the self-assembly of surfactants in anhydrous sugars. Our study reveals that anhydrous powders of sugars and surfactants suspended in oil spontaneously form molten glasses with nanometre-size domains of sugar and liquid oil without mixing. The low cost, water solubility, low toxicity and stabilizing properties of glassy sugars make them ideal water replacements for many pharmaceutical, food and materials synthesis applications. The optical clarity and solid appearance of these glasses at room temperature belie their inclusion of more than 50% (vol.) oil, which confers liquid-like diffusivity. The unique combination of solid- and liquid-like properties may lead to applications in sensors and optical devices.

  6. Molecular pathways for defect annihilation in directed self-assembly.

    SciTech Connect

    Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; Khaira, Gurdaman S.; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Muller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.

  7. Giant capsids from lattice self-assembly of cyclodextrin complexes

    NASA Astrophysics Data System (ADS)

    Yang, Shenyu; Yan, Yun; Huang, Jianbin; Petukhov, Andrei V.; Kroon-Batenburg, Loes M. J.; Drechsler, Markus; Zhou, Chengcheng; Tu, Mei; Granick, Steve; Jiang, Lingxiang

    2017-06-01

    Proteins can readily assemble into rigid, crystalline and functional structures such as viral capsids and bacterial compartments. Despite ongoing advances, it is still a fundamental challenge to design and synthesize protein-mimetic molecules to form crystalline structures. Here we report the lattice self-assembly of cyclodextrin complexes into a variety of capsid-like structures such as lamellae, helical tubes and hollow rhombic dodecahedra. The dodecahedral morphology has not hitherto been observed in self-assembly systems. The tubes can spontaneously encapsulate colloidal particles and liposomes. The dodecahedra and tubes are respectively comparable to and much larger than the largest known virus. In particular, the resemblance to protein assemblies is not limited to morphology but extends to structural rigidity and crystallinity--a well-defined, 2D rhombic lattice of molecular arrangement is strikingly universal for all the observed structures. We propose a simple design rule for the current lattice self-assembly, potentially opening doors for new protein-mimetic materials.

  8. Molecular Motions in Functional Self-Assembled Nanostructures

    PubMed Central

    Dhotel, Alexandre; Chen, Ziguang; Delbreilh, Laurent; Youssef, Boulos; Saiter, Jean-Marc; Tan, Li

    2013-01-01

    The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted. PMID:23348927

  9. Algorithmic Self-Assembly of DNA Sierpinski Triangles

    PubMed Central

    Rothemund, Paul W. K; Papadakis, Nick

    2004-01-01

    Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern—a Sierpinski triangle—as it grows. To achieve this, abstract tiles were translated into DNA tiles based on double-crossover motifs. Serving as input for the computation, long single-stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. For both of two independent molecular realizations, atomic force microscopy revealed recognizable Sierpinski triangles containing 100–200 correct tiles. Error rates during assembly appear to range from 1% to 10%. Although imperfect, the growth of Sierpinski triangles demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata. This shows that engineered DNA self-assembly can be treated as a Turing-universal biomolecular system, capable of implementing any desired algorithm for computation or construction tasks. PMID:15583715

  10. Molecular pathways for defect annihilation in directed self-assembly

    PubMed Central

    Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Müller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-01-01

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales—a handful of nanometers—and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail. PMID:26515095

  11. Molecular pathways for defect annihilation in directed self-assembly.

    PubMed

    Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A; Li, Weihua; Müller, Marcus; Nealey, Paul F; de Pablo, Juan J

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm(2). In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales-a handful of nanometers-and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.

  12. Dynamic self-assembly and control of microfluidic particle crystals.

    PubMed

    Lee, Wonhee; Amini, Hamed; Stone, Howard A; Di Carlo, Dino

    2010-12-28

    Engineered two-phase microfluidic systems have recently shown promise for computation, encryption, and biological processing. For many of these systems, complex control of dispersed-phase frequency and switching is enabled by nonlinearities associated with interfacial stresses. Introducing nonlinearity associated with fluid inertia has recently been identified as an easy to implement strategy to control two-phase (solid-liquid) microscale flows. By taking advantage of inertial effects we demonstrate controllable self-assembling particle systems, uncover dynamics suggesting a unique mechanism of dynamic self-assembly, and establish a framework for engineering microfluidic structures with the possibility of spatial frequency filtering. Focusing on the dynamics of the particle-particle interactions reveals a mechanism for the dynamic self-assembly process; inertial lift forces and a parabolic flow field act together to stabilize interparticle spacings that otherwise would diverge to infinity due to viscous disturbance flows. The interplay of the repulsive viscous interaction and inertial lift also allow us to design and implement microfluidic structures that irreversibly change interparticle spacing, similar to a low-pass filter. Although often not considered at the microscale, nonlinearity due to inertia can provide a platform for high-throughput passive control of particle positions in all directions, which will be useful for applications in flow cytometry, tissue engineering, and metamaterial synthesis.

  13. Nanostructures formed by cyclodextrin covered aminobenzophenones through supramolecular self assembly

    NASA Astrophysics Data System (ADS)

    Rajendiran, N.; Sankaranarayanan, R. K.; Saravanan, J.

    2014-06-01

    Cyclodextrin (α and β) based nanostructures formed with 2-aminobenzophenone, 3-aminobenzophenone through the supramolecular self assembly are studied by absorption, fluorescence, time-resolved fluorescence, SEM, TEM, FT-IR, DSC, PXRD and 1H NMR. The unequal layer by layer nanosheets and nanoribbons are formed through self assembly of 3ABP/CD inclusion complexes. 2ABP/α-CD complex nanostructures show the self assembly hierarchical thread structure and β-CD complexes displays a nanobrick structure. The formation of nanostructures are prearranged to Hsbnd O⋯H, NH2⋯O and H2N⋯H intermolecular hydrogen bond between individual complexes. The absorption and fluorescence spectral changes explicit formation of 1:1 inclusion complexes and solvent study demonstrate the ESIPT and TICT present in both molecules. The thermodynamic parameters (ΔH, ΔG and ΔS) of 2ABP and 3ABP molecule and the inclusion complexes were determined from semiempirical PM3 calculations.

  14. Evolutionary dynamics in a simple model of self-assembly

    NASA Astrophysics Data System (ADS)

    Johnston, Iain G.; Ahnert, Sebastian E.; Doye, Jonathan P. K.; Louis, Ard A.

    2011-06-01

    We investigate the evolutionary dynamics of an idealized model for the robust self-assembly of two-dimensional structures called polyominoes. The model includes rules that encode interactions between sets of square tiles that drive the self-assembly process. The relationship between the model’s rule set and its resulting self-assembled structure can be viewed as a genotype-phenotype map and incorporated into a genetic algorithm. The rule sets evolve under selection for specified target structures. The corresponding complex fitness landscape generates rich evolutionary dynamics as a function of parameters such as the population size, search space size, mutation rate, and method of recombination. Furthermore, these systems are simple enough that in some cases the associated model genome space can be completely characterized, shedding light on how the evolutionary dynamics depends on the detailed structure of the fitness landscape. Finally, we apply the model to study the emergence of the preference for dihedral over cyclic symmetry observed for homomeric protein tetramers.

  15. Model-driven optimization of multicomponent self-assembly processes

    PubMed Central

    Korevaar, Peter A.; Grenier, Christophe; Markvoort, Albert J.; Schenning, Albertus P. H. J.; de Greef, Tom F. A.; Meijer, E. W.

    2013-01-01

    Here, we report an engineering approach toward multicomponent self-assembly processes by developing a methodology to circumvent spurious, metastable assemblies. The formation of metastable aggregates often hampers self-assembly of molecular building blocks into the desired nanostructures. Strategies are explored to master the pathway complexity and avoid off-pathway aggregates by optimizing the rate of assembly along the correct pathway. We study as a model system the coassembly of two monomers, the R- and S-chiral enantiomers of a π-conjugated oligo(p-phenylene vinylene) derivative. Coassembly kinetics are analyzed by developing a kinetic model, which reveals the initial assembly of metastable structures buffering free monomers and thereby slows the formation of thermodynamically stable assemblies. These metastable assemblies exert greater influence on the thermodynamically favored self-assembly pathway if the ratio between both monomers approaches 1:1, in agreement with experimental results. Moreover, competition by metastable assemblies is highly temperature dependent and hampers the assembly of equilibrium nanostructures most effectively at intermediate temperatures. We demonstrate that the rate of the assembly process may be optimized by tuning the cooling rate. Finally, it is shown by simulation that increasing the driving force for assembly stepwise by changing the solvent composition may circumvent metastable pathways and thereby force the assembly process directly into the correct pathway. PMID:24101463

  16. Multilayer block copolymer meshes by orthogonal self-assembly

    PubMed Central

    Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2016-01-01

    Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218

  17. Spectroscopic critical dimension technology (SCD) for directed self assembly

    NASA Astrophysics Data System (ADS)

    Nishibe, Senichi; Dziura, Thaddeus; Nagaswami, Venkat; Gronheid, Roel

    2014-04-01

    Directed self-assembly (DSA) is being actively investigated as a potential patterning solution for future generation devices. While SEM based CD measurement is currently used in research and development, scatterometry-based techniques like spectroscopic CD (SCD) are preferred for high volume manufacturing. SCD can offer information about sub-surface features that are not available from CD-SEM measurement. Besides, SCD is a non-destructive, high throughput technique already adopted in HVM in several advanced nodes. The directed self assembly CD measurement can be challenging because of small dimensions and extremely thin layers in the DSA stack. In this study, the SCD technology was investigated for a 14 nm resolution PS-b-PMMA chemical epitaxy UW process optimized by imec. The DSA stack involves new materials such as cross-linkable polysterene (XPS) of thickness approximately 5 nm, ArF immersion resist (subsequently removed), -OH terminated neutral brush layer, and BCP material (Polystyrene-blockmethyl methacrylate of thickness roughly 20 to 30 nm). The mask contains a large CD and pitch matrix, for studying the quality of self-assembly as a function of the guide pattern dimensions. We report on the ability of SCD to characterize the dimensional variation in these targets and hence provide a viable process control solution.

  18. Self-assembled polymer nanocomposites and their networks

    NASA Astrophysics Data System (ADS)

    Patil, Nitin Vikas

    This dissertation describes new routes to synthesize polymer nanocomposite networks via self-assembly. Polymerizable structure directing agents (referred to as surfmers) obtained by end-group functionalization preserves the structure-directing capabilities of the surfactant for templating ordered mesoporous silica particle growth, while simultaneously generating a reactive matrix for polymer network formation through reactive end groups in the presence of intimately mixed mesoporous silicates. A combination of small angle X-ray scattering, surface area, and microscopy experiments on mesoporous silica indicated the structure directing capabilities of surfmers. Free-radical polymerization of the surfmer leads to novel crosslinked nanocomposites networks. Multiple experiments, including gel permeation chromatography, swelling, and solid state NMR experiments on polymer nanocomposites gave evidence of the polymerization of surfmer leading to formation of crosslink networks. Polymer nanocomposites with varied silica content were prepared. Effects of silica content on polymer nanocomposites were studied on rheometer. Results obtained from rheological experiments indicate that the storage (G') and loss modulus (G") increases with increase in the content of mesoporous silica. In this way, the nanocomposites networks obtained via self-assembly shows independent behavior with respect to frequency in rheological experiments. Additionally, this self-assembled route was extended to synthesize biodegradable and biocompatible polymer nanocomposites networks. The nanocomposite networks obtained with 15% of silica content showed the increase in storage modulus by two orders of magnitude in rheological experiments.

  19. Controlling RNA self-assembly to form filaments

    PubMed Central

    Nasalean, Lorena; Baudrey, Stéphanie; Leontis, Neocles B.; Jaeger, Luc

    2006-01-01

    Fundamental control over supra-molecular self-assembly for organization of matter on the nano-scale is a major objective of nanoscience and nanotechnology. ‘RNA tectonics’ is the design of modular RNA units, called tectoRNAs, that can be programmed to self-assemble into novel nano- and meso-scopic architectures of desired size and shape. We report the three-dimensional design of tectoRNAs incorporating modular 4-way junction (4WJ) motifs, hairpin loops and their cognate loop–receptors to create extended, programmable interaction interfaces. Specific and directional RNA–RNA interactions at these interfaces enable conformational, topological and orientational control of tectoRNA self-assembly. The interacting motifs are precisely positioned within the helical arms of the 4WJ to program assembly from only one helical stacking conformation of the 4WJ. TectoRNAs programmed to assemble with orientational compensation produce micrometer-scale RNA filaments through supra-molecular equilibrium polymerization. As visualized by transmission electron microscopy, these RNA filaments resemble actin filaments from the protein world. This work emphasizes the potential of RNA as a scaffold for designing and engineering new controllable biomaterials mimicking modern cytoskeletal proteins. PMID:16522648

  20. Molecular recognition directed self-assembly of supramolecular architectures

    NASA Astrophysics Data System (ADS)

    Percec, C.; Heck, J.; Johansson, G.; Tomazos, D.; Kawasumi, M.

    1994-06-01

    This paper reviews some of our research on three classes of supramolecular architectures which are generated via various combinations of molecular, macromolecular and supramolecular chemistry. The ability of these supramolecular architectures to form liquid crystalline phases is determined by the shape of the self-assembled architecture and will be used to visualize it via various characterization techniques. The molecular design of selected examples of structural units containing taper shaped exo-receptors and crown-ether, oligooxyethylenic, and H-bonding based endo-receptors which self-assemble into cylindrical channel-like architectures via principles resembling those of tobacco mosaic virus (TMV), of macrocyclics which self-assemble into a willow-like architecture will be discussed. In the case of TMV-like supramolecular architectures a comparison between various supramolecular (generated via H-bonding, ionic and electrostatic interactions) and molecular 'polymer backbones' will be made. The present state of the art of the engineering of these supramolecular architectures and some possible novel material functions derived from them will be briefly mentioned.

  1. Three dimensional self-assembly at the nanoscale

    NASA Astrophysics Data System (ADS)

    Gracias, D. H.

    2013-05-01

    At the nanoscale, three dimensional manipulation and assembly becomes extremely challenging and also cost prohibitive. Self-assembly provides an attractive and possibly the only highly parallel methodology to structure truly three dimensional patterned materials and devices at this size scale for applications in electronics, optics, robotics and medicine. This is a concise review along with a perspective of an important and exciting field in nanotechnology and is related to a Nanoengineering Pioneer Award that I received at this SPIE symposium for my contributions to the 3D selfassembly of nanostructures. I detail a historical account of 3D self-assembly and outline important developments in this area which is put into context with the larger research areas of 3D nanofabrication, assembly and nanomanufacturing. A focus in this review is on our work as it relates to the self-assembly with lithographically patterned units; this approach provides a means for heterogeneous integration of periodic, curved and angled nanostructures with precisely defined three dimensional patterns.

  2. Exploiting Amyloid Fibril Lamination for Nanotube Self-Assembly

    SciTech Connect

    Lu, Kun; Jacob, Jaby; Thiyagarajan, Pappannan; Conticello, Vincent P.; Lynn, David G.

    2003-05-01

    Fundamental questions about the relative arrangement of the {beta}-sheet arrays within amyloid fibrils remain central to both its structure and the mechanism of self-assembly. Recent computational analyses suggested that sheet-to-sheet lamination was limited by the length of the strand. On the basis of this hypothesis, a short seven-residue segment of the Alzheimer's disease-related A{beta} peptide, A{beta}(16-22), was allowed to self-assemble under conditions that maintained the basic amphiphilic character of A{beta}. Indeed, the number increased over 20-fold to 130 laminates, giving homogeneous bilayer structures that supercoil into long robust nanotubes. Small-angle neutron scattering and X-ray scattering defined the outer and inner radii of the nanotubes in solution to contain a 44-nm inner cavity with 4-nm-thick walls. Atomic force microscopy and transmission electron microscopy images further confirmed these homogeneous arrays of solvent-filled nanotubes arising from a flat rectangular bilayer, 130 nm wide x 4 nm thick, with each bilayer leaflet composed of laminated {beta}-sheets. The corresponding backbone H-bonds are along the long axis, and {beta}-sheet lamination defines the 130-nm bilayer width. This bilayer coils to give the final nanotube. Such robust and persistent self-assembling nanotubes with positively charged surfaces of very different inner and outer curvature now offer a unique, robust, and easily accessible scaffold for nanotechnology.

  3. Equilibrium self-assembly of small RNA viruses

    NASA Astrophysics Data System (ADS)

    Bruinsma, R. F.; Comas-Garcia, M.; Garmann, R. F.; Grosberg, A. Y.

    2016-03-01

    We propose a description for the quasiequilibrium self-assembly of small, single-stranded (ss) RNA viruses whose capsid proteins (CPs) have flexible, positively charged, disordered tails that associate with the negatively charged RNA genome molecules. We describe the assembly of such viruses as the interplay between two coupled phase-transition-like events: the formation of the protein shell (the capsid) by CPs and the condensation of a large ss viral RNA molecule. Electrostatic repulsion between the CPs competes with attractive hydrophobic interactions and attractive interaction between neutralized RNA segments mediated by the tail groups. An assembly diagram is derived in terms of the strength of attractive interactions between CPs and between CPs and the RNA molecules. It is compared with the results of recent studies of viral assembly. We demonstrate that the conventional theory of self-assembly, which does describe the assembly of empty capsids, is in general not applicable to the self-assembly of RNA-encapsidating virions.

  4. Epitaxial photostriction-magnetostriction coupled self-assembled nanostructures.

    PubMed

    Liu, Heng-Jui; Chen, Long-Yi; He, Qing; Liang, Chen-Wei; Chen, Yu-Ze; Chien, Yung-Shun; Hsieh, Ying-Hui; Lin, Su-Jien; Arenholz, Elke; Luo, Chih-Wei; Chueh, Yu-Lun; Chen, Yi-Chun; Chu, Ying-Hao

    2012-08-28

    Self-assembled vertical nanostructures take advantage of high interface-to-volume ratio and can be used to design new functionalities by the choice of a proper combination of constituents. However, most of the studies to date have emphasized the functional controllability of the nanostructures using external electric or magnetic fields. In this study, to introduce light (or photons) as an external control parameter in a self-assembled nanostructure system, we have successfully synthesized oxide nanostructures with CoFe(2)O(4) nanopillars embedded in a SrRuO(3) matrix. The combination of photostrictive SrRuO(3) and magnetostrictive CoFe(2)O(4) in the intimately assembled nanostructures leads to a light-induced, ultrafast change in magnetization of the CoFe(2)O(4) nanopillars. Our work demonstrates a novel concept on oxide nanostructure design and opens an alternative pathway for the explorations of diverse functionalities in heteroepitaxial self-assembled oxide nanostructures.

  5. Self-assembly in sugar-oil complex glasses

    NASA Astrophysics Data System (ADS)

    Dave, Hiteshkumar; Gao, Feng; Lee, Jing-Huei; Liberatore, Matthew; Ho, Chia-Chi; Co, Carlos C.

    2007-04-01

    In aqueous systems, the hydrophobic effect drives the self-assembly of amphiphiles into a broad range of micellar, rod-like, bicontinuous and liquid-crystalline complex fluids. Many of these are relevant to biological matter or technological applications. However, amphiphilic self-assembly is not limited to aqueous systems. Replacement of water with supercritical carbon dioxide, for example, results in complex fluids that combine the properties of gases and liquids. Along this vein, we explore the self-assembly of surfactants in anhydrous sugars. Our study reveals that anhydrous powders of sugars and surfactants suspended in oil spontaneously form molten glasses with nanometre-size domains of sugar and liquid oil without mixing. The low cost, water solubility, low toxicity and stabilizing properties of glassy sugars make them ideal water replacements for many pharmaceutical, food and materials synthesis applications. The optical clarity and solid appearance of these glasses at room temperature belie their inclusion of more than 50% (vol.) oil, which confers liquid-like diffusivity. The unique combination of solid- and liquid-like properties may lead to applications in sensors and optical devices.

  6. Self-assembly of lipopolysaccharide layers on allantoin crystals.

    PubMed

    Vagenende, Vincent; Ching, Tim-Jang; Chua, Rui-Jing; Jiang, Qiu Zhen; Gagnon, Pete

    2014-08-01

    Self-assembly of lipopolysaccharides (LPS) on solid surfaces is important for the study of bacterial membranes, but has not been possible due to technical difficulties and the lack of suitable solid supports. Recently we found that crystals of the natural compound allantoin selectively bind pure LPS with sub-nanomolar affinity. The physicochemical origins of this selectivity and the adsorption mode of LPS on allantoin crystals remain, however, unknown. In this study we present evidence that LPS adsorption on allantoin crystals is initiated through hydrogen-bond attachment of hydrophilic LPS regions. Hydrophobic interactions between alkyl chains of adjacently adsorbed LPS molecules subsequently promote self-assembly of LPS layers. The essential role of hydrogen-bond interactions is corroborated by our finding that allantoin crystals bind to practically any hydrophilic surface chemistry. Binding contributions of hydrophobic interactions between LPS alkyl chains are evidenced by the endothermic nature of the adsorption process and explain why the binding affinity for LPS is several orders of magnitude higher than for proteins (lysozyme, BSA and IgG) and polysaccharides. Self-assembly of LPS layers via hydrogen-bond attachment on allantoin crystals emerges as a novel binding mechanism and could be considered as a practical method for preparing biomimetic membranes on a solid support. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Probabilistic inverse design for self-assembling materials

    NASA Astrophysics Data System (ADS)

    Jadrich, R. B.; Lindquist, B. A.; Truskett, T. M.

    2017-05-01

    One emerging approach for the fabrication of complex architectures on the nanoscale is to utilize particles customized to intrinsically self-assemble into a desired structure. Inverse methods of statistical mechanics have proven particularly effective for the discovery of interparticle interactions suitable for this aim. Here we evaluate the generality and robustness of a recently introduced inverse design strategy [B. A. Lindquist et al., J. Chem. Phys. 145, 111101 (2016)] by applying this simulation-based machine learning method to optimize for interparticle interactions that self-assemble particles into a variety of complex microstructures as follows: cluster fluids, porous mesophases, and crystalline lattices. Using the method, we discover isotropic pair interactions that lead to the self-assembly of each of the desired morphologies, including several types of potentials that were not previously understood to be capable of stabilizing such systems. One such pair potential led to the assembly of the highly asymmetric truncated trihexagonal lattice and another produced a fluid containing spherical voids, or pores, of designed size via purely repulsive interactions. Through these examples, we demonstrate several advantages inherent to this particular design approach including the use of a parametrized functional form for the optimized interparticle interactions, the ability to constrain the range of said parameters, and compatibility of the inverse design strategy with a variety of simulation protocols (e.g., positional restraints).

  8. Capillary-based static self-assembly in higher organisms

    PubMed Central

    Voise, Jonathan; Schindler, Michael; Casas, Jérôme; Raphaël, Elie

    2011-01-01

    Organized structures produced by dynamic self-assembly are often observed in animal groups. Static self-assembly, however, has to date only been observed at the cellular and sub-cellular levels. The aim of this study was to analyse organized structures in immobile whirligig beetle groups on the water surface. We used theoretical and computational approaches to model the meniscus around whirligig beetles and to calculate the surface energy for configurations involving two beetles. Theoretical predictions were then tested using live insects and resin casts. Observations were also made for three and more casts. The meniscus of whirligig beetles had a bipolar shape with two concave parts. For two beetles, predicted configurations based on energy minima corresponded to beetles in contact by their extremities, forming lines and arrows, and agreed well with observations. Experimental results for three and more beetle casts revealed new geometrical arrangements similar to those obtained with colloids at interfaces. This study provides the first example of static self-assembly at the inter-organism level and shows the importance of capillary interactions in such formations. We identify the ecological context in which our findings are of relevance. PMID:21367777

  9. Nanoparticle-directed self-assembly of amphiphilic block copolymers.

    PubMed

    Kamps, Amanda C; Sanchez-Gaytan, Brenda L; Hickey, Robert J; Clarke, Nigel; Fryd, Michael; Park, So-Jung

    2010-09-07

    Nanoparticles can form unique cavity-like structures in core-shell type assemblies of block copolymers through the cooperative self-assembly of nanoparticles and block copolymers. We show that the self-assembly behavior is general for common as-synthesized alkyl-terminated nanoparticles for a range of nanoparticle sizes. We examined various self-assembly conditions such as solvent compositions, nanoparticle coordinating ligands, volume fraction of nanoparticles, and nanoparticle sizes in order to elucidate the mechanism of the radial assembly formation. These experiments along with strong segregation theory calculations indicated that both the enthalpic interaction and the polymer stretching energy are important factors in the coassembly formation. The slightly unfavorable interaction between the hydrophobic segment of polymers and alkyl-terminated nanoparticles causes the accumulation of nanoparticles at the interface between the polymer core and the shell, forming the unique cavity-like structure. The coassemblies were stabilized for a limited range of nanoparticle volume fractions within which the inclusion of nanoparticle layers reduces the polymer stretching. The volume fraction range yielding the well-defined radial coassembly structure was mapped out with varying nanoparticle sizes. The experimental and theoretical phase map provides the guideline for the coassembly formation of as-synthesized alkyl-terminated nanoparticles and amphiphilic block copolymers.

  10. Dynamic self-assembly and control of microfluidic particle crystals

    PubMed Central

    Lee, Wonhee; Amini, Hamed; Stone, Howard A.; Di Carlo, Dino

    2010-01-01

    Engineered two-phase microfluidic systems have recently shown promise for computation, encryption, and biological processing. For many of these systems, complex control of dispersed-phase frequency and switching is enabled by nonlinearities associated with interfacial stresses. Introducing nonlinearity associated with fluid inertia has recently been identified as an easy to implement strategy to control two-phase (solid-liquid) microscale flows. By taking advantage of inertial effects we demonstrate controllable self-assembling particle systems, uncover dynamics suggesting a unique mechanism of dynamic self-assembly, and establish a framework for engineering microfluidic structures with the possibility of spatial frequency filtering. Focusing on the dynamics of the particle–particle interactions reveals a mechanism for the dynamic self-assembly process; inertial lift forces and a parabolic flow field act together to stabilize interparticle spacings that otherwise would diverge to infinity due to viscous disturbance flows. The interplay of the repulsive viscous interaction and inertial lift also allow us to design and implement microfluidic structures that irreversibly change interparticle spacing, similar to a low-pass filter. Although often not considered at the microscale, nonlinearity due to inertia can provide a platform for high-throughput passive control of particle positions in all directions, which will be useful for applications in flow cytometry, tissue engineering, and metamaterial synthesis. PMID:21149674

  11. Self-assembled amyloid fibrils with controllable conformational heterogeneity

    NASA Astrophysics Data System (ADS)

    Lee, Gyudo; Lee, Wonseok; Lee, Hyungbeen; Lee, Chang Young; Eom, Kilho; Kwon, Taeyun

    2015-11-01

    Amyloid fibrils are a hallmark of neurodegenerative diseases and exhibit a conformational diversity that governs their pathological functions. Despite recent findings concerning the pathological role of their conformational diversity, the way in which the heterogeneous conformations of amyloid fibrils can be formed has remained elusive. Here, we show that microwave-assisted chemistry affects the self-assembly process of amyloid fibril formation, which results in their conformational heterogeneity. In particular, microwave-assisted chemistry allows for delicate control of the thermodynamics of the self-assembly process, which enabled us to tune the molecular structure of β-lactoglobulin amyloid fibrils. The heterogeneous conformations of amyloid fibrils, which can be tuned with microwave-assisted chemistry, are attributed to the microwave-driven thermal energy affecting the electrostatic interaction during the self-assembly process. Our study demonstrates how microwave-assisted chemistry can be used to gain insight into the origin of conformational heterogeneity of amyloid fibrils as well as the design principles showing how the molecular structures of amyloid fibrils can be controlled.

  12. Polymer adsorption-driven self-assembly of nanostructures.

    PubMed

    Chakraborty, A K; Golumbfskie, A J

    2001-01-01

    Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context.

  13. Towards biologically active self-assemblies: model nucleotide chimeras.

    PubMed

    Vebert-Nardin, Corinne

    2011-01-01

    With this article, we wish to give an overview of our main research activities assessing the potential of a suitable polymer modification of DNA fragments to self-assemble biologically active nanostructures. Specifically, the grafting of a hydrophobic polymer segment on DNA fragments results in amphiphilic nucleotide-based macromolecules, which, owing to both chemical and physical incompatibility, organize in self-assembled structures either on surfaces or in aqueous solution. Through the combination of the existing know-how in polymer chemistry with modern analytical techniques, we are currently focusing on establishing the mechanism of self-assembly of the polymer-modified nucleotide sequences in solution and on surfaces prior to the assessment of their hybridization capacity once involved in the ensemble. With the evaluation of the potential of the functional nanostructures to undergo biological-like adhesion through hybridization one can eventually foresee that the optimal functionality of these bio-inspired systems could be fine-tuned for biological applications such as drug delivery, gene therapy, tissue engineering and the design of either biomedical devices or biosensors.

  14. Engineering hierarchical nanostructures by elastocapillary self-assembly.

    PubMed

    De Volder, Michaël; Hart, A John

    2013-02-25

    Surfaces coated with nanoscale filaments such as silicon nanowires and carbon nanotubes are potentially compelling for high-performance battery and capacitor electrodes, photovoltaics, electrical interconnects, substrates for engineered cell growth, dry adhesives, and other smart materials. However, many of these applications require a wet environment or involve wet processing during their synthesis. The capillary forces introduced by these wet environments can lead to undesirable aggregation of nanoscale filaments, but control of capillary forces can enable manipulation of the filaments into discrete aggregates and novel hierarchical structures. Recent studies suggest that the elastocapillary self-assembly of nanofilaments can be a versatile and scalable means to build complex and robust surface architectures. To enable a wider understanding and use of elastocapillary self-assembly as a fabrication technology, we give an overview of the underlying fundamentals and classify typical implementations and surface designs for nanowires, nanotubes, and nanopillars made from a wide variety of materials. Finally, we discuss exemplary applications and future opportunities to realize new engineered surfaces by the elastocapillary self-assembly of nanofilaments.

  15. Foams stabilized by multilamellar polyglycerol ester self-assemblies.

    PubMed

    Curschellas, Corina; Kohlbrecher, Joachim; Geue, Thomas; Fischer, Peter; Schmitt, Bertrand; Rouvet, Martine; Windhab, Erich J; Limbach, Hans Jörg

    2013-01-08

    The importance of surfactant self-assemblies in foam stabilization is well-known. The aim of the current study was to investigate the self-assemblies of the nonionic surfactant polyglycerol ester (PGE) in bulk solutions, at the interface and within foams, using a combined approach of small-angle neutron scattering, neutron reflectivity, and electron microscopy. PGE bulk solutions contain vesicles as well as open lamellar structures. Upon heating of the solutions the lamellar spacing increases, with significant differences in the presence of NaCl or CaCl(2) as compared to the standard solution. The adsorption of the multilamellar structures present in the bulk solutions lead to a multilayered film at the air-water interface. The ordering within this film was increased as a result of a 20% area compression mimicking a coalescence event. Finally, PGE foams were shown to be stabilized not only by strong interfacial films but also by agglomerated self-assemblies within the interstitial areas of the foams.

  16. Self-assembly, redox activity, and charge transport of functional surface nano-architectures by molecular design

    NASA Astrophysics Data System (ADS)

    Skomski, Daniel

    Surface-assisted molecular self-assembly is a promising strategy to program the structure and chemical state of atoms and molecules in nano-architectures to achieve a specific function. The experiments described in this thesis demonstrate that the design and programming of basic organic components leads to desired characteristics by self-assembly. The fabrication of uniform single-site metal centers at surfaces, important for high selectivity in next-generation catalysts, was accomplished by coordination to redox non-innocent phenanthroline and tetrazine-based ligands. These examples were the first demonstrating tuning of the metal oxidation state in surface coordination architectures through rational ligand design. The molecular-scale coordination architectures were the first formed from chromium and vanadium, and the first from platinum in a non-porphyrin system. The first mixed valence metal-ligand surface structure was fabricated that attained the same ligand coordination number for all metal sites. A new surface reaction method was demonstrated between an inexpensive sodium chloride reagent and carboxylate ligands. High-temperature, molecular-resolution microscopy and spectroscopy of the ordered metal-organic structures demonstrated thermal stability up to 300 °C, the highest molecular-level thermal stability in organic surface nanostructures yet achieved, making such systems potential candidates for moderate-temperature catalytic reactions. Molecular self-assembly was expanded into organic semiconductor thin films. In a two-component, bi-layered system, hydrogen bonding between carboxylates and carboxylic acid-substituted thiophenes was utilized, yielding the first real-space images of phenyl-thiophene stacking. In a one-component system, multiple donor-acceptor pi-pi contacts between phenyltriazole building blocks accomplished assembly of flat-lying molecules from a surface with molecular-scale precision through more than twenty molecular layers. Sufficient

  17. Thermal stability of self-assembled peptide vaccine materials.

    PubMed

    Sun, Tao; Han, Huifang; Hudalla, Gregory A; Wen, Yi; Pompano, Rebecca R; Collier, Joel H

    2016-01-01

    The majority of current vaccines depend on a continuous "cold chain" of storage and handling between 2 and 8°C. Vaccines experiencing temperature excursions outside this range can suffer from reduced potency. This thermal sensitivity results in significant losses of vaccine material each year and risks the administration of vaccines with diminished protective ability, issues that are heightened in the developing world. Here, using peptide self-assemblies based on the fibril-forming peptide Q11 and containing the epitopes OVA323-339 from ovalbumin or ESAT651-70 from Mycobacterium tuberculosis, the chemical, conformational, and immunological stability of supramolecular peptide materials were investigated. It was expected that these materials would exhibit advantageous thermal stability owing to their adjuvant-free and fully synthetic construction. Neither chemical nor conformational changes were observed for either peptide when stored at 45°C for 7days. ESAT651-70-Q11 was strongly immunogenic whether it was stored as a dry powder or as aqueous nanofibers, showing undiminished immunogenicity even when stored as long as six months at 45°C. This result was in contrast to ESAT651-70 conjugated to a protein carrier and adjuvanted with alum, which demonstrated marked thermal sensitivity in these conditions. Antibody titers and affinities were undiminished in mice for OVA323-339-Q11 if it was stored as assembled nanofibers, yet some diminishment was observed for material stored as a dry powder. The OVA study was done in a different mouse strain and with a different prime/boost regimen, and so it should not be compared directly with the study for the ESAT epitope. This work indicates that peptide self-assemblies can possess attractive thermal stability properties in the context of vaccine development. Almost all current vaccines must be maintained within a tight and refrigerated temperature range, usually between 2 and 8°C. This presents significant challenges for their

  18. Self-Assembly of Plasmonic Nanoclusters for Optical Metauids

    NASA Astrophysics Data System (ADS)

    Schade, Nicholas Benjamin

    I discuss experimental progress towards developing a material with an isotropic, negative index of refraction at optical frequencies. The simplest way to make such a material is to create a metafluid, or a disordered collection of subwavelength, isotropic electromagnetic resonators. Small clusters of metal particles, such as tetrahedra, serve as these constituents. What is needed are methods for manufacturing these structures with high precision and in sufficient yield that their resonances are identical. Jonathan Fan et al. [Science, 328 (5982), 1135-1138, 2010] demonstrated that colloidal self-assembly is a means of preparing electromagnetic resonators from metal nanoparticles. However, the resonances are sensitive to the separation gaps between particles. Standard synthesis routes for metal nanoparticles yield crystals or nanoshells that are inadequate for metafluids due to polydispersity, faceting, and thermal instabilities. To ensure that the separation gaps and resonances are uniform, more monodisperse spherical particles are needed. An additional challenge is the self-assembly of tetrahedral clusters in high yield from these particles. In self-assembly approaches that others have examined previously, the yield of any particular type of cluster is low. In this dissertation I present solutions to several of these problems, developed in collaboration with my research group and others. We demonstrate that slow chemical etching can transform octahedral gold crystals into ultrasmooth, monodisperse nanospheres. The particles can serve as seeds for the growth of larger octahedra which can in turn be etched. The size of the gold nanospheres can therefore be adjusted as desired. We further show that in colloidal mixtures of two sphere species that strongly bind to one another, the sphere size ratio determines the size distribution of self-assembled clusters. At a critical size ratio, tetrahedral clusters assemble in high yield. We explain the experimentally observed

  19. Molecular self-assembly into one-dimensional nanostructures.

    PubMed

    Palmer, Liam C; Stupp, Samuel I

    2008-12-01

    Self-assembly of small molecules into one-dimensional nanostructures offers many potential applications in electronically and biologically active materials. The recent advances discussed in this Account demonstrate how researchers can use the fundamental principles of supramolecular chemistry to craft the size, shape, and internal structure of nanoscale objects. In each system described here, we used atomic force microscopy (AFM) and transmission electron microscopy (TEM) to study the assembly morphology. Circular dichroism, nuclear magnetic resonance, infrared, and optical spectroscopy provided additional information about the self-assembly behavior in solution at the molecular level. Dendron rod-coil molecules self-assemble into flat or helical ribbons. They can incorporate electronically conductive groups and can be mineralized with inorganic semiconductors. To understand the relative importance of each segment in forming the supramolecular structure, we synthetically modified the dendron, rod, and coil portions. The self-assembly depended on the generation number of the dendron, the number of hydrogen-bonding functions, and the length of the rod and coil segments. We formed chiral helices using a dendron-rod-coil molecule prepared from an enantiomerically enriched coil. Because helical nanostructures are important targets for use in biomaterials, nonlinear optics, and stereoselective catalysis, researchers would like to precisely control their shape and size. Tripeptide-containing peptide lipid molecules assemble into straight or twisted nanofibers in organic solvents. As seen by AFM, the sterics of bulky end groups can tune the helical pitch of these peptide lipid nanofibers in organic solvents. Furthermore, we demonstrated the potential for pitch control using trans-to-cis photoisomerization of a terminal azobenzene group. Other molecules called peptide amphiphiles (PAs) are known to assemble in water into cylindrical nanostructures that appear as nanofiber

  20. A Theoretical and Experimental Study of DNA Self-assembly

    NASA Astrophysics Data System (ADS)

    Chandran, Harish

    The control of matter and phenomena at the nanoscale is fast becoming one of the most important challenges of the 21st century with wide-ranging applications from energy and health care to computing and material science. Conventional top-down approaches to nanotechnology, having served us well for long, are reaching their inherent limitations. Meanwhile, bottom-up methods such as self-assembly are emerging as viable alternatives for nanoscale fabrication and manipulation. A particularly successful bottom up technique is DNA self-assembly where a set of carefully designed DNA strands form a nanoscale object as a consequence of specific, local interactions among the different components, without external direction. The final product of the self-assembly process might be a static nanostructure or a dynamic nanodevice that performs a specific function. Over the past two decades, DNA self-assembly has produced stunning nanoscale objects such as 2D and 3D lattices, polyhedra and addressable arbitrary shaped substrates, and a myriad of nanoscale devices such as molecular tweezers, computational circuits, biosensors and molecular assembly lines. In this dissertation we study multiple problems in the theory, simulations and experiments of DNA self-assembly. We extend the Turing-universal mathematical framework of self-assembly known as the Tile Assembly Model by incorporating randomization during the assembly process. This allows us to reduce the tile complexity of linear assemblies. We develop multiple techniques to build linear assemblies of expected length N using far fewer tile types than previously possible. We abstract the fundamental properties of DNA and develop a biochemical system, which we call meta-DNA, based entirely on strands of DNA as the only component molecule. We further develop various enzyme-free protocols to manipulate meta-DNA systems and provide strand level details along with abstract notations for these mechanisms. We simulate DNA circuits by

  1. Cellular membrane enrichment of self-assembling D-peptides for cell surface engineering.

    PubMed

    Wang, Huaimin; Wang, Youzhi; Han, Aitian; Cai, Yanbin; Xiao, Nannan; Wang, Ling; Ding, Dan; Yang, Zhimou

    2014-06-25

    We occasionally found that several self-assembling peptides containing D-amino acids would be preferentially enriched in cellular membranes at self-assembled stages while distributed evenly in the cytoplasma of cells at unassembled stages. Self-assembling peptides containing only Lamino acids distributed evenly in cytoplasma of cells at both self-assembled and unassembled stages. The self-assembling peptides containing D-amino acids could therefore be applied for engineering cell surface with peptides. More importantly, by integrating a protein binding peptide (a PDZ domain binding hexapeptide of WRESAI) with the self-assembling peptide containing D-amino acids, protein could also be introduced to the cell surface. This study not only provided a novel approach to engineer cell surface, but also highlighted the unusual properties and potential applications of self-assembling peptides containing D-amino acids in regenerative medicine, drug delivery, and tissue engineering.

  2. Investigation of Porphyrin and Lipid Supramolecular Assemblies for Cancer Imaging and Therapy

    NASA Astrophysics Data System (ADS)

    Ng, Kenneth Ka-Seng

    Aerobic life on earth is made possible through the functions of the porphyrin. These colorful and ubiquitous chromophores are efficient at concentrating and converting sunlight into chemical energetic potential which sustain biological life. Humans have had a longstanding fascination with these molecules, especially for their applications in photodynamic therapy. The photophysical properties of porphyrins are highly influenced by their surrounding environment. Intermolecular interactions between these pigments can lead to excited state quenching, energy transfer and large changes to their absorption and fluorescence spectra. This thesis is focused on utilizing molecular self-assembly strategies to develop nanoscale porphyrin and phospholipid structures. The rationale being that intermolecular interactions between porphyrins in these nanostructures can induce changes which can be exploited in novel biomedical imaging and therapeutic applications. Four lipid-based structural platforms are studied including: nanoemulsions, bilayer discs and nanovesicles. In Chapter 1, I provide a background on the photophysics of porphyrins and the effect of intermolecular porphyrin interactions on photophysical properties. I also discuss phospholipids and their self-assembly process. Lastly I review current biomedical photonics techniques and discuss how these strategies can be used in conjugation with porphyrin and lipid supramolecular assemblies. In Chapter 2, I investigate the influence that loading a novel bacteriochlorin photosensitizer into a protein-stabilized lipid emulsion has on its spectral properties. I discovered that while the dye can be incorporated into the lipid emulsion, no changes were observed in its spectral properties. In Chapter 3, an amphipathic alpha-helical protein is used to stabilize and organize porphyrin-lipid molecules into bilayer discs. Close packing between porphyrin molecules causes quenching, which can be reversed by structural degradation of the

  3. Combustion and self-assembly of nanoenergetic materials

    NASA Astrophysics Data System (ADS)

    Malchi, Jonathan Yaniv

    The recent worldwide interest in nanotechnology spans a wide variety of scientific fields such as electronics, biology, materials science and medicine. Because of their extremely small dimensions, nanoparticles demonstrate properties different from matter at larger scales. Understanding these unusual properties and utilizing them for macroscale devices is an overall goal for nanotechnology. Moreover, manipulating these small particles into organized structures is crucial for taking full advantage of what nanotechnology has to offer, however it has proven to be a difficult task. Recent work utilizing electrostatic forces shows great potential for the self-assembly of nanoparticles into organized two-dimensional and three-dimensional structures. Overall, this work examines how nanotechnology and self-assembly can benefit the field of energetic materials. Because of aluminum's high energy density and low cost, it has been used in the field of energetic materials for several decades. In order to achieve sufficient energy release rates, aluminum is typically manufactured as a powder having spherical particles with diameters on the micron scale. It is well-known that decreasing the original particle diameter of a fuel particle will increase the burning time and, thus, energy release rate. Therefore, aluminum particles have recently been made to have diameters on the nanoscale, and shown to be advantageous for several applications. The combustion of nanoaluminum (nAl) in various systems is the primary focus of this study. A progression of experiments is used to analyze the combustion of nAl: (1) a fully heterogeneous flame spread system, (2) a semi-homogeneous sonicated thermite system and (3) a quasi-homogeneous self-assembled thermite system. The flame spread experiment physically separates the nAl from the gaseous oxidizer allowing for a well-understood convective, diffusive, reactive system to be analyzed. Because of the simplicity of the experimental setup, variables

  4. Design technology co-optimization assessment for directed self-assembly-based lithography: design for directed self-assembly or directed self-assembly for design?

    NASA Astrophysics Data System (ADS)

    Lai, Kafai; Liu, Chi-Chun; Tsai, Hsinyu; Xu, Yongan; Chi, Cheng; Raghunathan, Ananthan; Dhagat, Parul; Hu, Lin; Park, Oseo; Jung, Sunggon; Cho, Wooyong; Morillo, Jaime; Pitera, Jed; Schmidt, Kristin; Guillorn, Mike; Brink, Markus; Sanders, Daniel; Felix, Nelson; Bailey, Todd; Colburn, Matthew

    2017-01-01

    We report a systematic study of the feasibility of using directed self-assembly (DSA) in real product design for 7-nm fin field effect transistor (FinFET) technology. We illustrate a design technology co-optimization (DTCO) methodology and two test cases applying both line/space type and via/cut type DSA processes. We cover the parts of DSA process flow and critical design constructs as well as a full chip capable computational lithography framework for DSA. By co-optimizing all process flow and product design constructs in a holistic way using a computational DTCO flow, we point out the feasibility of manufacturing using DSA in an advanced FinFET technology node and highlight the issues in the whole DSA ecosystem before we insert DSA into manufacturing.

  5. Anisotropic Self-Assembly of Hairy Inorganic Nanoparticles.

    PubMed

    Yi, Chenglin; Zhang, Shaoyi; Webb, Kyle Thomas; Nie, Zhihong

    2017-01-17

    Current interest in functional assemblies of inorganic nanoparticles (NPs) stems from their collective properties and diverse applications ranging from nanomedicines to optically active metamaterials. Coating the surface of NPs with polymers allows for tailoring of the interactions between NPs to assemble them into hybrid nanocomposites with targeted architectures. This class of building blocks is termed "hairy" inorganic NPs (HINPs). Regiospecific attachment of polymers has been used to achieve directional interactions for HINP assembly. However, to date anisotropic surface functionalization of NPs still remains a challenge. This Account provides a review of the recent progress in the self-assembly of isotropically functionalized HINPs in both the condensed state and aqueous solution as well as the applications of assembled structures in such areas as biomedical imaging and therapy. It aims to provide fundamental mechanistic insights into the correlation between structural characteristics and self-assembly behaviors of HINPs, with an emphasis on HINPs made from NPs grafted with linear block copolymer (BCP) brushes. The key to the anisotropic self-assembly of these HINPs is the generation of directional interactions between HINPs by designing the surrounding medium (e.g., polymer matrix) or engineering the surface chemistry of the HINPs. First, HINPs can self-assemble into a variety of 1D, 2D, or 3D nanostructures with a nonisotropic local arrangement of NPs in films. Although a template is not always required, a polymer matrix (BCPs or supramolecules) can be used to assist the assembly of HINPs to form hybrid architectures. The interactions between brushes of neighboring HINPs or between HINPs and the polymer matrix can be modulated by varying the grafting density and length of one or multiple types of polymers on the surface of the NPs. Second, the rational design of deformable brushes of BCP or mixed homopolymer tethers on HINPs enables the anisotropic assembly

  6. Self-assembly of amphiphilic molecules in organic liquids

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Huang

    2007-12-01

    Amphiphilic molecules are well-known for their ability to self-assemble in water to form structures such as micelles and vesicles. In comparison, much less is known about amphiphilic self-assembly in nonpolar organic liquids. Such "reverse" self assembly can produce many of the counterparts to structures found in water. In this dissertation, we focus on the formation and dynamics of such reverse structures. We seek to obtain fundamental insight into the driving forces for reverse self-assembly processes. Three specific types of reverse structures are studied: (a) reverse wormlike micelles, i.e., long, flexible micellar chains; (b) reverse vesicles, i.e., hollow containers enclosed by reverse bilayers; and (c) organogel networks. While our focus is on the fundamentals, we note that reverse structures can be useful in a variety of applications ranging from drug delivery, controlled release, hosts for enzymatic reactions, and templates for nanomaterials synthesis. In the first part of this study, we describe a new route for forming reverse wormlike micelles in nonpolar organic liquids. This route involves the addition of trace amounts of a bile salt to solutions of the phospholipid, lecithin. We show that bile salts, due to their unique "facially amphiphilic" structure, can promote the aggregation of lecithin molecules into these reverse micellar chains. The resulting samples are viscoelastic and show interesting rheological properties. Unusual trends are seen in the temperature dependence of their rheology, which indicates the importance of hydrogen-bonding interactions in the formation of these micelles. Another remarkable feature of their rheology is the presence of strain-stiffening, where the material becomes stiffer at high deformations. Strain-stiffening has been seen before for elastic gels of biopolymers; here, we demonstrate the same properties for viscoelastic micellar solutions. The second reverse aggregate we deal with is the reverse vesicle. We present a

  7. Self-Assembled Materials Made from Functional Recombinant Proteins.

    PubMed

    Jang, Yeongseon; Champion, Julie A

    2016-10-18

    Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on

  8. Self-assembling behavior of glycerol monoundecenoate in water.

    PubMed

    Nyame Mendendy Boussambe, Gildas; Valentin, Romain; Fabre, Jean-François; Navailles, Laurence; Nallet, Frédéric; Gaillard, Cedric; Mouloungui, Zephirin

    2017-03-14

    Self-assembling properties of glycerol esters in water are well known. Still, few data on glyc-erol monoesters of undecylenic acid are available. The aim of this study was to highlight the behavior of the glycerol monoundecenoate (GM-C11:1) in different, diluted and concentrated states. Self-assembling properties in water and upon solid inorganic surfaces were investigated in diluted state with surface tension experiments, AFM and Cryo-TEM studies. In concen-trated state, the gelling properties in presence of water were investigated by polarized light microscopy, DSC and SAXS experiments. GM-C11:1 at 100 mg/L self-assembles at the liq-uid/air interfaces as aggregates of about 20 nm in diameter, organized into concentric forms. These aggregates were spherical globules composed of several molecules of GM-C11:1. At higher concentrations (1000 mg/L and 104 mg/L), GM-C11:1 was able to coat uniformly liq-uid/air and liquid/solid interfaces. In bulk GM-C11:1 form spontaneously aggregates and ves-icles. In more concentrated state, GM-C11:1 assembles into lamellar Lβ and Lα form in water. By cross-referencing SAXS and DSC findings, we were able to distinguish between interla-mellar water molecules strongly bound to GM-C11:1 and other molecules remaining unbound and considered as "mobile" water. The percentage of water strongly bound was proportional to the percentage of GM-C11:1 in the system. In this case, GM-C11:1 appears to be an effec-tive molecule for surface treatments for which water retention is important.

  9. Bacterial expression of self-assembling peptide hydrogelators

    NASA Astrophysics Data System (ADS)

    Sonmez, Cem

    For tissue regeneration and drug delivery applications, various architectures are explored to serve as biomaterial tools. Via de novo design, functional peptide hydrogel materials have been developed as scaffolds for biomedical applications. The objective of this study is to investigate bacterial expression as an alternative method to chemical synthesis for the recombinant production of self-assembling peptides that can form rigid hydrogels under physiological conditions. The Schneider and Pochan Labs have designed and characterized a 20 amino acid beta-hairpin forming amphiphilic peptide containing a D-residue in its turn region (MAX1). As a result, this peptide must be prepared chemically. Peptide engineering, using the sequence of MAX1 as a template, afforded a small family of peptides for expression (EX peptides) that have different turn sequences consisting of natural amino acids and amenable to bacterial expression. Each sequence was initially chemically synthesized to quickly assess the material properties of its corresponding gel. One model peptide EX1, was chosen to start the bacterial expression studies. DNA constructs facilitating the expression of EX1 were designed in such that the peptide could be expressed with different fusion partners and subsequently cleaved by enzymatic or chemical means to afford the free peptide. Optimization studies were performed to increase the yield of pure peptide that ultimately allowed 50 mg of pure peptide to be harvested from one liter of culture, providing an alternate means to produce this hydrogel-forming peptide. Recombinant production of other self-assembling hairpins with different turn sequences was also successful using this optimized protocol. The studies demonstrate that new beta-hairpin self-assembling peptides that are amenable to bacterial production and form rigid hydrogels at physiological conditions can be designed and produced by fermentation in good yield at significantly reduced cost when compared to

  10. Platelets self-assemble into porous nacre during freeze casting.

    PubMed

    Hunger, Philipp M; Donius, Amalie E; Wegst, Ulrike G K

    2013-03-01

    Nacre possesses a remarkable combination of mechanical properties. Its high stiffness, strength and toughness are attributed to a highly aligned structure of aragonite platelets "glued" together by a small fraction (∼5vol%) of polymer; theoretically it can be described by a shear-lag model of staggered tensile elements between which loads are transferred via shear. Despite extensive research, it has not been possible yet to manufacture this aligned structure as a bulk material of considerable volume with a fast and easy production process. Particularly porous materials would benefit from enhanced wall material properties to compensate for performance loss due to their high porosity. An important application for such porous materials are tissue scaffolds for bone substitution. Bone, like nacre, exhibits excellent mechanical properties, particularly an exceptionally high toughness, because of its composite structure of hydroxyapatite platelets aligned in a ∼35vol% polymer matrix. Through the freeze casting process, which results in a fast and straightforward self-assembly of platelet-shaped particles during directional solidification, highly porous bulk materials with nacre-like cell walls can now be created. This porous nacre outperforms by a factor of 1.5-4 in terms of stiffness, strength and toughness materials that have the same amount of porosity but do not exhibit the nacre-like microarchitecture. The self-assembly process presented in this study thus has tremendous potential for the creation of highly porous, yet mechanically strong tissue scaffolds for low or medium load bearing bone substitute materials. Due to the versatility of the freeze casting process, materials with a self-assembled cell wall structure can be created from high-aspect ratio particles of all material classes. This enables material optimization for a great variety of applications such as impact protection, filtration, catalysis, energy generation and storage, in addition to those with

  11. Particle self-assembly at ionic liquid-based interfaces.

    PubMed

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  12. Biomimetic synthetic self-assembled hydrogels for cell transplantation.

    PubMed

    Barros, Daniela; Amaral, Isabel Freitas; Pêgo, Ana Paula

    2015-01-01

    The development of three-dimensional matrices capable of recapitulating the main features of native extracellular matrix and contribute for the establishment of a favorable microenvironment for cell behavior and fate is expected to circumvent some of the main limitations of cell-based therapies. In this context, self-assembly has emerged as a promising strategy to engineer cell-compatible hydrogels. A wide number of synthetically-derived biopolymers, such as proteins, peptides and DNA/RNA, with intrinsic ability to self-assemble into well-defined nanofibrous structures, are being explored. The resulting hydrogels, in addition to closely resembling the architecture of native cellular microenvironments, present a versatile and dynamic behavior that allows them to be designed to undergo sol-to-gel transition in response to exogenous stimulus. This review presents an overview on the state-of-the-art of the different strategies being explored for the development of injectable synthetic self-assembled hydrogels for cell transplantation and/or recruitment of endogenous cells, with an emphasis on their biological performance, both in vitro and in vivo. Systems based on peptides are the most widely explored and have already generated promising results in pre-clinical in vivo studies involving different repair/regenerative scenarios, including cartilage, bone, nerve and heart. On the other hand, systems based on DNA and hybrid hydrogels are now emerging for application in the biomedical field with high potential. Finally, the main challenges hampering the translation of these systems to the clinic and the issues that need to be addressed for these to progress from bench-to-bedside are discussed.

  13. Self-assembly behaviour of hetero-nuclear Janus dumbbells.

    PubMed

    O'Toole, Patrick; Munaò, Gianmarco; Giacometti, Achille; Hudson, Toby S

    2017-09-05

    We investigate the fluid structure and self-assembly of a system of Janus dumbbells by means of aggregation-volume-bias Monte Carlo simulations and Simulated Annealing techniques. In our approach, Janus dumbbells model asymmetric colloidal particles constituted by two tangent (touching) spheres (labelled as h and s) of different sizes and interaction properties: specifically, the h spheres interact with all other spheres belonging to different dumbbells via hard-sphere potentials, whereas two s spheres interact via a square-well potential. By introducing a parameter α ∈ [0,2] that controls the size ratio between the h and s spheres, we are able to investigate the overall phase behaviour of Janus dumbbells as a function of α. In a previous paper (O'Toole et al., Soft Matter, 2017, 13, 803) we focused on the region where the s sphere is larger than the h sphere (α > 1), documenting the presence of a variety of phase behaviours. Here we investigate a different regime of size ratios, predominantly where the hard sphere is larger than (or comparable to) the attractive one. Under these conditions, we observe the onset of many different self-assembled super-structures. Depending on the specific value of α we document the presence of spherical clusters (micelles) progressively evolving into more exotic structures including platelets, filaments, networks and percolating fluids, sponge structures and lamellar phases. We find no evidence of a gas-liquid phase separation for α ≤ 1.1, since under these conditions it is pre-empted by the development of self-assembled phases.

  14. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles.

    PubMed

    Yang, Yongkun; Burkhard, Peter

    2012-10-31

    Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs) to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold nanoparticles into SAPNs can provide a useful platform to

  15. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    PubMed Central

    2012-01-01

    Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs) to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold nanoparticles into SAPNs can

  16. Bottlebrush Polymers: Synthesis, Rheology, and Self-Assembly

    NASA Astrophysics Data System (ADS)

    Dalsin, Samuel J.

    Bottlebrush polymers are comb-like molecules with a high density of side chains grafted along a central backbone. Due to their unique conformational properties, bottlebrush polymers have become attractive candidates for developing new photonic bandgap materials, nanotubes and nanowires, or drug delivery vehicles, to name a few. This dissertation primarily investigates the rheological properties and self-assembly behavior of bottlebrush polymer molecules made using a variety of different polymerization routes. A considerable portion of the work is directed towards the linear rheology of model, polyolefin-based bottlebrush polymers with independently varied branch and backbone lengths. These studies demonstrate how the tight spacing between branch points effectively precludes backbone entanglement in the polymer melts, but it does not inhibit the formation of entanglements among the branched side chains. Furthermore, the relaxation profiles reveal transient scaling behavior in which the dynamics transition from Zimm-like to Rouse-like at increasing relaxation times. These results highlight the distinct conformational character of bottlebrushes at different length scales. The latter parts of this work report on the self-assembly behavior of bottlebrush diblock polymers composed of atactic polypropylene and polystyrene side chains. The diblock samples are analyzed using small-angle X-ray scattering and atomic force microscopy. Nearly all of the samples display strong segregation between the two blocks, owing to the large molar mass of typical bottlebrush polymers. Consequently, only one experimental sample displays an accessible order-disorder transition temperature. The strong segregation is also shown to affect the ability of large bottlebrush diblocks to readily achieve well-ordered nanostructures by self-assembly. Finally, results of the most symmetric (by volume fraction) diblock samples are compared with predictions of a newly developed self-consistent field

  17. Electrochemically controlled self-assembly of block copolymer nanostructures

    NASA Astrophysics Data System (ADS)

    Eitouni, Hany Basam

    Organometallic block copolymers, wherein one block is composed of alternating ferrocene and dialkylsilane units in the main chain, undergo self-assembly to form microphase-separated ordered structures similarly to typical organic block copolymers. The 1,1'-dimethylsilylferrocenophane monomer was synthesized and polymerized anionically with other monomers to make a variety of different organometallic block copolymers. The phase behavior and thermodynamic interactions of anionically synthesized poly(styrene-block-ferrocenyldimethylsilane) (SF) and poly(isoprene-block-ferrocenyldimethylsilane) (IF) copolymers were examined using depolarized light scattering, small angle x-ray and neutron scattering (SAXS and SANS), and transmission electron microscopy. The temperature-dependence of the Flory-Huggins parameter, chi, and the statistical segment lengths of SF and IF copolymers were determined by SAXS and SANS using the random phase approximation. The thermodynamic interactions in poly(ferrocenyldimethylsilane) diblock copolymers were systematically adjusted by oxidizing the ferrocene moieties with silver salts and examined using SAXS and depolarized light scattering. The polymers retained microphase separated ordered structures upon oxidation and showed systematic changes in the location of the order-disorder transition as a function of extent of oxidation. By controlling the redox properties of the ferrocene moiety in the backbone of the polymer, we present a method for controlling the self-assembled microstructure and hence bulk material properties. Using electrochemical techniques, a novel means of controlling the order-disorder transition of block copolymers was discovered. By applying very small electrical potentials to disordered solutions of organometallic block copolymers, oriented ordered grains were formed near one electrode, the result of electrochemical reactions. After reversing the electrical bias on the system, the ordered grains disappeared and new

  18. Self-assembly of amorphous biophotonic nanostructures by phase separation

    SciTech Connect

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Cao, Hui; Prum, Richard O.

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important roles in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.

  19. Spectroscopic studies of the molecular imprinting self-assembly process.

    PubMed

    Svenson, J; Andersson, H S; Piletsky, S A; Nicholls, I A

    1998-01-01

    A method for the rapid estimation of the extent of complex formation in molecular imprinting prepolymerization mixtures is described. By the use of a UV spectroscopy titration procedure, apparent binding constants for such self-assembly processes have been obtained. This method was used for comparison of the interactions between a dipeptide template (N-acetyl-L-phenylalaninyl-L-tryptophanyl methyl ester) and the functional monomer methacrylic acid, and the monomer analogues acetic acid and trifluoroacetic acid. The importance of template-monomer association during the molecular imprinting prepolymerization phase is discussed with respect to the systems studied.

  20. Viral self-assembly pathway and mechanical stress relaxation.

    PubMed

    Castelnovo, Martin

    2017-05-01

    The final shape of a virus is dictated by the self-assembly pathway of its constituents. Using standard thin-shell elasticity, we highlight the prominent role of the viral shell's spontaneous curvature in determining the assembly pathway. In particular, we demonstrate that the mechanical stress inherent to the growth of a curved surface can be relaxed in two different ways in the early steps of assembly, depending on the value of the spontaneous curvature of the surface. This important result explains why most viral shells have either a compact shape with icosahedral symmetry or an elongated shape lacking this symmetry.

  1. Electronic instabilities in self-assembled atom wires

    SciTech Connect

    Snijders, Paul C; Weitering, Harm H

    2010-01-01

    Low dimensional systems have fascinated physicists for a long time due to their unusual properties such as charge fractionalization, semionic statistics, and Luttinger liquid behavior among others. In nature, however, low dimensional systems often suffer from thermal fluctuations that can make these systems structurally unstable. Human beings, however, can trick nature by producing artificial structures which are not naturally produced. This Colloquium reviews the problem of self-assembled atomic wires on solid surfaces from an experimental and theoretical point of view. These materials represent a class of one-dimensional systems with very unusual properties that can open doors to the study of exotic physics that cannot be studied otherwise.

  2. Self-assembled peptide nanoarchitectures: applications and future aspects.

    PubMed

    Sharma, Prem Prakash; Rathi, Brijesh; Rodrigues, Joao; Gorobets, Nikolay Yu

    2015-01-01

    Among the diversity of natural and synthetic compounds being studied and applied for human welfare, peptides able to develop nanostructures are currently under special attention of scientists. In this review, we focus on such properties of peptides and various kinds of intramolecular interactions allowing their ability to form different shapes of nanoassemblies. We have also discussed the applications of self-assembled peptides in various biomedical fields where they can be employed as cargo to target delivery of drugs, genes, in tissue engineering, regenerative medicines, and biosensors.

  3. Nitrogen Substituted Phenothiazine Derivatives: Modelling of Molecular Self-Assembling

    PubMed Central

    Bende, Attila; Turcu, Ioan

    2011-01-01

    The study aims to present a detailed theoretical investigation of noncovalent intermolecular interactions between different π–π stacking nitrogen substituted phenothiazine derivatives by applying second-order Møller-Plesset perturbation (MP2), density functional (DFT) and semiempirical theories. The conformational stability of these molecular systems is mainly given by the dispersion-type electron correlation effects. The density functional tight-binding (DFTB) method applied for dimer structures are compared with the results obtained by the higher level theoretical methods. Additionally, the optimal configuration of the investigated supramolecular systems and their self-assembling properties are discussed. PMID:21686172

  4. Preface: Special Topic on Supramolecular Self-Assembly at Surfaces

    NASA Astrophysics Data System (ADS)

    Bartels, Ludwig; Ernst, Karl-Heinz; Gao, Hong-Jun; Thiel, Patricia A.

    2015-03-01

    Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.

  5. Formation and Characterization of Silicon Self-assembled Nanodots

    SciTech Connect

    Idrees, Fatima Aldaw; Sakrani, Samsudi; Othaman, Zulkafli

    2011-05-25

    Silicon self-assembled quantum dots have been successfully prepared on corning glass (7059) substrate. The samples were fabricated using the common technique RF magnetron sputtering system depend on plasma excitation at varying growth parameters and high temperature of more than 500 deg. C. The measurements of average dots size estimated to be 36 nm is confirmed by using AFM. The PL peak located at 570 nm, informed band gap energy = 2.10 eV larger than bulk material band gap, that confirmed the miniaturized of the dots. To measure the Silicon atomic% deposit on corning glass (7059) substrate EDX has been used.

  6. Unifying Interfacial Self-Assembly and Surface Freezing

    SciTech Connect

    Ocko, B.M.; Hlaing, H.; Jepsen, P.N.; Kewalramani, S.; Tkachenko, A.; Pontoni, D.; Reichert, H.; Deutsch, M.

    2011-03-30

    X-ray investigations reveal that the monolayers formed at the bulk alkanol-sapphire interface are densely packed with the surface-normal molecules hydrogen bound to the sapphire. About 30-35 C above the bulk, these monolayers both melt reversibly and partially desorb. This system exhibits balanced intermolecular and molecule-substrate interactions which are intermediate between self-assembled and surface-frozen monolayers, each dominated by one interaction. The phase behavior is rationalized within a thermodynamic model comprising interfacial interactions, elasticity, and entropic effects. Separating the substrate from the melt leaves the monolayer structurally intact.

  7. Unifying Interfacial Self-Assembly and Surface Freezing

    SciTech Connect

    B Ocko; H Hlaing; P Jepsen; S Kewalramani; A Tkachenko; D Pontoni; H Reichert; M Deutsch

    2011-12-31

    X-ray investigations reveal that the monolayers formed at the bulk alkanol-sapphire interface are densely packed with the surface-normal molecules hydrogen bound to the sapphire. About 30-35 C above the bulk, these monolayers both melt reversibly and partially desorb. This system exhibits balanced intermolecular and molecule-substrate interactions which are intermediate between self-assembled and surface-frozen monolayers, each dominated by one interaction. The phase behavior is rationalized within a thermodynamic model comprising interfacial interactions, elasticity, and entropic effects. Separating the substrate from the melt leaves the monolayer structurally intact.

  8. Viral self-assembly pathway and mechanical stress relaxation

    NASA Astrophysics Data System (ADS)

    Castelnovo, Martin

    2017-05-01

    The final shape of a virus is dictated by the self-assembly pathway of its constituents. Using standard thin-shell elasticity, we highlight the prominent role of the viral shell's spontaneous curvature in determining the assembly pathway. In particular, we demonstrate that the mechanical stress inherent to the growth of a curved surface can be relaxed in two different ways in the early steps of assembly, depending on the value of the spontaneous curvature of the surface. This important result explains why most viral shells have either a compact shape with icosahedral symmetry or an elongated shape lacking this symmetry.

  9. Guided Self-Assembly of Nano-Precipitates into Mesocrystals

    PubMed Central

    Liu, H.; Gao, Y.; Xu, Z.; Zhu, Y.M.; Wang, Y.; Nie, J.F.

    2015-01-01

    We show by a combination of computer simulation and experimental characterization guided self-assembly of coherent nano-precipitates into a mesocrystal having a honeycomb structure in bulk materials. The structure consists of different orientation variants of a product phase precipitated out of the parent phase by heterogeneous nucleation on a hexagonal dislocation network. The predicted honeycomb mesocrystal has been confirmed by experimental observations in an Mg-Y-Nd alloy. The structure and lattice parameters of the mesocrystal and the size of the nano-precipitates are readily tuneable, offering ample opportunities to tailor its properties for a wide range of technological applications. PMID:26559002

  10. Self-assembling peptide amphiphile nanostructures for cancer therapy

    NASA Astrophysics Data System (ADS)

    Soukasene, Stephen

    The application of nanotechnology to cancer therapy shows great promise for reducing the burden of the disease. By virtue of their size, nanoscale objects preferentially accumulate in tumor tissue through an enhanced permeability and retention (EPR) effect. However, to fully overcome the issues that limit current cancer treatments, viable nanostructures must also impart multifunctionality and be fully compatible with their biological surrounds. The self-assembling peptide amphiphile (PA) materials studied extensively in the Stupp Research Group form very biocompatible high aspect ratio nanostructures that meet these criteria. This thesis investigates the development of PA nanostructures designed to treat cancer. We first look to use the PA as a drug delivery vehicle by entrapping a small hydrophobic anti-cancer drug, camptothecin, in the core of the nanostructures. Using a solvent evaporation technique to load the drug into the PA nanofibers, we are able to improve the aqueous solubility of the molecule by nearly 30-fold. TEM and AFM studies show that entrapment of drug molecules does not disrupt the self-assembled morphology of the nanofiber. In vitro and in vivo studies are also conducted to demonstrate the bioactivity of the drug after its entrapment. As a potential platform for novel therapeutics, we next develop techniques for using light irradiation to trigger self-assembly inside the confined space of liposomes. We encapsulate PA monomers that assemble under acidic conditions along with a photoacid generator inside liposomes. Upon exposure to 254 nm light, the PA monomers self assemble inside the liposome to form nanostructures, which we observe through a quick freeze/deep etch technique that allows us to look inside the liposomes by SEM and TEM. Last of all, the development and discovery of epitopes for targeting PA nanostructures to tumors are explored. Using phage display technology we generate two groups of peptide sequences, one of which can potentially

  11. Viscoelasticity of dynamically self-assembled paramagnetic colloidal clusters.

    PubMed

    Tierno, Pietro; Muruganathan, Ramanathan; Fischer, Thomas M

    2007-01-12

    Paramagnetic particles in a liquid above a solid dynamically self-assemble into two-dimensional (2D) viscoelastic clusters in a processing magnetic field if the precession angle exceeds the magic angle. Hexagonal clusters rotate with a frequency proportional to the precession frequency of the magnetic field. The rotation is explained by viscoelastic shear waves excited in the clusters that can be visualized slightly above the magic angle. The cluster rotation and the visualization of viscoelastic modes are independent techniques to probe the rheological properties of the cluster. We find agreement between both techniques when determining the 2D cluster viscosity eta(c) approximately 10(-11) N s/m.

  12. Preface: special topic on supramolecular self-assembly at surfaces.

    PubMed

    Bartels, Ludwig; Ernst, Karl-Heinz; Gao, Hong-Jun; Thiel, Patricia A

    2015-03-14

    Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.

  13. Rapid self-assembly of block copolymers to photonic crystals

    DOEpatents

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  14. The art and science of self-assembling molecular machines

    NASA Astrophysics Data System (ADS)

    Gómez-López, Marcos; Preece, Jon A.; Fraser Stoddart, J.

    1996-09-01

    In this review, we show how noncovalent bonding interactions between 0957-4484/7/3/004/img1-electron rich aromatic ring systems (e.g. hydroquinone) and the 0957-4484/7/3/004/img1-electron deficient tetracationic cyclophane, cyclobis(paraquat-p-phenylene) can be used to self-assemble novel molecular architectures which are not only interesting to us, because of their fascinating topologies, but also because they have the potential to be developed into molecular structures with switchable properties on the nanometre scale. The high efficiency observed in the self-assembly of a [2]catenane, and its dynamic properties in solution, represent the first step in the design and self-assembly of other molecular assemblies better suited for the study of molecular switching processes. Therefore, a series of [2]rotaxanes, mechanically-interlocked molecular compounds, consisting of a linear 0957-4484/7/3/004/img1-electron rich dumbbell-shaped component and the 0957-4484/7/3/004/img1-electron deficient tetracationic cyclophane as the cyclic component, have been self-assembled and evaluated. All of the so-called molecular shuttles show translational isomerism and one of them, comprising benzidine and biphenol recognition sites as the non-degenerate 0957-4484/7/3/004/img1-electron rich sites, shows molecular switching properties when it is perturbed by external stimuli, such as electrons and protons. The versatility of our approach to nanoscale molecular switches is proven by the description of a series of molecular assemblies and supramolecular arrays, consisting of 0957-4484/7/3/004/img1-electron rich and 0957-4484/7/3/004/img1-electron deficient components, which display molecular switching properties when they are influenced by external stimuli that are photochemical, electrochemical and/or chemical in nature. However, the molecular switching phenomena take place in the solution state. Therefore, finally we describe how simple molecular structures can be ordered on to a solid

  15. Rapid Self-Assembly of Uranyl Polyhedra into Crown Clusters

    SciTech Connect

    Sigmon, Ginger E.; Burns, Peter C.

    2011-06-22

    Clusters built from 32 uranyl peroxide polyhedra self-assemble and crystallize within 15 min after combining uranyl nitrate, ammonium hydroxide, and hydrogen peroxide in aqueous solution under ambient conditions. These novel crown-shaped clusters are remarkable in that they form so quickly, have extraordinarily low aqueous solubility, form with at least two distinct peroxide to hydroxyl ratios, and form in very high yield. The clusters, which have outer diameters of 23 Å, topologically consist of eight pentagons and four hexagons. Their rapid formation and low solubility in aqueous systems may be useful properties at various stages in an advanced nuclear energy system.

  16. Color and chirality: carotenoid self-assemblies in flower petals.

    PubMed

    Zsila, F; Deli, J; Simonyi, M

    2001-10-01

    As a novel phenomenon, optical activity--often very strong--has been detected by circular dichroism (CD) spectroscopy in carotenoid-containing living flowers of several species belonging to different families. Using natural pure xanthophyll esters, very similar CD spectra were obtained in vitro, proving the ability of these molecules to form chiral self-assemblies. The relationship between the ultrastructure of the chromoplast, its chemical composition and the optical activity is discussed. The applicability of CD spectroscopy for studying intact plant tissue is emphasized.

  17. Energy levels in self-assembled quantum arbitrarily shaped dots.

    PubMed

    Tablero, C

    2005-02-08

    A model to determine the electronic structure of self-assembled quantum arbitrarily shaped dots is applied. This model is based principally on constant effective mass and constant potentials of the barrier and quantum dot material. An analysis of the different parameters of this model is done and compared with those which take into account the variation of confining potentials, bands, and effective masses due to strain. The results are compared with several spectra reported in literature. By considering the symmetry, the computational cost is reduced with respect to other methods in literature. In addition, this model is not limited by the geometry of the quantum dot.

  18. Purification of ethanol for highly sensitive self-assembly experiments

    PubMed Central

    Barbe, Kathrin; Kind, Martin; Pfeiffer, Christian

    2014-01-01

    Summary Ethanol is the preferred solvent for the formation of self-assembled monolayers (SAMs) of thiolates on gold. By applying a thin film sensor system, we could demonstrate that even the best commercial qualities of ethanol contain surface-active contaminants, which can compete with the desired thiolates for surface sites. Here we present that gold nanoparticles deposited onto zeolite X can be used to remove these contaminants by chemisorption. This nanoparticle-impregnated zeolite does not only show high capacities for surface-active contaminants, such as thiols, but can be fully regenerated via a simple pyrolysis protocol. PMID:25161861

  19. Interactions between particles in a magnetocapillary self-assembly

    NASA Astrophysics Data System (ADS)

    Lagubeau, Guillaume; Darras, Alexis; Grosjean, Galien; Lumay, Geoffroy; Hubert, Maxime; Vandewalle, Nicolas; Grasp Team

    2014-11-01

    When particles are suspended at air-water interfaces in the presence of a vertical magnetic field, dipole-dipole repulsion competes with capillary attraction. This interaction was used recently to control self-assembling particles, as well as to create low Reynolds swimming systems. Although the equilibrium properties of the magnetocapillary interaction is understood, the dynamics was unclear. In the present report, we emphasize the rich behavior of two/three particles driven by this interaction. We propose a model for describing the motion driven by an external field, being the basis for developing swimming strategies and other elaborated collective behaviors along liquid-air interfaces.

  20. Surfactant Two-Dimensional Self-Assembly under Confinement

    SciTech Connect

    Sushko, Maria L.; Liu, Jun

    2011-03-28

    Confinement-induced structural rearrangements in supported self-assembled surfactant layers in aqueous salt solutions are investigated using classical Density Functional Theory. The systematic study of the influence of the nature of electrolyte revealed that 2:1 electrolyte stabilizes the hemicylindrical configuration of ionic surfactant layers, while a confinement-induced transition to a tilted monolayer configuration was found in symmetric 1:1 and 2:2 electrolytes. On the basis of this study we formulate a general model for the energetics of structural rearrangements in supported surfactant layers.

  1. Buckling Instability of Self-Assembled Colloidal Columns

    NASA Astrophysics Data System (ADS)

    Swan, James W.; Vasquez, Paula A.; Furst, Eric M.

    2014-09-01

    Suspended, slender self-assembled domains of magnetically responsive colloids are observed to buckle in microgravity. Upon cessation of the magnetic field that drives their assembly, these columns expand axially and buckle laterally. This phenomenon resembles the buckling of long beams due to thermal expansion; however, linear stability analysis predicts that the colloidal columns are inherently susceptible to buckling because they are freely suspended in a Newtonian fluid. The dominant buckling wavelength increases linearly with column thickness and is quantitatively described using an elastohydrodynamic model and the suspension thermodynamic equation of state.

  2. Model for dynamic self-assembled magnetic surface structures.

    SciTech Connect

    Belkin, M.; Glatz, A.; Snezhko, A.; Aranson, I. S.; Materials Science Division; Northwestern Univ.

    2010-07-07

    We propose a first-principles model for the dynamic self-assembly of magnetic structures at a water-air interface reported in earlier experiments. The model is based on the Navier-Stokes equation for liquids in shallow water approximation coupled to Newton equations for interacting magnetic particles suspended at a water-air interface. The model reproduces most of the observed phenomenology, including spontaneous formation of magnetic snakelike structures, generation of large-scale vortex flows, complex ferromagnetic-antiferromagnetic ordering of the snake, and self-propulsion of bead-snake hybrids.

  3. Out of the cleanroom, self-assembled magnetic artificial cilia.

    PubMed

    Wang, Ye; Gao, Yang; Wyss, Hans; Anderson, Patrick; den Toonder, Jaap

    2013-09-07

    Micro-sized hair-like structures, such as cilia, are abundant in nature and have various functionalities. Many efforts have been made to mimic the fluid pumping function of cilia, but most of the fabrication processes for these "artificial cilia" are tedious and expensive, hindering their practical application. In this paper a cost-effective in situ fabrication technique for artificial cilia is demonstrated. The cilia are constructed by self-assembly of micron sized magnetic beads and encapsulated with soft polymer coatings. Actuation of the cilia induces an effective fluid flow, and the cilia lengths and distribution can be adjusted by varying the magnetic bead concentration and fabrication parameters.

  4. Passivation effects in B doped self-assembled Si nanocrystals

    SciTech Connect

    Puthen Veettil, B. Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Zhang, Tian; Yang, Terry; Johnson, Craig; Conibeer, Gavin; Perez-Würfl, Ivan; McCamey, Dane

    2014-12-01

    Doping of semiconductor nanocrystals has enabled their widespread technological application in optoelectronics and micro/nano-electronics. In this work, boron-doped self-assembled silicon nanocrystal samples have been grown and characterised using Electron Spin Resonance and photoluminescence spectroscopy. The passivation effects of boron on the interface dangling bonds have been investigated. Addition of boron dopants is found to compensate the active dangling bonds at the interface, and this is confirmed by an increase in photoluminescence intensity. Further addition of dopants is found to reduce the photoluminescence intensity by decreasing the minority carrier lifetime as a result of the increased number of non-radiative processes.

  5. Light-assisted templated self assembly using photonic crystal slabs.

    PubMed

    Mejia, Camilo A; Dutt, Avik; Povinelli, Michelle L

    2011-06-06

    We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably trapped periodic patterns of particles are dependent on wavelength and polarization. Tuning the wavelength or polarization of the light source may thus allow the formation and reconfiguration of patterns. We expect that this technique may be used to design all-optically reconfigurable photonic devices.

  6. Preface: Special Topic on Supramolecular Self-Assembly at Surfaces

    SciTech Connect

    Bartels, Ludwig; Ernst, Karl-Heinz; Gao, Hong-Jun; Thiel, Patricia A.

    2015-03-14

    Supramolecular self-assembly at surfaces is one of the most exciting and active fields in Surface Science today. Applications can take advantage of two key properties: (i) versatile pattern formation over a broad length scale and (ii) tunability of electronic structure and transport properties, as well as frontier orbital alignment. It provides a new frontier for Chemical Physics as it uniquely combines the versatility of Organic Synthesis and the Physics of Interfaces. The Journal of Chemical Physics is pleased to publish this Special Topic Issue, showcasing recent advances and new directions.

  7. Guided Self-Assembly of Nano-Precipitates into Mesocrystals

    NASA Astrophysics Data System (ADS)

    Liu, H.; Gao, Y.; Xu, Z.; Zhu, Y. M.; Wang, Y.; Nie, J. F.

    2015-11-01

    We show by a combination of computer simulation and experimental characterization guided self-assembly of coherent nano-precipitates into a mesocrystal having a honeycomb structure in bulk materials. The structure consists of different orientation variants of a product phase precipitated out of the parent phase by heterogeneous nucleation on a hexagonal dislocation network. The predicted honeycomb mesocrystal has been confirmed by experimental observations in an Mg-Y-Nd alloy. The structure and lattice parameters of the mesocrystal and the size of the nano-precipitates are readily tuneable, offering ample opportunities to tailor its properties for a wide range of technological applications.

  8. Triggered self-assembly of simple dynamic covalent surfactants.

    PubMed

    Minkenberg, Christophe B; Florusse, Louw; Eelkema, Rienk; Koper, Ger J M; van Esch, Jan H

    2009-08-19

    A prototype surfactant system was developed with the unique feature that it can be switched between an aggregated, amphiphilic state and a nonaggregated, nonamphiphilic state using external stimuli. This switchable surfactant system uses the reversible formation of a dynamic covalent bond for pH- and temperature-triggered on/off self-assembly of micellar aggregates by reversible displacement of the equilibrium between nonamphiphilic building blocks and their amphiphilic counterparts. The potential for application in controlled-release systems is shown by reversible uptake and release of an organic dye in aqueous media.

  9. Self-assembled GaN hexagonal micropyramid and microdisk

    SciTech Connect

    Lo Ikai; Hsieh, C.-H.; Hsu, Y.-C.; Pang, W.-Y.; Chou, M.-C.

    2009-02-09

    The self-assembled GaN hexagonal micropyramid and microdisk were grown on LiAlO{sub 2} by plasma-assisted molecular-beam epitaxy. It was found that the (0001) disk was established with the capture of N atoms by most-outside Ga atoms as the (1x1) surface was constructing, while the pyramid was obtained due to the missing of most-outside N atoms. The intensity of cathode luminescence excited from the microdisk was one order of amplitude greater than that from M-plane GaN.

  10. De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls

    SciTech Connect

    Mass, Olga; Pandithavidana, Dinesh R.; Ptaszek, Marcin; Santiago, Koraliz; Springer, Joseph W.; Jiao, Jieying; Tang, Qun; Kirmaier, Christine; Bocian, David F.; Holten, Dewey; Lindsey, Jonathan S.

    2011-01-01

    Natural photosynthetic pigments bacteriochlorophyllsc, d and e in green bacteria undergo self-assembly to create an organized antenna system known as the chlorosome, which collects photons and funnels the resulting excitation energy toward the reaction centers. Mimicry of chlorosome function is a central problem in supramolecular chemistry and artificial photosynthesis, and may have relevance for the design of photosynthesis-inspired solar cells. The main challenge in preparing artificial chlorosomes remains the synthesis of the appropriate pigment (chlorin) equipped with a set of functional groups suitable to direct the assembly and assure efficient energy transfer. Prior approaches have entailed derivatization of porphyrins or semisynthesis beginning with chlorophylls. This paper reports a third approach, the de novo synthesis of macrocycles that contain the same hydrocarbon skeleton as chlorosomal bacteriochlorophylls. The synthesis here of Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines (the aryl group consists of phenyl, mesityl, or pentafluorophenyl) entails selective bromination of a 3,13-diacetyl-10-arylchlorin, palladium-catalyzed 13¹-oxophorbine formation, and selective reduction of the 3-acetyl group using BH₃·tBuNH₂. Each macrocycle contains a geminal dimethyl group in the pyrroline ring to provide stability toward adventitious dehydrogenation. A Zn(II) 7-(1-hydroxyethyl)-10-phenyl-17-oxochlorin also has been prepared. Altogether, 30 new hydroporphyrins were synthesized. The UV-Vis absorption spectra of the new chlorosomal bacteriochlorophyll mimics reveal a bathochromic shift of [similar]1800 cm-1 of the Qy band in nonpolar solvent, indicating extensive assembly in solution. The Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines differ in the propensity to form assemblies based on the 10-substituent in the following order: mesityl

  11. A planar dodecasubstituted porphyrin

    SciTech Connect

    Senge, M.O.; Medforth, C.J.; Smith, K.M. ); Sparks, L.D.; Shelnutt, J.A. )

    1993-04-28

    Structural investigations of copper and nickel complexes of dodecasubstituted porphyrins bearing aryl groups at the meso positions and propano rings at the pyrrole [beta] positions reveal considerable differences in their macrocycle conformations. While the nickel complex NiTC5T(3,4,5-OMeP)P was found to exhibit a nonplanar conformation which is considerably more planar than that of other dodecasubstituted porphyrins, the corresponding copper complex CuTC5T(3,4,5-OMeP)P was planar. CuTC5T(3,4,5-OMeP)P thus represents the first example of a completely planar dodecasubstituted porphyrin. The crystal structures of both porphyrins reveal that the C[sub b]-C[sub b]-CH[sub 2] angle is 13[degrees] smaller than in OEP derivatives. This change, which moves the methylene and aryl substituents further apart, effectively removes the steric repulsion responsible for the very nonplanar conformations observed for other dodecasubstituted porphyrins. Molecular mechanics calculations using a porphyrin force field correctly predict a planar macrocycle conformation. The possible reasons for the discrepancy between the observed moderately nonplanar structure and the calculated planar structure for NiTC5T(3,4,5-OMeP)P are discussed. The usefulness of spectroscopic probes (NMR, resonance Raman, electronic absorption) in predicting the planarity of dodecasubstituted porphyrins is also examined. The identification of a planar dodecasubstituted porphyrin further indicates the flexibility of the tetrapyrrole macrocycle and has implications for the study of nonplanarity in synthetic porphyrins and metallotetrapyrrole containing biomolecules. 32 refs., 6 figs., 7 tabs.

  12. Functionalized expanded porphyrins

    DOEpatents

    Sessler, Jonathan L; Pantos, Patricia J

    2013-11-12

    Disclosed are functionalized expanded porphyrins that can be used as spectrometric sensors for high-valent actinide cations. The disclosed functionalized expanded porphyrins have the advantage over unfunctionalized systems in that they can be immobilized via covalent attachment to a solid support comprising an inorganic or organic polymer or other common substrates. Substrates comprising the disclosed functionalized expanded porphyrins are also disclosed. Further, disclosed are methods of making the disclosed compounds (immobilized and free), methods of using them as sensors to detect high valent actinides, devices that comprise the disclosed compounds, and kits.

  13. Soluble porphyrin polymers

    DOEpatents

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  14. Amphiphilic Janus gold nanoparticles prepared by interface-directed self-assembly: synthesis and self-assembly.

    PubMed

    Liu, Guannan; Tian, Jia; Zhang, Xu; Zhao, Hanying

    2014-09-01

    Materials with Janus structures are attractive for wide applications in materials science. Although extensive efforts in the synthesis of Janus particles have been reported, the synthesis of sub-10 nm Janus nanoparticles is still challenging. Herein, the synthesis of Janus gold nanoparticles (AuNPs) based on interface-directed self-assembly is reported. Polystyrene (PS) colloidal particles with AuNPs on the surface were prepared by interface-directed self-assembly, and the colloidal particles were used as templates for the synthesis of Janus AuNPs. To prepare colloidal particles, thiol-terminated polystyrene (PS-SH) was dissolved in toluene and citrate-stabilized AuNPs were dispersed in aqueous solution. Upon mixing the two solutions, PS-SH chains were grafted to the surface of AuNPs and amphiphilic AuNPs were formed at the liquid-liquid interface. PS colloidal particles decorated with AuNPs on the surfaces were prepared by adding the emulsion to excess methanol. On the surface, AuNPs were partially embedded in the colloidal particles. The outer regions of the AuNPs were exposed to the solution and were functionalized through the grafting of atom-transfer radical polymerization (ATRP) initiator. Poly[2-(dimethamino)ethyl methacrylate] (PDMAEMA) on AuNPs were prepared by surface-initiated ATRP. After centrifugation and dissolving the colloidal particles in tetrahydrofuran (THF), Janus AuNPs with PS and PDMAEMA on two hemispheres were obtained. In acidic pH, Janus AuNPs are amphiphilic and are able to emulsify oil droplets in water; in basic pH, the Janus AuNPs are hydrophobic. In mixtures of THF/methanol at a volume ratio of 1:5, the Janus AuNPs self-assemble into bilayer structures with collapsed PS in the interiors and solvated PDMAEMA at the exteriors of the structures.

  15. Self-assembly processes in the prebiotic environment

    PubMed Central

    Deamer, David; Singaram, Sara; Rajamani, Sudha; Kompanichenko, Vladimir; Guggenheim, Stephen

    2006-01-01

    An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals. PMID:17008220

  16. Glycosylated Self-Assembled Monolayers for Arrays and Surface Analysis

    PubMed Central

    Cheng, Fang; Ratner, Daniel M.

    2013-01-01

    Over the past few decades, carbohydrates (glycans) have received growing attention for their many roles in biological systems, including pathogenesis, receptor-ligand interactions, and cell signaling. To unravel the biology of this important category of biomolecules, a host of new tools have been developed for glycomics investigation. At the forefront is the carbohydrate microarray, developed to immobilize functional glycans on a solid substrate to rapidly screen a variety of potential binding partners (carbohydrates, proteins, nucleic acids, cells, and viruses). The essential role played by surface modification on glycan microarray performance requires new methods to rigorously characterize glycan surface chemistries. Due to their highly reproducible nature and well-studied properties, self-assembled monolayers (SAMs) on gold are powerful models for presenting glycans on a solid substrate, engineering biomimetic microenvironments and exploring the bioactivity of immobilized carbohydrates via surface plasmon resonance (SPR). However, it can be challenging to prepare high quality glycosylated SAMs (glyco-SAMs) that retain their biological function following surface immobilization. Herein, a selection of versatile methods for the preparation of glyco-SAMs using natural and chemically modified glycans is described. This chapter will highlight the following three immobilization techniques: (1) direct self assembly using thiolated glycosides onto gold, (2) tethering aminated glycosides onto amine-reactive SAMs, and (3) conjugating natural glycan onto divinyl sulfone-activated SAMs. PMID:22057519

  17. Synthesis and simultaneous self-assembly of novel antibacterial polyurethanes

    NASA Astrophysics Data System (ADS)

    Duan, J. H.; Yin, F.; Jiang, G. C.

    2016-07-01

    Novel physically crosslinked polyurethane (PUII) based on isophorone diisocyanates (IPDI) was prepared by a conventional two step method. The chemical structures of the PUII were characterized by fourier transform infrared (FTIR), proton nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC) and scanning electron microscopy (SEM). The PUII hydrogels were subjected to solvent-induced self-assembly in THF + water to construct a variety of morphologies. The self-assembly morphology of the PUII was observed by scanning electron microscopy (SEM). Different amounts (0.2%, 0.4%, 0.6%, 0.8%, 1.0%) of 1,3,5-Tris(2-hydroxyethyl)hexahydro-1,3,5-triazine (TNO) was added as antibacterial agent to the polyurethane prepolymers. The inhibiting capacity of the antibacterial films to the Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Gray mold has been studied. The inhibiting capacity of films for each strain effect became obvious with the increase of content of antibacterial agent and the sensitive degree to all kind of bacterial species was different.

  18. Design of single peptides for self-assembled conduction channels

    NASA Astrophysics Data System (ADS)

    Yew, Sok Yee; Shekhawat, Gajendra; Wangoo, Nishima; Mhaisalkar, Subodh; Raman Suri, C.; Dravid, Vinayak P.; Lam, Yeng Ming

    2011-05-01

    Self-assembly of peptides provides the possibility of achieving relatively long range order on surfaces. These ordered peptides can also form channels that can be used as conduction channels. In the past, studies were focused on electron conduction through the secondary structure and amine bond of peptides and these restrict conduction of electrons over a short range (a few nanometers). In this work, we demonstrate the realization of electron conduction over a longer range of a few hundred nanometers via π-π stacking of the phenyl groups in the tyrosine residue of a single peptide. The peptide used in this work was designed with a phenyl ring for π-π stacking at one end and a carboxylic group at the other end for binding to aminopropyltriethoxysilane (APTES) treated silicon wafer. The distance between the peptides is controlled by a disulfide bond formed between neighboring cysteine residue and also by the amine groups of aminopropyltriethoxysilane. We demonstrate that the self-assembled peptide is conducting in the dry state over hundreds of nanometers, realizing the possibility of using peptide as a molecular wire.

  19. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    Catalytically active colloids maintain non-equilibrium conditions in which they produce and deplete chemicals at their surface. While individual colloids that are symmetrically coated do not exhibit dynamical activity, the concentration fields resulting from their chemical activity decay as 1/r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a non-equilibrium analogue of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. In dilute conditions these active colloids join up to form molecules via generalized ionic bonds. Colloids are found to join up to form self-assembled molecules that could be inert or have spontaneous activity in the form of net translational velocity and spin depending on their symmetry properties and their constituents. As the interactions do not satisfy detailed-balance, it is possible to achieve structures with time dependent functionality. We study a molecule that adopts spontaneous oscillations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that posses dynamical functionalities.

  20. Proteins evolve on the edge of supramolecular self-assembly

    NASA Astrophysics Data System (ADS)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.